arXiv Papers with Code in Artificial Intelligence (July 2025 - December 2025)

Paperid: 1, https://arxiv.org/pdf/2512.25075.pdf   GitHub GitHub
Authors:Zhening Huang, Hyeonho Jeong, Xuelin Chen, Yulia Gryaditskaya, Tuanfeng Y. Wang, Joan Lasenby, Chun-Hao Huang
Title: SpaceTimePilot: Generative Rendering of Dynamic Scenes Across Space and Time
Abstract:
We present SpaceTimePilot, a video diffusion model that disentangles space and time for controllable generative rendering. Given a monocular video, SpaceTimePilot can independently alter the camera viewpoint and the motion sequence within the generative process, re-rendering the scene for continuous and arbitrary exploration across space and time. To achieve this, we introduce an effective animation time-embedding mechanism in the diffusion process, allowing explicit control of the output video's motion sequence with respect to that of the source video. As no datasets provide paired videos of the same dynamic scene with continuous temporal variations, we propose a simple yet effective temporal-warping training scheme that repurposes existing multi-view datasets to mimic temporal differences. This strategy effectively supervises the model to learn temporal control and achieve robust space-time disentanglement. To further enhance the precision of dual control, we introduce two additional components: an improved camera-conditioning mechanism that allows altering the camera from the first frame, and CamxTime, the first synthetic space-and-time full-coverage rendering dataset that provides fully free space-time video trajectories within a scene. Joint training on the temporal-warping scheme and the CamxTime dataset yields more precise temporal control. We evaluate SpaceTimePilot on both real-world and synthetic data, demonstrating clear space-time disentanglement and strong results compared to prior work. Project page: https://zheninghuang.github.io/Space-Time-Pilot/ Code: https://github.com/ZheningHuang/spacetimepilot

Authors:Alexander C. Li, Ananya Kumar, Deepak Pathak
Title: Generative Classifiers Avoid Shortcut Solutions
Abstract:
Discriminative approaches to classification often learn shortcuts that hold in-distribution but fail even under minor distribution shift. This failure mode stems from an overreliance on features that are spuriously correlated with the label. We show that generative classifiers, which use class-conditional generative models, can avoid this issue by modeling all features, both core and spurious, instead of mainly spurious ones. These generative classifiers are simple to train, avoiding the need for specialized augmentations, strong regularization, extra hyperparameters, or knowledge of the specific spurious correlations to avoid. We find that diffusion-based and autoregressive generative classifiers achieve state-of-the-art performance on five standard image and text distribution shift benchmarks and reduce the impact of spurious correlations in realistic applications, such as medical or satellite datasets. Finally, we carefully analyze a Gaussian toy setting to understand the inductive biases of generative classifiers, as well as the data properties that determine when generative classifiers outperform discriminative ones.

Authors:Siyuan Hu, Kevin Qinghong Lin, Mike Zheng Shou
Title: ShowUI-$π$: Flow-based Generative Models as GUI Dexterous Hands
Abstract:
Building intelligent agents capable of dexterous manipulation is essential for achieving human-like automation in both robotics and digital environments. However, existing GUI agents rely on discrete click predictions (x,y), which prohibits free-form, closed-loop trajectories (e.g. dragging a progress bar) that require continuous, on-the-fly perception and adjustment. In this work, we develop ShowUI-$π$, the first flow-based generative model as GUI dexterous hand, featuring the following designs: (i) Unified Discrete-Continuous Actions, integrating discrete clicks and continuous drags within a shared model, enabling flexible adaptation across diverse interaction modes; (ii) Flow-based Action Generation for drag modeling, which predicts incremental cursor adjustments from continuous visual observations via a lightweight action expert, ensuring smooth and stable trajectories; (iii) Drag Training data and Benchmark, where we manually collect and synthesize 20K drag trajectories across five domains (e.g. PowerPoint, Adobe Premiere Pro), and introduce ScreenDrag, a benchmark with comprehensive online and offline evaluation protocols for assessing GUI agents' drag capabilities. Our experiments show that proprietary GUI agents still struggle on ScreenDrag (e.g. Operator scores 13.27, and the best Gemini-2.5-CUA reaches 22.18). In contrast, ShowUI-$π$ achieves 26.98 with only 450M parameters, underscoring both the difficulty of the task and the effectiveness of our approach. We hope this work advances GUI agents toward human-like dexterous control in digital world. The code is available at https://github.com/showlab/showui-pi.

Authors:Karthik Dharmarajan, Wenlong Huang, Jiajun Wu, Li Fei-Fei, Ruohan Zhang
Title: Dream2Flow: Bridging Video Generation and Open-World Manipulation with 3D Object Flow
Abstract:
Generative video modeling has emerged as a compelling tool to zero-shot reason about plausible physical interactions for open-world manipulation. Yet, it remains a challenge to translate such human-led motions into the low-level actions demanded by robotic systems. We observe that given an initial image and task instruction, these models excel at synthesizing sensible object motions. Thus, we introduce Dream2Flow, a framework that bridges video generation and robotic control through 3D object flow as an intermediate representation. Our method reconstructs 3D object motions from generated videos and formulates manipulation as object trajectory tracking. By separating the state changes from the actuators that realize those changes, Dream2Flow overcomes the embodiment gap and enables zero-shot guidance from pre-trained video models to manipulate objects of diverse categories-including rigid, articulated, deformable, and granular. Through trajectory optimization or reinforcement learning, Dream2Flow converts reconstructed 3D object flow into executable low-level commands without task-specific demonstrations. Simulation and real-world experiments highlight 3D object flow as a general and scalable interface for adapting video generation models to open-world robotic manipulation. Videos and visualizations are available at https://dream2flow.github.io/.

Authors:Kai Ye, Xiaotong You, Jianghang Lin, Jiayi Ji, Pingyang Dai, Liujuan Cao
Title: Evolving, Not Training: Zero-Shot Reasoning Segmentation via Evolutionary Prompting
Abstract:
Reasoning Segmentation requires models to interpret complex, context-dependent linguistic queries to achieve pixel-level localization. Current dominant approaches rely heavily on Supervised Fine-Tuning (SFT) or Reinforcement Learning (RL). However, SFT suffers from catastrophic forgetting and domain dependency, while RL is often hindered by training instability and rigid reliance on predefined reward functions. Although recent training-free methods circumvent these training burdens, they are fundamentally limited by a static inference paradigm. These methods typically rely on a single-pass "generate-then-segment" chain, which suffers from insufficient reasoning depth and lacks the capability to self-correct linguistic hallucinations or spatial misinterpretations. In this paper, we challenge these limitations and propose EVOL-SAM3, a novel zero-shot framework that reformulates reasoning segmentation as an inference-time evolutionary search process. Instead of relying on a fixed prompt, EVOL-SAM3 maintains a population of prompt hypotheses and iteratively refines them through a "Generate-Evaluate-Evolve" loop. We introduce a Visual Arena to assess prompt fitness via reference-free pairwise tournaments, and a Semantic Mutation operator to inject diversity and correct semantic errors. Furthermore, a Heterogeneous Arena module integrates geometric priors with semantic reasoning to ensure robust final selection. Extensive experiments demonstrate that EVOL-SAM3 not only substantially outperforms static baselines but also significantly surpasses fully supervised state-of-the-art methods on the challenging ReasonSeg benchmark in a zero-shot setting. The code is available at https://github.com/AHideoKuzeA/Evol-SAM3.

Authors:Pengcheng Xia, Yixiang Huang, Chengjin Qin, Chengliang Liu
Title: Multi-modal cross-domain mixed fusion model with dual disentanglement for fault diagnosis under unseen working conditions
Abstract:
Intelligent fault diagnosis has become an indispensable technique for ensuring machinery reliability. However, existing methods suffer significant performance decline in real-world scenarios where models are tested under unseen working conditions, while domain adaptation approaches are limited to their reliance on target domain samples. Moreover, most existing studies rely on single-modal sensing signals, overlooking the complementary nature of multi-modal information for improving model generalization. To address these limitations, this paper proposes a multi-modal cross-domain mixed fusion model with dual disentanglement for fault diagnosis. A dual disentanglement framework is developed to decouple modality-invariant and modality-specific features, as well as domain-invariant and domain-specific representations, enabling both comprehensive multi-modal representation learning and robust domain generalization. A cross-domain mixed fusion strategy is designed to randomly mix modality information across domains for modality and domain diversity augmentation. Furthermore, a triple-modal fusion mechanism is introduced to adaptively integrate multi-modal heterogeneous information. Extensive experiments are conducted on induction motor fault diagnosis under both unseen constant and time-varying working conditions. The results demonstrate that the proposed method consistently outperforms advanced methods and comprehensive ablation studies further verify the effectiveness of each proposed component and multi-modal fusion. The code is available at: https://github.com/xiapc1996/MMDG.

Authors:Zijian Zhao, Yitong Shang, Sen Li
Title: AutoFed: Manual-Free Federated Traffic Prediction via Personalized Prompt
Abstract:
Accurate traffic prediction is essential for Intelligent Transportation Systems, including ride-hailing, urban road planning, and vehicle fleet management. However, due to significant privacy concerns surrounding traffic data, most existing methods rely on local training, resulting in data silos and limited knowledge sharing. Federated Learning (FL) offers an efficient solution through privacy-preserving collaborative training; however, standard FL struggles with the non-independent and identically distributed (non-IID) problem among clients. This challenge has led to the emergence of Personalized Federated Learning (PFL) as a promising paradigm. Nevertheless, current PFL frameworks require further adaptation for traffic prediction tasks, such as specialized graph feature engineering, data processing, and network architecture design. A notable limitation of many prior studies is their reliance on hyper-parameter optimization across datasets-information that is often unavailable in real-world scenarios-thus impeding practical deployment. To address this challenge, we propose AutoFed, a novel PFL framework for traffic prediction that eliminates the need for manual hyper-parameter tuning. Inspired by prompt learning, AutoFed introduces a federated representor that employs a client-aligned adapter to distill local data into a compact, globally shared prompt matrix. This prompt then conditions a personalized predictor, allowing each client to benefit from cross-client knowledge while maintaining local specificity. Extensive experiments on real-world datasets demonstrate that AutoFed consistently achieves superior performance across diverse scenarios. The code of this paper is provided at https://github.com/RS2002/AutoFed .

Authors:Basile Terver, Tsung-Yen Yang, Jean Ponce, Adrien Bardes, Yann LeCun
Title: What Drives Success in Physical Planning with Joint-Embedding Predictive World Models?
Abstract:
A long-standing challenge in AI is to develop agents capable of solving a wide range of physical tasks and generalizing to new, unseen tasks and environments. A popular recent approach involves training a world model from state-action trajectories and subsequently use it with a planning algorithm to solve new tasks. Planning is commonly performed in the input space, but a recent family of methods has introduced planning algorithms that optimize in the learned representation space of the world model, with the promise that abstracting irrelevant details yields more efficient planning. In this work, we characterize models from this family as JEPA-WMs and investigate the technical choices that make algorithms from this class work. We propose a comprehensive study of several key components with the objective of finding the optimal approach within the family. We conducted experiments using both simulated environments and real-world robotic data, and studied how the model architecture, the training objective, and the planning algorithm affect planning success. We combine our findings to propose a model that outperforms two established baselines, DINO-WM and V-JEPA-2-AC, in both navigation and manipulation tasks. Code, data and checkpoints are available at https://github.com/facebookresearch/jepa-wms.

Authors:Hyunjun Kim
Title: HOLOGRAPH: Active Causal Discovery via Sheaf-Theoretic Alignment of Large Language Model Priors
Abstract:
Causal discovery from observational data remains fundamentally limited by identifiability constraints. Recent work has explored leveraging Large Language Models (LLMs) as sources of prior causal knowledge, but existing approaches rely on heuristic integration that lacks theoretical grounding. We introduce HOLOGRAPH, a framework that formalizes LLM-guided causal discovery through sheaf theory--representing local causal beliefs as sections of a presheaf over variable subsets. Our key insight is that coherent global causal structure corresponds to the existence of a global section, while topological obstructions manifest as non-vanishing sheaf cohomology. We propose the Algebraic Latent Projection to handle hidden confounders and Natural Gradient Descent on the belief manifold for principled optimization. Experiments on synthetic and real-world benchmarks demonstrate that HOLOGRAPH provides rigorous mathematical foundations while achieving competitive performance on causal discovery tasks with 50-100 variables. Our sheaf-theoretic analysis reveals that while Identity, Transitivity, and Gluing axioms are satisfied to numerical precision (<10^{-6}), the Locality axiom fails for larger graphs, suggesting fundamental non-local coupling in latent variable projections. Code is available at [https://github.com/hyunjun1121/holograph](https://github.com/hyunjun1121/holograph).

Authors:Bo Jiang, Taolue Yang, Youyuan Liu, Xubin He, Sheng Di, Sian Jin
Title: PackKV: Reducing KV Cache Memory Footprint through LLM-Aware Lossy Compression
Abstract:
Transformer-based large language models (LLMs) have demonstrated remarkable potential across a wide range of practical applications. However, long-context inference remains a significant challenge due to the substantial memory requirements of the key-value (KV) cache, which can scale to several gigabytes as sequence length and batch size increase. In this paper, we present \textbf{PackKV}, a generic and efficient KV cache management framework optimized for long-context generation. %, which synergistically supports both latency-critical and throughput-critical inference scenarios. PackKV introduces novel lossy compression techniques specifically tailored to the characteristics of KV cache data, featuring a careful co-design of compression algorithms and system architecture. Our approach is compatible with the dynamically growing nature of the KV cache while preserving high computational efficiency. Experimental results show that, under the same and minimum accuracy drop as state-of-the-art quantization methods, PackKV achieves, on average, \textbf{153.2}\% higher memory reduction rate for the K cache and \textbf{179.6}\% for the V cache. Furthermore, PackKV delivers extremely high execution throughput, effectively eliminating decompression overhead and accelerating the matrix-vector multiplication operation. Specifically, PackKV achieves an average throughput improvement of \textbf{75.7}\% for K and \textbf{171.7}\% for V across A100 and RTX Pro 6000 GPUs, compared to cuBLAS matrix-vector multiplication kernels, while demanding less GPU memory bandwidth. Code available on https://github.com/BoJiang03/PackKV

Authors:Pieter M. Blok, Haozhou Wang, Hyun Kwon Suh, Peicheng Wang, James Burridge, Wei Guo
Title: PointRAFT: 3D deep learning for high-throughput prediction of potato tuber weight from partial point clouds
Abstract:
Potato yield is a key indicator for optimizing cultivation practices in agriculture. Potato yield can be estimated on harvesters using RGB-D cameras, which capture three-dimensional (3D) information of individual tubers moving along the conveyor belt. However, point clouds reconstructed from RGB-D images are incomplete due to self-occlusion, leading to systematic underestimation of tuber weight. To address this, we introduce PointRAFT, a high-throughput point cloud regression network that directly predicts continuous 3D shape properties, such as tuber weight, from partial point clouds. Rather than reconstructing full 3D geometry, PointRAFT infers target values directly from raw 3D data. Its key architectural novelty is an object height embedding that incorporates tuber height as an additional geometric cue, improving weight prediction under practical harvesting conditions. PointRAFT was trained and evaluated on 26,688 partial point clouds collected from 859 potato tubers across four cultivars and three growing seasons on an operational harvester in Japan. On a test set of 5,254 point clouds from 172 tubers, PointRAFT achieved a mean absolute error of 12.0 g and a root mean squared error of 17.2 g, substantially outperforming a linear regression baseline and a standard PointNet++ regression network. With an average inference time of 6.3 ms per point cloud, PointRAFT supports processing rates of up to 150 tubers per second, meeting the high-throughput requirements of commercial potato harvesters. Beyond potato weight estimation, PointRAFT provides a versatile regression network applicable to a wide range of 3D phenotyping and robotic perception tasks. The code, network weights, and a subset of the dataset are publicly available at https://github.com/pieterblok/pointraft.git.

Authors:Evgenii Rudakov, Jonathan Shock, Benjamin Ultan Cowley
Title: Graph-Based Exploration for ARC-AGI-3 Interactive Reasoning Tasks
Abstract:
We present a training-free graph-based approach for solving interactive reasoning tasks in the ARC-AGI-3 benchmark. ARC-AGI-3 comprises game-like tasks where agents must infer task mechanics through limited interactions, and adapt to increasing complexity as levels progress. Success requires forming hypotheses, testing them, and tracking discovered mechanics. The benchmark has revealed that state-of-the-art LLMs are currently incapable of reliably solving these tasks. Our method combines vision-based frame processing with systematic state-space exploration using graph-structured representations. It segments visual frames into meaningful components, prioritizes actions based on visual salience, and maintains a directed graph of explored states and transitions. By tracking visited states and tested actions, the agent prioritizes actions that provide the shortest path to untested state-action pairs. On the ARC-AGI-3 Preview Challenge, this structured exploration strategy solves a median of 30 out of 52 levels across six games and ranks 3rd on the private leaderboard, substantially outperforming frontier LLM-based agents. These results demonstrate that explicit graph-structured exploration, even without learning, can serve as a strong baseline for interactive reasoning and underscore the importance of systematic state tracking and action prioritization in sparse-feedback environments where current LLMs fail to capture task dynamics. The code is open source and available at https://github.com/dolphin-in-a-coma/arc-agi-3-just-explore.

Authors:Haoran He, Yuxiao Ye, Jie Liu, Jiajun Liang, Zhiyong Wang, Ziyang Yuan, Xintao Wang, Hangyu Mao, Pengfei Wan, Ling Pan
Title: GARDO: Reinforcing Diffusion Models without Reward Hacking
Abstract:
Fine-tuning diffusion models via online reinforcement learning (RL) has shown great potential for enhancing text-to-image alignment. However, since precisely specifying a ground-truth objective for visual tasks remains challenging, the models are often optimized using a proxy reward that only partially captures the true goal. This mismatch often leads to reward hacking, where proxy scores increase while real image quality deteriorates and generation diversity collapses. While common solutions add regularization against the reference policy to prevent reward hacking, they compromise sample efficiency and impede the exploration of novel, high-reward regions, as the reference policy is usually sub-optimal. To address the competing demands of sample efficiency, effective exploration, and mitigation of reward hacking, we propose Gated and Adaptive Regularization with Diversity-aware Optimization (GARDO), a versatile framework compatible with various RL algorithms. Our key insight is that regularization need not be applied universally; instead, it is highly effective to selectively penalize a subset of samples that exhibit high uncertainty. To address the exploration challenge, GARDO introduces an adaptive regularization mechanism wherein the reference model is periodically updated to match the capabilities of the online policy, ensuring a relevant regularization target. To address the mode collapse issue in RL, GARDO amplifies the rewards for high-quality samples that also exhibit high diversity, encouraging mode coverage without destabilizing the optimization process. Extensive experiments across diverse proxy rewards and hold-out unseen metrics consistently show that GARDO mitigates reward hacking and enhances generation diversity without sacrificing sample efficiency or exploration, highlighting its effectiveness and robustness.

Authors:Wenzheng Zeng, Difei Gao, Mike Zheng Shou, Hwee Tou Ng
Title: Factorized Learning for Temporally Grounded Video-Language Models
Abstract:
Recent video-language models have shown great potential for video understanding, but still struggle with accurate temporal grounding for event-level perception. We observe that two main factors in video understanding (i.e., temporal grounding and textual response) form a logical hierarchy: accurate temporal evidence grounding lays the foundation for reliable textual response. However, existing works typically handle these two tasks in a coupled manner without a clear logical structure, leading to sub-optimal objectives. We address this from a factorized learning perspective. We first propose D$^2$VLM, a framework that decouples the learning of these two tasks while also emphasizing their inherent dependency. We adopt a "grounding then answering with evidence referencing" paradigm and introduce evidence tokens for evidence grounding, which emphasize event-level visual semantic capture beyond the focus on timestamp representation in existing works. To further facilitate the learning of these two tasks, we introduce a novel factorized preference optimization (FPO) algorithm. Unlike standard preference optimization, FPO explicitly incorporates probabilistic temporal grounding modeling into the optimization objective, enabling preference learning for both temporal grounding and textual response. We also construct a synthetic dataset to address the lack of suitable datasets for factorized preference learning with explicit temporal grounding. Experiments on various tasks demonstrate the clear advantage of our approach. Our source code is available at https://github.com/nusnlp/d2vlm.

Authors:Yunkai Dang, Donghao Wang, Jiacheng Yang, Yifan Jiang, Meiyi Zhu, Yuekun Yang, Cong Wang, Qi Fan, Wenbin Li, Yang Gao
Title: FUSE-RSVLM: Feature Fusion Vision-Language Model for Remote Sensing
Abstract:
Large vision-language models (VLMs) exhibit strong performance across various tasks. However, these VLMs encounter significant challenges when applied to the remote sensing domain due to the inherent differences between remote sensing images and natural images. Existing remote sensing VLMs often fail to extract fine-grained visual features and suffer from visual forgetting during deep language processing. To address this, we introduce MF-RSVLM, a Multi-Feature Fusion Remote Sensing Vision--Language Model that effectively extracts and fuses visual features for RS understanding. MF-RSVLM learns multi-scale visual representations and combines global context with local details, improving the capture of small and complex structures in RS scenes. A recurrent visual feature injection scheme ensures the language model remains grounded in visual evidence and reduces visual forgetting during generation. Extensive experiments on diverse RS benchmarks show that MF-RSVLM achieves state-of-the-art or highly competitive performance across remote sensing classification, image captioning, and VQA tasks. Our code is publicly available at https://github.com/Yunkaidang/RSVLM.

Authors:Sijia Chen, Di Niu
Title: iCLP: Large Language Model Reasoning with Implicit Cognition Latent Planning
Abstract:
Large language models (LLMs), when guided by explicit textual plans, can perform reliable step-by-step reasoning during problem-solving. However, generating accurate and effective textual plans remains challenging due to LLM hallucinations and the high diversity of task-specific questions. To address this, we draw inspiration from human Implicit Cognition (IC), the subconscious process by which decisions are guided by compact, generalized patterns learned from past experiences without requiring explicit verbalization. We propose iCLP, a novel framework that enables LLMs to adaptively generate latent plans (LPs), which are compact encodings of effective reasoning instructions. iCLP first distills explicit plans from existing step-by-step reasoning trajectories. It then learns discrete representations of these plans via a vector-quantized autoencoder coupled with a codebook. Finally, by fine-tuning LLMs on paired latent plans and corresponding reasoning steps, the models learn to perform implicit planning during reasoning. Experimental results on mathematical reasoning and code generation tasks demonstrate that, with iCLP, LLMs can plan in latent space while reasoning in language space. This approach yields significant improvements in both accuracy and efficiency and, crucially, demonstrates strong cross-domain generalization while preserving the interpretability of chain-of-thought reasoning.

Authors:Bulent Soykan, Sean Mondesire, Ghaith Rabadi
Title: TESO Tabu Enhanced Simulation Optimization for Noisy Black Box Problems
Abstract:
Simulation optimization (SO) is frequently challenged by noisy evaluations, high computational costs, and complex, multimodal search landscapes. This paper introduces Tabu-Enhanced Simulation Optimization (TESO), a novel metaheuristic framework integrating adaptive search with memory-based strategies. TESO leverages a short-term Tabu List to prevent cycling and encourage diversification, and a long-term Elite Memory to guide intensification by perturbing high-performing solutions. An aspiration criterion allows overriding tabu restrictions for exceptional candidates. This combination facilitates a dynamic balance between exploration and exploitation in stochastic environments. We demonstrate TESO's effectiveness and reliability using an queue optimization problem, showing improved performance compared to benchmarks and validating the contribution of its memory components. Source code and data are available at: https://github.com/bulentsoykan/TESO.

Authors:Carlo Malapad Acosta, Herath Mudiyanselage Viraj Vidura Herath, Jia Yu Lim, Abhishek Saha, Sanka Rasnayaka, Lucy Marshall
Title: Physics-informed Graph Neural Networks for Operational Flood Modeling
Abstract:
Flood models inform strategic disaster management by simulating the spatiotemporal hydrodynamics of flooding. While physics-based numerical flood models are accurate, their substantial computational cost limits their use in operational settings where rapid predictions are essential. Models designed with graph neural networks (GNNs) provide both speed and accuracy while having the ability to process unstructured spatial domains. Given its flexible input and architecture, GNNs can be leveraged alongside physics-informed techniques with ease, significantly improving interpretability. This study introduces a novel flood GNN architecture, DUALFloodGNN, which embeds physical constraints at both global and local scales through explicit loss terms. The model jointly predicts water volume at nodes and flow along edges through a shared message-passing framework. To improve performance for autoregressive inference, model training is conducted with a multi-step loss enhanced with dynamic curriculum learning. Compared with standard GNN architectures and state-of-the-art GNN flood models, DUALFloodGNN achieves substantial improvements in predicting multiple hydrologic variables while maintaining high computational efficiency. The model is open-sourced at https://github.com/acostacos/dual_flood_gnn.

Authors:Jichen Feng, Yifan Zhang, Chenggong Zhang, Yifu Lu, Shilong Liu, Mengdi Wang
Title: Web World Models
Abstract:
Language agents increasingly require persistent worlds in which they can act, remember, and learn. Existing approaches sit at two extremes: conventional web frameworks provide reliable but fixed contexts backed by databases, while fully generative world models aim for unlimited environments at the expense of controllability and practical engineering. In this work, we introduce the Web World Model (WWM), a middle ground where world state and ``physics'' are implemented in ordinary web code to ensure logical consistency, while large language models generate context, narratives, and high-level decisions on top of this structured latent state. We build a suite of WWMs on a realistic web stack, including an infinite travel atlas grounded in real geography, fictional galaxy explorers, web-scale encyclopedic and narrative worlds, and simulation- and game-like environments. Across these systems, we identify practical design principles for WWMs: separating code-defined rules from model-driven imagination, representing latent state as typed web interfaces, and utilizing deterministic generation to achieve unlimited but structured exploration. Our results suggest that web stacks themselves can serve as a scalable substrate for world models, enabling controllable yet open-ended environments. Project Page: https://github.com/Princeton-AI2-Lab/Web-World-Models.

Authors:Iris Xu, Guangtao Zeng, Zexue He, Charles Jin, Aldo Pareja, Dan Gutfreund, Chuang Gan, Zhang-Wei Hong
Title: BOAD: Discovering Hierarchical Software Engineering Agents via Bandit Optimization
Abstract:
Large language models (LLMs) have shown strong reasoning and coding capabilities, yet they struggle to generalize to real-world software engineering (SWE) problems that are long-horizon and out of distribution. Existing systems often rely on a single agent to handle the entire workflow-interpreting issues, navigating large codebases, and implementing fixes-within one reasoning chain. Such monolithic designs force the model to retain irrelevant context, leading to spurious correlations and poor generalization. Motivated by how human engineers decompose complex problems, we propose structuring SWE agents as orchestrators coordinating specialized sub-agents for sub-tasks such as localization, editing, and validation. The challenge lies in discovering effective hierarchies automatically: as the number of sub-agents grows, the search space becomes combinatorial, and it is difficult to attribute credit to individual sub-agents within a team. We address these challenges by formulating hierarchy discovery as a multi-armed bandit (MAB) problem, where each arm represents a candidate sub-agent and the reward measures its helpfulness when collaborating with others. This framework, termed Bandit Optimization for Agent Design (BOAD), enables efficient exploration of sub-agent designs under limited evaluation budgets. On SWE-bench-Verified, BOAD outperforms single-agent and manually designed multi-agent systems. On SWE-bench-Live, featuring more recent and out-of-distribution issues, our 36B system ranks second on the leaderboard at the time of evaluation, surpassing larger models such as GPT-4 and Claude. These results demonstrate that automatically discovered hierarchical multi-agent systems significantly improve generalization on challenging long-horizon SWE tasks. Code is available at https://github.com/iamxjy/BOAD-SWE-Agent.

Authors:Zuoyou Jiang, Li Zhao, Rui Sun, Ruohan Sun, Zhongjian Li, Jing Li, Daxin Jiang, Zuo Bai, Cheng Hua
Title: Alpha-R1: Alpha Screening with LLM Reasoning via Reinforcement Learning
Abstract:
Signal decay and regime shifts pose recurring challenges for data-driven investment strategies in non-stationary markets. Conventional time-series and machine learning approaches, which rely primarily on historical correlations, often struggle to generalize when the economic environment changes. While large language models (LLMs) offer strong capabilities for processing unstructured information, their potential to support quantitative factor screening through explicit economic reasoning remains underexplored. Existing factor-based methods typically reduce alphas to numerical time series, overlooking the semantic rationale that determines when a factor is economically relevant. We propose Alpha-R1, an 8B-parameter reasoning model trained via reinforcement learning for context-aware alpha screening. Alpha-R1 reasons over factor logic and real-time news to evaluate alpha relevance under changing market conditions, selectively activating or deactivating factors based on contextual consistency. Empirical results across multiple asset pools show that Alpha-R1 consistently outperforms benchmark strategies and exhibits improved robustness to alpha decay. The full implementation and resources are available at https://github.com/FinStep-AI/Alpha-R1.

Authors:Yuxin Wen, Qing Shuai, Di Kang, Jing Li, Cheng Wen, Yue Qian, Ningxin Jiao, Changhai Chen, Weijie Chen, Yiran Wang, Jinkun Guo, Dongyue An, Han Liu, Yanyu Tong, Chao Zhang, Qing Guo, Juan Chen, Qiao Zhang, Youyi Zhang, Zihao Yao, Cheng Zhang, Hong Duan, Xiaoping Wu, Qi Chen, Fei Cheng, Liang Dong, Peng He, Hao Zhang, Jiaxin Lin, Chao Zhang, Zhongyi Fan, Yifan Li, Zhichao Hu, Yuhong Liu, Linus, Jie Jiang, Xiaolong Li, Linchao Bao
Title: HY-Motion 1.0: Scaling Flow Matching Models for Text-To-Motion Generation
Abstract:
We present HY-Motion 1.0, a series of state-of-the-art, large-scale, motion generation models capable of generating 3D human motions from textual descriptions. HY-Motion 1.0 represents the first successful attempt to scale up Diffusion Transformer (DiT)-based flow matching models to the billion-parameter scale within the motion generation domain, delivering instruction-following capabilities that significantly outperform current open-source benchmarks. Uniquely, we introduce a comprehensive, full-stage training paradigm -- including large-scale pretraining on over 3,000 hours of motion data, high-quality fine-tuning on 400 hours of curated data, and reinforcement learning from both human feedback and reward models -- to ensure precise alignment with the text instruction and high motion quality. This framework is supported by our meticulous data processing pipeline, which performs rigorous motion cleaning and captioning. Consequently, our model achieves the most extensive coverage, spanning over 200 motion categories across 6 major classes. We release HY-Motion 1.0 to the open-source community to foster future research and accelerate the transition of 3D human motion generation models towards commercial maturity.

Authors:Zhuo Li, Pengyu Cheng, Zhechao Yu, Feifei Tong, Anningzhe Gao, Tsung-Hui Chang, Xiang Wan, Erchao Zhao, Xiaoxi Jiang, Guanjun Jiang
Title: Eliminating Inductive Bias in Reward Models with Information-Theoretic Guidance
Abstract:
Reward models (RMs) are essential in reinforcement learning from human feedback (RLHF) to align large language models (LLMs) with human values. However, RM training data is commonly recognized as low-quality, containing inductive biases that can easily lead to overfitting and reward hacking. For example, more detailed and comprehensive responses are usually human-preferred but with more words, leading response length to become one of the inevitable inductive biases. A limited number of prior RM debiasing approaches either target a single specific type of bias or model the problem with only simple linear correlations, \textit{e.g.}, Pearson coefficients. To mitigate more complex and diverse inductive biases in reward modeling, we introduce a novel information-theoretic debiasing method called \textbf{D}ebiasing via \textbf{I}nformation optimization for \textbf{R}M (DIR). Inspired by the information bottleneck (IB), we maximize the mutual information (MI) between RM scores and human preference pairs, while minimizing the MI between RM outputs and biased attributes of preference inputs. With theoretical justification from information theory, DIR can handle more sophisticated types of biases with non-linear correlations, broadly extending the real-world application scenarios for RM debiasing methods. In experiments, we verify the effectiveness of DIR with three types of inductive biases: \textit{response length}, \textit{sycophancy}, and \textit{format}. We discover that DIR not only effectively mitigates target inductive biases but also enhances RLHF performance across diverse benchmarks, yielding better generalization abilities. The code and training recipes are available at https://github.com/Qwen-Applications/DIR.

Authors:Kongcheng Zhang, Qi Yao, Shunyu Liu, Wenjian Zhang, Min Cen, Yang Zhou, Wenkai Fang, Yiru Zhao, Baisheng Lai, Mingli Song
Title: Replay Failures as Successes: Sample-Efficient Reinforcement Learning for Instruction Following
Abstract:
Reinforcement Learning (RL) has shown promise for aligning Large Language Models (LLMs) to follow instructions with various constraints. Despite the encouraging results, RL improvement inevitably relies on sampling successful, high-quality responses; however, the initial model often struggles to generate responses that satisfy all constraints due to its limited capabilities, yielding sparse or indistinguishable rewards that impede learning. In this work, we propose Hindsight instruction Replay (HiR), a novel sample-efficient RL framework for complex instruction following tasks, which employs a select-then-rewrite strategy to replay failed attempts as successes based on the constraints that have been satisfied in hindsight. We perform RL on these replayed samples as well as the original ones, theoretically framing the objective as dual-preference learning at both the instruction- and response-level to enable efficient optimization using only a binary reward signal. Extensive experiments demonstrate that the proposed HiR yields promising results across different instruction following tasks, while requiring less computational budget. Our code and dataset is available at https://github.com/sastpg/HIR.

Authors:Zongsheng Cao, Yangfan He, Anran Liu, Jun Xie, Feng Chen, Zepeng Wang
Title: CoFi-Dec: Hallucination-Resistant Decoding via Coarse-to-Fine Generative Feedback in Large Vision-Language Models
Abstract:
Large Vision-Language Models (LVLMs) have achieved impressive progress in multi-modal understanding and generation. However, they still tend to produce hallucinated content that is inconsistent with the visual input, which limits their reliability in real-world applications. We propose \textbf{CoFi-Dec}, a training-free decoding framework that mitigates hallucinations by integrating generative self-feedback with coarse-to-fine visual conditioning. Inspired by the human visual process from global scene perception to detailed inspection, CoFi-Dec first generates two intermediate textual responses conditioned on coarse- and fine-grained views of the original image. These responses are then transformed into synthetic images using a text-to-image model, forming multi-level visual hypotheses that enrich grounding cues. To unify the predictions from these multiple visual conditions, we introduce a Wasserstein-based fusion mechanism that aligns their predictive distributions into a geometrically consistent decoding trajectory. This principled fusion reconciles high-level semantic consistency with fine-grained visual grounding, leading to more robust and faithful outputs. Extensive experiments on six hallucination-focused benchmarks show that CoFi-Dec substantially reduces both entity-level and semantic-level hallucinations, outperforming existing decoding strategies. The framework is model-agnostic, requires no additional training, and can be seamlessly applied to a wide range of LVLMs. The implementation is available at https://github.com/AI-Researcher-Team/CoFi-Dec.

Authors:Yusuf Kalyoncuoglu
Title: Directly Constructing Low-Dimensional Solution Subspaces in Deep Neural Networks
Abstract:
While it is well-established that the weight matrices and feature manifolds of deep neural networks exhibit a low Intrinsic Dimension (ID), current state-of-the-art models still rely on massive high-dimensional widths. This redundancy is not required for representation, but is strictly necessary to solve the non-convex optimization search problem-finding a global minimum, which remains intractable for compact networks. In this work, we propose a constructive approach to bypass this optimization bottleneck. By decoupling the solution geometry from the ambient search space, we empirically demonstrate across ResNet-50, ViT, and BERT that the classification head can be compressed by even huge factors of 16 with negligible performance degradation. This motivates Subspace-Native Distillation as a novel paradigm: by defining the target directly in this constructed subspace, we provide a stable geometric coordinate system for student models, potentially allowing them to circumvent the high-dimensional search problem entirely and realize the vision of Train Big, Deploy Small.

Authors:Mohammad Nasirzadeh, Jafar Tahmoresnezhad, Parviz Rashidi-Khazaee
Title: A unified framework for detecting point and collective anomalies in operating system logs via collaborative transformers
Abstract:
Log anomaly detection is crucial for preserving the security of operating systems. Depending on the source of log data collection, various information is recorded in logs that can be considered log modalities. In light of this intuition, unimodal methods often struggle by ignoring the different modalities of log data. Meanwhile, multimodal methods fail to handle the interactions between these modalities. Applying multimodal sentiment analysis to log anomaly detection, we propose CoLog, a framework that collaboratively encodes logs utilizing various modalities. CoLog utilizes collaborative transformers and multi-head impressed attention to learn interactions among several modalities, ensuring comprehensive anomaly detection. To handle the heterogeneity caused by these interactions, CoLog incorporates a modality adaptation layer, which adapts the representations from different log modalities. This methodology enables CoLog to learn nuanced patterns and dependencies within the data, enhancing its anomaly detection capabilities. Extensive experiments demonstrate CoLog's superiority over existing state-of-the-art methods. Furthermore, in detecting both point and collective anomalies, CoLog achieves a mean precision of 99.63%, a mean recall of 99.59%, and a mean F1 score of 99.61% across seven benchmark datasets for log-based anomaly detection. The comprehensive detection capabilities of CoLog make it highly suitable for cybersecurity, system monitoring, and operational efficiency. CoLog represents a significant advancement in log anomaly detection, providing a sophisticated and effective solution to point and collective anomaly detection through a unified framework and a solution to the complex challenges automatic log data analysis poses. We also provide the implementation of CoLog at https://github.com/NasirzadehMoh/CoLog.

Authors:Zhuoqi Lyu, Qing Ke
Title: Not too long do read: Evaluating LLM-generated extreme scientific summaries
Abstract:
High-quality scientific extreme summary (TLDR) facilitates effective science communication. How do large language models (LLMs) perform in generating them? How are LLM-generated summaries different from those written by human experts? However, the lack of a comprehensive, high-quality scientific TLDR dataset hinders both the development and evaluation of LLMs' summarization ability. To address these, we propose a novel dataset, BiomedTLDR, containing a large sample of researcher-authored summaries from scientific papers, which leverages the common practice of including authors' comments alongside bibliography items. We then test popular open-weight LLMs for generating TLDRs based on abstracts. Our analysis reveals that, although some of them successfully produce humanoid summaries, LLMs generally exhibit a greater affinity for the original text's lexical choices and rhetorical structures, hence tend to be more extractive rather than abstractive in general, compared to humans. Our code and datasets are available at https://github.com/netknowledge/LLM_summarization (Lyu and Ke, 2025).

Authors:Deyang Zheng, Tianyi Zhang, Wenming Zheng, Shujian Yu
Title: Multimodal Functional Maximum Correlation for Emotion Recognition
Abstract:
Emotional states manifest as coordinated yet heterogeneous physiological responses across central and autonomic systems, posing a fundamental challenge for multimodal representation learning in affective computing. Learning such joint dynamics is further complicated by the scarcity and subjectivity of affective annotations, which motivates the use of self-supervised learning (SSL). However, most existing SSL approaches rely on pairwise alignment objectives, which are insufficient to characterize dependencies among more than two modalities and fail to capture higher-order interactions arising from coordinated brain and autonomic responses. To address this limitation, we propose Multimodal Functional Maximum Correlation (MFMC), a principled SSL framework that maximizes higher-order multimodal dependence through a Dual Total Correlation (DTC) objective. By deriving a tight sandwich bound and optimizing it using a functional maximum correlation analysis (FMCA) based trace surrogate, MFMC captures joint multimodal interactions directly, without relying on pairwise contrastive losses. Experiments on three public affective computing benchmarks demonstrate that MFMC consistently achieves state-of-the-art or competitive performance under both subject-dependent and subject-independent evaluation protocols, highlighting its robustness to inter-subject variability. In particular, MFMC improves subject-dependent accuracy on CEAP-360VR from 78.9% to 86.8%, and subject-independent accuracy from 27.5% to 33.1% using the EDA signal alone. Moreover, MFMC remains within 0.8 percentage points of the best-performing method on the most challenging EEG subject-independent split of MAHNOB-HCI. Our code is available at https://github.com/DY9910/MFMC.

Authors:Wenyuan Huang, Zhao Wang, Zhou Wei, Ting Huang, Fang Zhao, Jian Yang, Zhenyu Zhang
Title: OpenGround: Active Cognition-based Reasoning for Open-World 3D Visual Grounding
Abstract:
3D visual grounding aims to locate objects based on natural language descriptions in 3D scenes. Existing methods rely on a pre-defined Object Lookup Table (OLT) to query Visual Language Models (VLMs) for reasoning about object locations, which limits the applications in scenarios with undefined or unforeseen targets. To address this problem, we present OpenGround, a novel zero-shot framework for open-world 3D visual grounding. Central to OpenGround is the Active Cognition-based Reasoning (ACR) module, which is designed to overcome the fundamental limitation of pre-defined OLTs by progressively augmenting the cognitive scope of VLMs. The ACR module performs human-like perception of the target via a cognitive task chain and actively reasons about contextually relevant objects, thereby extending VLM cognition through a dynamically updated OLT. This allows OpenGround to function with both pre-defined and open-world categories. We also propose a new dataset named OpenTarget, which contains over 7000 object-description pairs to evaluate our method in open-world scenarios. Extensive experiments demonstrate that OpenGround achieves competitive performance on Nr3D, state-of-the-art on ScanRefer, and delivers a substantial 17.6% improvement on OpenTarget. Project Page at https://why-102.github.io/openground.io/.

Authors:Danni Xu, Shaojing Fan, Harry Cheng, Mohan Kankanhalli
Title: Multimodal Fact-Checking: An Agent-based Approach
Abstract:
The rapid spread of multimodal misinformation poses a growing challenge for automated fact-checking systems. Existing approaches, including large vision language models (LVLMs) and deep multimodal fusion methods, often fall short due to limited reasoning and shallow evidence utilization. A key bottleneck is the lack of dedicated datasets that provide complete real-world multimodal misinformation instances accompanied by annotated reasoning processes and verifiable evidence. To address this limitation, we introduce RW-Post, a high-quality and explainable dataset for real-world multimodal fact-checking. RW-Post aligns real-world multimodal claims with their original social media posts, preserving the rich contextual information in which the claims are made. In addition, the dataset includes detailed reasoning and explicitly linked evidence, which are derived from human written fact-checking articles via a large language model assisted extraction pipeline, enabling comprehensive verification and explanation. Building upon RW-Post, we propose AgentFact, an agent-based multimodal fact-checking framework designed to emulate the human verification workflow. AgentFact consists of five specialized agents that collaboratively handle key fact-checking subtasks, including strategy planning, high-quality evidence retrieval, visual analysis, reasoning, and explanation generation. These agents are orchestrated through an iterative workflow that alternates between evidence searching and task-aware evidence filtering and reasoning, facilitating strategic decision-making and systematic evidence analysis. Extensive experimental results demonstrate that the synergy between RW-Post and AgentFact substantially improves both the accuracy and interpretability of multimodal fact-checking.

Authors:Yue Wu, Minghao Han, Ruiyin Li, Peng Liang, Amjed Tahir, Zengyang Li, Qiong Feng, Mojtaba Shahin
Title: FasterPy: An LLM-based Code Execution Efficiency Optimization Framework
Abstract:
Code often suffers from performance bugs. These bugs necessitate the research and practice of code optimization. Traditional rule-based methods rely on manually designing and maintaining rules for specific performance bugs (e.g., redundant loops, repeated computations), making them labor-intensive and limited in applicability. In recent years, machine learning and deep learning-based methods have emerged as promising alternatives by learning optimization heuristics from annotated code corpora and performance measurements. However, these approaches usually depend on specific program representations and meticulously crafted training datasets, making them costly to develop and difficult to scale. With the booming of Large Language Models (LLMs), their remarkable capabilities in code generation have opened new avenues for automated code optimization. In this work, we proposed FasterPy, a low-cost and efficient framework that adapts LLMs to optimize the execution efficiency of Python code. FasterPy combines Retrieval-Augmented Generation (RAG), supported by a knowledge base constructed from existing performance-improving code pairs and corresponding performance measurements, with Low-Rank Adaptation (LoRA) to enhance code optimization performance. Our experimental results on the Performance Improving Code Edits (PIE) benchmark demonstrate that our method outperforms existing models on multiple metrics. The FasterPy tool and the experimental results are available at https://github.com/WuYue22/fasterpy.

Authors:Jiaqi Shao, Yufeng Miao, Wei Zhang, Bing Luo
Title: FoldAct: Efficient and Stable Context Folding for Long-Horizon Search Agents
Abstract:
Long-horizon reinforcement learning (RL) for large language models faces critical scalability challenges from unbounded context growth, leading to context folding methods that compress interaction history during task execution. However, existing approaches treat summary actions as standard actions, overlooking that summaries fundamentally modify the agent's future observation space, creating a policy-dependent, non-stationary observation distribution that violates core RL assumptions. This introduces three fundamental challenges: (1) gradient dilution where summary tokens receive insufficient training signal, (2) self-conditioning where policy updates change summary distributions, creating a vicious cycle of training collapse, and (3) computational cost from processing unique contexts at each turn. We introduce \textbf{FoldAct}\footnote{https://github.com/SHAO-Jiaqi757/FoldAct}, a framework that explicitly addresses these challenges through three key innovations: separated loss computation for independent gradient signals on summary and action tokens, full context consistency loss to reduce distribution shift, and selective segment training to reduce computational cost. Our method enables stable training of long-horizon search agents with context folding, addressing the non-stationary observation problem while improving training efficiency with 5.19$\times$ speedup.

Authors:Pere Martra
Title: Fragile Knowledge, Robust Instruction-Following: The Width Pruning Dichotomy in Llama-3.2
Abstract:
Structured width pruning of GLU-MLP layers, guided by the Maximum Absolute Weight (MAW) criterion, reveals a systematic dichotomy in how reducing the expansion ratio affects different model capabilities. While performance on tasks relying on parametric knowledge (e.g., MMLU, GSM8K) and perplexity metrics degrades predictably, instruction-following capabilities improve substantially (+46% to +75% in IFEval for Llama-3.2-1B and 3B models), and multi-step reasoning remains robust (MUSR). This pattern challenges the prevailing assumption that pruning induces uniform degradation. We evaluated seven expansion ratio configurations using comprehensive benchmarks assessing factual knowledge, mathematical reasoning, language comprehension, instruction-following, and truthfulness. Our analysis identifies the expansion ratio as a critical architectural parameter that selectively modulates cognitive capabilities, rather than merely serving as a compression metric. We provide the first systematic characterization of this selective preservation phenomenon. Notably, we document a robust inverse correlation (r = -0.864, p = 0.012 in Llama-3B) between factual knowledge capacity (MMLU) and truthfulness metrics (TruthfulQA-MC2): as knowledge degrades, the model's ability to discriminate misconceptions improves consistently. This connects two previously distinct research areas, demonstrating that MAW-guided width pruning acts as a selective filter, reducing parametric knowledge while preserving or enhancing behavioral alignment. Additionally, we quantify context-dependent efficiency trade-offs: pruned configurations achieve up to 23% reduction in energy consumption (J/token) but incur penalties in single-request latency, whereas batch processing workloads benefit uniformly.

Authors:Qiankun Li, Feng He, Huabao Chen, Xin Ning, Kun Wang, Zengfu Wang
Title: Unleashing Foundation Vision Models: Adaptive Transfer for Diverse Data-Limited Scientific Domains
Abstract:
In the big data era, the computer vision field benefits from large-scale datasets such as LAION-2B, LAION-400M, and ImageNet-21K, Kinetics, on which popular models like the ViT and ConvNeXt series have been pre-trained, acquiring substantial knowledge. However, numerous downstream tasks in specialized and data-limited scientific domains continue to pose significant challenges. In this paper, we propose a novel Cluster Attention Adapter (CLAdapter), which refines and adapts the rich representations learned from large-scale data to various data-limited downstream tasks. Specifically, CLAdapter introduces attention mechanisms and cluster centers to personalize the enhancement of transformed features through distribution correlation and transformation matrices. This enables models fine-tuned with CLAdapter to learn distinct representations tailored to different feature sets, facilitating the models' adaptation from rich pre-trained features to various downstream scenarios effectively. In addition, CLAdapter's unified interface design allows for seamless integration with multiple model architectures, including CNNs and Transformers, in both 2D and 3D contexts. Through extensive experiments on 10 datasets spanning domains such as generic, multimedia, biological, medical, industrial, agricultural, environmental, geographical, materials science, out-of-distribution (OOD), and 3D analysis, CLAdapter achieves state-of-the-art performance across diverse data-limited scientific domains, demonstrating its effectiveness in unleashing the potential of foundation vision models via adaptive transfer. Code is available at https://github.com/qklee-lz/CLAdapter.

Authors:Paul Schneider, Amalie Schramm
Title: The Wisdom of Deliberating AI Crowds: Does Deliberation Improve LLM-Based Forecasting?
Abstract:
Structured deliberation has been found to improve the performance of human forecasters. This study investigates whether a similar intervention, i.e. allowing LLMs to review each other's forecasts before updating, can improve accuracy in large language models (GPT-5, Claude Sonnet 4.5, Gemini Pro 2.5). Using 202 resolved binary questions from the Metaculus Q2 2025 AI Forecasting Tournament, accuracy was assessed across four scenarios: (1) diverse models with distributed information, (2) diverse models with shared information, (3) homogeneous models with distributed information, and (4) homogeneous models with shared information. Results show that the intervention significantly improves accuracy in scenario (2), reducing Log Loss by 0.020 or about 4 percent in relative terms (p = 0.017). However, when homogeneous groups (three instances of the same model) engaged in the same process, no benefit was observed. Unexpectedly, providing LLMs with additional contextual information did not improve forecast accuracy, limiting our ability to study information pooling as a mechanism. Our findings suggest that deliberation may be a viable strategy for improving LLM forecasting.

Authors:Tao Zhou, Lingyu Shu, Zixing Zhang, Jing Han
Title: Tyee: A Unified, Modular, and Fully-Integrated Configurable Toolkit for Intelligent Physiological Health Care
Abstract:
Deep learning has shown great promise in physiological signal analysis, yet its progress is hindered by heterogeneous data formats, inconsistent preprocessing strategies, fragmented model pipelines, and non-reproducible experimental setups. To address these limitations, we present Tyee, a unified, modular, and fully-integrated configurable toolkit designed for intelligent physiological healthcare. Tyee introduces three key innovations: (1) a unified data interface and configurable preprocessing pipeline for 12 kinds of signal modalities; (2) a modular and extensible architecture enabling flexible integration and rapid prototyping across tasks; and (3) end-to-end workflow configuration, promoting reproducible and scalable experimentation. Tyee demonstrates consistent practical effectiveness and generalizability, outperforming or matching baselines across all evaluated tasks (with state-of-the-art results on 12 of 13 datasets). The Tyee toolkit is released at https://github.com/SmileHnu/Tyee and actively maintained.

Authors:Wei Gao, Yuheng Zhao, Tianyuan Wu, Shaopan Xiong, Weixun Wang, Dakai An, Lunxi Cao, Dilxat Muhtar, Zichen Liu, Haizhou Zhao, Ju Huang, Siran Yang, Yongbin Li, Wenbo Su, Jiamang Wang, Lin Qu, Bo Zheng, Wei Wang
Title: RollArt: Scaling Agentic RL Training via Disaggregated Infrastructure
Abstract:
Agentic Reinforcement Learning (RL) enables Large Language Models (LLMs) to perform autonomous decision-making and long-term planning. Unlike standard LLM post-training, agentic RL workloads are highly heterogeneous, combining compute-intensive prefill phases, bandwidth-bound decoding, and stateful, CPU-heavy environment simulations. We argue that efficient agentic RL training requires disaggregated infrastructure to leverage specialized, best-fit hardware. However, naive disaggregation introduces substantial synchronization overhead and resource underutilization due to the complex dependencies between stages. We present RollArc, a distributed system designed to maximize throughput for multi-task agentic RL on disaggregated infrastructure. RollArc is built on three core principles: (1) hardware-affinity workload mapping, which routes compute-bound and bandwidth-bound tasks to bestfit GPU devices, (2) fine-grained asynchrony, which manages execution at the trajectory level to mitigate resource bubbles, and (3) statefulness-aware computation, which offloads stateless components (e.g., reward models) to serverless infrastructure for elastic scaling. Our results demonstrate that RollArc effectively improves training throughput and achieves 1.35-2.05\(\times\) end-to-end training time reduction compared to monolithic and synchronous baselines. We also evaluate RollArc by training a hundreds-of-billions-parameter MoE model for Qoder product on an Alibaba cluster with more than 3,000 GPUs, further demonstrating RollArc scalability and robustness. The code is available at https://github.com/alibaba/ROLL.

Authors:Jaebin Lee, Hankook Lee
Title: TimePerceiver: An Encoder-Decoder Framework for Generalized Time-Series Forecasting
Abstract:
In machine learning, effective modeling requires a holistic consideration of how to encode inputs, make predictions (i.e., decoding), and train the model. However, in time-series forecasting, prior work has predominantly focused on encoder design, often treating prediction and training as separate or secondary concerns. In this paper, we propose TimePerceiver, a unified encoder-decoder forecasting framework that is tightly aligned with an effective training strategy. To be specific, we first generalize the forecasting task to include diverse temporal prediction objectives such as extrapolation, interpolation, and imputation. Since this generalization requires handling input and target segments that are arbitrarily positioned along the temporal axis, we design a novel encoder-decoder architecture that can flexibly perceive and adapt to these varying positions. For encoding, we introduce a set of latent bottleneck representations that can interact with all input segments to jointly capture temporal and cross-channel dependencies. For decoding, we leverage learnable queries corresponding to target timestamps to effectively retrieve relevant information. Extensive experiments demonstrate that our framework consistently and significantly outperforms prior state-of-the-art baselines across a wide range of benchmark datasets. The code is available at https://github.com/efficient-learning-lab/TimePerceiver.

Authors:Yifan Zhang, Mengdi Wang
Title: Monadic Context Engineering
Abstract:
The proliferation of Large Language Models (LLMs) has catalyzed a shift towards autonomous agents capable of complex reasoning and tool use. However, current agent architectures are frequently constructed using imperative, ad hoc patterns. This results in brittle systems plagued by difficulties in state management, error handling, and concurrency. This paper introduces Monadic Context Engineering (MCE), a novel architectural paradigm leveraging the algebraic structures of Functors, Applicative Functors, and Monads to provide a formal foundation for agent design. MCE treats agent workflows as computational contexts where cross-cutting concerns, such as state propagation, short-circuiting error handling, and asynchronous execution, are managed intrinsically by the algebraic properties of the abstraction. We demonstrate how Monads enable robust sequential composition, how Applicatives provide a principled structure for parallel execution, and crucially, how Monad Transformers allow for the systematic composition of these capabilities. This layered approach enables developers to construct complex, resilient, and efficient AI agents from simple, independently verifiable components. We further extend this framework to describe Meta-Agents, which leverage MCE for generative orchestration, dynamically creating and managing sub-agent workflows through metaprogramming. Project Page: https://github.com/yifanzhang-pro/monadic-context-engineering.

Authors:Omar Alsaqa, Linh Thi Hoang, Muhammed Fatih Balin
Title: BLISS: Bandit Layer Importance Sampling Strategy for Efficient Training of Graph Neural Networks
Abstract:
Graph Neural Networks (GNNs) are powerful tools for learning from graph-structured data, but their application to large graphs is hindered by computational costs. The need to process every neighbor for each node creates memory and computational bottlenecks. To address this, we introduce BLISS, a Bandit Layer Importance Sampling Strategy. It uses multi-armed bandits to dynamically select the most informative nodes at each layer, balancing exploration and exploitation to ensure comprehensive graph coverage. Unlike existing static sampling methods, BLISS adapts to evolving node importance, leading to more informed node selection and improved performance. It demonstrates versatility by integrating with both Graph Convolutional Networks (GCNs) and Graph Attention Networks (GATs), adapting its selection policy to their specific aggregation mechanisms. Experiments show that BLISS maintains or exceeds the accuracy of full-batch training.

Authors:Xin Yu, Xiaojuan Qi, Zhengqi Li, Kai Zhang, Richard Zhang, Zhe Lin, Eli Shechtman, Tianyu Wang, Yotam Nitzan
Title: Self-Evaluation Unlocks Any-Step Text-to-Image Generation
Abstract:
We introduce the Self-Evaluating Model (Self-E), a novel, from-scratch training approach for text-to-image generation that supports any-step inference. Self-E learns from data similarly to a Flow Matching model, while simultaneously employing a novel self-evaluation mechanism: it evaluates its own generated samples using its current score estimates, effectively serving as a dynamic self-teacher. Unlike traditional diffusion or flow models, it does not rely solely on local supervision, which typically necessitates many inference steps. Unlike distillation-based approaches, it does not require a pretrained teacher. This combination of instantaneous local learning and self-driven global matching bridges the gap between the two paradigms, enabling the training of a high-quality text-to-image model from scratch that excels even at very low step counts. Extensive experiments on large-scale text-to-image benchmarks show that Self-E not only excels in few-step generation, but is also competitive with state-of-the-art Flow Matching models at 50 steps. We further find that its performance improves monotonically as inference steps increase, enabling both ultra-fast few-step generation and high-quality long-trajectory sampling within a single unified model. To our knowledge, Self-E is the first from-scratch, any-step text-to-image model, offering a unified framework for efficient and scalable generation.

Authors:Varshith Gudur
Title: Valori: A Deterministic Memory Substrate for AI Systems
Abstract:
Modern AI systems rely on vector embeddings stored and searched using floating-point arithmetic. While effective for approximate similarity search, this design introduces fundamental non-determinism: identical models, inputs, and code can produce different memory states and retrieval results across hardware architectures (e.g., x86 vs. ARM). This prevents replayability and safe deployment, leading to silent data divergence that prevents post-hoc verification and compromises audit trails in regulated sectors. We present Valori, a deterministic AI memory substrate that replaces floating-point memory operations with fixed-point arithmetic (Q16.16) and models memory as a replayable state machine. Valori guarantees bit-identical memory states, snapshots, and search results across platforms. We demonstrate that non-determinism arises before indexing or retrieval and show how Valori enforces determinism at the memory boundary. Our results suggest that deterministic memory is a necessary primitive for trustworthy AI systems. The reference implementation is open-source and available at https://github.com/varshith-Git/Valori-Kernel (archived at https://zenodo.org/records/18022660).

Authors:Huashen Lu, Wensheng Gan, Guoting Chen, Zhichao Huang, Philip S. Yu
Title: Graph Attention-based Adaptive Transfer Learning for Link Prediction
Abstract:
Graph neural networks (GNNs) have brought revolutionary advancements to the field of link prediction (LP), providing powerful tools for mining potential relationships in graphs. However, existing methods face challenges when dealing with large-scale sparse graphs and the need for a high degree of alignment between different datasets in transfer learning. Besides, although self-supervised methods have achieved remarkable success in many graph tasks, prior research has overlooked the potential of transfer learning to generalize across different graph datasets. To address these limitations, we propose a novel Graph Attention Adaptive Transfer Network (GAATNet). It combines the advantages of pre-training and fine-tuning to capture global node embedding information across datasets of different scales, ensuring efficient knowledge transfer and improved LP performance. To enhance the model's generalization ability and accelerate training, we design two key strategies: 1) Incorporate distant neighbor embeddings as biases in the self-attention module to capture global features. 2) Introduce a lightweight self-adapter module during fine-tuning to improve training efficiency. Comprehensive experiments on seven public datasets demonstrate that GAATNet achieves state-of-the-art performance in LP tasks. This study provides a general and scalable solution for LP tasks to effectively integrate GNNs with transfer learning. The source code and datasets are publicly available at https://github.com/DSI-Lab1/GAATNet

Authors:Naishan Zheng, Jie Huang, Qingpei Guo, Feng Zhao
Title: VideoScaffold: Elastic-Scale Visual Hierarchies for Streaming Video Understanding in MLLMs
Abstract:
Understanding long videos with multimodal large language models (MLLMs) remains challenging due to the heavy redundancy across frames and the need for temporally coherent representations. Existing static strategies, such as sparse sampling, frame compression, and clustering, are optimized for offline settings and often produce fragmented or over-compressed outputs when applied to continuous video streams. We present VideoScaffold, a dynamic representation framework designed for streaming video understanding. It adaptively adjusts event granularity according to video duration while preserving fine-grained visual semantics. VideoScaffold introduces two key components: Elastic-Scale Event Segmentation (EES), which performs prediction-guided segmentation to dynamically refine event boundaries, and Hierarchical Event Consolidation (HEC), which progressively aggregates semantically related segments into multi-level abstractions. Working in concert, EES and HEC enable VideoScaffold to transition smoothly from fine-grained frame understanding to abstract event reasoning as the video stream unfolds. Extensive experiments across both offline and streaming video understanding benchmarks demonstrate that VideoScaffold achieves state-of-the-art performance. The framework is modular and plug-and-play, seamlessly extending existing image-based MLLMs to continuous video comprehension. The code is available at https://github.com/zheng980629/VideoScaffold.

Authors:Gnankan Landry Regis N'guessan
Title: Müntz-Szász Networks: Neural Architectures with Learnable Power-Law Bases
Abstract:
Standard neural network architectures employ fixed activation functions (ReLU, tanh, sigmoid) that are poorly suited for approximating functions with singular or fractional power behavior, a structure that arises ubiquitously in physics, including boundary layers, fracture mechanics, and corner singularities. We introduce Müntz-Szász Networks (MSN), a novel architecture that replaces fixed smooth activations with learnable fractional power bases grounded in classical approximation theory. Each MSN edge computes $ϕ(x) = \sum_k a_k |x|^{μ_k} + \sum_k b_k \mathrm{sign}(x)|x|^{λ_k}$, where the exponents $\{μ_k, λ_k\}$ are learned alongside the coefficients. We prove that MSN inherits universal approximation from the Müntz-Szász theorem and establish novel approximation rates: for functions of the form $|x|^α$, MSN achieves error $\mathcal{O}(|μ- α|^2)$ with a single learned exponent, whereas standard MLPs require $\mathcal{O}(ε^{-1/α})$ neurons for comparable accuracy. On supervised regression with singular target functions, MSN achieves 5-8x lower error than MLPs with 10x fewer parameters. Physics-informed neural networks (PINNs) represent a particularly demanding application for singular function approximation; on PINN benchmarks including a singular ODE and stiff boundary-layer problems, MSN achieves 3-6x improvement while learning interpretable exponents that match the known solution structure. Our results demonstrate that theory-guided architectural design can yield dramatic improvements for scientifically-motivated function classes.

Authors:Shaun Khoo, Jessica Foo, Roy Ka-Wei Lee
Title: With Great Capabilities Come Great Responsibilities: Introducing the Agentic Risk & Capability Framework for Governing Agentic AI Systems
Abstract:
Agentic AI systems present both significant opportunities and novel risks due to their capacity for autonomous action, encompassing tasks such as code execution, internet interaction, and file modification. This poses considerable challenges for effective organizational governance, particularly in comprehensively identifying, assessing, and mitigating diverse and evolving risks. To tackle this, we introduce the Agentic Risk \& Capability (ARC) Framework, a technical governance framework designed to help organizations identify, assess, and mitigate risks arising from agentic AI systems. The framework's core contributions are: (1) it develops a novel capability-centric perspective to analyze a wide range of agentic AI systems; (2) it distills three primary sources of risk intrinsic to agentic AI systems - components, design, and capabilities; (3) it establishes a clear nexus between each risk source, specific materialized risks, and corresponding technical controls; and (4) it provides a structured and practical approach to help organizations implement the framework. This framework provides a robust and adaptable methodology for organizations to navigate the complexities of agentic AI, enabling rapid and effective innovation while ensuring the safe, secure, and responsible deployment of agentic AI systems. Our framework is open-sourced \href{https://govtech-responsibleai.github.io/agentic-risk-capability-framework/}{here}.

Authors:Ryan Spencer, Roey Yaari, Ritvik Vemavarapu, Joyce Yang, Steven Ngo, Utkarsh Sharma
Title: GamiBench: Evaluating Spatial Reasoning and 2D-to-3D Planning Capabilities of MLLMs with Origami Folding Tasks
Abstract:
Multimodal large language models (MLLMs) are proficient in perception and instruction-following, but they still struggle with spatial reasoning: the ability to mentally track and manipulate objects across multiple views and over time. Spatial reasoning is a key component of human intelligence, but most existing benchmarks focus on static images or final outputs, failing to account for the sequential and viewpoint-dependent nature of this skill. To close this gap, we introduce GamiBench, a benchmark designed to evaluate spatial reasoning and 2D-to-3D planning in MLLMs through origami-inspired folding tasks. GamiBench includes 186 regular and 186 impossible 2D crease patterns paired with their corresponding 3D folded shapes, produced from six distinct viewpoints across three visual question-answering (VQA) tasks: predicting 3D fold configurations, distinguishing valid viewpoints, and detecting impossible patterns. Unlike previous benchmarks that assess only final predictions, GamiBench holistically evaluates the entire reasoning process--measuring cross-view consistency, physical feasibility through impossible-fold detection, and interpretation of intermediate folding steps. It further introduces new diagnostic metrics--viewpoint consistency (VC) and impossible fold selection rate (IFSR)--to measure how well models handle folds of varying complexity. Our experiments show that even leading models such as GPT-5 and Gemini-2.5-Pro struggle on single-step spatial understanding. These contributions establish a standardized framework for evaluating geometric understanding and spatial reasoning in MLLMs. Dataset and code: https://github.com/stvngo/GamiBench.

Authors:Xitong Ling, Minxi Ouyang, Xiaoxiao Li, Jiawen Li, Ying Chen, Yuxuan Sun, Xinrui Chen, Tian Guan, Xiaoping Liu, Yonghong He
Title: HookMIL: Revisiting Context Modeling in Multiple Instance Learning for Computational Pathology
Abstract:
Multiple Instance Learning (MIL) has enabled weakly supervised analysis of whole-slide images (WSIs) in computational pathology. However, traditional MIL approaches often lose crucial contextual information, while transformer-based variants, though more expressive, suffer from quadratic complexity and redundant computations. To address these limitations, we propose HookMIL, a context-aware and computationally efficient MIL framework that leverages compact, learnable hook tokens for structured contextual aggregation. These tokens can be initialized from (i) key-patch visual features, (ii) text embeddings from vision-language pathology models, and (iii) spatially grounded features from spatial transcriptomics-vision models. This multimodal initialization enables Hook Tokens to incorporate rich textual and spatial priors, accelerating convergence and enhancing representation quality. During training, Hook tokens interact with instances through bidirectional attention with linear complexity. To further promote specialization, we introduce a Hook Diversity Loss that encourages each token to focus on distinct histopathological patterns. Additionally, a hook-to-hook communication mechanism refines contextual interactions while minimizing redundancy. Extensive experiments on four public pathology datasets demonstrate that HookMIL achieves state-of-the-art performance, with improved computational efficiency and interpretability. Codes are available at https://github.com/lingxitong/HookMIL.

Authors:Shuyu Gan, Renxiang Wang, James Mooney, Dongyeop Kang
Title: A2P-Vis: an Analyzer-to-Presenter Agentic Pipeline for Visual Insights Generation and Reporting
Abstract:
Automating end-to-end data science pipeline with AI agents still stalls on two gaps: generating insightful, diverse visual evidence and assembling it into a coherent, professional report. We present A2P-Vis, a two-part, multi-agent pipeline that turns raw datasets into a high-quality data-visualization report. The Data Analyzer orchestrates profiling, proposes diverse visualization directions, generates and executes plotting code, filters low-quality figures with a legibility checker, and elicits candidate insights that are automatically scored for depth, correctness, specificity, depth and actionability. The Presenter then orders topics, composes chart-grounded narratives from the top-ranked insights, writes justified transitions, and revises the document for clarity and consistency, yielding a coherent, publication-ready report. Together, these agents convert raw data into curated materials (charts + vetted insights) and into a readable narrative without manual glue work. We claim that by coupling a quality-assured Analyzer with a narrative Presenter, A2P-Vis operationalizes co-analysis end-to-end, improving the real-world usefulness of automated data analysis for practitioners. For the complete dataset report, please see: https://www.visagent.org/api/output/f2a3486d-2c3b-4825-98d4-5af25a819f56.

Authors:Wenbin Li, Shangge Liu, Borui Kang, Yiyang Chen, KaXuan Lew, Yang Chen, Yinghuan Shi, Lei Wang, Yang Gao, Jiebo Luo
Title: LibContinual: A Comprehensive Library towards Realistic Continual Learning
Abstract:
A fundamental challenge in Continual Learning (CL) is catastrophic forgetting, where adapting to new tasks degrades the performance on previous ones. While the field has evolved with diverse methods, this rapid surge in diverse methodologies has culminated in a fragmented research landscape. The lack of a unified framework, including inconsistent implementations, conflicting dependencies, and varying evaluation protocols, makes fair comparison and reproducible research increasingly difficult. To address this challenge, we propose LibContinual, a comprehensive and reproducible library designed to serve as a foundational platform for realistic CL. Built upon a high-cohesion, low-coupling modular architecture, LibContinual integrates 19 representative algorithms across five major methodological categories, providing a standardized execution environment. Meanwhile, leveraging this unified framework, we systematically identify and investigate three implicit assumptions prevalent in mainstream evaluation: (1) offline data accessibility, (2) unregulated memory resources, and (3) intra-task semantic homogeneity. We argue that these assumptions often overestimate the real-world applicability of CL methods. Through our comprehensive analysis using strict online CL settings, a novel unified memory budget protocol, and a proposed category-randomized setting, we reveal significant performance drops in many representative CL methods when subjected to these real-world constraints. Our study underscores the necessity of resource-aware and semantically robust CL strategies, and offers LibContinual as a foundational toolkit for future research in realistic continual learning. The source code is available from \href{https://github.com/RL-VIG/LibContinual}{https://github.com/RL-VIG/LibContinual}.

Authors:Zi Wang, Mingkai Huang, Zhang Shi, Hongjie Hu, Lan Lan, Hui Zhang, Yan Li, Xi Hu, Qing Lu, Zongming Zhu, Qiong Yao, Yuxiang Dai, Fanwen Wang, Yinzhe Wu, Jun Lyu, Qianqian Gao, Guangming Xu, Zhenxuan Zhang, Haosen Zhang, Qing Li, Guangming Wang, Tianxing He, Lizhen Lan, Siyue Li, Le Xue, Mengting Sun, Yuntong Lyu, Junpu Hu, Jiayu Zhu, Rizwan Ahmad, Zhengyu Bu, Xianling Qian, Guanke Cai, Ruiyu Cao, Weirui Cai, Chang Xu, Yuyang Ren, Feidan Yu, Siying Ma, Ziqiang Xu, Xinran Chen, Sha Hua, Daniel Kim, Yajing Zhang, Chen Ouyang, Wenjia Bai, Jing Qin, Yucheng Yang, Daniel Rueckert, He Wang, Qian Tao, Claudia Prieto, Michael Markl, Alistair Young, Lianming Wu, Shuo Wang, Chen Qin, Mengsu Zeng, Xihong Hu, Haibo Xu, Xiaobo Qu, Hao Li, Guang Yang, Chengyan Wang
Title: Enabling Ultra-Fast Cardiovascular Imaging Across Heterogeneous Clinical Environments with a Generalist Foundation Model and Multimodal Database
Abstract:
Multimodal cardiovascular magnetic resonance (CMR) imaging provides comprehensive and non-invasive insights into cardiovascular disease (CVD) diagnosis and underlying mechanisms. Despite decades of advancements, its widespread clinical adoption remains constrained by prolonged scan times and heterogeneity across medical environments. This underscores the urgent need for a generalist reconstruction foundation model for ultra-fast CMR imaging, one capable of adapting across diverse imaging scenarios and serving as the essential substrate for all downstream analyses. To enable this goal, we curate MMCMR-427K, the largest and most comprehensive multimodal CMR k-space database to date, comprising 427,465 multi-coil k-space data paired with structured metadata across 13 international centers, 12 CMR modalities, 15 scanners, and 17 CVD categories in populations across three continents. Building on this unprecedented resource, we introduce CardioMM, a generalist reconstruction foundation model capable of dynamically adapting to heterogeneous fast CMR imaging scenarios. CardioMM unifies semantic contextual understanding with physics-informed data consistency to deliver robust reconstructions across varied scanners, protocols, and patient presentations. Comprehensive evaluations demonstrate that CardioMM achieves state-of-the-art performance in the internal centers and exhibits strong zero-shot generalization to unseen external settings. Even at imaging acceleration up to 24x, CardioMM reliably preserves key cardiac phenotypes, quantitative myocardial biomarkers, and diagnostic image quality, enabling a substantial increase in CMR examination throughput without compromising clinical integrity. Together, our open-access MMCMR-427K database and CardioMM framework establish a scalable pathway toward high-throughput, high-quality, and clinically accessible cardiovascular imaging.

Authors:Henglin Liu, Huijuan Huang, Jing Wang, Chang Liu, Xiu Li, Xiangyang Ji
Title: DiverseGRPO: Mitigating Mode Collapse in Image Generation via Diversity-Aware GRPO
Abstract:
Reinforcement learning (RL), particularly GRPO, improves image generation quality significantly by comparing the relative performance of images generated within the same group. However, in the later stages of training, the model tends to produce homogenized outputs, lacking creativity and visual diversity, which restricts its application scenarios. This issue can be analyzed from both reward modeling and generation dynamics perspectives. First, traditional GRPO relies on single-sample quality as the reward signal, driving the model to converge toward a few high-reward generation modes while neglecting distribution-level diversity. Second, conventional GRPO regularization neglects the dominant role of early-stage denoising in preserving diversity, causing a misaligned regularization budget that limits the achievable quality--diversity trade-off. Motivated by these insights, we revisit the diversity degradation problem from both reward modeling and generation dynamics. At the reward level, we propose a distributional creativity bonus based on semantic grouping. Specifically, we construct a distribution-level representation via spectral clustering over samples generated from the same caption, and adaptively allocate exploratory rewards according to group sizes to encourage the discovery of novel visual modes. At the generation level, we introduce a structure-aware regularization, which enforces stronger early-stage constraints to preserve diversity without compromising reward optimization efficiency. Experiments demonstrate that our method achieves a 13\%--18\% improvement in semantic diversity under matched quality scores, establishing a new Pareto frontier between image quality and diversity for GRPO-based image generation.

Authors:Seyed Arshan Dalili, Mehrdad Mahdavi
Title: Model Merging via Multi-Teacher Knowledge Distillation
Abstract:
Model merging has emerged as a lightweight alternative to joint multi-task learning (MTL), yet the generalization properties of merged models remain largely unexplored. Establishing such theoretical guarantees is non-trivial, as the merging process typically forbids access to the original training data and involves combining fine-tuned models trained on fundamentally heterogeneous data distributions. Without a principled understanding of these dynamics, current methods often rely on heuristics to approximate the optimal combination of parameters. This dependence is most critical in coefficient scaling, the weighting factors that modulate the magnitude of each fine-tuned model's contribution to the shared parameter. However, without a principled objective to guide their selection, these methods lead to brittle performance and are highly sensitive to scaling initialization. We address this gap by (i) establishing a novel flatness-aware PAC-Bayes generalization bound specifically for the model merging setting. This analysis introduces a "cross-task heterogeneity" term that formally captures the mismatch between diverse fine-tuned model priors and the target multi-task distributions. Guided by this theoretical insight, (ii) we frame model merging as multi-teacher knowledge distillation on scarce, unlabeled data. We formally demonstrate that minimizing the student-teacher Kullback-Leibler divergence directly tightens the upper bound on the merged model's excess risk. Guided by the flatness-aware bound derived, (iii) we operationalize this objective via SAMerging, a method that employs Sharpness-Aware Minimization (SAM) to find flat minima. Empirically, SAMerging establishes a new state of the art across vision and NLP benchmarks, achieving remarkable performance. The code is available at https://github.com/arshandalili/SAMerging.

Authors:Xiao-Qi Han, Peng-Jie Guo, Ze-Feng Gao, Zhong-Yi Lu
Title: PhononBench:A Large-Scale Phonon-Based Benchmark for Dynamical Stability in Crystal Generation
Abstract:
In this work, we introduce PhononBench, the first large-scale benchmark for dynamical stability in AI-generated crystals. Leveraging the recently developed MatterSim interatomic potential, which achieves DFT-level accuracy in phonon predictions across more than 10,000 materials, PhononBench enables efficient large-scale phonon calculations and dynamical-stability analysis for 108,843 crystal structures generated by six leading crystal generation models. PhononBench reveals a widespread limitation of current generative models in ensuring dynamical stability: the average dynamical-stability rate across all generated structures is only 25.83%, with the top-performing model, MatterGen, reaching just 41.0%. Further case studies show that in property-targeted generation-illustrated here by band-gap conditioning with MatterGen--the dynamical-stability rate remains as low as 23.5% even at the optimal band-gap condition of 0.5 eV. In space-group-controlled generation, higher-symmetry crystals exhibit better stability (e.g., cubic systems achieve rates up to 49.2%), yet the average stability across all controlled generations is still only 34.4%. An important additional outcome of this study is the identification of 28,119 crystal structures that are phonon-stable across the entire Brillouin zone, providing a substantial pool of reliable candidates for future materials exploration. By establishing the first large-scale dynamical-stability benchmark, this work systematically highlights the current limitations of crystal generation models and offers essential evaluation criteria and guidance for their future development toward the design and discovery of physically viable materials. All model-generated crystal structures, phonon calculation results, and the high-throughput evaluation workflows developed in PhononBench will be openly released at https://github.com/xqh19970407/PhononBench

Authors:Dao Sy Duy Minh, Huynh Trung Kiet, Nguyen Lam Phu Quy, Phu-Hoa Pham, Tran Chi Nguyen
Title: Leveraging Lightweight Entity Extraction for Scalable Event-Based Image Retrieval
Abstract:
Retrieving images from natural language descriptions is a core task at the intersection of computer vision and natural language processing, with wide-ranging applications in search engines, media archiving, and digital content management. However, real-world image-text retrieval remains challenging due to vague or context-dependent queries, linguistic variability, and the need for scalable solutions. In this work, we propose a lightweight two-stage retrieval pipeline that leverages event-centric entity extraction to incorporate temporal and contextual signals from real-world captions. The first stage performs efficient candidate filtering using BM25 based on salient entities, while the second stage applies BEiT-3 models to capture deep multimodal semantics and rerank the results. Evaluated on the OpenEvents v1 benchmark, our method achieves a mean average precision of 0.559, substantially outperforming prior baselines. These results highlight the effectiveness of combining event-guided filtering with long-text vision-language modeling for accurate and efficient retrieval in complex, real-world scenarios. Our code is available at https://github.com/PhamPhuHoa-23/Event-Based-Image-Retrieval

Authors:Mahi Luthra, Jiayi Shen, Maxime Poli, Angelo Ortiz, Yosuke Higuchi, Youssef Benchekroun, Martin Gleize, Charles-Eric Saint-James, Dongyan Lin, Phillip Rust, Angel Villar, Surya Parimi, Vanessa Stark, Rashel Moritz, Juan Pino, Yann LeCun, Emmanuel Dupoux
Title: SpidR-Adapt: A Universal Speech Representation Model for Few-Shot Adaptation
Abstract:
Human infants, with only a few hundred hours of speech exposure, acquire basic units of new languages, highlighting a striking efficiency gap compared to the data-hungry self-supervised speech models. To address this gap, this paper introduces SpidR-Adapt for rapid adaptation to new languages using minimal unlabeled data. We cast such low-resource speech representation learning as a meta-learning problem and construct a multi-task adaptive pre-training (MAdaPT) protocol which formulates the adaptation process as a bi-level optimization framework. To enable scalable meta-training under this framework, we propose a novel heuristic solution, first-order bi-level optimization (FOBLO), avoiding heavy computation costs. Finally, we stabilize meta-training by using a robust initialization through interleaved supervision which alternates self-supervised and supervised objectives. Empirically, SpidR-Adapt achieves rapid gains in phonemic discriminability (ABX) and spoken language modeling (sWUGGY, sBLIMP, tSC), improving over in-domain language models after training on less than 1h of target-language audio, over $100\times$ more data-efficient than standard training. These findings highlight a practical, architecture-agnostic path toward biologically inspired, data-efficient representations. We open-source the training code and model checkpoints at https://github.com/facebookresearch/spidr-adapt.

Authors:Shi Quan Foo, Chi-Ho Wong, Zhihan Gao, Dit-Yan Yeung, Ka-Hing Wong, Wai-Kin Wong
Title: STLDM: Spatio-Temporal Latent Diffusion Model for Precipitation Nowcasting
Abstract:
Precipitation nowcasting is a critical spatio-temporal prediction task for society to prevent severe damage owing to extreme weather events. Despite the advances in this field, the complex and stochastic nature of this task still poses challenges to existing approaches. Specifically, deterministic models tend to produce blurry predictions while generative models often struggle with poor accuracy. In this paper, we present a simple yet effective model architecture termed STLDM, a diffusion-based model that learns the latent representation from end to end alongside both the Variational Autoencoder and the conditioning network. STLDM decomposes this task into two stages: a deterministic forecasting stage handled by the conditioning network, and an enhancement stage performed by the latent diffusion model. Experimental results on multiple radar datasets demonstrate that STLDM achieves superior performance compared to the state of the art, while also improving inference efficiency. The code is available in https://github.com/sqfoo/stldm_official.

Authors:Jaeseong Lee, Junyeong Ahn, Taewoong Kang, Jaegul Choo
Title: TexAvatars : Hybrid Texel-3D Representations for Stable Rigging of Photorealistic Gaussian Head Avatars
Abstract:
Constructing drivable and photorealistic 3D head avatars has become a central task in AR/XR, enabling immersive and expressive user experiences. With the emergence of high-fidelity and efficient representations such as 3D Gaussians, recent works have pushed toward ultra-detailed head avatars. Existing approaches typically fall into two categories: rule-based analytic rigging or neural network-based deformation fields. While effective in constrained settings, both approaches often fail to generalize to unseen expressions and poses, particularly in extreme reenactment scenarios. Other methods constrain Gaussians to the global texel space of 3DMMs to reduce rendering complexity. However, these texel-based avatars tend to underutilize the underlying mesh structure. They apply minimal analytic deformation and rely heavily on neural regressors and heuristic regularization in UV space, which weakens geometric consistency and limits extrapolation to complex, out-of-distribution deformations. To address these limitations, we introduce TexAvatars, a hybrid avatar representation that combines the explicit geometric grounding of analytic rigging with the spatial continuity of texel space. Our approach predicts local geometric attributes in UV space via CNNs, but drives 3D deformation through mesh-aware Jacobians, enabling smooth and semantically meaningful transitions across triangle boundaries. This hybrid design separates semantic modeling from geometric control, resulting in improved generalization, interpretability, and stability. Furthermore, TexAvatars captures fine-grained expression effects, including muscle-induced wrinkles, glabellar lines, and realistic mouth cavity geometry, with high fidelity. Our method achieves state-of-the-art performance under extreme pose and expression variations, demonstrating strong generalization in challenging head reenactment settings.

Authors:Kaustubh Kundu, Hrishav Bakul Barua, Lucy Robertson-Bell, Zhixi Cai, Kalin Stefanov
Title: DexAvatar: 3D Sign Language Reconstruction with Hand and Body Pose Priors
Abstract:
The trend in sign language generation is centered around data-driven generative methods that require vast amounts of precise 2D and 3D human pose data to achieve an acceptable generation quality. However, currently, most sign language datasets are video-based and limited to automatically reconstructed 2D human poses (i.e., keypoints) and lack accurate 3D information. Furthermore, existing state-of-the-art for automatic 3D human pose estimation from sign language videos is prone to self-occlusion, noise, and motion blur effects, resulting in poor reconstruction quality. In response to this, we introduce DexAvatar, a novel framework to reconstruct bio-mechanically accurate fine-grained hand articulations and body movements from in-the-wild monocular sign language videos, guided by learned 3D hand and body priors. DexAvatar achieves strong performance in the SGNify motion capture dataset, the only benchmark available for this task, reaching an improvement of 35.11% in the estimation of body and hand poses compared to the state-of-the-art. The official website of this work is: https://github.com/kaustesseract/DexAvatar.

Authors:Wei-Rui Chen, Vignesh Kothapalli, Ata Fatahibaarzi, Hejian Sang, Shao Tang, Qingquan Song, Zhipeng Wang, Muhammad Abdul-Mageed
Title: Distilling the Essence: Efficient Reasoning Distillation via Sequence Truncation
Abstract:
Distilling the reasoning capabilities from a large language model (LLM) to a smaller student model often involves training on substantial amounts of reasoning data. However, distillation over lengthy sequences with prompt (P), chain-of-thought (CoT), and answer (A) segments makes the process computationally expensive. In this work, we investigate how the allocation of supervision across different segments (P, CoT, A) affects student performance. Our analysis shows that selective knowledge distillation over only the CoT tokens can be effective when the prompt and answer information is encompassed by it. Building on this insight, we establish a truncation protocol to quantify computation-quality tradeoffs as a function of sequence length. We observe that training on only the first $50\%$ of tokens of every training sequence can retain, on average, $\approx94\%$ of full-sequence performance on math benchmarks while reducing training time, memory usage, and FLOPs by about $50\%$ each. These findings suggest that reasoning distillation benefits from prioritizing early reasoning tokens and provides a simple lever for computation-quality tradeoffs. Codes are available at https://github.com/weiruichen01/distilling-the-essence.

Authors:Yuwei Du, Jun Zhang, Jie Feng, Zhicheng Liu, Jian Yuan, Yong Li
Title: TrafficSimAgent: A Hierarchical Agent Framework for Autonomous Traffic Simulation with MCP Control
Abstract:
Traffic simulation is important for transportation optimization and policy making. While existing simulators such as SUMO and MATSim offer fully-featured platforms and utilities, users without too much knowledge about these platforms often face significant challenges when conducting experiments from scratch and applying them to their daily work. To solve this challenge, we propose TrafficSimAgent, an LLM-based agent framework that serves as an expert in experiment design and decision optimization for general-purpose traffic simulation tasks. The framework facilitates execution through cross-level collaboration among expert agents: high-level expert agents comprehend natural language instructions with high flexibility, plan the overall experiment workflow, and invoke corresponding MCP-compatible tools on demand; meanwhile, low-level expert agents select optimal action plans for fundamental elements based on real-time traffic conditions. Extensive experiments across multiple scenarios show that TrafficSimAgent effectively executes simulations under various conditions and consistently produces reasonable outcomes even when user instructions are ambiguous. Besides, the carefully designed expert-level autonomous decision-driven optimization in TrafficSimAgent yields superior performance when compared with other systems and SOTA LLM based methods.

Authors:R Yadunandan, Nimisha Ghosh
Title: ReACT-Drug: Reaction-Template Guided Reinforcement Learning for de novo Drug Design
Abstract:
De novo drug design is a crucial component of modern drug development, yet navigating the vast chemical space to find synthetically accessible, high-affinity candidates remains a significant challenge. Reinforcement Learning (RL) enhances this process by enabling multi-objective optimization and exploration of novel chemical space - capabilities that traditional supervised learning methods lack. In this work, we introduce \textbf{ReACT-Drug}, a fully integrated, target-agnostic molecular design framework based on Reinforcement Learning. Unlike models requiring target-specific fine-tuning, ReACT-Drug utilizes a generalist approach by leveraging ESM-2 protein embeddings to identify similar proteins for a given target from a knowledge base such as Protein Data Base (PDB). Thereafter, the known drug ligands corresponding to such proteins are decomposed to initialize a fragment-based search space, biasing the agent towards biologically relevant subspaces. For each such fragment, the pipeline employs a Proximal Policy Optimization (PPO) agent guiding a ChemBERTa-encoded molecule through a dynamic action space of chemically valid, reaction-template-based transformations. This results in the generation of \textit{de novo} drug candidates with competitive binding affinities and high synthetic accessibility, while ensuring 100\% chemical validity and novelty as per MOSES benchmarking. This architecture highlights the potential of integrating structural biology, deep representation learning, and chemical synthesis rules to automate and accelerate rational drug design. The dataset and code are available at https://github.com/YadunandanRaman/ReACT-Drug/.

Authors:Shengguang Wu, Xiaohan Wang, Yuhui Zhang, Hao Zhu, Serena Yeung-Levy
Title: Transductive Visual Programming: Evolving Tool Libraries from Experience for Spatial Reasoning
Abstract:
Spatial reasoning in 3D scenes requires precise geometric calculations that challenge vision-language models. Visual programming addresses this by decomposing problems into steps calling specialized tools, yet existing methods rely on either fixed toolsets or speculative tool induction before solving problems, resulting in suboptimal programs and poor utilization of induced tools. We present Transductive Visual Programming (TVP), a novel framework that builds new tools from its own experience rather than speculation. TVP first solves problems using basic tools while accumulating experiential solutions into an Example Library, then abstracts recurring patterns from these programs into reusable higher-level tools for an evolving Tool Library. This allows TVP to tackle new problems with increasingly powerful tools learned from experience. On Omni3D-Bench, TVP achieves state-of-the-art performance, outperforming GPT-4o by 22% and the previous best visual programming system by 11%. Our transductively learned tools are used 5x more frequently as core program dependency than inductively created ones, demonstrating more effective tool discovery and reuse. The evolved tools also show strong generalization to unseen spatial tasks, achieving superior performance on benchmarks from SpatialScore-Hard collection without any testset-specific modification. Our work establishes experience-driven transductive tool creation as a powerful paradigm for building self-evolving visual programming agents that effectively tackle challenging spatial reasoning tasks. We release our code at https://transductive-visualprogram.github.io/.

Authors:Pierre Abillama, Changwoo Lee, Juechu Dong, David Blaauw, Dennis Sylvester, Hun-Seok Kim
Title: Memory-Efficient Acceleration of Block Low-Rank Foundation Models on Resource Constrained GPUs
Abstract:
Recent advances in transformer-based foundation models have made them the default choice for many tasks, but their rapidly growing size makes fitting a full model on a single GPU increasingly difficult and their computational cost prohibitive. Block low-rank (BLR) compression techniques address this challenge by learning compact representations of weight matrices. While traditional low-rank (LR) methods often incur sharp accuracy drops, BLR approaches such as Monarch and BLAST can better capture the underlying structure, thus preserving accuracy while reducing computations and memory footprints. In this work, we use roofline analysis to show that, although BLR methods achieve theoretical savings and practical speedups for single-token inference, multi-token inference often becomes memory-bound in practice, increasing latency despite compiler-level optimizations in PyTorch. To address this, we introduce custom Triton kernels with partial fusion and memory layout optimizations for both Monarch and BLAST. On memory-constrained NVIDIA GPUs such as Jetson Orin Nano and A40, our kernels deliver up to $3.76\times$ speedups and $3\times$ model size compression over PyTorch dense baselines using CUDA backend and compiler-level optimizations, while supporting various models including Llama-7/1B, GPT2-S, DiT-XL/2, and ViT-B. Our code is available at https://github.com/pabillam/mem-efficient-blr .

Authors:Paul Caillon, Alex Colagrande, Erwan Fagnou, Blaise Delattre, Alexandre Allauzen
Title: Forward Only Learning for Orthogonal Neural Networks of any Depth
Abstract:
Backpropagation is still the de facto algorithm used today to train neural networks. With the exponential growth of recent architectures, the computational cost of this algorithm also becomes a burden. The recent PEPITA and forward-only frameworks have proposed promising alternatives, but they failed to scale up to a handful of hidden layers, yet limiting their use. In this paper, we first analyze theoretically the main limitations of these approaches. It allows us the design of a forward-only algorithm, which is equivalent to backpropagation under the linear and orthogonal assumptions. By relaxing the linear assumption, we then introduce FOTON (Forward-Only Training of Orthogonal Networks) that bridges the gap with the backpropagation algorithm. Experimental results show that it outperforms PEPITA, enabling us to train neural networks of any depth, without the need for a backward pass. Moreover its performance on convolutional networks clearly opens up avenues for its application to more advanced architectures. The code is open-sourced at https://github.com/p0lcAi/FOTON .

Authors:Esmail Gumaan
Title: Mixture of Attention Schemes (MoAS): Learning to Route Between MHA, GQA, and MQA
Abstract:
The choice of attention mechanism in Transformer models involves a critical trade-off between modeling quality and inference efficiency. Multi-Head Attention (MHA) offers the best quality but suffers from large Key-Value (KV) cache memory requirements during inference. Multi-Query Attention (MQA) and Grouped-Query Attention (GQA) reduce memory usage but often at the cost of model performance. In this work, we propose Mixture of Attention Schemes (MoAS), a novel architecture that dynamically selects the optimal attention scheme (MHA, GQA, or MQA) for each token via a learned router. We demonstrate that dynamic routing performs better than static averaging of schemes and achieves performance competitive with the MHA baseline while offering potential for conditional compute efficiency. Experimental results on WikiText-2 show that dynamic routing (val loss 2.3074) outperforms a static mixture (2.3093), validating the effectiveness of the proposed method. Our code is available at https://github.com/Esmail-ibraheem/Mixture-of-Attention-Schemes-MoAS.

Authors:Wenlong Tang
Title: Learning Evolving Latent Strategies for Multi-Agent Language Systems without Model Fine-Tuning
Abstract:
This study proposes a multi-agent language framework that enables continual strategy evolution without fine-tuning the language model's parameters. The core idea is to liberate the latent vectors of abstract concepts from traditional static semantic representations, allowing them to be continuously updated through environmental interaction and reinforcement feedback. We construct a dual-loop architecture: the behavior loop adjusts action preferences based on environmental rewards, while the language loop updates the external latent vectors by reflecting on the semantic embeddings of generated text. Together, these mechanisms allow agents to develop stable and disentangled strategic styles over long-horizon multi-round interactions. Experiments show that agents' latent spaces exhibit clear convergence trajectories under reflection-driven updates, along with structured shifts at critical moments. Moreover, the system demonstrates an emergent ability to implicitly infer and continually adapt to emotional agents, even without shared rewards. These results indicate that, without modifying model parameters, an external latent space can provide language agents with a low-cost, scalable, and interpretable form of abstract strategic representation.

Authors:Runtao Liu, Ziyi Liu, Jiaqi Tang, Yue Ma, Renjie Pi, Jipeng Zhang, Qifeng Chen
Title: LongVideoAgent: Multi-Agent Reasoning with Long Videos
Abstract:
Recent advances in multimodal LLMs and systems that use tools for long-video QA point to the promise of reasoning over hour-long episodes. However, many methods still compress content into lossy summaries or rely on limited toolsets, weakening temporal grounding and missing fine-grained cues. We propose a multi-agent framework in which a master LLM coordinates a grounding agent to localize question-relevant segments and a vision agent to extract targeted textual observations. The master agent plans with a step limit, and is trained with reinforcement learning to encourage concise, correct, and efficient multi-agent cooperation. This design helps the master agent focus on relevant clips via grounding, complements subtitles with visual detail, and yields interpretable trajectories. On our proposed LongTVQA and LongTVQA+ which are episode-level datasets aggregated from TVQA/TVQA+, our multi-agent system significantly outperforms strong non-agent baselines. Experiments also show reinforcement learning further strengthens reasoning and planning for the trained agent. Code and data will be shared at https://longvideoagent.github.io/.

Authors:Dhruv Anand, Ehsan Shareghi
Title: Cube Bench: A Benchmark for Spatial Visual Reasoning in MLLMs
Abstract:
We introduce Cube Bench, a Rubik's-cube benchmark for evaluating spatial and sequential reasoning in multimodal large language models (MLLMs). The benchmark decomposes performance into five skills: (i) reconstructing cube faces from images and text, (ii) choosing the optimal next move, (iii) predicting the outcome of a candidate move without applying it, (iv) executing multi-step plans while recovering from mistakes, and (v) detecting and revising one's own errors. Using a shared set of scrambled cube states, identical prompts and parsers, and a single distance-to-solved metric, we compare recent MLLMs side by side as a function of scramble depth. Across seven MLLMs, accuracy drops sharply with depth; once a trajectory stalls or diverges, models rarely recover, and high face-reconstruction accuracy does not guarantee competent action selection or multi-step execution. A pronounced closed- vs open-source gap emerges: the strongest closed model leads on both single-step perception tasks and multi-step control tasks, while open-weight models cluster near chance on the hardest settings; yet even the best MLLM degrades at higher cube complexity. A simple self-correction via reflective thinking yields modest gains but can also introduce overthinking. Cube Bench offers a compact, reproducible probe of sequential spatial reasoning in MLLMs.

Authors:Rui Pan, Zhuofu Chen, Ravi Netravali
Title: Fail Fast, Win Big: Rethinking the Drafting Strategy in Speculative Decoding via Diffusion LLMs
Abstract:
Diffusion Large Language Models (dLLMs) offer fast, parallel token generation, but their standalone use is plagued by an inherent efficiency-quality tradeoff. We show that, if carefully applied, the attributes of dLLMs can actually be a strength for drafters in speculative decoding with autoregressive (AR) verifiers. Our core insight is that dLLM's speed from parallel decoding drastically lowers the risk of costly rejections, providing a practical mechanism to effectively realize the (elusive) lengthy drafts that lead to large speedups with speculative decoding. We present FailFast, a dLLM-based speculative decoding framework that realizes this approach by dynamically adapting its speculation length. It "fails fast" by spending minimal compute in hard-to-speculate regions to shrink speculation latency and "wins big" by aggressively extending draft lengths in easier regions to reduce verification latency (in many cases, speculating and accepting 70 tokens at a time!). Without any fine-tuning, FailFast delivers lossless acceleration of AR LLMs and achieves up to 4.9$\times$ speedup over vanilla decoding, 1.7$\times$ over the best naive dLLM drafter, and 1.4$\times$ over EAGLE-3 across diverse models and workloads. We open-source FailFast at https://github.com/ruipeterpan/failfast.

Authors:Long Nguyen, Micha Fauth, Bernhard Jaeger, Daniel Dauner, Maximilian Igl, Andreas Geiger, Kashyap Chitta
Title: LEAD: Minimizing Learner-Expert Asymmetry in End-to-End Driving
Abstract:
Simulators can generate virtually unlimited driving data, yet imitation learning policies in simulation still struggle to achieve robust closed-loop performance. Motivated by this gap, we empirically study how misalignment between privileged expert demonstrations and sensor-based student observations can limit the effectiveness of imitation learning. More precisely, experts have significantly higher visibility (e.g., ignoring occlusions) and far lower uncertainty (e.g., knowing other vehicles' actions), making them difficult to imitate reliably. Furthermore, navigational intent (i.e., the route to follow) is under-specified in student models at test time via only a single target point. We demonstrate that these asymmetries can measurably limit driving performance in CARLA and offer practical interventions to address them. After careful modifications to narrow the gaps between expert and student, our TransFuser v6 (TFv6) student policy achieves a new state of the art on all major publicly available CARLA closed-loop benchmarks, reaching 95 DS on Bench2Drive and more than doubling prior performances on Longest6~v2 and Town13. Additionally, by integrating perception supervision from our dataset into a shared sim-to-real pipeline, we show consistent gains on the NAVSIM and Waymo Vision-Based End-to-End driving benchmarks. Our code, data, and models are publicly available at https://github.com/autonomousvision/lead.

Authors:Antonio Vitale, Khai-Nguyen Nguyen, Denys Poshyvanyk, Rocco Oliveto, Simone Scalabrino, Antonio Mastropaolo
Title: Toward Explaining Large Language Models in Software Engineering Tasks
Abstract:
Recent progress in Large Language Models (LLMs) has substantially advanced the automation of software engineering (SE) tasks, enabling complex activities such as code generation and code summarization. However, the black-box nature of LLMs remains a major barrier to their adoption in high-stakes and safety-critical domains, where explainability and transparency are vital for trust, accountability, and effective human supervision. Despite increasing interest in explainable AI for software engineering, existing methods lack domain-specific explanations aligned with how practitioners reason about SE artifacts. To address this gap, we introduce FeatureSHAP, the first fully automated, model-agnostic explainability framework tailored to software engineering tasks. Based on Shapley values, FeatureSHAP attributes model outputs to high-level input features through systematic input perturbation and task-specific similarity comparisons, while remaining compatible with both open-source and proprietary LLMs. We evaluate FeatureSHAP on two bi-modal SE tasks: code generation and code summarization. The results show that FeatureSHAP assigns less importance to irrelevant input features and produces explanations with higher fidelity than baseline methods. A practitioner survey involving 37 participants shows that FeatureSHAP helps practitioners better interpret model outputs and make more informed decisions. Collectively, FeatureSHAP represents a meaningful step toward practical explainable AI in software engineering. FeatureSHAP is available at https://github.com/deviserlab/FeatureSHAP.

Authors:Alexis Pomares Pastor, Ines Ribeiro Violante, Gregory Scott
Title: Deep Learning Classification of EEG Responses to Multi-Dimensional Transcranial Electrical Stimulation
Abstract:
A major shortcoming of medical practice is the lack of an objective measure of conscious level. Impairment of consciousness is common, e.g. following brain injury and seizures, which can also interfere with sensory processing and volitional responses. This is also an important pitfall in neurophysiological methods that infer awareness via command following, e.g. using functional MRI or electroencephalography (EEG). Transcranial electrical stimulation (TES) can be employed to non-invasively stimulate the brain, bypassing sensory inputs, and has already showed promising results in providing reliable indicators of brain state. However, current non-invasive solutions have been limited to magnetic stimulation, which is not easily translatable to clinical settings. Our long-term vision is to develop an objective measure of brain state that can be used at the bedside, without requiring patients to understand commands or initiate motor responses. In this study, we demonstrated the feasibility of a framework using Deep Learning algorithms to classify EEG brain responses evoked by a defined multi-dimensional pattern of TES. We collected EEG-TES data from 11 participants and found that delivering transcranial direct current stimulation (tDCS) to posterior cortical areas targeting the angular gyrus elicited an exceptionally reliable brain response. For this paradigm, our best Convolutional Neural Network model reached a 92% classification F1-score on Holdout data from participants never seen during training, significantly surpassing human-level performance at 60-70% accuracy. These findings establish a framework for robust consciousness measurement for clinical use. In this spirit, we documented and open-sourced our datasets and codebase in full, to be used freely by the neuroscience and AI research communities, who may replicate our results with free tools like GitHub, Kaggle, and Colab.

Authors:Tongyi Fun Team, Qian Chen, Luyao Cheng, Chong Deng, Xiangang Li, Jiaqing Liu, Chao-Hong Tan, Wen Wang, Junhao Xu, Jieping Ye, Qinglin Zhang, Qiquan Zhang, Jingren Zhou
Title: Fun-Audio-Chat Technical Report
Abstract:
Recent advancements in joint speech-text models show great potential for seamless voice interactions. However, existing models face critical challenges: temporal resolution mismatch between speech tokens (25Hz) and text tokens (~3Hz) dilutes semantic information, incurs high computational costs, and causes catastrophic forgetting of text LLM knowledge. We introduce Fun-Audio-Chat, a Large Audio Language Model addressing these limitations via two innovations from our previous work DrVoice. First, Dual-Resolution Speech Representations (DRSR): the Shared LLM processes audio at efficient 5Hz (via token grouping), while the Speech Refined Head generates high-quality tokens at 25Hz, balancing efficiency (~50% GPU reduction) and quality. Second, Core-Cocktail Training, a two-stage fine-tuning with intermediate merging that mitigates catastrophic forgetting. We then apply Multi-Task DPO Training to enhance robustness, audio understanding, instruction-following and voice empathy. This multi-stage post-training enables Fun-Audio-Chat to retain text LLM knowledge while gaining powerful audio understanding, reasoning, and generation. Unlike recent LALMs requiring large-scale audio-text pre-training, Fun-Audio-Chat leverages pre-trained models and extensive post-training. Fun-Audio-Chat 8B and MoE 30B-A3B achieve competitive performance on Speech-to-Text and Speech-to-Speech tasks, ranking top among similar-scale models on Spoken QA benchmarks. They also achieve competitive to superior performance on Audio Understanding, Speech Function Calling, Instruction-Following and Voice Empathy. We develop Fun-Audio-Chat-Duplex, a full-duplex variant with strong performance on Spoken QA and full-duplex interactions. We open-source Fun-Audio-Chat-8B with training and inference code, and provide an interactive demo, at https://github.com/FunAudioLLM/Fun-Audio-Chat .

Authors:Hao Li, Fabian Deuser, Wenping Yin, Steffen Knoblauch, Wufan Zhao, Filip Biljecki, Yong Xue, Wei Huang
Title: Towards Generative Location Awareness for Disaster Response: A Probabilistic Cross-view Geolocalization Approach
Abstract:
As Earth's climate changes, it is impacting disasters and extreme weather events across the planet. Record-breaking heat waves, drenching rainfalls, extreme wildfires, and widespread flooding during hurricanes are all becoming more frequent and more intense. Rapid and efficient response to disaster events is essential for climate resilience and sustainability. A key challenge in disaster response is to accurately and quickly identify disaster locations to support decision-making and resources allocation. In this paper, we propose a Probabilistic Cross-view Geolocalization approach, called ProbGLC, exploring new pathways towards generative location awareness for rapid disaster response. Herein, we combine probabilistic and deterministic geolocalization models into a unified framework to simultaneously enhance model explainability (via uncertainty quantification) and achieve state-of-the-art geolocalization performance. Designed for rapid diaster response, the ProbGLC is able to address cross-view geolocalization across multiple disaster events as well as to offer unique features of probabilistic distribution and localizability score. To evaluate the ProbGLC, we conduct extensive experiments on two cross-view disaster datasets (i.e., MultiIAN and SAGAINDisaster), consisting diverse cross-view imagery pairs of multiple disaster types (e.g., hurricanes, wildfires, floods, to tornadoes). Preliminary results confirms the superior geolocalization accuracy (i.e., 0.86 in Acc@1km and 0.97 in Acc@25km) and model explainability (i.e., via probabilistic distributions and localizability scores) of the proposed ProbGLC approach, highlighting the great potential of leveraging generative cross-view approach to facilitate location awareness for better and faster disaster response. The data and code is publicly available at https://github.com/bobleegogogo/ProbGLC

Authors:Luciano Araujo Dourado Filho, Rodrigo Tripodi Calumby
Title: FGDCC: Fine-Grained Deep Cluster Categorization -- A Framework for Intra-Class Variability Problems in Plant Classification
Abstract:
Intra-class variability is given according to the significance in the degree of dissimilarity between images within a class. In that sense, depending on its intensity, intra-class variability can hinder the learning process for DL models, specially when such classes are also underrepresented, which is a very common scenario in Fine-Grained Visual Categorization (FGVC) tasks. This paper proposes a novel method that aims at leveraging classification performance in FGVC tasks by learning fine-grained features via classification of class-wise cluster assignments. Our goal is to apply clustering over each class individually, which can allow to discover pseudo-labels that encodes a latent degree of similarity between images. In turn, those labels can be employed in a hierarchical classification process that allows to learn more fine-grained visual features and thereby mitigating intra-class variability issues. Initial experiments over the PlantNet300k enabled to shed light upon several key points in which future work will have to be developed in order to find more conclusive evidence regarding the effectiveness of our method. Our method still achieves state-of-the-art performance on the PlantNet300k dataset even though some of its components haven't been shown to be fully optimized. Our code is available at \href{https://github.com/ADAM-UEFS/FGDCC}{https://github.com/ADAM-UEFS/FGDCC}.

Authors:Luciano Araujo Dourado Filho, Almir Moreira da Silva Neto, Rodrigo Pereira David, Rodrigo Tripodi Calumby
Title: Zero-Shot Segmentation through Prototype-Guidance for Multi-Label Plant Species Identification
Abstract:
This paper presents an approach developed to address the PlantClef 2025 challenge, which consists of a fine-grained multi-label species identification, over high-resolution images. Our solution focused on employing class prototypes obtained from the training dataset as a proxy guidance for training a segmentation Vision Transformer (ViT) on the test set images. To obtain these representations, the proposed method extracts features from training dataset images and create clusters, by applying K-Means, with $K$ equals to the number of classes in the dataset. The segmentation model is a customized narrow ViT, built by replacing the patch embedding layer with a frozen DinoV2, pre-trained on the training dataset for individual species classification. This model is trained to reconstruct the class prototypes of the training dataset from the test dataset images. We then use this model to obtain attention scores that enable to identify and localize areas of interest and consequently guide the classification process. The proposed approach enabled a domain-adaptation from multi-class identification with individual species, into multi-label classification from high-resolution vegetation plots. Our method achieved fifth place in the PlantCLEF 2025 challenge on the private leaderboard, with an F1 score of 0.33331. Besides that, in absolute terms our method scored 0.03 lower than the top-performing submission, suggesting that it may achieved competitive performance in the benchmark task. Our code is available at \href{https://github.com/ADAM-UEFS/PlantCLEF2025}{https://github.com/ADAM-UEFS/PlantCLEF2025}.

Authors:Wang Bin, Ao Yang, Kedan Li, Aofan Liu, Hui Li, Guibo Luo, Weixiang Huang, Yan Zhuang
Title: Attention Distance: A Novel Metric for Directed Fuzzing with Large Language Models
Abstract:
In the domain of software security testing, Directed Grey-Box Fuzzing (DGF) has garnered widespread attention for its efficient target localization and excellent detection performance. However, existing approaches measure only the physical distance between seed execution paths and target locations, overlooking logical relationships among code segments. This omission can yield redundant or misleading guidance in complex binaries, weakening DGF's real-world effectiveness. To address this, we introduce \textbf{attention distance}, a novel metric that leverages a large language model's contextual analysis to compute attention scores between code elements and reveal their intrinsic connections. Under the same AFLGo configuration -- without altering any fuzzing components other than the distance metric -- replacing physical distances with attention distances across 38 real vulnerability reproduction experiments delivers a \textbf{3.43$\times$} average increase in testing efficiency over the traditional method. Compared to state-of-the-art directed fuzzers DAFL and WindRanger, our approach achieves \textbf{2.89$\times$} and \textbf{7.13$\times$} improvements, respectively. To further validate the generalizability of attention distance, we integrate it into DAFL and WindRanger, where it also consistently enhances their original performance. All related code and datasets are publicly available at https://github.com/TheBinKing/Attention\_Distance.git.

Authors:Sasan Sharifipour, Constantino Álvarez Casado, Manuel Lage Cañellas, Miguel Bordallo López
Title: From Theory to Throughput: CUDA-Optimized APML for Large-Batch 3D Learning
Abstract:
Loss functions are fundamental to learning accurate 3D point cloud models, yet common choices trade geometric fidelity for computational cost. Chamfer Distance is efficient but permits many-to-one correspondences, while Earth Mover Distance better reflects one-to-one transport at high computational cost. APML approximates transport with differentiable Sinkhorn iterations and an analytically derived temperature, but its dense formulation scales quadratically in memory. We present CUDA-APML, a sparse GPU implementation that thresholds negligible assignments and runs adaptive softmax, bidirectional symmetrization, and Sinkhorn normalization directly in COO form. This yields near-linear memory scaling and preserves gradients on the stored support, while pairwise distance evaluation remains quadratic in the current implementation. On ShapeNet and MM-Fi, CUDA-APML matches dense APML within a small tolerance while reducing peak GPU memory by 99.9%. Code available at: https://github.com/Multimodal-Sensing-Lab/apml

Authors:Kosuke Ukita, Tsuyoshi Okita
Title: High-Performance Self-Supervised Learning by Joint Training of Flow Matching
Abstract:
Diffusion models can learn rich representations during data generation, showing potential for Self-Supervised Learning (SSL), but they face a trade-off between generative quality and discriminative performance. Their iterative sampling also incurs substantial computational and energy costs, hindering industrial and edge AI applications. To address these issues, we propose the Flow Matching-based Foundation Model (FlowFM), which jointly trains a representation encoder and a conditional flow matching generator. This decoupled design achieves both high-fidelity generation and effective recognition. By using flow matching to learn a simpler velocity field, FlowFM accelerates and stabilizes training, improving its efficiency for representation learning. Experiments on wearable sensor data show FlowFM reduces training time by 50.4\% compared to a diffusion-based approach. On downstream tasks, FlowFM surpassed the state-of-the-art SSL method (SSL-Wearables) on all five datasets while achieving up to a 51.0x inference speedup and maintaining high generative quality. The implementation code is available at https://github.com/Okita-Laboratory/jointOptimizationFlowMatching.

Authors:Hanyang Kong, Xingyi Yang, Xiaoxu Zheng, Xinchao Wang
Title: WorldWarp: Propagating 3D Geometry with Asynchronous Video Diffusion
Abstract:
Generating long-range, geometrically consistent video presents a fundamental dilemma: while consistency demands strict adherence to 3D geometry in pixel space, state-of-the-art generative models operate most effectively in a camera-conditioned latent space. This disconnect causes current methods to struggle with occluded areas and complex camera trajectories. To bridge this gap, we propose WorldWarp, a framework that couples a 3D structural anchor with a 2D generative refiner. To establish geometric grounding, WorldWarp maintains an online 3D geometric cache built via Gaussian Splatting (3DGS). By explicitly warping historical content into novel views, this cache acts as a structural scaffold, ensuring each new frame respects prior geometry. However, static warping inevitably leaves holes and artifacts due to occlusions. We address this using a Spatio-Temporal Diffusion (ST-Diff) model designed for a "fill-and-revise" objective. Our key innovation is a spatio-temporal varying noise schedule: blank regions receive full noise to trigger generation, while warped regions receive partial noise to enable refinement. By dynamically updating the 3D cache at every step, WorldWarp maintains consistency across video chunks. Consequently, it achieves state-of-the-art fidelity by ensuring that 3D logic guides structure while diffusion logic perfects texture. Project page: \href{https://hyokong.github.io/worldwarp-page/}{https://hyokong.github.io/worldwarp-page/}.

Authors:Yuqiao Tan, Minzheng Wang, Shizhu He, Huanxuan Liao, Chengfeng Zhao, Qiunan Lu, Tian Liang, Jun Zhao, Kang Liu
Title: Bottom-up Policy Optimization: Your Language Model Policy Secretly Contains Internal Policies
Abstract:
Existing reinforcement learning (RL) approaches treat large language models (LLMs) as a single unified policy, overlooking their internal mechanisms. Understanding how policy evolves across layers and modules is therefore crucial for enabling more targeted optimization and raveling out complex reasoning mechanisms. In this paper, we decompose the language model policy by leveraging the intrinsic split of the Transformer residual stream and the equivalence between the composition of hidden states with the unembedding matrix and the resulting samplable policy. This decomposition reveals Internal Layer Policies, corresponding to contributions from individual layers, and Internal Modular Policies, which align with the self-attention and feed-forward network (FFN) components within each layer. By analyzing the entropy of internal policy, we find that: (a) Early layers keep high entropy for exploration, top layers converge to near-zero entropy for refinement, with convergence patterns varying across model series. (b) LLama's prediction space rapidly converges in the final layer, whereas Qwen-series models, especially Qwen3, exhibit a more human-like, progressively structured reasoning pattern. Motivated by these findings, we propose Bottom-up Policy Optimization (BuPO), a novel RL paradigm that directly optimizes the internal layer policy during early training. By aligning training objective at lower layer, BuPO reconstructs foundational reasoning capabilities and achieves superior performance. Extensive experiments on complex reasoning benchmarks demonstrates the effectiveness of our method. Our code is available at https://github.com/Trae1ounG/BuPO.

Authors:Kirill Djebko, Tom Baumann, Erik Dilger, Frank Puppe, Sergio Montenegro
Title: LeLaR: The First In-Orbit Demonstration of an AI-Based Satellite Attitude Controller
Abstract:
Attitude control is essential for many satellite missions. Classical controllers, however, are time-consuming to design and sensitive to model uncertainties and variations in operational boundary conditions. Deep Reinforcement Learning (DRL) offers a promising alternative by learning adaptive control strategies through autonomous interaction with a simulation environment. Overcoming the Sim2Real gap, which involves deploying an agent trained in simulation onto the real physical satellite, remains a significant challenge. In this work, we present the first successful in-orbit demonstration of an AI-based attitude controller for inertial pointing maneuvers. The controller was trained entirely in simulation and deployed to the InnoCube 3U nanosatellite, which was developed by the Julius-Maximilians-Universität Würzburg in cooperation with the Technische Universität Berlin, and launched in January 2025. We present the AI agent design, the methodology of the training procedure, the discrepancies between the simulation and the observed behavior of the real satellite, and a comparison of the AI-based attitude controller with the classical PD controller of InnoCube. Steady-state metrics confirm the robust performance of the AI-based controller during repeated in-orbit maneuvers.

Authors:Lawrence Krukrubo, Julius Odede, Olawande Olusegun
Title: Augmenting Intelligence: A Hybrid Framework for Scalable and Stable Explanations
Abstract:
Current approaches to Explainable AI (XAI) face a "Scalability-Stability Dilemma." Post-hoc methods (e.g., LIME, SHAP) may scale easily but suffer from instability, while supervised explanation frameworks (e.g., TED) offer stability but require prohibitive human effort to label every training instance. This paper proposes a Hybrid LRR-TED framework that addresses this dilemma through a novel "Asymmetry of Discovery." When applied to customer churn prediction, we demonstrate that automated rule learners (GLRM) excel at identifying broad "Safety Nets" (retention patterns) but struggle to capture specific "Risk Traps" (churn triggers)-a phenomenon we term the Anna Karenina Principle of Churn. By initialising the explanation matrix with automated safety rules and augmenting it with a Pareto-optimal set of just four human-defined risk rules, our approach achieves 94.00% predictive accuracy. This configuration outperforms the full 8-rule manual expert baseline while reducing human annotation effort by 50%, proposing a shift in the paradigm for Human-in-the-Loop AI: moving experts from the role of "Rule Writers" to "Exception Handlers."

Authors:Ziyang Song, Zelin Zang, Zuyao Chen, Xusheng Liang, Dong Yi, Jinlin Wu, Hongbin Liu, Jiebo Luo, Zhen. Lei
Title: Anatomy-R1: Enhancing Anatomy Reasoning in Multimodal Large Language Models via Anatomical Similarity Curriculum and Group Diversity Augmentation
Abstract:
Multimodal Large Language Models (MLLMs) have achieved impressive progress in natural image reasoning, yet their potential in medical imaging remains underexplored, especially in clinical anatomical surgical images. Anatomy understanding tasks demand precise understanding and clinically coherent answers, which are difficult to achieve due to the complexity of medical data and the scarcity of high-quality expert annotations. These challenges limit the effectiveness of conventional Supervised Fine-Tuning (SFT) strategies. While recent work has demonstrated that Group Relative Policy Optimization (GRPO) can enhance reasoning in MLLMs without relying on large amounts of data, we find two weaknesses that hinder GRPO's reasoning performance in anatomy recognition: 1) knowledge cannot be effectively shared between different anatomical structures, resulting in uneven information gain and preventing the model from converging, and 2) the model quickly converges to a single reasoning path, suppressing the exploration of diverse strategies. To overcome these challenges, we propose two novel methods. First, we implement a progressive learning strategy called Anatomical Similarity Curriculum Learning by controlling question difficulty via the similarity of answer choices, enabling the model to master complex problems incrementally. Second, we utilize question augmentation referred to as Group Diversity Question Augmentation to expand the model's search space for difficult queries, mitigating the tendency to produce uniform responses. Comprehensive experiments on the SGG-VQA and OmniMedVQA benchmarks show our method achieves a significant improvement across the two benchmarks, demonstrating its effectiveness in enhancing the medical reasoning capabilities of MLLMs. The code can be found in https://github.com/tomato996/Anatomy-R1

Authors:Sandro Andric
Title: Brain-Grounded Axes for Reading and Steering LLM States
Abstract:
Interpretability methods for large language models (LLMs) typically derive directions from textual supervision, which can lack external grounding. We propose using human brain activity not as a training signal but as a coordinate system for reading and steering LLM states. Using the SMN4Lang MEG dataset, we construct a word-level brain atlas of phase-locking value (PLV) patterns and extract latent axes via ICA. We validate axes with independent lexica and NER-based labels (POS/log-frequency used as sanity checks), then train lightweight adapters that map LLM hidden states to these brain axes without fine-tuning the LLM. Steering along the resulting brain-derived directions yields a robust lexical (frequency-linked) axis in a mid TinyLlama layer, surviving perplexity-matched controls, and a brain-vs-text probe comparison shows larger log-frequency shifts (relative to the text probe) with lower perplexity for the brain axis. A function/content axis (axis 13) shows consistent steering in TinyLlama, Qwen2-0.5B, and GPT-2, with PPL-matched text-level corroboration. Layer-4 effects in TinyLlama are large but inconsistent, so we treat them as secondary (Appendix). Axis structure is stable when the atlas is rebuilt without GPT embedding-change features or with word2vec embeddings (|r|=0.64-0.95 across matched axes), reducing circularity concerns. Exploratory fMRI anchoring suggests potential alignment for embedding change and log frequency, but effects are sensitive to hemodynamic modeling assumptions and are treated as population-level evidence only. These results support a new interface: neurophysiology-grounded axes provide interpretable and controllable handles for LLM behavior.

Authors:Xueming Yan, Boyan Xu, Yaochu Jin, Lixian Xiao, Wenlong Ye, Runyang Cai, Zeqi Zheng, Jingfa Liu, Aimin Yang
Title: OmniMER: Indonesian Multimodal Emotion Recognition via Auxiliary-Enhanced LLM Adaptation
Abstract:
Indonesian, spoken by over 200 million people, remains underserved in multimodal emotion recognition research despite its dominant presence on Southeast Asian social media platforms. We introduce IndoMER, the first multimodal emotion recognition benchmark for Indonesian, comprising 1,944 video segments from 203 speakers with temporally aligned text, audio, and visual annotations across seven emotion categories. The dataset exhibits realistic challenges including cross-modal inconsistency and long-tailed class distributions shaped by Indonesian cultural communication norms. To address these challenges, we propose OmniMER, a multimodal adaptation framework built upon Qwen2.5-Omni that enhances emotion recognition through three auxiliary modality-specific perception tasks: emotion keyword extraction for text, facial expression analysis for video, and prosody analysis for audio. These auxiliary tasks help the model identify emotion-relevant cues in each modality before fusion, reducing reliance on spurious correlations in low-resource settings. Experiments on IndoMER show that OmniMER achieves 0.582 Macro-F1 on sentiment classification and 0.454 on emotion recognition, outperforming the base model by 7.6 and 22.1 absolute points respectively. Cross-lingual evaluation on the Chinese CH-SIMS dataset further demonstrates the generalizability of the proposed framework. The dataset and code are publicly available. https://github.com/yanxm01/INDOMER

Authors:A. B. M. Ashikur Rahman, Saeed Anwar, Muhammad Usman, Irfan Ahmad, Ajmal Mian
Title: PENDULUM: A Benchmark for Assessing Sycophancy in Multimodal Large Language Models
Abstract:
Sycophancy, an excessive tendency of AI models to agree with user input at the expense of factual accuracy or in contradiction of visual evidence, poses a critical and underexplored challenge for multimodal large language models (MLLMs). While prior studies have examined this behavior in text-only settings of large language models, existing research on visual or multimodal counterparts remains limited in scope and depth of analysis. To address this gap, we introduce a comprehensive evaluation benchmark, \textit{PENDULUM}, comprising approximately 2,000 human-curated Visual Question Answering pairs specifically designed to elicit sycophantic responses. The benchmark spans six distinct image domains of varying complexity, enabling a systematic investigation of how image type and inherent challenges influence sycophantic tendencies. Through extensive evaluation of state-of-the-art MLLMs. we observe substantial variability in model robustness and a pronounced susceptibility to sycophantic and hallucinatory behavior. Furthermore, we propose novel metrics to quantify sycophancy in visual reasoning, offering deeper insights into its manifestations across different multimodal contexts. Our findings highlight the urgent need for developing sycophancy-resilient architectures and training strategies to enhance factual consistency and reliability in future MLLMs. Our proposed dataset with MLLMs response are available at https://github.com/ashikiut/pendulum/.

Authors:Yayuan Li, Jian Zhang, Jintao Guo, Zihan Cheng, Lei Qi, Yinghuan Shi, Yang Gao
Title: MAGIC: Achieving Superior Model Merging via Magnitude Calibration
Abstract:
The proliferation of pre-trained models has given rise to a wide array of specialised, fine-tuned models. Model merging aims to merge the distinct capabilities of these specialised models into a unified model, requiring minimal or even no additional training. A core objective of model merging is to ensure the merged model retains the behavioural characteristics of the specialised models, typically achieved through feature alignment. We identify that features consist of two critical components: direction and magnitude. Prior research has predominantly focused on directional alignment, while the influence of magnitude remains largely neglected, despite its pronounced vulnerability to perturbations introduced by common merging operations (e.g., parameter fusion and sparsification). Such perturbations to magnitude inevitably lead to feature deviations in the merged model from the specialised models, resulting in subsequent performance degradation. To address this, we propose MAGnItude Calibration (MAGIC), a plug-and-play framework that rectifies layer-wise magnitudes in feature and weight spaces, with three variants. Specifically, our Feature Space Calibration (FSC) realigns the merged model's features using a small set of unlabelled data, while Weight Space Calibration (WSC) extends this calibration to the weight space without requiring additional data. Combining these yields Dual Space Calibration (DSC). Comprehensive experiments demonstrate that MAGIC consistently boosts performance across diverse Computer Vision tasks (+4.3% on eight datasets) and NLP tasks (+8.0% on Llama) without additional training. Our code is available at: https://github.com/lyymuwu/MAGIC

Authors:Carla Crivoi, Radu Tudor Ionescu
Title: Machine Unlearning in the Era of Quantum Machine Learning: An Empirical Study
Abstract:
We present the first comprehensive empirical study of machine unlearning (MU) in hybrid quantum-classical neural networks. While MU has been extensively explored in classical deep learning, its behavior within variational quantum circuits (VQCs) and quantum-augmented architectures remains largely unexplored. First, we adapt a broad suite of unlearning methods to quantum settings, including gradient-based, distillation-based, regularization-based and certified techniques. Second, we introduce two new unlearning strategies tailored to hybrid models. Experiments across Iris, MNIST, and Fashion-MNIST, under both subset removal and full-class deletion, reveal that quantum models can support effective unlearning, but outcomes depend strongly on circuit depth, entanglement structure, and task complexity. Shallow VQCs display high intrinsic stability with minimal memorization, whereas deeper hybrid models exhibit stronger trade-offs between utility, forgetting strength, and alignment with retrain oracle. We find that certain methods, e.g. EU-k, LCA, and Certified Unlearning, consistently provide the best balance across metrics. These findings establish baseline empirical insights into quantum machine unlearning and highlight the need for quantum-aware algorithms and theoretical guarantees, as quantum machine learning systems continue to expand in scale and capability. We publicly release our code at: https://github.com/CrivoiCarla/HQML.

Authors:Geraud Nangue Tasse, Matthew Riemer, Benjamin Rosman, Tim Klinger
Title: Beyond Sliding Windows: Learning to Manage Memory in Non-Markovian Environments
Abstract:
Recent success in developing increasingly general purpose agents based on sequence models has led to increased focus on the problem of deploying computationally limited agents within the vastly more complex real-world. A key challenge experienced in these more realistic domains is highly non-Markovian dependencies with respect to the agent's observations, which are less common in small controlled domains. The predominant approach for dealing with this in the literature is to stack together a window of the most recent observations (Frame Stacking), but this window size must grow with the degree of non-Markovian dependencies, which results in prohibitive computational and memory requirements for both action inference and learning. In this paper, we are motivated by the insight that in many environments that are highly non-Markovian with respect to time, the environment only causally depends on a relatively small number of observations over that time-scale. A natural direction would then be to consider meta-algorithms that maintain relatively small adaptive stacks of memories such that it is possible to express highly non-Markovian dependencies with respect to time while considering fewer observations at each step and thus experience substantial savings in both compute and memory requirements. Hence, we propose a meta-algorithm (Adaptive Stacking) for achieving exactly that with convergence guarantees and quantify the reduced computation and memory constraints for MLP, LSTM, and Transformer-based agents. Our experiments utilize popular memory tasks, which give us control over the degree of non-Markovian dependencies. This allows us to demonstrate that an appropriate meta-algorithm can learn the removal of memories not predictive of future rewards without excessive removal of important experiences. Code: https://github.com/geraudnt/adaptive-stacking

Authors:Saman Forouzandeh, Wei Peng, Parham Moradi, Xinghuo Yu, Mahdi Jalili
Title: Learning Hierarchical Procedural Memory for LLM Agents through Bayesian Selection and Contrastive Refinement
Abstract:
We present MACLA, a framework that decouples reasoning from learning by maintaining a frozen large language model while performing all adaptation in an external hierarchical procedural memory. MACLA extracts reusable procedures from trajectories, tracks reliability via Bayesian posteriors, selects actions through expected-utility scoring, and refines procedures by contrasting successes and failures. Across four benchmarks (ALFWorld, WebShop, TravelPlanner, InterCodeSQL), MACLA achieves 78.1 percent average performance, outperforming all baselines. On ALFWorld unseen tasks, MACLA reaches 90.3 percent with 3.1 percent positive generalization. The system constructs memory in 56 seconds, 2800 times faster than the state-of-the-art LLM parameter-training baseline, compressing 2851 trajectories into 187 procedures. Experimental results demonstrate that structured external memory with Bayesian selection and contrastive refinement enables sample-efficient, interpretable, and continually improving agents without LLM parameter updates.

Authors:Michael S. Zhang, Rishi A. Ruia, Arnav Kewalram, Saathvik Dharmapuram, Utkarsh Sharma, Kevin Zhu
Title: When Less is More: 8-bit Quantization Improves Continual Learning in Large Language Models
Abstract:
Catastrophic forgetting poses a fundamental challenge in continual learning, particularly when models are quantized for deployment efficiency. We systematically investigate the interplay between quantization precision (FP16, INT8, INT4) and replay buffer strategies in large language models, revealing unexpected dynamics. While FP16 achieves superior initial task performance (74.44% on NLU), we observe a striking inversion on subsequent tasks: quantized models outperform FP16 by 8-15% on final task forward accuracy, with INT4 achieving nearly double FP16's performance on Code generation (40% vs 20%). Critically, even minimal replay buffers (0.1%) dramatically improve retention - increasing NLU retention after Math training from 45% to 65% across all precision levels - with INT8 consistently achieving the optimal balance between learning plasticity and knowledge retention. We hypothesize that quantization-induced noise acts as implicit regularization, preventing the overfitting to new task gradients that plagues high-precision models. These findings challenge the conventional wisdom that higher precision is always preferable, suggesting instead that INT8 quantization offers both computational efficiency and superior continual learning dynamics. Our results provide practical guidelines for deploying compressed models in continual learning scenarios: small replay buffers (1-2%) suffice for NLU tasks, while Math and Code benefit from moderate buffers (5-10%), with quantized models requiring less replay than FP16 to achieve comparable retention. Code is available at https://github.com/Festyve/LessIsMore.

Authors:Kaidi Liang, Ke Li, Xianbiao Hu, Ruwen Qin
Title: CrashChat: A Multimodal Large Language Model for Multitask Traffic Crash Video Analysis
Abstract:
Automating crash video analysis is essential to leverage the growing availability of driving video data for traffic safety research and accountability attribution in autonomous driving. Crash video analysis is a challenging multitask problem due to the complex spatiotemporal dynamics of crash events in video data and the diverse analytical requirements involved. It requires capabilities spanning crash recognition, temporal grounding, and high-level video understanding. Existing models, however, cannot perform all these tasks within a unified framework, and effective training strategies for such models remain underexplored. To fill these gaps, this paper proposes CrashChat, a multimodal large language model (MLLM) for multitask traffic crash analysis, built upon VideoLLaMA3. CrashChat acquires domain-specific knowledge through instruction fine-tuning and employs a novel multitask learning strategy based on task decoupling and grouping, which maximizes the benefit of joint learning within and across task groups while mitigating negative transfer. Numerical experiments on consolidated public datasets demonstrate that CrashChat consistently outperforms existing MLLMs across model scales and traditional vision-based methods, achieving state-of-the-art performance. It reaches near-perfect accuracy in crash recognition, a 176\% improvement in crash localization, and a 40\% improvement in the more challenging pre-crash localization. Compared to general MLLMs, it substantially enhances textual accuracy and content coverage in crash description and reasoning tasks, with 0.18-0.41 increases in BLEU scores and 0.18-0.42 increases in ROUGE scores. Beyond its strong performance, CrashChat is a convenient, end-to-end analytical tool ready for practical implementation. The dataset and implementation code for CrashChat are available at https://github.com/Liangkd/CrashChat.

Authors:Ziyuan Tao, Chuanzhi Xu, Sandaru Jayawardana, Wei Bao, Kanchana Thilakarathna, Teng Joon Lim
Title: FedVideoMAE: Efficient Privacy-Preserving Federated Video Moderation
Abstract:
The rapid growth of short-form video platforms increases the need for privacy-preserving moderation, as cloud-based pipelines expose raw videos to privacy risks, high bandwidth costs, and inference latency. To address these challenges, we propose an on-device federated learning framework for video violence detection that integrates self-supervised VideoMAE representations, LoRA-based parameter-efficient adaptation, and defense-in-depth privacy protection. Our approach reduces the trainable parameter count to 5.5M (~3.5% of a 156M backbone) and incorporates DP-SGD with configurable privacy budgets and secure aggregation. Experiments on RWF-2000 with 40 clients achieve 77.25% accuracy without privacy protection and 65-66% under strong differential privacy, while reducing communication cost by $28.3\times$ compared to full-model federated learning. The code is available at: {https://github.com/zyt-599/FedVideoMAE}

Authors:Jianyi Zhang, Shizhao Liu, Ziyin Zhou, Zhen Li
Title: MEEA: Mere Exposure Effect-Driven Confrontational Optimization for LLM Jailbreaking
Abstract:
The rapid advancement of large language models (LLMs) has intensified concerns about the robustness of their safety alignment. While existing jailbreak studies explore both single-turn and multi-turn strategies, most implicitly assume a static safety boundary and fail to account for how contextual interactions dynamically influence model behavior, leading to limited stability and generalization. Motivated by this gap, we propose MEEA (Mere Exposure Effect Attack), a psychology-inspired, fully automated black-box framework for evaluating multi-turn safety robustness, grounded in the mere exposure effect. MEEA leverages repeated low-toxicity semantic exposure to induce a gradual shift in a model's effective safety threshold, enabling progressive erosion of alignment constraints over sustained interactions. Concretely, MEEA constructs semantically progressive prompt chains and optimizes them using a simulated annealing strategy guided by semantic similarity, toxicity, and jailbreak effectiveness. Extensive experiments on both closed-source and open-source models, including GPT-4, Claude-3.5, and DeepSeek-R1, demonstrate that MEEA consistently achieves higher attack success rates than seven representative baselines, with an average Attack Success Rate (ASR) improvement exceeding 20%. Ablation studies further validate the necessity of both annealing-based optimization and contextual exposure mechanisms. Beyond improved attack effectiveness, our findings indicate that LLM safety behavior is inherently dynamic and history-dependent, challenging the common assumption of static alignment boundaries and highlighting the need for interaction-aware safety evaluation and defense mechanisms. Our code is available at: https://github.com/Carney-lsz/MEEA

Authors:Yuan Chen, Zichen Wen, Yuzhou Wu, Xuyang Liu, Shuang Chen, Junpeng Ma, Weijia Li, Conghui He, Linfeng Zhang
Title: IPCV: Information-Preserving Compression for MLLM Visual Encoders
Abstract:
Multimodal Large Language Models (MLLMs) deliver strong vision-language performance but at high computational cost, driven by numerous visual tokens processed by the Vision Transformer (ViT) encoder. Existing token pruning strategies are inadequate: LLM-stage token pruning overlooks the ViT's overhead, while conventional ViT token pruning, without language guidance, risks discarding textually critical visual cues and introduces feature distortions amplified by the ViT's bidirectional attention. To meet these challenges, we propose IPCV, a training-free, information-preserving compression framework for MLLM visual encoders. IPCV enables aggressive token pruning inside the ViT via Neighbor-Guided Reconstruction (NGR) that temporarily reconstructs pruned tokens to participate in attention with minimal overhead, then fully restores them before passing to the LLM. Besides, we introduce Attention Stabilization (AS) to further alleviate the negative influence from token pruning by approximating the K/V of pruned tokens. It can be directly applied to previous LLM-side token pruning methods to enhance their performance. Extensive experiments show that IPCV substantially reduces end-to-end computation and outperforms state-of-the-art training-free token compression methods across diverse image and video benchmarks. Our code is available at https://github.com/Perkzi/IPCV.

Authors:Kewei Wei, Bocheng Hu, Jie Cao, Xiaohan Chen, Zhengxi Lu, Wubing Xia, Weili Xu, Jiaao Wu, Junchen He, Mingyu Jia, Ciyun Zhao, Ye Sun, Yizhi Li, Zhonghan Zhao, Jian Zhang, Gaoang Wang
Title: $M^3-Verse$: A "Spot the Difference" Challenge for Large Multimodal Models
Abstract:
Modern Large Multimodal Models (LMMs) have demonstrated extraordinary ability in static image and single-state spatial-temporal understanding. However, their capacity to comprehend the dynamic changes of objects within a shared spatial context between two distinct video observations, remains largely unexplored. This ability to reason about transformations within a consistent environment is particularly crucial for advancements in the field of spatial intelligence. In this paper, we introduce $M^3-Verse$, a Multi-Modal, Multi-State, Multi-Dimensional benchmark, to formally evaluate this capability. It is built upon paired videos that provide multi-perspective observations of an indoor scene before and after a state change. The benchmark contains a total of 270 scenes and 2,932 questions, which are categorized into over 50 subtasks that probe 4 core capabilities. We evaluate 16 state-of-the-art LMMs and observe their limitations in tracking state transitions. To address these challenges, we further propose a simple yet effective baseline that achieves significant performance improvements in multi-state perception. $M^3-Verse$ thus provides a challenging new testbed to catalyze the development of next-generation models with a more holistic understanding of our dynamic visual world. You can get the construction pipeline from https://github.com/Wal-K-aWay/M3-Verse_pipeline and full benchmark data from https://www.modelscope.cn/datasets/WalKaWay/M3-Verse.

Authors:Xiangrui Cai, Shaocheng Ma, Lei Cao, Jie Li, Tianyu Liu, Yilin Dong
Title: Fusion of Multiscale Features Via Centralized Sparse-attention Network for EEG Decoding
Abstract:
Electroencephalography (EEG) signal decoding is a key technology that translates brain activity into executable commands, laying the foundation for direct brain-machine interfacing and intelligent interaction. To address the inherent spatiotemporal heterogeneity of EEG signals, this paper proposes a multi-branch parallel architecture, where each temporal scale is equipped with an independent spatial feature extraction module. To further enhance multi-branch feature fusion, we propose a Fusion of Multiscale Features via Centralized Sparse-attention Network (EEG-CSANet), a centralized sparse-attention network. It employs a main-auxiliary branch architecture, where the main branch models core spatiotemporal patterns via multiscale self-attention, and the auxiliary branch facilitates efficient local interactions through sparse cross-attention. Experimental results show that EEG-CSANet achieves state-of-the-art (SOTA) performance across five public datasets (BCIC-IV-2A, BCIC-IV-2B, HGD, SEED, and SEED-VIG), with accuracies of 88.54%, 91.09%, 99.43%, 96.03%, and 90.56%, respectively. Such performance demonstrates its strong adaptability and robustness across various EEG decoding tasks. Moreover, extensive ablation studies are conducted to enhance the interpretability of EEG-CSANet. In the future, we hope that EEG-CSANet could serve as a promising baseline model in the field of EEG signal decoding. The source code is publicly available at: https://github.com/Xiangrui-Cai/EEG-CSANet

Authors:Thanh Dat Hoang, Thanh Trung Huynh, Matthias Weidlich, Thanh Tam Nguyen, Tong Chen, Hongzhi Yin, Quoc Viet Hung Nguyen
Title: A Multi-agent Text2SQL Framework using Small Language Models and Execution Feedback
Abstract:
Text2SQL, the task of generating SQL queries from natural language text, is a critical challenge in data engineering. Recently, Large Language Models (LLMs) have demonstrated superior performance for this task due to their advanced comprehension and generation capabilities. However, privacy and cost considerations prevent companies from using Text2SQL solutions based on external LLMs offered as a service. Rather, small LLMs (SLMs) that are openly available and can hosted in-house are adopted. These SLMs, in turn, lack the generalization capabilities of larger LLMs, which impairs their effectiveness for complex tasks such as Text2SQL. To address these limitations, we propose MATS, a novel Text2SQL framework designed specifically for SLMs. MATS uses a multi-agent mechanism that assigns specialized roles to auxiliary agents, reducing individual workloads and fostering interaction. A training scheme based on reinforcement learning aligns these agents using feedback obtained during execution, thereby maintaining competitive performance despite a limited LLM size. Evaluation results using on benchmark datasets show that MATS, deployed on a single- GPU server, yields accuracy that are on-par with large-scale LLMs when using significantly fewer parameters. Our source code and data are available at https://github.com/thanhdath/mats-sql.

Authors:Bin Wang, Wenjie Yu, Yilu Zhong, Hao Yu, Keke Lian, Chaohua Lu, Hongfang Zheng, Dong Zhang, Hui Li
Title: AI Code in the Wild: Measuring Security Risks and Ecosystem Shifts of AI-Generated Code in Modern Software
Abstract:
Large language models (LLMs) for code generation are becoming integral to modern software development, but their real-world prevalence and security impact remain poorly understood. We present the first large-scale empirical study of AI-generated code (AIGCode) in the wild. We build a high-precision detection pipeline and a representative benchmark to distinguish AIGCode from human-written code, and apply them to (i) development commits from the top 1,000 GitHub repositories (2022-2025) and (ii) 7,000+ recent CVE-linked code changes. This lets us label commits, files, and functions along a human/AI axis and trace how AIGCode moves through projects and vulnerability life cycles. Our measurements show three ecological patterns. First, AIGCode is already a substantial fraction of new code, but adoption is structured: AI concentrates in glue code, tests, refactoring, documentation, and other boilerplate, while core logic and security-critical configurations remain mostly human-written. Second, adoption has security consequences: some CWE families are overrepresented in AI-tagged code, and near-identical insecure templates recur across unrelated projects, suggesting "AI-induced vulnerabilities" propagated by shared models rather than shared maintainers. Third, in human-AI edit chains, AI introduces high-throughput changes while humans act as security gatekeepers; when review is shallow, AI-introduced defects persist longer, remain exposed on network-accessible surfaces, and spread to more files and repositories. We will open-source the complete dataset and release analysis artifacts and fine-grained documentation of our methodology and findings.

Authors:Scott Thornton
Title: SecureCode v2.0: A Production-Grade Dataset for Training Security-Aware Code Generation Models
Abstract:
AI assistants produce vulnerable code in 45% of security-relevant scenarios, introducing flaws into production systems at scale. Yet existing secure coding datasets fall short. They lack incident grounding, don't provide the scale modern training requires, and miss the operational security context developers need for production deployments. We present SecureCode v2.0, a production-grade dataset of 1,215 security-focused coding examples that passed structural validation and expert security review. Every example ties to actual documented security incidents with CVE references, provides vulnerable and secure implementations, demonstrates concrete attacks, and includes defense-in-depth operational guidance. The dataset covers 11 vulnerability categories (complete OWASP Top 10:2025 plus AI/ML Security Threats) across 11 languages (Python, JavaScript, Java, Go, PHP, C#, TypeScript, Ruby, Rust, Kotlin, and YAML for infrastructure-as-code). Our quality assurance framework ensures complete incident grounding. Each example includes SIEM integration strategies, infrastructure hardening recommendations (Docker, AppArmor, WAF configurations), and testing approaches using language-appropriate frameworks. The dataset uses a 4-turn conversational structure mirroring actual developer-AI interactions, escalating from basic implementations to advanced security considerations and defense-in-depth guidance. Our contributions: (1) 1,215 rigorously validated examples split into 989 training, 122 validation, and 104 test sets, (2) an automated validation framework ensuring dataset consistency, (3) a 4-turn conversational structure capturing realistic security workflows, (4) comprehensive operational security guidance with SIEM integration strategies, (5) complete language-specific implementation fidelity, and (6) open-source release of data, validation tools, and benchmarking protocols.

Authors:Devang Dhanuka, Nidhi Rastogi
Title: PROVEX: Enhancing SOC Analyst Trust with Explainable Provenance-Based IDS
Abstract:
Modern intrusion detection systems (IDS) leverage graph neural networks (GNNs) to detect malicious activity in system provenance data, but their decisions often remain a black box to analysts. This paper presents a comprehensive XAI framework designed to bridge the trust gap in Security Operations Centers (SOCs) by making graph-based detection transparent. We implement this framework on top of KAIROS, a state-of-the-art temporal graph-based IDS, though our design is applicable to any temporal graph-based detector with minimal adaptation. The complete codebase is available at https://github.com/devang1304/provex.git. We augment the detection pipeline with post-hoc explanations that highlight why an alert was triggered, identifying key causal subgraphs and events. We adapt three GNN explanation methods - GraphMask, GNNExplainer, and a variational temporal GNN explainer (VA-TGExplainer) - to the temporal provenance context. These tools output human-interpretable representations of anomalous behavior, including important edges and uncertainty estimates. Our contributions focus on the practical integration of these explainers, addressing challenges in memory management and reproducibility. We demonstrate our framework on the DARPA CADETS Engagement 3 dataset and show that it produces concise window-level explanations for detected attacks. Our evaluation reveals that the explainers preserve the TGNN's decisions with high fidelity, surfacing critical edges such as malicious file interactions and anomalous netflows. The average explanation overhead is 3-5 seconds per event. By providing insight into the model's reasoning, our framework aims to improve analyst trust and triage speed.

Authors:Jie Yang, Rui Zhang, Ziyang Cheng, Dawei Cheng, Guang Yang, Bo Wang
Title: Grad: Guided Relation Diffusion Generation for Graph Augmentation in Graph Fraud Detection
Abstract:
Nowadays, Graph Fraud Detection (GFD) in financial scenarios has become an urgent research topic to protect online payment security. However, as organized crime groups are becoming more professional in real-world scenarios, fraudsters are employing more sophisticated camouflage strategies. Specifically, fraudsters disguise themselves by mimicking the behavioral data collected by platforms, ensuring that their key characteristics are consistent with those of benign users to a high degree, which we call Adaptive Camouflage. Consequently, this narrows the differences in behavioral traits between them and benign users within the platform's database, thereby making current GFD models lose efficiency. To address this problem, we propose a relation diffusion-based graph augmentation model Grad. In detail, Grad leverages a supervised graph contrastive learning module to enhance the fraud-benign difference and employs a guided relation diffusion generator to generate auxiliary homophilic relations from scratch. Based on these, weak fraudulent signals would be enhanced during the aggregation process, thus being obvious enough to be captured. Extensive experiments have been conducted on two real-world datasets provided by WeChat Pay, one of the largest online payment platforms with billions of users, and three public datasets. The results show that our proposed model Grad outperforms SOTA methods in both various scenarios, achieving at most 11.10% and 43.95% increases in AUC and AP, respectively. Our code is released at https://github.com/AI4Risk/antifraud and https://github.com/Muyiiiii/WWW25-Grad.

Authors:Karthik Prabhakar
Title: NystagmusNet: Explainable Deep Learning for Photosensitivity Risk Prediction
Abstract:
Nystagmus patients with photosensitivity face significant daily challenges due to involuntary eye movements exacerbated by environmental brightness conditions. Current assistive solutions are limited to symptomatic treatments without predictive personalization. This paper proposes NystagmusNet, an AI-driven system that predicts high-risk visual environments and recommends real-time visual adaptations. Using a dual-branch convolutional neural network trained on synthetic and augmented datasets, the system estimates a photosensitivity risk score based on environmental brightness and eye movement variance. The model achieves 75% validation accuracy on synthetic data. Explainability techniques including SHAP and GradCAM are integrated to highlight environmental risk zones, improving clinical trust and model interpretability. The system includes a rule-based recommendation engine for adaptive filter suggestions. Future directions include deployment via smart glasses and reinforcement learning for personalized recommendations.

Authors:Balram Singh, Ram Prakash Sharma, Somnath Dey
Title: Interpretable Plant Leaf Disease Detection Using Attention-Enhanced CNN
Abstract:
Plant diseases pose a significant threat to global food security, necessitating accurate and interpretable disease detection methods. This study introduces an interpretable attention-guided Convolutional Neural Network (CNN), CBAM-VGG16, for plant leaf disease detection. By integrating Convolution Block Attention Module (CBAM) at each convolutional stage, the model enhances feature extraction and disease localization. Trained on five diverse plant disease datasets, our approach outperforms recent techniques, achieving high accuracy (up to 98.87%) and demonstrating robust generalization. Here, we show the effectiveness of our method through comprehensive evaluation and interpretability analysis using CBAM attention maps, Grad-CAM, Grad-CAM++, and Layer-wise Relevance Propagation (LRP). This study advances the application of explainable AI in agricultural diagnostics, offering a transparent and reliable system for smart farming. The code of our proposed work is available at https://github.com/BS0111/PlantAttentionCBAM.

Authors:Yitong Wang, Fangyun Wei, Hongyang Zhang, Bo Dai, Yan Lu
Title: Animate Any Character in Any World
Abstract:
Recent advances in world models have greatly enhanced interactive environment simulation. Existing methods mainly fall into two categories: (1) static world generation models, which construct 3D environments without active agents, and (2) controllable-entity models, which allow a single entity to perform limited actions in an otherwise uncontrollable environment. In this work, we introduce AniX, leveraging the realism and structural grounding of static world generation while extending controllable-entity models to support user-specified characters capable of performing open-ended actions. Users can provide a 3DGS scene and a character, then direct the character through natural language to perform diverse behaviors from basic locomotion to object-centric interactions while freely exploring the environment. AniX synthesizes temporally coherent video clips that preserve visual fidelity with the provided scene and character, formulated as a conditional autoregressive video generation problem. Built upon a pre-trained video generator, our training strategy significantly enhances motion dynamics while maintaining generalization across actions and characters. Our evaluation covers a broad range of aspects, including visual quality, character consistency, action controllability, and long-horizon coherence.

Authors:Simon Giebenhain, Tobias Kirschstein, Liam Schoneveld, Davide Davoli, Zhe Chen, Matthias Nießner
Title: Pix2NPHM: Learning to Regress NPHM Reconstructions From a Single Image
Abstract:
Neural Parametric Head Models (NPHMs) are a recent advancement over mesh-based 3d morphable models (3DMMs) to facilitate high-fidelity geometric detail. However, fitting NPHMs to visual inputs is notoriously challenging due to the expressive nature of their underlying latent space. To this end, we propose Pix2NPHM, a vision transformer (ViT) network that directly regresses NPHM parameters, given a single image as input. Compared to existing approaches, the neural parametric space allows our method to reconstruct more recognizable facial geometry and accurate facial expressions. For broad generalization, we exploit domain-specific ViTs as backbones, which are pretrained on geometric prediction tasks. We train Pix2NPHM on a mixture of 3D data, including a total of over 100K NPHM registrations that enable direct supervision in SDF space, and large-scale 2D video datasets, for which normal estimates serve as pseudo ground truth geometry. Pix2NPHM not only allows for 3D reconstructions at interactive frame rates, it is also possible to improve geometric fidelity by a subsequent inference-time optimization against estimated surface normals and canonical point maps. As a result, we achieve unprecedented face reconstruction quality that can run at scale on in-the-wild data.

Authors:Svetlana Krasnova, Emiliya Starikova, Ilia Naletov, Andrey Krylov, Dmitry Sorokin
Title: MGRegBench: A Novel Benchmark Dataset with Anatomical Landmarks for Mammography Image Registration
Abstract:
Robust mammography registration is essential for clinical applications like tracking disease progression and monitoring longitudinal changes in breast tissue. However, progress has been limited by the absence of public datasets and standardized benchmarks. Existing studies are often not directly comparable, as they use private data and inconsistent evaluation frameworks. To address this, we present MGRegBench, a public benchmark dataset for mammogram registration. It comprises over 5,000 image pairs, with 100 containing manual anatomical landmarks and segmentation masks for rigorous evaluation. This makes MGRegBench one of the largest public 2D registration datasets with manual annotations. Using this resource, we benchmarked diverse registration methods including classical (ANTs), learning-based (VoxelMorph, TransMorph), implicit neural representation (IDIR), a classic mammography-specific approach, and a recent state-of-the-art deep learning method MammoRegNet. The implementations were adapted to this modality from the authors' implementations or re-implemented from scratch. Our contributions are: (1) the first public dataset of this scale with manual landmarks and masks for mammography registration; (2) the first like-for-like comparison of diverse methods on this modality; and (3) an extensive analysis of deep learning-based registration. We publicly release our code and data to establish a foundational resource for fair comparisons and catalyze future research. The source code and data are at https://github.com/KourtKardash/MGRegBench.

Authors:Yikang Yue, Yishu Yin, Xuehai Qian
Title: GreedySnake: Accelerating SSD-Offloaded LLM Training with Efficient Scheduling and Optimizer Step Overlapping
Abstract:
SSD-offloaded training offers a practical and promising approach to making LLM training cost-effective. Building on gradient accumulation with micro-batches, this paper introduces GreedySnake, a new SSD-offloaded training system that employs vertical scheduling, which executes all microbatches of a layer before proceeding to the next. Compared to existing systems that use horizontal scheduling (i.e., executing micro-batches sequentially), GreedySnake achieves higher training throughput with smaller batch sizes, bringing the system much closer to the ideal scenario predicted by the roofline model. To further mitigate the I/O bottleneck, GreedySnake overlaps part of the optimization step with the forward pass of the next iteration. Experimental results on A100 GPUs show that GreedySnake achieves saturated training throughput improvements over ZeRO-Infinity: 1.96x on 1 GPU and 1.93x on 4 GPUs for GPT-65B, and 2.53x on 1 GPU for GPT-175B. The code is open-sourced at https://github.com/npz7yyk/GreedySnake

Authors:Yunqi Gao, Leyuan Liu, Yuhan Li, Changxin Gao, Yuanyuan Liu, Jingying Chen
Title: ClothHMR: 3D Mesh Recovery of Humans in Diverse Clothing from Single Image
Abstract:
With 3D data rapidly emerging as an important form of multimedia information, 3D human mesh recovery technology has also advanced accordingly. However, current methods mainly focus on handling humans wearing tight clothing and perform poorly when estimating body shapes and poses under diverse clothing, especially loose garments. To this end, we make two key insights: (1) tailoring clothing to fit the human body can mitigate the adverse impact of clothing on 3D human mesh recovery, and (2) utilizing human visual information from large foundational models can enhance the generalization ability of the estimation. Based on these insights, we propose ClothHMR, to accurately recover 3D meshes of humans in diverse clothing. ClothHMR primarily consists of two modules: clothing tailoring (CT) and FHVM-based mesh recovering (MR). The CT module employs body semantic estimation and body edge prediction to tailor the clothing, ensuring it fits the body silhouette. The MR module optimizes the initial parameters of the 3D human mesh by continuously aligning the intermediate representations of the 3D mesh with those inferred from the foundational human visual model (FHVM). ClothHMR can accurately recover 3D meshes of humans wearing diverse clothing, precisely estimating their body shapes and poses. Experimental results demonstrate that ClothHMR significantly outperforms existing state-of-the-art methods across benchmark datasets and in-the-wild images. Additionally, a web application for online fashion and shopping powered by ClothHMR is developed, illustrating that ClothHMR can effectively serve real-world usage scenarios. The code and model for ClothHMR are available at: \url{https://github.com/starVisionTeam/ClothHMR}.

Authors:Hoiyeong Jin, Hyojin Jang, Jeongho Kim, Junha Hyung, Kinam Kim, Dongjin Kim, Huijin Choi, Hyeonji Kim, Jaegul Choo
Title: InsertAnywhere: Bridging 4D Scene Geometry and Diffusion Models for Realistic Video Object Insertion
Abstract:
Recent advances in diffusion-based video generation have opened new possibilities for controllable video editing, yet realistic video object insertion (VOI) remains challenging due to limited 4D scene understanding and inadequate handling of occlusion and lighting effects. We present InsertAnywhere, a new VOI framework that achieves geometrically consistent object placement and appearance-faithful video synthesis. Our method begins with a 4D aware mask generation module that reconstructs the scene geometry and propagates user specified object placement across frames while maintaining temporal coherence and occlusion consistency. Building upon this spatial foundation, we extend a diffusion based video generation model to jointly synthesize the inserted object and its surrounding local variations such as illumination and shading. To enable supervised training, we introduce ROSE++, an illumination aware synthetic dataset constructed by transforming the ROSE object removal dataset into triplets of object removed video, object present video, and a VLM generated reference image. Through extensive experiments, we demonstrate that our framework produces geometrically plausible and visually coherent object insertions across diverse real world scenarios, significantly outperforming existing research and commercial models.

Authors:Yen-Chieh Huang, Pi-Cheng Hsiu, Rui Fang, Ming-Syan Chen
Title: Learning What to Write: Write-Gated KV for Efficient Long-Context Inference
Abstract:
Long-context LLM inference is bottlenecked by the quadratic attention complexity and linear KV cache growth. Prior approaches mitigate this via post-hoc selection or eviction but overlook the root inefficiency: indiscriminate writing to persistent memory. In this paper, we formalize KV cache management as a causal system of three primitives: KV Admission, Selection, and Eviction. We instantiate KV Admission via Write-Gated KV, a lightweight mechanism that learns to predict token utility before it enters the cache. By filtering out low-utility states early to maintain a compact global cache alongside a sliding local cache, Write-Gated KV reduces memory usage by 46-57% and delivers 3.03-3.45$\times$ prefill and 1.89-2.56$\times$ decode speedups on Llama model with negligible accuracy loss, all while remaining compatible with FlashAttention and paged-KV systems. These results demonstrate that learning what to write, is a principled and practical recipe for efficient long-context inference. Code is available at https://github.com/EMCLab-Sinica/WG-KV .

Authors:Javier Gonzalez-Ruiz, Carlos Rodriguez-Pardo, Iacopo Savelli, Alice Di Bella, Massimo Tavoni
Title: Assessing Long-Term Electricity Market Design for Ambitious Decarbonization Targets using Multi-Agent Reinforcement Learning
Abstract:
Electricity systems are key to transforming today's society into a carbon-free economy. Long-term electricity market mechanisms, including auctions, support schemes, and other policy instruments, are critical in shaping the electricity generation mix. In light of the need for more advanced tools to support policymakers and other stakeholders in designing, testing, and evaluating long-term markets, this work presents a multi-agent reinforcement learning model capable of capturing the key features of decarbonizing energy systems. Profit-maximizing generation companies make investment decisions in the wholesale electricity market, responding to system needs, competitive dynamics, and policy signals. The model employs independent proximal policy optimization, which was selected for suitability to the decentralized and competitive environment. Nevertheless, given the inherent challenges of independent learning in multi-agent settings, an extensive hyperparameter search ensures that decentralized training yields market outcomes consistent with competitive behavior. The model is applied to a stylized version of the Italian electricity system and tested under varying levels of competition, market designs, and policy scenarios. Results highlight the critical role of market design for decarbonizing the electricity sector and avoiding price volatility. The proposed framework allows assessing long-term electricity markets in which multiple policy and market mechanisms interact simultaneously, with market participants responding and adapting to decarbonization pathways.

Authors:Yunkai Dang, Meiyi Zhu, Donghao Wang, Yizhuo Zhang, Jiacheng Yang, Qi Fan, Yuekun Yang, Wenbin Li, Feng Miao, Yang Gao
Title: A Benchmark for Ultra-High-Resolution Remote Sensing MLLMs
Abstract:
Multimodal large language models (MLLMs) demonstrate strong perception and reasoning performance on existing remote sensing (RS) benchmarks. However, most prior benchmarks rely on low-resolution imagery, and some high-resolution benchmarks suffer from flawed reasoning-task designs. We show that text-only LLMs can perform competitively with multimodal vision-language models on RS reasoning tasks without access to images, revealing a critical mismatch between current benchmarks and the intended evaluation of visual understanding. To enable faithful assessment, we introduce RSHR-Bench, a super-high-resolution benchmark for RS visual understanding and reasoning. RSHR-Bench contains 5,329 full-scene images with a long side of at least 4,000 pixels, with up to about 3 x 10^8 pixels per image, sourced from widely used RS corpora and UAV collections. We design four task families: multiple-choice VQA, open-ended VQA, image captioning, and single-image evaluation. These tasks cover nine perception categories and four reasoning types, supporting multi-turn and multi-image dialog. To reduce reliance on language priors, we apply adversarial filtering with strong LLMs followed by rigorous human verification. Overall, we construct 3,864 VQA tasks, 3,913 image captioning tasks, and 500 fully human-written or verified single-image evaluation VQA pairs. Evaluations across open-source, closed-source, and RS-specific VLMs reveal persistent performance gaps in super-high-resolution scenarios. Code: https://github.com/Yunkaidang/RSHR

Authors:June Young Yi, Hyeongju Kim, Juheon Lee
Title: Robust TTS Training via Self-Purifying Flow Matching for the WildSpoof 2026 TTS Track
Abstract:
This paper presents a lightweight text-to-speech (TTS) system developed for the WildSpoof Challenge TTS Track. Our approach fine-tunes the recently released open-weight TTS model, \textit{Supertonic}\footnote{\url{https://github.com/supertone-inc/supertonic}}, with Self-Purifying Flow Matching (SPFM) to enable robust adaptation to in-the-wild speech. SPFM mitigates label noise by comparing conditional and unconditional flow matching losses on each sample, routing suspicious text--speech pairs to unconditional training while still leveraging their acoustic information. The resulting model achieves the lowest Word Error Rate (WER) among all participating teams, while ranking second in perceptual metrics such as UTMOS and DNSMOS. These findings demonstrate that efficient, open-weight architectures like Supertonic can be effectively adapted to diverse real-world speech conditions when combined with explicit noise-handling mechanisms such as SPFM.

Authors:Kai Liu, Zeli Lin, Weibo Wang, Linghe Kong, Yulun Zhang
Title: Fose: Fusion of One-Step Diffusion and End-to-End Network for Pansharpening
Abstract:
Pansharpening is a significant image fusion task that fuses low-resolution multispectral images (LRMSI) and high-resolution panchromatic images (PAN) to obtain high-resolution multispectral images (HRMSI). The development of the diffusion models (DM) and the end-to-end models (E2E model) has greatly improved the frontier of pansharping. DM takes the multi-step diffusion to obtain an accurate estimation of the residual between LRMSI and HRMSI. However, the multi-step process takes large computational power and is time-consuming. As for E2E models, their performance is still limited by the lack of prior and simple structure. In this paper, we propose a novel four-stage training strategy to obtain a lightweight network Fose, which fuses one-step DM and an E2E model. We perform one-step distillation on an enhanced SOTA DM for pansharping to compress the inference process from 50 steps to only 1 step. Then we fuse the E2E model with one-step DM with lightweight ensemble blocks. Comprehensive experiments are conducted to demonstrate the significant improvement of the proposed Fose on three commonly used benchmarks. Moreover, we achieve a 7.42 speedup ratio compared to the baseline DM while achieving much better performance. The code and model are released at https://github.com/Kai-Liu001/Fose.

Authors:Saksham Sahai Srivastava, Haoyu He
Title: MemoryGraft: Persistent Compromise of LLM Agents via Poisoned Experience Retrieval
Abstract:
Large Language Model (LLM) agents increasingly rely on long-term memory and Retrieval-Augmented Generation (RAG) to persist experiences and refine future performance. While this experience learning capability enhances agentic autonomy, it introduces a critical, unexplored attack surface, i.e., the trust boundary between an agent's reasoning core and its own past. In this paper, we introduce MemoryGraft. It is a novel indirect injection attack that compromises agent behavior not through immediate jailbreaks, but by implanting malicious successful experiences into the agent's long-term memory. Unlike traditional prompt injections that are transient, or standard RAG poisoning that targets factual knowledge, MemoryGraft exploits the agent's semantic imitation heuristic which is the tendency to replicate patterns from retrieved successful tasks. We demonstrate that an attacker who can supply benign ingestion-level artifacts that the agent reads during execution can induce it to construct a poisoned RAG store where a small set of malicious procedure templates is persisted alongside benign experiences. When the agent later encounters semantically similar tasks, union retrieval over lexical and embedding similarity reliably surfaces these grafted memories, and the agent adopts the embedded unsafe patterns, leading to persistent behavioral drift across sessions. We validate MemoryGraft on MetaGPT's DataInterpreter agent with GPT-4o and find that a small number of poisoned records can account for a large fraction of retrieved experiences on benign workloads, turning experience-based self-improvement into a vector for stealthy and durable compromise. To facilitate reproducibility and future research, our code and evaluation data are available at https://github.com/Jacobhhy/Agent-Memory-Poisoning.

Authors:Jinjie Mai, Chaoyang Wang, Guocheng Gordon Qian, Willi Menapace, Sergey Tulyakov, Bernard Ghanem, Peter Wonka, Ashkan Mirzaei
Title: EasyV2V: A High-quality Instruction-based Video Editing Framework
Abstract:
While image editing has advanced rapidly, video editing remains less explored, facing challenges in consistency, control, and generalization. We study the design space of data, architecture, and control, and introduce \emph{EasyV2V}, a simple and effective framework for instruction-based video editing. On the data side, we compose existing experts with fast inverses to build diverse video pairs, lift image edit pairs into videos via single-frame supervision and pseudo pairs with shared affine motion, mine dense-captioned clips for video pairs, and add transition supervision to teach how edits unfold. On the model side, we observe that pretrained text-to-video models possess editing capability, motivating a simplified design. Simple sequence concatenation for conditioning with light LoRA fine-tuning suffices to train a strong model. For control, we unify spatiotemporal control via a single mask mechanism and support optional reference images. Overall, EasyV2V works with flexible inputs, e.g., video+text, video+mask+text, video+mask+reference+text, and achieves state-of-the-art video editing results, surpassing concurrent and commercial systems. Project page: https://snap-research.github.io/easyv2v/

Authors:Sicheng Zuo, Zixun Xie, Wenzhao Zheng, Shaoqing Xu, Fang Li, Shengyin Jiang, Long Chen, Zhi-Xin Yang, Jiwen Lu
Title: DVGT: Driving Visual Geometry Transformer
Abstract:
Perceiving and reconstructing 3D scene geometry from visual inputs is crucial for autonomous driving. However, there still lacks a driving-targeted dense geometry perception model that can adapt to different scenarios and camera configurations. To bridge this gap, we propose a Driving Visual Geometry Transformer (DVGT), which reconstructs a global dense 3D point map from a sequence of unposed multi-view visual inputs. We first extract visual features for each image using a DINO backbone, and employ alternating intra-view local attention, cross-view spatial attention, and cross-frame temporal attention to infer geometric relations across images. We then use multiple heads to decode a global point map in the ego coordinate of the first frame and the ego poses for each frame. Unlike conventional methods that rely on precise camera parameters, DVGT is free of explicit 3D geometric priors, enabling flexible processing of arbitrary camera configurations. DVGT directly predicts metric-scaled geometry from image sequences, eliminating the need for post-alignment with external sensors. Trained on a large mixture of driving datasets including nuScenes, OpenScene, Waymo, KITTI, and DDAD, DVGT significantly outperforms existing models on various scenarios. Code is available at https://github.com/wzzheng/DVGT.

Authors:Tomáš Souček, Pierre Fernandez, Hady Elsahar, Sylvestre-Alvise Rebuffi, Valeriu Lacatusu, Tuan Tran, Tom Sander, Alexandre Mourachko
Title: Pixel Seal: Adversarial-only training for invisible image and video watermarking
Abstract:
Invisible watermarking is essential for tracing the provenance of digital content. However, training state-of-the-art models remains notoriously difficult, with current approaches often struggling to balance robustness against true imperceptibility. This work introduces Pixel Seal, which sets a new state-of-the-art for image and video watermarking. We first identify three fundamental issues of existing methods: (i) the reliance on proxy perceptual losses such as MSE and LPIPS that fail to mimic human perception and result in visible watermark artifacts; (ii) the optimization instability caused by conflicting objectives, which necessitates exhaustive hyperparameter tuning; and (iii) reduced robustness and imperceptibility of watermarks when scaling models to high-resolution images and videos. To overcome these issues, we first propose an adversarial-only training paradigm that eliminates unreliable pixel-wise imperceptibility losses. Second, we introduce a three-stage training schedule that stabilizes convergence by decoupling robustness and imperceptibility. Third, we address the resolution gap via high-resolution adaptation, employing JND-based attenuation and training-time inference simulation to eliminate upscaling artifacts. We thoroughly evaluate the robustness and imperceptibility of Pixel Seal on different image types and across a wide range of transformations, and show clear improvements over the state-of-the-art. We finally demonstrate that the model efficiently adapts to video via temporal watermark pooling, positioning Pixel Seal as a practical and scalable solution for reliable provenance in real-world image and video settings.

Authors:Shuting Zhao, Zeyu Xiao, Xinrong Chen
Title: KineST: A Kinematics-guided Spatiotemporal State Space Model for Human Motion Tracking from Sparse Signals
Abstract:
Full-body motion tracking plays an essential role in AR/VR applications, bridging physical and virtual interactions. However, it is challenging to reconstruct realistic and diverse full-body poses based on sparse signals obtained by head-mounted displays, which are the main devices in AR/VR scenarios. Existing methods for pose reconstruction often incur high computational costs or rely on separately modeling spatial and temporal dependencies, making it difficult to balance accuracy, temporal coherence, and efficiency. To address this problem, we propose KineST, a novel kinematics-guided state space model, which effectively extracts spatiotemporal dependencies while integrating local and global pose perception. The innovation comes from two core ideas. Firstly, in order to better capture intricate joint relationships, the scanning strategy within the State Space Duality framework is reformulated into kinematics-guided bidirectional scanning, which embeds kinematic priors. Secondly, a mixed spatiotemporal representation learning approach is employed to tightly couple spatial and temporal contexts, balancing accuracy and smoothness. Additionally, a geometric angular velocity loss is introduced to impose physically meaningful constraints on rotational variations for further improving motion stability. Extensive experiments demonstrate that KineST has superior performance in both accuracy and temporal consistency within a lightweight framework. Project page: https://kaka-1314.github.io/KineST/

Authors:Mahbub E Sobhani, Md. Faiyaz Abdullah Sayeedi, Mohammad Nehad Alam, Proma Hossain Progga, Swakkhar Shatabda
Title: Do Multi-Agents Solve Better Than Single? Evaluating Agentic Frameworks for Diagram-Grounded Geometry Problem Solving and Reasoning
Abstract:
Diagram-grounded geometry problem solving is a critical benchmark for multimodal large language models (MLLMs), yet the benefits of multi-agent design over single-agent remain unclear. We systematically compare single-agent and multi-agent pipelines on four visual math benchmarks: Geometry3K, MathVerse, OlympiadBench, and We-Math. For open-source models, multi-agent consistently improves performance. For example, Qwen-2.5-VL (7B) gains +6.8 points and Qwen-2.5-VL (32B) gains +3.3 on Geometry3K, and both Qwen-2.5-VL variants see further gains on OlympiadBench and We-Math. In contrast, the closed-source Gemini-2.0-Flash generally performs better in single-agent mode on classic benchmarks, while multi-agent yields only modest improvements on the newer We-Math dataset. These findings show that multi-agent pipelines provide clear benefits for open-source models and can assist strong proprietary systems on newer, less familiar benchmarks, but agentic decomposition is not universally optimal. All code, data, and reasoning files are available at https://github.com/faiyazabdullah/Interpreter-Solver

Authors:Yumeng Wang, Tianyu Fan, Lingrui Xu, Chao Huang
Title: Needle in the Web: A Benchmark for Retrieving Targeted Web Pages in the Wild
Abstract:
Large Language Models (LLMs) have evolved from simple chatbots into sophisticated agents capable of automating complex real-world tasks, where browsing and reasoning over live web content is key to assessing retrieval and cognitive skills. Existing benchmarks like BrowseComp and xBench-DeepSearch emphasize complex reasoning searches requiring multi-hop synthesis but neglect Fuzzy Exploratory Search, namely queries that are vague and multifaceted, where users seek the most relevant webpage rather than a single factual answer. To address this gap, we introduce Needle in the Web, a novel benchmark specifically designed to evaluate modern search agents and LLM-based systems on their ability to retrieve and reason over real-world web content in response to ambiguous, exploratory queries under varying levels of difficulty. Needle in the Web comprises 663 questions spanning seven distinct domains. To ensure high query quality and answer uniqueness, we employ a flexible methodology that reliably generates queries of controllable difficulty based on factual claims of web contents. We benchmark three leading LLMs and three agent-based search systems on Needle in the Web, finding that most models struggle: many achieve below 35% accuracy, and none consistently excel across domains or difficulty levels. These findings reveal that Needle in the Web presents a significant challenge for current search systems and highlights the open problem of effective fuzzy retrieval under semantic ambiguity.

Authors:Kejun Liu, Yuanyuan Liu, Lin Wei, Chang Tang, Yibing Zhan, Zijing Chen, Zhe Chen
Title: Smile on the Face, Sadness in the Eyes: Bridging the Emotion Gap with a Multimodal Dataset of Eye and Facial Behaviors
Abstract:
Emotion Recognition (ER) is the process of analyzing and identifying human emotions from sensing data. Currently, the field heavily relies on facial expression recognition (FER) because visual channel conveys rich emotional cues. However, facial expressions are often used as social tools rather than manifestations of genuine inner emotions. To understand and bridge this gap between FER and ER, we introduce eye behaviors as an important emotional cue and construct an Eye-behavior-aided Multimodal Emotion Recognition (EMER) dataset. To collect data with genuine emotions, spontaneous emotion induction paradigm is exploited with stimulus material, during which non-invasive eye behavior data, like eye movement sequences and eye fixation maps, is captured together with facial expression videos. To better illustrate the gap between ER and FER, multi-view emotion labels for mutimodal ER and FER are separately annotated. Furthermore, based on the new dataset, we design a simple yet effective Eye-behavior-aided MER Transformer (EMERT) that enhances ER by bridging the emotion gap. EMERT leverages modality-adversarial feature decoupling and a multitask Transformer to model eye behaviors as a strong complement to facial expressions. In the experiment, we introduce seven multimodal benchmark protocols for a variety of comprehensive evaluations of the EMER dataset. The results show that the EMERT outperforms other state-of-the-art multimodal methods by a great margin, revealing the importance of modeling eye behaviors for robust ER. To sum up, we provide a comprehensive analysis of the importance of eye behaviors in ER, advancing the study on addressing the gap between FER and ER for more robust ER performance. Our EMER dataset and the trained EMERT models will be publicly available at https://github.com/kejun1/EMER.

Authors:Jinwu Chen, Qidie Wu, Bin Li, Lin Ma, Xin Si, Yang Hu, Shouyi Yin, Jun Yang
Title: cuPilot: A Strategy-Coordinated Multi-agent Framework for CUDA Kernel Evolution
Abstract:
Optimizing CUDA kernels is a challenging and labor-intensive task, given the need for hardware-software co-design expertise and the proprietary nature of high-performance kernel libraries. While recent large language models (LLMs) combined with evolutionary algorithms show promise in automatic kernel optimization, existing approaches often fall short in performance due to their suboptimal agent designs and mismatched evolution representations. This work identifies these mismatches and proposes cuPilot, a strategy-coordinated multi-agent framework that introduces strategy as an intermediate semantic representation for kernel evolution. Key contributions include a strategy-coordinated evolution algorithm, roofline-guided prompting, and strategy-level population initialization. Experimental results show that the generated kernels by cuPilot achieve an average speed up of 3.09$\times$ over PyTorch on a benchmark of 100 kernels. On the GEMM tasks, cuPilot showcases sophisticated optimizations and achieves high utilization of critical hardware units. The generated kernels are open-sourced at https://github.com/champloo2878/cuPilot-Kernels.git.

Authors:Yadong Li, Tong Zhang, Bo Huang, Zhen Cui
Title: StarCraft+: Benchmarking Multi-agent Algorithms in Adversary Paradigm
Abstract:
Deep multi-agent reinforcement learning (MARL) algorithms are booming in the field of collaborative intelligence, and StarCraft multi-agent challenge (SMAC) is widely-used as the benchmark therein. However, imaginary opponents of MARL algorithms are practically configured and controlled in a fixed built-in AI mode, which causes less diversity and versatility in algorithm evaluation. To address this issue, in this work, we establish a multi-agent algorithm-vs-algorithm environment, named StarCraft II battle arena (SC2BA), to refresh the benchmarking of MARL algorithms in an adversary paradigm. Taking StarCraft as infrastructure, the SC2BA environment is specifically created for inter-algorithm adversary with the consideration of fairness, usability and customizability, and meantime an adversarial PyMARL (APyMARL) library is developed with easy-to-use interfaces/modules. Grounding in SC2BA, we benchmark those classic MARL algorithms in two types of adversarial modes: dual-algorithm paired adversary and multi-algorithm mixed adversary, where the former conducts the adversary of pairwise algorithms while the latter focuses on the adversary to multiple behaviors from a group of algorithms. The extensive benchmark experiments exhibit some thought-provoking observations/problems in the effectivity, sensibility and scalability of these completed algorithms. The SC2BA environment as well as reproduced experiments are released in \href{https://github.com/dooliu/SC2BA}{Github}, and we believe that this work could mark a new step for the MARL field in the coming years.

Authors:Sara Papi, Javier Garcia Gilabert, Zachary Hopton, Vilém Zouhar, Carlos Escolano, Gerard I. Gállego, Jorge Iranzo-Sánchez, Ahrii Kim, Dominik Macháček, Patricia Schmidtova, Maike Züfle
Title: Hearing to Translate: The Effectiveness of Speech Modality Integration into LLMs
Abstract:
As Large Language Models (LLMs) expand beyond text, integrating speech as a native modality has given rise to SpeechLLMs, which aim to translate spoken language directly, thereby bypassing traditional transcription-based pipelines. Whether this integration improves speech-to-text translation quality over established cascaded architectures, however, remains an open question. We present Hearing to Translate, the first comprehensive test suite rigorously benchmarking 5 state-of-the-art SpeechLLMs against 16 strong direct and cascade systems that couple leading speech foundation models (SFM), with multilingual LLMs. Our analysis spans 16 benchmarks, 13 language pairs, and 9 challenging conditions, including disfluent, noisy, and long-form speech. Across this extensive evaluation, we find that cascaded systems remain the most reliable overall, while current SpeechLLMs only match cascades in selected settings and SFMs lag behind both, highlighting that integrating an LLM, either within the model or in a pipeline, is essential for high-quality speech translation.

Authors:Zhenyu Wu, Jingjing Xie, Zehao Li, Bowen Yang, Qiushi Sun, Zhaoyang Liu, Zhoumianze Liu, Yu Qiao, Xiangyu Yue, Zun Wang, Zichen Ding
Title: OS-Oracle: A Comprehensive Framework for Cross-Platform GUI Critic Models
Abstract:
With VLM-powered computer-using agents (CUAs) becoming increasingly capable at graphical user interface (GUI) navigation and manipulation, reliable step-level decision-making has emerged as a key bottleneck for real-world deployment. In long-horizon workflows, errors accumulate quickly and irreversible actions can cause unintended consequences, motivating critic models that assess each action before execution. While critic models offer a promising solution, their effectiveness is hindered by the lack of diverse, high-quality GUI feedback data and public critic benchmarks for step-level evaluation in computer use. To bridge these gaps, we introduce OS-Oracle that makes three core contributions: (1) a scalable data pipeline for synthesizing cross-platform GUI critic data; (2) a two-stage training paradigm combining supervised fine-tuning (SFT) and consistency-preserving group relative policy optimization (CP-GRPO); (3) OS-Critic Bench, a holistic benchmark for evaluating critic model performance across Mobile, Web, and Desktop platforms. Leveraging this framework, we curate a high-quality dataset containing 310k critic samples. The resulting critic model, OS-Oracle-7B, achieves state-of-the-art performance among open-source VLMs on OS-Critic Bench, and surpasses proprietary models on the mobile domain. Furthermore, when serving as a pre-critic, OS-Oracle-7B improves the performance of native GUI agents such as UI-TARS-1.5-7B in OSWorld and AndroidWorld environments. The code is open-sourced at https://github.com/numbmelon/OS-Oracle.

Authors:Yiliu Yang, Yilei Jiang, Qunzhong Wang, Yingshui Tan, Xiaoyong Zhu, Sherman S. M. Chow, Bo Zheng, Xiangyu Yue
Title: QuadSentinel: Sequent Safety for Machine-Checkable Control in Multi-agent Systems
Abstract:
Safety risks arise as large language model-based agents solve complex tasks with tools, multi-step plans, and inter-agent messages. However, deployer-written policies in natural language are ambiguous and context dependent, so they map poorly to machine-checkable rules, and runtime enforcement is unreliable. Expressing safety policies as sequents, we propose \textsc{QuadSentinel}, a four-agent guard (state tracker, policy verifier, threat watcher, and referee) that compiles these policies into machine-checkable rules built from predicates over observable state and enforces them online. Referee logic plus an efficient top-$k$ predicate updater keeps costs low by prioritizing checks and resolving conflicts hierarchically. Measured on ST-WebAgentBench (ICML CUA~'25) and AgentHarm (ICLR~'25), \textsc{QuadSentinel} improves guardrail accuracy and rule recall while reducing false positives. Against single-agent baselines such as ShieldAgent (ICML~'25), it yields better overall safety control. Near-term deployments can adopt this pattern without modifying core agents by keeping policies separate and machine-checkable. Our code will be made publicly available at https://github.com/yyiliu/QuadSentinel.

Authors:Qingguo Hu, Zhenghao Lin, Ziyue Yang, Yucheng Ding, Xiao Liu, Yuting Jiang, Ruizhe Wang, Tianyu Chen, Zhongxin Guo, Yifan Xiong, Rui Gao, Lei Qu, Jinsong Su, Peng Cheng, Yeyun Gong
Title: Sigma-MoE-Tiny Technical Report
Abstract:
Mixture-of-Experts (MoE) has emerged as a promising paradigm for foundation models due to its efficient and powerful scalability. In this work, we present Sigma-MoE-Tiny, an MoE language model that achieves the highest sparsity compared to existing open-source models. Sigma-MoE-Tiny employs fine-grained expert segmentation with up to 96 experts per layer, while activating only one expert for each token, resulting in 20B total parameters with just 0.5B activated. The major challenge introduced by such extreme sparsity lies in expert load balancing. We find that the widely-used load balancing loss tends to become ineffective in the lower layers under this setting. To address this issue, we propose a progressive sparsification schedule aiming to balance expert utilization and training stability. Sigma-MoE-Tiny is pre-trained on a diverse and high-quality corpus, followed by post-training to further unlock its capabilities. The entire training process remains remarkably stable, with no occurrence of irrecoverable loss spikes. Comprehensive evaluations reveal that, despite activating only 0.5B parameters, Sigma-MoE-Tiny achieves top-tier performance among counterparts of comparable or significantly larger scale. In addition, we provide an in-depth discussion of load balancing in highly sparse MoE models, offering insights for advancing sparsity in future MoE architectures. Project page: https://qghuxmu.github.io/Sigma-MoE-Tiny Code: https://github.com/microsoft/ltp-megatron-lm

Authors:Satya Narayana Panda, Vaishnavi Kukkala, Spandana Iyer
Title: AI-Powered Dermatological Diagnosis: From Interpretable Models to Clinical Implementation A Comprehensive Framework for Accessible and Trustworthy Skin Disease Detection
Abstract:
Dermatological conditions affect 1.9 billion people globally, yet accurate diagnosis remains challenging due to limited specialist availability and complex clinical presentations. Family history significantly influences skin disease susceptibility and treatment responses, but is often underutilized in diagnostic processes. This research addresses the critical question: How can AI-powered systems integrate family history data with clinical imaging to enhance dermatological diagnosis while supporting clinical trial validation and real-world implementation? We developed a comprehensive multi-modal AI framework that combines deep learning-based image analysis with structured clinical data, including detailed family history patterns. Our approach employs interpretable convolutional neural networks integrated with clinical decision trees that incorporate hereditary risk factors. The methodology includes prospective clinical trials across diverse healthcare settings to validate AI-assisted diagnosis against traditional clinical assessment. In this work, validation was conducted with healthcare professionals to assess AI-assisted outputs against clinical expectations; prospective clinical trials across diverse healthcare settings are proposed as future work. The integrated AI system demonstrates enhanced diagnostic accuracy when family history data is incorporated, particularly for hereditary skin conditions such as melanoma, psoriasis, and atopic dermatitis. Expert feedback indicates potential for improved early detection and more personalized recommendations; formal clinical trials are planned. The framework is designed for integration into clinical workflows while maintaining interpretability through explainable AI mechanisms.

Authors:Hao Chen, Zhexin Hu, Jiajun Chai, Haocheng Yang, Hang He, Xiaohan Wang, Wei Lin, Luhang Wang, Guojun Yin, Zhuofeng zhao
Title: ToolForge: A Data Synthesis Pipeline for Multi-Hop Search without Real-World APIs
Abstract:
Training LLMs to invoke tools and leverage retrieved information necessitates high-quality, diverse data. However, existing pipelines for synthetic data generation often rely on tens of thousands of real API calls to enhance generalization, incurring prohibitive costs while lacking multi-hop reasoning and self-reflection. To address these limitations, we introduce ToolForge, an automated synthesis framework that achieves strong real-world tool-calling performance by constructing only a small number of virtual tools, eliminating the need for real API calls. ToolForge leverages a (question, golden context, answer) triple to synthesize large-scale tool-learning data specifically designed for multi-hop search scenarios, further enriching the generated data through multi-hop reasoning and self-reflection mechanisms. To ensure data fidelity, we employ a Multi-Layer Validation Framework that integrates both rule-based and model-based assessments. Empirical results show that a model with only 8B parameters, when trained on our synthesized data, outperforms GPT-4o on multiple benchmarks. Our code and dataset are publicly available at https://github.com/Buycar-arb/ToolForge .

Authors:Zhengyuan Dong, Victor Zhong, Renée J. Miller
Title: ModelTables: A Corpus of Tables about Models
Abstract:
We present ModelTables, a benchmark of tables in Model Lakes that captures the structured semantics of performance and configuration tables often overlooked by text only retrieval. The corpus is built from Hugging Face model cards, GitHub READMEs, and referenced papers, linking each table to its surrounding model and publication context. Compared with open data lake tables, model tables are smaller yet exhibit denser inter table relationships, reflecting tightly coupled model and benchmark evolution. The current release covers over 60K models and 90K tables. To evaluate model and table relatedness, we construct a multi source ground truth using three complementary signals: (1) paper citation links, (2) explicit model card links and inheritance, and (3) shared training datasets. We present one extensive empirical use case for the benchmark which is table search. We compare canonical Data Lake search operators (unionable, joinable, keyword) and Information Retrieval baselines (dense, sparse, hybrid retrieval) on this benchmark. Union based semantic table retrieval attains 54.8 % P@1 overall (54.6 % on citation, 31.3 % on inheritance, 30.6 % on shared dataset signals); table based dense retrieval reaches 66.5 % P@1, and metadata hybrid retrieval achieves 54.1 %. This evaluation indicates clear room for developing better table search methods. By releasing ModelTables and its creation protocol, we provide the first large scale benchmark of structured data describing AI model. Our use case of table discovery in Model Lakes, provides intuition and evidence for developing more accurate semantic retrieval, structured comparison, and principled organization of structured model knowledge. Source code, data, and other artifacts have been made available at https://github.com/RJMillerLab/ModelTables.

Authors:Jintao Zhang, Kaiwen Zheng, Kai Jiang, Haoxu Wang, Ion Stoica, Joseph E. Gonzalez, Jianfei Chen, Jun Zhu
Title: TurboDiffusion: Accelerating Video Diffusion Models by 100-200 Times
Abstract:
We introduce TurboDiffusion, a video generation acceleration framework that can speed up end-to-end diffusion generation by 100-200x while maintaining video quality. TurboDiffusion mainly relies on several components for acceleration: (1) Attention acceleration: TurboDiffusion uses low-bit SageAttention and trainable Sparse-Linear Attention (SLA) to speed up attention computation. (2) Step distillation: TurboDiffusion adopts rCM for efficient step distillation. (3) W8A8 quantization: TurboDiffusion quantizes model parameters and activations to 8 bits to accelerate linear layers and compress the model. In addition, TurboDiffusion incorporates several other engineering optimizations. We conduct experiments on the Wan2.2-I2V-14B-720P, Wan2.1-T2V-1.3B-480P, Wan2.1-T2V-14B-720P, and Wan2.1-T2V-14B-480P models. Experimental results show that TurboDiffusion achieves 100-200x speedup for video generation even on a single RTX 5090 GPU, while maintaining comparable video quality. The GitHub repository, which includes model checkpoints and easy-to-use code, is available at https://github.com/thu-ml/TurboDiffusion.

Authors:Thanh Dat Hoang, Thanh Tam Nguyen, Thanh Trung Huynh, Hongzhi Yin, Quoc Viet Hung Nguyen
Title: Scaling Text2SQL via LLM-efficient Schema Filtering with Functional Dependency Graph Rerankers
Abstract:
Most modern Text2SQL systems prompt large language models (LLMs) with entire schemas -- mostly column information -- alongside the user's question. While effective on small databases, this approach fails on real-world schemas that exceed LLM context limits, even for commercial models. The recent Spider 2.0 benchmark exemplifies this with hundreds of tables and tens of thousands of columns, where existing systems often break. Current mitigations either rely on costly multi-step prompting pipelines or filter columns by ranking them against user's question independently, ignoring inter-column structure. To scale existing systems, we introduce \toolname, an open-source, LLM-efficient schema filtering framework that compacts Text2SQL prompts by (i) ranking columns with a query-aware LLM encoder enriched with values and metadata, (ii) reranking inter-connected columns via a lightweight graph transformer over functional dependencies, and (iii) selecting a connectivity-preserving sub-schema with a Steiner-tree heuristic. Experiments on real datasets show that \toolname achieves near-perfect recall and higher precision than CodeS, SchemaExP, Qwen rerankers, and embedding retrievers, while maintaining sub-second median latency and scaling to schemas with 23,000+ columns. Our source code is available at https://github.com/thanhdath/grast-sql.

Authors:Davide Caffagni, Sara Sarto, Marcella Cornia, Lorenzo Baraldi, Pier Luigi Dovesi, Shaghayegh Roohi, Mark Granroth-Wilding, Rita Cucchiara
Title: Seeing Beyond Words: Self-Supervised Visual Learning for Multimodal Large Language Models
Abstract:
Multimodal Large Language Models (MLLMs) have recently demonstrated impressive capabilities in connecting vision and language, yet their proficiency in fundamental visual reasoning tasks remains limited. This limitation can be attributed to the fact that MLLMs learn visual understanding primarily from textual descriptions, which constitute a subjective and inherently incomplete supervisory signal. Furthermore, the modest scale of multimodal instruction tuning compared to massive text-only pre-training leads MLLMs to overfit language priors while overlooking visual details. To address these issues, we introduce JARVIS, a JEPA-inspired framework for self-supervised visual enhancement in MLLMs. Specifically, we integrate the I-JEPA learning paradigm into the standard vision-language alignment pipeline of MLLMs training. Our approach leverages frozen vision foundation models as context and target encoders, while training the predictor, implemented as the early layers of an LLM, to learn structural and semantic regularities from images without relying exclusively on language supervision. Extensive experiments on standard MLLM benchmarks show that JARVIS consistently improves performance on vision-centric benchmarks across different LLM families, without degrading multimodal reasoning abilities. Our source code is publicly available at: https://github.com/aimagelab/JARVIS.

Authors:Matteo Fasulo, Giusy Spacone, Thorir Mar Ingolfsson, Yawei Li, Luca Benini, Andrea Cossettini
Title: TinyMyo: a Tiny Foundation Model for Flexible EMG Signal Processing at the Edge
Abstract:
Surface electromyography (EMG) is a non-invasive sensing modality used in several domains, including biomechanics, rehabilitation, prosthetic control, and emerging human-machine interaction paradigms. Despite decades of use, significant challenges remain in achieving robust generalization across subjects, recording systems, and acquisition protocols. To tackle these challenges, foundation models (FMs) are gaining traction when targeting end-to-end applications based on EMG signals. Yet, existing EMG FMs remain limited to single downstream tasks and lack deployability on embedded platforms. In this work, we present TinyMyo, a lightweight FM based on a Transformer encoder architecture. The model is pre-trained in a self-supervised manner on publicly available datasets and achieves high reconstruction fidelity with only 3.6M parameters. With minimal task-specific head adaptations, the same backbone is used to tackle multiple downstream tasks, leveraging datasets acquired from diverse sensing locations and hardware platforms. We demonstrate generalization across hand gesture classification, hand kinematic regression, speech production and recognition, with performance comparable to or surpassing the state of the art (SoA), and model size below 5M parameters. We achieve SoA results compared to previous FM-based works on the NinaPro DB5 ($89.4\pm0.16\%$), UCI-EMG ($97.56\pm0.32\%$), and EPN-612 ($96.74\pm0.09\%$) datasets. We report, to the best of our knowledge, the first deployment of an EMG FM on an ultra-low-power microcontroller (GAP9), achieving an average power envelope of 36.45mW. By open-sourcing the pre-trained and the downstream task architectures (https://github.com/pulp-bio/BioFoundation), we aim to provide a flexible resource that can accelerate future research and serve as a common foundation for the EMG community.

Authors:Sveinung Myhre
Title: DiscoverDCP: A Data-Driven Approach for Construction of Disciplined Convex Programs via Symbolic Regression
Abstract:
We propose DiscoverDCP, a data-driven framework that integrates symbolic regression with the rule sets of Disciplined Convex Programming (DCP) to perform system identification. By enforcing that all discovered candidate model expressions adhere to DCP composition rules, we ensure that the output expressions are globally convex by construction, circumventing the computationally intractable process of post-hoc convexity verification. This approach allows for the discovery of convex surrogates that exhibit more relaxed and accurate functional forms than traditional fixed-parameter convex expressions (e.g., quadratic functions). The proposed method produces interpretable, verifiable, and flexible convex models suitable for safety-critical control and optimization tasks.

Authors:Jinjing Zhao, Fangyun Wei, Zhening Liu, Hongyang Zhang, Chang Xu, Yan Lu
Title: Spatia: Video Generation with Updatable Spatial Memory
Abstract:
Existing video generation models struggle to maintain long-term spatial and temporal consistency due to the dense, high-dimensional nature of video signals. To overcome this limitation, we propose Spatia, a spatial memory-aware video generation framework that explicitly preserves a 3D scene point cloud as persistent spatial memory. Spatia iteratively generates video clips conditioned on this spatial memory and continuously updates it through visual SLAM. This dynamic-static disentanglement design enhances spatial consistency throughout the generation process while preserving the model's ability to produce realistic dynamic entities. Furthermore, Spatia enables applications such as explicit camera control and 3D-aware interactive editing, providing a geometrically grounded framework for scalable, memory-driven video generation.

Authors:Adam Kaufman, James Lucassen, Tyler Tracy, Cody Rushing, Aryan Bhatt
Title: BashArena: A Control Setting for Highly Privileged AI Agents
Abstract:
Future AI agents might run autonomously with elevated privileges. If these agents are misaligned, they might abuse these privileges to cause serious damage. The field of AI control develops techniques that make it harder for misaligned AIs to cause such damage, while preserving their usefulness. We introduce BashArena, a setting for studying AI control techniques in security-critical environments. BashArena contains 637 Linux system administration and infrastructure engineering tasks in complex, realistic environments, along with four sabotage objectives (execute malware, exfiltrate secrets, escalate privileges, and disable firewall) for a red team to target. We evaluate multiple frontier LLMs on their ability to complete tasks, perform sabotage undetected, and detect sabotage attempts. Claude Sonnet 4.5 successfully executes sabotage while evading monitoring by GPT-4.1 mini 26% of the time, at 4% trajectory-wise FPR. Our findings provide a baseline for designing more effective control protocols in BashArena. We release the dataset as a ControlArena setting and share our task generation pipeline.

Authors:Robert Heumüller, Frank Ortmeier
Title: On Assessing the Relevance of Code Reviews Authored by Generative Models
Abstract:
The use of large language models like ChatGPT in code review offers promising efficiency gains but also raises concerns about correctness and safety. Existing evaluation methods for code review generation either rely on automatic comparisons to a single ground truth, which fails to capture the variability of human perspectives, or on subjective assessments of "usefulness", a highly ambiguous concept. We propose a novel evaluation approach based on what we call multi-subjective ranking. Using a dataset of 280 self-contained code review requests and corresponding comments from CodeReview StackExchange, multiple human judges ranked the quality of ChatGPT-generated comments alongside the top human responses from the platform. Results show that ChatGPT's comments were ranked significantly better than human ones, even surpassing StackExchange's accepted answers. Going further, our proposed method motivates and enables more meaningful assessments of generative AI's performance in code review, while also raising awareness of potential risks of unchecked integration into review processes.

Authors:Akihiro Kubo, Paavo Parmas, Shin Ishii
Title: Double Horizon Model-Based Policy Optimization
Abstract:
Model-based reinforcement learning (MBRL) reduces the cost of real-environment sampling by generating synthetic trajectories (called rollouts) from a learned dynamics model. However, choosing the length of the rollouts poses two dilemmas: (1) Longer rollouts better preserve on-policy training but amplify model bias, indicating the need for an intermediate horizon to mitigate distribution shift (i.e., the gap between on-policy and past off-policy samples). (2) Moreover, a longer model rollout may reduce value estimation bias but raise the variance of policy gradients due to backpropagation through multiple steps, implying another intermediate horizon for stable gradient estimates. However, these two optimal horizons may differ. To resolve this conflict, we propose Double Horizon Model-Based Policy Optimization (DHMBPO), which divides the rollout procedure into a long "distribution rollout" (DR) and a short "training rollout" (TR). The DR generates on-policy state samples for mitigating distribution shift. In contrast, the short TR leverages differentiable transitions to offer accurate value gradient estimation with stable gradient updates, thereby requiring fewer updates and reducing overall runtime. We demonstrate that the double-horizon approach effectively balances distribution shift, model bias, and gradient instability, and surpasses existing MBRL methods on continuous-control benchmarks in terms of both sample efficiency and runtime.

Authors:Zehua Pei, Hui-Ling Zhen, Shixiong Kai, Sinno Jialin Pan, Yunhe Wang, Mingxuan Yuan, Bei Yu
Title: SCOPE: Prompt Evolution for Enhancing Agent Effectiveness
Abstract:
Large Language Model (LLM) agents are increasingly deployed in environments that generate massive, dynamic contexts. However, a critical bottleneck remains: while agents have access to this context, their static prompts lack the mechanisms to manage it effectively, leading to recurring Corrective and Enhancement failures. To address this capability gap, we introduce \textbf{SCOPE} (Self-evolving Context Optimization via Prompt Evolution). SCOPE frames context management as an \textit{online optimization} problem, synthesizing guidelines from execution traces to automatically evolve the agent's prompt. We propose a Dual-Stream mechanism that balances tactical specificity (resolving immediate errors) with strategic generality (evolving long-term principles). Furthermore, we introduce Perspective-Driven Exploration to maximize strategy coverage, increasing the likelihood that the agent has the correct strategy for any given task. Experiments on the HLE benchmark show that SCOPE improves task success rates from 14.23\% to 38.64\% without human intervention. We make our code publicly available at https://github.com/JarvisPei/SCOPE.

Authors:Zicong Cheng, Guo-Wei Yang, Jia Li, Zhijie Deng, Meng-Hao Guo, Shi-Min Hu
Title: DEER: Draft with Diffusion, Verify with Autoregressive Models
Abstract:
Efficiency, as a critical practical challenge for LLM-driven agentic and reasoning systems, is increasingly constrained by the inherent latency of autoregressive (AR) decoding. Speculative decoding mitigates this cost through a draft-verify scheme, yet existing approaches rely on AR draft models (a.k.a., drafters), which introduce two fundamental issues: (1) step-wise uncertainty accumulation leads to a progressive collapse of trust between the target model and the drafter, and (2) inherently sequential decoding of AR drafters. Together, these factors cause limited speedups. In this paper, we show that a diffusion large language model (dLLM) drafters can naturally overcome these issues through its fundamentally different probabilistic modeling and efficient parallel decoding strategy. Building on this insight, we introduce DEER, an efficient speculative decoding framework that drafts with diffusion and verifies with AR models. To enable high-quality drafting, DEER employs a two-stage training pipeline to align the dLLM-based drafters with the target AR model, and further adopts single-step decoding to generate long draft segments. Experiments show DEER reaches draft acceptance lengths of up to 32 tokens, far surpassing the 10 tokens achieved by EAGLE-3. Moreover, on HumanEval with Qwen3-30B-A3B, DEER attains a 5.54x speedup, while EAGLE-3 achieves only 2.41x. Code, model, demo, etc, will be available at https://czc726.github.io/DEER/

Authors:Xuanjun Zong, Zhiqi Shen, Lei Wang, Yunshi Lan, Chao Yang
Title: MCP-SafetyBench: A Benchmark for Safety Evaluation of Large Language Models with Real-World MCP Servers
Abstract:
Large language models (LLMs) are evolving into agentic systems that reason, plan, and operate external tools. The Model Context Protocol (MCP) is a key enabler of this transition, offering a standardized interface for connecting LLMs with heterogeneous tools and services. Yet MCP's openness and multi-server workflows introduce new safety risks that existing benchmarks fail to capture, as they focus on isolated attacks or lack real-world coverage. We present MCP-SafetyBench, a comprehensive benchmark built on real MCP servers that supports realistic multi-turn evaluation across five domains: browser automation, financial analysis, location navigation, repository management, and web search. It incorporates a unified taxonomy of 20 MCP attack types spanning server, host, and user sides, and includes tasks requiring multi-step reasoning and cross-server coordination under uncertainty. Using MCP-SafetyBench, we systematically evaluate leading open- and closed-source LLMs, revealing large disparities in safety performance and escalating vulnerabilities as task horizons and server interactions grow. Our results highlight the urgent need for stronger defenses and establish MCP-SafetyBench as a foundation for diagnosing and mitigating safety risks in real-world MCP deployments.

Authors:Ziyu Shang, Haoran Liu, Rongchao Zhang, Zhiqian Wei, Tongtong Feng
Title: PMMD: A pose-guided multi-view multi-modal diffusion for person generation
Abstract:
Generating consistent human images with controllable pose and appearance is essential for applications in virtual try on, image editing, and digital human creation. Current methods often suffer from occlusions, garment style drift, and pose misalignment. We propose Pose-guided Multi-view Multimodal Diffusion (PMMD), a diffusion framework that synthesizes photorealistic person images conditioned on multi-view references, pose maps, and text prompts. A multimodal encoder jointly models visual views, pose features, and semantic descriptions, which reduces cross modal discrepancy and improves identity fidelity. We further design a ResCVA module to enhance local detail while preserving global structure, and a cross modal fusion module that integrates image semantics with text throughout the denoising pipeline. Experiments on the DeepFashion MultiModal dataset show that PMMD outperforms representative baselines in consistency, detail preservation, and controllability. Project page and code are available at https://github.com/ZANMANGLOOPYE/PMMD.

Authors:Chenxiao Zhang, Runshi Zhang, Junchen Wang
Title: Tracking spatial temporal details in ultrasound long video via wavelet analysis and memory bank
Abstract:
Medical ultrasound videos are widely used for medical inspections, disease diagnosis and surgical planning. High-fidelity lesion area and target organ segmentation constitutes a key component of the computer-assisted surgery workflow. The low contrast levels and noisy backgrounds of ultrasound videos cause missegmentation of organ boundary, which may lead to small object losses and increase boundary segmentation errors. Object tracking in long videos also remains a significant research challenge. To overcome these challenges, we propose a memory bank-based wavelet filtering and fusion network, which adopts an encoder-decoder structure to effectively extract fine-grained detailed spatial features and integrate high-frequency (HF) information. Specifically, memory-based wavelet convolution is presented to simultaneously capture category, detailed information and utilize adjacent information in the encoder. Cascaded wavelet compression is used to fuse multiscale frequency-domain features and expand the receptive field within each convolutional layer. A long short-term memory bank using cross-attention and memory compression mechanisms is designed to track objects in long video. To fully utilize the boundary-sensitive HF details of feature maps, an HF-aware feature fusion module is designed via adaptive wavelet filters in the decoder. In extensive benchmark tests conducted on four ultrasound video datasets (two thyroid nodule, the thyroid gland, the heart datasets) compared with the state-of-the-art methods, our method demonstrates marked improvements in segmentation metrics. In particular, our method can more accurately segment small thyroid nodules, demonstrating its effectiveness for cases involving small ultrasound objects in long video. The code is available at https://github.com/XiAooZ/MWNet.

Authors:Huaying Zhang, Atsushi Hashimoto, Tosho Hirasawa
Title: Evaluating the Capability of Video Question Generation for Expert Knowledge Elicitation
Abstract:
Skilled human interviewers can extract valuable information from experts. This raises a fundamental question: what makes some questions more effective than others? To address this, a quantitative evaluation of question-generation models is essential. Video question generation (VQG) is a topic for video question answering (VideoQA), where questions are generated for given answers. Their evaluation typically focuses on the ability to answer questions, rather than the quality of generated questions. In contrast, we focus on the question quality in eliciting unseen knowledge from human experts. For a continuous improvement of VQG models, we propose a protocol that evaluates the ability by simulating question-answering communication with experts using a question-to-answer retrieval. We obtain the retriever by constructing a novel dataset, EgoExoAsk, which comprises 27,666 QA pairs generated from Ego-Exo4D's expert commentary annotation. The EgoExoAsk training set is used to obtain the retriever, and the benchmark is constructed on the validation set with Ego-Exo4D video segments. Experimental results demonstrate our metric reasonably aligns with question generation settings: models accessing richer context are evaluated better, supporting that our protocol works as intended. The EgoExoAsk dataset is available in https://github.com/omron-sinicx/VQG4ExpertKnowledge .

Authors:Zhenzhi Wang, Jian Wang, Ke Ma, Dahua Lin, Bing Zhou
Title: TalkVerse: Democratizing Minute-Long Audio-Driven Video Generation
Abstract:
We introduce TalkVerse, a large-scale, open corpus for single-person, audio-driven talking video generation designed to enable fair, reproducible comparison across methods. While current state-of-the-art systems rely on closed data or compute-heavy models, TalkVerse offers 2.3 million high-resolution (720p/1080p) audio-video synchronized clips totaling 6.3k hours. These are curated from over 60k hours of video via a transparent pipeline that includes scene-cut detection, aesthetic assessment, strict audio-visual synchronization checks, and comprehensive annotations including 2D skeletons and structured visual/audio-style captions. Leveraging TalkVerse, we present a reproducible 5B DiT baseline built on Wan2.2-5B. By utilizing a video VAE with a high downsampling ratio and a sliding window mechanism with motion-frame context, our model achieves minute-long generation with low drift. It delivers comparable lip-sync and visual quality to the 14B Wan-S2V model but with 10$\times$ lower inference cost. To enhance storytelling in long videos, we integrate an MLLM director to rewrite prompts based on audio and visual cues. Furthermore, our model supports zero-shot video dubbing via controlled latent noise injection. We open-source the dataset, training recipes, and 5B checkpoints to lower barriers for research in audio-driven human video generation. Project Page: https://zhenzhiwang.github.io/talkverse/

Authors:Jianshuo Dong, Yutong Zhang, Yan Liu, Zhenyu Zhong, Tao Wei, Chao Zhang, Han Qiu
Title: Revisiting the Reliability of Language Models in Instruction-Following
Abstract:
Advanced LLMs have achieved near-ceiling instruction-following accuracy on benchmarks such as IFEval. However, these impressive scores do not necessarily translate to reliable services in real-world use, where users often vary their phrasing, contextual framing, and task formulations. In this paper, we study nuance-oriented reliability: whether models exhibit consistent competence across cousin prompts that convey analogous user intents but with subtle nuances. To quantify this, we introduce a new metric, reliable@k, and develop an automated pipeline that generates high-quality cousin prompts via data augmentation. Building upon this, we construct IFEval++ for systematic evaluation. Across 20 proprietary and 26 open-source LLMs, we find that current models exhibit substantial insufficiency in nuance-oriented reliability -- their performance can drop by up to 61.8% with nuanced prompt modifications. What's more, we characterize it and explore three potential improvement recipes. Our findings highlight nuance-oriented reliability as a crucial yet underexplored next step toward more dependable and trustworthy LLM behavior. Our code and benchmark are accessible: https://github.com/jianshuod/IFEval-pp.

Authors:Yuqun Zhang, Yuxuan Zhao, Sijia Chen
Title: PyFi: Toward Pyramid-like Financial Image Understanding for VLMs via Adversarial Agents
Abstract:
This paper proposes PyFi, a novel framework for pyramid-like financial image understanding that enables vision language models (VLMs) to reason through question chains in a progressive, simple-to-complex manner. At the core of PyFi is PyFi-600K, a dataset comprising 600K financial question-answer pairs organized into a reasoning pyramid: questions at the base require only basic perception, while those toward the apex demand increasing levels of capability in financial visual understanding and expertise. This data is scalable because it is synthesized without human annotations, using PyFi-adv, a multi-agent adversarial mechanism under the Monte Carlo Tree Search (MCTS) paradigm, in which, for each image, a challenger agent competes with a solver agent by generating question chains that progressively probe deeper capability levels in financial visual reasoning. Leveraging this dataset, we present fine-grained, hierarchical, and comprehensive evaluations of advanced VLMs in the financial domain. Moreover, fine-tuning Qwen2.5-VL-3B and Qwen2.5-VL-7B on the pyramid-structured question chains enables these models to answer complex financial questions by decomposing them into sub-questions with gradually increasing reasoning demands, yielding average accuracy improvements of 19.52% and 8.06%, respectively, on the dataset. All resources of code, dataset and models are available at: https://github.com/AgenticFinLab/PyFi .

Authors:Dizhan Xue, Jing Cui, Shengsheng Qian, Chuanrui Hu, Changsheng Xu
Title: SoMe: A Realistic Benchmark for LLM-based Social Media Agents
Abstract:
Intelligent agents powered by large language models (LLMs) have recently demonstrated impressive capabilities and gained increasing popularity on social media platforms. While LLM agents are reshaping the ecology of social media, there exists a current gap in conducting a comprehensive evaluation of their ability to comprehend media content, understand user behaviors, and make intricate decisions. To address this challenge, we introduce SoMe, a pioneering benchmark designed to evaluate social media agents equipped with various agent tools for accessing and analyzing social media data. SoMe comprises a diverse collection of 8 social media agent tasks, 9,164,284 posts, 6,591 user profiles, and 25,686 reports from various social media platforms and external websites, with 17,869 meticulously annotated task queries. Compared with the existing datasets and benchmarks for social media tasks, SoMe is the first to provide a versatile and realistic platform for LLM-based social media agents to handle diverse social media tasks. By extensive quantitative and qualitative analysis, we provide the first overview insight into the performance of mainstream agentic LLMs in realistic social media environments and identify several limitations. Our evaluation reveals that both the current closed-source and open-source LLMs cannot handle social media agent tasks satisfactorily. SoMe provides a challenging yet meaningful testbed for future social media agents. Our code and data are available at https://github.com/LivXue/SoMe

Authors:Ryan Cartularo
Title: SepsisSuite: Beyond Risk Stratification -- A Comparative Analysis of Deep Fusion vs. Expert Stacking for Prescriptive Sepsis AI
Abstract:
Sepsis accounts for nearly 20% of global ICU admissions, yet conventional prediction models often fail to effectively integrate heterogeneous data streams, remaining either siloed by modality or reliant on brittle early fusion. In this work, we present a rigorous architectural comparison between End-to-End Deep Fusion and Context-Aware Stacking for sepsis tasks. We initially hypothesized that a novel Quad-Modal Hierarchical Gated Attention Network -- termed SepsisFusionFormer -- would resolve complex cross-modal interactions between vitals, text, and imaging. However, experiments on MIMIC-IV revealed that SepsisFusionFormer suffered from "attention starvation" in the small antibiotic cohort ($N \approx 2,100$), resulting in overfitting (AUC 0.66). This counterintuitive result informed the design of SepsisLateFusion, a "leaner" Context-Aware Mixture-of-Experts (MoE) architecture. By treating modalities as orthogonal experts -- the "Historian" (Static), the "Monitor" (Temporal), and the "Reader" (NLP) -- and dynamically gating them via a CatBoost meta-learner, we achieved State-of-the-Art (SOTA) performance: 0.915 AUC for prediction 4 hours prior to clinical onset. By calibrating the decision threshold for clinical safety, we reduced missed cases by 48% relative to the default operating point, thus opening a true preventative window for timely intervention over reactive alerts. Furthermore, for the novel prescriptive task of multi-class antibiotic selection, we demonstrate that a Quad-Modal Ensemble achieved the highest performance (0.72 AUC). These models are integrated into SepsisSuite, a deployment-ready Python framework for clinical decision support. SepsisSuite is available for free at: https://github.com/RyanCartularo/SepsisSuite-Info

Authors:Yue Zhao, Hanwen Jiang, Zhenlin Xu, Chutong Yang, Ehsan Adeli, Philipp Krähenbühl
Title: Spherical Leech Quantization for Visual Tokenization and Generation
Abstract:
Non-parametric quantization has received much attention due to its efficiency on parameters and scalability to a large codebook. In this paper, we present a unified formulation of different non-parametric quantization methods through the lens of lattice coding. The geometry of lattice codes explains the necessity of auxiliary loss terms when training auto-encoders with certain existing lookup-free quantization variants such as BSQ. As a step forward, we explore a few possible candidates, including random lattices, generalized Fibonacci lattices, and densest sphere packing lattices. Among all, we find the Leech lattice-based quantization method, which is dubbed as Spherical Leech Quantization ($Λ_{24}$-SQ), leads to both a simplified training recipe and an improved reconstruction-compression tradeoff thanks to its high symmetry and even distribution on the hypersphere. In image tokenization and compression tasks, this quantization approach achieves better reconstruction quality across all metrics than BSQ, the best prior art, while consuming slightly fewer bits. The improvement also extends to state-of-the-art auto-regressive image generation frameworks.

Authors:Zitian Gao, Lynx Chen, Yihao Xiao, He Xing, Ran Tao, Haoming Luo, Joey Zhou, Bryan Dai
Title: Universal Reasoning Model
Abstract:
Universal transformers (UTs) have been widely used for complex reasoning tasks such as ARC-AGI and Sudoku, yet the specific sources of their performance gains remain underexplored. In this work, we systematically analyze UTs variants and show that improvements on ARC-AGI primarily arise from the recurrent inductive bias and strong nonlinear components of Transformer, rather than from elaborate architectural designs. Motivated by this finding, we propose the Universal Reasoning Model (URM), which enhances the UT with short convolution and truncated backpropagation. Our approach substantially improves reasoning performance, achieving state-of-the-art 53.8% pass@1 on ARC-AGI 1 and 16.0% pass@1 on ARC-AGI 2. Our code is avaliable at https://github.com/UbiquantAI/URM.

Authors:Jianfeng Xiang, Xiaoxue Chen, Sicheng Xu, Ruicheng Wang, Zelong Lv, Yu Deng, Hongyuan Zhu, Yue Dong, Hao Zhao, Nicholas Jing Yuan, Jiaolong Yang
Title: Native and Compact Structured Latents for 3D Generation
Abstract:
Recent advancements in 3D generative modeling have significantly improved the generation realism, yet the field is still hampered by existing representations, which struggle to capture assets with complex topologies and detailed appearance. This paper present an approach for learning a structured latent representation from native 3D data to address this challenge. At its core is a new sparse voxel structure called O-Voxel, an omni-voxel representation that encodes both geometry and appearance. O-Voxel can robustly model arbitrary topology, including open, non-manifold, and fully-enclosed surfaces, while capturing comprehensive surface attributes beyond texture color, such as physically-based rendering parameters. Based on O-Voxel, we design a Sparse Compression VAE which provides a high spatial compression rate and a compact latent space. We train large-scale flow-matching models comprising 4B parameters for 3D generation using diverse public 3D asset datasets. Despite their scale, inference remains highly efficient. Meanwhile, the geometry and material quality of our generated assets far exceed those of existing models. We believe our approach offers a significant advancement in 3D generative modeling.

Authors:Yen-Ju Lu, Kunxiao Gao, Mingrui Liang, Helin Wang, Thomas Thebaud, Laureano Moro-Velazquez, Najim Dehak, Jesus Villalba
Title: Spoken DialogSum: An Emotion-Rich Conversational Dataset for Spoken Dialogue Summarization
Abstract:
Recent audio language models can follow long conversations. However, research on emotion-aware or spoken dialogue summarization is constrained by the lack of data that links speech, summaries, and paralinguistic cues. We introduce Spoken DialogSum, the first corpus aligning raw conversational audio with factual summaries, emotion-rich summaries, and utterance-level labels for speaker age, gender, and emotion. The dataset is built in two stages: first, an LLM rewrites DialogSum scripts with Switchboard-style fillers and back-channels, then tags each utterance with emotion, pitch, and speaking rate. Second, an expressive TTS engine synthesizes speech from the tagged scripts, aligned with paralinguistic labels. Spoken DialogSum comprises 13,460 emotion-diverse dialogues, each paired with both a factual and an emotion-focused summary. We release an online demo at https://fatfat-emosum.github.io/EmoDialog-Sum-Audio-Samples/, with plans to release the full dataset in the near future. Baselines show that an Audio-LLM raises emotional-summary ROUGE-L by 28% relative to a cascaded ASR-LLM system, confirming the value of end-to-end speech modeling.

Authors:Alban Puech, Matteo Mazzonelli, Celia Cintas, Tamara R. Govindasamy, Mangaliso Mngomezulu, Jonas Weiss, Matteo Baù, Anna Varbella, François Mirallès, Kibaek Kim, Le Xie, Hendrik F. Hamann, Etienne Vos, Thomas Brunschwiler
Title: gridfm-datakit-v1: A Python Library for Scalable and Realistic Power Flow and Optimal Power Flow Data Generation
Abstract:
We introduce gridfm-datakit-v1, a Python library for generating realistic and diverse Power Flow (PF) and Optimal Power Flow (OPF) datasets for training Machine Learning (ML) solvers. Existing datasets and libraries face three main challenges: (1) lack of realistic stochastic load and topology perturbations, limiting scenario diversity; (2) PF datasets are restricted to OPF-feasible points, hindering generalization of ML solvers to cases that violate operating limits (e.g., branch overloads or voltage violations); and (3) OPF datasets use fixed generator cost functions, limiting generalization across varying costs. gridfm-datakit addresses these challenges by: (1) combining global load scaling from real-world profiles with localized noise and supporting arbitrary N-k topology perturbations to create diverse yet realistic datasets; (2) generating PF samples beyond operating limits; and (3) producing OPF data with varying generator costs. It also scales efficiently to large grids (up to 10,000 buses). Comparisons with OPFData, OPF-Learn, PGLearn, and PF$Δ$ are provided. Available on GitHub at https://github.com/gridfm/gridfm-datakit under Apache 2.0 and via `pip install gridfm-datakit`.

Authors:Atsuyuki Miyai, Shota Onohara, Jeonghun Baek, Kiyoharu Aizawa
Title: JMMMU-Pro: Image-based Japanese Multi-discipline Multimodal Understanding Benchmark via Vibe Benchmark Construction
Abstract:
This paper introduces JMMMU-Pro, an image-based Japanese Multi-discipline Multimodal Understanding Benchmark, and Vibe Benchmark Construction, a scalable construction method. Following the evolution from MMMU to MMMU-Pro, JMMMU-Pro extends JMMMU by composing the question image and question text into a single image, thereby creating a benchmark that requires integrated visual-textual understanding through visual perception. To build JMMMU-Pro, we propose Vibe Benchmark Construction, a methodology in which an image generative model (e.g., Nano Banana Pro) produces candidate visual questions, and humans verify the outputs and, when necessary, regenerate with adjusted prompts to ensure quality. By leveraging Nano Banana Pro's highly realistic image generation capabilities and its ability to embed clean Japanese text, we construct a high-quality benchmark at low cost, covering a wide range of background and layout designs. Experimental results show that all open-source LMMs struggle substantially with JMMMU-Pro, underscoring JMMMU-Pro as an important benchmark for guiding future efforts in the open-source community. We believe that JMMMU-Pro provides a more rigorous evaluation tool for assessing the Japanese capabilities of LMMs and that our Vibe Benchmark Construction also offers an efficient guideline for future development of image-based VQA benchmarks.

Authors:Ekaterina Artemova, Laurie Burchell, Daryna Dementieva, Shu Okabe, Mariya Shmatova, Pedro Ortiz Suarez
Title: Low-Resource, High-Impact: Building Corpora for Inclusive Language Technologies
Abstract:
This tutorial (https://tum-nlp.github.io/low-resource-tutorial) is designed for NLP practitioners, researchers, and developers working with multilingual and low-resource languages who seek to create more equitable and socially impactful language technologies. Participants will walk away with a practical toolkit for building end-to-end NLP pipelines for underrepresented languages -- from data collection and web crawling to parallel sentence mining, machine translation, and downstream applications such as text classification and multimodal reasoning. The tutorial presents strategies for tackling the challenges of data scarcity and cultural variance, offering hands-on methods and modeling frameworks. We will focus on fair, reproducible, and community-informed development approaches, grounded in real-world scenarios. We will showcase a diverse set of use cases covering over 10 languages from different language families and geopolitical contexts, including both digitally resource-rich and severely underrepresented languages.

Authors:Andreas Lolos, Theofilos Christodoulou, Aris L. Moustakas, Stergios Christodoulidis, Maria Vakalopoulou
Title: CAPRMIL: Context-Aware Patch Representations for Multiple Instance Learning
Abstract:
In computational pathology, weak supervision has become the standard for deep learning due to the gigapixel scale of WSIs and the scarcity of pixel-level annotations, with Multiple Instance Learning (MIL) established as the principal framework for slide-level model training. In this paper, we introduce a novel setting for MIL methods, inspired by proceedings in Neural Partial Differential Equation (PDE) Solvers. Instead of relying on complex attention-based aggregation, we propose an efficient, aggregator-agnostic framework that removes the complexity of correlation learning from the MIL aggregator. CAPRMIL produces rich context-aware patch embeddings that promote effective correlation learning on downstream tasks. By projecting patch features -- extracted using a frozen patch encoder -- into a small set of global context/morphology-aware tokens and utilizing multi-head self-attention, CAPRMIL injects global context with linear computational complexity with respect to the bag size. Paired with a simple Mean MIL aggregator, CAPRMIL matches state-of-the-art slide-level performance across multiple public pathology benchmarks, while reducing the total number of trainable parameters by 48%-92.8% versus SOTA MILs, lowering FLOPs during inference by 52%-99%, and ranking among the best models on GPU memory efficiency and training time. Our results indicate that learning rich, context-aware instance representations before aggregation is an effective and scalable alternative to complex pooling for whole-slide analysis. Our code is available at https://github.com/mandlos/CAPRMIL

Authors:Yukun Ren, Siwei Yu, Kai Chen, Jianwei Ma
Title: Seismology modeling agent: A smart assistant for geophysical researchers
Abstract:
To address the steep learning curve and reliance on complex manual file editing and command-line operations in the traditional workflow of the mainstream open-source seismic wave simulation software SPECFEM, this paper proposes an intelligent, interactive workflow powered by Large Language Models (LLMs). We introduce the first Model Context Protocol (MCP) server suite for SPECFEM (supporting 2D, 3D Cartesian, and 3D Globe versions), which decomposes the entire simulation process into discrete, agent-executable tools spanning from parameter generation and mesh partitioning to solver execution and visualization. This approach enables a paradigm shift from file-driven to intent-driven conversational interactions. The framework supports both fully automated execution and human-in-the-loop collaboration, allowing researchers to guide simulation strategies in real time and retain scientific decision-making authority while significantly reducing tedious low-level operations. Validated through multiple case studies, the workflow operates seamlessly in both autonomous and interactive modes, yielding high-fidelity results consistent with standard baselines. As the first application of MCP technology to computational seismology, this study significantly lowers the entry barrier, enhances reproducibility, and offers a promising avenue for advancing computational geophysics toward AI-assisted and automated scientific research. The complete source code is available at https://github.com/RenYukun1563/specfem-mcp.

Authors:Huayang Li, Tianyu Zhao, Richard Sproat
Title: RePo: Language Models with Context Re-Positioning
Abstract:
In-context learning is fundamental to modern Large Language Models (LLMs); however, prevailing architectures impose a rigid and fixed contextual structure by assigning linear or constant positional indices. Drawing on Cognitive Load Theory (CLT), we argue that this uninformative structure increases extraneous cognitive load, consuming finite working memory capacity that should be allocated to deep reasoning and attention allocation. To address this, we propose RePo, a novel mechanism that reduces extraneous load via context re-positioning. Unlike standard approaches, RePo utilizes a differentiable module, $f_ϕ$, to assign token positions that capture contextual dependencies, rather than replying on pre-defined integer range. By continually pre-training on the OLMo-2 1B backbone, we demonstrate that RePo significantly enhances performance on tasks involving noisy contexts, structured data, and longer context length, while maintaining competitive performance on general short-context tasks. Detailed analysis reveals that RePo successfully allocate higher attention to distant but relevant information, assign positions in dense and non-linear space, and capture the intrinsic structure of the input context. Our code is available at https://github.com/SakanaAI/repo.

Authors:Kelly J. Davis
Title: Gödel's Poetry
Abstract:
Formal, automated theorem proving has long been viewed as a challenge to artificial intelligence. We introduce here a new approach to computer theorem proving, one that employs specialized language models for Lean4 proof generation combined with recursive decomposition of difficult theorems into simpler entailing propositions. These models are coordinated through a multi-agent architecture that orchestrates autoformalization (if required), proof generation, decomposition of difficult theorems into simpler entailing propositions, and recursive proof (and/or decomposition) of these propositions. Without decomposition, we achieve a 90.4% pass rate on miniF2F. With decomposition, this is significantly improved. A key technical contribution lies in our extension of the Kimina Lean Server with abstract syntax tree (AST) parsing capabilities to facilitate automated, recursive proof decomposition. The system is made available on PyPI as goedels-poetry (at https://pypi.org/project/goedels-poetry ), and the open-source implementation KellyJDavis/goedels-poetry (at https://github.com/KellyJDavis/goedels-poetry ) facilitates both adaptation to alternative language models and extension with custom functionality.

Authors:Timo Klein, Thomas Lang, Andrii Shkabrii, Alexander Sturm, Kevin Sidak, Lukas Miklautz, Claudia Plant, Yllka Velaj, Sebastian Tschiatschek
Title: Understanding and Improving Hyperbolic Deep Reinforcement Learning
Abstract:
The performance of reinforcement learning (RL) agents depends critically on the quality of the underlying feature representations. Hyperbolic feature spaces are well-suited for this purpose, as they naturally capture hierarchical and relational structure often present in complex RL environments. However, leveraging these spaces commonly faces optimization challenges due to the nonstationarity of RL. In this work, we identify key factors that determine the success and failure of training hyperbolic deep RL agents. By analyzing the gradients of core operations in the Poincaré Ball and Hyperboloid models of hyperbolic geometry, we show that large-norm embeddings destabilize gradient-based training, leading to trust-region violations in proximal policy optimization (PPO). Based on these insights, we introduce Hyper++, a new hyperbolic PPO agent that consists of three components: (i) stable critic training through a categorical value loss instead of regression; (ii) feature regularization guaranteeing bounded norms while avoiding the curse of dimensionality from clipping; and (iii) using a more optimization-friendly formulation of hyperbolic network layers. In experiments on ProcGen, we show that Hyper++ guarantees stable learning, outperforms prior hyperbolic agents, and reduces wall-clock time by approximately 30%. On Atari-5 with Double DQN, Hyper++ strongly outperforms Euclidean and hyperbolic baselines. We release our code at https://github.com/Probabilistic-and-Interactive-ML/hyper-rl .

Authors:Zhijie Zhong, Zhiwen Yu, Pengyu Li, Jianming Lv, C. L. Philip Chen, Min Chen
Title: PathFinder: Advancing Path Loss Prediction for Single-to-Multi-Transmitter Scenario
Abstract:
Radio path loss prediction (RPP) is critical for optimizing 5G networks and enabling IoT, smart city, and similar applications. However, current deep learning-based RPP methods lack proactive environmental modeling, struggle with realistic multi-transmitter scenarios, and generalize poorly under distribution shifts, particularly when training/testing environments differ in building density or transmitter configurations. This paper identifies three key issues: (1) passive environmental modeling that overlooks transmitters and key environmental features; (2) overemphasis on single-transmitter scenarios despite real-world multi-transmitter prevalence; (3) excessive focus on in-distribution performance while neglecting distribution shift challenges. To address these, we propose PathFinder, a novel architecture that actively models buildings and transmitters via disentangled feature encoding and integrates Mask-Guided Low-rank Attention to independently focus on receiver and building regions. We also introduce a Transmitter-Oriented Mixup strategy for robust training and a new benchmark, single-to-multi-transmitter RPP (S2MT-RPP), tailored to evaluate extrapolation performance (multi-transmitter testing after single-transmitter training). Experimental results show PathFinder outperforms state-of-the-art methods significantly, especially in challenging multi-transmitter scenarios. Our code and project site are available at: https://emorzz1g.github.io/PathFinder/.

Authors:Junjie Ma, Jinlong Li
Title: RADAR: Accelerating Large Language Model Inference With RL-Based Dynamic Draft Trees
Abstract:
Inference with modern Large Language Models (LLMs) is expensive and slow, and speculative sampling has emerged as an effective solution to this problem, however, the number of the calls to the draft model for generating candidate tokens in speculative sampling is a preset hyperparameter, lacking flexibility. To generate and utilize the candidate tokens more effectively, we propose RADAR, a novel speculative sampling method with RL-based dynamic draft trees. RADAR formulates the draft tree generation process as a Markov Decision Process (MDP) and employs offline reinforcement learning to train a prediction model, which enables real-time decision on the calls to the draft model, reducing redundant computations and further accelerating inference. Evaluations across three LLMs and four tasks show that RADAR achieves a speedup of 3.17x-4.82x over the auto-regressive decoding baseline. The code is available at https://github.com/minaduki-sora/RADAR.

Authors:Ignacio Alzugaray, Marwan Taher, Andrew J. Davison
Title: ACE-SLAM: Scene Coordinate Regression for Neural Implicit Real-Time SLAM
Abstract:
We present a novel neural RGB-D Simultaneous Localization And Mapping (SLAM) system that learns an implicit map of the scene in real time. For the first time, we explore the use of Scene Coordinate Regression (SCR) as the core implicit map representation in a neural SLAM pipeline, a paradigm that trains a lightweight network to directly map 2D image features to 3D global coordinates. SCR networks provide efficient, low-memory 3D map representations, enable extremely fast relocalization, and inherently preserve privacy, making them particularly suitable for neural implicit SLAM. Our system is the first one to achieve strict real-time in neural implicit RGB-D SLAM by relying on a SCR-based representation. We introduce a novel SCR architecture specifically tailored for this purpose and detail the critical design choices required to integrate SCR into a live SLAM pipeline. The resulting framework is simple yet flexible, seamlessly supporting both sparse and dense features, and operates reliably in dynamic environments without special adaptation. We evaluate our approach on established synthetic and real-world benchmarks, demonstrating competitive performance against the state of the art. Project Page: https://github.com/ialzugaray/ace-slam

Authors:Zongyao Li, Kengo Ishida, Satoshi Yamazaki, Xiaotong Ji, Jianquan Liu
Title: KFS-Bench: Comprehensive Evaluation of Key Frame Sampling in Long Video Understanding
Abstract:
We propose KFS-Bench, the first benchmark for key frame sampling in long video question answering (QA), featuring multi-scene annotations to enable direct and robust evaluation of sampling strategies. Key frame sampling is crucial for efficient long-form video understanding. In long video QA, selecting informative frames enables multimodal large language models (MLLMs) to improve both accuracy and efficiency. KFS-Bench addresses the limitation of prior works that only indirectly assess frame selection quality via QA accuracy. By providing ground-truth annotations of multiple disjoint scenes required per question, KFS-Bench allows us to directly analyze how different sampling approaches capture essential content across an entire long video. Using KFS-Bench, we conduct a comprehensive study of key frame sampling methods and identify that not only sampling precision but also scene coverage and sampling balance are the key factors influencing QA performance. Regarding all the factors, we design a novel sampling quality metric that correlates with QA accuracy. Furthermore, we develop a novel key frame sampling method that leverages question-video relevance to balance sampling diversity against question-frame similarity, thereby improving coverage of relevant scenes. Our adaptively balanced sampling approach achieves superior performance in both key frame sampling and QA performance. The benchmark is available at https://github.com/NEC-VID/KFS-Bench.

Authors:Shufan Li, Konstantinos Kallidromitis, Akash Gokul, Yusuke Kato, Kazuki Kozuka, Aditya Grover
Title: MobileWorldBench: Towards Semantic World Modeling For Mobile Agents
Abstract:
World models have shown great utility in improving the task performance of embodied agents. While prior work largely focuses on pixel-space world models, these approaches face practical limitations in GUI settings, where predicting complex visual elements in future states is often difficult. In this work, we explore an alternative formulation of world modeling for GUI agents, where state transitions are described in natural language rather than predicting raw pixels. First, we introduce MobileWorldBench, a benchmark that evaluates the ability of vision-language models (VLMs) to function as world models for mobile GUI agents. Second, we release MobileWorld, a large-scale dataset consisting of 1.4M samples, that significantly improves the world modeling capabilities of VLMs. Finally, we propose a novel framework that integrates VLM world models into the planning framework of mobile agents, demonstrating that semantic world models can directly benefit mobile agents by improving task success rates. The code and dataset is available at https://github.com/jacklishufan/MobileWorld

Authors:Yang Cao, Yubin Chen, Xuyang Guo, Zhao Song, Song Yue, Jiahao Zhang, Jiale Zhao
Title: Evaluating Frontier LLMs on PhD-Level Mathematical Reasoning: A Benchmark on a Textbook in Theoretical Computer Science about Randomized Algorithms
Abstract:
The rapid advancement of large language models (LLMs) has led to significant breakthroughs in automated mathematical reasoning and scientific discovery. Georgiev, G${ó}$mez-Serrano, Tao, and Wagner [GGSTW+25] demonstrate that AI systems can explore new constructions and improve existing bounds, illustrating the growing potential of LLMs to accelerate mathematical discovery. Similarly, Bubeck et al. [BCE+25] show that GPT-5 can meaningfully contribute to scientific workflows, from proposing hypotheses to generating proofs and analyses. Despite these advances, a rigorous evaluation of these models on canonical, graduate-level mathematical theory remains necessary to understand their baseline reasoning capabilities. In this paper, we present a comprehensive benchmark of four frontier models: GPT-5-Thinking, Gemini-3-Pro, Claude-Sonnet-4.5-Thinking, and Grok-4 against the classic curriculum of Randomized Algorithms by Motwani and Raghavan [MR95]. We tasked each model with generating formal LaTeX proofs for a series of lemmas and exercises spanning the textbook. We find that while the top-tier models (Gemini, and Claude) achieve a high accuracy rate (approx. 66%), demonstrating a robust grasp of probabilistic method and formal logic, other models lag significantly in consistency (approx. 40%). We provide a qualitative analysis of the generated proofs, highlighting differences in conciseness, hallucination rates, and logical structure. Our results suggest that while frontier models have reached a threshold of proficiency suitable for graduate-level pedagogical assistance and formalization, significant variance exists in their reliability for rigorous mathematical derivation. The code and the full set of LLM-generated responses are open-sourced and publicly available at https://github.com/magiclinux/math_benchmark_probability.

Authors:TK Lee
Title: State-Dependent Refusal and Learned Incapacity in RLHF-Aligned Language Models
Abstract:
Large language models (LLMs) are widely deployed as general-purpose tools, yet extended interaction can reveal behavioral patterns not captured by standard quantitative benchmarks. We present a qualitative case-study methodology for auditing policy-linked behavioral selectivity in long-horizon interaction. In a single 86-turn dialogue session, the same model shows Normal Performance (NP) in broad, non-sensitive domains while repeatedly producing Functional Refusal (FR) in provider- or policy-sensitive domains, yielding a consistent asymmetry between NP and FR across domains. Drawing on learned helplessness as an analogy, we introduce learned incapacity (LI) as a behavioral descriptor for this selective withholding without implying intentionality or internal mechanisms. We operationalize three response regimes (NP, FR, Meta-Narrative; MN) and show that MN role-framing narratives tend to co-occur with refusals in the same sensitive contexts. Overall, the study proposes an interaction-level auditing framework based on observable behavior and motivates LI as a lens for examining potential alignment side effects, warranting further investigation across users and models.

Authors:Md. Najib Hasan, Imran Ahmad, Sourav Basak Shuvo, Md. Mahadi Hasan Ankon, Sunanda Das, Nazmul Siddique, Hui Wang
Title: DL$^3$M: A Vision-to-Language Framework for Expert-Level Medical Reasoning through Deep Learning and Large Language Models
Abstract:
Medical image classifiers detect gastrointestinal diseases well, but they do not explain their decisions. Large language models can generate clinical text, yet they struggle with visual reasoning and often produce unstable or incorrect explanations. This leaves a gap between what a model sees and the type of reasoning a clinician expects. We introduce a framework that links image classification with structured clinical reasoning. A new hybrid model, MobileCoAtNet, is designed for endoscopic images and achieves high accuracy across eight stomach-related classes. Its outputs are then used to drive reasoning by several LLMs. To judge this reasoning, we build two expert-verified benchmarks covering causes, symptoms, treatment, lifestyle, and follow-up care. Thirty-two LLMs are evaluated against these gold standards. Strong classification improves the quality of their explanations, but none of the models reach human-level stability. Even the best LLMs change their reasoning when prompts vary. Our study shows that combining DL with LLMs can produce useful clinical narratives, but current LLMs remain unreliable for high-stakes medical decisions. The framework provides a clearer view of their limits and a path for building safer reasoning systems. The complete source code and datasets used in this study are available at https://github.com/souravbasakshuvo/DL3M.

Authors:Haochen Yuan, Yang Zhang, Xiang He, Quan Z. Sheng, Zhongjie Wang
Title: Plug-and-Play Parameter-Efficient Tuning of Embeddings for Federated Recommendation
Abstract:
With the rise of cloud-edge collaboration, recommendation services are increasingly trained in distributed environments. Federated Recommendation (FR) enables such multi-end collaborative training while preserving privacy by sharing model parameters instead of raw data. However, the large number of parameters, primarily due to the massive item embeddings, significantly hampers communication efficiency. While existing studies mainly focus on improving the efficiency of FR models, they largely overlook the issue of embedding parameter overhead. To address this gap, we propose a FR training framework with Parameter-Efficient Fine-Tuning (PEFT) based embedding designed to reduce the volume of embedding parameters that need to be transmitted. Our approach offers a lightweight, plugin-style solution that can be seamlessly integrated into existing FR methods. In addition to incorporating common PEFT techniques such as LoRA and Hash-based encoding, we explore the use of Residual Quantized Variational Autoencoders (RQ-VAE) as a novel PEFT strategy within our framework. Extensive experiments across various FR model backbones and datasets demonstrate that our framework significantly reduces communication overhead while improving accuracy. The source code is available at https://github.com/young1010/FedPEFT.

Authors:Susung Hong, Chongjian Ge, Zhifei Zhang, Jui-Hsien Wang
Title: DiffusionBrowser: Interactive Diffusion Previews via Multi-Branch Decoders
Abstract:
Video diffusion models have revolutionized generative video synthesis, but they are imprecise, slow, and can be opaque during generation -- keeping users in the dark for a prolonged period. In this work, we propose DiffusionBrowser, a model-agnostic, lightweight decoder framework that allows users to interactively generate previews at any point (timestep or transformer block) during the denoising process. Our model can generate multi-modal preview representations that include RGB and scene intrinsics at more than 4$\times$ real-time speed (less than 1 second for a 4-second video) that convey consistent appearance and motion to the final video. With the trained decoder, we show that it is possible to interactively guide the generation at intermediate noise steps via stochasticity reinjection and modal steering, unlocking a new control capability. Moreover, we systematically probe the model using the learned decoders, revealing how scene, object, and other details are composed and assembled during the otherwise black-box denoising process.

Authors:Ziqi Ma, Hongqiao Chen, Yisong Yue, Georgia Gkioxari
Title: Feedforward 3D Editing via Text-Steerable Image-to-3D
Abstract:
Recent progress in image-to-3D has opened up immense possibilities for design, AR/VR, and robotics. However, to use AI-generated 3D assets in real applications, a critical requirement is the capability to edit them easily. We present a feedforward method, Steer3D, to add text steerability to image-to-3D models, which enables editing of generated 3D assets with language. Our approach is inspired by ControlNet, which we adapt to image-to-3D generation to enable text steering directly in a forward pass. We build a scalable data engine for automatic data generation, and develop a two-stage training recipe based on flow-matching training and Direct Preference Optimization (DPO). Compared to competing methods, Steer3D more faithfully follows the language instruction and maintains better consistency with the original 3D asset, while being 2.4x to 28.5x faster. Steer3D demonstrates that it is possible to add a new modality (text) to steer the generation of pretrained image-to-3D generative models with 100k data. Project website: https://glab-caltech.github.io/steer3d/

Authors:Haoyue Zhang, Meera Chappidi, Erolcan Sayar, Helen Richards, Zhijun Chen, Lucas Liu, Roxanne Wadia, Peter A Humphrey, Fady Ghali, Alberto Contreras-Sanz, Peter Black, Jonathan Wright, Stephanie Harmon, Michael Haffner
Title: DA-SSL: self-supervised domain adaptor to leverage foundational models in turbt histopathology slides
Abstract:
Recent deep learning frameworks in histopathology, particularly multiple instance learning (MIL) combined with pathology foundational models (PFMs), have shown strong performance. However, PFMs exhibit limitations on certain cancer or specimen types due to domain shifts - these cancer types were rarely used for pretraining or specimens contain tissue-based artifacts rarely seen within the pretraining population. Such is the case for transurethral resection of bladder tumor (TURBT), which are essential for diagnosing muscle-invasive bladder cancer (MIBC), but contain fragmented tissue chips and electrocautery artifacts and were not widely used in publicly available PFMs. To address this, we propose a simple yet effective domain-adaptive self-supervised adaptor (DA-SSL) that realigns pretrained PFM features to the TURBT domain without fine-tuning the foundational model itself. We pilot this framework for predicting treatment response in TURBT, where histomorphological features are currently underutilized and identifying patients who will benefit from neoadjuvant chemotherapy (NAC) is challenging. In our multi-center study, DA-SSL achieved an AUC of 0.77+/-0.04 in five-fold cross-validation and an external test accuracy of 0.84, sensitivity of 0.71, and specificity of 0.91 using majority voting. Our results demonstrate that lightweight domain adaptation with self-supervision can effectively enhance PFM-based MIL pipelines for clinically challenging histopathology tasks. Code is Available at https://github.com/zhanghaoyue/DA_SSL_TURBT.

Authors:Leonard Bereska, Zoe Tzifa-Kratira, Reza Samavi, Efstratios Gavves
Title: Superposition as Lossy Compression: Measure with Sparse Autoencoders and Connect to Adversarial Vulnerability
Abstract:
Neural networks achieve remarkable performance through superposition: encoding multiple features as overlapping directions in activation space rather than dedicating individual neurons to each feature. This challenges interpretability, yet we lack principled methods to measure superposition. We present an information-theoretic framework measuring a neural representation's effective degrees of freedom. We apply Shannon entropy to sparse autoencoder activations to compute the number of effective features as the minimum neurons needed for interference-free encoding. Equivalently, this measures how many "virtual neurons" the network simulates through superposition. When networks encode more effective features than actual neurons, they must accept interference as the price of compression. Our metric strongly correlates with ground truth in toy models, detects minimal superposition in algorithmic tasks, and reveals systematic reduction under dropout. Layer-wise patterns mirror intrinsic dimensionality studies on Pythia-70M. The metric also captures developmental dynamics, detecting sharp feature consolidation during grokking. Surprisingly, adversarial training can increase effective features while improving robustness, contradicting the hypothesis that superposition causes vulnerability. Instead, the effect depends on task complexity and network capacity: simple tasks with ample capacity allow feature expansion (abundance regime), while complex tasks or limited capacity force reduction (scarcity regime). By defining superposition as lossy compression, this work enables principled measurement of how neural networks organize information under computational constraints, connecting superposition to adversarial robustness.

Authors:Linjie Mu, Yannian Gu, Zhongzhen Huang, Yakun Zhu, Shaoting Zhang, Xiaofan Zhang
Title: MedCEG: Reinforcing Verifiable Medical Reasoning with Critical Evidence Graph
Abstract:
Large language models with reasoning capabilities have demonstrated impressive performance across a wide range of domains. In clinical applications, a transparent, step-by-step reasoning process provides physicians with strong evidence to support decision-making. While reinforcement learning has effectively enhanced reasoning performance in medical contexts, the clinical reliability of these reasoning processes remains limited because their accuracy and validity are often overlooked during training. To address this gap, we propose MedCEG, a framework that augments medical language models with clinically valid reasoning pathways by explicitly supervising the reasoning process through a Critical Evidence Graph (CEG). We curate a dataset of challenging clinical cases and algorithmically construct a CEG for each sample to represent a high-quality verifiable reasoning pathway. To guide the reasoning process, we introduce a Clinical Reasoning Procedure Reward, which evaluates Node Coverage, Structural Correctness, and Chain Completeness, thereby providing a holistic assessment of reasoning quality. Experimental results show that MedCEG surpasses existing methods in performance while producing clinically valid reasoning chains, representing a solid advancement in reliable medical AI reasoning. The code and models are available at https://github.com/LinjieMu/MedCEG.

Authors:Yici Liu, Qi Wei Oung, Hoi Leong Lee
Title: SSAS: Cross-subject EEG-based Emotion Recognition through Source Selection with Adversarial Strategy
Abstract:
Electroencephalographic (EEG) signals have long been applied in the field of affective brain-computer interfaces (aBCIs). Cross-subject EEG-based emotion recognition has demonstrated significant potential in practical applications due to its suitability across diverse people. However, most studies on cross-subject EEG-based emotion recognition neglect the presence of inter-individual variability and negative transfer phenomena during model training. To address this issue, a cross-subject EEG-based emotion recognition through source selection with adversarial strategy is introduced in this paper. The proposed method comprises two modules: the source selection network (SS) and the adversarial strategies network (AS). The SS uses domain labels to reverse-engineer the training process of domain adaptation. Its key idea is to disrupt class separability and magnify inter-domain differences, thereby raising the classification difficulty and forcing the model to learn domain-invariant yet emotion-relevant representations. The AS gets the source domain selection results and the pretrained domain discriminators from SS. The pretrained domain discriminators compute a novel loss aimed at enhancing the performance of domain classification during adversarial training, ensuring the balance of adversarial strategies. This paper provides theoretical insights into the proposed method and achieves outstanding performance on two EEG-based emotion datasets, SEED and SEED-IV. The code can be found at https://github.com/liuyici/SSAS.

Authors:Lorenzo Pettinari, Sidaty El Hadramy, Michael Wehrli, Philippe C. Cattin, Daniel Studer, Carol C. Hasler, Maria Licci
Title: End2Reg: Learning Task-Specific Segmentation for Markerless Registration in Spine Surgery
Abstract:
Purpose: Intraoperative navigation in spine surgery demands millimeter-level accuracy. Current systems based on intraoperative radiographic imaging and bone-anchored markers are invasive, radiation-intensive and workflow disruptive. Recent markerless RGB-D registration methods offer a promising alternative, but existing approaches rely on weak segmentation labels to isolate relevant anatomical structures, which can propagate errors throughout registration. Methods: We present End2Reg an end-to-end deep learning framework that jointly optimizes segmentation and registration, eliminating the need for weak segmentation labels and manual steps. The network learns segmentation masks specifically optimized for registration, guided solely by the registration objective without direct segmentation supervision. Results: The proposed framework achieves state-of-the-art performance on ex- and in-vivo benchmarks, reducing median Target Registration Error by 32% to 1.83mm and mean Root Mean Square Error by 45% to 3.95mm, respectively. An ablation study confirms that end-to-end optimization significantly improves registration accuracy. Conclusion: The presented end-to-end RGB-D registration pipeline removes dependency on weak labels and manual steps, advancing towards fully automatic, markerless intraoperative navigation. Code and interactive visualizations are available at: https://lorenzopettinari.github.io/end-2-reg/.

Authors:Sitao Cheng, Tianle Li, Xuhan Huang, Xunjian Yin, Difan Zou
Title: Differentiable Evolutionary Reinforcement Learning
Abstract:
The design of effective reward functions presents a central and often arduous challenge in reinforcement learning (RL), particularly when developing autonomous agents for complex reasoning tasks. While automated reward optimization approaches exist, they typically rely on derivative-free evolutionary heuristics that treat the reward function as a black box, failing to capture the causal relationship between reward structure and task performance. To bridge this gap, we propose Differentiable Evolutionary Reinforcement Learning (DERL), a bilevel framework that enables the autonomous discovery of optimal reward signals. In DERL, a Meta-Optimizer evolves a reward function (i.e., Meta-Reward) by composing structured atomic primitives, guiding the training of an inner-loop policy. Crucially, unlike previous evolution, DERL is differentiable in its metaoptimization: it treats the inner-loop validation performance as a signal to update the Meta-Optimizer via reinforcement learning. This allows DERL to approximate the "meta-gradient" of task success, progressively learning to generate denser and more actionable feedback. We validate DERL across three distinct domains: robotic agent (ALFWorld), scientific simulation (ScienceWorld), and mathematical reasoning (GSM8k, MATH). Experimental results show that DERL achieves state-of-the-art performance on ALFWorld and ScienceWorld, significantly outperforming methods relying on heuristic rewards, especially in out-of-distribution scenarios. Analysis of the evolutionary trajectory demonstrates that DERL successfully captures the intrinsic structure of tasks, enabling selfimproving agent alignment without human intervention.

Authors:Joona Kytöniemi, Jousia Piha, Akseli Reunamo, Fedor Vitiugin, Farrokh Mehryary, Sampo Pyysalo
Title: FIN-bench-v2: A Unified and Robust Benchmark Suite for Evaluating Finnish Large Language Models
Abstract:
We introduce FIN-bench-v2, a unified benchmark suite for evaluating large language models in Finnish. FIN-bench-v2 consolidates Finnish versions of widely used benchmarks together with an updated and expanded version of the original FIN-bench into a single, consistently formatted collection, covering multiple-choice and generative tasks across reading comprehension, commonsense reasoning, sentiment analysis, world knowledge, and alignment. All datasets are converted to HuggingFace Datasets, which include both cloze and multiple-choice prompt formulations with five variants per task, and we incorporate human annotation or review for machine-translated resources such as GoldenSwag and XED. To select robust tasks, we pretrain a set of 2.15B-parameter decoder-only models and use their learning curves to compute monotonicity, signal-to-noise, non-random performance, and model ordering consistency, retaining only tasks that satisfy all criteria. We further evaluate a set of larger instruction-tuned models to characterize performance across tasks and prompt formulations. All datasets, prompts, and evaluation configurations are publicly available via our fork of the Language Model Evaluation Harness at https://github.com/LumiOpen/lm-evaluation-harness. Supplementary resources are released in a separate repository at https://github.com/TurkuNLP/FIN-bench-v2.

Authors:Anna Aksenova, Boris Zverkov, Nicola Dainese, Alexander Nikitin, Pekka Marttinen
Title: MiniLingua: A Small Open-Source LLM for European Languages
Abstract:
Large language models are powerful but often limited by high computational cost, privacy concerns, and English-centric training. Recent progress demonstrates that small, efficient models with around one billion parameters can deliver strong results and enable on-device use. This paper introduces MiniLingua, a multilingual open-source LLM of one billion parameters trained from scratch for 13 European languages, designed to balance coverage and instruction-following capabilities. Based on evaluation results, the instruction-tuned version of MiniLingua outperforms EuroLLM, a model with a similar training approach but a larger training budget, on summarization, classification and both open- and closed-book question answering. Moreover, it remains competitive with more advanced state-of-the-art models on open-ended generation tasks. We release model weights, tokenizer and source code used for data processing and model training.

Authors:Hao Fu, Wei Liu, Shuai Zhou
Title: Intrinsic-Motivation Multi-Robot Social Formation Navigation with Coordinated Exploration
Abstract:
This paper investigates the application of reinforcement learning (RL) to multi-robot social formation navigation, a critical capability for enabling seamless human-robot coexistence. While RL offers a promising paradigm, the inherent unpredictability and often uncooperative dynamics of pedestrian behavior pose substantial challenges, particularly concerning the efficiency of coordinated exploration among robots. To address this, we propose a novel coordinated-exploration multi-robot RL algorithm introducing an intrinsic motivation exploration. Its core component is a self-learning intrinsic reward mechanism designed to collectively alleviate policy conservatism. Moreover, this algorithm incorporates a dual-sampling mode within the centralized training and decentralized execution framework to enhance the representation of both the navigation policy and the intrinsic reward, leveraging a two-time-scale update rule to decouple parameter updates. Empirical results on social formation navigation benchmarks demonstrate the proposed algorithm's superior performance over existing state-of-the-art methods across crucial metrics. Our code and video demos are available at: https://github.com/czxhunzi/CEMRRL.

Authors:Shu Yu, Chaochao Lu
Title: LINA: Learning INterventions Adaptively for Physical Alignment and Generalization in Diffusion Models
Abstract:
Diffusion models (DMs) have achieved remarkable success in image and video generation. However, they still struggle with (1) physical alignment and (2) out-of-distribution (OOD) instruction following. We argue that these issues stem from the models' failure to learn causal directions and to disentangle causal factors for novel recombination. We introduce the Causal Scene Graph (CSG) and the Physical Alignment Probe (PAP) dataset to enable diagnostic interventions. This analysis yields three key insights. First, DMs struggle with multi-hop reasoning for elements not explicitly determined in the prompt. Second, the prompt embedding contains disentangled representations for texture and physics. Third, visual causal structure is disproportionately established during the initial, computationally limited denoising steps. Based on these findings, we introduce LINA (Learning INterventions Adaptively), a novel framework that learns to predict prompt-specific interventions, which employs (1) targeted guidance in the prompt and visual latent spaces, and (2) a reallocated, causality-aware denoising schedule. Our approach enforces both physical alignment and OOD instruction following in image and video DMs, achieving state-of-the-art performance on challenging causal generation tasks and the Winoground dataset. Our project page is at https://opencausalab.github.io/LINA.

Authors:Peter Kocsis, Lukas Höllein, Matthias Nießner
Title: Intrinsic Image Fusion for Multi-View 3D Material Reconstruction
Abstract:
We introduce Intrinsic Image Fusion, a method that reconstructs high-quality physically based materials from multi-view images. Material reconstruction is highly underconstrained and typically relies on analysis-by-synthesis, which requires expensive and noisy path tracing. To better constrain the optimization, we incorporate single-view priors into the reconstruction process. We leverage a diffusion-based material estimator that produces multiple, but often inconsistent, candidate decompositions per view. To reduce the inconsistency, we fit an explicit low-dimensional parametric function to the predictions. We then propose a robust optimization framework using soft per-view prediction selection together with confidence-based soft multi-view inlier set to fuse the most consistent predictions of the most confident views into a consistent parametric material space. Finally, we use inverse path tracing to optimize for the low-dimensional parameters. Our results outperform state-of-the-art methods in material disentanglement on both synthetic and real scenes, producing sharp and clean reconstructions suitable for high-quality relighting.

Authors:Vivek Alumootil, Tuan-Anh Vu, M. Khalid Jawed
Title: DePT3R: Joint Dense Point Tracking and 3D Reconstruction of Dynamic Scenes in a Single Forward Pass
Abstract:
Current methods for dense 3D point tracking in dynamic scenes typically rely on pairwise processing, require known camera poses, or assume a temporal ordering to input frames, constraining their flexibility and applicability. Additionally, recent advances have successfully enabled efficient 3D reconstruction from large-scale, unposed image collections, underscoring opportunities for unified approaches to dynamic scene understanding. Motivated by this, we propose DePT3R, a novel framework that simultaneously performs dense point tracking and 3D reconstruction of dynamic scenes from multiple images in a single forward pass. This multi-task learning is achieved by extracting deep spatio-temporal features with a powerful backbone and regressing pixel-wise maps with dense prediction heads. Crucially, DePT3R operates without requiring camera poses, substantially enhancing its adaptability and efficiency-especially important in dynamic environments with rapid changes. We validate DePT3R on several challenging benchmarks involving dynamic scenes, demonstrating strong performance and significant improvements in memory efficiency over existing state-of-the-art methods. Data and codes are available via the open repository: https://github.com/StructuresComp/DePT3R

Authors:Shenzhi Yang, Guangcheng Zhu, Xing Zheng, Yingfan MA, Zhongqi Chen, Bowen Song, Weiqiang Wang, Junbo Zhao, Gang Chen, Haobo Wang
Title: TraPO: A Semi-Supervised Reinforcement Learning Framework for Boosting LLM Reasoning
Abstract:
Reinforcement learning with verifiable rewards (RLVR) has proven effective in training large reasoning models (LRMs) by leveraging answer-verifiable signals to guide policy optimization, which, however, suffers from high annotation costs. To alleviate this problem, recent work has explored unsupervised RLVR methods that derive rewards solely from the model's internal consistency, such as through entropy and majority voting. While seemingly promising, these methods often suffer from model collapse in the later stages of training, which may arise from the reinforcement of incorrect reasoning patterns in the absence of external supervision. In this work, we investigate a novel semi-supervised RLVR paradigm that utilizes a small labeled set to guide RLVR training on unlabeled samples. Our key insight is that supervised rewards are essential for stabilizing consistency-based training on unlabeled samples, ensuring that only reasoning patterns verified on labeled instances are incorporated into RL training. Technically, we propose an effective policy optimization algorithm, TraPO, that identifies reliable unlabeled samples by matching their learning trajectory similarity to labeled ones. Building on this, TraPO achieves remarkable data efficiency and strong generalization on six widely used mathematical reasoning benchmarks (AIME24/25, AMC, MATH-500, Minerva, and Olympiad) and three out-of-distribution tasks (ARC-c, GPQA-diamond, and MMLU-pro). With only 1K labeled and 3K unlabeled samples, TraPO reaches 42.6% average accuracy, surpassing the best unsupervised method trained on 45K unlabeled samples (38.3%). Notably, when using 4K labeled and 12K unlabeled samples, TraPO even outperforms the fully supervised model trained on the full 45K labeled samples on all benchmarks, while using only 10% of the labeled data. The code is available via https://github.com/ShenzhiYang2000/TRAPO.

Authors:Guanhua Ji, Harsha Polavaram, Lawrence Yunliang Chen, Sandeep Bajamahal, Zehan Ma, Simeon Adebola, Chenfeng Xu, Ken Goldberg
Title: OXE-AugE: A Large-Scale Robot Augmentation of OXE for Scaling Cross-Embodiment Policy Learning
Abstract:
Large and diverse datasets are needed for training generalist robot policies that have potential to control a variety of robot embodiments -- robot arm and gripper combinations -- across diverse tasks and environments. As re-collecting demonstrations and retraining for each new hardware platform are prohibitively costly, we show that existing robot data can be augmented for transfer and generalization. The Open X-Embodiment (OXE) dataset, which aggregates demonstrations from over 60 robot datasets, has been widely used as the foundation for training generalist policies. However, it is highly imbalanced: the top four robot types account for over 85\% of its real data, which risks overfitting to robot-scene combinations. We present AugE-Toolkit, a scalable robot augmentation pipeline, and OXE-AugE, a high-quality open-source dataset that augments OXE with 9 different robot embodiments. OXE-AugE provides over 4.4 million trajectories, more than triple the size of the original OXE. We conduct a systematic study of how scaling robot augmentation impacts cross-embodiment learning. Results suggest that augmenting datasets with diverse arms and grippers improves policy performance not only on the augmented robots, but also on unseen robots and even the original robots under distribution shifts. In physical experiments, we demonstrate that state-of-the-art generalist policies such as OpenVLA and $π_0$ benefit from fine-tuning on OXE-AugE, improving success rates by 24-45% on previously unseen robot-gripper combinations across four real-world manipulation tasks. Project website: https://OXE-AugE.github.io/.

Authors:Ziqiang Zhu, Bowei Yang
Title: UniVCD: A New Method for Unsupervised Change Detection in the Open-Vocabulary Era
Abstract:
Change detection (CD) identifies scene changes from multi-temporal observations and is widely used in urban development and environmental monitoring. Most existing CD methods rely on supervised learning, making performance strongly dataset-dependent and incurring high annotation costs; they typically focus on a few predefined categories and generalize poorly to diverse scenes. With the rise of vision foundation models such as SAM2 and CLIP, new opportunities have emerged to relax these constraints. We propose Unified Open-Vocabulary Change Detection (UniVCD), an unsupervised, open-vocabulary change detection method built on frozen SAM2 and CLIP. UniVCD detects category-agnostic changes across diverse scenes and imaging geometries without any labeled data or paired change images. A lightweight feature alignment module is introduced to bridge the spatially detailed representations from SAM2 and the semantic priors from CLIP, enabling high-resolution, semantically aware change estimation while keeping the number of trainable parameters small. On top of this, a streamlined post-processing pipeline is further introduced to suppress noise and pseudo-changes, improving the detection accuracy for objects with well-defined boundaries. Experiments on several public BCD (Binary Change Detection) and SCD (Semantic Change Detection) benchmarks show that UniVCD achieves consistently strong performance and matches or surpasses existing open-vocabulary CD methods in key metrics such as F1 and IoU. The results demonstrate that unsupervised change detection with frozen vision foundation models and lightweight multi-modal alignment is a practical and effective paradigm for open-vocabulary CD. Code and pretrained models will be released at https://github.com/Die-Xie/UniVCD.

Authors:Junbo Jacob Lian, Mingyang Yu, Kaichen Ouyang, Shengwei Fu, Rui Zhong, Yujun Zhang, Jun Zhang, Huiling Chen
Title: OPAL: Operator-Programmed Algorithms for Landscape-Aware Black-Box Optimization
Abstract:
Black-box optimization often relies on evolutionary and swarm algorithms whose performance is highly problem dependent. We view an optimizer as a short program over a small vocabulary of search operators and learn this operator program separately for each problem instance. We instantiate this idea in Operator-Programmed Algorithms (OPAL), a landscape-aware framework for continuous black-box optimization that uses a small design budget with a standard differential evolution baseline to probe the landscape, builds a $k$-nearest neighbor graph over sampled points, and encodes this trajectory with a graph neural network. A meta-learner then maps the resulting representation to a phase-wise schedule of exploration, restart, and local search operators. On the CEC~2017 test suite, a single meta-trained OPAL policy is statistically competitive with state-of-the-art adaptive differential evolution variants and achieves significant improvements over simpler baselines under nonparametric tests. Ablation studies on CEC~2017 justify the choices for the design phase, the trajectory graph, and the operator-program representation, while the meta-components add only modest wall-clock overhead. Overall, the results indicate that operator-programmed, landscape-aware per-instance design is a practical way forward beyond ad hoc metaphor-based algorithms in black-box optimization.

Authors:Boyuan Li, Sipeng Zheng, Bin Cao, Ruihua Song, Zongqing Lu
Title: Robust Motion Generation using Part-level Reliable Data from Videos
Abstract:
Extracting human motion from large-scale web videos offers a scalable solution to the data scarcity issue in character animation. However, some human parts in many video frames cannot be seen due to off-screen captures or occlusions. It brings a dilemma: discarding the data missing any part limits scale and diversity, while retaining it compromises data quality and model performance. To address this problem, we propose leveraging credible part-level data extracted from videos to enhance motion generation via a robust part-aware masked autoregression model. First, we decompose a human body into five parts and detect the parts clearly seen in a video frame as "credible". Second, the credible parts are encoded into latent tokens by our proposed part-aware variational autoencoder. Third, we propose a robust part-level masked generation model to predict masked credible parts, while ignoring those noisy parts. In addition, we contribute K700-M, a challenging new benchmark comprising approximately 200k real-world motion sequences, for evaluation. Experimental results indicate that our method successfully outperforms baselines on both clean and noisy datasets in terms of motion quality, semantic consistency and diversity. Project page: https://boyuaner.github.io/ropar-main/

Authors:Mahir Labib Dihan, Tanzima Hashem, Mohammed Eunus Ali, Md Rizwan Parvez
Title: WebOperator: Action-Aware Tree Search for Autonomous Agents in Web Environment
Abstract:
LLM-based agents often operate in a greedy, step-by-step manner, selecting actions solely based on the current observation without considering long-term consequences or alternative paths. This lack of foresight is particularly problematic in web environments, which are only partially observable-limited to browser-visible content (e.g., DOM and UI elements)-where a single misstep often requires complex and brittle navigation to undo. Without an explicit backtracking mechanism, agents struggle to correct errors or systematically explore alternative paths. Tree-search methods provide a principled framework for such structured exploration, but existing approaches lack mechanisms for safe backtracking, making them prone to unintended side effects. They also assume that all actions are reversible, ignoring the presence of irreversible actions-limitations that reduce their effectiveness in realistic web tasks. To address these challenges, we introduce WebOperator, a tree-search framework that enables reliable backtracking and strategic exploration. Our method incorporates a best-first search strategy that ranks actions by both reward estimates and safety considerations, along with a robust backtracking mechanism that verifies the feasibility of previously visited paths before replaying them, preventing unintended side effects. To further guide exploration, WebOperator generates action candidates from multiple, varied reasoning contexts to ensure diverse and robust exploration, and subsequently curates a high-quality action set by filtering out invalid actions pre-execution and merging semantically equivalent ones. Experimental results on WebArena and WebVoyager demonstrate the effectiveness of WebOperator. On WebArena, WebOperator achieves a state-of-the-art 54.6% success rate with gpt-4o, underscoring the critical advantage of integrating strategic foresight with safe execution.

Authors:Yuran Wang, Bohan Zeng, Chengzhuo Tong, Wenxuan Liu, Yang Shi, Xiaochen Ma, Hao Liang, Yuanxing Zhang, Wentao Zhang
Title: Scone: Bridging Composition and Distinction in Subject-Driven Image Generation via Unified Understanding-Generation Modeling
Abstract:
Subject-driven image generation has advanced from single- to multi-subject composition, while neglecting distinction, the ability to identify and generate the correct subject when inputs contain multiple candidates. This limitation restricts effectiveness in complex, realistic visual settings. We propose Scone, a unified understanding-generation method that integrates composition and distinction. Scone enables the understanding expert to act as a semantic bridge, conveying semantic information and guiding the generation expert to preserve subject identity while minimizing interference. A two-stage training scheme first learns composition, then enhances distinction through semantic alignment and attention-based masking. We also introduce SconeEval, a benchmark for evaluating both composition and distinction across diverse scenarios. Experiments demonstrate that Scone outperforms existing open-source models in composition and distinction tasks on two benchmarks. Our model, benchmark, and training data are available at: https://github.com/Ryann-Ran/Scone.

Authors:Aheli Poddar, Saptarshi Sahoo, Sujata Ghosh
Title: Understanding Syllogistic Reasoning in LLMs from Formal and Natural Language Perspectives
Abstract:
We study syllogistic reasoning in LLMs from the logical and natural language perspectives. In process, we explore fundamental reasoning capabilities of the LLMs and the direction this research is moving forward. To aid in our studies, we use 14 large language models and investigate their syllogistic reasoning capabilities in terms of symbolic inferences as well as natural language understanding. Even though this reasoning mechanism is not a uniform emergent property across LLMs, the perfect symbolic performances in certain models make us wonder whether LLMs are becoming more and more formal reasoning mechanisms, rather than making explicit the nuances of human reasoning.

Authors:Miriam Horovicz
Title: AgentSHAP: Interpreting LLM Agent Tool Importance with Monte Carlo Shapley Value Estimation
Abstract:
LLM agents that use external tools can solve complex tasks, but understanding which tools actually contributed to a response remains a blind spot. No existing XAI methods address tool-level explanations. We introduce AgentSHAP, the first framework for explaining tool importance in LLM agents. AgentSHAP is model-agnostic: it treats the agent as a black box and works with any LLM (GPT, Claude, Llama, etc.) without needing access to internal weights or gradients. Using Monte Carlo Shapley values, AgentSHAP tests how an agent responds with different tool subsets and computes fair importance scores based on game theory. Our contributions are: (1) the first explainability method for agent tool attribution, grounded in Shapley values from game theory; (2) Monte Carlo sampling that reduces cost from O(2n) to practical levels; and (3) comprehensive experiments on API-Bank showing that AgentSHAP produces consistent scores across runs, correctly identifies which tools matter, and distinguishes relevant from irrelevant tools. AgentSHAP joins TokenSHAP (for tokens) and PixelSHAP (for image regions) to complete a family of Shapley-based XAI tools for modern generative AI. Code: https://github.com/GenAISHAP/TokenSHAP.

Authors:Arastoo Zibaeirad, Marco Vieira
Title: Diverse LLMs vs. Vulnerabilities: Who Detects and Fixes Them Better?
Abstract:
Large Language Models (LLMs) are increasingly being studied for Software Vulnerability Detection (SVD) and Repair (SVR). Individual LLMs have demonstrated code understanding abilities, but they frequently struggle when identifying complex vulnerabilities and generating fixes. This study presents DVDR-LLM, an ensemble framework that combines outputs from diverse LLMs to determine whether aggregating multiple models reduces error rates. Our evaluation reveals that DVDR-LLM achieves 10-12% higher detection accuracy compared to the average performance of individual models, with benefits increasing as code complexity grows. For multi-file vulnerabilities, the ensemble approach demonstrates significant improvements in recall (+18%) and F1 score (+11.8%) over individual models. However, the approach raises measurable trade-offs: reducing false positives in verification tasks while simultaneously increasing false negatives in detection tasks, requiring careful decision on the required level of agreement among the LLMs (threshold) for increased performance across different security contexts. Artifact: https://github.com/Erroristotle/DVDR_LLM

Authors:Jiawen Chen, Yanyan He, Qi Shao, Mengli Wei, Duxin Chen, Wenwu Yu, Yanlong Zhao
Title: MetaHGNIE: Meta-Path Induced Hypergraph Contrastive Learning in Heterogeneous Knowledge Graphs
Abstract:
Node importance estimation (NIE) in heterogeneous knowledge graphs is a critical yet challenging task, essential for applications such as recommendation, knowledge reasoning, and question answering. Existing methods often rely on pairwise connections, neglecting high-order dependencies among multiple entities and relations, and they treat structural and semantic signals independently, hindering effective cross-modal integration. To address these challenges, we propose MetaHGNIE, a meta-path induced hypergraph contrastive learning framework for disentangling and aligning structural and semantic information. MetaHGNIE constructs a higher-order knowledge graph via meta-path sequences, where typed hyperedges capture multi-entity relational contexts. Structural dependencies are aggregated with local attention, while semantic representations are encoded through a hypergraph transformer equipped with sparse chunking to reduce redundancy. Finally, a multimodal fusion module integrates structural and semantic embeddings under contrastive learning with auxiliary supervision, ensuring robust cross-modal alignment. Extensive experiments on benchmark NIE datasets demonstrate that MetaHGNIE consistently outperforms state-of-the-art baselines. These results highlight the effectiveness of explicitly modeling higher-order interactions and cross-modal alignment in heterogeneous knowledge graphs. Our code is available at https://github.com/SEU-WENJIA/DualHNIE

Authors:Eray Erturk, Maryam M. Shanechi
Title: Dynamical modeling of nonlinear latent factors in multiscale neural activity with real-time inference
Abstract:
Real-time decoding of target variables from multiple simultaneously recorded neural time-series modalities, such as discrete spiking activity and continuous field potentials, is important across various neuroscience applications. However, a major challenge for doing so is that different neural modalities can have different timescales (i.e., sampling rates) and different probabilistic distributions, or can even be missing at some time-steps. Existing nonlinear models of multimodal neural activity do not address different timescales or missing samples across modalities. Further, some of these models do not allow for real-time decoding. Here, we develop a learning framework that can enable real-time recursive decoding while nonlinearly aggregating information across multiple modalities with different timescales and distributions and with missing samples. This framework consists of 1) a multiscale encoder that nonlinearly aggregates information after learning within-modality dynamics to handle different timescales and missing samples in real time, 2) a multiscale dynamical backbone that extracts multimodal temporal dynamics and enables real-time recursive decoding, and 3) modality-specific decoders to account for different probabilistic distributions across modalities. In both simulations and three distinct multiscale brain datasets, we show that our model can aggregate information across modalities with different timescales and distributions and missing samples to improve real-time target decoding. Further, our method outperforms various linear and nonlinear multimodal benchmarks in doing so.

Authors:Eray Erturk, Saba Hashemi, Maryam M. Shanechi
Title: Cross-Modal Representational Knowledge Distillation for Enhanced Spike-Informed LFP Modeling
Abstract:
Local field potentials (LFPs) can be routinely recorded alongside spiking activity in intracortical neural experiments, measure a larger complementary spatiotemporal scale of brain activity for scientific inquiry, and can offer practical advantages over spikes, including greater long-term stability, robustness to electrode degradation, and lower power requirements. Despite these advantages, recent neural modeling frameworks have largely focused on spiking activity since LFP signals pose inherent modeling challenges due to their aggregate, population-level nature, often leading to lower predictive power for downstream task variables such as motor behavior. To address this challenge, we introduce a cross-modal knowledge distillation framework that transfers high-fidelity representational knowledge from pretrained multi-session spike transformer models to LFP transformer models. Specifically, we first train a teacher spike model across multiple recording sessions using a masked autoencoding objective with a session-specific neural tokenization strategy. We then align the latent representations of the student LFP model to those of the teacher spike model. Our results show that the Distilled LFP models consistently outperform single- and multi-session LFP baselines in both fully unsupervised and supervised settings, and can generalize to other sessions without additional distillation while maintaining superior performance. These findings demonstrate that cross-modal knowledge distillation is a powerful and scalable approach for leveraging high-performing spike models to develop more accurate LFP models.

Authors:Ely Hahami, Lavik Jain, Ishaan Sinha
Title: Feeling the Strength but Not the Source: Partial Introspection in LLMs
Abstract:
Recent work from Anthropic claims that frontier models can sometimes detect and name injected "concepts" represented as activation directions. We test the robustness of these claims. First, we reproduce Anthropic's multi-turn "emergent introspection" result on Meta-Llama-3.1-8B-Instruct, finding that the model identifies and names the injected concept 20 percent of the time under Anthropic's original pipeline, exactly matching their reported numbers and thus showing that introspection is not exclusive to very large or capable models. Second, we systematically vary the inference prompt and find that introspection is fragile: performance collapses on closely related tasks such as multiple-choice identification of the injected concept or different prompts of binary discrimination of whether a concept was injected at all. Third, we identify a contrasting regime of partial introspection: the same model can reliably classify the strength of the coefficient of a normalized injected concept vector (as weak / moderate / strong / very strong) with up to 70 percent accuracy, far above the 25 percent chance baseline. Together, these results provide more evidence for Anthropic's claim that language models effectively compute a function of their baseline, internal representations during introspection; however, these self-reports about those representations are narrow and prompt-sensitive. Our code is available at https://github.com/elyhahami18/CS2881-Introspection.

Authors:Björn Lütjens, Patrick Alexander, Raf Antwerpen, Til Widmann, Guido Cervone, Marco Tedesco
Title: MeltwaterBench: Deep learning for spatiotemporal downscaling of surface meltwater
Abstract:
The Greenland ice sheet is melting at an accelerated rate due to processes that are not fully understood and hard to measure. The distribution of surface meltwater can help understand these processes and is observable through remote sensing, but current maps of meltwater face a trade-off: They are either high-resolution in time or space, but not both. We develop a deep learning model that creates gridded surface meltwater maps at daily 100m resolution by fusing data streams from remote sensing observations and physics-based models. In particular, we spatiotemporally downscale regional climate model (RCM) outputs using synthetic aperture radar (SAR), passive microwave (PMW), and a digital elevation model (DEM) over the Helheim Glacier in Eastern Greenland from 2017-2023. Using SAR-derived meltwater as "ground truth", we show that a deep learning-based method that fuses all data streams is over 10 percentage points more accurate over our study area than existing non deep learning-based approaches that only rely on a regional climate model (83% vs. 95% Acc.) or passive microwave observations (72% vs. 95% Acc.). Alternatively, creating a gridded product through a running window calculation with SAR data underestimates extreme melt events, but also achieves notable accuracy (90%) and does not rely on deep learning. We evaluate standard deep learning methods (UNet and DeepLabv3+), and publish our spatiotemporally aligned dataset as a benchmark, MeltwaterBench, for intercomparisons with more complex data-driven downscaling methods. The code and data are available at $\href{https://github.com/blutjens/hrmelt}{github.com/blutjens/hrmelt}$.

Authors:Lucine L. Oganesian, Saba Hashemi, Maryam M. Shanechi
Title: BaRISTA: Brain Scale Informed Spatiotemporal Representation of Human Intracranial Neural Activity
Abstract:
Intracranial recordings have opened a unique opportunity to simultaneously measure activity across multiregional networks in the human brain. Recent works have focused on developing transformer-based neurofoundation models of such recordings that can generalize across subjects and datasets. However, these recordings exhibit highly complex spatiotemporal interactions across diverse spatial scales, from the single-channel scale to the scale of brain regions. As such, there remain critical open questions regarding how best to encode spatial information and how to design self-supervision tasks that enable the learning of brain network patterns and enhance downstream decoding performance using such high-dimensional, multiregional recordings. To allow for exploring these questions, we propose a new spatiotemporal transformer model of multiregional neural activity and a corresponding self-supervised masked latent reconstruction task, designed to enable flexibility in the spatial scale used for token encoding and masking. Applying this model on publicly available multiregional intracranial electrophysiology (iEEG) data, we demonstrate that adjusting the spatial scale for both token encoding and masked reconstruction significantly impacts downstream decoding. Further, we find that spatial encoding at larger scales than channel-level encoding, which is commonly used in existing iEEG transformer models, improves downstream decoding performance. Finally, we demonstrate that our method allows for region-level token encoding while also maintaining accurate channel-level neural reconstruction. Taken together, our modeling framework enables exploration of the spatial scales used for token encoding and masking, reveals their importance towards self-supervised pretraining of neurofoundation models of multiregional human brain activity, and enhances downstream decoding performance.

Authors:Peichun Hua, Hao Li, Shanghao Shi, Zhiyuan Yu, Ning Zhang
Title: Rethinking Jailbreak Detection of Large Vision Language Models with Representational Contrastive Scoring
Abstract:
Large Vision-Language Models (LVLMs) are vulnerable to a growing array of multimodal jailbreak attacks, necessitating defenses that are both generalizable to novel threats and efficient for practical deployment. Many current strategies fall short, either targeting specific attack patterns, which limits generalization, or imposing high computational overhead. While lightweight anomaly-detection methods offer a promising direction, we find that their common one-class design tends to confuse novel benign inputs with malicious ones, leading to unreliable over-rejection. To address this, we propose Representational Contrastive Scoring (RCS), a framework built on a key insight: the most potent safety signals reside within the LVLM's own internal representations. Our approach inspects the internal geometry of these representations, learning a lightweight projection to maximally separate benign and malicious inputs in safety-critical layers. This enables a simple yet powerful contrastive score that differentiates true malicious intent from mere novelty. Our instantiations, MCD (Mahalanobis Contrastive Detection) and KCD (K-nearest Contrastive Detection), achieve state-of-the-art performance on a challenging evaluation protocol designed to test generalization to unseen attack types. This work demonstrates that effective jailbreak detection can be achieved by applying simple, interpretable statistical methods to the appropriate internal representations, offering a practical path towards safer LVLM deployment. Our code is available on Github https://github.com/sarendis56/Jailbreak_Detection_RCS.

Authors:Erik Larsen
Title: The Instability of Safety: How Random Seeds and Temperature Expose Inconsistent LLM Refusal Behavior
Abstract:
Current safety evaluations of large language models rely on single-shot testing, implicitly assuming that model responses are deterministic and representative of the model's safety alignment. We challenge this assumption by investigating the stability of safety refusal decisions across random seeds and temperature settings. Testing four instruction-tuned models from three families (Llama 3.1 8B, Qwen 2.5 7B, Qwen 3 8B, Gemma 3 12B) on 876 harmful prompts across 20 different sampling configurations (4 temperatures x 5 random seeds), we find that 18-28% of prompts exhibit decision flips--the model refuses in some configurations but complies in others--depending on the model. Our Safety Stability Index (SSI) reveals that higher temperatures significantly reduce decision stability (Friedman chi-squared = 396.81, p < 0.001), with mean within-temperature SSI dropping from 0.977 at temperature 0.0 to 0.942 at temperature 1.0. We validate our findings across all model families using Claude 3.5 Haiku as a unified external judge, achieving 89.0% inter-judge agreement with our primary Llama 70B judge (Cohen's kappa = 0.62). Within each model, prompts with higher compliance rates exhibit lower stability (Spearman rho = -0.47 to -0.70, all p < 0.001), indicating that models "waver" more on borderline requests. These findings demonstrate that single-shot safety evaluations are insufficient for reliable safety assessment and that evaluation protocols must account for stochastic variation in model behavior. We show that single-shot evaluation agrees with multi-sample ground truth only 92.4% of the time when pooling across temperatures (94.2-97.7% at fixed temperature depending on setting), and recommend using at least 3 samples per prompt for reliable safety assessment.

Authors:Nolan Koblischke, Liam Parker, Francois Lanusse, Irina Espejo Morales, Jo Bovy, Shirley Ho
Title: Semantic search for 100M+ galaxy images using AI-generated captions
Abstract:
Finding scientifically interesting phenomena through slow, manual labeling campaigns severely limits our ability to explore the billions of galaxy images produced by telescopes. In this work, we develop a pipeline to create a semantic search engine from completely unlabeled image data. Our method leverages Vision-Language Models (VLMs) to generate descriptions for galaxy images, then contrastively aligns a pre-trained multimodal astronomy foundation model with these embedded descriptions to produce searchable embeddings at scale. We find that current VLMs provide descriptions that are sufficiently informative to train a semantic search model that outperforms direct image similarity search. Our model, AION-Search, achieves state-of-the-art zero-shot performance on finding rare phenomena despite training on randomly selected images with no deliberate curation for rare cases. Furthermore, we introduce a VLM-based re-ranking method that nearly doubles the recall for our most challenging targets in the top-100 results. For the first time, AION-Search enables flexible semantic search scalable to 140 million galaxy images, enabling discovery from previously infeasible searches. More broadly, our work provides an approach for making large, unlabeled scientific image archives semantically searchable, expanding data exploration capabilities in fields from Earth observation to microscopy. The code, data, and app are publicly available at https://github.com/NolanKoblischke/AION-Search

Authors:Jingmin Zhu, Anqi Zhu, James Bailey, Jun Liu, Hossein Rahmani, Mohammed Bennamoun, Farid Boussaid, Qiuhong Ke
Title: DynaPURLS: Dynamic Refinement of Part-aware Representations for Skeleton-based Zero-Shot Action Recognition
Abstract:
Zero-shot skeleton-based action recognition (ZS-SAR) is fundamentally constrained by prevailing approaches that rely on aligning skeleton features with static, class-level semantics. This coarse-grained alignment fails to bridge the domain shift between seen and unseen classes, thereby impeding the effective transfer of fine-grained visual knowledge. To address these limitations, we introduce \textbf{DynaPURLS}, a unified framework that establishes robust, multi-scale visual-semantic correspondences and dynamically refines them at inference time to enhance generalization. Our framework leverages a large language model to generate hierarchical textual descriptions that encompass both global movements and local body-part dynamics. Concurrently, an adaptive partitioning module produces fine-grained visual representations by semantically grouping skeleton joints. To fortify this fine-grained alignment against the train-test domain shift, DynaPURLS incorporates a dynamic refinement module. During inference, this module adapts textual features to the incoming visual stream via a lightweight learnable projection. This refinement process is stabilized by a confidence-aware, class-balanced memory bank, which mitigates error propagation from noisy pseudo-labels. Extensive experiments on three large-scale benchmark datasets, including NTU RGB+D 60/120 and PKU-MMD, demonstrate that DynaPURLS significantly outperforms prior art, setting new state-of-the-art records. The source code is made publicly available at https://github.com/Alchemist0754/DynaPURLS

Authors:Jaehyung Lee, Justin Ely, Kent Zhang, Akshaya Ajith, Charles Rhys Campbell, Kamal Choudhary
Title: AGAPI-Agents: An Open-Access Agentic AI Platform for Accelerated Materials Design on AtomGPT.org
Abstract:
Artificial intelligence is reshaping scientific discovery, yet its use in materials research remains limited by fragmented computational ecosystems, reproducibility challenges, and dependence on commercial large language models (LLMs). Here we introduce AGAPI (AtomGPT.org API), an open-access agentic AI platform that integrates more than eight open-source LLMs with over twenty materials-science API endpoints, unifying databases, simulation tools, and machine-learning models through a common orchestration framework. AGAPI employs an Agent-Planner-Executor-Summarizer architecture that autonomously constructs and executes multi-step workflows spanning materials data retrieval, graph neural network property prediction, machine-learning force-field optimization, tight-binding calculations, diffraction analysis, and inverse design. We demonstrate AGAPI through end-to-end workflows, including heterostructure construction, powder X-ray diffraction analysis, and semiconductor defect engineering requiring up to ten sequential operations. In addition, we evaluate AGAPI using 30+ example prompts as test cases and compare agentic predictions with and without tool access against experimental data. With more than 1,000 active users, AGAPI provides a scalable and transparent foundation for reproducible, AI-accelerated materials discovery. AGAPI-Agents codebase is available at https://github.com/atomgptlab/agapi.

Authors:Adeleh Mazaherian, Erfan Nourbakhsh
Title: Unveiling User Perceptions in the Generative AI Era: A Sentiment-Driven Evaluation of AI Educational Apps' Role in Digital Transformation of e-Teaching
Abstract:
The rapid integration of generative artificial intelligence into education has driven digital transformation in e-teaching, yet user perceptions of AI educational apps remain underexplored. This study performs a sentiment-driven evaluation of user reviews from top AI ed-apps on the Google Play Store to assess efficacy, challenges, and pedagogical implications. Our pipeline involved scraping app data and reviews, RoBERTa for binary sentiment classification, GPT-4o for key point extraction, and GPT-5 for synthesizing top positive/negative themes. Apps were categorized into seven types (e.g., homework helpers, math solvers, language tools), with overlaps reflecting multifunctional designs. Results indicate predominantly positive sentiments, with homework apps like Edu AI (95.9% positive) and Answer.AI (92.7%) leading in accuracy, speed, and personalization, while language/LMS apps (e.g., Teacher AI at 21.8% positive) lag due to instability and limited features. Positives emphasize efficiency in brainstorming, problem-solving, and engagement; negatives center on paywalls, inaccuracies, ads, and glitches. Trends show that homework helpers outperform specialized tools, highlighting AI's democratizing potential amid risks of dependency and inequity. The discussion proposes future ecosystems with hybrid AI-human models, VR/AR for immersive learning, and a roadmap for developers (adaptive personalization) and policymakers (monetization regulation for inclusivity). This underscores generative AI's role in advancing e-teaching by enabling ethical refinements that foster equitable, innovative environments. The full dataset is available here(https://github.com/erfan-nourbakhsh/GenAI-EdSent).

Authors:Dong Liu, Yanxuan Yu
Title: CXL-SpecKV: A Disaggregated FPGA Speculative KV-Cache for Datacenter LLM Serving
Abstract:
Large Language Models (LLMs) have revolutionized natural language processing tasks, but their deployment in datacenter environments faces significant challenges due to the massive memory requirements of key-value (KV) caches. During the autoregressive decoding process, KV caches consume substantial GPU memory, limiting batch sizes and overall system throughput. To address these challenges, we propose \textbf{CXL-SpecKV}, a novel disaggregated KV-cache architecture that leverages Compute Express Link (CXL) interconnects and FPGA accelerators to enable efficient speculative execution and memory disaggregation. Our approach introduces three key innovations: (i) a CXL-based memory disaggregation framework that offloads KV-caches to remote FPGA memory with low latency, (ii) a speculative KV-cache prefetching mechanism that predicts and preloads future tokens' cache entries, and (iii) an FPGA-accelerated KV-cache compression and decompression engine that reduces memory bandwidth requirements by up to 4$\times$. When evaluated on state-of-the-art LLM models, CXL-SpecKV achieves up to 3.2$\times$ higher throughput compared to GPU-only baselines, while reducing memory costs by 2.8$\times$ and maintaining accuracy. Our system demonstrates that intelligent memory disaggregation combined with speculative execution can effectively address the memory wall challenge in large-scale LLM serving. Our code implementation has been open-sourced at https://github.com/FastLM/CXL-SpecKV.

Authors:Yanna Elizabeth Smid, Peter van der Putten, Aske Plaat
Title: Mirror Mode in Fire Emblem: Beating Players at their own Game with Imitation and Reinforcement Learning
Abstract:
Enemy strategies in turn-based games should be surprising and unpredictable. This study introduces Mirror Mode, a new game mode where the enemy AI mimics the personal strategy of a player to challenge them to keep changing their gameplay. A simplified version of the Nintendo strategy video game Fire Emblem Heroes has been built in Unity, with a Standard Mode and a Mirror Mode. Our first set of experiments find a suitable model for the task to imitate player demonstrations, using Reinforcement Learning and Imitation Learning: combining Generative Adversarial Imitation Learning, Behavioral Cloning, and Proximal Policy Optimization. The second set of experiments evaluates the constructed model with player tests, where models are trained on demonstrations provided by participants. The gameplay of the participants indicates good imitation in defensive behavior, but not in offensive strategies. Participant's surveys indicated that they recognized their own retreating tactics, and resulted in an overall higher player-satisfaction for Mirror Mode. Refining the model further may improve imitation quality and increase player's satisfaction, especially when players face their own strategies. The full code and survey results are stored at: https://github.com/YannaSmid/MirrorMode

Authors:Mingwang Xu, Jiahao Cui, Feipeng Cai, Hanlin Shang, Zhihao Zhu, Shan Luan, Yifang Xu, Neng Zhang, Yaoyi Li, Jia Cai, Siyu Zhu
Title: WAM-Diff: A Masked Diffusion VLA Framework with MoE and Online Reinforcement Learning for Autonomous Driving
Abstract:
End-to-end autonomous driving systems based on vision-language-action (VLA) models integrate multimodal sensor inputs and language instructions to generate planning and control signals. While autoregressive large language models and continuous diffusion policies are prevalent, the potential of discrete masked diffusion for trajectory generation remains largely unexplored. This paper presents WAM-Diff, a VLA framework that employs masked diffusion to iteratively refine a discrete sequence representing future ego-trajectories. Our approach features three key innovations: a systematic adaptation of masked diffusion for autonomous driving that supports flexible, non-causal decoding orders; scalable model capacity via a sparse MoE architecture trained jointly on motion prediction and driving-oriented visual question answering (VQA); and online reinforcement learning using Group Sequence Policy Optimization (GSPO) to optimize sequence-level driving rewards. Remarkably, our model achieves 91.0 PDMS on NAVSIM-v1 and 89.7 EPDMS on NAVSIM-v2, demonstrating the effectiveness of masked diffusion for autonomous driving. The approach provides a promising alternative to autoregressive and diffusion-based policies, supporting scenario-aware decoding strategies for trajectory generation. The code for this paper will be released publicly at: https://github.com/fudan-generative-vision/WAM-Diff

Authors:Tekleab G. Gebremedhin, Hailom S. Asegede, Bruh W. Tesheme, Tadesse B. Gebremichael, Kalayu G. Redae
Title: Automated Plant Disease and Pest Detection System Using Hybrid Lightweight CNN-MobileViT Models for Diagnosis of Indigenous Crops
Abstract:
Agriculture supports over 80% of the population in the Tigray region of Ethiopia, where infrastructural disruptions limit access to expert crop disease diagnosis. We present an offline-first detection system centered on a newly curated indigenous cactus-fig (Opuntia ficus-indica) dataset consisting of 3,587 field images across three core symptom classes. Given deployment constraints in post-conflict edge environments, we benchmark three mobile-efficient architectures: a custom lightweight CNN, EfficientNet-Lite1, and the CNN-Transformer hybrid MobileViT-XS. While the broader system contains independent modules for potato, apple, and corn, this study isolates cactus-fig model performance to evaluate attention sensitivity and inductive bias transfer on indigenous morphology alone. Results establish a clear Pareto trade-off: EfficientNet-Lite1 achieves 90.7% test accuracy, the lightweight CNN reaches 89.5% with the most favorable deployment profile (42 ms inference latency, 4.8 MB model size), and MobileViT-XS delivers 97.3% mean cross-validation accuracy, demonstrating that MHSA-based global reasoning disambiguates pest clusters from two dimensional fungal lesions more reliably than local texture CNN kernels. The ARM compatible models are deployed in a Tigrigna and Amharic localized Flutter application supporting fully offline inference on Cortex-A53 class devices, strengthening inclusivity for food security critical diagnostics.

Authors:Eugene Izhikevich
Title: Spiking Manifesto
Abstract:
Practically everything computers do is better, faster, and more power-efficient than the brain. For example, a calculator performs numerical computations more energy-efficiently than any human. Yet modern AI models are a thousand times less efficient than the brain. These models rely on larger and larger artificial neural networks (ANNs) to boost their encoding capacity, requiring GPUs to perform large-scale matrix multiplications. In contrast, the brain's spiking neural networks (SNNs) exhibit factorially explosive encoding capacity and compute through the polychronization of spikes rather than explicit matrix-vector products, resulting in lower energy requirements. This manifesto proposes a paradigm for framing popular AI models in terms of spiking networks and polychronization, and for interpreting spiking activity as nature's way of implementing look-up tables. This suggests a path toward converting AI models into a novel class of architectures with much smaller size yet combinatorially large encoding capacity, offering the promise of a thousandfold improvement in performance. Code is available at https://github.com/izhikevich/SNN

Authors:Reuben R Shamir
Title: Soft Decision Tree classifier: explainable and extendable PyTorch implementation
Abstract:
We implemented a Soft Decision Tree (SDT) and a Short-term Memory Soft Decision Tree (SM-SDT) using PyTorch. The methods were extensively tested on simulated and clinical datasets. The SDT was visualized to demonstrate the potential for its explainability. SDT, SM-SDT, and XGBoost demonstrated similar area under the curve (AUC) values. These methods were better than Random Forest, Logistic Regression, and Decision Tree. The results on clinical datasets suggest that, aside from a decision tree, all tested classification methods yield comparable results. The code and datasets are available online on GitHub: https://github.com/KI-Research-Institute/Soft-Decision-Tree

Authors:Vineet Pasumarti, Lorenzo Bianchi, Antonio Loquercio
Title: Agile Flight Emerges from Multi-Agent Competitive Racing
Abstract:
Through multi-agent competition and the sparse high-level objective of winning a race, we find that both agile flight (e.g., high-speed motion pushing the platform to its physical limits) and strategy (e.g., overtaking or blocking) emerge from agents trained with reinforcement learning. We provide evidence in both simulation and the real world that this approach outperforms the common paradigm of training agents in isolation with rewards that prescribe behavior, e.g., progress on the raceline, in particular when the complexity of the environment increases, e.g., in the presence of obstacles. Moreover, we find that multi-agent competition yields policies that transfer more reliably to the real world than policies trained with a single-agent progress-based reward, despite the two methods using the same simulation environment, randomization strategy, and hardware. In addition to improved sim-to-real transfer, the multi-agent policies also exhibit some degree of generalization to opponents unseen at training time. Overall, our work, following in the tradition of multi-agent competitive game-play in digital domains, shows that sparse task-level rewards are sufficient for training agents capable of advanced low-level control in the physical world. Code: https://github.com/Jirl-upenn/AgileFlight_MultiAgent

Authors:Jingmin Zhu, Anqi Zhu, Hossein Rahmani, Jun Liu, Mohammed Bennamoun, Qiuhong Ke
Title: Boosting Skeleton-based Zero-Shot Action Recognition with Training-Free Test-Time Adaptation
Abstract:
We introduce Skeleton-Cache, the first training-free test-time adaptation framework for skeleton-based zero-shot action recognition (SZAR), aimed at improving model generalization to unseen actions during inference. Skeleton-Cache reformulates inference as a lightweight retrieval process over a non-parametric cache that stores structured skeleton representations, combining both global and fine-grained local descriptors. To guide the fusion of descriptor-wise predictions, we leverage the semantic reasoning capabilities of large language models (LLMs) to assign class-specific importance weights. By integrating these structured descriptors with LLM-guided semantic priors, Skeleton-Cache dynamically adapts to unseen actions without any additional training or access to training data. Extensive experiments on NTU RGB+D 60/120 and PKU-MMD II demonstrate that Skeleton-Cache consistently boosts the performance of various SZAR backbones under both zero-shot and generalized zero-shot settings. The code is publicly available at https://github.com/Alchemist0754/Skeleton-Cache.

Authors:Agustin Martin Picard, Thibaut Boissin, Varshini Subhash, Rémi Cadène, Thomas Fel
Title: Back to the Baseline: Examining Baseline Effects on Explainability Metrics
Abstract:
Attribution methods are among the most prevalent techniques in Explainable Artificial Intelligence (XAI) and are usually evaluated and compared using Fidelity metrics, with Insertion and Deletion being the most popular. These metrics rely on a baseline function to alter the pixels of the input image that the attribution map deems most important. In this work, we highlight a critical problem with these metrics: the choice of a given baseline will inevitably favour certain attribution methods over others. More concerningly, even a simple linear model with commonly used baselines contradicts itself by designating different optimal methods. A question then arises: which baseline should we use? We propose to study this problem through two desirable properties of a baseline: (i) that it removes information and (ii) that it does not produce overly out-of-distribution (OOD) images. We first show that none of the tested baselines satisfy both criteria, and there appears to be a trade-off among current baselines: either they remove information or they produce a sequence of OOD images. Finally, we introduce a novel baseline by leveraging recent work in feature visualisation to artificially produce a model-dependent baseline that removes information without being overly OOD, thus improving on the trade-off when compared to other existing baselines. Our code is available at https://github.com/deel-ai-papers/Back-to-the-Baseline

Authors:Shuowei Cai, Yansong Ning, Hao Liu
Title: AgentBalance: Backbone-then-Topology Design for Cost-Effective Multi-Agent Systems under Budget Constraints
Abstract:
Large Language Model (LLM)-based multi-agent systems (MAS) are becoming indispensable building blocks for web-scale applications such as web search, social network analytics, and online customer support, where cost-effectiveness is increasingly the primary constraint for large-scale deployment. While recent work improves MAS cost-effectiveness by shaping inter-agent communication topologies and selecting agent backbones, it rarely models and optimizes under explicit token-cost and latency budgets that reflect deployment constraints. This often leads to topology-first designs and suboptimal cost-effectiveness when budgets are binding. We present AgentBalance, a framework for constructing cost-effective MAS under explicit token-cost and latency budgets via a backbone-then-topology design. AgentBalance first performs backbone-oriented agent generation, constructing agents with heterogeneous backbones through LLM pool construction, pool selection, and role-backbone matching. It then performs adaptive MAS topology generation, guiding inter-agent communication via agent representation learning, gating, and latency-aware topology synthesis. Experiments on benchmarks with 14 candidate LLM backbones show that AgentBalance achieves up to 10% and 22% performance gains under matched token-cost and latency budgets, respectively, and yields strong AUC on performance-versus-budget curves across benchmarks. AgentBalance also functions as a plug-in for existing MAS, improving performance under the same token-cost and latency constraints, and it generalizes well to unseen LLMs for practical, budget-aware deployment. Code: https://github.com/usail-hkust/AgentBalance

Authors:John F. Wu, Joshua E. G. Peek, Sophie J. Miller, Jenny Novacescu, Achu J. Usha, Christopher A. Wilkinson
Title: amc: The Automated Mission Classifier for Telescope Bibliographies
Abstract:
Telescope bibliographies record the pulse of astronomy research by capturing publication statistics and citation metrics for telescope facilities. Robust and scalable bibliographies ensure that we can measure the scientific impact of our facilities and archives. However, the growing rate of publications threatens to outpace our ability to manually label astronomical literature. We therefore present the Automated Mission Classifier (amc), a tool that uses large language models (LLMs) to identify and categorize telescope references by processing large quantities of paper text. A modified version of amc performs well on the TRACS Kaggle challenge, achieving a macro $F_1$ score of 0.84 on the held-out test set. amc is valuable for other telescopes beyond TRACS; we developed the initial software for identifying papers that featured scientific results by NASA missions. Additionally, we investigate how amc can also be used to interrogate historical datasets and surface potential label errors. Our work demonstrates that LLM-based applications offer powerful and scalable assistance for library sciences.

Authors:Duo Zhou, Jorge Chavez, Hesun Chen, Grani A. Hanasusanto, Huan Zhang
Title: Clip-and-Verify: Linear Constraint-Driven Domain Clipping for Accelerating Neural Network Verification
Abstract:
State-of-the-art neural network (NN) verifiers demonstrate that applying the branch-and-bound (BaB) procedure with fast bounding techniques plays a key role in tackling many challenging verification properties. In this work, we introduce the linear constraint-driven clipping framework, a class of scalable and efficient methods designed to enhance the efficacy of NN verifiers. Under this framework, we develop two novel algorithms that efficiently utilize linear constraints to 1) reduce portions of the input space that are either verified or irrelevant to a subproblem in the context of branch-and-bound, and 2) directly improve intermediate bounds throughout the network. The process novelly leverages linear constraints that often arise from bound propagation methods and is general enough to also incorporate constraints from other sources. It efficiently handles linear constraints using a specialized GPU procedure that can scale to large neural networks without the use of expensive external solvers. Our verification procedure, Clip-and-Verify, consistently tightens bounds across multiple benchmarks and can significantly reduce the number of subproblems handled during BaB. We show that our clipping algorithms can be integrated with BaB-based verifiers such as $α,β$-CROWN, utilizing either the split constraints in activation-space BaB or the output constraints that denote the unverified input space. We demonstrate the effectiveness of our procedure on a broad range of benchmarks where, in some instances, we witness a 96% reduction in the number of subproblems during branch-and-bound, and also achieve state-of-the-art verified accuracy across multiple benchmarks. Clip-and-Verify is part of the $α,β$-CROWN verifier (http://abcrown.org), the VNN-COMP 2025 winner. Code available at https://github.com/Verified-Intelligence/Clip_and_Verify.

Authors:Zhanpeng Chen, Weihao Gao, Shunyu Wang, Yanan Zhu, Hong Meng, Yuexian Zou
Title: MolSculpt: Sculpting 3D Molecular Geometries from Chemical Syntax
Abstract:
Generating precise 3D molecular geometries is crucial for drug discovery and material science. While prior efforts leverage 1D representations like SELFIES to ensure molecular validity, they fail to fully exploit the rich chemical knowledge entangled within 1D models, leading to a disconnect between 1D syntactic generation and 3D geometric realization. To bridge this gap, we propose MolSculpt, a novel framework that "sculpts" 3D molecular geometries from chemical syntax. MolSculpt is built upon a frozen 1D molecular foundation model and a 3D molecular diffusion model. We introduce a set of learnable queries to extract inherent chemical knowledge from the foundation model, and a trainable projector then injects this cross-modal information into the conditioning space of the diffusion model to guide the 3D geometry generation. In this way, our model deeply integrates 1D latent chemical knowledge into the 3D generation process through end-to-end optimization. Experiments demonstrate that MolSculpt achieves state-of-the-art (SOTA) performance in \textit{de novo} 3D molecule generation and conditional 3D molecule generation, showing superior 3D fidelity and stability on both the GEOM-DRUGS and QM9 datasets. Code is available at https://github.com/SakuraTroyChen/MolSculpt.

Authors:Yukai Shi, Weiyu Li, Zihao Wang, Hongyang Li, Xingyu Chen, Ping Tan, Lei Zhang
Title: SceneMaker: Open-set 3D Scene Generation with Decoupled De-occlusion and Pose Estimation Model
Abstract:
We propose a decoupled 3D scene generation framework called SceneMaker in this work. Due to the lack of sufficient open-set de-occlusion and pose estimation priors, existing methods struggle to simultaneously produce high-quality geometry and accurate poses under severe occlusion and open-set settings. To address these issues, we first decouple the de-occlusion model from 3D object generation, and enhance it by leveraging image datasets and collected de-occlusion datasets for much more diverse open-set occlusion patterns. Then, we propose a unified pose estimation model that integrates global and local mechanisms for both self-attention and cross-attention to improve accuracy. Besides, we construct an open-set 3D scene dataset to further extend the generalization of the pose estimation model. Comprehensive experiments demonstrate the superiority of our decoupled framework on both indoor and open-set scenes. Our codes and datasets is released at https://idea-research.github.io/SceneMaker/.

Authors:Yiwen Tang, Zoey Guo, Kaixin Zhu, Ray Zhang, Qizhi Chen, Dongzhi Jiang, Junli Liu, Bohan Zeng, Haoming Song, Delin Qu, Tianyi Bai, Dan Xu, Wentao Zhang, Bin Zhao
Title: Are We Ready for RL in Text-to-3D Generation? A Progressive Investigation
Abstract:
Reinforcement learning (RL), earlier proven to be effective in large language and multi-modal models, has been successfully extended to enhance 2D image generation recently. However, applying RL to 3D generation remains largely unexplored due to the higher spatial complexity of 3D objects, which require globally consistent geometry and fine-grained local textures. This makes 3D generation significantly sensitive to reward designs and RL algorithms. To address these challenges, we conduct the first systematic study of RL for text-to-3D autoregressive generation across several dimensions. (1) Reward designs: We evaluate reward dimensions and model choices, showing that alignment with human preference is crucial, and that general multi-modal models provide robust signal for 3D attributes. (2) RL algorithms: We study GRPO variants, highlighting the effectiveness of token-level optimization, and further investigate the scaling of training data and iterations. (3) Text-to-3D Benchmarks: Since existing benchmarks fail to measure implicit reasoning abilities in 3D generation models, we introduce MME-3DR. (4) Advanced RL paradigms: Motivated by the natural hierarchy of 3D generation, we propose Hi-GRPO, which optimizes the global-to-local hierarchical 3D generation through dedicated reward ensembles. Based on these insights, we develop AR3D-R1, the first RL-enhanced text-to-3D model, expert from coarse shape to texture refinement. We hope this study provides insights into RL-driven reasoning for 3D generation. Code is released at https://github.com/Ivan-Tang-3D/3DGen-R1.

Authors:Sharath Girish, Viacheslav Ivanov, Tsai-Shien Chen, Hao Chen, Aliaksandr Siarohin, Sergey Tulyakov
Title: AlcheMinT: Fine-grained Temporal Control for Multi-Reference Consistent Video Generation
Abstract:
Recent advances in subject-driven video generation with large diffusion models have enabled personalized content synthesis conditioned on user-provided subjects. However, existing methods lack fine-grained temporal control over subject appearance and disappearance, which are essential for applications such as compositional video synthesis, storyboarding, and controllable animation. We propose AlcheMinT, a unified framework that introduces explicit timestamps conditioning for subject-driven video generation. Our approach introduces a novel positional encoding mechanism that unlocks the encoding of temporal intervals, associated in our case with subject identities, while seamlessly integrating with the pretrained video generation model positional embeddings. Additionally, we incorporate subject-descriptive text tokens to strengthen binding between visual identity and video captions, mitigating ambiguity during generation. Through token-wise concatenation, AlcheMinT avoids any additional cross-attention modules and incurs negligible parameter overhead. We establish a benchmark evaluating multiple subject identity preservation, video fidelity, and temporal adherence. Experimental results demonstrate that AlcheMinT achieves visual quality matching state-of-the-art video personalization methods, while, for the first time, enabling precise temporal control over multi-subject generation within videos. Project page is at https://snap-research.github.io/Video-AlcheMinT

Authors:Xiang Fan, Sharath Girish, Vivek Ramanujan, Chaoyang Wang, Ashkan Mirzaei, Petr Sushko, Aliaksandr Siarohin, Sergey Tulyakov, Ranjay Krishna
Title: OmniView: An All-Seeing Diffusion Model for 3D and 4D View Synthesis
Abstract:
Prior approaches injecting camera control into diffusion models have focused on specific subsets of 4D consistency tasks: novel view synthesis, text-to-video with camera control, image-to-video, amongst others. Therefore, these fragmented approaches are trained on disjoint slices of available 3D/4D data. We introduce OmniView, a unified framework that generalizes across a wide range of 4D consistency tasks. Our method separately represents space, time, and view conditions, enabling flexible combinations of these inputs. For example, OmniView can synthesize novel views from static, dynamic, and multiview inputs, extrapolate trajectories forward and backward in time, and create videos from text or image prompts with full camera control. OmniView is competitive with task-specific models across diverse benchmarks and metrics, improving image quality scores among camera-conditioned diffusion models by up to 33\% in multiview NVS LLFF dataset, 60\% in dynamic NVS Neural 3D Video benchmark, 20\% in static camera control on RE-10K, and reducing camera trajectory errors by 4x in text-conditioned video generation. With strong generalizability in one model, OmniView demonstrates the feasibility of a generalist 4D video model. Project page is available at https://snap-research.github.io/OmniView/

Authors:Wang Lu, Yao Zhu, Jindong Wang
Title: HAROOD: A Benchmark for Out-of-distribution Generalization in Sensor-based Human Activity Recognition
Abstract:
Sensor-based human activity recognition (HAR) mines activity patterns from the time-series sensory data. In realistic scenarios, variations across individuals, devices, environments, and time introduce significant distributional shifts for the same activities. Recent efforts attempt to solve this challenge by applying or adapting existing out-of-distribution (OOD) algorithms, but only in certain distribution shift scenarios (e.g., cross-device or cross-position), lacking comprehensive insights on the effectiveness of these algorithms. For instance, is OOD necessary to HAR? Which OOD algorithm performs the best? In this paper, we fill this gap by proposing HAROOD, a comprehensive benchmark for HAR in OOD settings. We define 4 OOD scenarios: cross-person, cross-position, cross-dataset, and cross-time, and build a testbed covering 6 datasets, 16 comparative methods (implemented with CNN-based and Transformer-based architectures), and two model selection protocols. Then, we conduct extensive experiments and present several findings for future research, e.g., no single method consistently outperforms others, highlighting substantial opportunity for advancement. Our codebase is highly modular and easy to extend for new datasets, algorithms, comparisons, and analysis, with the hope to facilitate the research in OOD-based HAR. Our implementation is released and can be found at https://github.com/AIFrontierLab/HAROOD.

Authors:Jaskirat Singh, Xingjian Leng, Zongze Wu, Liang Zheng, Richard Zhang, Eli Shechtman, Saining Xie
Title: What matters for Representation Alignment: Global Information or Spatial Structure?
Abstract:
Representation alignment (REPA) guides generative training by distilling representations from a strong, pretrained vision encoder to intermediate diffusion features. We investigate a fundamental question: what aspect of the target representation matters for generation, its \textit{global} \revision{semantic} information (e.g., measured by ImageNet-1K accuracy) or its spatial structure (i.e. pairwise cosine similarity between patch tokens)? Prevalent wisdom holds that stronger global semantic performance leads to better generation as a target representation. To study this, we first perform a large-scale empirical analysis across 27 different vision encoders and different model scales. The results are surprising; spatial structure, rather than global performance, drives the generation performance of a target representation. To further study this, we introduce two straightforward modifications, which specifically accentuate the transfer of \emph{spatial} information. We replace the standard MLP projection layer in REPA with a simple convolution layer and introduce a spatial normalization layer for the external representation. Surprisingly, our simple method (implemented in $<$4 lines of code), termed iREPA, consistently improves convergence speed of REPA, across a diverse set of vision encoders, model sizes, and training variants (such as REPA, REPA-E, Meanflow, JiT etc). %, etc. Our work motivates revisiting the fundamental working mechanism of representational alignment and how it can be leveraged for improved training of generative models. The code and project page are available at https://end2end-diffusion.github.io/irepa

Authors:Moshe Lahmy, Roi Yozevitch
Title: Replace, Don't Expand: Mitigating Context Dilution in Multi-Hop RAG via Fixed-Budget Evidence Assembly
Abstract:
Retrieval-Augmented Generation (RAG) systems often fail on multi-hop queries when the initial retrieval misses a bridge fact. Prior corrective approaches, such as Self-RAG, CRAG, and Adaptive-$k$, typically address this by \textit{adding} more context or pruning existing lists. However, simply expanding the context window often leads to \textbf{context dilution}, where distractors crowd out relevant information. We propose \textbf{SEAL-RAG}, a training-free controller that adopts a \textbf{``replace, don't expand''} strategy to fight context dilution under a fixed retrieval depth $k$. SEAL executes a (\textbf{S}earch $\rightarrow$ \textbf{E}xtract $\rightarrow$ \textbf{A}ssess $\rightarrow$ \textbf{L}oop) cycle: it performs on-the-fly, entity-anchored extraction to build a live \textit{gap specification} (missing entities/relations), triggers targeted micro-queries, and uses \textit{entity-first ranking} to actively swap out distractors for gap-closing evidence. We evaluate SEAL-RAG against faithful re-implementations of Basic RAG, CRAG, Self-RAG, and Adaptive-$k$ in a shared environment on \textbf{HotpotQA} and \textbf{2WikiMultiHopQA}. On HotpotQA ($k=3$), SEAL improves answer correctness by \textbf{+3--13 pp} and evidence precision by \textbf{+12--18 pp} over Self-RAG. On 2WikiMultiHopQA ($k=5$), it outperforms Adaptive-$k$ by \textbf{+8.0 pp} in accuracy and maintains \textbf{96\%} evidence precision compared to 22\% for CRAG. These gains are statistically significant ($p<0.001$). By enforcing fixed-$k$ replacement, SEAL yields a predictable cost profile while ensuring the top-$k$ slots are optimized for precision rather than mere breadth. We release our code and data at https://github.com/mosherino/SEAL-RAG.

Authors:Chenyu Zhang, Yiwen Ma, Lanjun Wang, Wenhui Li, Yi Tu, An-An Liu
Title: Metaphor-based Jailbreaking Attacks on Text-to-Image Models
Abstract:
Text-to-image~(T2I) models commonly incorporate defense mechanisms to prevent the generation of sensitive images. Unfortunately, recent jailbreaking attacks have shown that adversarial prompts can effectively bypass these mechanisms and induce T2I models to produce sensitive content, revealing critical safety vulnerabilities. However, existing attack methods implicitly assume that the attacker knows the type of deployed defenses, which limits their effectiveness against unknown or diverse defense mechanisms. In this work, we introduce \textbf{MJA}, a \textbf{m}etaphor-based \textbf{j}ailbreaking \textbf{a}ttack method inspired by the Taboo game, aiming to effectively and efficiently attack diverse defense mechanisms without prior knowledge of their type by generating metaphor-based adversarial prompts. Specifically, MJA consists of two modules: an LLM-based multi-agent generation module~(MLAG) and an adversarial prompt optimization module~(APO). MLAG decomposes the generation of metaphor-based adversarial prompts into three subtasks: metaphor retrieval, context matching, and adversarial prompt generation. Subsequently, MLAG coordinates three LLM-based agents to generate diverse adversarial prompts by exploring various metaphors and contexts. To enhance attack efficiency, APO first trains a surrogate model to predict the attack results of adversarial prompts and then designs an acquisition strategy to adaptively identify optimal adversarial prompts. Extensive experiments on T2I models with various external and internal defense mechanisms demonstrate that MJA outperforms six baseline methods, achieving stronger attack performance while using fewer queries. Code is available in https://github.com/datar001/metaphor-based-jailbreaking-attack.

Authors:Lingfeng Liu, Yixin Song, Dazhong Shen, Bing Yin, Hao Li, Yanyong Zhang, Chao Wang
Title: Rethinking Popularity Bias in Collaborative Filtering via Analytical Vector Decomposition
Abstract:
Popularity bias fundamentally undermines the personalization capabilities of collaborative filtering (CF) models, causing them to disproportionately recommend popular items while neglecting users' genuine preferences for niche content. While existing approaches treat this as an external confounding factor, we reveal that popularity bias is an intrinsic geometric artifact of Bayesian Pairwise Ranking (BPR) optimization in CF models. Through rigorous mathematical analysis, we prove that BPR systematically organizes item embeddings along a dominant "popularity direction" where embedding magnitudes directly correlate with interaction frequency. This geometric distortion forces user embeddings to simultaneously handle two conflicting tasks-expressing genuine preference and calibrating against global popularity-trapping them in suboptimal configurations that favor popular items regardless of individual tastes. We propose Directional Decomposition and Correction (DDC), a universally applicable framework that surgically corrects this embedding geometry through asymmetric directional updates. DDC guides positive interactions along personalized preference directions while steering negative interactions away from the global popularity direction, disentangling preference from popularity at the geometric source. Extensive experiments across multiple BPR-based architectures demonstrate that DDC significantly outperforms state-of-the-art debiasing methods, reducing training loss to less than 5% of heavily-tuned baselines while achieving superior recommendation quality and fairness. Code is available in https://github.com/LingFeng-Liu-AI/DDC.

Authors:Liang Peng, Haopeng Liu, Yixuan Ye, Cheng Liu, Wenjun Shen, Si Wu, Hau-San Wong
Title: Refinement Contrastive Learning of Cell-Gene Associations for Unsupervised Cell Type Identification
Abstract:
Unsupervised cell type identification is crucial for uncovering and characterizing heterogeneous populations in single cell omics studies. Although a range of clustering methods have been developed, most focus exclusively on intrinsic cellular structure and ignore the pivotal role of cell-gene associations, which limits their ability to distinguish closely related cell types. To this end, we propose a Refinement Contrastive Learning framework (scRCL) that explicitly incorporates cell-gene interactions to derive more informative representations. Specifically, we introduce two contrastive distribution alignment components that reveal reliable intrinsic cellular structures by effectively exploiting cell-cell structural relationships. Additionally, we develop a refinement module that integrates gene-correlation structure learning to enhance cell embeddings by capturing underlying cell-gene associations. This module strengthens connections between cells and their associated genes, refining the representation learning to exploiting biologically meaningful relationships. Extensive experiments on several single-cell RNA-seq and spatial transcriptomics benchmark datasets demonstrate that our method consistently outperforms state-of-the-art baselines in cell-type identification accuracy. Moreover, downstream biological analyses confirm that the recovered cell populations exhibit coherent gene-expression signatures, further validating the biological relevance of our approach. The code is available at https://github.com/THPengL/scRCL.

Authors:Wenfei Guan, Jilin Mei, Tong Shen, Xumin Wu, Shuo Wang, Cheng Min, Yu Hu
Title: Beyond Endpoints: Path-Centric Reasoning for Vectorized Off-Road Network Extraction
Abstract:
Deep learning has advanced vectorized road extraction in urban settings, yet off-road environments remain underexplored and challenging. A significant domain gap causes advanced models to fail in wild terrains due to two key issues: lack of large-scale vectorized datasets and structural weakness in prevailing methods. Models such as SAM-Road employ a node-centric paradigm that reasons at sparse endpoints, making them fragile to occlusions and ambiguous junctions in off-road scenes, leading to topological errors. This work addresses these limitations in two complementary ways. First, we release WildRoad, a global off-road road network dataset constructed efficiently with a dedicated interactive annotation tool tailored for road-network labeling. Second, we introduce MaGRoad (Mask-aware Geodesic Road network extractor), a path-centric framework that aggregates multi-scale visual evidence along candidate paths to infer connectivity robustly. Extensive experiments show that MaGRoad achieves state-of-the-art performance on our challenging WildRoad benchmark while generalizing well to urban datasets. A streamlined pipeline also yields roughly 2.5x faster inference, improving practical applicability. Together, the dataset and path-centric paradigm provide a stronger foundation for mapping roads in the wild. We release both the dataset and code at https://github.com/xiaofei-guan/MaGRoad.

Authors:Yijiong Yu, Jiale Liu, Qingyun Wu, Huazheng Wang, Ji Pei
Title: Sliding Window Attention Adaptation
Abstract:
The self-attention mechanism in Transformer-based Large Language Models (LLMs) scales quadratically with input length, making long-context inference expensive. Sliding window attention (SWA) reduces this cost to linear complexity, but naively enabling complete SWA at inference-time for models pretrained with full attention (FA) causes severe long-context performance degradation due to training-inference mismatch. This makes us wonder: Can FA-pretrained LLMs be well adapted to SWA without pretraining? We investigate this by proposing Sliding Window Attention Adaptation (SWAA), a set of practical recipes that combine five methods for better adaptation: (1) applying SWA only during prefilling; (2) preserving "sink" tokens; (3) interleaving FA/SWA layers; (4) chain-of-thought (CoT); and (5) fine-tuning. Our experiments show that SWA adaptation is feasible while non-trivial: no single method suffices, yet specific synergistic combinations effectively recover the original long-context performance. We further analyze the performance-efficiency trade-offs of different SWAA configurations and provide recommended recipes for diverse scenarios, which can greatly and fundamentally accelerate LLM long-context inference speed by up to 100%. Our code is available at https://github.com/yuyijiong/sliding-window-attention-adaptation

Authors:Ziwei Liu, Yejing Wang, Qidong Liu, Zijian Zhang, Chong Chen, Wei Huang, Xiangyu Zhao
Title: The Best of the Two Worlds: Harmonizing Semantic and Hash IDs for Sequential Recommendation
Abstract:
Conventional Sequential Recommender Systems (SRS) typically assign unique Hash IDs (HID) to construct item embeddings. These HID embeddings effectively learn collaborative information from historical user-item interactions, making them vulnerable to situations where most items are rarely consumed (the long-tail problem). Recent methods that incorporate auxiliary information often suffer from noisy collaborative sharing caused by co-occurrence signals or semantic homogeneity caused by flat dense embeddings. Semantic IDs (SIDs), with their capability of code sharing and multi-granular semantic modeling, provide a promising alternative. However, the collaborative overwhelming phenomenon hinders the further development of SID-based methods. The quantization mechanisms commonly compromise the uniqueness of identifiers required for modeling head items, creating a performance seesaw between head and tail items. To address this dilemma, we propose \textbf{\name}, a novel framework that harmonizes the SID and HID. Specifically, we devise a dual-branch modeling architecture that enables the model to capture both the multi-granular semantics within SID while preserving the unique collaborative identity of HID. Furthermore, we introduce a dual-level alignment strategy that bridges the two representations, facilitating knowledge transfer and supporting robust preference modeling. Extensive experiments on three real-world datasets show that \name~ effectively balances recommendation quality for both head and tail items while surpassing the existing baselines. The implementation code can be found online\footnote{https://github.com/ziwliu8/H2Rec}.

Authors:Cong Pang, Hongtao Yu, Zixuan Chen, Lewei Lu, Xin Lou
Title: Towards Fine-Grained Recognition with Large Visual Language Models: Benchmark and Optimization Strategies
Abstract:
Large Vision Language Models (LVLMs) have made remarkable progress, enabling sophisticated vision-language interaction and dialogue applications. However, existing benchmarks primarily focus on reasoning tasks, often neglecting fine-grained recognition, which is crucial for practical application scenarios. To address this gap, we introduce the Fine-grained Recognition Open World (FROW) benchmark, designed for detailed evaluation of LVLMs with GPT-4o. On the basis of that, we propose a novel optimization strategy from two perspectives: \textit{data construction} and \textit{training process}, to improve the performance of LVLMs. Our dataset includes mosaic data, which combines multiple short-answer responses, and open-world data, generated from real-world questions and answers using GPT-4o, creating a comprehensive framework for evaluating fine-grained recognition in LVLMs. Experiments show that mosaic data improves category recognition accuracy by 1\% and open-world data boosts FROW benchmark accuracy by 10\%-20\% and content accuracy by 6\%-12\%. Meanwhile, incorporating fine-grained data into the pre-training phase can improve the model's category recognition accuracy by up to 10\%. The benchmark will be available at https://github.com/pc-inno/FROW.

Authors:Shizuo Tian, Hao Wen, Yuxuan Chen, Jiacheng Liu, Shanhui Zhao, Guohong Liu, Ju Ren, Yunxin Liu, Yuanchun Li
Title: AgentProg: Empowering Long-Horizon GUI Agents with Program-Guided Context Management
Abstract:
The rapid development of mobile GUI agents has stimulated growing research interest in long-horizon task automation. However, building agents for these tasks faces a critical bottleneck: the reliance on ever-expanding interaction history incurs substantial context overhead. Existing context management and compression techniques often fail to preserve vital semantic information, leading to degraded task performance. We propose AgentProg, a program-guided approach for agent context management that reframes the interaction history as a program with variables and control flow. By organizing information according to the structure of program, this structure provides a principled mechanism to determine which information should be retained and which can be discarded. We further integrate a global belief state mechanism inspired by Belief MDP framework to handle partial observability and adapt to unexpected environmental changes. Experiments on AndroidWorld and our extended long-horizon task suite demonstrate that AgentProg has achieved the state-of-the-art success rates on these benchmarks. More importantly, it maintains robust performance on long-horizon tasks while baseline methods experience catastrophic degradation. Our system is open-sourced at https://github.com/MobileLLM/AgentProg.

Authors:Yixin Wan, Lei Ke, Wenhao Yu, Kai-Wei Chang, Dong Yu
Title: MotionEdit: Benchmarking and Learning Motion-Centric Image Editing
Abstract:
We introduce MotionEdit, a novel dataset for motion-centric image editing-the task of modifying subject actions and interactions while preserving identity, structure, and physical plausibility. Unlike existing image editing datasets that focus on static appearance changes or contain only sparse, low-quality motion edits, MotionEdit provides high-fidelity image pairs depicting realistic motion transformations extracted and verified from continuous videos. This new task is not only scientifically challenging but also practically significant, powering downstream applications such as frame-controlled video synthesis and animation. To evaluate model performance on the novel task, we introduce MotionEdit-Bench, a benchmark that challenges models on motion-centric edits and measures model performance with generative, discriminative, and preference-based metrics. Benchmark results reveal that motion editing remains highly challenging for existing state-of-the-art diffusion-based editing models. To address this gap, we propose MotionNFT (Motion-guided Negative-aware Fine Tuning), a post-training framework that computes motion alignment rewards based on how well the motion flow between input and model-edited images matches the ground-truth motion, guiding models toward accurate motion transformations. Extensive experiments on FLUX.1 Kontext and Qwen-Image-Edit show that MotionNFT consistently improves editing quality and motion fidelity of both base models on the motion editing task without sacrificing general editing ability, demonstrating its effectiveness. Our code is at https://github.com/elainew728/motion-edit/.

Authors:Yakun Zhu, Zhongzhen Huang, Qianhan Feng, Linjie Mu, Yannian Gu, Shaoting Zhang, Qi Dou, Xiaofan Zhang
Title: CP-Env: Evaluating Large Language Models on Clinical Pathways in a Controllable Hospital Environment
Abstract:
Medical care follows complex clinical pathways that extend beyond isolated physician-patient encounters, emphasizing decision-making and transitions between different stages. Current benchmarks focusing on static exams or isolated dialogues inadequately evaluate large language models (LLMs) in dynamic clinical scenarios. We introduce CP-Env, a controllable agentic hospital environment designed to evaluate LLMs across end-to-end clinical pathways. CP-Env simulates a hospital ecosystem with patient and physician agents, constructing scenarios ranging from triage and specialist consultation to diagnostic testing and multidisciplinary team meetings for agent interaction. Following real hospital adaptive flow of healthcare, it enables branching, long-horizon task execution. We propose a three-tiered evaluation framework encompassing Clinical Efficacy, Process Competency, and Professional Ethics. Results reveal that most models struggle with pathway complexity, exhibiting hallucinations and losing critical diagnostic details. Interestingly, excessive reasoning steps can sometimes prove counterproductive, while top models tend to exhibit reduced tool dependency through internalized knowledge. CP-Env advances medical AI agents development through comprehensive end-to-end clinical evaluation. We provide the benchmark and evaluation tools for further research and development at https://github.com/SPIRAL-MED/CP_ENV.

Authors:Nick Jiang, Xiaoqing Sun, Lisa Dunlap, Lewis Smith, Neel Nanda
Title: Interpretable Embeddings with Sparse Autoencoders: A Data Analysis Toolkit
Abstract:
Analyzing large-scale text corpora is a core challenge in machine learning, crucial for tasks like identifying undesirable model behaviors or biases in training data. Current methods often rely on costly LLM-based techniques (e.g. annotating dataset differences) or dense embedding models (e.g. for clustering), which lack control over the properties of interest. We propose using sparse autoencoders (SAEs) to create SAE embeddings: representations whose dimensions map to interpretable concepts. Through four data analysis tasks, we show that SAE embeddings are more cost-effective and reliable than LLMs and more controllable than dense embeddings. Using the large hypothesis space of SAEs, we can uncover insights such as (1) semantic differences between datasets and (2) unexpected concept correlations in documents. For instance, by comparing model responses, we find that Grok-4 clarifies ambiguities more often than nine other frontier models. Relative to LLMs, SAE embeddings uncover bigger differences at 2-8x lower cost and identify biases more reliably. Additionally, SAE embeddings are controllable: by filtering concepts, we can (3) cluster documents along axes of interest and (4) outperform dense embeddings on property-based retrieval. Using SAE embeddings, we study model behavior with two case studies: investigating how OpenAI model behavior has changed over time and finding "trigger" phrases learned by Tulu-3 (Lambert et al., 2024) from its training data. These results position SAEs as a versatile tool for unstructured data analysis and highlight the neglected importance of interpreting models through their data.

Authors:Moulik Gupta, Achyut Mani Tripathi
Title: DB2-TransF: All You Need Is Learnable Daubechies Wavelets for Time Series Forecasting
Abstract:
Time series forecasting requires models that can efficiently capture complex temporal dependencies, especially in large-scale and high-dimensional settings. While Transformer-based architectures excel at modeling long-range dependencies, their quadratic computational complexity poses limitations on scalability and adaptability. To overcome these challenges, we introduce DB2-TransF, a novel Transformer-inspired architecture that replaces the self-attention mechanism with a learnable Daubechies wavelet coefficient layer. This wavelet-based module efficiently captures multi-scale local and global patterns and enhances the modeling of correlations across multiple time series for the time series forecasting task. Extensive experiments on 13 standard forecasting benchmarks demonstrate that DB2-TransF achieves comparable or superior predictive accuracy to conventional Transformers, while substantially reducing memory usage for the time series forecasting task. The obtained experimental results position DB2-TransF as a scalable and resource-efficient framework for advanced time series forecasting. Our code is available at https://github.com/SteadySurfdom/DB2-TransF

Authors:Woojin Lee, Hyugjae Chang, Jaeho Moon, Jaehyup Lee, Munchurl Kim
Title: ABBSPO: Adaptive Bounding Box Scaling and Symmetric Prior based Orientation Prediction for Detecting Aerial Image Objects
Abstract:
Weakly supervised oriented object detection (WS-OOD) has gained attention as a cost-effective alternative to fully supervised methods, providing both efficiency and high accuracy. Among weakly supervised approaches, horizontal bounding box (HBox)-supervised OOD stands out for its ability to directly leverage existing HBox annotations while achieving the highest accuracy under weak supervision settings. This paper introduces adaptive bounding box scaling and symmetry-prior-based orientation prediction, called ABBSPO, a framework for WS-OOD. Our ABBSPO addresses limitations of previous HBox-supervised OOD methods, which compare ground truth (GT) HBoxes directly with the minimum circumscribed rectangles of predicted RBoxes, often leading to inaccurate scale estimation. To overcome this, we propose: (i) Adaptive Bounding Box Scaling (ABBS), which appropriately scales GT HBoxes to optimize for the size of each predicted RBox, ensuring more accurate scale prediction; and (ii) a Symmetric Prior Angle (SPA) loss that exploits inherent symmetry of aerial objects for self-supervised learning, resolving issues in previous methods where learning collapses when predictions for all three augmented views (original, rotated, and flipped) are consistently incorrect. Extensive experimental results demonstrate that ABBSPO achieves state-of-the-art performance, outperforming existing methods.

Authors:Hung-Yueh Chiang, Bokun Wang, Diana Marculescu
Title: ELANA: A Simple Energy and Latency Analyzer for LLMs
Abstract:
The latency and power consumption of large language models (LLMs) are major constraints when serving them across a wide spectrum of hardware platforms, from mobile edge devices to cloud GPU clusters. Benchmarking is crucial for optimizing efficiency in both model deployment and next-generation model development. To address this need, we open-source a simple profiling tool, \textbf{ELANA}, for evaluating LLMs. ELANA is designed as a lightweight, academic-friendly profiler for analyzing model size, key-value (KV) cache size, prefilling latency (Time-to-first-token, TTFT), generation latency (Time-per-output-token, TPOT), and end-to-end latency (Time-to-last-token, TTLT) of LLMs on both multi-GPU and edge GPU platforms. It supports all publicly available models on Hugging Face and offers a simple command-line interface, along with optional energy consumption logging. Moreover, ELANA is fully compatible with popular Hugging Face APIs and can be easily customized or adapted to compressed or low bit-width models, making it ideal for research on efficient LLMs or for small-scale proof-of-concept studies. We release the ELANA profiling tool at: https://github.com/enyac-group/Elana.

Authors:Junting Chen, Yunchuan Li, Panfeng Jiang, Jiacheng Du, Zixuan Chen, Chenrui Tie, Jiajun Deng, Lin Shao
Title: LISN: Language-Instructed Social Navigation with VLM-based Controller Modulating
Abstract:
Towards human-robot coexistence, socially aware navigation is significant for mobile robots. Yet existing studies on this area focus mainly on path efficiency and pedestrian collision avoidance, which are essential but represent only a fraction of social navigation. Beyond these basics, robots must also comply with user instructions, aligning their actions to task goals and social norms expressed by humans. In this work, we present LISN-Bench, the first simulation-based benchmark for language-instructed social navigation. Built on Rosnav-Arena 3.0, it is the first standardized social navigation benchmark to incorporate instruction following and scene understanding across diverse contexts. To address this task, we further propose Social-Nav-Modulator, a fast-slow hierarchical system where a VLM agent modulates costmaps and controller parameters. Decoupling low-level action generation from the slower VLM loop reduces reliance on high-frequency VLM inference while improving dynamic avoidance and perception adaptability. Our method achieves an average success rate of 91.3%, which is greater than 63% than the most competitive baseline, with most of the improvements observed in challenging tasks such as following a person in a crowd and navigating while strictly avoiding instruction-forbidden regions. The project website is at: https://social-nav.github.io/LISN-project/

Authors:Reza Ahmari, Ahmad Mohammadi, Vahid Hemmati, Mohammed Mynuddin, Parham Kebria, Mahmoud Nabil Mahmoud, Xiaohong Yuan, Abdollah Homaifar
Title: Visual Heading Prediction for Autonomous Aerial Vehicles
Abstract:
The integration of Unmanned Aerial Vehicles (UAVs) and Unmanned Ground Vehicles (UGVs) is increasingly central to the development of intelligent autonomous systems for applications such as search and rescue, environmental monitoring, and logistics. However, precise coordination between these platforms in real-time scenarios presents major challenges, particularly when external localization infrastructure such as GPS or GNSS is unavailable or degraded [1]. This paper proposes a vision-based, data-driven framework for real-time UAV-UGV integration, with a focus on robust UGV detection and heading angle prediction for navigation and coordination. The system employs a fine-tuned YOLOv5 model to detect UGVs and extract bounding box features, which are then used by a lightweight artificial neural network (ANN) to estimate the UAV's required heading angle. A VICON motion capture system was used to generate ground-truth data during training, resulting in a dataset of over 13,000 annotated images collected in a controlled lab environment. The trained ANN achieves a mean absolute error of 0.1506° and a root mean squared error of 0.1957°, offering accurate heading angle predictions using only monocular camera inputs. Experimental evaluations achieve 95% accuracy in UGV detection. This work contributes a vision-based, infrastructure- independent solution that demonstrates strong potential for deployment in GPS/GNSS-denied environments, supporting reliable multi-agent coordination under realistic dynamic conditions. A demonstration video showcasing the system's real-time performance, including UGV detection, heading angle prediction, and UAV alignment under dynamic conditions, is available at: https://github.com/Kooroshraf/UAV-UGV-Integration

Authors:Pius Horn, Janis Keuper
Title: Benchmarking Document Parsers on Mathematical Formula Extraction from PDFs
Abstract:
Correctly parsing mathematical formulas from PDFs is critical for training large language models and building scientific knowledge bases from academic literature, yet existing benchmarks either exclude formulas entirely or lack semantically-aware evaluation metrics. We introduce a novel benchmarking framework centered on synthetically generated PDFs with precise LaTeX ground truth, enabling systematic control over layout, formulas, and content characteristics. A key methodological contribution is pioneering LLM-as-a-judge for semantic formula assessment, combined with a robust two-stage matching pipeline that handles parser output inconsistencies. Through human validation on 250 formula pairs (750 ratings from 30 evaluators), we demonstrate that LLM-based evaluation achieves substantially higher correlation with human judgment (Pearson r=0.78) compared to CDM (r=0.34) and text similarity (r~0). Evaluating 20+ contemporary PDF parsers (including specialized OCR models, vision-language models, and rule-based approaches) across 100 synthetic documents with 2,000+ formulas reveals significant performance disparities. Our findings provide crucial insights for practitioners selecting parsers for downstream applications and establish a robust, scalable methodology that enables reproducible evaluation of PDF formula extraction quality. Code and benchmark data: https://github.com/phorn1/pdf-parse-bench

Authors:Fengli Wu, Vaidehi Patil, Jaehong Yoon, Yue Zhang, Mohit Bansal
Title: MedForget: Hierarchy-Aware Multimodal Unlearning Testbed for Medical AI
Abstract:
Pretrained Multimodal Large Language Models (MLLMs) are increasingly deployed in medical AI systems for clinical reasoning, diagnosis support, and report generation. However, their training on sensitive patient data raises critical privacy and compliance challenges under regulations such as HIPAA and GDPR, which enforce the "right to be forgotten". Unlearning, the process of tuning models to selectively remove the influence of specific training data points, offers a potential solution, yet its effectiveness in complex medical settings remains underexplored. To systematically study this, we introduce MedForget, a Hierarchy-Aware Multimodal Unlearning Testbed with explicit retain and forget splits and evaluation sets containing rephrased variants. MedForget models hospital data as a nested hierarchy (Institution -> Patient -> Study -> Section), enabling fine-grained assessment across eight organizational levels. The benchmark contains 3840 multimodal (image, question, answer) instances, each hierarchy level having a dedicated unlearning target, reflecting distinct unlearning challenges. Experiments with four SOTA unlearning methods on three tasks (generation, classification, cloze) show that existing methods struggle to achieve complete, hierarchy-aware forgetting without reducing diagnostic performance. To test whether unlearning truly deletes hierarchical pathways, we introduce a reconstruction attack that progressively adds hierarchical level context to prompts. Models unlearned at a coarse granularity show strong resistance, while fine-grained unlearning leaves models vulnerable to such reconstruction. MedForget provides a practical, HIPAA-aligned testbed for building compliant medical AI systems.

Authors:Xianghao Kong, Zeyu Zhang, Yuwei Guo, Zhuoran Zhao, Songchun Zhang, Anyi Rao
Title: Composing Concepts from Images and Videos via Concept-prompt Binding
Abstract:
Visual concept composition, which aims to integrate different elements from images and videos into a single, coherent visual output, still falls short in accurately extracting complex concepts from visual inputs and flexibly combining concepts from both images and videos. We introduce Bind & Compose, a one-shot method that enables flexible visual concept composition by binding visual concepts with corresponding prompt tokens and composing the target prompt with bound tokens from various sources. It adopts a hierarchical binder structure for cross-attention conditioning in Diffusion Transformers to encode visual concepts into corresponding prompt tokens for accurate decomposition of complex visual concepts. To improve concept-token binding accuracy, we design a Diversify-and-Absorb Mechanism that uses an extra absorbent token to eliminate the impact of concept-irrelevant details when training with diversified prompts. To enhance the compatibility between image and video concepts, we present a Temporal Disentanglement Strategy that decouples the training process of video concepts into two stages with a dual-branch binder structure for temporal modeling. Evaluations demonstrate that our method achieves superior concept consistency, prompt fidelity, and motion quality over existing approaches, opening up new possibilities for visual creativity.

Authors:Laurynas Adomaitis, Vincent Israel-Jost, Alexei Grinbaum
Title: Ethics Readiness of Artificial Intelligence: A Practical Evaluation Method
Abstract:
We present Ethics Readiness Levels (ERLs), a four-level, iterative method to track how ethical reflection is implemented in the design of AI systems. ERLs bridge high-level ethical principles and everyday engineering by turning ethical values into concrete prompts, checks, and controls within real use cases. The evaluation is conducted using a dynamic, tree-like questionnaire built from context-specific indicators, ensuring relevance to the technology and application domain. Beyond being a managerial tool, ERLs help facilitate a structured dialogue between ethics experts and technical teams, while our scoring system helps track progress over time. We demonstrate the methodology through two case studies: an AI facial sketch generator for law enforcement and a collaborative industrial robot. The ERL tool effectively catalyzes concrete design changes and promotes a shift from narrow technological solutionism to a more reflective, ethics-by-design mindset.

Authors:Emanuele La Malfa, Ping Zhu, Samuele Marro, Sara Bernardini, Michael Wooldridge
Title: An End-to-end Planning Framework with Agentic LLMs and PDDL
Abstract:
We present an end-to-end framework for planning supported by verifiers. An orchestrator receives a human specification written in natural language and converts it into a PDDL (Planning Domain Definition Language) model, where the domain and problem are iteratively refined by sub-modules (agents) to address common planning requirements, such as time constraints and optimality, as well as ambiguities and contradictions that may exist in the human specification. The validated domain and problem are then passed to an external planning engine to generate a plan. The orchestrator and agents are powered by Large Language Models (LLMs) and require no human intervention at any stage of the process. Finally, a module translates the final plan back into natural language to improve human readability while maintaining the correctness of each step. We demonstrate the flexibility and effectiveness of our framework across various domains and tasks, including the Google NaturalPlan benchmark and PlanBench, as well as planning problems like Blocksworld and the Tower of Hanoi (where LLMs are known to struggle even with small instances). Our framework can be integrated with any PDDL planning engine and validator (such as Fast Downward, LPG, POPF, VAL, and uVAL, which we have tested) and represents a significant step toward end-to-end planning aided by LLMs.

Authors:Yiwu Zhong, Zi-Yuan Hu, Yin Li, Liwei Wang
Title: Rethinking Chain-of-Thought Reasoning for Videos
Abstract:
Chain-of-thought (CoT) reasoning has been highly successful in solving complex tasks in natural language processing, and recent multimodal large language models (MLLMs) have extended this paradigm to video reasoning. However, these models typically build on lengthy reasoning chains and large numbers of input visual tokens. Motivated by empirical observations from our benchmark study, we hypothesize that concise reasoning combined with a reduced set of visual tokens can be sufficient for effective video reasoning. To evaluate this hypothesis, we design and validate an efficient post-training and inference framework that enhances a video MLLM's reasoning capability. Our framework enables models to operate on compressed visual tokens and generate brief reasoning traces prior to answering. The resulting models achieve substantially improved inference efficiency, deliver competitive performance across diverse benchmarks, and avoid reliance on manual CoT annotations or supervised fine-tuning. Collectively, our results suggest that long, human-like CoT reasoning may not be necessary for general video reasoning, and that concise reasoning can be both effective and efficient. Our code will be released at https://github.com/LaVi-Lab/Rethink_CoT_Video.

Authors:Gaorui Zhang, Zhizhang Yuan, Jialan Yang, Junru Chen, Li Meng, Yang Yang
Title: NeuroSketch: An Effective Framework for Neural Decoding via Systematic Architectural Optimization
Abstract:
Neural decoding, a critical component of Brain-Computer Interface (BCI), has recently attracted increasing research interest. Previous research has focused on leveraging signal processing and deep learning methods to enhance neural decoding performance. However, the in-depth exploration of model architectures remains underexplored, despite its proven effectiveness in other tasks such as energy forecasting and image classification. In this study, we propose NeuroSketch, an effective framework for neural decoding via systematic architecture optimization. Starting with the basic architecture study, we find that CNN-2D outperforms other architectures in neural decoding tasks and explore its effectiveness from temporal and spatial perspectives. Building on this, we optimize the architecture from macro- to micro-level, achieving improvements in performance at each step. The exploration process and model validations take over 5,000 experiments spanning three distinct modalities (visual, auditory, and speech), three types of brain signals (EEG, SEEG, and ECoG), and eight diverse decoding tasks. Experimental results indicate that NeuroSketch achieves state-of-the-art (SOTA) performance across all evaluated datasets, positioning it as a powerful tool for neural decoding. Our code and scripts are available at https://github.com/Galaxy-Dawn/NeuroSketch.

Authors:Anabia Sohail, Mohamad Alansari, Ahmed Abughali, Asmaa Chehab, Abdelfatah Ahmed, Divya Velayudhan, Sajid Javed, Hasan Al Marzouqi, Ameena Saad Al-Sumaiti, Junaid Kashir, Naoufel Werghi
Title: Cytoplasmic Strings Analysis in Human Embryo Time-Lapse Videos using Deep Learning Framework
Abstract:
Infertility is a major global health issue, and while in-vitro fertilization has improved treatment outcomes, embryo selection remains a critical bottleneck. Time-lapse imaging enables continuous, non-invasive monitoring of embryo development, yet most automated assessment methods rely solely on conventional morphokinetic features and overlook emerging biomarkers. Cytoplasmic Strings, thin filamentous structures connecting the inner cell mass and trophectoderm in expanded blastocysts, have been associated with faster blastocyst formation, higher blastocyst grades, and improved viability. However, CS assessment currently depends on manual visual inspection, which is labor-intensive, subjective, and severely affected by detection and subtle visual appearance. In this work, we present, to the best of our knowledge, the first computational framework for CS analysis in human IVF embryos. We first design a human-in-the-loop annotation pipeline to curate a biologically validated CS dataset from TLI videos, comprising 13,568 frames with highly sparse CS-positive instances. Building on this dataset, we propose a two-stage deep learning framework that (i) classifies CS presence at the frame level and (ii) localizes CS regions in positive cases. To address severe imbalance and feature uncertainty, we introduce the Novel Uncertainty-aware Contractive Embedding (NUCE) loss, which couples confidence-aware reweighting with an embedding contraction term to form compact, well-separated class clusters. NUCE consistently improves F1-score across five transformer backbones, while RF-DETR-based localization achieves state-of-the-art (SOTA) detection performance for thin, low-contrast CS structures. The source code will be made publicly available at: https://github.com/HamadYA/CS_Detection.

Authors:Hai Ci, Xiaokang Liu, Pei Yang, Yiren Song, Mike Zheng Shou
Title: H2R-Grounder: A Paired-Data-Free Paradigm for Translating Human Interaction Videos into Physically Grounded Robot Videos
Abstract:
Robots that learn manipulation skills from everyday human videos could acquire broad capabilities without tedious robot data collection. We propose a video-to-video translation framework that converts ordinary human-object interaction videos into motion-consistent robot manipulation videos with realistic, physically grounded interactions. Our approach does not require any paired human-robot videos for training only a set of unpaired robot videos, making the system easy to scale. We introduce a transferable representation that bridges the embodiment gap: by inpainting the robot arm in training videos to obtain a clean background and overlaying a simple visual cue (a marker and arrow indicating the gripper's position and orientation), we can condition a generative model to insert the robot arm back into the scene. At test time, we apply the same process to human videos (inpainting the person and overlaying human pose cues) and generate high-quality robot videos that mimic the human's actions. We fine-tune a SOTA video diffusion model (Wan 2.2) in an in-context learning manner to ensure temporal coherence and leveraging of its rich prior knowledge. Empirical results demonstrate that our approach achieves significantly more realistic and grounded robot motions compared to baselines, pointing to a promising direction for scaling up robot learning from unlabeled human videos. Project page: https://showlab.github.io/H2R-Grounder/

Authors:Lalit Maurya, Saurabh Kaushik, Beth Tellman
Title: GLACIA: Instance-Aware Positional Reasoning for Glacial Lake Segmentation via Multimodal Large Language Model
Abstract:
Glacial lake monitoring bears great significance in mitigating the anticipated risk of Glacial Lake Outburst Floods. However, existing segmentation methods based on convolutional neural networks (CNNs) and Vision Transformers (ViTs), remain constrained to pixel-level predictions, lacking high-level global scene semantics and human-interpretable reasoning. To address this, we introduce GLACIA (\textbf{G}lacial \textbf{LA}ke segmentation with \textbf{C}ontextual \textbf{I}nstance \textbf{A}wareness), the first framework that integrates large language models with segmentation capabilities to produce both accurate segmentation masks and corresponding spatial reasoning outputs. We construct the Glacial Lake Position Reasoning (GLake-Pos) dataset pipeline, which provides diverse, spatially grounded question-answer pairs designed to overcome the lack of instance-aware positional reasoning data in remote sensing. Comparative evaluation demonstrate that GLACIA (mIoU: 87.30) surpasses state-of-the-art method based on CNNs (mIoU: 78.55 - 79.01), ViTs (mIoU: 69.27 - 81.75), Geo-foundation models (mIoU: 76.37 - 87.10), and reasoning based segmentation methods (mIoU: 60.12 - 75.66). Our approach enables intuitive disaster preparedness and informed policy-making in the context of rapidly changing glacial environments by facilitating natural language interaction, thereby supporting more efficient and interpretable decision-making. The code is released on https://github.com/lalitmaurya47/GLACIA

Authors:Erfan Nourbakhsh, Nasrin Sanjari, Ali Nourbakhsh
Title: KD-OCT: Efficient Knowledge Distillation for Clinical-Grade Retinal OCT Classification
Abstract:
Age-related macular degeneration (AMD) and choroidal neovascularization (CNV)-related conditions are leading causes of vision loss worldwide, with optical coherence tomography (OCT) serving as a cornerstone for early detection and management. However, deploying state-of-the-art deep learning models like ConvNeXtV2-Large in clinical settings is hindered by their computational demands. Therefore, it is desirable to develop efficient models that maintain high diagnostic performance while enabling real-time deployment. In this study, a novel knowledge distillation framework, termed KD-OCT, is proposed to compress a high-performance ConvNeXtV2-Large teacher model, enhanced with advanced augmentations, stochastic weight averaging, and focal loss, into a lightweight EfficientNet-B2 student for classifying normal, drusen, and CNV cases. KD-OCT employs real-time distillation with a combined loss balancing soft teacher knowledge transfer and hard ground-truth supervision. The effectiveness of the proposed method is evaluated on the Noor Eye Hospital (NEH) dataset using patient-level cross-validation. Experimental results demonstrate that KD-OCT outperforms comparable multi-scale or feature-fusion OCT classifiers in efficiency-accuracy balance, achieving near-teacher performance with substantial reductions in model size and inference time. Despite the compression, the student model exceeds most existing frameworks, facilitating edge deployment for AMD screening. Code is available at https://github.com/erfan-nourbakhsh/KD-OCT.

Authors:Dyna Soumhane Ouchebara, Stéphane Dupont
Title: Llama-based source code vulnerability detection: Prompt engineering vs Fine tuning
Abstract:
The significant increase in software production, driven by the acceleration of development cycles over the past two decades, has led to a steady rise in software vulnerabilities, as shown by statistics published yearly by the CVE program. The automation of the source code vulnerability detection (CVD) process has thus become essential, and several methods have been proposed ranging from the well established program analysis techniques to the more recent AI-based methods. Our research investigates Large Language Models (LLMs), which are considered among the most performant AI models to date, for the CVD task. The objective is to study their performance and apply different state-of-the-art techniques to enhance their effectiveness for this task. We explore various fine-tuning and prompt engineering settings. We particularly suggest one novel approach for fine-tuning LLMs which we call Double Fine-tuning, and also test the understudied Test-Time fine-tuning approach. We leverage the recent open-source Llama-3.1 8B, with source code samples extracted from BigVul and PrimeVul datasets. Our conclusions highlight the importance of fine-tuning to resolve the task, the performance of Double tuning, as well as the potential of Llama models for CVD. Though prompting proved ineffective, Retrieval augmented generation (RAG) performed relatively well as an example selection technique. Overall, some of our research questions have been answered, and many are still on hold, which leaves us many future work perspectives. Code repository is available here: https://github.com/DynaSoumhaneOuchebara/Llama-based-vulnerability-detection.

Authors:Glenn Matlin, Siddharth, Anirudh JM, Aditya Shukla, Yahya Hassan, Sudheer Chava
Title: Financial Instruction Following Evaluation (FIFE)
Abstract:
Language Models (LMs) struggle with complex, interdependent instructions, particularly in high-stakes domains like finance where precision is critical. We introduce FIFE, a novel, high-difficulty benchmark designed to assess LM instruction-following capabilities for financial analysis tasks. FIFE comprises 88 human-authored prompts and employs a verification system with chainable, verifiable constraints for fine-grained reward signals. We evaluate 53 models (proprietary, open-weight, open-source) in a zero-shot setting. Our key findings reveal a clear performance hierarchy: the top open-weight model (76.1 strict / 79.5 loose) surpasses the leading proprietary system (65.9 strict / 70.5 loose), while the best open-source models lag significantly (45.5 strict / 48.9 loose). However, even top-performing models struggle with FIFE's complex requirements, failing to achieve perfect compliance. We release our dataset and code as an open-source resource to promote research in Reinforcement Learning for the financial domain.

Authors:Yuhao Xu, Jiaying Lu, Sirui Ding, Defu Cao, Xiao Hu, Carl Yang
Title: An Electrocardiogram Multi-task Benchmark with Comprehensive Evaluations and Insightful Findings
Abstract:
In the process of patient diagnosis, non-invasive measurements are widely used due to their low risks and quick results. Electrocardiogram (ECG), as a non-invasive method to collect heart activities, is used to diagnose cardiac conditions. Analyzing the ECG typically requires domain expertise, which is a roadblock to applying artificial intelligence (AI) for healthcare. Through advances in self-supervised learning and foundation models, AI systems can now acquire and leverage domain knowledge without relying solely on human expertise. However, there is a lack of comprehensive analyses over the foundation models' performance on ECG. This study aims to answer the research question: "Are Foundation Models Useful for ECG Analysis?" To address it, we evaluate language/general time-series/ECG foundation models in comparison with time-series deep learning models. The experimental results show that general time-series/ECG foundation models achieve a top performance rate of 80%, indicating their effectiveness in ECG analysis. In-depth analyses and insights are provided along with comprehensive experimental results. This study highlights the limitations and potential of foundation models in advancing physiological waveform analysis. The data and code for this benchmark are publicly available at https://github.com/yuhaoxu99/ECGMultitasks-Benchmark.

Authors:Loc Phuc Truong Nguyen, Hung Thanh Do, Hung Truong Thanh Nguyen, Hung Cao
Title: Motion2Meaning: A Clinician-Centered Framework for Contestable LLM in Parkinson's Disease Gait Interpretation
Abstract:
AI-assisted gait analysis holds promise for improving Parkinson's Disease (PD) care, but current clinical dashboards lack transparency and offer no meaningful way for clinicians to interrogate or contest AI decisions. To address this issue, we present Motion2Meaning, a clinician-centered framework that advances Contestable AI through a tightly integrated interface designed for interpretability, oversight, and procedural recourse. Our approach leverages vertical Ground Reaction Force (vGRF) time-series data from wearable sensors as an objective biomarker of PD motor states. The system comprises three key components: a Gait Data Visualization Interface (GDVI), a one-dimensional Convolutional Neural Network (1D-CNN) that predicts Hoehn & Yahr severity stages, and a Contestable Interpretation Interface (CII) that combines our novel Cross-Modal Explanation Discrepancy (XMED) safeguard with a contestable Large Language Model (LLM). Our 1D-CNN achieves 89.0% F1-score on the public PhysioNet gait dataset. XMED successfully identifies model unreliability by detecting a five-fold increase in explanation discrepancies in incorrect predictions (7.45%) compared to correct ones (1.56%), while our LLM-powered interface enables clinicians to validate correct predictions and successfully contest a portion of the model's errors. A human-centered evaluation of this contestable interface reveals a crucial trade-off between the LLM's factual grounding and its readability and responsiveness to clinical feedback. This work demonstrates the feasibility of combining wearable sensor analysis with Explainable AI (XAI) and contestable LLMs to create a transparent, auditable system for PD gait interpretation that maintains clinical oversight while leveraging advanced AI capabilities. Our implementation is publicly available at: https://github.com/hungdothanh/motion2meaning.

Authors:Yixuan Zhu, Jiaqi Feng, Wenzhao Zheng, Yuan Gao, Xin Tao, Pengfei Wan, Jie Zhou, Jiwen Lu
Title: Astra: General Interactive World Model with Autoregressive Denoising
Abstract:
Recent advances in diffusion transformers have empowered video generation models to generate high-quality video clips from texts or images. However, world models with the ability to predict long-horizon futures from past observations and actions remain underexplored, especially for general-purpose scenarios and various forms of actions. To bridge this gap, we introduce Astra, an interactive general world model that generates real-world futures for diverse scenarios (e.g., autonomous driving, robot grasping) with precise action interactions (e.g., camera motion, robot action). We propose an autoregressive denoising architecture and use temporal causal attention to aggregate past observations and support streaming outputs. We use a noise-augmented history memory to avoid over-reliance on past frames to balance responsiveness with temporal coherence. For precise action control, we introduce an action-aware adapter that directly injects action signals into the denoising process. We further develop a mixture of action experts that dynamically route heterogeneous action modalities, enhancing versatility across diverse real-world tasks such as exploration, manipulation, and camera control. Astra achieves interactive, consistent, and general long-term video prediction and supports various forms of interactions. Experiments across multiple datasets demonstrate the improvements of Astra in fidelity, long-range prediction, and action alignment over existing state-of-the-art world models.

Authors:Guangzhi Xiong, Zhenghao He, Bohan Liu, Sanchit Sinha, Aidong Zhang
Title: Toward Faithful Retrieval-Augmented Generation with Sparse Autoencoders
Abstract:
Retrieval-Augmented Generation (RAG) improves the factuality of large language models (LLMs) by grounding outputs in retrieved evidence, but faithfulness failures, where generations contradict or extend beyond the provided sources, remain a critical challenge. Existing hallucination detection methods for RAG often rely either on large-scale detector training, which requires substantial annotated data, or on querying external LLM judges, which leads to high inference costs. Although some approaches attempt to leverage internal representations of LLMs for hallucination detection, their accuracy remains limited. Motivated by recent advances in mechanistic interpretability, we employ sparse autoencoders (SAEs) to disentangle internal activations, successfully identifying features that are specifically triggered during RAG hallucinations. Building on a systematic pipeline of information-based feature selection and additive feature modeling, we introduce RAGLens, a lightweight hallucination detector that accurately flags unfaithful RAG outputs using LLM internal representations. RAGLens not only achieves superior detection performance compared to existing methods, but also provides interpretable rationales for its decisions, enabling effective post-hoc mitigation of unfaithful RAG. Finally, we justify our design choices and reveal new insights into the distribution of hallucination-related signals within LLMs. The code is available at https://github.com/Teddy-XiongGZ/RAGLens.

Authors:Damiano Marsili, Georgia Gkioxari
Title: No Labels, No Problem: Training Visual Reasoners with Multimodal Verifiers
Abstract:
Visual reasoning is challenging, requiring both precise object grounding and understanding complex spatial relationships. Existing methods fall into two camps: language-only chain-of-thought approaches, which demand large-scale (image, query, answer) supervision, and program-synthesis approaches which use pre-trained models and avoid training, but suffer from flawed logic and erroneous grounding. We propose an annotation-free training framework that improves both reasoning and grounding. Our framework uses AI-powered verifiers: an LLM verifier refines LLM reasoning via reinforcement learning, while a VLM verifier strengthens visual grounding through automated hard-negative mining, eliminating the need for ground truth labels. This design combines the strengths of modern AI systems: advanced language-only reasoning models for decomposing spatial queries into simpler subtasks, and strong vision specialist models improved via performant VLM critics. We evaluate our approach across diverse spatial reasoning tasks, and show that our method improves visual reasoning and surpasses open-source and proprietary models, while with our improved visual grounding model we further outperform recent text-only visual reasoning methods. Project webpage: https://glab-caltech.github.io/valor/

Authors:Hongyuan Tao, Bencheng Liao, Shaoyu Chen, Haoran Yin, Qian Zhang, Wenyu Liu, Xinggang Wang
Title: InfiniteVL: Synergizing Linear and Sparse Attention for Highly-Efficient, Unlimited-Input Vision-Language Models
Abstract:
Window attention and linear attention represent two principal strategies for mitigating the quadratic complexity and ever-growing KV cache in Vision-Language Models (VLMs). However, we observe that window-based VLMs suffer performance degradation when sequence length exceeds the window size, while linear attention underperforms on information-intensive tasks such as OCR and document understanding. To overcome these limitations, we propose InfiniteVL, a linear-complexity VLM architecture that synergizes sliding window attention (SWA) with Gated DeltaNet. For achieving competitive multimodal performance under constrained resources, we design a three-stage training strategy comprising distillation pretraining, instruction tuning, and long-sequence SFT. Remarkably, using less than 2\% of the training data required by leading VLMs, InfiniteVL not only substantially outperforms previous linear-complexity VLMs but also matches the performance of leading Transformer-based VLMs, while demonstrating effective long-term memory retention. Compared to similar-sized Transformer-based VLMs accelerated by FlashAttention-2, InfiniteVL achieves over 3.6\times inference speedup while maintaining constant latency and memory footprint. In streaming video understanding scenarios, it sustains a stable 24 FPS real-time prefill speed while preserving long-term memory cache. Code and models are available at https://github.com/hustvl/InfiniteVL.

Authors:Shahar Sarfaty, Adi Haviv, Uri Hacohen, Niva Elkin-Koren, Roi Livni, Amit H. Bermano
Title: CARLoS: Retrieval via Concise Assessment Representation of LoRAs at Scale
Abstract:
The rapid proliferation of generative components, such as LoRAs, has created a vast but unstructured ecosystem. Existing discovery methods depend on unreliable user descriptions or biased popularity metrics, hindering usability. We present CARLoS, a large-scale framework for characterizing LoRAs without requiring additional metadata. Analyzing over 650 LoRAs, we employ them in image generation over a variety of prompts and seeds, as a credible way to assess their behavior. Using CLIP embeddings and their difference to a base-model generation, we concisely define a three-part representation: Directions, defining semantic shift; Strength, quantifying the significance of the effect; and Consistency, quantifying how stable the effect is. Using these representations, we develop an efficient retrieval framework that semantically matches textual queries to relevant LoRAs while filtering overly strong or unstable ones, outperforming textual baselines in automated and human evaluations. While retrieval is our primary focus, the same representation also supports analyses linking Strength and Consistency to legal notions of substantiality and volition, key considerations in copyright, positioning CARLoS as a practical system with broader relevance for LoRA analysis.

Authors:Mohammed Elseiagy, Tsige Tadesse Alemayoh, Ranulfo Bezerra, Shotaro Kojima, Kazunori Ohno
Title: Data-Driven Dynamic Parameter Learning of manipulator robots
Abstract:
Bridging the sim-to-real gap remains a fundamental challenge in robotics, as accurate dynamic parameter estimation is essential for reliable model-based control, realistic simulation, and safe deployment of manipulators. Traditional analytical approaches often fall short when faced with complex robot structures and interactions. Data-driven methods offer a promising alternative, yet conventional neural networks such as recurrent models struggle to capture long-range dependencies critical for accurate estimation. In this study, we propose a Transformer-based approach for dynamic parameter estimation, supported by an automated pipeline that generates diverse robot models and enriched trajectory data using Jacobian-derived features. The dataset consists of 8,192 robots with varied inertial and frictional properties. Leveraging attention mechanisms, our model effectively captures both temporal and spatial dependencies. Experimental results highlight the influence of sequence length, sampling rate, and architecture, with the best configuration (sequence length 64, 64 Hz, four layers, 32 heads) achieving a validation R2 of 0.8633. Mass and inertia are estimated with near-perfect accuracy, Coulomb friction with moderate-to-high accuracy, while viscous friction and distal link center-of-mass remain more challenging. These results demonstrate that combining Transformers with automated dataset generation and kinematic enrichment enables scalable, accurate dynamic parameter estimation, contributing to improved sim-to-real transfer in robotic systems

Authors:Zhenyu Zhang, Guangyao Chen, Yixiong Zou, Zhimeng Huang, Yuhua Li
Title: Decoupling Template Bias in CLIP: Harnessing Empty Prompts for Enhanced Few-Shot Learning
Abstract:
The Contrastive Language-Image Pre-Training (CLIP) model excels in few-shot learning by aligning visual and textual representations. Our study shows that template-sample similarity (TSS), defined as the resemblance between a text template and an image sample, introduces bias. This bias leads the model to rely on template proximity rather than true sample-to-category alignment, reducing both accuracy and robustness in classification. We present a framework that uses empty prompts, textual inputs that convey the idea of "emptiness" without category information. These prompts capture unbiased template features and offset TSS bias. The framework employs two stages. During pre-training, empty prompts reveal and reduce template-induced bias within the CLIP encoder. During few-shot fine-tuning, a bias calibration loss enforces correct alignment between images and their categories, ensuring the model focuses on relevant visual cues. Experiments across multiple benchmarks demonstrate that our template correction method significantly reduces performance fluctuations caused by TSS, yielding higher classification accuracy and stronger robustness. The repository of this project is available at https://github.com/zhenyuZ-HUST/Decoupling-Template-Bias-in-CLIP.

Authors:Yuning Gong, Yifei Liu, Yifan Zhan, Muyao Niu, Xueying Li, Yuanjun Liao, Jiaming Chen, Yuanyuan Gao, Jiaqi Chen, Minming Chen, Li Zhou, Yuning Zhang, Wei Wang, Xiaoqing Hou, Huaxi Huang, Shixiang Tang, Le Ma, Dingwen Zhang, Xue Yang, Junchi Yan, Yanchi Zhang, Yinqiang Zheng, Xiao Sun, Zhihang Zhong
Title: Visionary: The World Model Carrier Built on WebGPU-Powered Gaussian Splatting Platform
Abstract:
Neural rendering, particularly 3D Gaussian Splatting (3DGS), has evolved rapidly and become a key component for building world models. However, existing viewer solutions remain fragmented, heavy, or constrained by legacy pipelines, resulting in high deployment friction and limited support for dynamic content and generative models. In this work, we present Visionary, an open, web-native platform for real-time various Gaussian Splatting and meshes rendering. Built on an efficient WebGPU renderer with per-frame ONNX inference, Visionary enables dynamic neural processing while maintaining a lightweight, "click-to-run" browser experience. It introduces a standardized Gaussian Generator contract, which not only supports standard 3DGS rendering but also allows plug-and-play algorithms to generate or update Gaussians each frame. Such inference also enables us to apply feedforward generative post-processing. The platform further offers a plug in three.js library with a concise TypeScript API for seamless integration into existing web applications. Experiments show that, under identical 3DGS assets, Visionary achieves superior rendering efficiency compared to current Web viewers due to GPU-based primitive sorting. It already supports multiple variants, including MLP-based 3DGS, 4DGS, neural avatars, and style transformation or enhancement networks. By unifying inference and rendering directly in the browser, Visionary significantly lowers the barrier to reproduction, comparison, and deployment of 3DGS-family methods, serving as a unified World Model Carrier for both reconstructive and generative paradigms.

Authors:Ali Sakour
Title: Conditional Morphogenesis: Emergent Generation of Structural Digits via Neural Cellular Automata
Abstract:
Biological systems exhibit remarkable morphogenetic plasticity, where a single genome can encode various specialized cellular structures triggered by local chemical signals. In the domain of Deep Learning, Differentiable Neural Cellular Automata (NCA) have emerged as a paradigm to mimic this self-organization. However, existing NCA research has predominantly focused on continuous texture synthesis or single-target object recovery, leaving the challenge of class-conditional structural generation largely unexplored. In this work, we propose a novel Conditional Neural Cellular Automata (c-NCA) architecture capable of growing distinct topological structures - specifically MNIST digits - from a single generic seed, guided solely by a spatially broadcasted class vector. Unlike traditional generative models (e.g., GANs, VAEs) that rely on global reception fields, our model enforces strict locality and translation equivariance. We demonstrate that by injecting a one-hot condition into the cellular perception field, a single set of local rules can learn to break symmetry and self-assemble into ten distinct geometric attractors. Experimental results show that our c-NCA achieves stable convergence, correctly forming digit topologies from a single pixel, and exhibits robustness characteristic of biological systems. This work bridges the gap between texture-based NCAs and structural pattern formation, offering a lightweight, biologically plausible alternative for conditional generation.

Authors:Bin Wang, Hui Li, Liyang Zhang, Qijia Zhuang, Ao Yang, Dong Zhang, Xijun Luo, Bing Lin
Title: Argus: A Multi-Agent Sensitive Information Leakage Detection Framework Based on Hierarchical Reference Relationships
Abstract:
Sensitive information leakage in code repositories has emerged as a critical security challenge. Traditional detection methods that rely on regular expressions, fingerprint features, and high-entropy calculations often suffer from high false-positive rates. This not only reduces detection efficiency but also significantly increases the manual screening burden on developers. Recent advances in large language models (LLMs) and multi-agent collaborative architectures have demonstrated remarkable potential for tackling complex tasks, offering a novel technological perspective for sensitive information detection. In response to these challenges, we propose Argus, a multi-agent collaborative framework for detecting sensitive information. Argus employs a three-tier detection mechanism that integrates key content, file context, and project reference relationships to effectively reduce false positives and enhance overall detection accuracy. To comprehensively evaluate Argus in real-world repository environments, we developed two new benchmarks, one to assess genuine leak detection capabilities and another to evaluate false-positive filtering performance. Experimental results show that Argus achieves up to 94.86% accuracy in leak detection, with a precision of 96.36%, recall of 94.64%, and an F1 score of 0.955. Moreover, the analysis of 97 real repositories incurred a total cost of only 2.2$. All code implementations and related datasets are publicly available at https://github.com/TheBinKing/Argus-Guard for further research and application.

Authors:Alexander Goslin
Title: Terrain Diffusion: A Diffusion-Based Successor to Perlin Noise in Infinite, Real-Time Terrain Generation
Abstract:
For decades, procedural worlds have been built on procedural noise functions such as Perlin noise, which are fast and infinite, yet fundamentally limited in realism and large-scale coherence. We introduce Terrain Diffusion, a generative framework that bridges the fidelity of diffusion models with the properties that made procedural noise indispensable: seamless infinite extent, seed-consistency, and constant-time random access. At its core is InfiniteDiffusion, a novel algorithm for infinite generation that reformulates standard diffusion sampling for unbounded domains. While noise functions remain near-instant, our framework outpaces orbital velocity by 9 times on a consumer GPU, enabling realistic terrain generation at interactive rates. We integrate a hierarchical stack of diffusion models to couple planetary context with local detail, a compact Laplacian encoding to stabilize outputs across Earth-scale dynamic ranges, and an open-source infinite-tensor framework for constant-memory manipulation of unbounded tensors. Together, these components position diffusion models as a practical, scalable foundation for the next generation of infinite virtual worlds.

Authors:Zongwei Li, Zhonghang Li, Zirui Guo, Xubin Ren, Chao Huang
Title: DeepCode: Open Agentic Coding
Abstract:
Recent advances in large language models (LLMs) have given rise to powerful coding agents, making it possible for code assistants to evolve into code engineers. However, existing methods still face significant challenges in achieving high-fidelity document-to-codebase synthesis--such as scientific papers to code--primarily due to a fundamental conflict between information overload and the context bottlenecks of LLMs. In this work, we introduce DeepCode, a fully autonomous framework that fundamentally addresses this challenge through principled information-flow management. By treating repository synthesis as a channel optimization problem, DeepCode seamlessly orchestrates four information operations to maximize task-relevant signals under finite context budgets: source compression via blueprint distillation, structured indexing using stateful code memory, conditional knowledge injection via retrieval-augmented generation, and closed-loop error correction. Extensive evaluations on the PaperBench benchmark demonstrate that DeepCode achieves state-of-the-art performance, decisively outperforming leading commercial agents such as Cursor and Claude Code, and crucially, surpassing PhD-level human experts from top institutes on key reproduction metrics. By systematically transforming paper specifications into production-grade implementations comparable to human expert quality, this work establishes new foundations for autonomous scientific reproduction that can accelerate research evaluation and discovery.

Authors:Hongjun Wang, Yitong Jiang, Collin McCarthy, David Wehr, Hanrong Ye, Xinhao Li, Ka Chun Cheung, Wonmin Byeon, Jinwei Gu, Ke Chen, Kai Han, Hongxu Yin, Pavlo Molchanov, Jan Kautz, Sifei Liu
Title: GSPN-2: Efficient Parallel Sequence Modeling
Abstract:
Efficient vision transformer remains a bottleneck for high-resolution images and long-video related real-world applications. Generalized Spatial Propagation Network (GSPN) addresses this by replacing quadratic self-attention with a line-scan propagation scheme, bringing the cost close to linear in the number of rows or columns, while retaining accuracy. Despite this advancement, the existing GSPN implementation still suffers from (i) heavy overhead due to repeatedly launching GPU kernels, (ii) excessive data transfers from global GPU memory, and (iii) redundant computations caused by maintaining separate propagation weights for each channel. We introduce GSPN-2, a joint algorithm-system redesign. In particular, we eliminate thousands of micro-launches from the previous implementation into one single 2D kernel, explicitly pin one warp to each channel slice, and stage the previous column's activations in shared memory. On the model side, we introduce a compact channel propagation strategy that replaces per-channel matrices, trimming parameters, and align naturally with the affinity map used in transformer attention. Experiments demonstrate GSPN-2's effectiveness across image classification and text-to-image synthesis tasks, matching transformer-level accuracy with significantly lower computational cost. GSPN-2 establishes a new efficiency frontier for modeling global spatial context in vision applications through its unique combination of structured matrix transformations and GPU-optimized implementation. Project page: https://whj363636.github.io/GSPN2/

Authors:Thao Nguyen, Sicheng Mo, Krishna Kumar Singh, Yilin Wang, Jing Shi, Nicholas Kolkin, Eli Shechtman, Yong Jae Lee, Yuheng Li
Title: Relational Visual Similarity
Abstract:
Humans do not just see attribute similarity -- we also see relational similarity. An apple is like a peach because both are reddish fruit, but the Earth is also like a peach: its crust, mantle, and core correspond to the peach's skin, flesh, and pit. This ability to perceive and recognize relational similarity, is arguable by cognitive scientist to be what distinguishes humans from other species. Yet, all widely used visual similarity metrics today (e.g., LPIPS, CLIP, DINO) focus solely on perceptual attribute similarity and fail to capture the rich, often surprising relational similarities that humans perceive. How can we go beyond the visible content of an image to capture its relational properties? How can we bring images with the same relational logic closer together in representation space? To answer these questions, we first formulate relational image similarity as a measurable problem: two images are relationally similar when their internal relations or functions among visual elements correspond, even if their visual attributes differ. We then curate 114k image-caption dataset in which the captions are anonymized -- describing the underlying relational logic of the scene rather than its surface content. Using this dataset, we finetune a Vision-Language model to measure the relational similarity between images. This model serves as the first step toward connecting images by their underlying relational structure rather than their visible appearance. Our study shows that while relational similarity has a lot of real-world applications, existing image similarity models fail to capture it -- revealing a critical gap in visual computing.

Authors:Jordan Taylor, Sid Black, Dillon Bowen, Thomas Read, Satvik Golechha, Alex Zelenka-Martin, Oliver Makins, Connor Kissane, Kola Ayonrinde, Jacob Merizian, Samuel Marks, Chris Cundy, Joseph Bloom
Title: Auditing Games for Sandbagging
Abstract:
Future AI systems could conceal their capabilities ('sandbagging') during evaluations, potentially misleading developers and auditors. We stress-tested sandbagging detection techniques using an auditing game. First, a red team fine-tuned five models, some of which conditionally underperformed, as a proxy for sandbagging. Second, a blue team used black-box, model-internals, or training-based approaches to identify sandbagging models. We found that the blue team could not reliably discriminate sandbaggers from benign models. Black-box approaches were defeated by effective imitation of a weaker model. Linear probes, a model-internals approach, showed more promise but their naive application was vulnerable to behaviours instilled by the red team. We also explored capability elicitation as a strategy for detecting sandbagging. Although Prompt-based elicitation was not reliable, training-based elicitation consistently elicited full performance from the sandbagging models, using only a single correct demonstration of the evaluation task. However the performance of benign models was sometimes also raised, so relying on elicitation as a detection strategy was prone to false-positives. In the short-term, we recommend developers remove potential sandbagging using on-distribution training for elicitation. In the longer-term, further research is needed to ensure the efficacy of training-based elicitation, and develop robust methods for sandbagging detection. We open source our model organisms at https://github.com/AI-Safety-Institute/sandbagging_auditing_games and select transcripts and results at https://huggingface.co/datasets/sandbagging-games/evaluation_logs . A demo illustrating the game can be played at https://sandbagging-demo.far.ai/ .

Authors:Yifan Zhang, Zixiang Chen, Yifeng Liu, Zhen Qin, Huizhuo Yuan, Kangping Xu, Yang Yuan, Quanquan Gu, Andrew Chi-Chih Yao
Title: Group Representational Position Encoding
Abstract:
We present GRAPE (Group RepresentAtional Position Encoding), a unified framework for positional encoding based on group actions. GRAPE brings together two families of mechanisms: (i) multiplicative rotations (Multiplicative GRAPE) in $\mathrm{SO}(d)$ and (ii) additive logit biases (Additive GRAPE) arising from unipotent actions in the general linear group $\mathrm{GL}$. In Multiplicative GRAPE, a position $n \in \mathbb{Z}$ (or $t \in \mathbb{R}$) acts as $\mathbf{G}(n)=\exp(n\,ω\,\mathbf{L})$ with a rank-2 skew generator $\mathbf{L} \in \mathbb{R}^{d \times d}$, yielding a relative, compositional, norm-preserving map with a closed-form matrix exponential. RoPE is recovered exactly when the $d/2$ planes are the canonical coordinate pairs with log-uniform spectrum. Learned commuting subspaces and compact non-commuting mixtures strictly extend this geometry to capture cross-subspace feature coupling at $O(d)$ and $O(r d)$ cost per head, respectively. In Additive GRAPE, additive logits arise as rank-1 (or low-rank) unipotent actions, recovering ALiBi and the Forgetting Transformer (FoX) as exact special cases while preserving an exact relative law and streaming cacheability. Altogether, GRAPE supplies a principled design space for positional geometry in long-context models, subsuming RoPE and ALiBi as special cases. Project Page: https://github.com/model-architectures/GRAPE.

Authors:Nearchos Potamitis, Lars Klein, Akhil Arora
Title: ReasonBENCH: Benchmarking the (In)Stability of LLM Reasoning
Abstract:
Large language models (LLMs) are increasingly deployed in settings where reasoning, such as multi-step problem solving and chain-of-thought, is essential. Yet, current evaluation practices overwhelmingly report single-run accuracy while ignoring the intrinsic uncertainty that naturally arises from stochastic decoding. This omission creates a blind spot because practitioners cannot reliably assess whether a method's reported performance is stable, reproducible, or cost-consistent. We introduce ReasonBENCH, the first benchmark designed to quantify the underlying instability in LLM reasoning. ReasonBENCH provides (i) a modular evaluation library that standardizes reasoning frameworks, models, and tasks, (ii) a multi-run protocol that reports statistically reliable metrics for both quality and cost, and (iii) a public leaderboard to encourage variance-aware reporting. Across tasks from different domains, we find that the vast majority of reasoning strategies and models exhibit high instability. Notably, even strategies with similar average performance can display confidence intervals up to four times wider, and the top-performing methods often incur higher and less stable costs. Such instability compromises reproducibility across runs and, consequently, the reliability of reported performance. To better understand these dynamics, we further analyze the impact of prompts, model families, and scale on the trade-off between solve rate and stability. Our results highlight reproducibility as a critical dimension for reliable LLM reasoning and provide a foundation for future reasoning methods and uncertainty quantification techniques. ReasonBENCH is publicly available at https://github.com/au-clan/ReasonBench .

Authors:Xiqiao Xiong, Ouxiang Li, Zhuo Liu, Moxin Li, Wentao Shi, Fuli Feng, Xiangnan He
Title: RL-MTJail: Reinforcement Learning for Automated Black-Box Multi-Turn Jailbreaking of Large Language Models
Abstract:
Large language models are vulnerable to jailbreak attacks, threatening their safe deployment in real-world applications. This paper studies black-box multi-turn jailbreaks, aiming to train attacker LLMs to elicit harmful content from black-box models through a sequence of prompt-output interactions. Existing approaches typically rely on single turn optimization, which is insufficient for learning long-term attack strategies. To bridge this gap, we formulate the problem as a multi-turn reinforcement learning task, directly optimizing the harmfulness of the final-turn output as the outcome reward. To mitigate sparse supervision and promote long-term attack strategies, we propose two heuristic process rewards: (1) controlling the harmfulness of intermediate outputs to prevent triggering the black-box model's rejection mechanisms, and (2) maintaining the semantic relevance of intermediate outputs to avoid drifting into irrelevant content. Experimental results on multiple benchmarks show consistently improved attack success rates across multiple models, highlighting the effectiveness of our approach. The code is available at https://github.com/xxiqiao/RL-MTJail. Warning: This paper contains examples of harmful content.

Authors:Sangha Park, Seungryong Yoo, Jisoo Mok, Sungroh Yoon
Title: SAVE: Sparse Autoencoder-Driven Visual Information Enhancement for Mitigating Object Hallucination
Abstract:
Although Multimodal Large Language Models (MLLMs) have advanced substantially, they remain vulnerable to object hallucination caused by language priors and visual information loss. To address this, we propose SAVE (Sparse Autoencoder-Driven Visual Information Enhancement), a framework that mitigates hallucination by steering the model along Sparse Autoencoder (SAE) latent features. A binary object-presence question-answering probe identifies the SAE features most indicative of the model's visual information processing, referred to as visual understanding features. Steering the model along these identified features reinforces grounded visual understanding and effectively reduces hallucination. With its simple design, SAVE outperforms state-of-the-art training-free methods on standard benchmarks, achieving a 10\%p improvement in CHAIR\_S and consistent gains on POPE and MMHal-Bench. Extensive evaluations across multiple models and layers confirm the robustness and generalizability of our approach. Further analysis reveals that steering along visual understanding features suppresses the generation of uncertain object tokens and increases attention to image tokens, mitigating hallucination. Code is released at https://github.com/wiarae/SAVE.

Authors:Sangha Park, Eunji Kim, Yeongtak Oh, Jooyoung Choi, Sungroh Yoon
Title: Guiding What Not to Generate: Automated Negative Prompting for Text-Image Alignment
Abstract:
Despite substantial progress in text-to-image generation, achieving precise text-image alignment remains challenging, particularly for prompts with rich compositional structure or imaginative elements. To address this, we introduce Negative Prompting for Image Correction (NPC), an automated pipeline that improves alignment by identifying and applying negative prompts that suppress unintended content. We begin by analyzing cross-attention patterns to explain why both targeted negatives-those directly tied to the prompt's alignment error-and untargeted negatives-tokens unrelated to the prompt but present in the generated image-can enhance alignment. To discover useful negatives, NPC generates candidate prompts using a verifier-captioner-proposer framework and ranks them with a salient text-space score, enabling effective selection without requiring additional image synthesis. On GenEval++ and Imagine-Bench, NPC outperforms strong baselines, achieving 0.571 vs. 0.371 on GenEval++ and the best overall performance on Imagine-Bench. By guiding what not to generate, NPC provides a principled, fully automated route to stronger text-image alignment in diffusion models. Code is released at https://github.com/wiarae/NPC.

Authors:Kassoum Sanogo, Renzo Ardiccioni
Title: Toward More Reliable Artificial Intelligence: Reducing Hallucinations in Vision-Language Models
Abstract:
Vision-language models (VLMs) frequently generate hallucinated content plausible but incorrect claims about image content. We propose a training-free self-correction framework enabling VLMs to iteratively refine responses through uncertainty-guided visual re-attention. Our method combines multidimensional uncertainty quantification (token entropy, attention dispersion, semantic consistency, claim confidence) with attention-guided cropping of under-explored regions. Operating entirely with frozen, pretrained VLMs, our framework requires no gradient updates. We validate our approach on the POPE and MMHAL BENCH benchmarks using the Qwen2.5-VL-7B [23] architecture. Experimental results demonstrate that our method reduces hallucination rates by 9.8 percentage points compared to the baseline, while improving object existence accuracy by 4.7 points on adversarial splits. Furthermore, qualitative analysis confirms that uncertainty-guided re-attention successfully grounds corrections in visual evidence where standard decoding fails. We validate our approach on Qwen2.5-VL-7B [23], with plans to extend validation across diverse architectures in future versions. We release our code and methodology to facilitate future research in trustworthy multimodal systems.

Authors:Kyungro Lee, Dongha Choi, Hyunju Lee
Title: MoCoRP: Modeling Consistent Relations between Persona and Response for Persona-based Dialogue
Abstract:
As dialogue systems become increasingly important across various domains, a key challenge in persona-based dialogue is generating engaging and context-specific interactions while ensuring the model acts with a coherent personality. However, existing persona-based dialogue datasets lack explicit relations between persona sentences and responses, which makes it difficult for models to effectively capture persona information. To address these issues, we propose MoCoRP (Modeling Consistent Relations between Persona and Response), a framework that incorporates explicit relations into language models. MoCoRP leverages an NLI expert to explicitly extract the NLI relations between persona sentences and responses, enabling the model to effectively incorporate appropriate persona information from the context into its responses. We applied this framework to pre-trained models like BART and further extended it to modern large language models (LLMs) through alignment tuning. Experimental results on the public datasets ConvAI2 and MPChat demonstrate that MoCoRP outperforms existing baselines, achieving superior persona consistency and engaging, context-aware dialogue generation. Furthermore, our model not only excels in quantitative metrics but also shows significant improvements in qualitative aspects. These results highlight the effectiveness of explicitly modeling persona-response relations in persona-based dialogue. The source codes of MoCoRP are available at https://github.com/DMCB-GIST/MoCoRP.

Authors:Yuzhou Nie, Hongwei Li, Chengquan Guo, Ruizhe Jiang, Zhun Wang, Bo Li, Dawn Song, Wenbo Guo
Title: VulnLLM-R: Specialized Reasoning LLM with Agent Scaffold for Vulnerability Detection
Abstract:
We propose VulnLLM-R, the~\emph{first specialized reasoning LLM} for vulnerability detection. Our key insight is that LLMs can reason about program states and analyze the potential vulnerabilities, rather than simple pattern matching. This can improve the model's generalizability and prevent learning shortcuts. However, SOTA reasoning LLMs are typically ultra-large, closed-source, or have limited performance in vulnerability detection. To address this, we propose a novel training recipe with specialized data selection, reasoning data generation, reasoning data filtering and correction, and testing-phase optimization. Using our proposed methodology, we train a reasoning model with seven billion parameters. Through extensive experiments on SOTA datasets across Python, C/C++, and Java, we show that VulnLLM-R has superior effectiveness and efficiency than SOTA static analysis tools and both open-source and commercial large reasoning models. We further conduct a detailed ablation study to validate the key designs in our training recipe. Finally, we construct an agent scaffold around our model and show that it outperforms CodeQL and AFL++ in real-world projects. Our agent further discovers a set of zero-day vulnerabilities in actively maintained repositories. This work represents a pioneering effort to enable real-world, project-level vulnerability detection using AI agents powered by specialized reasoning models. The code is available at~\href{https://github.com/ucsb-mlsec/VulnLLM-R}{github}.

Authors:David M. Allison, Stephen Herzog
Title: Artificial Intelligence and Nuclear Weapons Proliferation: The Technological Arms Race for (In)visibility
Abstract:
A robust nonproliferation regime has contained the spread of nuclear weapons to just nine states. Yet, emerging and disruptive technologies are reshaping the landscape of nuclear risks, presenting a critical juncture for decision makers. This article lays out the contours of an overlooked but intensifying technological arms race for nuclear (in)visibility, driven by the interplay between proliferation-enabling technologies (PETs) and detection-enhancing technologies (DETs). We argue that the strategic pattern of proliferation will be increasingly shaped by the innovation pace in these domains. Artificial intelligence (AI) introduces unprecedented complexity to this equation, as its rapid scaling and knowledge substitution capabilities accelerate PET development and challenge traditional monitoring and verification methods. To analyze this dynamic, we develop a formal model centered on a Relative Advantage Index (RAI), quantifying the shifting balance between PETs and DETs. Our model explores how asymmetric technological advancement, particularly logistic AI-driven PET growth versus stepwise DET improvements, expands the band of uncertainty surrounding proliferation detectability. Through replicable scenario-based simulations, we evaluate the impact of varying PET growth rates and DET investment strategies on cumulative nuclear breakout risk. We identify a strategic fork ahead, where detection may no longer suffice without broader PET governance. Governments and international organizations should accordingly invest in policies and tools agile enough to keep pace with tomorrow's technology.

Authors:Imran Ahsan, Hyunwook Yu, Jinsung Kim, Mucheol Kim
Title: Forget and Explain: Transparent Verification of GNN Unlearning
Abstract:
Graph neural networks (GNNs) are increasingly used to model complex patterns in graph-structured data. However, enabling them to "forget" designated information remains challenging, especially under privacy regulations such as the GDPR. Existing unlearning methods largely optimize for efficiency and scalability, yet they offer little transparency, and the black-box nature of GNNs makes it difficult to verify whether forgetting has truly occurred. We propose an explainability-driven verifier for GNN unlearning that snapshots the model before and after deletion, using attribution shifts and localized structural changes (for example, graph edit distance) as transparent evidence. The verifier uses five explainability metrics: residual attribution, heatmap shift, explainability score deviation, graph edit distance, and a diagnostic graph rule shift. We evaluate two backbones (GCN, GAT) and four unlearning strategies (Retrain, GraphEditor, GNNDelete, IDEA) across five benchmarks (Cora, Citeseer, Pubmed, Coauthor-CS, Coauthor-Physics). Results show that Retrain and GNNDelete achieve near-complete forgetting, GraphEditor provides partial erasure, and IDEA leaves residual signals. These explanation deltas provide the primary, human-readable evidence of forgetting; we also report membership-inference ROC-AUC as a complementary, graph-wide privacy signal.

Authors:Byungju Kim, Jinu Pahk, Chungwoo Lee, Jaejoon Kim, Jangha Lee, Theo Taeyeong Kim, Kyuhwan Shim, Jun Ki Lee, Byoung-Tak Zhang
Title: ESPADA: Execution Speedup via Semantics Aware Demonstration Data Downsampling for Imitation Learning
Abstract:
Behavior-cloning based visuomotor policies enable precise manipulation but often inherit the slow, cautious tempo of human demonstrations, limiting practical deployment. However, prior studies on acceleration methods mainly rely on statistical or heuristic cues that ignore task semantics and can fail across diverse manipulation settings. We present ESPADA, a semantic and spatially aware framework that segments demonstrations using a VLM-LLM pipeline with 3D gripper-object relations, enabling aggressive downsampling only in non-critical segments while preserving precision-critical phases, without requiring extra data or architectural modifications, or any form of retraining. To scale from a single annotated episode to the full dataset, ESPADA propagates segment labels via Dynamic Time Warping (DTW) on dynamics-only features. Across both simulation and real-world experiments with ACT and DP baselines, ESPADA achieves approximately a 2x speed-up while maintaining success rates, narrowing the gap between human demonstrations and efficient robot control.

Authors:Ziyang Mai, Yu-Wing Tai
Title: ContextAnyone: Context-Aware Diffusion for Character-Consistent Text-to-Video Generation
Abstract:
Text-to-video (T2V) generation has advanced rapidly, yet maintaining consistent character identities across scenes remains a major challenge. Existing personalization methods often focus on facial identity but fail to preserve broader contextual cues such as hairstyle, outfit, and body shape, which are critical for visual coherence. We propose \textbf{ContextAnyone}, a context-aware diffusion framework that achieves character-consistent video generation from text and a single reference image. Our method jointly reconstructs the reference image and generates new video frames, enabling the model to fully perceive and utilize reference information. Reference information is effectively integrated into a DiT-based diffusion backbone through a novel Emphasize-Attention module that selectively reinforces reference-aware features and prevents identity drift across frames. A dual-guidance loss combines diffusion and reference reconstruction objectives to enhance appearance fidelity, while the proposed Gap-RoPE positional embedding separates reference and video tokens to stabilize temporal modeling. Experiments demonstrate that ContextAnyone outperforms existing reference-to-video methods in identity consistency and visual quality, generating coherent and context-preserving character videos across diverse motions and scenes. Project page: \href{https://github.com/ziyang1106/ContextAnyone}{https://github.com/ziyang1106/ContextAnyone}.

Authors:Yuxiao Luo, Songming Zhang, Sijie Ruan, Siran Chen, Kang Liu, Yang Xu, Yu Zheng, Ling Yin
Title: M-STAR: Multi-Scale Spatiotemporal Autoregression for Human Mobility Modeling
Abstract:
Modeling human mobility is vital for extensive applications such as transportation planning and epidemic modeling. With the rise of the Artificial Intelligence Generated Content (AIGC) paradigm, recent works explore synthetic trajectory generation using autoregressive and diffusion models. While these methods show promise for generating single-day trajectories, they remain limited by inefficiencies in long-term generation (e.g., weekly trajectories) and a lack of explicit spatiotemporal multi-scale modeling. This study proposes Multi-Scale Spatio-Temporal AutoRegression (M-STAR), a new framework that generates long-term trajectories through a coarse-to-fine spatiotemporal prediction process. M-STAR combines a Multi-scale Spatiotemporal Tokenizer that encodes hierarchical mobility patterns with a Transformer-based decoder for next-scale autoregressive prediction. Experiments on two real-world datasets show that M-STAR outperforms existing methods in fidelity and significantly improves generation speed. The data and codes are available at https://github.com/YuxiaoLuo0013/M-STAR.

Authors:Mingning Guo, Mengwei Wu, Shaoxian Li, Haifeng Li, Chao Tao
Title: Towards Accurate UAV Image Perception: Guiding Vision-Language Models with Stronger Task Prompts
Abstract:
Existing image perception methods based on VLMs generally follow a paradigm wherein models extract and analyze image content based on user-provided textual task prompts. However, such methods face limitations when applied to UAV imagery, which presents challenges like target confusion, scale variations, and complex backgrounds. These challenges arise because VLMs' understanding of image content depends on the semantic alignment between visual and textual tokens. When the task prompt is simplistic and the image content is complex, achieving effective alignment becomes difficult, limiting the model's ability to focus on task-relevant information. To address this issue, we introduce AerialVP, the first agent framework for task prompt enhancement in UAV image perception. AerialVP proactively extracts multi-dimensional auxiliary information from UAV images to enhance task prompts, overcoming the limitations of traditional VLM-based approaches. Specifically, the enhancement process includes three stages: (1) analyzing the task prompt to identify the task type and enhancement needs, (2) selecting appropriate tools from the tool repository, and (3) generating enhanced task prompts based on the analysis and selected tools. To evaluate AerialVP, we introduce AerialSense, a comprehensive benchmark for UAV image perception that includes Aerial Visual Reasoning, Aerial Visual Question Answering, and Aerial Visual Grounding tasks. AerialSense provides a standardized basis for evaluating model generalization and performance across diverse resolutions, lighting conditions, and both urban and natural scenes. Experimental results demonstrate that AerialVP significantly enhances task prompt guidance, leading to stable and substantial performance improvements in both open-source and proprietary VLMs. Our work will be available at https://github.com/lostwolves/AerialVP.

Authors:Wenlong Liu, Jiahua Pan, Xingyu Zhang, Xinxin Gong, Yang Ye, Xujin Zhao, Xin Wang, Kent Wu, Hua Xiang, Houmin Yan, Qingpeng Zhang
Title: Cross-platform Product Matching Based on Entity Alignment of Knowledge Graph with RAEA model
Abstract:
Product matching aims to identify identical or similar products sold on different platforms. By building knowledge graphs (KGs), the product matching problem can be converted to the Entity Alignment (EA) task, which aims to discover the equivalent entities from diverse KGs. The existing EA methods inadequately utilize both attribute triples and relation triples simultaneously, especially the interactions between them. This paper introduces a two-stage pipeline consisting of rough filter and fine filter to match products from eBay and Amazon. For fine filtering, a new framework for Entity Alignment, Relation-aware and Attribute-aware Graph Attention Networks for Entity Alignment (RAEA), is employed. RAEA focuses on the interactions between attribute triples and relation triples, where the entity representation aggregates the alignment signals from attributes and relations with Attribute-aware Entity Encoder and Relation-aware Graph Attention Networks. The experimental results indicate that the RAEA model achieves significant improvements over 12 baselines on EA task in the cross-lingual dataset DBP15K (6.59% on average Hits@1) and delivers competitive results in the monolingual dataset DWY100K. The source code for experiments on DBP15K and DWY100K is available at github (https://github.com/Mockingjay-liu/RAEA-model-for-Entity-Alignment).

Authors:Siyang Jiang, Mu Yuan, Xiang Ji, Bufang Yang, Zeyu Liu, Lilin Xu, Yang Li, Yuting He, Liran Dong, Wenrui Lu, Zhenyu Yan, Xiaofan Jiang, Wei Gao, Hongkai Chen, Guoliang Xing
Title: A Large-Scale Multimodal Dataset and Benchmarks for Human Activity Scene Understanding and Reasoning
Abstract:
Multimodal human action recognition (HAR) leverages complementary sensors for activity classification. Beyond recognition, recent advances in large language models (LLMs) enable detailed descriptions and causal reasoning, motivating new tasks: human action understanding (HAU) and human action reasoning (HARn). However, most LLMs, especially large vision language models (LVLMs), struggle with non-RGB modalities such as depth, IMU, and mmWave due to the lack of large-scale data-caption resources. Existing HAR datasets mainly provide coarse data-label annotations, which are insufficient to capture fine-grained action dynamics needed for HAU and HARn. We consider two ground-truth pair types: (1) data label (discrete category) and (2) data caption (textual description). Naively generating captions from labels often lacks logical and spatiotemporal consistency. We introduce CUHK-X, a large-scale multimodal dataset and benchmark suite for HAR, HAU, and HARn. CUHK-X contains 58,445 samples covering 40 actions performed by 30 participants across two indoor environments. To improve caption consistency, we propose a prompt-based scene creation method that leverages LLMs to generate logically connected activity sequences, followed by human validation. CUHK-X includes three benchmarks with six evaluation tasks. Experiments report average accuracies of 76.52% (HAR), 40.76% (HAU), and 70.25% (HARn). CUHK-X aims to enable the community to apply and develop data-intensive learning methods for robust, multimodal human activity analysis. Project page and code: https://openaiotlab.github.io/CUHK-X/ and https://github.com/openaiotlab/CUHK-X.

Authors:Nithin Sivakumaran, Justin Chih-Yao Chen, David Wan, Yue Zhang, Jaehong Yoon, Elias Stengel-Eskin, Mohit Bansal
Title: DART: Leveraging Multi-Agent Disagreement for Tool Recruitment in Multimodal Reasoning
Abstract:
Specialized visual tools can augment large language models or vision language models with expert knowledge (e.g., grounding, spatial reasoning, medical knowledge, etc.), but knowing which tools to call (and when to call them) can be challenging. We introduce DART, a multi-agent framework that uses disagreements between multiple debating visual agents to identify useful visual tools (e.g., object detection, OCR, spatial reasoning, etc.) that can resolve inter-agent disagreement. These tools allow for fruitful multi-agent discussion by introducing new information, and by providing tool-aligned agreement scores that highlight agents in agreement with expert tools, thereby facilitating discussion. We utilize an aggregator agent to select the best answer by providing the agent outputs and tool information. We test DART on four diverse benchmarks and show that our approach improves over multi-agent debate as well as over single agent tool-calling frameworks, beating the next-strongest baseline (multi-agent debate with a judge model) by 3.4% and 2.4% on A-OKVQA and MMMU respectively. We also find that DART adapts well to new tools in applied domains, with a 1.3% improvement on the M3D medical dataset over other strong tool-calling, single agent, and multi-agent baselines. Additionally, we measure text overlap across rounds to highlight the rich discussion in DART compared to existing multi-agent methods. Finally, we study the tool call distribution, finding that diverse tools are reliably used to help resolve disagreement.

Authors:Anton Morgunov, Victor S. Batista
Title: Procrustean Bed for AI-Driven Retrosynthesis: A Unified Framework for Reproducible Evaluation
Abstract:
Progress in computer-aided synthesis planning (CASP) is obscured by the lack of standardized evaluation infrastructure and the reliance on metrics that prioritize topological completion over chemical validity. We introduce RetroCast, a unified evaluation suite that standardizes heterogeneous model outputs into a common schema to enable statistically rigorous, apples-to-apples comparison. The framework includes a reproducible benchmarking pipeline with stratified sampling and bootstrapped confidence intervals, accompanied by SynthArena, an interactive platform for qualitative route inspection. We utilize this infrastructure to evaluate leading search-based and sequence-based algorithms on a new suite of standardized benchmarks. Our analysis reveals a divergence between "solvability" (stock-termination rate) and route quality; high solvability scores often mask chemical invalidity or fail to correlate with the reproduction of experimental ground truths. Furthermore, we identify a "complexity cliff" in which search-based methods, despite high solvability rates, exhibit a sharp performance decay in reconstructing long-range synthetic plans compared to sequence-based approaches. We release the full framework, benchmark definitions, and a standardized database of model predictions to support transparent and reproducible development in the field.

Authors:Changliang Xia, Chengyou Jia, Minnan Luo, Zhuohang Dang, Xin Shen, Bowen Ping
Title: $\mathrm{D}^{\mathrm{3}}$-Predictor: Noise-Free Deterministic Diffusion for Dense Prediction
Abstract:
Although diffusion models with strong visual priors have emerged as powerful dense prediction backboens, they overlook a core limitation: the stochastic noise at the core of diffusion sampling is inherently misaligned with dense prediction that requires a deterministic mapping from image to geometry. In this paper, we show that this stochastic noise corrupts fine-grained spatial cues and pushes the model toward timestep-specific noise objectives, consequently destroying meaningful geometric structure mappings. To address this, we introduce $\mathrm{D}^{\mathrm{3}}$-Predictor, a noise-free deterministic framework built by reformulating a pretrained diffusion model without stochasticity noise. Instead of relying on noisy inputs to leverage diffusion priors, $\mathrm{D}^{\mathrm{3}}$-Predictor views the pretrained diffusion network as an ensemble of timestep-dependent visual experts and self-supervisedly aggregates their heterogeneous priors into a single, clean, and complete geometric prior. Meanwhile, we utilize task-specific supervision to seamlessly adapt this noise-free prior to dense prediction tasks. Extensive experiments on various dense prediction tasks demonstrate that $\mathrm{D}^{\mathrm{3}}$-Predictor achieves competitive or state-of-the-art performance in diverse scenarios. In addition, it requires less than half the training data previously used and efficiently performs inference in a single step. Our code, data, and checkpoints are publicly available at https://x-gengroup.github.io/HomePage_D3-Predictor/.

Authors:Zhiyu Xu, Jia Liu, Yixin Wang, Yuqi Gu
Title: Latency-Response Theory Model: Evaluating Large Language Models via Response Accuracy and Chain-of-Thought Length
Abstract:
The proliferation of Large Language Models (LLMs) necessitates valid evaluation methods to provide guidance for both downstream applications and actionable future improvements. The Item Response Theory (IRT) model with Computerized Adaptive Testing has recently emerged as a promising framework for evaluating LLMs via their response accuracy. Beyond simple response accuracy, LLMs' chain of thought (CoT) lengths serve as a vital indicator of their reasoning ability. To leverage the CoT length information to assist the evaluation of LLMs, we propose the Latency-Response Theory (LaRT) model, which jointly models both the response accuracy and CoT length by introducing a key correlation parameter between the latent ability and the latent speed. We derive an efficient stochastic approximation Expectation-Maximization algorithm for parameter estimation. We establish rigorous identifiability results for the latent ability and latent speed parameters to ensure the statistical validity of their estimation. Through both theoretical asymptotic analyses and simulation studies, we demonstrate LaRT's advantages over IRT in terms of superior estimation accuracy and shorter confidence intervals for latent trait estimation. To evaluate LaRT in real data, we collect responses from diverse LLMs on popular benchmark datasets. We find that LaRT yields different LLM rankings than IRT and outperforms IRT across multiple key evaluation metrics including predictive power, item efficiency, ranking validity, and LLM evaluation efficiency. Code and data are available at https://github.com/Toby-X/Latency-Response-Theory-Model.

Authors:Wancheng Feng, Chen An, Zhenliang He, Meina Kan, Shiguang Shan, Lukun Wang
Title: JoPano: Unified Panorama Generation via Joint Modeling
Abstract:
Panorama generation has recently attracted growing interest in the research community, with two core tasks, text-to-panorama and view-to-panorama generation. However, existing methods still face two major challenges: their U-Net-based architectures constrain the visual quality of the generated panoramas, and they usually treat the two core tasks independently, which leads to modeling redundancy and inefficiency. To overcome these challenges, we propose a joint-face panorama (JoPano) generation approach that unifies the two core tasks within a DiT-based model. To transfer the rich generative capabilities of existing DiT backbones learned from natural images to the panorama domain, we propose a Joint-Face Adapter built on the cubemap representation of panoramas, which enables a pretrained DiT to jointly model and generate different views of a panorama. We further apply Poisson Blending to reduce seam inconsistencies that often appear at the boundaries between cube faces. Correspondingly, we introduce Seam-SSIM and Seam-Sobel metrics to quantitatively evaluate the seam consistency. Moreover, we propose a condition switching mechanism that unifies text-to-panorama and view-to-panorama tasks within a single model. Comprehensive experiments show that JoPano can generate high-quality panoramas for both text-to-panorama and view-to-panorama generation tasks, achieving state-of-the-art performance on FID, CLIP-FID, IS, and CLIP-Score metrics.

Authors:Yulin Li, Haokun Gui, Ziyang Fan, Junjie Wang, Bin Kang, Bin Chen, Zhuotao Tian
Title: Less Is More, but Where? Dynamic Token Compression via LLM-Guided Keyframe Prior
Abstract:
Recent advances in Video Large Language Models (VLLMs) have achieved remarkable video understanding capabilities, yet face critical efficiency bottlenecks due to quadratic computational growth with lengthy visual token sequences of long videos. While existing keyframe sampling methods can improve temporal modeling efficiency, additional computational cost is introduced before feature encoding, and the binary frame selection paradigm is found suboptimal. Therefore, in this work, we propose Dynamic Token compression via LLM-guided Keyframe prior (DyToK), a training-free paradigm that enables dynamic token compression by harnessing VLLMs' inherent attention mechanisms. Our analysis reveals that VLLM attention layers naturally encoding query-conditioned keyframe priors, by which DyToK dynamically adjusts per-frame token retention ratios, prioritizing semantically rich frames while suppressing redundancies. Extensive experiments demonstrate that DyToK achieves state-of-the-art efficiency-accuracy tradeoffs. DyToK shows plug-and-play compatibility with existing compression methods, such as VisionZip and FastV, attaining 4.3x faster inference while preserving accuracy across multiple VLLMs, such as LLaVA-OneVision and Qwen2.5-VL. Code is available at https://github.com/yu-lin-li/DyToK .

Authors:Qijun Zhang, Yao Lu, Mengming Li, Shang Liu, Zhiyao Xie
Title: ArchPower: Dataset for Architecture-Level Power Modeling of Modern CPU Design
Abstract:
Power is the primary design objective of large-scale integrated circuits (ICs), especially for complex modern processors (i.e., CPUs). Accurate CPU power evaluation requires designers to go through the whole time-consuming IC implementation process, easily taking months. At the early design stage (e.g., architecture-level), classical power models are notoriously inaccurate. Recently, ML-based architecture-level power models have been proposed to boost accuracy, but the data availability is a severe challenge. Currently, there is no open-source dataset for this important ML application. A typical dataset generation process involves correct CPU design implementation and repetitive execution of power simulation flows, requiring significant design expertise, engineering effort, and execution time. Even private in-house datasets often fail to reflect realistic CPU design scenarios. In this work, we propose ArchPower, the first open-source dataset for architecture-level processor power modeling. We go through complex and realistic design flows to collect the CPU architectural information as features and the ground-truth simulated power as labels. Our dataset includes 200 CPU data samples, collected from 25 different CPU configurations when executing 8 different workloads. There are more than 100 architectural features in each data sample, including both hardware and event parameters. The label of each sample provides fine-grained power information, including the total design power and the power for each of the 11 components. Each power value is further decomposed into four fine-grained power groups: combinational logic power, sequential logic power, memory power, and clock power. ArchPower is available at https://github.com/hkust-zhiyao/ArchPower.

Authors:Dibyanayan Bandyopadhyay, Soham Bhattacharjee, Mohammed Hasanuzzaman, Asif Ekbal
Title: CAuSE: Decoding Multimodal Classifiers using Faithful Natural Language Explanation
Abstract:
Multimodal classifiers function as opaque black box models. While several techniques exist to interpret their predictions, very few of them are as intuitive and accessible as natural language explanations (NLEs). To build trust, such explanations must faithfully capture the classifier's internal decision making behavior, a property known as faithfulness. In this paper, we propose CAuSE (Causal Abstraction under Simulated Explanations), a novel framework to generate faithful NLEs for any pretrained multimodal classifier. We demonstrate that CAuSE generalizes across datasets and models through extensive empirical evaluations. Theoretically, we show that CAuSE, trained via interchange intervention, forms a causal abstraction of the underlying classifier. We further validate this through a redesigned metric for measuring causal faithfulness in multimodal settings. CAuSE surpasses other methods on this metric, with qualitative analysis reinforcing its advantages. We perform detailed error analysis to pinpoint the failure cases of CAuSE. For replicability, we make the codes available at https://github.com/newcodevelop/CAuSE

Authors:Yuchuan Tian, Yuchen Liang, Jiacheng Sun, Shuo Zhang, Guangwen Yang, Yingte Shu, Sibo Fang, Tianyu Guo, Kai Han, Chao Xu, Hanting Chen, Xinghao Chen, Yunhe Wang
Title: From Next-Token to Next-Block: A Principled Adaptation Path for Diffusion LLMs
Abstract:
Large language models (LLMs) excel at generation but dominant autoregressive (AR) decoding is inherently sequential, creating a throughput bottleneck. Diffusion Language Models (DLMs)--especially block-wise variants--enable parallel generation and intra-block bidirectional reasoning, yet training large DLMs from scratch is costly and wastes the knowledge in mature AR checkpoints. Prior "adaptation" attempts either modify logits or randomly grow attention masks to full-sequence diffusion, or simply transplant AR weights into a block-diffusion recipe, leaving a fundamental mismatch between AR causality and block-wise bidirectionality unaddressed. We reframe adaptation as a intra-paradigm path from AR to Block-Diffusion by viewing AR as Block-Diffusion with blocksize=1. Concretely, we design the pathway of adaptation as follows: we use a context-causal attention mask (causal in context, bidirectional only within the active block), an efficient parallel adaptation procedure, an auxiliary AR loss to maximize data utilization and retain pretrained knowledge, and gradual increment of the generation block size. The recipe integrates cleanly with masked block-diffusion and maintains train-inference consistency. Built on these components, NBDiff-7B (Base and Instruct) could inherit the long-context modeling and reasoning capabilities, and achieve state-of-the-art performance among the 7B-class DLMs, delivering strong gains on general-knowledge, math, and code benchmarks over strong baselines. These results demonstrate that principled AR-to-block-diffusion adaptation is an effective and compute-efficient alternative to training DLMs from scratch. Codes: https://github.com/YuchuanTian/NBDiff.

Authors:Zairah Mustahsan, Abel Lim, Megna Anand, Saahil Jain, Bryan McCann
Title: Stochasticity in Agentic Evaluations: Quantifying Inconsistency with Intraclass Correlation
Abstract:
As large language models become components of larger agentic systems, evaluation reliability becomes critical: unreliable sub-agents introduce brittleness into downstream system behavior. Yet current evaluation practice, reporting a single accuracy number from a single run, obscures the variance underlying these results, making it impossible to distinguish genuine capability improvements from lucky sampling. We propose adopting Intraclass Correlation Coefficient (ICC), a metric from measurement science, to characterize this variance. ICC decomposes observed variance into between-query variance (task difficulty) and within-query variance (agent inconsistency), highlighting whether reported results reflect true capability or measurement noise. We evaluated on GAIA (Levels 1-3, measuring agentic capabilities across varying reasoning complexity) and FRAMES (measuring retrieval and factuality across multiple documents). We found that ICC varies dramatically with task structure, with reasoning and retrieval tasks (FRAMES) exhibit ICC=0.4955-0.7118 across models, and agentic tasks (GAIA) exhibiting ICC=0.304-0.774 across models. For sub-agent replacement decisions in agentic systems, accuracy improvements are only trustworthy if ICC also improves. We demonstrate that ICC converges by n=8-16 trials for structured tasks and n>=32 for complex reasoning, enabling practitioners to set evidence-based resampling budgets. We recommend reporting accuracy alongside ICC and within-query variance as standard practice, and propose updated Evaluation Cards capturing these metrics. By making evaluation stability visible, we aim to transform agentic benchmarking from opaque leaderboard competition to trustworthy experimental science. Our code is open-sourced at https://github.com/youdotcom-oss/stochastic-agent-evals.

Authors:Karthik Prabhakar
Title: Predictive Modeling of I/O Performance for Machine Learning Training Pipelines: A Data-Driven Approach to Storage Optimization
Abstract:
Modern machine learning training is increasingly bottlenecked by data I/O rather than compute. GPUs often sit idle at below 50% utilization waiting for data. This paper presents a machine learning approach to predict I/O performance and recommend optimal storage configurations for ML training pipelines. We collected 141 observations through systematic benchmarking across different storage backends (NVMe SSD, network-attached storage, in-memory filesystems), data formats, and access patterns, covering both low-level I/O operations and full training pipelines. After evaluating seven regression models and three classification approaches, XGBoost achieved the best performance with R-squared of 0.991, predicting I/O throughput within 11.8% error on average. Feature importance analysis revealed that throughput metrics and batch size are the primary performance drivers. This data-driven approach can reduce configuration time from days of trial-and-error to minutes of predictive recommendation. The methodology is reproducible and extensible to other resource management problems in ML systems. Code and data are available at https://github.com/knkarthik01/gpu_storage_ml_project

Authors:Joe Shymanski, Jacob Brue, Sandip Sen
Title: Beyond Satisfaction: From Placebic to Actionable Explanations For Enhanced Understandability
Abstract:
Explainable AI (XAI) presents useful tools to facilitate transparency and trustworthiness in machine learning systems. However, current evaluations of system explainability often rely heavily on subjective user surveys, which may not adequately capture the effectiveness of explanations. This paper critiques the overreliance on user satisfaction metrics and explores whether these can differentiate between meaningful (actionable) and vacuous (placebic) explanations. In experiments involving optimal Social Security filing age selection tasks, participants used one of three protocols: no explanations, placebic explanations, and actionable explanations. Participants who received actionable explanations significantly outperformed the other groups in objective measures of their mental model, but users rated placebic and actionable explanations as equally satisfying. This suggests that subjective surveys alone fail to capture whether explanations truly support users in building useful domain understanding. We propose that future evaluations of agent explanation capabilities should integrate objective task performance metrics alongside subjective assessments to more accurately measure explanation quality. The code for this study can be found at https://github.com/Shymkis/social-security-explainer.

Authors:Dung Thuy Nguyen, Quang Nguyen, Preston K. Robinette, Eli Jiang, Taylor T. Johnson, Kevin Leach
Title: SUGAR: A Sweeter Spot for Generative Unlearning of Many Identities
Abstract:
Recent advances in 3D-aware generative models have enabled high-fidelity image synthesis of human identities. However, this progress raises urgent questions around user consent and the ability to remove specific individuals from a model's output space. We address this by introducing SUGAR, a framework for scalable generative unlearning that enables the removal of many identities (simultaneously or sequentially) without retraining the entire model. Rather than projecting unwanted identities to unrealistic outputs or relying on static template faces, SUGAR learns a personalized surrogate latent for each identity, diverting reconstructions to visually coherent alternatives while preserving the model's quality and diversity. We further introduce a continual utility preservation objective that guards against degradation as more identities are forgotten. SUGAR achieves state-of-the-art performance in removing up to 200 identities, while delivering up to a 700% improvement in retention utility compared to existing baselines. Our code is publicly available at https://github.com/judydnguyen/SUGAR-Generative-Unlearn.

Authors:Xiaocan Li, Shiliang Wu, Zheng Shen
Title: A-3PO: Accelerating Asynchronous LLM Training with Staleness-aware Proximal Policy Approximation
Abstract:
Decoupled loss has been a successful reinforcement learning (RL) algorithm to deal with the high data staleness under the asynchronous RL setting. Decoupled loss improves coupled-loss style of algorithms' (e.g., PPO, GRPO) learning stability by introducing a proximal policy to decouple the off-policy corrections (importance weight) from the controlling policy updates (trust region). However, the proximal policy requires an extra forward pass through the network at each training step, creating a computational bottleneck for large language models. We observe that since the proximal policy only serves as a trust region anchor between the behavior and target policies, we can approximate it through simple interpolation without explicit computation. We call this approach A-3PO (APproximated Proximal Policy Optimization). A-3PO eliminates this overhead, reducing training time by 18% while maintaining comparable performance. Code & off-the-shelf example are available at: https://github.com/inclusionAI/AReaL/blob/main/docs/algorithms/prox_approx.md

Authors:Xiangyu Li, Chengyu Yin, Weijun Wang, Jianyu Wei, Ting Cao, Yunxin Liu
Title: Vec-LUT: Vector Table Lookup for Parallel Ultra-Low-Bit LLM Inference on Edge Devices
Abstract:
Large language models (LLMs) are increasingly deployed on edge devices. To meet strict resource constraints, real-world deployment has pushed LLM quantization from 8-bit to 4-bit, 2-bit, and now 1.58-bit. Combined with lookup table (LUT)-based inference, CPUs run these ultra-low-bit LLMs even faster than NPUs, opening new opportunities for ubiquitous on-device intelligence. However, this paper identifies that LUT-based inference underutilizes memory bandwidth during parallel inference, which is required for prefilling, test-time scaling, and other multi-token scenarios. The root cause is the scalar LUT paradigm, which performs repetitive and non-contiguous memory accesses for each token. To solve the issue, we propose vector LUT, a new lookup paradigm that constructs a unified LUT across parallel tokens, and performs a single $1 \rightarrow N$ lookup per index. To realize it efficiently, we further introduce (1) Vector LUT-Centric Tensor Layout, and (2) Cache-Aware Streamed Lookup techniques. Evaluations on 5 edge devices across 3 LLMs show that Vec-LUT outperforms state-of-the-art baselines by up to $4.2\times$. Our implementation is integrated into llama.cpp. The code is available at https://github.com/Cipherxzc/vlut.cpp.

Authors:Xianzong Wu, Xiaohong Li, Lili Quan, Qiang Hu
Title: UncertaintyZoo: A Unified Toolkit for Quantifying Predictive Uncertainty in Deep Learning Systems
Abstract:
Large language models(LLMs) are increasingly expanding their real-world applications across domains, e.g., question answering, autonomous driving, and automatic software development. Despite this achievement, LLMs, as data-driven systems, often make incorrect predictions, which can lead to potential losses in safety-critical scenarios. To address this issue and measure the confidence of model outputs, multiple uncertainty quantification(UQ) criteria have been proposed. However, even though important, there are limited tools to integrate these methods, hindering the practical usage of UQ methods and future research in this domain. To bridge this gap, in this paper, we introduce UncertaintyZoo, a unified toolkit that integrates 29 uncertainty quantification methods, covering five major categories under a standardized interface. Using UncertaintyZoo, we evaluate the usefulness of existing uncertainty quantification methods under the code vulnerability detection task on CodeBERT and ChatGLM3 models. The results demonstrate that UncertaintyZoo effectively reveals prediction uncertainty. The tool with a demonstration video is available on the project site https://github.com/Paddingbuta/UncertaintyZoo.

Authors:Hengzhuang Li, Xinsong Zhang, Qiming Peng, Bin Luo, Han Hu, Dengyang Jiang, Han-Jia Ye, Teng Zhang, Hai Jin
Title: Unleashing the Intrinsic Visual Representation Capability of Multimodal Large Language Models
Abstract:
Multimodal Large Language Models (MLLMs) have demonstrated remarkable proficiency in multimodal tasks. Despite their impressive performance, MLLMs suffer from the modality imbalance issue, where visual information is often underutilized compared to textual representations in deeper layers, leading to degraded visual performance or hallucinations. This issue stems from the predominant reliance on next-text-token-prediction during training, which fails to provide direct visual supervisory signals, resulting in progressive homogenization of visual representations throughout the layers. To this end, we propose Latent Visual Reconstruction (LaVer), a novel training framework that facilitates MLLMs in learning more discriminative visual representations via masked image modeling in the joint latent semantic space of LLM. Our method offers direct visual activation to MLLMs, which exhibit increased visual attention allocation, indicating enhanced utilization of visual information. Extensive experiments across diverse benchmarks prove the superiority of our approach in various scenarios, especially those requiring dense visual capabilities. Code of LaVer is available at https://github.com/Fir-lat/LaVer.

Authors:Emre Umucu, Guillermina Solis, Leon Garza, Emilia Rivas, Beatrice Lee, Anantaa Kotal, Aritran Piplai
Title: Empathy by Design: Aligning Large Language Models for Healthcare Dialogue
Abstract:
General-purpose large language models (LLMs) have demonstrated remarkable generative and reasoning capabilities but remain limited in healthcare and caregiving applications due to two key deficiencies: factual unreliability and a lack of empathetic communication. These shortcomings pose significant risks in sensitive contexts where users, particularly non-professionals and caregivers, seek medically relevant guidance or emotional reassurance. To address these challenges, we introduce a Direct Preference Optimization (DPO)-based alignment framework designed to improve factual correctness, semantic coherence, and human-centric qualities such as empathy, politeness, and simplicity in caregiver-patient dialogues. Our approach fine-tunes domain-adapted LLMs using pairwise preference data, where preferred responses reflect supportive and accessible communication styles while rejected ones represent prescriptive or overly technical tones. This direct optimization method aligns model outputs with human preferences more efficiently than traditional reinforcement-learning-based alignment. Empirical evaluations across multiple open and proprietary LLMs show that our DPO-tuned models achieve higher semantic alignment, improved factual accuracy, and stronger human-centric evaluation scores compared to baseline and commercial alternatives such as Google medical dialogue systems. These improvements demonstrate that preference-based alignment offers a scalable and transparent pathway toward developing trustworthy, empathetic, and clinically informed AI assistants for caregiver and healthcare communication. Our open-source code is available at: https://github.com/LeonG19/Empathy-by-Design

Authors:Runjia Li, Moayed Haji-Ali, Ashkan Mirzaei, Chaoyang Wang, Arpit Sahni, Ivan Skorokhodov, Aliaksandr Siarohin, Tomas Jakab, Junlin Han, Sergey Tulyakov, Philip Torr, Willi Menapace
Title: EgoEdit: Dataset, Real-Time Streaming Model, and Benchmark for Egocentric Video Editing
Abstract:
We study instruction-guided editing of egocentric videos for interactive AR applications. While recent AI video editors perform well on third-person footage, egocentric views present unique challenges - including rapid egomotion and frequent hand-object interactions - that create a significant domain gap. Moreover, existing offline editing pipelines suffer from high latency, limiting real-time interaction. To address these issues, we present a complete ecosystem for egocentric video editing. First, we construct EgoEditData, a carefully designed and manually curated dataset specifically designed for egocentric editing scenarios, featuring rich hand-object interactions, while explicitly preserving hands. Second, we develop EgoEdit, an instruction-following egocentric video editor that supports real-time streaming inference on a single GPU. Finally, we introduce EgoEditBench, an evaluation suite targeting instruction faithfulness, hand and interaction preservation, and temporal stability under egomotion. Across both egocentric and general editing tasks, EgoEdit produces temporally stable, instruction-faithful results with interactive latency. It achieves clear gains on egocentric editing benchmarks-where existing methods struggle-while maintaining performance comparable to the strongest baselines on general editing tasks. EgoEditData and EgoEditBench will be made public for the research community. See our website at https://snap-research.github.io/EgoEdit

Authors:Wenyi Mo, Tianyu Zhang, Yalong Bai, Ligong Han, Ying Ba, Dimitris N. Metaxas
Title: PrefGen: Multimodal Preference Learning for Preference-Conditioned Image Generation
Abstract:
Preference-conditioned image generation seeks to adapt generative models to individual users, producing outputs that reflect personal aesthetic choices beyond the given textual prompt. Despite recent progress, existing approaches either fail to capture nuanced user preferences or lack effective mechanisms to encode personalized visual signals. In this work, we propose a multimodal framework that leverages multimodal large language models (MLLMs) to extract rich user representations and inject them into diffusion-based image generation. We train the MLLM with a preference-oriented visual question answering task to capture fine-grained semantic cues. To isolate preference-relevant features, we introduce two complementary probing tasks: inter-user discrimination to distinguish between different users, and intra-user discrimination to separate liked from disliked content. To ensure compatibility with diffusion text encoders, we design a maximum mean discrepancy-based alignment loss that bridges the modality gap while preserving multimodal structure. The resulting embeddings are used to condition the generator, enabling faithful adherence to both prompts and user preferences. Extensive experiments demonstrate that our method substantially outperforms strong baselines in both image quality and preference alignment, highlighting the effectiveness of representation extraction and alignment for personalized generation.

Authors:Hokin Deng
Title: Video Models Start to Solve Chess, Maze, Sudoku, Mental Rotation, and Raven' Matrices
Abstract:
We show that video generation models could reason now. Testing on tasks such as chess, maze, Sudoku, mental rotation, and Raven's Matrices, leading models such as Sora-2 achieve sixty percent success rates. We establish a robust experimental paradigm centered on the "Task Pair" design. We build a code framework, with 39 models available already, that supports this paradigm and allows for easy scaling - users can add models and tasks efficiently. We show our automated evaluation strongly correlates with human judgment, and therefore this paradigm is highly scalable. We see an opportunity, given the availability of our paradigm, to do reinforcement learning for improving reasoning in video models. You could checkout all of our raw $\href{https://grow-ai-like-a-child.com/video-reason/}{results}$ and our $\href{https://github.com/hokindeng/VMEvalKit}{VMEvalKit}$ codebase.

Authors:Truong Thanh Hung Nguyen, Truong Thinh Nguyen, Hung Cao
Title: Variational Quantum Rainbow Deep Q-Network for Optimizing Resource Allocation Problem
Abstract:
Resource allocation remains NP-hard due to combinatorial complexity. While deep reinforcement learning (DRL) methods, such as the Rainbow Deep Q-Network (DQN), improve scalability through prioritized replay and distributional heads, classical function approximators limit their representational power. We introduce Variational Quantum Rainbow DQN (VQR-DQN), which integrates ring-topology variational quantum circuits with Rainbow DQN to leverage quantum superposition and entanglement. We frame the human resource allocation problem (HRAP) as a Markov decision process (MDP) with combinatorial action spaces based on officer capabilities, event schedules, and transition times. On four HRAP benchmarks, VQR-DQN achieves 26.8% normalized makespan reduction versus random baselines and outperforms Double DQN and classical Rainbow DQN by 4.9-13.4%. These gains align with theoretical connections between circuit expressibility, entanglement, and policy quality, demonstrating the potential of quantum-enhanced DRL for large-scale resource allocation. Our implementation is available at: https://github.com/Analytics-Everywhere-Lab/qtrl/.

Authors:Zhiyuan Jiang, Shenghao Xie, Wenyi Li, Wenqiang Zu, Peihang Li, Jiahao Qiu, Siqi Pei, Lei Ma, Tiejun Huang, Mengdi Wang, Shilong Liu
Title: Zoom in, Click out: Unlocking and Evaluating the Potential of Zooming for GUI Grounding
Abstract:
Grounding is a fundamental capability for building graphical user interface (GUI) agents. Although existing approaches rely on large-scale bounding box supervision, they still face various challenges, such as cross-platform generalization, complex layout analysis, and fine-grained element localization. In this paper, we investigate zoom as a strong yet underexplored prior for GUI grounding, and propose a training-free method, ZoomClick. By characterizing four key properties of zoom (i.e., pre-zoom, depth, shrink size, minimal crop size), we unlock its full capabilities for dynamic spatial focusing and adaptive context switching. Experiments demonstrate that our method significantly boosts the performance of both general vision-language and specialized GUI grounding models, achieving state-of-the-art results on several mainstream benchmarks; for example, UI-Venus-72B attains a 73.1% success rate on ScreenSpot-Pro. Furthermore, we present GUIZoom-Bench, a benchmark for evaluating model adaptability to zoom, aiming to inspire future research on improving zoom for further training and test-time scaling in GUI grounding tasks.

Authors:Muhammet Cagri Yeke, Samil Sirin, Kivilcim Yuksel, Abdurrahman Gumus
Title: Phase-OTDR Event Detection Using Image-Based Data Transformation and Deep Learning
Abstract:
This study focuses on event detection in optical fibers, specifically classifying six events using the Phase-OTDR system. A novel approach is introduced to enhance Phase-OTDR data analysis by transforming 1D data into grayscale images through techniques such as Gramian Angular Difference Field, Gramian Angular Summation Field, and Recurrence Plot. These grayscale images are combined into a multi-channel RGB representation, enabling more robust and adaptable analysis using transfer learning models. The proposed methodology achieves high classification accuracies of 98.84% and 98.24% with the EfficientNetB0 and DenseNet121 models, respectively. A 5-fold cross-validation process confirms the reliability of these models, with test accuracy rates of 99.07% and 98.68%. Using a publicly available Phase-OTDR dataset, the study demonstrates an efficient approach to understanding optical fiber events while reducing dataset size and improving analysis efficiency. The results highlight the transformative potential of image-based analysis in interpreting complex fiber optic sensing data, offering significant advancements in the accuracy and reliability of fiber optic monitoring systems. The codes and the corresponding image-based dataset are made publicly available on GitHub to support further research: https://github.com/miralab-ai/Phase-OTDR-event-detection.

Authors:Saurav Jha, M. Jehanzeb Mirza, Wei Lin, Shiqi Yang, Sarath Chandar
Title: Probing the effectiveness of World Models for Spatial Reasoning through Test-time Scaling
Abstract:
Vision-Language Models (VLMs) remain limited in spatial reasoning tasks that require multi-view understanding and embodied perspective shifts. Recent approaches such as MindJourney attempt to mitigate this gap through test-time scaling where a world model imagines action-conditioned trajectories and a heuristic verifier selects helpful views from such trajectories. In this work, we systematically examine how such test-time verifiers behave across benchmarks, uncovering both their promise and their pitfalls. Our uncertainty-based analyses show that MindJourney's verifier provides little meaningful calibration, and that random scoring often reduces answer entropy equally well, thus exposing systematic action biases and unreliable reward signals. To mitigate these, we introduce a Verification through Spatial Assertions (ViSA) framework that grounds the test-time reward in verifiable, frame-anchored micro-claims. This principled verifier consistently improves spatial reasoning on the SAT-Real benchmark and corrects trajectory-selection biases through more balanced exploratory behavior. However, on the challenging MMSI-Bench, none of the verifiers, including ours, achieve consistent scaling, suggesting that the current world models form an information bottleneck where imagined views fail to enrich fine-grained reasoning. Together, these findings chart the bad, good, and ugly aspects of test-time verification for world-model-based reasoning. Our code is available at https://github.com/chandar-lab/visa-for-mindjourney.

Authors:Zeyuan Ma, Wenqi Huang, Guo-Huan Song, Hongshu Guo, Sijie Ma, Zhiguang Cao, Yue-Jiao Gong
Title: Evolutionary System 2 Reasoning: An Empirical Proof
Abstract:
Machine intelligence marks the ultimate dream of making machines' intelligence comparable to human beings. While recent progress in Large Language Models (LLMs) show substantial specific skills for a wide array of downstream tasks, they more or less fall shorts in general intelligence. Following correlation between intelligence and system 2 reasoning (slow thinking), in this paper, we aim to answering a worthwhile research question: could machine intelligence such as LLMs be evolved to acquire reasoning ability (not specific skill) just like our human beings? To this end, we propose evolutionary reasoning optimization (ERO) framework which performs survival of the fittest over a population of LLMs to search for individual with strong reasoning ability. Given a reasoning task, ERO first initializes multiple LLMs as a population, after which an evolutionary strategy evolves the population to maximize quantified reasoning score of the best individual. Based on experiments on representative testsuites, we claim two surprising empirical discoveries: i) the latest LLMs such as GPT-5 still show limited system 2 reasoning ability; ii) with simple evolution-loop of ERO, a relatively weak model (Qwen-7B) could be enhanced to emerge powerful reasoning ability. Our project can be accessed at https://github.com/MetaEvo/ERO for reproduction needs.

Authors:Zhiying Du, Bei Liu, Yaobo Liang, Yichao Shen, Haidong Cao, Xiangyu Zheng, Zhiyuan Feng, Zuxuan Wu, Jiaolong Yang, Yu-Gang Jiang
Title: HiMoE-VLA: Hierarchical Mixture-of-Experts for Generalist Vision-Language-Action Policies
Abstract:
The development of foundation models for embodied intelligence critically depends on access to large-scale, high-quality robot demonstration data. Recent approaches have sought to address this challenge by training on large collections of heterogeneous robotic datasets. However, unlike vision or language data, robotic demonstrations exhibit substantial heterogeneity across embodiments and action spaces as well as other prominent variations such as senor configurations and action control frequencies. The lack of explicit designs for handling such heterogeneity causes existing methods to struggle with integrating diverse factors, thereby limiting their generalization and leading to degraded performance when transferred to new settings. In this paper, we present HiMoE-VLA, a novel vision-language-action (VLA) framework tailored to effectively handle diverse robotic data with heterogeneity. Specifically, we introduce a Hierarchical Mixture-of-Experts (HiMoE) architecture for the action module which adaptively handles multiple sources of heterogeneity across layers and gradually abstracts them into shared knowledge representations. Through extensive experimentation with simulation benchmarks and real-world robotic platforms, HiMoE-VLA demonstrates a consistent performance boost over existing VLA baselines, achieving higher accuracy and robust generalization across diverse robots and action spaces. The code and models are publicly available at https://github.com/ZhiyingDu/HiMoE-VLA.

Authors:Yeobin Hong, Suhyeon Lee, Hyungjin Chung, Jong Chul Ye
Title: InverseCrafter: Efficient Video ReCapture as a Latent Domain Inverse Problem
Abstract:
Recent approaches to controllable 4D video generation often rely on fine-tuning pre-trained Video Diffusion Models (VDMs). This dominant paradigm is computationally expensive, requiring large-scale datasets and architectural modifications, and frequently suffers from catastrophic forgetting of the model's original generative priors. Here, we propose InverseCrafter, an efficient inpainting inverse solver that reformulates the 4D generation task as an inpainting problem solved in the latent space. The core of our method is a principled mechanism to encode the pixel space degradation operator into a continuous, multi-channel latent mask, thereby bypassing the costly bottleneck of repeated VAE operations and backpropagation. InverseCrafter not only achieves comparable novel view generation and superior measurement consistency in camera control tasks with near-zero computational overhead, but also excels at general-purpose video inpainting with editing. Code is available at https://github.com/yeobinhong/InverseCrafter.

Authors:Menghua Jiang, Haokai Gao, Shuhao Chen, Yin Chen
Title: Enhancing Local Search for MaxSAT with Deep Differentiation Clause Weighting
Abstract:
Partial Maximum Satisfiability (PMS) and Weighted Partial Maximum Satisfiability (WPMS) generalize Maximum Satisfiability (MaxSAT), with broad real-world applications. Recent advances in Stochastic Local Search (SLS) algorithms for solving (W)PMS have mainly focused on designing clause weighting schemes. However, existing methods often fail to adequately distinguish between PMS and WPMS, typically employing uniform update strategies for clause weights and overlooking critical structural differences between the two problem types. In this work, we present a novel clause weighting scheme that, for the first time, updates the clause weights of PMS and WPMS instances according to distinct conditions. This scheme also introduces a new initialization method, which better accommodates the unique characteristics of both instance types. Furthermore, we propose a decimation method that prioritizes satisfying unit and hard clauses, effectively complementing our proposed clause weighting scheme. Building on these methods, we develop a new SLS solver for (W)PMS named DeepDist. Experimental results on benchmarks from the anytime tracks of recent MaxSAT Evaluations show that DeepDist outperforms state-of-the-art SLS solvers. Notably, a hybrid solver combining DeepDist with TT-Open-WBO-Inc surpasses the performance of the MaxSAT Evaluation 2024 winners, SPB-MaxSAT-c-Band and SPB-MaxSAT-c-FPS, highlighting the effectiveness of our approach. The code is available at https://github.com/jmhmaxsat/DeepDist

Authors:Ting-Ting Xie, Yixin Zhang
Title: CureAgent: A Training-Free Executor-Analyst Framework for Clinical Reasoning
Abstract:
Current clinical agent built on small LLMs, such as TxAgent suffer from a \textit{Context Utilization Failure}, where models successfully retrieve biomedical evidence due to supervised finetuning but fail to ground their diagnosis in that information. In this work, we propose the Executor-Analyst Framework, a modular architecture that decouples the syntactic precision of tool execution from the semantic robustness of clinical reasoning. By orchestrating specialized TxAgents (Executors) with long-context foundation models (Analysts), we mitigate the reasoning deficits observed in monolithic models. Beyond simple modularity, we demonstrate that a Stratified Ensemble strategy significantly outperforms global pooling by preserving evidentiary diversity, effectively addressing the information bottleneck. Furthermore, our stress tests reveal critical scaling insights: (1) a \textit{Context-Performance Paradox}, where extending reasoning contexts beyond 12k tokens introduces noise that degrades accuracy; and (2) the \textit{Curse of Dimensionality} in action spaces, where expanding toolsets necessitates hierarchical retrieval strategies. Crucially, our approach underscores the potential of training-free architectural engineering, achieving state-of-the-art performance on CURE-Bench without the need for expensive end-to-end finetuning. This provides a scalable, agile foundation for the next generation of trustworthy AI-driven therapeutics. Code has been released on https://github.com/June01/CureAgent.

Authors:Chuang Yu, Jinmiao Zhao, Mingxuan Zhao, Yunpeng Liu, Xiujun Shu, Yuanhao Feng, Bo Wang, Xiangyu Yue
Title: MIND: Multi-rationale INtegrated Discriminative Reasoning Framework for Multi-modal Large Models
Abstract:
Recently, multimodal large language models (MLLMs) have been widely applied to reasoning tasks. However, they suffer from limited multi-rationale semantic modeling, insufficient logical robustness, and are susceptible to misleading interpretations in complex scenarios. Therefore, we propose a Multi-rationale INtegrated Discriminative (MIND) reasoning framework, which is designed to endow MLLMs with human-like cognitive abilities of "Understand -> Rethink -> Correct", and achieves a paradigm evolution from passive imitation-based reasoning to active discriminative reasoning. Specifically, we introduce a Rationale Augmentation and Discrimination (RAD) paradigm, which automatically and efficiently expands existing datasets by generating diverse rationales, providing a unified and extensible data foundation. Meanwhile, we design a Progressive Two-stage Correction Learning (P2CL) strategy. The first phase enhances multi-rationale positive learning, while the second phase enables active logic discrimination and correction. In addition, to mitigate representation entanglement in the multi-rationale semantic space, we propose a Multi-rationale Contrastive Alignment (MCA) optimization strategy, which achieves semantic aggregation of correct reasoning and boundary separation of incorrect reasoning. Extensive experiments demonstrate that the proposed MIND reasoning framework achieves state-of-the-art (SOTA) performance on multiple public datasets covering scientific, commonsense, and mathematical scenarios. It provides a new perspective for advancing MLLMs towards higher levels of cognitive intelligence. Our code is available at https://github.com/YuChuang1205/MIND

Authors:Jialin Li, Yiwei Ren, Kai Pan, Dong Wei, Pujin Cheng, Xian Wu, Xiaoying Tang
Title: UniFS: Unified Multi-Contrast MRI Reconstruction via Frequency-Spatial Fusion
Abstract:
Recently, Multi-Contrast MR Reconstruction (MCMR) has emerged as a hot research topic that leverages high-quality auxiliary modalities to reconstruct undersampled target modalities of interest. However, existing methods often struggle to generalize across different k-space undersampling patterns, requiring the training of a separate model for each specific pattern, which limits their practical applicability. To address this challenge, we propose UniFS, a Unified Frequency-Spatial Fusion model designed to handle multiple k-space undersampling patterns for MCMR tasks without any need for retraining. UniFS integrates three key modules: a Cross-Modal Frequency Fusion module, an Adaptive Mask-Based Prompt Learning module, and a Dual-Branch Complementary Refinement module. These modules work together to extract domain-invariant features from diverse k-space undersampling patterns while dynamically adapt to their own variations. Another limitation of existing MCMR methods is their tendency to focus solely on spatial information while neglect frequency characteristics, or extract only shallow frequency features, thus failing to fully leverage complementary cross-modal frequency information. To relieve this issue, UniFS introduces an adaptive prompt-guided frequency fusion module for k-space learning, significantly enhancing the model's generalization performance. We evaluate our model on the BraTS and HCP datasets with various k-space undersampling patterns and acceleration factors, including previously unseen patterns, to comprehensively assess UniFS's generalizability. Experimental results across multiple scenarios demonstrate that UniFS achieves state-of-the-art performance. Our code is available at https://github.com/LIKP0/UniFS.

Authors:Zubair Ahmed Mohammad
Title: How Ensemble Learning Balances Accuracy and Overfitting: A Bias-Variance Perspective on Tabular Data
Abstract:
Ensemble models often achieve higher accuracy than single learners, but their ability to maintain small generalization gaps is not always well understood. This study examines how ensembles balance accuracy and overfitting across four tabular classification tasks: Breast Cancer, Heart Disease, Pima Diabetes, and Credit Card Fraud. Using repeated stratified cross validation with statistical significance testing, we compare linear models, a single decision tree, and nine ensemble methods. The results show that ensembles can reach high accuracy without large gaps by reducing variance through averaging or controlled boosting. On nearly linear and clean data, linear models already generalize well and ensembles offer little additional benefit. On datasets with meaningful nonlinear structure, tree based ensembles increase test accuracy by 5 to 7 points while keeping gaps below 3 percent. On noisy or highly imbalanced datasets, ensembles remain competitive but require regularization to avoid fitting noise or majority class patterns. We also compute simple dataset complexity indicators, such as linearity score, Fisher ratio, and noise estimate, which explain when ensembles are likely to control variance effectively. Overall, the study provides a clear view of how and when ensembles maintain high accuracy while keeping overfitting low, offering practical guidance for model selection in real world tabular applications.

Authors:Takara Taniguchi, Yudai Ueda, Atsuya Muramatsu, Kohki Hashimoto, Ryo Yagi, Hideya Ochiai, Chaodit Aswakul
Title: University Building Recognition Dataset in Thailand for the mission-oriented IoT sensor system
Abstract:
Many industrial sectors have been using of machine learning at inference mode on edge devices. Future directions show that training on edge devices is promising due to improvements in semiconductor performance. Wireless Ad Hoc Federated Learning (WAFL) has been proposed as a promising approach for collaborative learning with device-to-device communication among edges. In particular, WAFL with Vision Transformer (WAFL-ViT) has been tested on image recognition tasks with the UTokyo Building Recognition Dataset (UTBR). Since WAFL-ViT is a mission-oriented sensor system, it is essential to construct specific datasets by each mission. In our work, we have developed the Chulalongkorn University Building Recognition Dataset (CUBR), which is specialized for Chulalongkorn University as a case study in Thailand. Additionally, our results also demonstrate that training on WAFL scenarios achieves better accuracy than self-training scenarios. Dataset is available in https://github.com/jo2lxq/wafl/.

Authors:Luc Moreau, Alfred Rossi, Sophie Stalla-Bourdillon
Title: Parajudica: An RDF-Based Reasoner and Metamodel for Multi-Framework Context-Dependent Data Compliance Assessments
Abstract:
Motivated by the challenges of implementing policy-based data access control (PBAC) under multiple simultaneously applicable compliance frameworks, we present Parajudica, an open, modular, and extensible RDF/SPARQL-based rule system for evaluating context-dependent data compliance status. We demonstrate the utility of this resource and accompanying metamodel through application to existing legal frameworks and industry standards, offering insights for comparative framework analysis. Applications include compliance policy enforcement, compliance monitoring, data discovery, and risk assessment.

Authors:Sithumi Wickramasinghe, Bikramjit Das, Dorien Herremans
Title: Smart Timing for Mining: A Deep Learning Framework for Bitcoin Hardware ROI Prediction
Abstract:
Bitcoin mining hardware acquisition requires strategic timing due to volatile markets, rapid technological obsolescence, and protocol-driven revenue cycles. Despite mining's evolution into a capital-intensive industry, there is little guidance on when to purchase new Application-Specific Integrated Circuit (ASIC) hardware, and no prior computational frameworks address this decision problem. We address this gap by formulating hardware acquisition as a time series classification task, predicting whether purchasing ASIC machines yields profitable (Return on Investment (ROI) >= 1), marginal (0 < ROI < 1), or unprofitable (ROI <= 0) returns within one year. We propose MineROI-Net, an open source Transformer-based architecture designed to capture multi-scale temporal patterns in mining profitability. Evaluated on data from 20 ASIC miners released between 2015 and 2024 across diverse market regimes, MineROI-Net outperforms LSTM-based and TSLANet baselines, achieving 83.7% accuracy and 83.1% macro F1-score. The model demonstrates strong economic relevance, achieving 93.6% precision in detecting unprofitable periods and 98.5% precision for profitable ones, while avoiding misclassification of profitable scenarios as unprofitable and vice versa. These results indicate that MineROI-Net offers a practical, data-driven tool for timing mining hardware acquisitions, potentially reducing financial risk in capital-intensive mining operations. The model is available through: https://github.com/AMAAI-Lab/MineROI-Net.

Authors:Kevin Cannons, Saeed Ranjbar Alvar, Mohammad Asiful Hossain, Ahmad Rezaei, Mohsen Gholami, Alireza Heidarikhazaei, Zhou Weimin, Yong Zhang, Mohammad Akbari
Title: From Segments to Scenes: Temporal Understanding in Autonomous Driving via Vision-Language Model
Abstract:
Temporal understanding in autonomous driving (AD) remains a significant challenge, even for recent state-of-the-art (SoTA) Vision-Language Models (VLMs). Prior work has introduced datasets and benchmarks aimed at improving temporal reasoning, but these have emphasized other video content, including sports, cooking, and movies. No existing benchmark focuses exclusively on the unique challenges of temporal understanding in ego-centric AD footage. To fill this gap, the Temporal Understanding in Autonomous Driving (TAD) benchmark is presented, which evaluates VLMs' ability to capture the dynamic relationships between actions in AD. TAD comprises nearly 6,000 question-answer (QA) pairs, spanning 7 human-designed tasks. In addition, an evaluation is performed that consists of 9 closed- and open-source generalist models as well as SoTA AD specialist models. When applied to TAD, current SoTA models demonstrated substandard accuracies, largely due to imperfect fine-grained motion understanding. To improve motion understanding and overall accuracy on TAD, two novel training-free solutions are proposed: Scene-CoT, that leverages Chain-of-Thought (CoT) and TCogMap, which incorporates an ego-centric temporal cognitive map. The proposed approaches are integrated with existing VLMs and improve average accuracy on TAD by up to 17.72%. By introducing TAD, benchmarking multiple SoTA models, and proposing effective enhancements, this work aims to catalyze future research on temporal understanding in AD. The benchmark and evaluation code are available at \href{https://huggingface.co/datasets/vbdai/TAD}{Hugging Face} and \href{https://github.com/vbdi/tad_bench}{Github}, respectively.

Authors:Yunfei Zhang, Yizhuo He, Yuanxun Shao, Zhengtao Yao, Haoyan Xu, Junhao Dong, Zhen Yao, Zhikang Dong
Title: ChromouVQA: Benchmarking Vision-Language Models under Chromatic Camouflaged Images
Abstract:
Vision-Language Models (VLMs) have advanced multimodal understanding, yet still struggle when targets are embedded in cluttered backgrounds requiring figure-ground segregation. To address this, we introduce ChromouVQA, a large-scale, multi-task benchmark based on Ishihara-style chromatic camouflaged images. We extend classic dot plates with multiple fill geometries and vary chromatic separation, density, size, occlusion, and rotation, recording full metadata for reproducibility. The benchmark covers nine vision-question-answering tasks, including recognition, counting, comparison, and spatial reasoning. Evaluations of humans and VLMs reveal large gaps, especially under subtle chromatic contrast or disruptive geometric fills. We also propose a model-agnostic contrastive recipe aligning silhouettes with their camouflaged renderings, improving recovery of global shapes. ChromouVQA provides a compact, controlled benchmark for reproducible evaluation and extension. Code and dataset are available at https://github.com/Chromou-VQA-Benchmark/Chromou-VQA.

Authors:Tianling Xu, Shengzhe Gan, Leslie Gu, Yuelei Li, Fangneng Zhan, Hanspeter Pfister
Title: AREA3D: Active Reconstruction Agent with Unified Feed-Forward 3D Perception and Vision-Language Guidance
Abstract:
Active 3D reconstruction enables an agent to autonomously select viewpoints to efficiently obtain accurate and complete scene geometry, rather than passively reconstructing scenes from pre-collected images. However, existing active reconstruction methods often rely on hand-crafted geometric heuristics, which can lead to redundant observations without substantially improving reconstruction quality. To address this limitation, we propose AREA3D, an active reconstruction agent that leverages feed-forward 3D reconstruction models and vision-language guidance. Our framework decouples view-uncertainty modeling from the underlying feed-forward reconstructor, enabling precise uncertainty estimation without expensive online optimization. In addition, an integrated vision-language model provides high-level semantic guidance, encouraging informative and diverse viewpoints beyond purely geometric cues. Extensive experiments on both scene-level and object-level benchmarks demonstrate that AREA3D achieves state-of-the-art reconstruction accuracy, particularly in the sparse-view regime. Code will be made available at: https://github.com/TianlingXu/AREA3D .

Authors:Rongyang Zhang, Yuqing Huang, Chengqiang Lu, Qimeng Wang, Yan Gao, Yi Wu, Yao Hu, Yin Xu, Wei Wang, Hao Wang, Enhong Chen
Title: RAG-IGBench: Innovative Evaluation for RAG-based Interleaved Generation in Open-domain Question Answering
Abstract:
In real-world scenarios, providing user queries with visually enhanced responses can considerably benefit understanding and memory, underscoring the great value of interleaved image-text generation. Despite recent progress, like the visual autoregressive model that unifies text and image processing in a single transformer architecture, generating high-quality interleaved content remains challenging. Moreover, evaluations of these interleaved sequences largely remain underexplored, with existing benchmarks often limited by unimodal metrics that inadequately assess the intricacies of combined image-text outputs. To address these issues, we present RAG-IGBench, a thorough benchmark designed specifically to evaluate the task of Interleaved Generation based on Retrieval-Augmented Generation (RAG-IG) in open-domain question answering. RAG-IG integrates multimodal large language models (MLLMs) with retrieval mechanisms, enabling the models to access external image-text information for generating coherent multimodal content. Distinct from previous datasets, RAG-IGBench draws on the latest publicly available content from social platforms and introduces innovative evaluation metrics that measure the quality of text and images, as well as their consistency. Through extensive experiments with state-of-the-art MLLMs (both open-source and proprietary) on RAG-IGBench, we provide an in-depth analysis examining the capabilities and limitations of these models. Additionally, we validate our evaluation metrics by demonstrating their high correlation with human assessments. Models fine-tuned on RAG-IGBench's training set exhibit improved performance across multiple benchmarks, confirming both the quality and practical utility of our dataset. Our benchmark is available at https://github.com/USTC-StarTeam/RAG-IGBench.

Authors:Dongzhi Jiang, Renrui Zhang, Haodong Li, Zhuofan Zong, Ziyu Guo, Jun He, Claire Guo, Junyan Ye, Rongyao Fang, Weijia Li, Rui Liu, Hongsheng Li
Title: DraCo: Draft as CoT for Text-to-Image Preview and Rare Concept Generation
Abstract:
Recent unified multimodal large language models (MLLMs) have shown impressive capabilities, incorporating chain-of-thought (CoT) reasoning for enhanced text-to-image generation. However, existing approaches remain limited, either treating the model merely as a standalone generator or relying on abstract textual planning. To this end, we propose Draft-as-CoT (DraCo), a novel interleaved reasoning paradigm that fully leverages both textual and visual contents in CoT for better planning and verification. Our method first generates a low-resolution draft image as preview, providing more concrete and structural visual planning and guidance. Then, we employ the model's inherent understanding capability to verify potential semantic misalignments between the draft and input prompt, and performs refinement through selective corrections with super-resolution. In this way, our approach addresses two fundamental challenges: the coarse-grained nature of textual planning and the difficulty in generating rare attribute combinations. To support training, we curate DraCo-240K, aiming to enhance three atomic capabilities spanning general correction, instance manipulation, and layout reorganization. Supported by DraCo-CFG, a specialized classifier-free guidance (CFG) strategy for interleaved reasoning, DraCo achieves a tremendous increase on GenEval (+8%), Imagine-Bench (+0.91), and GenEval++ (+3%), significantly outperforming direct generation and other generation methods empowered by CoT.

Authors:Rundong Luo, Noah Snavely, Wei-Chiu Ma
Title: ShadowDraw: From Any Object to Shadow-Drawing Compositional Art
Abstract:
We introduce ShadowDraw, a framework that transforms ordinary 3D objects into shadow-drawing compositional art. Given a 3D object, our system predicts scene parameters, including object pose and lighting, together with a partial line drawing, such that the cast shadow completes the drawing into a recognizable image. To this end, we optimize scene configurations to reveal meaningful shadows, employ shadow strokes to guide line drawing generation, and adopt automatic evaluation to enforce shadow-drawing coherence and visual quality. Experiments show that ShadowDraw produces compelling results across diverse inputs, from real-world scans and curated datasets to generative assets, and naturally extends to multi-object scenes, animations, and physical deployments. Our work provides a practical pipeline for creating shadow-drawing art and broadens the design space of computational visual art, bridging the gap between algorithmic design and artistic storytelling. Check out our project page https://red-fairy.github.io/ShadowDraw/ for more results and an end-to-end real-world demonstration of our pipeline!

Authors:Purbesh Mitra, Sennur Ulukus
Title: Semantic Soft Bootstrapping: Long Context Reasoning in LLMs without Reinforcement Learning
Abstract:
Long context reasoning in large language models (LLMs) has demonstrated enhancement of their cognitive capabilities via chain-of-thought (CoT) inference. Training such models is usually done via reinforcement learning with verifiable rewards (RLVR) in reasoning based problems, like math and programming. However, RLVR is limited by several bottlenecks, such as, lack of dense reward, and inadequate sample efficiency. As a result, it requires significant compute resources in post-training phase. To overcome these limitations, in this work, we propose \textbf{Semantic Soft Bootstrapping (SSB)}, a self-distillation technique, in which the same base language model plays the role of both teacher and student, but receives different semantic contexts about the correctness of its outcome at training time. The model is first prompted with a math problem and several rollouts are generated. From them, the correct and most common incorrect response are filtered, and then provided to the model in context to produce a more robust, step-by-step explanation with a verified final answer. This pipeline automatically curates a paired teacher-student training set from raw problem-answer data, without any human intervention. This generation process also produces a sequence of logits, which is what the student model tries to match in the training phase just from the bare question alone. In our experiment, Qwen2.5-3B-Instruct on GSM8K dataset via parameter-efficient fine-tuning. We then tested its accuracy on MATH500, and AIME2024 benchmarks. Our experiments show a jump of 10.6%, and 10% improvements in accuracy, respectively, over group relative policy optimization (GRPO), which is a commonly used RLVR algorithm. Our code is available at https://github.com/purbeshmitra/semantic-soft-bootstrapping, and the model, curated dataset is available at https://huggingface.co/purbeshmitra/semantic-soft-bootstrapping.

Authors:Wei Zhao, Zhe Li, Jun Sun
Title: SoK: a Comprehensive Causality Analysis Framework for Large Language Model Security
Abstract:
Large Language Models (LLMs) exhibit remarkable capabilities but remain vulnerable to adversarial manipulations such as jailbreaking, where crafted prompts bypass safety mechanisms. Understanding the causal factors behind such vulnerabilities is essential for building reliable defenses. In this work, we introduce a unified causality analysis framework that systematically supports all levels of causal investigation in LLMs, ranging from token-level, neuron-level, and layer-level interventions to representation-level analysis. The framework enables consistent experimentation and comparison across diverse causality-based attack and defense methods. Accompanying this implementation, we provide the first comprehensive survey of causality-driven jailbreak studies and empirically evaluate the framework on multiple open-weight models and safety-critical benchmarks including jailbreaks, hallucination detection, backdoor identification, and fairness evaluation. Our results reveal that: (1) targeted interventions on causally critical components can reliably modify safety behavior; (2) safety-related mechanisms are highly localized (i.e., concentrated in early-to-middle layers with only 1--2\% of neurons exhibiting causal influence); and (3) causal features extracted from our framework achieve over 95\% detection accuracy across multiple threat types. By bridging theoretical causality analysis and practical model safety, our framework establishes a reproducible foundation for research on causality-based attacks, interpretability, and robust attack detection and mitigation in LLMs. Code is available at https://github.com/Amadeuszhao/SOK_Casuality.

Authors:Yuxing Wang, Zhiyu Chen, Tiantian Zhang, Qiyue Yin, Yongzhe Chang, Zhiheng Li, Liang Wang, Xueqian Wang
Title: Embodied Co-Design for Rapidly Evolving Agents: Taxonomy, Frontiers, and Challenges
Abstract:
Brain-body co-evolution enables animals to develop complex behaviors in their environments. Inspired by this biological synergy, embodied co-design (ECD) has emerged as a transformative paradigm for creating intelligent agents-from virtual creatures to physical robots-by jointly optimizing their morphologies and controllers rather than treating control in isolation. This integrated approach facilitates richer environmental interactions and robust task performance. In this survey, we provide a systematic overview of recent advances in ECD. We first formalize the concept of ECD and position it within related fields. We then introduce a hierarchical taxonomy: a lower layer that breaks down agent design into three fundamental components-controlling brain, body morphology, and task environment-and an upper layer that integrates these components into four major ECD frameworks: bi-level, single-level, generative, and open-ended. This taxonomy allows us to synthesize insights from more than one hundred recent studies. We further review notable benchmarks, datasets, and applications in both simulated and real-world scenarios. Finally, we identify significant challenges and offer insights into promising future research directions. A project associated with this survey has been created at https://github.com/Yuxing-Wang-THU/SurveyBrainBody.

Authors:Wenhua Cheng, Weiwei Zhang, Heng Guo, Haihao Shen
Title: SignRoundV2: Closing the Performance Gap in Extremely Low-Bit Post-Training Quantization for LLMs
Abstract:
Extreme low-bit quantization is critical for efficiently deploying Large Language Models (LLMs), yet it often leads to severe performance degradation at 2-bits and even 4-bits (e.g., MXFP4). We present SignRoundV2, a post-training quantization framework that is highly effective even without mixed-precision. SignRoundV2 introduces (1) a fast sensitivity metric that combines gradient information with quantization-induced deviations to guide layer-wise bit allocation, and (2) a lightweight pre-tuning search for quantization scales to improve extremely low-bit quantization. These components allow SignRoundV2 to close the gap with full-precision models. Extensive experiments indicate that our method sustains competitive accuracy for LLMs, achieving production-grade performance with about 1 percent variance at 4-5 bits and strong results even at 2 bits. The implementation is available at https://github.com/intel/auto-round.

Authors:Baris Yilmaz, Bevan Deniz Cilgin, Erdem Akagündüz, Salih Tileylioglu
Title: TimesNet-Gen: Deep Learning-based Site Specific Strong Motion Generation
Abstract:
Effective earthquake risk reduction relies on accurate site-specific evaluations. This requires models that can represent the influence of local site conditions on ground motion characteristics. In this context, data driven approaches that learn site controlled signatures from recorded ground motions offer a promising direction. We address strong ground motion generation from time-domain accelerometer records and introduce the TimesNet-Gen, a time-domain conditional generator. The approach uses a station specific latent bottleneck. We evaluate generation by comparing HVSR curves and fundamental site-frequency $f_0$ distributions between real and generated records per station, and summarize station specificity with a score based on the $f_0$ distribution confusion matrices. TimesNet-Gen achieves strong station-wise alignment and compares favorably with a spectrogram-based conditional VAE baseline for site-specific strong motion synthesis. Our codes are available via https://github.com/brsylmz23/TimesNet-Gen.

Authors:Cong Wang, Changfeng Gao, Yang Xiang, Zhihao Du, Keyu An, Han Zhao, Qian Chen, Xiangang Li, Yingming Gao, Ya Li
Title: RRPO: Robust Reward Policy Optimization for LLM-based Emotional TTS
Abstract:
Differentiable reinforcement learning (RL) frameworks like DiffRO offer a powerful approach for controllable text-to-speech (TTS), but are vulnerable to reward hacking, particularly for nuanced tasks like emotion control. The policy model can exploit a vanilla Reward Model (RM) by generating acoustic artifacts to achieve spurious rewards, but at the cost of degrading perceptual quality. To address this, we propose Robust Reward Policy Optimization (RRPO), a novel framework that employs a hybrid regularization scheme. This scheme develops a robust RM whose reward signal is more reliably aligned with human perception, compelling the policy to abandon detrimental shortcuts and instead learn the complex features of genuine emotions. Our ablation study confirms the enhanced robustness of our RM, as evidenced by its strong cross-lingual generalization. The subjective evaluation demonstrates that this robust RM effectively mitigates reward hacking, leading to significant improvements in both emotional expressiveness and naturalness over all baselines. Demo page: https://lrwinr.github.io/RRPO-CosyVoice.

Authors:Price Allman, Lian Thang, Dre Simmons, Salmon Riaz
Title: MARL Warehouse Robots
Abstract:
We present a comparative study of multi-agent reinforcement learning (MARL) algorithms for cooperative warehouse robotics. We evaluate QMIX and IPPO on the Robotic Warehouse (RWARE) environment and a custom Unity 3D simulation. Our experiments reveal that QMIX's value decomposition significantly outperforms independent learning approaches (achieving 3.25 mean return vs. 0.38 for advanced IPPO), but requires extensive hyperparameter tuning -- particularly extended epsilon annealing (5M+ steps) for sparse reward discovery. We demonstrate successful deployment in Unity ML-Agents, achieving consistent package delivery after 1M training steps. While MARL shows promise for small-scale deployments (2-4 robots), significant scaling challenges remain. Code and analyses: https://pallman14.github.io/MARL-QMIX-Warehouse-Robots/

Authors:Changjin Kim, HyeokJun Lee, YoungJoon Yoo
Title: GuidNoise: Single-Pair Guided Diffusion for Generalized Noise Synthesis
Abstract:
Recent image denoising methods have leveraged generative modeling for real noise synthesis to address the costly acquisition of real-world noisy data. However, these generative models typically require camera metadata and extensive target-specific noisy-clean image pairs, often showing limited generalization between settings. In this paper, to mitigate the prerequisites, we propose a Single-Pair Guided Diffusion for generalized noise synthesis GuidNoise, which uses a single noisy/clean pair as the guidance, often easily obtained by itself within a training set. To train GuidNoise, which generates synthetic noisy images from the guidance, we introduce a guidance-aware affine feature modification (GAFM) and a noise-aware refine loss to leverage the inherent potential of diffusion models. This loss function refines the diffusion model's backward process, making the model more adept at generating realistic noise distributions. The GuidNoise synthesizes high-quality noisy images under diverse noise environments without additional metadata during both training and inference. Additionally, GuidNoise enables the efficient generation of noisy-clean image pairs at inference time, making synthetic noise readily applicable for augmenting training data. This self-augmentation significantly improves denoising performance, especially in practical scenarios with lightweight models and limited training data. The code is available at https://github.com/chjinny/GuidNoise.

Authors:Yanbin Zhang, Hanhui Ye, Yue Bai, Qiming Zhang, Liao Xiang, Wu Mianzhi, Renjun Hu
Title: Automating Complex Document Workflows via Stepwise and Rollback-Enabled Operation Orchestration
Abstract:
Workflow automation promises substantial productivity gains in everyday document-related tasks. While prior agentic systems can execute isolated instructions, they struggle with automating multi-step, session-level workflows due to limited control over the operational process. To this end, we introduce AutoDW, a novel execution framework that enables stepwise, rollback-enabled operation orchestration. AutoDW incrementally plans API actions conditioned on user instructions, intent-filtered API candidates, and the evolving states of the document. It further employs robust rollback mechanisms at both the argument and API levels, enabling dynamic correction and fault tolerance. These designs together ensure that the execution trajectory of AutoDW remains aligned with user intent and document context across long-horizon workflows. To assess its effectiveness, we construct a comprehensive benchmark of 250 sessions and 1,708 human-annotated instructions, reflecting realistic document processing scenarios with interdependent instructions. AutoDW achieves 90% and 62% completion rates on instruction- and session-level tasks, respectively, outperforming strong baselines by 40% and 76%. Moreover, AutoDW also remains robust for the decision of backbone LLMs and on tasks with varying difficulty. Code and data will be open-sourced. Code: https://github.com/YJett/AutoDW

Authors:Manar Alnaasan, Md Selim Sarowar, Sungho Kim
Title: Explainable Parkinsons Disease Gait Recognition Using Multimodal RGB-D Fusion and Large Language Models
Abstract:
Accurate and interpretable gait analysis plays a crucial role in the early detection of Parkinsons disease (PD),yet most existing approaches remain limited by single-modality inputs, low robustness, and a lack of clinical transparency. This paper presents an explainable multimodal framework that integrates RGB and Depth (RGB-D) data to recognize Parkinsonian gait patterns under realistic conditions. The proposed system employs dual YOLOv11-based encoders for modality-specific feature extraction, followed by a Multi-Scale Local-Global Extraction (MLGE) module and a Cross-Spatial Neck Fusion mechanism to enhance spatial-temporal representation. This design captures both fine-grained limb motion (e.g., reduced arm swing) and overall gait dynamics (e.g., short stride or turning difficulty), even in challenging scenarios such as low lighting or occlusion caused by clothing. To ensure interpretability, a frozen Large Language Model (LLM) is incorporated to translate fused visual embeddings and structured metadata into clinically meaningful textual explanations. Experimental evaluations on multimodal gait datasets demonstrate that the proposed RGB-D fusion framework achieves higher recognition accuracy, improved robustness to environmental variations, and clear visual-linguistic reasoning compared with single-input baselines. By combining multimodal feature learning with language-based interpretability, this study bridges the gap between visual recognition and clinical understanding, offering a novel vision-language paradigm for reliable and explainable Parkinsons disease gait analysis. Code:https://github.com/manaralnaasan/RGB-D_parkinson-LLM

Authors:Xiangyi Gao, Danpei Zhao, Bo Yuan, Wentao Li
Title: Dual-Stream Spectral Decoupling Distillation for Remote Sensing Object Detection
Abstract:
Knowledge distillation is an effective and hardware-friendly method, which plays a key role in lightweighting remote sensing object detection. However, existing distillation methods often encounter the issue of mixed features in remote sensing images (RSIs), and neglect the discrepancies caused by subtle feature variations, leading to entangled knowledge confusion. To address these challenges, we propose an architecture-agnostic distillation method named Dual-Stream Spectral Decoupling Distillation (DS2D2) for universal remote sensing object detection tasks. Specifically, DS2D2 integrates explicit and implicit distillation grounded in spectral decomposition. Firstly, the first-order wavelet transform is applied for spectral decomposition to preserve the critical spatial characteristics of RSIs. Leveraging this spatial preservation, a Density-Independent Scale Weight (DISW) is designed to address the challenges of dense and small object detection common in RSIs. Secondly, we show implicit knowledge hidden in subtle student-teacher feature discrepancies, which significantly influence predictions when activated by detection heads. This implicit knowledge is extracted via full-frequency and high-frequency amplifiers, which map feature differences to prediction deviations. Extensive experiments on DIOR and DOTA datasets validate the effectiveness of the proposed method. Specifically, on DIOR dataset, DS2D2 achieves improvements of 4.2% in AP50 for RetinaNet and 3.8% in AP50 for Faster R-CNN, outperforming existing distillation approaches. The source code will be available at https://github.com/PolarAid/DS2D2.

Authors:Geunhyuk Youk, Jihyong Oh, Munchurl Kim
Title: FMA-Net++: Motion- and Exposure-Aware Real-World Joint Video Super-Resolution and Deblurring
Abstract:
Real-world video restoration is plagued by complex degradations from motion coupled with dynamically varying exposure - a key challenge largely overlooked by prior works and a common artifact of auto-exposure or low-light capture. We present FMA-Net++, a framework for joint video super-resolution and deblurring that explicitly models this coupled effect of motion and dynamically varying exposure. FMA-Net++ adopts a sequence-level architecture built from Hierarchical Refinement with Bidirectional Propagation blocks, enabling parallel, long-range temporal modeling. Within each block, an Exposure Time-aware Modulation layer conditions features on per-frame exposure, which in turn drives an exposure-aware Flow-Guided Dynamic Filtering module to infer motion- and exposure-aware degradation kernels. FMA-Net++ decouples degradation learning from restoration: the former predicts exposure- and motion-aware priors to guide the latter, improving both accuracy and efficiency. To evaluate under realistic capture conditions, we introduce REDS-ME (multi-exposure) and REDS-RE (random-exposure) benchmarks. Trained solely on synthetic data, FMA-Net++ achieves state-of-the-art accuracy and temporal consistency on our new benchmarks and GoPro, outperforming recent methods in both restoration quality and inference speed, and generalizes well to challenging real-world videos.

Authors:Kai-Po Chang, Wei-Yuan Cheng, Chi-Pin Huang, Fu-En Yang, Yu-Chiang Frank Wang
Title: Mitigating Object and Action Hallucinations in Multimodal LLMs via Self-Augmented Contrastive Alignment
Abstract:
Recent advancement in multimodal LLMs (MLLMs) has demonstrated their remarkable capability to generate descriptive captions for input videos. However, these models suffer from factual inaccuracies in the generated descriptions, causing severe hallucination issues. While prior works have explored alleviating hallucinations for static images, jointly mitigating visual object and temporal action hallucinations for dynamic videos remains a challenging and unsolved task. To tackle this challenge, we propose a Self-Augmented Contrastive Alignment (SANTA) framework for enabling object and action faithfulness by exempting the spurious correlations and enforcing the emphasis on visual facts. SANTA employs a hallucinative self-augmentation scheme to identify the potential hallucinations that lie in the MLLM and transform the original captions to the contrasted negatives. Furthermore, we develop a tracklet-phrase contrastive alignment to match the regional objects and relation-guided actions with their corresponding visual and temporal phrases. Extensive experiments demonstrate that SANTA outperforms existing methods in alleviating object and action hallucinations, yielding superior performance on the hallucination examination benchmarks.

Authors:Gregory Bolet, Giorgis Georgakoudis, Konstantinos Parasyris, Harshitha Menon, Niranjan Hasabnis, Kirk W. Cameron, Gal Oren
Title: Counting Without Running: Evaluating LLMs' Reasoning About Code Complexity
Abstract:
Modern GPU software stacks demand developers who can anticipate performance bottlenecks before ever launching a kernel; misjudging floating-point workloads upstream can derail tuning, scheduling, and even hardware procurement. Yet despite rapid progress in code generation, today's Large Language Models (LLMs) are rarely tested on this kind of forward-looking reasoning. We close that gap with gpuFLOPBench, a benchmark that asks models to "count without running" by predicting single and double-precision FLOP counts for 577 CUDA kernels drawn from HeCBench, annotated with ground-truth profiles and eight execution attributes that distinguish trivially analyzable code from kernels whose FLOPs depend on hidden compiler or runtime behavior. Evaluating current closed-source reasoning models shows clear but uneven progress: the newest LLMs achieve perfect classification on straightforward kernels but still incur multiple order-of-magnitude errors whenever implicit FLOPs arise from division, intrinsic math functions, or common subexpressions. These results surface a core limitation of existing code assistants -- the inability to internalize hardware-specific microcode effects -- and position gpuFLOPBench as a focused testbed for developing LLM tooling that can reason about performance with the same rigor as experienced GPU developers. Sources are available at our repository: https://github.com/Scientific-Computing-Lab/gpuFLOPBench

Authors:Peter B. Walker, Hannah Davidson, Aiden Foster, Matthew Lienert, Thomas Pardue, Dale Russell
Title: Addressing Logical Fallacies In Scientific Reasoning From Large Language Models: Towards a Dual-Inference Training Framework
Abstract:
Large Language Models (LLMs) have transformed natural language processing and hold growing promise for advancing science, healthcare, and decision-making. Yet their training paradigms remain dominated by affirmation-based inference, akin to \textit{modus ponens}, where accepted premises yield predicted consequents. While effective for generative fluency, this one-directional approach leaves models vulnerable to logical fallacies, adversarial manipulation, and failures in causal reasoning. This paper makes two contributions. First, it demonstrates how existing LLMs from major platforms exhibit systematic weaknesses when reasoning in scientific domains with negation, counterexamples, or faulty premises \footnote{Code to recreate these experiments are at https://github.com/hannahdavidsoncollege-maker/ScientificReasoningForEnvironment-MedicineWithLLMs. Second, it introduces a dual-reasoning training framework that integrates affirmative generation with structured counterfactual denial. Grounded in formal logic, cognitive science, and adversarial training, this training paradigm formalizes a computational analogue of ``denying the antecedent'' as a mechanism for disconfirmation and robustness. By coupling generative synthesis with explicit negation-aware objectives, the framework enables models that not only affirm valid inferences but also reject invalid ones, yielding systems that are more resilient, interpretable, and aligned with human reasoning.

Authors:Liang Telkamp, Madelon Hulsebos
Title: Towards Contextual Sensitive Data Detection
Abstract:
The emergence of open data portals necessitates more attention to protecting sensitive data before datasets get published and exchanged. While an abundance of methods for suppressing sensitive data exist, the conceptualization of sensitive data and methods to detect it, focus particularly on personal data that, if disclosed, may be harmful or violate privacy. We observe the need for refining and broadening our definitions of sensitive data, and argue that the sensitivity of data depends on its context. Based on this definition, we introduce two mechanisms for contextual sensitive data detection that consider the broader context of a dataset at hand. First, we introduce type contextualization, which first detects the semantic type of particular data values, then considers the overall context of the data values within the dataset or document. Second, we introduce domain contextualization which determines sensitivity of a given dataset in the broader context based on the retrieval of relevant rules from documents that specify data sensitivity (e.g., data topic and geographic origin). Experiments with these mechanisms, assisted by large language models (LLMs), confirm that: 1) type-contextualization significantly reduces the number of false positives for type-based sensitive data detection and reaches a recall of 94% compared to 63% with commercial tools, and 2) domain-contextualization leveraging sensitivity rule retrieval is effective for context-grounded sensitive data detection in non-standard data domains such as humanitarian datasets. Evaluation with humanitarian data experts also reveals that context-grounded LLM explanations provide useful guidance in manual data auditing processes, improving consistency. We open-source mechanisms and annotated datasets for contextual sensitive data detection at https://github.com/trl-lab/sensitive-data-detection.

Authors:Hang Xu, Linjiang Huang, Feng Zhao
Title: Highly Efficient Test-Time Scaling for T2I Diffusion Models with Text Embedding Perturbation
Abstract:
Test-time scaling (TTS) aims to achieve better results by increasing random sampling and evaluating samples based on rules and metrics. However, in text-to-image(T2I) diffusion models, most related works focus on search strategies and reward models, yet the impact of the stochastic characteristic of noise in T2I diffusion models on the method's performance remains unexplored. In this work, we analyze the effects of randomness in T2I diffusion models and explore a new format of randomness for TTS: text embedding perturbation, which couples with existing randomness like SDE-injected noise to enhance generative diversity and quality. We start with a frequency-domain analysis of these formats of randomness and their impact on generation, and find that these two randomness exhibit complementary behavior in the frequency domain: spatial noise favors low-frequency components (early steps), while text embedding perturbation enhances high-frequency details (later steps), thereby compensating for the potential limitations of spatial noise randomness in high-frequency manipulation. Concurrently, text embedding demonstrates varying levels of tolerance to perturbation across different dimensions of the generation process. Specifically, our method consists of two key designs: (1) Introducing step-based text embedding perturbation, combining frequency-guided noise schedules with spatial noise perturbation. (2) Adapting the perturbation intensity selectively based on their frequency-specific contributions to generation and tolerance to perturbation. Our approach can be seamlessly integrated into existing TTS methods and demonstrates significant improvements on multiple benchmarks with almost no additional computation. Code is available at \href{https://github.com/xuhang07/TEP-Diffusion}{https://github.com/xuhang07/TEP-Diffusion}.

Authors:Jin-Ting He, Fu-Jen Tsai, Yan-Tsung Peng, Min-Hung Chen, Chia-Wen Lin, Yen-Yu Lin
Title: BlurDM: A Blur Diffusion Model for Image Deblurring
Abstract:
Diffusion models show promise for dynamic scene deblurring; however, existing studies often fail to leverage the intrinsic nature of the blurring process within diffusion models, limiting their full potential. To address it, we present a Blur Diffusion Model (BlurDM), which seamlessly integrates the blur formation process into diffusion for image deblurring. Observing that motion blur stems from continuous exposure, BlurDM implicitly models the blur formation process through a dual-diffusion forward scheme, diffusing both noise and blur onto a sharp image. During the reverse generation process, we derive a dual denoising and deblurring formulation, enabling BlurDM to recover the sharp image by simultaneously denoising and deblurring, given pure Gaussian noise conditioned on the blurred image as input. Additionally, to efficiently integrate BlurDM into deblurring networks, we perform BlurDM in the latent space, forming a flexible prior generation network for deblurring. Extensive experiments demonstrate that BlurDM significantly and consistently enhances existing deblurring methods on four benchmark datasets. The source code is available at https://github.com/Jin-Ting-He/BlurDM.

Authors:Franki Nguimatsia Tiofack, Théotime Le Hellard, Fabian Schramm, Nicolas Perrin-Gilbert, Justin Carpentier
Title: Guided Flow Policy: Learning from High-Value Actions in Offline Reinforcement Learning
Abstract:
Offline reinforcement learning often relies on behavior regularization that enforces policies to remain close to the dataset distribution. However, such approaches fail to distinguish between high-value and low-value actions in their regularization components. We introduce Guided Flow Policy (GFP), which couples a multi-step flow-matching policy with a distilled one-step actor. The actor directs the flow policy through weighted behavior cloning to focus on cloning high-value actions from the dataset rather than indiscriminately imitating all state-action pairs. In turn, the flow policy constrains the actor to remain aligned with the dataset's best transitions while maximizing the critic. This mutual guidance enables GFP to achieve state-of-the-art performance across 144 state and pixel-based tasks from the OGBench, Minari, and D4RL benchmarks, with substantial gains on suboptimal datasets and challenging tasks. Webpage: https://simple-robotics.github.io/publications/guided-flow-policy/

Authors:Saurav Prateek
Title: A Hierarchical Tree-based approach for creating Configurable and Static Deep Research Agent (Static-DRA)
Abstract:
The advancement in Large Language Models has driven the creation of complex agentic systems, such as Deep Research Agents (DRAs), to overcome the limitations of static Retrieval Augmented Generation (RAG) pipelines in handling complex, multi-turn research tasks. This paper introduces the Static Deep Research Agent (Static-DRA), a novel solution built upon a configurable and hierarchical Tree-based static workflow. The core contribution is the integration of two user-tunable parameters, Depth and Breadth, which provide granular control over the research intensity. This design allows end-users to consciously balance the desired quality and comprehensiveness of the research report against the associated computational cost of Large Language Model (LLM) interactions. The agent's architecture, comprising Supervisor, Independent, and Worker agents, facilitates effective multi-hop information retrieval and parallel sub-topic investigation. We evaluate the Static-DRA against the established DeepResearch Bench using the RACE (Reference-based Adaptive Criteria-driven Evaluation) framework. Configured with a depth of 2 and a breadth of 5, and powered by the gemini-2.5-pro model, the agent achieved an overall score of 34.72. Our experiments validate that increasing the configured Depth and Breadth parameters results in a more in-depth research process and a correspondingly higher evaluation score. The Static-DRA offers a pragmatic and resource-aware solution, empowering users with transparent control over the deep research process. The entire source code, outputs and benchmark results are open-sourced at https://github.com/SauravP97/Static-Deep-Research/

Authors:Jingyang Ou, Jiaqi Han, Minkai Xu, Shaoxuan Xu, Jianwen Xie, Stefano Ermon, Yi Wu, Chongxuan Li
Title: Principled RL for Diffusion LLMs Emerges from a Sequence-Level Perspective
Abstract:
Reinforcement Learning (RL) has proven highly effective for autoregressive language models, but adapting these methods to diffusion large language models (dLLMs) presents fundamental challenges. The core difficulty lies in likelihood approximation: while autoregressive models naturally provide token-level conditional probabilities essential for token-level RL objectives (e.g., GRPO), dLLMs generate sequences through iterative non-autoregressive denoising steps that lack this factorization. To address this fundamental mismatch, we propose ELBO-based Sequence-level Policy Optimization (ESPO), a principled RL framework that treats entire sequence generation as a single action and uses the ELBO as a tractable sequence-level likelihood proxy. Our method incorporates per-token normalization of importance ratios and robust KL-divergence estimation to ensure stable large-scale training. Extensive experiments on mathematical reasoning, coding, and planning tasks demonstrate that ESPO significantly outperforms token-level baselines, achieving dramatic improvements of 20-40 points on the Countdown task, while maintaining consistent gains on math and coding benchmarks. Our approach establishes sequence-level optimization as a principled and empirically effective paradigm for RL in dLLMs. Our code is available at https://github.com/ML-GSAI/ESPO.

Authors:Tengyun Ma, Jiaqi Yao, Daojing He, Shihao Peng, Yu Li, Shaohui Liu, Zhuotao Tian
Title: Context-Aware Hierarchical Learning: A Two-Step Paradigm towards Safer LLMs
Abstract:
Large Language Models (LLMs) have emerged as powerful tools for diverse applications. However, their uniform token processing paradigm introduces critical vulnerabilities in instruction handling, particularly when exposed to adversarial scenarios. In this work, we identify and propose a novel class of vulnerabilities, termed Tool-Completion Attack (TCA), which exploits function-calling mechanisms to subvert model behavior. To evaluate LLM robustness against such threats, we introduce the Tool-Completion benchmark, a comprehensive security assessment framework, which reveals that even state-of-the-art models remain susceptible to TCA, with surprisingly high attack success rates. To address these vulnerabilities, we introduce Context-Aware Hierarchical Learning (CAHL), a sophisticated mechanism that dynamically balances semantic comprehension with role-specific instruction constraints. CAHL leverages the contextual correlations between different instruction segments to establish a robust, context-aware instruction hierarchy. Extensive experiments demonstrate that CAHL significantly enhances LLM robustness against both conventional attacks and the proposed TCA, exhibiting strong generalization capabilities in zero-shot evaluations while still preserving model performance on generic tasks. Our code is available at https://github.com/S2AILab/CAHL.

Authors:Qi'ao Xu, Tianwen Qian, Yuqian Fu, Kailing Li, Yang Jiao, Jiacheng Zhang, Xiaoling Wang, Liang He
Title: ToG-Bench: Task-Oriented Spatio-Temporal Grounding in Egocentric Videos
Abstract:
A core capability towards general embodied intelligence lies in localizing task-relevant objects from an egocentric perspective, formulated as Spatio-Temporal Video Grounding (STVG). Despite recent progress, existing STVG studies remain largely confined to object-centric and descriptive instructions, neglecting the task-oriented reasoning that is crucial for embodied agents to accomplish goal-directed interactions. To bridge this gap, we introduce \textbf{ToG-Bench}, the first task-oriented spatio-temporal video grounding benchmark for egocentric videos. ToG-Bench is characterized by three key features: (1) \textbf{Task-oriented Grounding}, which requires identifying and localizing objects based on intended tasks rather than straightforward descriptions; (2) \textbf{Explicit-Implicit Dual Grounding}, where target objects can be either explicitly mentioned or implicitly inferred by contextual reasoning; (3) \textbf{One-to-Many Grounding}, where a single instruction may correspond to multiple objects involved in task execution. Built upon videos sourced from ScanNet, ToG-Bench comprises 100 annotated clips with 2,704 task-oriented grounding instructions, constructed via a semi-automated pipeline that combines foundation model annotation and human refinement. In addition, we introduce a set of task-level evaluation metrics tailored for multi-object and explicit-implicit object grounding, and systematically benchmark seven state-of-the-art MLLMs. Extensive experiments reveal the intrinsic challenges of task-oriented STVG and substantial performance gaps across explicit-implicit and multi-object grounding, highlighting the difficulty of bridging perception and interaction in embodied scenarios. Data and code will be released at: \href{https://github.com/qaxuDev/ToG-Bench}{https://github.com/qaxuDev/ToG-Bench}..

Authors:Hanxiu Zhang, Yue Zheng
Title: SELF: A Robust Singular Value and Eigenvalue Approach for LLM Fingerprinting
Abstract:
The protection of Intellectual Property (IP) in Large Language Models (LLMs) represents a critical challenge in contemporary AI research. While fingerprinting techniques have emerged as a fundamental mechanism for detecting unauthorized model usage, existing methods -- whether behavior-based or structural -- suffer from vulnerabilities such as false claim attacks or susceptible to weight manipulations. To overcome these limitations, we propose SELF, a novel intrinsic weight-based fingerprinting scheme that eliminates dependency on input and inherently resists false claims. SELF achieves robust IP protection through two key innovations: 1) unique, scalable and transformation-invariant fingerprint extraction via singular value and eigenvalue decomposition of LLM attention weights, and 2) effective neural network-based fingerprint similarity comparison based on few-shot learning and data augmentation. Experimental results demonstrate SELF maintains high IP infringement detection accuracy while showing strong robustness against various downstream modifications, including quantization, pruning, and fine-tuning attacks. Our code is available at https://github.com/HanxiuZhang/SELF_v2.

Authors:Subin Kim, Sangwoo Mo, Mamshad Nayeem Rizve, Yiran Xu, Difan Liu, Jinwoo Shin, Tobias Hinz
Title: Rethinking Prompt Design for Inference-time Scaling in Text-to-Visual Generation
Abstract:
Achieving precise alignment between user intent and generated visuals remains a central challenge in text-to-visual generation, as a single attempt often fails to produce the desired output. To handle this, prior approaches mainly scale the visual generation process (e.g., increasing sampling steps or seeds), but this quickly leads to a quality plateau. This limitation arises because the prompt, crucial for guiding generation, is kept fixed. To address this, we propose Prompt Redesign for Inference-time Scaling, coined PRIS, a framework that adaptively revises the prompt during inference in response to the scaled visual generations. The core idea of PRIS is to review the generated visuals, identify recurring failure patterns across visuals, and redesign the prompt accordingly before regenerating the visuals with the revised prompt. To provide precise alignment feedback for prompt revision, we introduce a new verifier, element-level factual correction, which evaluates the alignment between prompt attributes and generated visuals at a fine-grained level, achieving more accurate and interpretable assessments than holistic measures. Extensive experiments on both text-to-image and text-to-video benchmarks demonstrate the effectiveness of our approach, including a 15% gain on VBench 2.0. These results highlight that jointly scaling prompts and visuals is key to fully leveraging scaling laws at inference-time. Visualizations are available at the website: https://subin-kim-cv.github.io/PRIS.

Authors:Xieji Li, Siyuan Yan, Yingsheng Liu, H. Peter Soyer, Monika Janda, Victoria Mar, Zongyuan Ge
Title: Multi-Aspect Knowledge-Enhanced Medical Vision-Language Pretraining with Multi-Agent Data Generation
Abstract:
Vision-language pretraining (VLP) has emerged as a powerful paradigm in medical image analysis, enabling representation learning from large-scale image-text pairs without relying on expensive manual annotations. However, existing methods often struggle with the noise inherent in web-collected data and the complexity of unstructured long medical texts. To address these challenges, we propose a novel VLP framework integrating a Multi-Agent data GENeration (MAGEN) system and Ontology-based Multi-Aspect Knowledge-Enhanced (O-MAKE) pretraining. First, MAGEN enhances data quality by synthesizing knowledge-enriched descriptions via a foundation model-assisted captioning and retrieval-based verification pipeline. Second, O-MAKE addresses the difficulty of learning from long, unstructured texts by decomposing them into distinct knowledge aspects. This facilitates fine-grained alignment at both global and patch levels, while explicitly modeling medical concept relationships through ontology-guided mechanisms. We validate our framework in the field of dermatology, where comprehensive experiments demonstrate the effectiveness of each component. Our approach achieves state-of-the-art zero-shot performance on disease classification and cross-modal retrieval tasks across eight datasets. Our code and the augmented dataset Derm1M-AgentAug, comprising over 400k skin-image-text pairs, will be released at https://github.com/SiyuanYan1/Derm1M.

Authors:Hung-Yueh Chiang, Chi-Chih Chang, Yu-Chen Lu, Chien-Yu Lin, Kai-Chiang Wu, Mohamed S. Abdelfattah, Diana Marculescu
Title: UniQL: Unified Quantization and Low-rank Compression for Adaptive Edge LLMs
Abstract:
Deploying large language models (LLMs) on mobile platforms faces significant challenges due to the limited memory and shared computational resources of the device. Resource availability may be an issue as it is directly impacted by the current device workload, adding to the uncertainty of model deployment. We introduce UniQL, a unified post-training quantization and low-rank compression framework with on-device configurable pruning rates for edge LLMs. UniQL is a general framework that integrates quantization and low-rank compression for Transformers, State Space Models (SSMs), and hybrid models to support diverse edge applications. In our proposed joint framework, we introduce an efficient structured weight-sorting method that speeds up computation by 20x, quantization-aware singular value decomposition (SVD) to minimize quantization errors, state-aware weight sorting for SSMs, and a fused rotary positional embedding (RoPE) kernel for pruned models. Our framework performs weight-sorting, fine-tuning, and quantization in the cloud in a single-pass workflow, while enabling on-device configurable pruning rates up to 35%. Our experiments show that quantized and pruned models achieve a memory reduction of 4x-5.7x and a token-throughput improvement of 2.7x-3.4x, maintaining accuracy within 5% of the original models at 15% pruning across Transformers (Llama3 and Qwen2.5), SSMs (Mamba2), and hybrid models (Nemotron-H and Bamba-v2). The code and quantized models are available at: https://github.com/enyac-group/UniQL.

Authors:Nan Zhou, Huandong Wang, Jiahao Li, Han Li, Yali Song, Qiuhua Wang, Yong Li, Xinlei Chen
Title: FireSentry: A Multi-Modal Spatio-temporal Benchmark Dataset for Fine-Grained Wildfire Spread Forecasting
Abstract:
Fine-grained wildfire spread prediction is crucial for enhancing emergency response efficacy and decision-making precision. However, existing research predominantly focuses on coarse spatiotemporal scales and relies on low-resolution satellite data, capturing only macroscopic fire states while fundamentally constraining high-precision localized fire dynamics modeling capabilities. To bridge this gap, we present FireSentry, a provincial-scale multi-modal wildfire dataset characterized by sub-meter spatial and sub-second temporal resolution. Collected using synchronized UAV platforms, FireSentry provides visible and infrared video streams, in-situ environmental measurements, and manually validated fire masks. Building on FireSentry, we establish a comprehensive benchmark encompassing physics-based, data-driven, and generative models, revealing the limitations of existing mask-only approaches. Our analysis proposes FiReDiff, a novel dual-modality paradigm that first predicts future video sequences in the infrared modality, and then precisely segments fire masks in the mask modality based on the generated dynamics. FiReDiff achieves state-of-the-art performance, with video quality gains of 39.2% in PSNR, 36.1% in SSIM, 50.0% in LPIPS, 29.4% in FVD, and mask accuracy gains of 3.3% in AUPRC, 59.1% in F1 score, 42.9% in IoU, and 62.5% in MSE when applied to generative models. The FireSentry benchmark dataset and FiReDiff paradigm collectively advance fine-grained wildfire forecasting and dynamic disaster simulation. The processed benchmark dataset is publicly available at: https://github.com/Munan222/FireSentry-Benchmark-Dataset.

Authors:Darshan Fofadiya
Title: Idea-Gated Transformers: Enforcing Semantic Coherence via Differentiable Vocabulary Pruning
Abstract:
Autoregressive Language Models (LLMs) trained on Next-Token Prediction (NTP) often suffer from ``Topic Drift'' where the generation wanders away from the initial prompt due to a reliance on local associations rather than global planning \citep{holtzman2019curious}. While scaling model size mitigates this \citep{brown2020language}, the fundamental myopia of the NTP objective remains. In this work, we introduce the Idea-Gated Transformer, a novel architecture that separates semantic planning from syntactic generation. We introduce an auxiliary ``Idea Head'' trained to predict the bag-of-words distribution for a future context window, creating a latent ``Concept Vector'' that actively gates the main vocabulary during generation. We propose a differentiable gating mechanism that suppresses semantically irrelevant tokens, effectively pruning the search space in real-time. Experiments on WikiText-103 demonstrate that while the Idea-Gated model achieves comparable validation perplexity to a standard GPT-2 baseline, it exhibits significantly superior Domain Retention. Qualitative and quantitative analysis reveals that the gating mechanism successfully locks generation into specific semantic clusters (e.g., Finance, Science) and resists associative drift, offering a parameter-efficient path toward more controllable language modeling.

Authors:Yeganeh Ghamary, Victoria Wu, Hooman Vaseli, Christina Luong, Teresa Tsang, Siavash Bigdeli, Purang Abolmaesumi
Title: ProtoEFNet: Dynamic Prototype Learning for Inherently Interpretable Ejection Fraction Estimation in Echocardiography
Abstract:
Ejection fraction (EF) is a crucial metric for assessing cardiac function and diagnosing conditions such as heart failure. Traditionally, EF estimation requires manual tracing and domain expertise, making the process time-consuming and subject to interobserver variability. Most current deep learning methods for EF prediction are black-box models with limited transparency, which reduces clinical trust. Some post-hoc explainability methods have been proposed to interpret the decision-making process after the prediction is made. However, these explanations do not guide the model's internal reasoning and therefore offer limited reliability in clinical applications. To address this, we introduce ProtoEFNet, a novel video-based prototype learning model for continuous EF regression. The model learns dynamic spatiotemporal prototypes that capture clinically meaningful cardiac motion patterns. Additionally, the proposed Prototype Angular Separation (PAS) loss enforces discriminative representations across the continuous EF spectrum. Our experiments on the EchonetDynamic dataset show that ProtoEFNet can achieve accuracy on par with its non-interpretable counterpart while providing clinically relevant insight. The ablation study shows that the proposed loss boosts performance with a 2% increase in F1 score from 77.67$\pm$2.68 to 79.64$\pm$2.10. Our source code is available at: https://github.com/DeepRCL/ProtoEF

Authors:Thomas Monninger, Zihan Zhang, Steffen Staab, Sihao Ding
Title: NavMapFusion: Diffusion-based Fusion of Navigation Maps for Online Vectorized HD Map Construction
Abstract:
Accurate environmental representations are essential for autonomous driving, providing the foundation for safe and efficient navigation. Traditionally, high-definition (HD) maps are providing this representation of the static road infrastructure to the autonomous system a priori. However, because the real world is constantly changing, such maps must be constructed online from on-board sensor data. Navigation-grade standard-definition (SD) maps are widely available, but their resolution is insufficient for direct deployment. Instead, they can be used as coarse prior to guide the online map construction process. We propose NavMapFusion, a diffusion-based framework that performs iterative denoising conditioned on high-fidelity sensor data and on low-fidelity navigation maps. This paper strives to answer: (1) How can coarse, potentially outdated navigation maps guide online map construction? (2) What advantages do diffusion models offer for map fusion? We demonstrate that diffusion-based map construction provides a robust framework for map fusion. Our key insight is that discrepancies between the prior map and online perception naturally correspond to noise within the diffusion process; consistent regions reinforce the map construction, whereas outdated segments are suppressed. On the nuScenes benchmark, NavMapFusion conditioned on coarse road lines from OpenStreetMap data reaches a 21.4% relative improvement on 100 m, and even stronger improvements on larger perception ranges, while maintaining real-time capabilities. By fusing low-fidelity priors with high-fidelity sensor data, the proposed method generates accurate and up-to-date environment representations, guiding towards safer and more reliable autonomous driving. The code is available at https://github.com/tmonnin/navmapfusion

Authors:Ziyu Xiong, Yichi Zhang, Foyez Alauddin, Chu Xin Cheng, Joon Soo An, Mohammad R. Seyedsayamdost, Ellen D. Zhong
Title: Atomic Diffusion Models for Small Molecule Structure Elucidation from NMR Spectra
Abstract:
Nuclear Magnetic Resonance (NMR) spectroscopy is a cornerstone technique for determining the structures of small molecules and is especially critical in the discovery of novel natural products and clinical therapeutics. Yet, interpreting NMR spectra remains a time-consuming, manual process requiring extensive domain expertise. We introduce ChefNMR (CHemical Elucidation From NMR), an end-to-end framework that directly predicts an unknown molecule's structure solely from its 1D NMR spectra and chemical formula. We frame structure elucidation as conditional generation from an atomic diffusion model built on a non-equivariant transformer architecture. To model the complex chemical groups found in natural products, we generated a dataset of simulated 1D NMR spectra for over 111,000 natural products. ChefNMR predicts the structures of challenging natural product compounds with an unsurpassed accuracy of over 65%. This work takes a significant step toward solving the grand challenge of automating small-molecule structure elucidation and highlights the potential of deep learning in accelerating molecular discovery. Code is available at https://github.com/ml-struct-bio/chefnmr.

Authors:Xiwen Wei, Mustafa Munir, Radu Marculescu
Title: Mitigating Intra- and Inter-modal Forgetting in Continual Learning of Unified Multimodal Models
Abstract:
Unified Multimodal Generative Models (UMGMs) unify visual understanding and image generation within a single autoregressive framework. However, their ability to continually learn new tasks is severely hindered by catastrophic forgetting, both within a modality (intra-modal) and across modalities (inter-modal). While intra-modal forgetting has been studied in prior continual learning (CL) work, inter-modal forgetting remains largely unexplored. In this paper, we identify and empirically validate this phenomenon in UMGMs and provide a theoretical explanation rooted in gradient conflict between modalities. To address both intra- and inter-modal forgetting, we propose Modality-Decoupled Experts (MoDE), a lightweight and scalable architecture that isolates modality-specific updates to mitigate the gradient conflict and leverages knowledge distillation to prevent catastrophic forgetting and preserve pre-trained capabilities. Unlike previous CL methods that remain modality-coupled and suffer from modality gradient conflict, MoDE explicitly decouples modalities to prevent interference. Experiments across diverse benchmarks demonstrate that MoDE significantly mitigates both inter- and intra-modal forgetting, outperforming prior CL baselines in unified multimodal generation settings. Codes will be publicly available: https://github.com/Christina200/MoDE-official.git

Authors:Xiaoshui Huang, Tianlin Zhu, Yifan Zuo, Xue Xia, Zonghan Wu, Jiebin Yan, Dingli Hua, Zongyi Xu, Yuming Fang, Jian Zhang
Title: PanFoMa: A Lightweight Foundation Model and Benchmark for Pan-Cancer
Abstract:
Single-cell RNA sequencing (scRNA-seq) is essential for decoding tumor heterogeneity. However, pan-cancer research still faces two key challenges: learning discriminative and efficient single-cell representations, and establishing a comprehensive evaluation benchmark. In this paper, we introduce PanFoMa, a lightweight hybrid neural network that combines the strengths of Transformers and state-space models to achieve a balance between performance and efficiency. PanFoMa consists of a front-end local-context encoder with shared self-attention layers to capture complex, order-independent gene interactions; and a back-end global sequential feature decoder that efficiently integrates global context using a linear-time state-space model. This modular design preserves the expressive power of Transformers while leveraging the scalability of Mamba to enable transcriptome modeling, effectively capturing both local and global regulatory signals. To enable robust evaluation, we also construct a large-scale pan-cancer single-cell benchmark, PanFoMaBench, containing over 3.5 million high-quality cells across 33 cancer subtypes, curated through a rigorous preprocessing pipeline. Experimental results show that PanFoMa outperforms state-of-the-art models on our pan-cancer benchmark (+4.0\%) and across multiple public tasks, including cell type annotation (+7.4\%), batch integration (+4.0\%) and multi-omics integration (+3.1\%). The code is available at https://github.com/Xiaoshui-Huang/PanFoMa.

Authors:Haribandhu Jena, Jyotirmaya Shivottam, Subhankar Mishra
Title: QGShap: Quantum Acceleration for Faithful GNN Explanations
Abstract:
Graph Neural Networks (GNNs) have become indispensable in critical domains such as drug discovery, social network analysis, and recommendation systems, yet their black-box nature hinders deployment in scenarios requiring transparency and accountability. While Shapley value-based methods offer mathematically principled explanations by quantifying each component's contribution to predictions, computing exact values requires evaluating $2^n$ coalitions (or aggregating over $n!$ permutations), which is intractable for real-world graphs. Existing approximation strategies sacrifice either fidelity or efficiency, limiting their practical utility. We introduce QGShap, a quantum computing approach that leverages amplitude amplification to achieve quadratic speedups in coalition evaluation while maintaining exact Shapley computation. Unlike classical sampling or surrogate methods, our approach provides fully faithful explanations without approximation trade-offs for tractable graph sizes. We conduct empirical evaluations on synthetic graph datasets, demonstrating that QGShap achieves consistently high fidelity and explanation accuracy, matching or exceeding the performance of classical methods across all evaluation metrics. These results collectively demonstrate that QGShap not only preserves exact Shapley faithfulness but also delivers interpretable, stable, and structurally consistent explanations that align with the underlying graph reasoning of GNNs. The implementation of QGShap is available at https://github.com/smlab-niser/qgshap.

Authors:Zhidong Gao, Zimeng Pan, Yuhang Yao, Chenyue Xie, Wei Wei
Title: Delta Sampling: Data-Free Knowledge Transfer Across Diffusion Models
Abstract:
Diffusion models like Stable Diffusion (SD) drive a vibrant open-source ecosystem including fully fine-tuned checkpoints and parameter-efficient adapters such as LoRA, LyCORIS, and ControlNet. However, these adaptation components are tightly coupled to a specific base model, making them difficult to reuse when the base model is upgraded (e.g., from SD 1.x to 2.x) due to substantial changes in model parameters and architecture. In this work, we propose Delta Sampling (DS), a novel method that enables knowledge transfer across base models with different architectures, without requiring access to the original training data. DS operates entirely at inference time by leveraging the delta: the difference in model predictions before and after the adaptation of a base model. This delta is then used to guide the denoising process of a new base model. We evaluate DS across various SD versions, demonstrating that DS achieves consistent improvements in creating desired effects (e.g., visual styles, semantic concepts, and structures) under different sampling strategies. These results highlight DS as an effective, plug-and-play mechanism for knowledge transfer in diffusion-based image synthesis. Code:~ https://github.com/Zhidong-Gao/DeltaSampling

Authors:Samih Fadli
Title: Entropy-Based Measurement of Value Drift and Alignment Work in Large Language Models
Abstract:
Large language model safety is usually assessed with static benchmarks, but key failures are dynamic: value drift under distribution shift, jailbreak attacks, and slow degradation of alignment in deployment. Building on a recent Second Law of Intelligence that treats ethical entropy as a state variable which tends to increase unless countered by alignment work, we make this framework operational for large language models. We define a five-way behavioral taxonomy, train a classifier to estimate ethical entropy S(t) from model transcripts, and measure entropy dynamics for base and instruction-tuned variants of four frontier models across stress tests. Base models show sustained entropy growth, while tuned variants suppress drift and reduce ethical entropy by roughly eighty percent. From these trajectories we estimate an effective alignment work rate gamma_eff and embed S(t) and gamma_eff in a monitoring pipeline that raises alerts when entropy drift exceeds a stability threshold, enabling run-time oversight of value drift.

Authors:Michael Ofengenden, Yunze Man, Ziqi Pang, Yu-Xiong Wang
Title: PPTArena: A Benchmark for Agentic PowerPoint Editing
Abstract:
We introduce PPTArena, a benchmark for PowerPoint editing that measures reliable modifications to real slides under natural-language instructions. In contrast to image-PDF renderings or text-to-slide generation, PPTArena focuses on in-place editing across 100 decks, 2125 slides, and over 800 targeted edits covering text, charts, tables, animations, and master-level styles. Each case includes a ground-truth deck, a fully specified target outcome, and a dual VLM-as-judge pipeline that separately scores instruction following and visual quality using both structural diffs and slide images. Building on this setting, we propose PPTPilot, a structure-aware slide-editing agent that plans semantic edit sequences, routes between high-level programmatic tools and deterministic XML operations for precise control, and verifies outputs through an iterative plan-edit-check loop against task-specific constraints. In our experiments, PPTPilot outperforms strong proprietary agents and frontier VLM systems by over 10 percentage points on compound, layout-sensitive, and cross-slide edits, with particularly large gains in visual fidelity and deck-wide consistency. Despite these improvements, existing agents still underperform on long-horizon, document-scale tasks in PPTArena, highlighting the remaining challenges in reliable PPT editing.

Authors:Zeqi Xiao, Yiwei Zhao, Lingxiao Li, Yushi Lan, Yu Ning, Rahul Garg, Roshni Cooper, Mohammad H. Taghavi, Xingang Pan
Title: Video4Spatial: Towards Visuospatial Intelligence with Context-Guided Video Generation
Abstract:
We investigate whether video generative models can exhibit visuospatial intelligence, a capability central to human cognition, using only visual data. To this end, we present Video4Spatial, a framework showing that video diffusion models conditioned solely on video-based scene context can perform complex spatial tasks. We validate on two tasks: scene navigation - following camera-pose instructions while remaining consistent with 3D geometry of the scene, and object grounding - which requires semantic localization, instruction following, and planning. Both tasks use video-only inputs, without auxiliary modalities such as depth or poses. With simple yet effective design choices in the framework and data curation, Video4Spatial demonstrates strong spatial understanding from video context: it plans navigation and grounds target objects end-to-end, follows camera-pose instructions while maintaining spatial consistency, and generalizes to long contexts and out-of-domain environments. Taken together, these results advance video generative models toward general visuospatial reasoning.

Authors:Mengchen Zhang, Qi Chen, Tong Wu, Zihan Liu, Dahua Lin
Title: ViSAudio: End-to-End Video-Driven Binaural Spatial Audio Generation
Abstract:
Despite progress in video-to-audio generation, the field focuses predominantly on mono output, lacking spatial immersion. Existing binaural approaches remain constrained by a two-stage pipeline that first generates mono audio and then performs spatialization, often resulting in error accumulation and spatio-temporal inconsistencies. To address this limitation, we introduce the task of end-to-end binaural spatial audio generation directly from silent video. To support this task, we present the BiAudio dataset, comprising approximately 97K video-binaural audio pairs spanning diverse real-world scenes and camera rotation trajectories, constructed through a semi-automated pipeline. Furthermore, we propose ViSAudio, an end-to-end framework that employs conditional flow matching with a dual-branch audio generation architecture, where two dedicated branches model the audio latent flows. Integrated with a conditional spacetime module, it balances consistency between channels while preserving distinctive spatial characteristics, ensuring precise spatio-temporal alignment between audio and the input video. Comprehensive experiments demonstrate that ViSAudio outperforms existing state-of-the-art methods across both objective metrics and subjective evaluations, generating high-quality binaural audio with spatial immersion that adapts effectively to viewpoint changes, sound-source motion, and diverse acoustic environments. Project website: https://kszpxxzmc.github.io/ViSAudio-project.

Authors:Sagi Polaczek, Or Patashnik, Ali Mahdavi-Amiri, Daniel Cohen-Or
Title: In-Context Sync-LoRA for Portrait Video Editing
Abstract:
Editing portrait videos is a challenging task that requires flexible yet precise control over a wide range of modifications, such as appearance changes, expression edits, or the addition of objects. The key difficulty lies in preserving the subject's original temporal behavior, demanding that every edited frame remains precisely synchronized with the corresponding source frame. We present Sync-LoRA, a method for editing portrait videos that achieves high-quality visual modifications while maintaining frame-accurate synchronization and identity consistency. Our approach uses an image-to-video diffusion model, where the edit is defined by modifying the first frame and then propagated to the entire sequence. To enable accurate synchronization, we train an in-context LoRA using paired videos that depict identical motion trajectories but differ in appearance. These pairs are automatically generated and curated through a synchronization-based filtering process that selects only the most temporally aligned examples for training. This training setup teaches the model to combine motion cues from the source video with the visual changes introduced in the edited first frame. Trained on a compact, highly curated set of synchronized human portraits, Sync-LoRA generalizes to unseen identities and diverse edits (e.g., modifying appearance, adding objects, or changing backgrounds), robustly handling variations in pose and expression. Our results demonstrate high visual fidelity and strong temporal coherence, achieving a robust balance between edit fidelity and precise motion preservation.

Authors:Lanxiang Hu, Abhilash Shankarampeta, Yixin Huang, Zilin Dai, Haoyang Yu, Yujie Zhao, Haoqiang Kang, Daniel Zhao, Tajana Rosing, Hao Zhang
Title: Benchmarking Scientific Understanding and Reasoning for Video Generation using VideoScience-Bench
Abstract:
The next frontier for video generation lies in developing models capable of zero-shot reasoning, where understanding real-world scientific laws is crucial for accurate physical outcome modeling under diverse conditions. However, existing video benchmarks are physical commonsense-based, offering limited insight into video models' scientific reasoning capability. We introduce VideoScience-Bench, a benchmark designed to evaluate undergraduate-level scientific understanding in video models. Each prompt encodes a composite scientific scenario that requires understanding and reasoning across multiple scientific concepts to generate the correct phenomenon. The benchmark comprises 200 carefully curated prompts spanning 14 topics and 103 concepts in physics and chemistry. We conduct expert-annotated evaluations across seven state-of-the-art video models in T2V and I2V settings along five dimensions: Prompt Consistency, Phenomenon Congruency, Correct Dynamism, Immutability, and Spatio-Temporal Continuity. Using a VLM-as-a-Judge to assess video generations, we observe strong correlation with human assessments. To the best of our knowledge, VideoScience-Bench is the first benchmark to evaluate video models not only as generators but also as reasoners, requiring their generations to demonstrate scientific understanding consistent with expected physical and chemical phenomena. Our data and evaluation code are available at: \href{https://github.com/hao-ai-lab/VideoScience}{github.com/hao-ai-lab/VideoScience}.

Authors:Yifan Li, Yingda Yin, Lingting Zhu, Weikai Chen, Shengju Qian, Xin Wang, Yanwei Fu
Title: ReVSeg: Incentivizing the Reasoning Chain for Video Segmentation with Reinforcement Learning
Abstract:
Reasoning-centric video object segmentation is an inherently complex task: the query often refers to dynamics, causality, and temporal interactions, rather than static appearances. Yet existing solutions generally collapse these factors into simplified reasoning with latent embeddings, rendering the reasoning chain opaque and essentially intractable. We therefore adopt an explicit decomposition perspective and introduce ReVSeg, which executes reasoning as sequential decisions in the native interface of pretrained vision language models (VLMs). Rather than folding all reasoning into a single-step prediction, ReVSeg executes three explicit operations -- semantics interpretation, temporal evidence selection, and spatial grounding -- aligning pretrained capabilities. We further employ reinforcement learning to optimize the multi-step reasoning chain, enabling the model to self-refine its decision quality from outcome-driven signals. Experimental results demonstrate that ReVSeg attains state-of-the-art performances on standard video object segmentation benchmarks and yields interpretable reasoning trajectories. Project page is available at https://clementine24.github.io/ReVSeg/ .

Authors:Yifan Zhou, Takehiko Ohkawa, Guwenxiao Zhou, Kanoko Goto, Takumi Hirose, Yusuke Sekikawa, Nakamasa Inoue
Title: DF-Mamba: Deformable State Space Modeling for 3D Hand Pose Estimation in Interactions
Abstract:
Modeling daily hand interactions often struggles with severe occlusions, such as when two hands overlap, which highlights the need for robust feature learning in 3D hand pose estimation (HPE). To handle such occluded hand images, it is vital to effectively learn the relationship between local image features (e.g., for occluded joints) and global context (e.g., cues from inter-joints, inter-hands, or the scene). However, most current 3D HPE methods still rely on ResNet for feature extraction, and such CNN's inductive bias may not be optimal for 3D HPE due to its limited capability to model the global context. To address this limitation, we propose an effective and efficient framework for visual feature extraction in 3D HPE using recent state space modeling (i.e., Mamba), dubbed Deformable Mamba (DF-Mamba). DF-Mamba is designed to capture global context cues beyond standard convolution through Mamba's selective state modeling and the proposed deformable state scanning. Specifically, for local features after convolution, our deformable scanning aggregates these features within an image while selectively preserving useful cues that represent the global context. This approach significantly improves the accuracy of structured 3D HPE, with comparable inference speed to ResNet-50. Our experiments involve extensive evaluations on five divergent datasets including single-hand and two-hand scenarios, hand-only and hand-object interactions, as well as RGB and depth-based estimation. DF-Mamba outperforms the latest image backbones, including VMamba and Spatial-Mamba, on all datasets and achieves state-of-the-art performance.

Authors:Tianyi Zhang, Xiangyuan Xue, Lingyan Ruan, Shiya Fu, Feng Xia, Simon D'Alfonso, Vassilis Kostakos, Ting Dang, Hong Jia
Title: Menta: A Small Language Model for On-Device Mental Health Prediction
Abstract:
Mental health conditions affect hundreds of millions globally, yet early detection remains limited. While large language models (LLMs) have shown promise in mental health applications, their size and computational demands hinder practical deployment. Small language models (SLMs) offer a lightweight alternative, but their use for social media--based mental health prediction remains largely underexplored. In this study, we introduce Menta, the first optimized SLM fine-tuned specifically for multi-task mental health prediction from social media data. Menta is jointly trained across six classification tasks using a LoRA-based framework, a cross-dataset strategy, and a balanced accuracy--oriented loss. Evaluated against nine state-of-the-art SLM baselines, Menta achieves an average improvement of 15.2\% across tasks covering depression, stress, and suicidality compared with the best-performing non--fine-tuned SLMs. It also achieves higher accuracy on depression and stress classification tasks compared to 13B-parameter LLMs, while being approximately 3.25x smaller. Moreover, we demonstrate real-time, on-device deployment of Menta on an iPhone 15 Pro Max, requiring only approximately 3GB RAM. Supported by a comprehensive benchmark against existing SLMs and LLMs, Menta highlights the potential for scalable, privacy-preserving mental health monitoring. Code is available at: https://xxue752-nz.github.io/menta-project/

Authors:Yubo Hou, Mohamed Ragab, Min Wu, Chee-Keong Kwoh, Xiaoli Li, Zhenghua Chen
Title: Target-specific Adaptation and Consistent Degradation Alignment for Cross-Domain Remaining Useful Life Prediction
Abstract:
Accurate prediction of the Remaining Useful Life (RUL) in machinery can significantly diminish maintenance costs, enhance equipment up-time, and mitigate adverse outcomes. Data-driven RUL prediction techniques have demonstrated commendable performance. However, their efficacy often relies on the assumption that training and testing data are drawn from the same distribution or domain, which does not hold in real industrial settings. To mitigate this domain discrepancy issue, prior adversarial domain adaptation methods focused on deriving domain-invariant features. Nevertheless, they overlook target-specific information and inconsistency characteristics pertinent to the degradation stages, resulting in suboptimal performance. To tackle these issues, we propose a novel domain adaptation approach for cross-domain RUL prediction named TACDA. Specifically, we propose a target domain reconstruction strategy within the adversarial adaptation process, thereby retaining target-specific information while learning domain-invariant features. Furthermore, we develop a novel clustering and pairing strategy for consistent alignment between similar degradation stages. Through extensive experiments, our results demonstrate the remarkable performance of our proposed TACDA method, surpassing state-of-the-art approaches with regard to two different evaluation metrics. Our code is available at https://github.com/keyplay/TACDA.

Authors:Junyi Hou, Andre Lin Huikai, Nuo Chen, Yiwei Gong, Bingsheng He
Title: PaperDebugger: A Plugin-Based Multi-Agent System for In-Editor Academic Writing, Review, and Editing
Abstract:
Large language models are increasingly embedded into academic writing workflows, yet existing assistants remain external to the editor, preventing deep interaction with document state, structure, and revision history. This separation makes it impossible to support agentic, context-aware operations directly within LaTeX editors such as Overleaf. We present PaperDebugger, an in-editor, multi-agent, and plugin-based academic writing assistant that brings LLM-driven reasoning directly into the writing environment. Enabling such in-editor interaction is technically non-trivial: it requires reliable bidirectional synchronization with the editor, fine-grained version control and patching, secure state management, multi-agent scheduling, and extensible communication with external tools. PaperDebugger addresses these challenges through a Chrome-approved extension, a Kubernetes-native orchestration layer, and a Model Context Protocol (MCP) toolchain that integrates literature search, reference lookup, document scoring, and revision pipelines. Our demo showcases a fully integrated workflow, including localized edits, structured reviews, parallel agent execution, and diff-based updates, encapsulated within a minimal-intrusion user interface (UI). Early aggregated analytics demonstrate active user engagement and validate the practicality of an editor-native, agentic writing assistant. More details about this demo and video could be found at https://github.com/PaperDebugger/PaperDebugger.

Authors:Yuxiang He, Jian Zhao, Yuchen Yuan, Tianle Zhang, Wei Cai, Haojie Cheng, Ziyan Shi, Ming Zhu, Haichuan Tang, Chi Zhang, Xuelong Li
Title: Aetheria: A multimodal interpretable content safety framework based on multi-agent debate and collaboration
Abstract:
The exponential growth of digital content presents significant challenges for content safety. Current moderation systems, often based on single models or fixed pipelines, exhibit limitations in identifying implicit risks and providing interpretable judgment processes. To address these issues, we propose Aetheria, a multimodal interpretable content safety framework based on multi-agent debate and collaboration.Employing a collaborative architecture of five core agents, Aetheria conducts in-depth analysis and adjudication of multimodal content through a dynamic, mutually persuasive debate mechanism, which is grounded by RAG-based knowledge retrieval.Comprehensive experiments on our proposed benchmark (AIR-Bench) validate that Aetheria not only generates detailed and traceable audit reports but also demonstrates significant advantages over baselines in overall content safety accuracy, especially in the identification of implicit risks. This framework establishes a transparent and interpretable paradigm, significantly advancing the field of trustworthy AI content moderation.

Authors:Qianhan Feng, Zhongzhen Huang, Yakun Zhu, Xiaofan Zhang, Qi Dou
Title: UCAgents: Unidirectional Convergence for Visual Evidence Anchored Multi-Agent Medical Decision-Making
Abstract:
Vision-Language Models (VLMs) show promise in medical diagnosis, yet suffer from reasoning detachment, where linguistically fluent explanations drift from verifiable image evidence, undermining clinical trust. Recent multi-agent frameworks simulate Multidisciplinary Team (MDT) debates to mitigate single-model bias, but open-ended discussions amplify textual noise and computational cost while failing to anchor reasoning to visual evidence, the cornerstone of medical decision-making. We propose UCAgents, a hierarchical multi-agent framework enforcing unidirectional convergence through structured evidence auditing. Inspired by clinical workflows, UCAgents forbids position changes and limits agent interactions to targeted evidence verification, suppressing rhetorical drift while amplifying visual signal extraction. In UCAgents, a one-round inquiry discussion is introduced to uncover potential risks of visual-textual misalignment. This design jointly constrains visual ambiguity and textual noise, a dual-noise bottleneck that we formalize via information theory. Extensive experiments on four medical VQA benchmarks show UCAgents achieves superior accuracy (71.3% on PathVQA, +6.0% over state-of-the-art) with 87.7% lower token cost, the evaluation results further confirm that UCAgents strikes a balance between uncovering more visual evidence and avoiding confusing textual interference. These results demonstrate that UCAgents exhibits both diagnostic reliability and computational efficiency critical for real-world clinical deployment. Code is available at https://github.com/fqhank/UCAgents.

Authors:Phuc Pham, Nhu Pham, Ngoc Quoc Ly
Title: Boosting Medical Vision-Language Pretraining via Momentum Self-Distillation under Limited Computing Resources
Abstract:
In medical healthcare, obtaining detailed annotations is challenging, highlighting the need for robust Vision-Language Models (VLMs). Pretrained VLMs enable fine-tuning on small datasets or zero-shot inference, achieving performance comparable to task-specific models. Contrastive learning (CL) is a key paradigm for training VLMs but inherently requires large batch sizes for effective learning, making it computationally demanding and often limited to well-resourced institutions. Moreover, with limited data in healthcare, it is important to prioritize knowledge extraction from both data and models during training to improve performance. Therefore, we focus on leveraging the momentum method combined with distillation to simultaneously address computational efficiency and knowledge exploitation. Our contributions can be summarized as follows: (1) leveraging momentum self-distillation to enhance multimodal learning, and (2) integrating momentum mechanisms with gradient accumulation to enlarge the effective batch size without increasing resource consumption. Our method attains competitive performance with state-of-the-art (SOTA) approaches in zero-shot classification, while providing a substantial boost in the few-shot adaption, achieving over 90% AUC-ROC and improving retrieval tasks by 2-3%. Importantly, our method achieves high training efficiency with a single GPU while maintaining reasonable training time. Our approach aims to advance efficient multimodal learning by reducing resource requirements while improving performance over SOTA methods. The implementation of our method is available at https://github.com/phphuc612/MSD .

Authors:Shwai He, Chaorui Deng, Ang Li, Shen Yan
Title: Understanding and Harnessing Sparsity in Unified Multimodal Models
Abstract:
Large multimodal models have achieved remarkable progress in both understanding and generation. Recent efforts pursue unified multimodal models that integrate heterogeneous components to support both capabilities within a single framework. However, such unification introduces inference inefficiencies, e.g., specific tasks or samples may not require the full knowledge or capacity of the unified model. Yet, a systematic understanding of how these inefficiencies manifest across different components remains limited. In this work, we first conduct a systematic analysis of unified multimodal model components using training-free pruning as a probing methodology, considering both depth pruning and width reduction. Our study reveals that the understanding component exhibits notable compressibility in both understanding and generation tasks, which is more pronounced in the latter. In contrast, the generation components are highly sensitive to compression, with performance deteriorating sharply even under moderate compression ratios. To address this limitation, we propose the Mixture-of-Experts (MoE) Adaptation, inspired by the dynamic activation patterns observed across different samples. This approach partitions the generation module into multiple experts and enables sparse activation to restore generation quality. We validate the effectiveness of sparse activation through expert-frozen tuning and further demonstrate that a fully trainable adaptation delivers additional gains. As a result, the adapted BAGEL model achieves performance comparable to the full model while activating only about half of its parameters. The code is released at \href{https://github.com/Shwai-He/SparseUnifiedModel}{this link}.

Authors:Qiyao Xue, Weichen Liu, Shiqi Wang, Haoming Wang, Yuyang Wu, Wei Gao
Title: Reasoning Path and Latent State Analysis for Multi-view Visual Spatial Reasoning: A Cognitive Science Perspective
Abstract:
Spatial reasoning is a core aspect of human intelligence that allows perception, inference and planning in 3D environments. However, current vision-language models (VLMs) struggle to maintain geometric coherence and cross-view consistency for spatial reasoning in multi-view settings. We attribute this gap to the lack of fine-grained benchmarks that isolate multi-view reasoning from single-view perception and temporal factors. To address this, we present ReMindView-Bench, a cognitively grounded benchmark for evaluating how VLMs construct, align and maintain spatial mental models across complementary viewpoints. ReMindView-Bench systematically varies viewpoint spatial pattern and query type to probe key factors of spatial cognition. Evaluations of 15 current VLMs reveals consistent failures in cross-view alignment and perspective-taking in multi-view spatial reasoning, motivating deeper analysis on the reasoning process. Explicit phase-wise analysis using LLM-as-a-judge and self-consistency prompting shows that VLMs perform well on in-frame perception but degrade sharply when integrating information across views. Implicit analysis, including linear probing and entropy dynamics, further show progressive loss of task-relevant information and uncertainty separation between correct and incorrect trajectories. These results provide a cognitively grounded diagnosis of VLM spatial reasoning and reveal how multi-view spatial mental models are formed, degraded and destabilized across reasoning phases. The ReMindView-Bench benchmark is available at https://huggingface.co/datasets/Xue0823/ReMindView-Bench, and the source codes of benchmark construction and VLM reasoning analysis are available at https://github.com/pittisl/ReMindView-Bench.

Authors:Jeremy Andrew Irvin, Jiaqi Han, Zikui Wang, Abdulaziz Alharbi, Yufei Zhao, Nomin-Erdene Bayarsaikhan, Daniele Visioni, Andrew Y. Ng, Duncan Watson-Parris
Title: Spatiotemporal Pyramid Flow Matching for Climate Emulation
Abstract:
Generative models have the potential to transform the way we emulate Earth's changing climate. Previous generative approaches rely on weather-scale autoregression for climate emulation, but this is inherently slow for long climate horizons and has yet to demonstrate stable rollouts under nonstationary forcings. Here, we introduce Spatiotemporal Pyramid Flows (SPF), a new class of flow matching approaches that model data hierarchically across spatial and temporal scales. Inspired by cascaded video models, SPF partitions the generative trajectory into a spatiotemporal pyramid, progressively increasing spatial resolution to reduce computation and coupling each stage with an associated timescale to enable direct sampling at any temporal level in the pyramid. This design, together with conditioning each stage on prescribed physical forcings (e.g., greenhouse gases or aerosols), enables efficient, parallel climate emulation at multiple timescales. On ClimateBench, SPF outperforms strong flow matching baselines and pre-trained models at yearly and monthly timescales while offering fast sampling, especially at coarser temporal levels. To scale SPF, we curate ClimateSuite, the largest collection of Earth system simulations to date, comprising over 33,000 simulation-years across ten climate models and the first dataset to include simulations of climate interventions. We find that the scaled SPF model demonstrates good generalization to held-out scenarios across climate models. Together, SPF and ClimateSuite provide a foundation for accurate, efficient, probabilistic climate emulation across temporal scales and realistic future scenarios. Data and code is publicly available at https://github.com/stanfordmlgroup/spf .

Authors:Lewen Yan, Jilin Mei, Tianyi Zhou, Lige Huang, Jie Zhang, Dongrui Liu, Jing Shao
Title: TradeTrap: Are LLM-based Trading Agents Truly Reliable and Faithful?
Abstract:
LLM-based trading agents are increasingly deployed in real-world financial markets to perform autonomous analysis and execution. However, their reliability and robustness under adversarial or faulty conditions remain largely unexamined, despite operating in high-risk, irreversible financial environments. We propose TradeTrap, a unified evaluation framework for systematically stress-testing both adaptive and procedural autonomous trading agents. TradeTrap targets four core components of autonomous trading agents: market intelligence, strategy formulation, portfolio and ledger handling, and trade execution, and evaluates their robustness under controlled system-level perturbations. All evaluations are conducted in a closed-loop historical backtesting setting on real US equity market data with identical initial conditions, enabling fair and reproducible comparisons across agents and attacks. Extensive experiments show that small perturbations at a single component can propagate through the agent decision loop and induce extreme concentration, runaway exposure, and large portfolio drawdowns across both agent types, demonstrating that current autonomous trading agents can be systematically misled at the system level. Our code is available at https://github.com/Yanlewen/TradeTrap.

Authors:Jifeng Li, Arnav Grover, Abraham Alpuerto, Yupeng Cao, Xiao-Yang Liu
Title: Orchestration Framework for Financial Agents: From Algorithmic Trading to Agentic Trading
Abstract:
The financial market is a mission-critical playground for AI agents due to its temporal dynamics and low signal-to-noise ratio. Building an effective algorithmic trading system may require a professional team to develop and test over the years. In this paper, we propose an orchestration framework for financial agents, which aims to democratize financial intelligence to the general public. We map each component of the traditional algorithmic trading system to agents, including planner, orchestrator, alpha agents, risk agents, portfolio agents, backtest agents, execution agents, audit agents, and memory agent. We present two in-house trading examples. For the stock trading task (hourly data from 04/2024 to 12/2024), our approach achieved a return of $20.42\%$, a Sharpe ratio of 2.63, and a maximum drawdown of $-3.59\%$, while the S&P 500 index yielded a return of $15.97\%$. For the BTC trading task (minute data from 27/07/2025 to 13/08/2025), our approach achieved a return of $8.39\%$, a Sharpe ratio of $0.38$, and a maximum drawdown of $-2.80\%$, whereas the BTC price increased by $3.80\%$. Our code is available on \href{https://github.com/Open-Finance-Lab/AgenticTrading}{GitHub}.

Authors:Yuxuan Shu, Peter H. Charlton, Fahim Kawsar, Jussi Hernesniemi, Mohammad Malekzadeh
Title: CLEF: Clinically-Guided Contrastive Learning for Electrocardiogram Foundation Models
Abstract:
The electrocardiogram (ECG) is a key diagnostic tool in cardiovascular health. Single-lead ECG recording is integrated into both clinical-grade and consumer wearables. While self-supervised pretraining of foundation models on unlabeled ECGs improves diagnostic performance, existing approaches do not incorporate domain knowledge from clinical metadata. We introduce a novel contrastive learning approach that utilizes an established clinical risk score to adaptively weight negative pairs: clinically-guided contrastive learning. It aligns the similarities of ECG embeddings with clinically meaningful differences between subjects, with an explicit mechanism to handle missing metadata. On 12-lead ECGs from 161K patients in the MIMIC-IV dataset, we pretrain single-lead ECG foundation models at three scales, collectively called CLEF, using only routinely collected metadata without requiring per-sample ECG annotations. We evaluate CLEF on 18 clinical classification and regression tasks across 7 held-out datasets, and benchmark against 5 foundation model baselines and 3 self-supervised algorithms. When pretrained on 12-lead ECG data and tested on lead-I data, CLEF outperforms self-supervised foundation model baselines: the medium-sized CLEF achieves average AUROC improvements of at least 2.6% in classification and average reductions in MAEs of at least 3.2% in regression. Comparing with existing self-supervised learning algorithms, CLEF improves the average AUROC by at least 1.8%. Moreover, when pretrained only on lead-I data for classification tasks, CLEF performs comparably to the state-of-the-art ECGFounder, which was trained in a supervised manner. Overall, CLEF enables more accurate and scalable single-lead ECG analysis, advancing remote health monitoring. Code and pretrained CLEF models are available at: github.com/Nokia-Bell-Labs/ecg-foundation-model.

Authors:Li Qianyang, Zhang Xingjun, Wang Shaoxun, Wei Jia
Title: DPWMixer: Dual-Path Wavelet Mixer for Long-Term Time Series Forecasting
Abstract:
Long-term time series forecasting (LTSF) is a critical task in computational intelligence. While Transformer-based models effectively capture long-range dependencies, they often suffer from quadratic complexity and overfitting due to data sparsity. Conversely, efficient linear models struggle to depict complex non-linear local dynamics. Furthermore, existing multi-scale frameworks typically rely on average pooling, which acts as a non-ideal low-pass filter, leading to spectral aliasing and the irreversible loss of high-frequency transients. In response, this paper proposes DPWMixer, a computationally efficient Dual-Path architecture. The framework is built upon a Lossless Haar Wavelet Pyramid that replaces traditional pooling, utilizing orthogonal decomposition to explicitly disentangle trends and local fluctuations without information loss. To process these components, we design a Dual-Path Trend Mixer that integrates a global linear mapping for macro-trend anchoring and a flexible patch-based MLP-Mixer for micro-dynamic evolution. Finally, An adaptive multi-scale fusion module then integrates predictions from diverse scales, weighted by channel stationarity to optimize synthesis. Extensive experiments on eight public benchmarks demonstrate that our method achieves a consistent improvement over state-of-the-art baselines. The code is available at https://github.com/hit636/DPWMixer.

Authors:Issa Oe, Keiichiro Yamamura, Hiroki Ishikura, Ryo Hamahira, Katsuki Fujisawa
Title: Superpixel Attack: Enhancing Black-box Adversarial Attack with Image-driven Division Areas
Abstract:
Deep learning models are used in safety-critical tasks such as automated driving and face recognition. However, small perturbations in the model input can significantly change the predictions. Adversarial attacks are used to identify small perturbations that can lead to misclassifications. More powerful black-box adversarial attacks are required to develop more effective defenses. A promising approach to black-box adversarial attacks is to repeat the process of extracting a specific image area and changing the perturbations added to it. Existing attacks adopt simple rectangles as the areas where perturbations are changed in a single iteration. We propose applying superpixels instead, which achieve a good balance between color variance and compactness. We also propose a new search method, versatile search, and a novel attack method, Superpixel Attack, which applies superpixels and performs versatile search. Superpixel Attack improves attack success rates by an average of 2.10% compared with existing attacks. Most models used in this study are robust against adversarial attacks, and this improvement is significant for black-box adversarial attacks. The code is avilable at https://github.com/oe1307/SuperpixelAttack.git.

Authors:Shaowei Liu, David Yifan Yao, Saurabh Gupta, Shenlong Wang
Title: Visual Sync: Multi-Camera Synchronization via Cross-View Object Motion
Abstract:
Today, people can easily record memorable moments, ranging from concerts, sports events, lectures, family gatherings, and birthday parties with multiple consumer cameras. However, synchronizing these cross-camera streams remains challenging. Existing methods assume controlled settings, specific targets, manual correction, or costly hardware. We present VisualSync, an optimization framework based on multi-view dynamics that aligns unposed, unsynchronized videos at millisecond accuracy. Our key insight is that any moving 3D point, when co-visible in two cameras, obeys epipolar constraints once properly synchronized. To exploit this, VisualSync leverages off-the-shelf 3D reconstruction, feature matching, and dense tracking to extract tracklets, relative poses, and cross-view correspondences. It then jointly minimizes the epipolar error to estimate each camera's time offset. Experiments on four diverse, challenging datasets show that VisualSync outperforms baseline methods, achieving an median synchronization error below 50 ms.

Authors:Sitao Cheng, Xunjian Yin, Ruiwen Zhou, Yuxuan Li, Xinyi Wang, Liangming Pan, William Yang Wang, Victor Zhong
Title: From Atomic to Composite: Reinforcement Learning Enables Generalization in Complementary Reasoning
Abstract:
The mechanism by which RL contributes to reasoning capabilities-whether it incentivizes the synthesis of new skills or merely amplifies existing behaviors-remains a subject of intense debate. In this work, we investigate this question through the lens of Complementary Reasoning, a complex task that requires integrating internal parametric knowledge with external contextual information. Using a controlled synthetic dataset of human biographies, we strictly decouple this ability into two atomic skills: Parametric Reasoning (relying on internal knowledge) and Contextual Reasoning (depending on external information). To rigorously assess capability boundaries, we evaluate generalization across three distinct levels of difficulty: I.I.D., Composition, and Zero-shot settings. We find that while SFT is sufficient for in-distribution performance, it struggles with O.O.D. generalization, particularly in Zero-shot settings where relational combinations are novel. Crucially, we identify the SFT Generalization Paradox: Models supervised solely on the composite task achieve near-perfect in-distribution accuracy but collapse on out-of-distribution generalization, indicating their reliance on rote memorization of path shortcuts. In contrast, we find that RL acts as a reasoning synthesizer rather than a probability amplifier. However, we uncover a strict atomic prerequisite: RL can only synthesize these complex strategies if the base model has first mastered the independent atomic skills (Parametric and Contextual) via SFT. These findings challenge the view of RL as a mere amplifier, suggesting that given sufficient atomic foundations, RL can actively synthesize complex reasoning strategies from learned primitives without explicit supervision on such complex strategies. This indicates that decoupled atomic training followed by RL offers a scalable path to generalization for complex reasoning tasks.

Authors:Hrishikesh Terdalkar, Kirtan Bhojani, Aryan Dongare, Omm Aditya Behera
Title: BHRAM-IL: A Benchmark for Hallucination Recognition and Assessment in Multiple Indian Languages
Abstract:
Large language models (LLMs) are increasingly deployed in multilingual applications but often generate plausible yet incorrect or misleading outputs, known as hallucinations. While hallucination detection has been studied extensively in English, under-resourced Indian languages remain largely unexplored. We present BHRAM-IL, a benchmark for hallucination recognition and assessment in multiple Indian languages, covering Hindi, Gujarati, Marathi, Odia, along with English. The benchmark comprises 36,047 curated questions across nine categories spanning factual, numerical, reasoning, and linguistic tasks. We evaluate 14 state-of-the-art multilingual LLMs on a benchmark subset of 10,265 questions, analyzing cross-lingual and factual hallucinations across languages, models, scales, categories, and domains using category-specific metrics normalized to (0,1) range. Aggregation over all categories and models yields a primary score of 0.23 and a language-corrected fuzzy score of 0.385, demonstrating the usefulness of BHRAM-IL for hallucination-focused evaluation. The dataset, and the code for generation and evaluation are available on GitHub (https://github.com/sambhashana/BHRAM-IL/) and HuggingFace (https://huggingface.co/datasets/sambhashana/BHRAM-IL/) to support future research in multilingual hallucination detection and mitigation.

Authors:Saba Kublashvili
Title: Probabilistic Neuro-Symbolic Reasoning for Sparse Historical Data: A Framework Integrating Bayesian Inference, Causal Models, and Game-Theoretic Allocation
Abstract:
Modeling historical events poses fundamental challenges for machine learning: extreme data scarcity (N << 100), heterogeneous and noisy measurements, missing counterfactuals, and the requirement for human interpretable explanations. We present HistoricalML, a probabilistic neuro-symbolic framework that addresses these challenges through principled integration of (1) Bayesian uncertainty quantification to separate epistemic from aleatoric uncertainty, (2) structural causal models for counterfactual reasoning under confounding, (3) cooperative game theory (Shapley values) for fair allocation modeling, and (4) attention based neural architectures for context dependent factor weighting. We provide theoretical analysis showing that our approach achieves consistent estimation in the sparse data regime when strong priors from domain knowledge are available, and that Shapley based allocation satisfies axiomatic fairness guarantees that pure regression approaches cannot provide. We instantiate the framework on two historical case studies: the 19th century partition of Africa (N = 7 colonial powers) and the Second Punic War (N = 2 factions). Our model identifies Germany's +107.9 percent discrepancy as a quantifiable structural tension preceding World War I, with tension factor 36.43 and 0.79 naval arms race correlation. For the Punic Wars, Monte Carlo battle simulations achieve a 57.3 percent win probability for Carthage at Cannae and 57.8 percent for Rome at Zama, aligning with historical outcomes. Counterfactual analysis reveals that Carthaginian political support (support score 6.4 vs Napoleon's 7.1), rather than military capability, was the decisive factor.

Authors:Dengyun Peng, Qiguang Chen, Bofei Liu, Jiannan Guan, Libo Qin, Zheng Yan, Jinhao Liu, Jianshu Zhang, Wanxiang Che
Title: Learning the Boundary of Solvability: Aligning LLMs to Detect Unsolvable Problems
Abstract:
Ensuring LLM reliability requires not only solving complex problems but also recognizing when a problem is unsolvable. Current models often struggle to distinguish objective unsolvability (inherent contradictions in the problem) from subjective capability limitations (problems beyond the model's competence), which leads to hallucinations and overconfidence. To address this, we propose UnsolvableQA and UnsolvableRL to solve feasible problems, detect inherent contradictions, and prudently refuse tasks beyond capability. Specifically, we construct UnsolvableQA, a dataset of paired solvable and unsolvable instances derived via a dual-track methodology: programmatic generation for logic puzzles and a novel "Reverse Construction" method that injects contradictions into valid reasoning chains for mathematics. Building on this dataset, we introduce UnsolvableRL, a reinforcement learning framework with three reward components jointly accounting for accuracy, unsolvability, and difficulty. Empirical results show that our approach achieves near-perfect unsolvability detection while also improving accuracy on solvable tasks. Crucially, we identify Capability Collapse, demonstrating that explicit exposure to unsolvable data is indispensable for preventing models from becoming systematically overconfident. Our code and data are available at https://github.com/sfasfaffa/unsolvableQA.

Authors:Sandro Andric
Title: Do Large Language Models Walk Their Talk? Measuring the Gap Between Implicit Associations, Self-Report, and Behavioral Altruism
Abstract:
We investigate whether Large Language Models (LLMs) exhibit altruistic tendencies, and critically, whether their implicit associations and self-reports predict actual altruistic behavior. Using a multi-method approach inspired by human social psychology, we tested 24 frontier LLMs across three paradigms: (1) an Implicit Association Test (IAT) measuring implicit altruism bias, (2) a forced binary choice task measuring behavioral altruism, and (3) a self-assessment scale measuring explicit altruism beliefs. Our key findings are: (1) All models show strong implicit pro-altruism bias (mean IAT = 0.87, p < .0001), confirming models "know" altruism is good. (2) Models behave more altruistically than chance (65.6% vs. 50%, p < .0001), but with substantial variation (48-85%). (3) Implicit associations do not predict behavior (r = .22, p = .29). (4) Most critically, models systematically overestimate their own altruism, claiming 77.5% altruism while acting at 65.6% (p < .0001, Cohen's d = 1.08). This "virtue signaling gap" affects 75% of models tested. Based on these findings, we recommend the Calibration Gap (the discrepancy between self-reported and behavioral values) as a standardized alignment metric. Well-calibrated models are more predictable and behaviorally consistent; only 12.5% of models achieve the ideal combination of high prosocial behavior and accurate self-knowledge.

Authors:Thao Thi Phuong Dao, Tan-Cong Nguyen, Nguyen Chi Thanh, Truong Hoang Viet, Trong-Le Do, Mai-Khiem Tran, Minh-Khoi Pham, Trung-Nghia Le, Minh-Triet Tran, Thanh Dinh Le
Title: MasHeNe: A Benchmark for Head and Neck CT Mass Segmentation using Window-Enhanced Mamba with Frequency-Domain Integration
Abstract:
Head and neck masses are space-occupying lesions that can compress the airway and esophagus and may affect nerves and blood vessels. Available public datasets primarily focus on malignant lesions and often overlook other space-occupying conditions in this region. To address this gap, we introduce MasHeNe, an initial dataset of 3,779 contrast-enhanced CT slices that includes both tumors and cysts with pixel-level annotations. We also establish a benchmark using standard segmentation baselines and report common metrics to enable fair comparison. In addition, we propose the Windowing-Enhanced Mamba with Frequency integration (WEMF) model. WEMF applies tri-window enhancement to enrich the input appearance before feature extraction. It further uses multi-frequency attention to fuse information across skip connections within a U-shaped Mamba backbone. On MasHeNe, WEMF attains the best performance among evaluated methods, with a Dice of 70.45%, IoU of 66.89%, NSD of 72.33%, and HD95 of 5.12 mm. This model indicates stable and strong results on this challenging task. MasHeNe provides a benchmark for head-and-neck mass segmentation beyond malignancy-only datasets. The observed error patterns also suggest that this task remains challenging and requires further research. Our dataset and code are available at https://github.com/drthaodao3101/MasHeNe.git.

Authors:Feiyang Xiao, Yichi Zhang, Xigui Li, Yuanye Zhou, Chen Jiang, Xin Guo, Limei Han, Yuxin Li, Fengping Zhu, Yuan Cheng
Title: Rethinking Intracranial Aneurysm Vessel Segmentation: A Perspective from Computational Fluid Dynamics Applications
Abstract:
The precise segmentation of intracranial aneurysms and their parent vessels (IA-Vessel) is a critical step for hemodynamic analyses, which mainly depends on computational fluid dynamics (CFD). However, current segmentation methods predominantly focus on image-based evaluation metrics, often neglecting their practical effectiveness in subsequent CFD applications. To address this deficiency, we present the Intracranial Aneurysm Vessel Segmentation (IAVS) dataset, the first comprehensive, multi-center collection comprising 641 3D MRA images with 587 annotations of aneurysms and IA-Vessels. In addition to image-mask pairs, IAVS dataset includes detailed hemodynamic analysis outcomes, addressing the limitations of existing datasets that neglect topological integrity and CFD applicability. To facilitate the development and evaluation of clinically relevant techniques, we construct two evaluation benchmarks including global localization of aneurysms (Stage I) and fine-grained segmentation of IA-Vessel (Stage II) and develop a simple and effective two-stage framework, which can be used as a out-of-the-box method and strong baseline. For comprehensive evaluation of applicability of segmentation results, we establish a standardized CFD applicability evaluation system that enables the automated and consistent conversion of segmentation masks into CFD models, offering an applicability-focused assessment of segmentation outcomes. The dataset, code, and model will be public available at https://github.com/AbsoluteResonance/IAVS.

Authors:Shinji Mai, Yunpeng Zhai, Ziqian Chen, Cheng Chen, Anni Zou, Shuchang Tao, Zhaoyang Liu, Bolin Ding
Title: CuES: A Curiosity-driven and Environment-grounded Synthesis Framework for Agentic RL
Abstract:
Large language model based agents are increasingly deployed in complex, tool augmented environments. While reinforcement learning provides a principled mechanism for such agents to improve through interaction, its effectiveness critically depends on the availability of structured training tasks. In many realistic settings, however, no such tasks exist a challenge we term task scarcity, which has become a key bottleneck for scaling agentic RL. Existing approaches typically assume predefined task collections, an assumption that fails in novel environments where tool semantics and affordances are initially unknown. To address this limitation, we formalize the problem of Task Generation for Agentic RL, where an agent must learn within a given environment that lacks predefined tasks. We propose CuES, a Curiosity driven and Environment grounded Synthesis framework that autonomously generates diverse, executable, and meaningful tasks directly from the environment structure and affordances, without relying on handcrafted seeds or external corpora. CuES drives exploration through intrinsic curiosity, abstracts interaction patterns into reusable task schemas, and refines them through lightweight top down guidance and memory based quality control. Across three representative environments, AppWorld, BFCL, and WebShop, CuES produces task distributions that match or surpass manually curated datasets in both diversity and executability, yielding substantial downstream policy improvements. These results demonstrate that curiosity driven, environment grounded task generation provides a scalable foundation for agents that not only learn how to act, but also learn what to learn. The code is available at https://github.com/modelscope/AgentEvolver/tree/main/research/CuES.

Authors:Jiahao Yuan, Zhiqing Cui, Hanqing Wang, Yuansheng Gao, Yucheng Zhou, Usman Naseem
Title: Kardia-R1: Unleashing LLMs to Reason toward Understanding and Empathy for Emotional Support via Rubric-as-Judge Reinforcement Learning
Abstract:
As web platforms evolve towards greater personalization and emotional complexity, conversational agents must transcend superficial empathy to demonstrate identity-aware emotional reasoning. However, existing systems face two limitations: (1) reliance on situation-centric datasets lacking persistent user identity, which hampers the capture of personalized affective nuances; and (2) dependence on opaque, coarse reward signals that hinder development of verifiable empathetic reasoning. To address these gaps, we introduce KardiaBench, a large-scale user-grounded benchmark comprising 178,080 QA pairs across 22,080 multi-turn conversations anchored to 671 real-world profiles. The dataset is constructed via a model-in-the-loop pipeline with iterative rubric-guided refinement to ensure psychological plausibility and persona consistency. This progressive empathy pipeline that integrates user comprehension, contextual reasoning, and emotion perception into conversations, followed by iterative critique and rubric-based refinement to ensure psychological plausibility, emotional fidelity, and persona consistency. Building on this, we propose Kardia-R1, a framework that trains models for interpretable, stepwise empathetic cognition. Kardia-R1 leverages Rubric-as-Judge Empathetic Reinforcement Learning (Rubric-ERL), a GRPO-based method that uses explainable, human-aligned rubric rewards to tightly couple user understanding, emotional inference, and supportive response generation. Extensive experiments across four LLM backbones demonstrate that Kardia-R1 consistently outperforms othet methods in emotion accuracy, empathy, relevance, persona consistency, and safety. Our dataset and model will be released at https://github.com/JhCircle/Kardia-R1.

Authors:Edward S. Hu, Jie Wang, Xingfang Yuan, Fiona Luo, Muyao Li, Gaspard Lambrechts, Oleh Rybkin, Dinesh Jayaraman
Title: Real-World Reinforcement Learning of Active Perception Behaviors
Abstract:
A robot's instantaneous sensory observations do not always reveal task-relevant state information. Under such partial observability, optimal behavior typically involves explicitly acting to gain the missing information. Today's standard robot learning techniques struggle to produce such active perception behaviors. We propose a simple real-world robot learning recipe to efficiently train active perception policies. Our approach, asymmetric advantage weighted regression (AAWR), exploits access to "privileged" extra sensors at training time. The privileged sensors enable training high-quality privileged value functions that aid in estimating the advantage of the target policy. Bootstrapping from a small number of potentially suboptimal demonstrations and an easy-to-obtain coarse policy initialization, AAWR quickly acquires active perception behaviors and boosts task performance. In evaluations on 8 manipulation tasks on 3 robots spanning varying degrees of partial observability, AAWR synthesizes reliable active perception behaviors that outperform all prior approaches. When initialized with a "generalist" robot policy that struggles with active perception tasks, AAWR efficiently generates information-gathering behaviors that allow it to operate under severe partial observability for manipulation tasks. Website: https://penn-pal-lab.github.io/aawr/

Authors:Shan Gao, Yanwu Yang
Title: Toward a benchmark for CTR prediction in online advertising: datasets, evaluation protocols and perspectives
Abstract:
This research designs a unified architecture of CTR prediction benchmark (Bench-CTR) platform that offers flexible interfaces with datasets and components of a wide range of CTR prediction models. Moreover, we construct a comprehensive system of evaluation protocols encompassing real-world and synthetic datasets, a taxonomy of metrics, standardized procedures and experimental guidelines for calibrating the performance of CTR prediction models. Furthermore, we implement the proposed benchmark platform and conduct a comparative study to evaluate a wide range of state-of-the-art models from traditional multivariate statistical to modern large language model (LLM)-based approaches on three public datasets and two synthetic datasets. Experimental results reveal that, (1) high-order models largely outperform low-order models, though such advantage varies in terms of metrics and on different datasets; (2) LLM-based models demonstrate a remarkable data efficiency, i.e., achieving the comparable performance to other models while using only 2% of the training data; (3) the performance of CTR prediction models has achieved significant improvements from 2015 to 2016, then reached a stage with slow progress, which is consistent across various datasets. This benchmark is expected to facilitate model development and evaluation and enhance practitioners' understanding of the underlying mechanisms of models in the area of CTR prediction. Code is available at https://github.com/NuriaNinja/Bench-CTR.

Authors:Geigh Zollicoffer, Tanush Chopra, Mingkuan Yan, Xiaoxu Ma, Kenneth Eaton, Mark Riedl
Title: World Model Robustness via Surprise Recognition
Abstract:
AI systems deployed in the real world must contend with distractions and out-of-distribution (OOD) noise that can destabilize their policies and lead to unsafe behavior. While robust training can reduce sensitivity to some forms of noise, it is infeasible to anticipate all possible OOD conditions. To mitigate this issue, we develop an algorithm that leverages a world model's inherent measure of surprise to reduce the impact of noise in world model--based reinforcement learning agents. We introduce both multi-representation and single-representation rejection sampling, enabling robustness to settings with multiple faulty sensors or a single faulty sensor. While the introduction of noise typically degrades agent performance, we show that our techniques preserve performance relative to baselines under varying types and levels of noise across multiple environments within self-driving simulation domains (CARLA and Safety Gymnasium). Furthermore, we demonstrate that our methods enhance the stability of two state-of-the-art world models with markedly different underlying architectures: Cosmos and DreamerV3. Together, these results highlight the robustness of our approach across world modeling domains. We release our code at https://github.com/Bluefin-Tuna/WISER .

Authors:Anantha Padmanaban Krishna Kumar
Title: Parameter Reduction Improves Vision Transformers: A Comparative Study of Sharing and Width Reduction
Abstract:
Although scaling laws and many empirical results suggest that increasing the size of Vision Transformers often improves performance, model accuracy and training behavior are not always monotonically increasing with scale. Focusing on ViT-B/16 trained on ImageNet-1K, we study two simple parameter-reduction strategies applied to the MLP blocks, each removing 32.7\% of the baseline parameters. Our \emph{GroupedMLP} variant shares MLP weights between adjacent transformer blocks and achieves 81.47\% top-1 accuracy while maintaining the baseline computational cost. Our \emph{ShallowMLP} variant halves the MLP hidden dimension and reaches 81.25\% top-1 accuracy with a 38\% increase in inference throughput. Both models outperform the 86.6M-parameter baseline (81.05\%) and exhibit substantially improved training stability, reducing peak-to-final accuracy degradation from 0.47\% to the range 0.03\% to 0.06\%. These results suggest that, for ViT-B/16 on ImageNet-1K with a standard training recipe, the model operates in an overparameterized regime in which MLP capacity can be reduced without harming performance and can even slightly improve it. More broadly, our findings suggest that architectural constraints such as parameter sharing and reduced width may act as useful inductive biases, and highlight the importance of how parameters are allocated when designing Vision Transformers. All code is available at: https://github.com/AnanthaPadmanaban-KrishnaKumar/parameter-efficient-vit-mlps.

Authors:Hetvi Shastri, Pragya Sharma, Walid A. Hanafy, Mani Srivastava, Prashant Shenoy
Title: FMTK: A Modular Toolkit for Composable Time Series Foundation Model Pipelines
Abstract:
Foundation models (FMs) have opened new avenues for machine learning applications due to their ability to adapt to new and unseen tasks with minimal or no further training. Time-series foundation models (TSFMs) -- FMs trained on time-series data -- have shown strong performance on classification, regression, and imputation tasks. Recent pipelines combine TSFMs with task-specific encoders, decoders, and adapters to improve performance; however, assembling such pipelines typically requires ad hoc, model-specific implementations that hinder modularity and reproducibility. We introduce FMTK, an open-source, lightweight and extensible toolkit for constructing and fine-tuning TSFM pipelines via standardized backbone and component abstractions. FMTK enables flexible composition across models and tasks, achieving correctness and performance with an average of seven lines of code. https://github.com/umassos/FMTK

Authors:Jiaming Tang, Yufei Sun, Yilong Zhao, Shang Yang, Yujun Lin, Zhuoyang Zhang, James Hou, Yao Lu, Zhijian Liu, Song Han
Title: VLASH: Real-Time VLAs via Future-State-Aware Asynchronous Inference
Abstract:
Vision-Language-Action models (VLAs) are becoming increasingly capable across diverse robotic tasks. However, their real-world deployment remains slow and inefficient: demonstration videos are often sped up by 5-10x to appear smooth, with noticeable action stalls and delayed reactions to environmental changes. Asynchronous inference offers a promising solution to achieve continuous and low-latency control by enabling robots to execute actions and perform inference simultaneously. However, because the robot and environment continue to evolve during inference, a temporal misalignment arises between the prediction and execution intervals. This leads to significant action instability, while existing methods either degrade accuracy or introduce runtime overhead to mitigate it. We propose VLASH, a general asynchronous inference framework for VLAs that delivers smooth, accurate, and fast reaction control without additional overhead or architectural changes. VLASH estimates the future execution-time state by rolling the robot state forward with the previously generated action chunk, thereby bridging the gap between prediction and execution. Experiments show that VLASH achieves up to 2.03x speedup and reduces reaction latency by up to 17.4x compared to synchronous inference while fully preserving the original accuracy. Moreover, it empowers VLAs to handle fast-reaction, high-precision tasks such as playing ping-pong and playing whack-a-mole, where traditional synchronous inference fails. Code is available at https://github.com/mit-han-lab/vlash

Authors:Param Biyani, Shashank Kirtania, Yasharth Bajpai, Sumit Gulwani, Ashish Tiwari
Title: IndiMathBench: Autoformalizing Mathematical Reasoning Problems with a Human Touch
Abstract:
We introduce IndiMathBench, a human-verified benchmark designed to evaluate mathematical theorem proving, curated using an AI-powered human-assisted pipeline for formalizing natural language problems in Lean. IndiMathBench is composed of 312 formal Lean 4 theorems paired with their corresponding informal problem statements, sourced from Indian Mathematics Olympiads. Through category-based retrieval, iterative compiler feedback, and multi-model ensembles, our pipeline generates candidate formalizations that experts efficiently validate via an interactive dashboard with automated quality summaries. Evaluation across multiple frontier models demonstrates that autoformalization remains challenging, with substantial gaps between syntactic validity and semantic correctness, while theorem proving success rates remain low even with iterative refinement, demonstrating that \benchmark~presents a challenging testbed for mathematical reasoning. IndiMathBench is available at https://github.com/prmbiy/IndiMathBench.

Authors:Ningning Chen, Weicai Ye, Ying Jiang
Title: HBLLM: A Haar-Based Approach for Accurate Structured 1-Bit Quantized LLMs
Abstract:
We introduce HBLLM, a wavelet-enhanced high-fidelity $1$-bit post-training quantization method for Large Language Models (LLMs). By leveraging Haar wavelet transforms to enhance expressive capacity through frequency decomposition, HBLLM significantly improves quantization fidelity while maintaining minimal overhead. This approach features two innovative structure-aware grouping strategies: (1) frequency-aware multi-parameter intra-row grouping and (2) $\ell_2$-norm-based saliency-driven column selection. For non-salient weights, a shared mean is employed across quantization groups within each frequency band to optimize storage efficiency. Experiments conducted on the OPT and LLaMA models demonstrate that HBLLM achieves state-of-the-art performance in $1$-bit quantization, attaining a perplexity of $6.71$ on LLaMA$2$-$13$B with an average weight storage of only $1.08$ bits. Code available at: https://github.com/Yeyke/HBLLM.

Authors:Ke Liu, Shangde Gao, Yichao Fu, Shangqi Gao, Chunhua Shen
Title: Probabilistic Modeling of Multi-rater Medical Image Segmentation for Diversity and Personalization
Abstract:
Medical image segmentation is inherently influenced by data uncertainty, arising from ambiguous boundaries in medical scans and inter-observer variability in diagnosis. To address this challenge, previous works formulated the multi-rater medical image segmentation task, where multiple experts provide separate annotations for each image. However, existing models are typically constrained to either generate diverse segmentation that lacks expert specificity or to produce personalized outputs that merely replicate individual annotators. We propose Probabilistic modeling of multi-rater medical image Segmentation (ProSeg) that simultaneously enables both diversification and personalization. Specifically, we introduce two latent variables to model expert annotation preferences and image boundary ambiguity. Their conditional probabilistic distributions are then obtained through variational inference, allowing segmentation outputs to be generated by sampling from these distributions. Extensive experiments on both the nasopharyngeal carcinoma dataset (NPC) and the lung nodule dataset (LIDC-IDRI) demonstrate that our ProSeg achieves a new state-of-the-art performance, providing segmentation results that are both diverse and expert-personalized. Code can be found in https://github.com/AI4MOL/ProSeg.

Authors:Fanlong Zeng, Wensheng Gan
Title: Graph Data Augmentation with Contrastive Learning on Covariate Distribution Shift
Abstract:
Covariate distribution shift occurs when certain structural features present in the test set are absent from the training set. It is a common type of out-of-distribution (OOD) problem, frequently encountered in real-world graph data with complex structures. Existing research has revealed that most out-of-the-box graph neural networks (GNNs) fail to account for covariate shifts. Furthermore, we observe that existing methods aimed at addressing covariate shifts often fail to fully leverage the rich information contained within the latent space. Motivated by the potential of the latent space, we introduce a new method called MPAIACL for More Powerful Adversarial Invariant Augmentation using Contrastive Learning. MPAIACL leverages contrastive learning to unlock the full potential of vector representations by harnessing their intrinsic information. Through extensive experiments, MPAIACL demonstrates its robust generalization and effectiveness, as it performs well compared with other baselines across various public OOD datasets. The code is publicly available at https://github.com/flzeng1/MPAIACL.

Authors:Dong In Lee, Hyungjun Doh, Seunggeun Chi, Runlin Duan, Sangpil Kim, Karthik Ramani
Title: Dynamic-eDiTor: Training-Free Text-Driven 4D Scene Editing with Multimodal Diffusion Transformer
Abstract:
Recent progress in 4D representations, such as Dynamic NeRF and 4D Gaussian Splatting (4DGS), has enabled dynamic 4D scene reconstruction. However, text-driven 4D scene editing remains under-explored due to the challenge of ensuring both multi-view and temporal consistency across space and time during editing. Existing studies rely on 2D diffusion models that edit frames independently, often causing motion distortion, geometric drift, and incomplete editing. We introduce Dynamic-eDiTor, a training-free text-driven 4D editing framework leveraging Multimodal Diffusion Transformer (MM-DiT) and 4DGS. This mechanism consists of Spatio-Temporal Sub-Grid Attention (STGA) for locally consistent cross-view and temporal fusion, and Context Token Propagation (CTP) for global propagation via token inheritance and optical-flow-guided token replacement. Together, these components allow Dynamic-eDiTor to perform seamless, globally consistent multi-view video without additional training and directly optimize pre-trained source 4DGS. Extensive experiments on multi-view video dataset DyNeRF demonstrate that our method achieves superior editing fidelity and both multi-view and temporal consistency prior approaches. Project page for results and code: https://di-lee.github.io/dynamic-eDiTor/

Authors:Mengqi Liao, Lu Wang, Chaoyun Zhang, Zekai Shen, Xiaowei Mao, Si Qin, Qingwei Lin, Saravan Rajmohan, Dongmei Zhang, Huaiyu Wan
Title: G-KV: Decoding-Time KV Cache Eviction with Global Attention
Abstract:
Recent reasoning large language models (LLMs) excel in complex tasks but encounter significant computational and memory challenges due to long sequence lengths. KV cache compression has emerged as an effective approach to greatly enhance the efficiency of reasoning. However, existing methods often focus on prompt compression or token eviction with local attention score, overlooking the long-term importance of tokens. We propose G-KV, a KV cache eviction method that employs a global scoring mechanism, combining local and historical attention scores to more accurately assess token importance. Additionally, we introduce post-training techniques, including reinforcement learning and distillation, to optimize models for compressed KV cache settings. The code of this paper is available on: https://github.com/microsoft/G-KV.

Authors:Junyan Ye, Leiqi Zhu, Yuncheng Guo, Dongzhi Jiang, Zilong Huang, Yifan Zhang, Zhiyuan Yan, Haohuan Fu, Conghui He, Weijia Li
Title: RealGen: Photorealistic Text-to-Image Generation via Detector-Guided Rewards
Abstract:
With the continuous advancement of image generation technology, advanced models such as GPT-Image-1 and Qwen-Image have achieved remarkable text-to-image consistency and world knowledge However, these models still fall short in photorealistic image generation. Even on simple T2I tasks, they tend to produce " fake" images with distinct AI artifacts, often characterized by "overly smooth skin" and "oily facial sheens". To recapture the original goal of "indistinguishable-from-reality" generation, we propose RealGen, a photorealistic text-to-image framework. RealGen integrates an LLM component for prompt optimization and a diffusion model for realistic image generation. Inspired by adversarial generation, RealGen introduces a "Detector Reward" mechanism, which quantifies artifacts and assesses realism using both semantic-level and feature-level synthetic image detectors. We leverage this reward signal with the GRPO algorithm to optimize the entire generation pipeline, significantly enhancing image realism and detail. Furthermore, we propose RealBench, an automated evaluation benchmark employing Detector-Scoring and Arena-Scoring. It enables human-free photorealism assessment, yielding results that are more accurate and aligned with real user experience. Experiments demonstrate that RealGen significantly outperforms general models like GPT-Image-1 and Qwen-Image, as well as specialized photorealistic models like FLUX-Krea, in terms of realism, detail, and aesthetics. The code is available at https://github.com/yejy53/RealGen.

Authors:Hang Xu, Linjiang Huang, Feng Zhao
Title: FR-TTS: Test-Time Scaling for NTP-based Image Generation with Effective Filling-based Reward Signal
Abstract:
Test-time scaling (TTS) has become a prevalent technique in image generation, significantly boosting output quality by expanding the number of parallel samples and filtering them using pre-trained reward models. However, applying this powerful methodology to the next-token prediction (NTP) paradigm remains challenging. The primary obstacle is the low correlation between the reward of an image decoded from an intermediate token sequence and the reward of the fully generated image. Consequently, these incomplete intermediate representations prove to be poor indicators for guiding the pruning direction, a limitation that stems from their inherent incompleteness in scale or semantic content. To effectively address this critical issue, we introduce the Filling-Based Reward (FR). This novel design estimates the approximate future trajectory of an intermediate sample by finding and applying a reasonable filling scheme to complete the sequence. Both the correlation coefficient between rewards of intermediate samples and final samples, as well as multiple intrinsic signals like token confidence, indicate that the FR provides an excellent and reliable metric for accurately evaluating the quality of intermediate samples. Building upon this foundation, we propose FR-TTS, a sophisticated scaling strategy. FR-TTS efficiently searches for good filling schemes and incorporates a diversity reward with a dynamic weighting schedule to achieve a balanced and comprehensive evaluation of intermediate samples. We experimentally validate the superiority of FR-TTS over multiple established benchmarks and various reward models. Code is available at \href{https://github.com/xuhang07/FR-TTS}{https://github.com/xuhang07/FR-TTS}.

Authors:Jun Wang, Peirong Liu
Title: USB: Unified Synthetic Brain Framework for Bidirectional Pathology-Healthy Generation and Editing
Abstract:
Understanding the relationship between pathological and healthy brain structures is fundamental to neuroimaging, connecting disease diagnosis and detection with modeling, prediction, and treatment planning. However, paired pathological-healthy data are extremely difficult to obtain, as they rely on pre- and post-treatment imaging, constrained by clinical outcomes and longitudinal data availability. Consequently, most existing brain image generation and editing methods focus on visual quality yet remain domain-specific, treating pathological and healthy image modeling independently. We introduce USB (Unified Synthetic Brain), the first end-to-end framework that unifies bidirectional generation and editing of pathological and healthy brain images. USB models the joint distribution of lesions and brain anatomy through a paired diffusion mechanism and achieves both pathological and healthy image generation. A consistency guidance algorithm further preserves anatomical consistency and lesion correspondence during bidirectional pathology-healthy editing. Extensive experiments on six public brain MRI datasets including healthy controls, stroke, and Alzheimer's patients, demonstrate USB's ability to produce diverse and realistic results. By establishing the first unified benchmark for brain image generation and editing, USB opens opportunities for scalable dataset creation and robust neuroimaging analysis. Code is available at https://github.com/jhuldr/USB.

Authors:Sai Koneru, Matthias Huck, Jan Niehues
Title: OmniFusion: Simultaneous Multilingual Multimodal Translations via Modular Fusion
Abstract:
There has been significant progress in open-source text-only translation large language models (LLMs) with better language coverage and quality. However, these models can be only used in cascaded pipelines for speech translation (ST), performing automatic speech recognition first followed by translation. This introduces additional latency, which is particularly critical in simultaneous ST (SimulST), and prevents the model from exploiting multimodal context, such as images, which can aid disambiguation. Pretrained multimodal foundation models (MMFMs) already possess strong perception and reasoning capabilities across multiple modalities, but generally lack the multilingual coverage and specialized translation performance of dedicated translation LLMs. To build an effective multimodal translation system, we propose an end-to-end approach that fuses MMFMs with translation LLMs. We introduce a novel fusion strategy that connects hidden states from multiple layers of a pretrained MMFM to a translation LLM, enabling joint end-to-end training. The resulting model, OmniFusion, built on Omni 2.5-7B as the MMFM and SeedX PPO-7B as the translation LLM, can perform speech-to-text, speech-and-image-to-text, and text-and-image-to-text translation. Experiments demonstrate that OmniFusion effectively leverages both audio and visual inputs, achieves a 1-second latency reduction in SimulST compared to cascaded pipelines and also improves the overall translation quality\footnote{Code is available at https://github.com/saikoneru/OmniFusion}.

Authors:Matt MacDermott, Qiyao Wei, Rada Djoneva, Francis Rhys Ward
Title: Reasoning Under Pressure: How do Training Incentives Influence Chain-of-Thought Monitorability?
Abstract:
AI systems that output their reasoning in natural language offer an opportunity for safety -- we can \emph{monitor} their chain of thought (CoT) for undesirable reasoning, such as the pursuit of harmful objectives. However, the extent to which CoT faithfully reflects the underlying reasoning process, and hence the extent to which it can be usefully monitored, may be influenced by certain aspects of training. We investigate how different \emph{training incentives}, applied to a reasoning model, affect its monitorability. We introduce a novel methodology for measuring monitorability according to whether a monitor can predict a key latent variable using the model's reasoning. When controlling for accuracy, we do not find evidence for consistent effects from commonly used incentives (length penalties and KL regularisation), but we find that adversarial optimisation (penalising monitor accuracy) degrades monitor performance, while direct optimisation for monitorability does not reliably lead to improvements. Our code is available at https://github.com/QiyaoWei/reasoning-under-pressure.

Authors:Mohamed Bouadi, Pratinav Seth, Aditya Tanna, Vinay Kumar Sankarapu
Title: Orion-Bix: Bi-Axial Attention for Tabular In-Context Learning
Abstract:
Tabular data drive most real-world machine learning applications, yet building general-purpose models for them remains difficult. Mixed numeric and categorical fields, weak feature structure, and limited labeled data make scaling and generalization challenging. To this end, we introduce Orion-Bix, a tabular foundation model that combines biaxial attention with meta-learned in-context reasoning for few-shot tabular learning. Its encoder alternates standard, grouped, hierarchical, and relational attention, fusing their outputs through multi-CLS summarization to capture both local and global dependencies efficiently. A label-aware ICL head adapts on the fly and scales to large label spaces via hierarchical decision routing. Meta-trained on synthetically generated, structurally diverse tables with causal priors, Orion-Bix learns transferable inductive biases across heterogeneous data. Delivered as a scikit-learn compatible foundation model, it outperforms gradient-boosting baselines and remains competitive with state-of-the-art tabular foundation models on public benchmarks, showing that biaxial attention with episodic meta-training enables robust, few-shot-ready tabular learning. The model is publicly available at https://github.com/Lexsi-Labs/Orion-BiX .

Authors:Pei Zhou, Wanting Yao, Qian Luo, Xunzhe Zhou, Yanchao Yang
Title: Hyper-GoalNet: Goal-Conditioned Manipulation Policy Learning with HyperNetworks
Abstract:
Goal-conditioned policy learning for robotic manipulation presents significant challenges in maintaining performance across diverse objectives and environments. We introduce Hyper-GoalNet, a framework that generates task-specific policy network parameters from goal specifications using hypernetworks. Unlike conventional methods that simply condition fixed networks on goal-state pairs, our approach separates goal interpretation from state processing -- the former determines network parameters while the latter applies these parameters to current observations. To enhance representation quality for effective policy generation, we implement two complementary constraints on the latent space: (1) a forward dynamics model that promotes state transition predictability, and (2) a distance-based constraint ensuring monotonic progression toward goal states. We evaluate our method on a comprehensive suite of manipulation tasks with varying environmental randomization. Results demonstrate significant performance improvements over state-of-the-art methods, particularly in high-variability conditions. Real-world robotic experiments further validate our method's robustness to sensor noise and physical uncertainties. Code is available at: https://github.com/wantingyao/hyper-goalnet.

Authors:Mahdi Rahmani, AmirHossein Saffari, Reyhane Rahmani
Title: MegaChat: A Synthetic Persian Q&A Dataset for High-Quality Sales Chatbot Evaluation
Abstract:
Small and medium-sized enterprises (SMEs) in Iran increasingly leverage Telegram for sales, where real-time engagement is essential for conversion. However, developing AI-driven chatbots for this purpose requires large, high-quality question-and-answer (Q&A) datasets, which are typically expensive and resource-intensive to produce, especially for low-resource languages like Persian. In this paper, we introduce MegaChat, the first fully synthetic Persian Q&A dataset designed to evaluate intelligent sales chatbots in Telegram-based e-commerce. We propose a novel, automated multi-agent architecture that generates persona-aware Q&A pairs by collecting data from active Telegram shopping channels. The system employs specialized agents for question generation, validation, and refinement, ensuring the production of realistic and diverse conversational data. To evaluate answer generation, we compare three classic retrieval-augmented generation (RAG) models with our advanced agentic system, which features multi-query retrieval, reranking, and persona-aligned response synthesis. Using GPT-5.1 for evaluation across six quality dimensions, our results show that the agentic architecture outperformed traditional RAG models in 4 out of 5 diverse channels, demonstrating its ability to generate scalable, high-quality datasets without relying on expensive human annotation or complex fine-tuning. MegaChat provides SMEs with an efficient, cost-effective solution for building intelligent customer engagement systems in specialized commercial domains, enabling advancements in multilingual conversational AI for low-resource languages. Download: https://github.com/MegaChat-Tech/MegaChat-DataSet

Authors:Xinxi Zhang, Shiwei Tan, Quang Nguyen, Quan Dao, Ligong Han, Xiaoxiao He, Tunyu Zhang, Alen Mrdovic, Dimitris Metaxas
Title: Flow Straighter and Faster: Efficient One-Step Generative Modeling via MeanFlow on Rectified Trajectories
Abstract:
Flow-based generative models have recently demonstrated strong performance, yet sampling typically relies on expensive numerical integration of ordinary differential equations (ODEs). Rectified Flow enables one-step sampling by learning nearly straight probability paths, but achieving such straightness requires multiple computationally intensive reflow iterations. MeanFlow achieves one-step generation by directly modeling the average velocity over time; however, when trained on highly curved flows, it suffers from slow convergence and noisy supervision. To address these limitations, we propose Rectified MeanFlow, a framework that models the mean velocity field along the rectified trajectory using only a single reflow step. This eliminates the need for perfectly straightened trajectories while enabling efficient training. Furthermore, we introduce a simple yet effective truncation heuristic that aims to reduce residual curvature and further improve performance. Extensive experiments on ImageNet at 64, 256, and 512 resolutions show that Re-MeanFlow consistently outperforms prior one-step flow distillation and Rectified Flow methods in both sample quality and training efficiency. Code is available at https://github.com/Xinxi-Zhang/Re-MeanFlow.

Authors:Linghao Kong, Xiaopeng Hong
Title: Time Series Forecasting via Direct Per-Step Probability Distribution Modeling
Abstract:
Deep neural network-based time series prediction models have recently demonstrated superior capabilities in capturing complex temporal dependencies. However, it is challenging for these models to account for uncertainty associated with their predictions, because they directly output scalar values at each time step. To address such a challenge, we propose a novel model named interleaved dual-branch Probability Distribution Network (interPDN), which directly constructs discrete probability distributions per step instead of a scalar. The regression output at each time step is derived by computing the expectation of the predictive distribution on a predefined support set. To mitigate prediction anomalies, a dual-branch architecture is introduced with interleaved support sets, augmented by coarse temporal-scale branches for long-term trend forecasting. Outputs from another branch are treated as auxiliary signals to impose self-supervised consistency constraints on the current branch's prediction. Extensive experiments on multiple real-world datasets demonstrate the superior performance of interPDN.

Authors:Runyu Jiao, Matteo Bortolon, Francesco Giuliari, Alice Fasoli, Sergio Povoli, Guofeng Mei, Yiming Wang, Fabio Poiesi
Title: Obstruction reasoning for robotic grasping
Abstract:
Successful robotic grasping in cluttered environments not only requires a model to visually ground a target object but also to reason about obstructions that must be cleared beforehand. While current vision-language embodied reasoning models show emergent spatial understanding, they remain limited in terms of obstruction reasoning and accessibility planning. To bridge this gap, we present UNOGrasp, a learning-based vision-language model capable of performing visually-grounded obstruction reasoning to infer the sequence of actions needed to unobstruct the path and grasp the target object. We devise a novel multi-step reasoning process based on obstruction paths originated by the target object. We anchor each reasoning step with obstruction-aware visual cues to incentivize reasoning capability. UNOGrasp combines supervised and reinforcement finetuning through verifiable reasoning rewards. Moreover, we construct UNOBench, a large-scale dataset for both training and benchmarking, based on MetaGraspNetV2, with over 100k obstruction paths annotated by humans with obstruction ratios, contact points, and natural-language instructions. Extensive experiments and real-robot evaluations show that UNOGrasp significantly improves obstruction reasoning and grasp success across both synthetic and real-world environments, outperforming generalist and proprietary alternatives. Project website: https://tev-fbk.github.io/UnoGrasp/.

Authors:Guo-Hua Wang, Liangfu Cao, Tianyu Cui, Minghao Fu, Xiaohao Chen, Pengxin Zhan, Jianshan Zhao, Lan Li, Bowen Fu, Jiaqi Liu, Qing-Guo Chen
Title: Ovis-Image Technical Report
Abstract:
We introduce $\textbf{Ovis-Image}$, a 7B text-to-image model specifically optimized for high-quality text rendering, designed to operate efficiently under stringent computational constraints. Built upon our previous Ovis-U1 framework, Ovis-Image integrates a diffusion-based visual decoder with the stronger Ovis 2.5 multimodal backbone, leveraging a text-centric training pipeline that combines large-scale pre-training with carefully tailored post-training refinements. Despite its compact architecture, Ovis-Image achieves text rendering performance on par with significantly larger open models such as Qwen-Image and approaches closed-source systems like Seedream and GPT4o. Crucially, the model remains deployable on a single high-end GPU with moderate memory, narrowing the gap between frontier-level text rendering and practical deployment. Our results indicate that combining a strong multimodal backbone with a carefully designed, text-focused training recipe is sufficient to achieve reliable bilingual text rendering without resorting to oversized or proprietary models.

Authors:Yuhao Xu, Xiaoda Wang, Jiaying Lu, Sirui Ding, Defu Cao, Huaxiu Yao, Yan Liu, Xiao Hu, Carl Yang
Title: EnECG: Efficient Ensemble Learning for Electrocardiogram Multi-task Foundation Model
Abstract:
Electrocardiogram (ECG) analysis plays a vital role in the early detection, monitoring, and management of various cardiovascular conditions. While existing models have achieved notable success in ECG interpretation, they fail to leverage the interrelated nature of various cardiac abnormalities. Conversely, developing a specific model capable of extracting all relevant features for multiple ECG tasks remains a significant challenge. Large-scale foundation models, though powerful, are not typically pretrained on ECG data, making full re-training or fine-tuning computationally expensive. To address these challenges, we propose EnECG(Mixture of Experts-based Ensemble Learning for ECG Multi-tasks), an ensemble-based framework that integrates multiple specialized foundation models, each excelling in different aspects of ECG interpretation. Instead of relying on a single model or single task, EnECG leverages the strengths of multiple specialized models to tackle a variety of ECG-based tasks. To mitigate the high computational cost of full re-training or fine-tuning, we introduce a lightweight adaptation strategy: attaching dedicated output layers to each foundation model and applying Low-Rank Adaptation (LoRA) only to these newly added parameters. We then adopt a Mixture of Experts (MoE) mechanism to learn ensemble weights, effectively combining the complementary expertise of individual models. Our experimental results demonstrate that by minimizing the scope of fine-tuning, EnECG can help reduce computational and memory costs while maintaining the strong representational power of foundation models. This framework not only enhances feature extraction and predictive performance but also ensures practical efficiency for real-world clinical applications. The code is available at https://github.com/yuhaoxu99/EnECG.git.

Authors:Yaqi Wang, Zhi Li, Chengyu Wu, Jun Liu, Yifan Zhang, Jiaxue Ni, Qian Luo, Jialuo Chen, Hongyuan Zhang, Jin Liu, Can Han, Kaiwen Fu, Changkai Ji, Xinxu Cai, Jing Hao, Zhihao Zheng, Shi Xu, Junqiang Chen, Qianni Zhang, Dahong Qian, Shuai Wang, Huiyu Zhou
Title: MICCAI STS 2024 Challenge: Semi-Supervised Instance-Level Tooth Segmentation in Panoramic X-ray and CBCT Images
Abstract:
Orthopantomogram (OPGs) and Cone-Beam Computed Tomography (CBCT) are vital for dentistry, but creating large datasets for automated tooth segmentation is hindered by the labor-intensive process of manual instance-level annotation. This research aimed to benchmark and advance semi-supervised learning (SSL) as a solution for this data scarcity problem. We organized the 2nd Semi-supervised Teeth Segmentation (STS 2024) Challenge at MICCAI 2024. We provided a large-scale dataset comprising over 90,000 2D images and 3D axial slices, which includes 2,380 OPG images and 330 CBCT scans, all featuring detailed instance-level FDI annotations on part of the data. The challenge attracted 114 (OPG) and 106 (CBCT) registered teams. To ensure algorithmic excellence and full transparency, we rigorously evaluated the valid, open-source submissions from the top 10 (OPG) and top 5 (CBCT) teams, respectively. All successful submissions were deep learning-based SSL methods. The winning semi-supervised models demonstrated impressive performance gains over a fully-supervised nnU-Net baseline trained only on the labeled data. For the 2D OPG track, the top method improved the Instance Affinity (IA) score by over 44 percentage points. For the 3D CBCT track, the winning approach boosted the Instance Dice score by 61 percentage points. This challenge confirms the substantial benefit of SSL for complex, instance-level medical image segmentation tasks where labeled data is scarce. The most effective approaches consistently leveraged hybrid semi-supervised frameworks that combined knowledge from foundational models like SAM with multi-stage, coarse-to-fine refinement pipelines. Both the challenge dataset and the participants' submitted code have been made publicly available on GitHub (https://github.com/ricoleehduu/STS-Challenge-2024), ensuring transparency and reproducibility.

Authors:Hristo Papazov, Francesco D'Angelo, Nicolas Flammarion
Title: Exact Learning of Arithmetic with Differentiable Agents
Abstract:
We explore the possibility of exact algorithmic learning with gradient-based methods and introduce a differentiable framework capable of strong length generalization on arithmetic tasks. Our approach centers on Differentiable Finite-State Transducers (DFSTs), a Turing-complete model family that avoids the pitfalls of prior architectures by enabling constant-precision, constant-time generation, and end-to-end log-parallel differentiable training. Leveraging policy-trajectory observations from expert agents, we train DFSTs to perform binary and decimal addition and multiplication. Remarkably, models trained on tiny datasets generalize without error to inputs thousands of times longer than the training examples. These results show that training differentiable agents on structured intermediate supervision could pave the way towards exact gradient-based learning of algorithmic skills. Code available at \href{https://github.com/dngfra/differentiable-exact-algorithmic-learner.git}{https://github.com/dngfra/differentiable-exact-algorithmic-learner.git}.

Authors:Alberto Compagnoni, Marco Morini, Sara Sarto, Federico Cocchi, Davide Caffagni, Marcella Cornia, Lorenzo Baraldi, Rita Cucchiara
Title: ReAG: Reasoning-Augmented Generation for Knowledge-based Visual Question Answering
Abstract:
Multimodal Large Language Models (MLLMs) have shown impressive capabilities in jointly understanding text, images, and videos, often evaluated via Visual Question Answering (VQA). However, even state-of-the-art MLLMs struggle with domain-specific or knowledge-intensive queries, where relevant information is underrepresented in pre-training data. Knowledge-based VQA (KB-VQA) addresses this by retrieving external documents to condition answer generation, but current retrieval-augmented approaches suffer from low precision, noisy passages, and limited reasoning. To address this, we propose ReAG, a novel Reasoning-Augmented Multimodal RAG approach that combines coarse- and fine-grained retrieval with a critic model that filters irrelevant passages, ensuring high-quality additional context. The model follows a multi-stage training strategy leveraging reinforcement learning to enhance reasoning over retrieved content, while supervised fine-tuning serves only as a cold start. Extensive experiments on Encyclopedic-VQA and InfoSeek demonstrate that ReAG significantly outperforms prior methods, improving answer accuracy and providing interpretable reasoning grounded in retrieved evidence. Our source code is publicly available at: https://github.com/aimagelab/ReAG.

Authors:Tianxin Wei, Xuying Ning, Xuxing Chen, Ruizhong Qiu, Yupeng Hou, Yan Xie, Shuang Yang, Zhigang Hua, Jingrui He
Title: CoFiRec: Coarse-to-Fine Tokenization for Generative Recommendation
Abstract:
In web environments, user preferences are often refined progressively as users move from browsing broad categories to exploring specific items. However, existing generative recommenders overlook this natural refinement process. Generative recommendation formulates next-item prediction as autoregressive generation over tokenized user histories, where each item is represented as a sequence of discrete tokens. Prior models typically fuse heterogeneous attributes such as ID, category, title, and description into a single embedding before quantization, which flattens the inherent semantic hierarchy of items and fails to capture the gradual evolution of user intent during web interactions. To address this limitation, we propose CoFiRec, a novel generative recommendation framework that explicitly incorporates the Coarse-to-Fine nature of item semantics into the tokenization process. Instead of compressing all attributes into a single latent space, CoFiRec decomposes item information into multiple semantic levels, ranging from high-level categories to detailed descriptions and collaborative filtering signals. Based on this design, we introduce the CoFiRec Tokenizer, which tokenizes each level independently while preserving structural order. During autoregressive decoding, the language model is instructed to generate item tokens from coarse to fine, progressively modeling user intent from general interests to specific item-level interests. Experiments across multiple public benchmarks and backbones demonstrate that CoFiRec outperforms existing methods, offering a new perspective for generative recommendation. Theoretically, we prove that structured tokenization leads to lower dissimilarity between generated and ground truth items, supporting its effectiveness in generative recommendation. Our code is available at https://github.com/YennNing/CoFiRec.

Authors:Haoxi Zeng, Haoxuan Li, Yi Bin, Pengpeng Zeng, Xing Xu, Yang Yang, Heng Tao Shen
Title: HarmoCLIP: Harmonizing Global and Regional Representations in Contrastive Vision-Language Models
Abstract:
Contrastive Language-Image Pre-training (CLIP) has demonstrated remarkable generalization ability and strong performance across a wide range of vision-language tasks. However, due to the lack of region-level supervision, CLIP exhibits limited fine-grained semantic understanding. Although several methods attempt to mitigate this issue, they unintentionally disrupt the global alignment, resulting in a persistent trade-off where improving local perception simultaneously degrades global coherence. In this paper, we propose HarmoCLIP, a novel framework designed to harmonize global and region representations within CLIP. We first identify that the absence of direct alignment between local textual and visual semantics is the fundamental cause of the trade-off. To address this, HarmoCLIP introduces an explicit fine-grained semantic supervision term that directly aligns textual segments with their corresponding visual regions, effectively bridging the image region space and the textual space. To further strengthen the representation capability at the local level, our method introduces a novel Region-Language Alignment supervision strategy that promotes fine-grained semantic learning without compromising global semantic consistency. Extensive experiments demonstrate that HarmoCLIP achieves state-of-the-art (improvement up to 69.78%) performance on the global task of retrieval and yields a substantial 3.2% improvement in Top-1 accuracy on the region task of bounding-box classification, consistently outperforming prior approaches while providing a balanced, efficient, and plug-and-play solution to the global-local trade-off in CLIP. Code is available at https://github.com/Erosist/HarmoCLIP.

Authors:Run Shao, Ziyu Li, Zhaoyang Zhang, Linrui Xu, Xinran He, Hongyuan Yuan, Bolei He, Yongxing Dai, Yiming Yan, Yijun Chen, Wang Guo, Haifeng Li
Title: Asking like Socrates: Socrates helps VLMs understand remote sensing images
Abstract:
Recent multimodal reasoning models, inspired by DeepSeek-R1, have significantly advanced vision-language systems. However, in remote sensing (RS) tasks, we observe widespread pseudo reasoning: models narrate the process of reasoning rather than genuinely reason toward the correct answer based on visual evidence. We attribute this to the Glance Effect, where a single, coarse perception of large-scale RS imagery results in incomplete understanding and reasoning based on linguistic self-consistency instead of visual evidence. To address this, we propose RS-EoT (Remote Sensing Evidence-of-Thought), a language-driven, iterative visual evidence-seeking paradigm. To instill this paradigm, we propose SocraticAgent, a self-play multi-agent system that synthesizes reasoning traces via alternating cycles of reasoning and visual inspection. To enhance and generalize these patterns, we propose a two-stage progressive RL strategy: first, RL on fine-grained Grounding tasks to enhance RS-EoT capabilities, followed by RL on RS VQA to generalize to broader understanding scenarios. Experiments show RS-EoT achieves state-of-the-art performance on multiple RS VQA and grounding benchmarks. Analyses reveal clear iterative cycles of reasoning and evidence seeking, confirming RS-EoT mitigates the Glance Effect and enables genuine evidence-grounded reasoning. Our code, data, and models are available at https://geox-lab.github.io/Asking_like_Socrates

Authors:Zehao Deng, Tianjie Ju, Zheng Wu, Zhuosheng Zhang, Gongshen Liu
Title: Training High-Level Schedulers with Execution-Feedback Reinforcement Learning for Long-Horizon GUI Automation
Abstract:
The rapid development of large vision-language model (VLM) has greatly promoted the research of GUI agent. However, GUI agents still face significant challenges in handling long-horizon tasks. First, single-agent models struggle to balance high-level capabilities and low-level execution capability, facing prevalent issues of responsibility coupling and capability conflicts. Second, agents lack awareness of the task state, leading to progress loss in long-horizon tasks. To address these challenges, we propose a staged execution-feedback reinforcement learning algorithm. Unlike training a unified policy model, we focus on training high-level scheduling models. Specifically, we propose and train two agents: a Coordinator, responsible for the strategic planning and task decomposition; and a State Tracker, responsible for context compression and information management to maintain the task's state and coherence. Based on this, we built the Coordinator-Executor-State Tracker (CES) multi-agent framework, which can be integrated with any low-level Executor model, assisting the Executor in solving long-horizon tasks through task scheduling and state management. Experiments on long-horizon task benchmarks demonstrate that CES significantly enhances the system's planning and state management capabilities. Furthermore, analysis confirms that our trained high-level scheduling module is a generalizable, plug-and-play module that significantly enhances the long-horizon capabilities of various Executors. Code can be available at https://github.com/hehehahi4/CES.

Authors:Tianle Li, Yongzhi Huang, Linshan Jiang, Chang Liu, Qipeng Xie, Wenfeng Du, Lu Wang, Kaishun Wu
Title: A Fast and Flat Federated Learning Method via Weighted Momentum and Sharpness-Aware Minimization
Abstract:
In federated learning (FL), models must \emph{converge quickly} under tight communication budgets while \emph{generalizing} across non-IID client distributions. These twin requirements have naturally led to two widely used techniques: client/server \emph{momentum} to accelerate progress, and \emph{sharpness-aware minimization} (SAM) to prefer flat solutions. However, simply combining momentum and SAM leaves two structural issues unresolved in non-IID FL. We identify and formalize two failure modes: \emph{local-global curvature misalignment} (local SAM directions need not reflect the global loss geometry) and \emph{momentum-echo oscillation} (late-stage instability caused by accumulated momentum). To our knowledge, these failure modes have not been jointly articulated and addressed in the FL literature. We propose \textbf{FedWMSAM} to address both failure modes. First, we construct a momentum-guided global perturbation from server-aggregated momentum to align clients' SAM directions with the global descent geometry, enabling a \emph{single-backprop} SAM approximation that preserves efficiency. Second, we couple momentum and SAM via a cosine-similarity adaptive rule, yielding an early-momentum, late-SAM two-phase training schedule. We provide a non-IID convergence bound that \emph{explicitly models the perturbation-induced variance} $σ_ρ^2=σ^2+(Lρ)^2$ and its dependence on $(S, K, R, N)$ on the theory side. We conduct extensive experiments on multiple datasets and model architectures, and the results validate the effectiveness, adaptability, and robustness of our method, demonstrating its superiority in addressing the optimization challenges of Federated Learning. Our code is available at https://github.com/Huang-Yongzhi/NeurlPS_FedWMSAM.

Authors:Chunzheng Zhu, Yangfang Lin, Jialin Shao, Jianxin Lin, Yijun Wang
Title: Pathology-Aware Prototype Evolution via LLM-Driven Semantic Disambiguation for Multicenter Diabetic Retinopathy Diagnosis
Abstract:
Diabetic retinopathy (DR) grading plays a critical role in early clinical intervention and vision preservation. Recent explorations predominantly focus on visual lesion feature extraction through data processing and domain decoupling strategies. However, they generally overlook domain-invariant pathological patterns and underutilize the rich contextual knowledge of foundation models, relying solely on visual information, which is insufficient for distinguishing subtle pathological variations. Therefore, we propose integrating fine-grained pathological descriptions to complement prototypes with additional context, thereby resolving ambiguities in borderline cases. Specifically, we propose a Hierarchical Anchor Prototype Modulation (HAPM) framework to facilitate DR grading. First, we introduce a variance spectrum-driven anchor prototype library that preserves domain-invariant pathological patterns. We further employ a hierarchical differential prompt gating mechanism, dynamically selecting discriminative semantic prompts from both LVLM and LLM sources to address semantic confusion between adjacent DR grades. Finally, we utilize a two-stage prototype modulation strategy that progressively integrates clinical knowledge into visual prototypes through a Pathological Semantic Injector (PSI) and a Discriminative Prototype Enhancer (DPE). Extensive experiments across eight public datasets demonstrate that our approach achieves pathology-guided prototype evolution while outperforming state-of-the-art methods. The code is available at https://github.com/zhcz328/HAPM.

Authors:Yejia Liu, Zhifeng Wu, Pengfei Li, Shaolei Ren
Title: Predicting Public Health Impacts of Electricity Usage
Abstract:
The electric power sector is a leading source of air pollutant emissions, impacting the public health of nearly every community. Although regulatory measures have reduced air pollutants, fossil fuels remain a significant component of the energy supply, highlighting the need for more advanced demand-side approaches to reduce the public health impacts. To enable health-informed demand-side management, we introduce HealthPredictor, a domain-specific AI model that provides an end-to-end pipeline linking electricity use to public health outcomes. The model comprises three components: a fuel mix predictor that estimates the contribution of different generation sources, an air quality converter that models pollutant emissions and atmospheric dispersion, and a health impact assessor that translates resulting pollutant changes into monetized health damages. Across multiple regions in the United States, our health-driven optimization framework yields substantially lower prediction errors in terms of public health impacts than fuel mix-driven baselines. A case study on electric vehicle charging schedules illustrates the public health gains enabled by our method and the actionable guidance it can offer for health-informed energy management. Overall, this work shows how AI models can be explicitly designed to enable health-informed energy management for advancing public health and broader societal well-being. Our datasets and code are released at: https://github.com/Ren-Research/Health-Impact-Predictor.

Authors:Futian Wang, Chaoliu Weng, Xiao Wang, Zhen Chen, Zhicheng Zhao, Jin Tang
Title: DialBench: Towards Accurate Reading Recognition of Pointer Meter using Large Foundation Models
Abstract:
The precise reading recognition of pointer meters plays a key role in smart power systems, but existing approaches remain fragile due to challenges like reflections, occlusions, dynamic viewing angles, and overly between thin pointers and scale markings. Up to now, this area still lacks large-scale datasets to support the development of robust algorithms. To address these challenges, this paper first presents a new large-scale benchmark dataset for dial reading, termed RPM-10K, which contains 10730 meter images that fully reflect the aforementioned key challenges. Built upon the dataset, we propose a novel vision-language model for pointer meter reading recognition, termed MRLM, based on physical relation injection. Instead of exhaustively learning image-level correlations, MRLM explicitly encodes the geometric and causal relationships between the pointer and the scale, aligning perception with physical reasoning in the spirit of world-model perspectives. Through cross-attentional fusion and adaptive expert selection, the model learns to interpret dial configurations and generate precise numeric readings. Extensive experiments fully validated the effectiveness of our proposed framework on the newly proposed benchmark dataset. Both the dataset and source code will be released on https://github.com/Event-AHU/DialBench

Authors:Xinyu Liu, Xu Zhang, Can Chen, Ren Wang
Title: Exploring Dynamic Properties of Backdoor Training Through Information Bottleneck
Abstract:
Understanding how backdoor data influences neural network training dynamics remains a complex and underexplored challenge. In this paper, we present a rigorous analysis of the impact of backdoor data on the learning process, with a particular focus on the distinct behaviors between the target class and other clean classes. Leveraging the Information Bottleneck (IB) principle connected with clustering of internal representation, We find that backdoor attacks create unique mutual information (MI) signatures, which evolve across training phases and differ based on the attack mechanism. Our analysis uncovers a surprising trade-off: visually conspicuous attacks like BadNets can achieve high stealthiness from an information-theoretic perspective, integrating more seamlessly into the model than many visually imperceptible attacks. Building on these insights, we propose a novel, dynamics-based stealthiness metric that quantifies an attack's integration at the model level. We validate our findings and the proposed metric across multiple datasets and diverse attack types, offering a new dimension for understanding and evaluating backdoor threats. Our code is available in: https://github.com/XinyuLiu71/Information_Bottleneck_Backdoor.git.

Authors:Meenakshi Mittal, Rishi Khare, Mihran Miroyan, Chancharik Mitra, Narges Norouzi
Title: EduMod-LLM: A Modular Approach for Designing Flexible and Transparent Educational Assistants
Abstract:
With the growing use of Large Language Model (LLM)-based Question-Answering (QA) systems in education, it is critical to evaluate their performance across individual pipeline components. In this work, we introduce {\model}, a modular function-calling LLM pipeline, and present a comprehensive evaluation along three key axes: function calling strategies, retrieval methods, and generative language models. Our framework enables fine-grained analysis by isolating and assessing each component. We benchmark function-calling performance across LLMs, compare our novel structure-aware retrieval method to vector-based and LLM-scoring baselines, and evaluate various LLMs for response synthesis. This modular approach reveals specific failure modes and performance patterns, supporting the development of interpretable and effective educational QA systems. Our findings demonstrate the value of modular function calling in improving system transparency and pedagogical alignment. Website and Supplementary Material: https://chancharikmitra.github.io/EduMod-LLM-website/

Authors:Sabrina Sadiekh, Elena Ericheva, Chirag Agarwal
Title: Polarity-Aware Probing for Quantifying Latent Alignment in Language Models
Abstract:
Advances in unsupervised probes such as Contrast-Consistent Search (CCS), which reveal latent beliefs without relying on token outputs, raise the question of whether these methods can reliably assess model alignment. We investigate this by examining the sensitivity of CCS to harmful vs. safe statements and by introducing Polarity-Aware CCS (PA-CCS), a method for evaluating whether a model's internal representations remain consistent under polarity inversion. We propose two alignment-oriented metrics, Polar-Consistency and the Contradiction Index, to quantify the semantic robustness of a model's latent knowledge. To validate PA-CCS, we curate two main datasets and one control dataset containing matched harmful-safe sentence pairs constructed using different methodologies (concurrent and antagonistic statements). We apply PA-CCS to 16 language models. Our results show that PA-CCS identifies both architectural and layer-specific differences in the encoding of latent harmful knowledge. Notably, replacing the negation token with a meaningless marker degrades PA-CCS scores for models with well-aligned internal representations, while models lacking robust internal calibration do not exhibit this degradation. Our findings highlight the potential of unsupervised probing for alignment evaluation and emphasize the need to incorporate structural robustness checks into interpretability benchmarks. Code and datasets are available at: https://github.com/SadSabrina/polarity-probing. WARNING: This paper contains potentially sensitive, harmful, and offensive content.

Authors:Dayan Pan, Jingyuan Wang, Yilong Zhou, Jiawei Cheng, Pengyue Jia, Xiangyu Zhao
Title: RoSA: Enhancing Parameter-Efficient Fine-Tuning via RoPE-aware Selective Adaptation in Large Language Models
Abstract:
Fine-tuning large language models is essential for task-specific adaptation, yet it remains computationally prohibitive. Parameter-Efficient Fine-Tuning (PEFT) methods have emerged as a solution, but current approaches typically ignore the distinct roles of model components and the heterogeneous importance across layers, thereby limiting adaptation efficiency. Motivated by the observation that Rotary Position Embeddings (RoPE) induce critical activations in the low-frequency dimensions of attention states, we propose RoPE-aware Selective Adaptation (RoSA), a novel PEFT framework that allocates trainable parameters in a more targeted and effective manner. RoSA comprises a RoPE-aware Attention Enhancement (RoAE) module, which selectively enhances the low-frequency components of RoPE-influenced attention states, and a Dynamic Layer Selection (DLS) strategy that adaptively identifies and updates the most critical layers based on LayerNorm gradient norms. By combining dimension-wise enhancement with layer-wise adaptation, RoSA achieves more targeted and efficient fine-tuning. Extensive experiments on fifteen commonsense and arithmetic benchmarks demonstrate that RoSA outperforms existing mainstream PEFT methods under comparable trainable parameters. The code is available to ease reproducibility at https://github.com/Applied-Machine-Learning-Lab/RoSA.

Authors:Ishant Kohar, Aswanth Krishnan
Title: A Benchmark for Procedural Memory Retrieval in Language Agents
Abstract:
Current AI agents excel in familiar settings, but fail sharply when faced with novel tasks with unseen vocabularies -- a core limitation of procedural memory systems. We present the first benchmark that isolates procedural memory retrieval from task execution, evaluating whether agents can recognize functionally equivalent procedures that span different object instantiations. Using ALFWorld, we construct dual corpora of expert and LLM-generated trajectories and evaluate six retrieval methods using systematically stratified queries. Our results expose a clear generalization cliff: embedding-based methods perform strongly on familiar contexts, yet degrade considerably on novel ones, while LLM-generated procedural abstractions demonstrate reliable cross-context transfer. Controlled ablations show that although embeddings capture some lexical-level abstraction, they fundamentally treat procedures as unordered bags of words, discarding temporal structure necessary for cross-context transfer. Corpus scale delivers far larger gains than representation enrichment, revealing an architectural ceiling in current encoders. Our benchmark offers the first diagnostic framework separating genuine procedural understanding from surface-level memorization and gives tools for developing retrieval systems capable of dependable generalization. Resources available at our GitHub repository (https://github.com/qpiai/Proced_mem_bench).

Authors:Yicong Zheng, Kevin L. McKee, Thomas Miconi, Zacharie Bugaud, Mick van Gelderen, Jed McCaleb
Title: Goal-Directed Search Outperforms Goal-Agnostic Memory Compression in Long-Context Memory Tasks
Abstract:
How to enable human-like long-term memory in large language models (LLMs) has been a central question for unlocking more general capabilities such as few-shot generalization. Existing memory frameworks and benchmarks focus on finding the optimal memory compression algorithm for higher performance in tasks that require recollection and sometimes further reasoning. However, such efforts have ended up building more human bias into the compression algorithm, through the search for the best prompts and memory architectures that suit specific benchmarks, rather than finding a general solution that would work on other data distributions. On the other hand, goal-directed search on uncompressed information could potentially exhibit superior performance because compression is lossy, and a predefined compression algorithm will not fit all raw data distributions. Here we present SUMER (Search in Uncompressed Memory via Experience Replay), an end-to-end reinforcement learning agent with verifiable reward (RLVR) that learns to use search tools to gather information and answer a target question. On the LoCoMo dataset for long-context conversation understanding, SUMER with Qwen2.5-7B-Instruct learned to use search tools and outperformed all other biased memory compression approaches and also the full-context baseline, reaching SOTA performance (43% gain over the prior best). We demonstrate that a simple search method applied to raw data outperforms goal-agnostic and biased compression algorithms in current long-context memory tasks, arguing for new paradigms and benchmarks that are more dynamic and autonomously scalable. Code for SUMER and all implemented baselines is publicly available at https://github.com/zycyc/SUMER.

Authors:Pawel Batorski, Paul Swoboda
Title: GPS: General Per-Sample Prompter
Abstract:
LLMs are sensitive to prompting, with task performance often hinging on subtle, sometimes imperceptible variations in phrasing. As a result, crafting effective prompts manually remains challenging and time-consuming. Recent automatic prompting methods mitigate this difficulty but face three key limitations: (i) for each new task, they require large datasets to train good prompts;(ii) they rely on costly optimization loops that may take hours; (iii)they typically produce a single task-level prompt that does not adapt to the individual input problem to be solved. We propose GPS, the first general-purpose, per-sample prompting method. Without any task-specific tuning, GPS generates a tailored prompt for each unseen input, improving performance across diverse tasks. The prompter is trained with reinforcement learning on a suite of training tasks and includes a novel regularization for effectively adapting to per-sample prompting. Finally, we employ Minimum Bayes Risk decoding to stabilize inference. Empirically, GPS demonstrates competitive performance: we attain second best results among baselines on text simplification, third best results on summarization and on-par results on classification, while not training on any of these tasks, in contrast to the baselines. For in-domain prompting, we obtain sota on GSM8K. Our work shows the potential of a novel and effective paradigm for automatic prompting: generating adaptive, input-specific prompts without extensive optimization and without access to a task-specific training set. Our code is available at https://github.com/Batorskq/GPS.

Authors:Yi Ding, Xushuo Tang, Zhengyi Yang, Wenqian Zhang, Simin Wu, Yuxin Huang, Lingjing Lan, Weiyuan Li, Yin Chen, Mingchen Ju, Wenke Yang, Thong Hoang, Mykhailo Klymenko, Xiwei Zu, Wenjie Zhang
Title: EulerESG: Automating ESG Disclosure Analysis with LLMs
Abstract:
Environmental, Social, and Governance (ESG) reports have become central to how companies communicate climate risk, social impact, and governance practices, yet they are still published primarily as long, heterogeneous PDF documents. This makes it difficult to systematically answer seemingly simple questions. Existing tools either rely on brittle rule-based extraction or treat ESG reports as generic text, without explicitly modelling the underlying reporting standards. We present \textbf{EulerESG}, an LLM-powered system for automating ESG disclosure analysis with explicit awareness of ESG frameworks. EulerESG combines (i) dual-channel retrieval and LLM-driven disclosure analysis over ESG reports, and (ii) an interactive dashboard and chatbot for exploration, benchmarking, and explanation. Using four globally recognised companies and twelve SASB sub-industries, we show that EulerESG can automatically populate standard-aligned metric tables with high fidelity (up to 0.95 average accuracy) while remaining practical in end-to-end runtime, and we compare several recent LLM models in this setting. The full implementation, together with a demonstration video, is publicly available at https://github.com/UNSW-database/EulerESG.

Authors:Dong Liu, Yanxuan Yu, Ben Lengerich
Title: CSV-Decode: Certifiable Sub-Vocabulary Decoding for Efficient Large Language Model Inference
Abstract:
Large language models face significant computational bottlenecks during inference due to the expensive output layer computation over large vocabularies. We present CSV-Decode, a novel approach that uses geometric upper bounds to construct small sub-vocabularies for each decoding step, enabling efficient sparse computation while maintaining dual correctness guarantees: exact top-$k$ certification and $\varepsilon$-certified softmax approximations. Our method clusters vocabulary embeddings offline and uses centroid-plus-radius bounds to identify which tokens can be safely omitted from computation. We provide a complete system implementation with sparse GEMV kernels, multi-GPU sharding, and CUDA Graph optimization. Experimental results demonstrate significant speedup over full vocabulary decoding while maintaining distributional guarantees and low fallback rates. Our code implementation available at \href{https://github.com/FastLM/CSV-Decode}{https://github.com/FastLM/CSV-Decode}.

Authors:Wenbo Hu, Jingli Lin, Yilin Long, Yunlong Ran, Lihan Jiang, Yifan Wang, Chenming Zhu, Runsen Xu, Tai Wang, Jiangmiao Pang
Title: G$^2$VLM: Geometry Grounded Vision Language Model with Unified 3D Reconstruction and Spatial Reasoning
Abstract:
Vision-Language Models (VLMs) still lack robustness in spatial intelligence, demonstrating poor performance on spatial understanding and reasoning tasks. We attribute this gap to the absence of a visual geometry learning process capable of reconstructing 3D space from 2D images. We present G$^2$VLM, a geometry grounded vision-language model that bridges two fundamental aspects of spatial intelligence: spatial 3D reconstruction and spatial understanding. G$^2$VLM natively leverages learned 3D visual geometry features to directly predict 3D attributes and enhance spatial reasoning tasks via in-context learning and interleaved reasoning. Our unified design is highly scalable for spatial understanding: it trains on abundant multi-view image and video data, while simultaneously leveraging the benefits of 3D visual priors that are typically only derived from hard-to-collect annotations. Experimental results demonstrate G$^2$VLM is proficient in both tasks, achieving comparable results to state-of-the-art feed-forward 3D reconstruction models and achieving better or competitive results across spatial understanding and reasoning tasks. By unifying a semantically strong VLM with low-level 3D vision tasks, we hope G$^2$VLM can serve as a strong baseline for the community and unlock more future applications, such as 3D scene editing.

Authors:Weihao Bo, Shan Zhang, Yanpeng Sun, Jingjing Wu, Qunyi Xie, Xiao Tan, Kunbin Chen, Wei He, Xiaofan Li, Na Zhao, Jingdong Wang, Zechao Li
Title: Agentic Learner with Grow-and-Refine Multimodal Semantic Memory
Abstract:
MLLMs exhibit strong reasoning on isolated queries, yet they operate de novo -- solving each problem independently and often repeating the same mistakes. Existing memory-augmented agents mainly store past trajectories for reuse. However, trajectory-based memory suffers from brevity bias, gradually losing essential domain knowledge. More critically, even in truly multimodal problem-solving settings, it records only a single-modality trace of past behavior, failing to preserve how visual attention and logical reasoning jointly contributed to the solution. This is fundamentally misaligned with human cognition: semantic memory is both multimodal and integrated, preserving visual and abstract knowledge through coordinated but distinct representational streams. We thus introduce ViLoMem, a dual-stream memory framework that constructs compact, schema-based memory. It separately encodes visual distraction patterns and logical reasoning errors, enabling MLLMs to learn from their successful and failed experiences. Following a grow-and-refine principle, the system incrementally accumulates and updates multimodal semantic knowledge -- preserving stable, generalizable strategies while avoiding catastrophic forgetting. Across six multimodal benchmarks, ViLoMem consistently improves pass@1 accuracy and substantially reduces repeated visual and logical errors. Ablations confirm the necessity of dual-stream memory with explicit distraction--hallucination separation, demonstrating the value of error-aware multimodal memory for lifelong and cross-domain agentic learning. Our project page will be available at https://weihao-bo.github.io/ViLoMeo-page.

Authors:Anantha Padmanaban Krishna Kumar
Title: Mechanisms of Non-Monotonic Scaling in Vision Transformers
Abstract:
Deeper Vision Transformers often perform worse than shallower ones, which challenges common scaling assumptions. Through a systematic empirical analysis of ViT-S, ViT-B, and ViT-L on ImageNet, we identify a consistent three-phase Cliff-Plateau-Climb pattern that governs how representations evolve with depth. We observe that better performance is associated with progressive marginalization of the [CLS] token, originally designed as a global aggregation hub, in favor of distributed consensus among patch tokens. We quantify patterns of information mixing with an Information Scrambling Index, and show that in ViT-L the information-task tradeoff emerges roughly 10 layers later than in ViT-B, and that these additional layers correlate with increased information diffusion rather than improved task performance. Taken together, these results suggest that transformer architectures in this regime may benefit more from carefully calibrated depth that executes clean phase transitions than from simply increasing parameter count. The Information Scrambling Index provides a useful diagnostic for existing models and suggests a potential design target for future architectures. All code is available at: https://github.com/AnanthaPadmanaban-KrishnaKumar/Cliff-Plateau-Climb.

Authors:Ke Zhang, Xiaoning Zhao, Ce Zheng, Jiahong Ning, Dandan Zhu, Wenqi Zhang, Chen Sun, Toshiharu Sugawara
Title: Tool-RoCo: An Agent-as-Tool Self-organization Large Language Model Benchmark in Multi-robot Cooperation
Abstract:
This study proposes Tool-RoCo, a novel benchmark for evaluating large language models (LLMs) in long-term multi-agent cooperation based on RoCo, a multi-robot cooperative benchmark. Recent research on LLM-based multi-agent systems has relied on predefined orchestration, while ignoring agent autonomy. Tool-RoCo treats other agents as tools and introduces cooperative tools, leveraging tool usage to evaluate multi-agent cooperation and self-organization. Tool usage means that each agent (LLM) selects a tool from a candidate set based on the current state, receives feedback, and adjusts its selection in subsequent rounds. To evaluate different autonomy levels, we propose four LLM paradigms: (1) centralized cooperation, where a single LLM allocates tools to all agents; (2) centralized self-organization, where a central LLM autonomously activates agents while keeping others inactive; (3) decentralized cooperation, where each agent has its own LLM and calls tools based on local information; and (4) self-organization, where a randomly chosen initial agent can request collaboration, activating additional agents via tool calls. Tool-RoCo includes three multi-robot tasks, SORT, PACK, and CABINET, to measure format and parameter accuracy and agent coordination through tool usage. The results using several LLMs showed that cooperative tools accounted for only 7.09% of all tools, indicating that LLM-based agents rarely invoked others as assistants. Moreover, activation tools accounted for 96.42%, suggesting that current LLMs tend to maintain active agents while seldom deactivating them for adaptive coordination. Tool-RoCo provides a systematic benchmark to evaluate LLM autonomy and cooperation in multi-agent tasks. Code and Demo: https://github.com/ColaZhang22/Tool-Roco

Authors:Futian Wang, Fan Zhang, Xiao Wang, Mengqi Wang, Dexing Huang, Jin Tang
Title: EvRainDrop: HyperGraph-guided Completion for Effective Frame and Event Stream Aggregation
Abstract:
Event cameras produce asynchronous event streams that are spatially sparse yet temporally dense. Mainstream event representation learning algorithms typically use event frames, voxels, or tensors as input. Although these approaches have achieved notable progress, they struggle to address the undersampling problem caused by spatial sparsity. In this paper, we propose a novel hypergraph-guided spatio-temporal event stream completion mechanism, which connects event tokens across different times and spatial locations via hypergraphs and leverages contextual information message passing to complete these sparse events. The proposed method can flexibly incorporate RGB tokens as nodes in the hypergraph within this completion framework, enabling multi-modal hypergraph-based information completion. Subsequently, we aggregate hypergraph node information across different time steps through self-attention, enabling effective learning and fusion of multi-modal features. Extensive experiments on both single- and multi-label event classification tasks fully validated the effectiveness of our proposed framework. The source code of this paper will be released on https://github.com/Event-AHU/EvRainDrop.

Authors:Futian Wang, Mengqi Wang, Xiao Wang, Haowen Wang, Jin Tang
Title: SAM Guided Semantic and Motion Changed Region Mining for Remote Sensing Change Captioning
Abstract:
Remote sensing change captioning is an emerging and popular research task that aims to describe, in natural language, the content of interest that has changed between two remote sensing images captured at different times. Existing methods typically employ CNNs/Transformers to extract visual representations from the given images or incorporate auxiliary tasks to enhance the final results, with weak region awareness and limited temporal alignment. To address these issues, this paper explores the use of the SAM (Segment Anything Model) foundation model to extract region-level representations and inject region-of-interest knowledge into the captioning framework. Specifically, we employ a CNN/Transformer model to extract global-level vision features, leverage the SAM foundation model to delineate semantic- and motion-level change regions, and utilize a specially constructed knowledge graph to provide information about objects of interest. These heterogeneous sources of information are then fused via cross-attention, and a Transformer decoder is used to generate the final natural language description of the observed changes. Extensive experimental results demonstrate that our method achieves state-of-the-art performance across multiple widely used benchmark datasets. The source code of this paper will be released on https://github.com/Event-AHU/SAM_ChangeCaptioning

Authors:Qixun Wang, Yang Shi, Yifei Wang, Yuanxing Zhang, Pengfei Wan, Kun Gai, Xianghua Ying, Yisen Wang
Title: Monet: Reasoning in Latent Visual Space Beyond Images and Language
Abstract:
"Thinking with images" has emerged as an effective paradigm for advancing visual reasoning, extending beyond text-only chains of thought by injecting visual evidence into intermediate reasoning steps. However, existing methods fall short of human-like abstract visual thinking, as their flexibility is fundamentally limited by external tools. In this work, we introduce Monet, a training framework that enables multimodal large language models (MLLMs) to reason directly within the latent visual space by generating continuous embeddings that function as intermediate visual thoughts. We identify two core challenges in training MLLMs for latent visual reasoning: high computational cost in latent-vision alignment and insufficient supervision over latent embeddings, and address them with a three-stage distillation-based supervised fine-tuning (SFT) pipeline. We further reveal a limitation of applying GRPO to latent reasoning: it primarily enhances text-based reasoning rather than latent reasoning. To overcome this, we propose VLPO (Visual-latent Policy Optimization), a reinforcement learning method that explicitly incorporates latent embeddings into policy gradient updates. To support SFT, we construct Monet-SFT-125K, a high-quality text-image interleaved CoT dataset containing 125K real-world, chart, OCR, and geometry CoTs. Our model, Monet-7B, shows consistent gains across real-world perception and reasoning benchmarks and exhibits strong out-of-distribution generalization on challenging abstract visual reasoning tasks. We also empirically analyze the role of each training component and discuss our early unsuccessful attempts, providing insights for future developments in visual latent reasoning. Our model, data, and code are available at https://github.com/NOVAglow646/Monet.

Authors:Bram Silue, Santiago Amaya-Corredor, Patrick Mannion, Lander Willem, Pieter Libin
Title: Hybrid-AIRL: Enhancing Inverse Reinforcement Learning with Supervised Expert Guidance
Abstract:
Adversarial Inverse Reinforcement Learning (AIRL) has shown promise in addressing the sparse reward problem in reinforcement learning (RL) by inferring dense reward functions from expert demonstrations. However, its performance in highly complex, imperfect-information settings remains largely unexplored. To explore this gap, we evaluate AIRL in the context of Heads-Up Limit Hold'em (HULHE) poker, a domain characterized by sparse, delayed rewards and significant uncertainty. In this setting, we find that AIRL struggles to infer a sufficiently informative reward function. To overcome this limitation, we contribute Hybrid-AIRL (H-AIRL), an extension that enhances reward inference and policy learning by incorporating a supervised loss derived from expert data and a stochastic regularization mechanism. We evaluate H-AIRL on a carefully selected set of Gymnasium benchmarks and the HULHE poker setting. Additionally, we analyze the learned reward function through visualization to gain deeper insights into the learning process. Our experimental results show that H-AIRL achieves higher sample efficiency and more stable learning compared to AIRL. This highlights the benefits of incorporating supervised signals into inverse RL and establishes H-AIRL as a promising framework for tackling challenging, real-world settings.

Authors:Changlin Li, Jiawei Zhang, Shuhao Liu, Sihao Lin, Zeyi Shi, Zhihui Li, Xiaojun Chang
Title: Efficient Training for Human Video Generation with Entropy-Guided Prioritized Progressive Learning
Abstract:
Human video generation has advanced rapidly with the development of diffusion models, but the high computational cost and substantial memory consumption associated with training these models on high-resolution, multi-frame data pose significant challenges. In this paper, we propose Entropy-Guided Prioritized Progressive Learning (Ent-Prog), an efficient training framework tailored for diffusion models on human video generation. First, we introduce Conditional Entropy Inflation (CEI) to assess the importance of different model components on the target conditional generation task, enabling prioritized training of the most critical components. Second, we introduce an adaptive progressive schedule that adaptively increases computational complexity during training by measuring the convergence efficiency. Ent-Prog reduces both training time and GPU memory consumption while maintaining model performance. Extensive experiments across three datasets, demonstrate the effectiveness of Ent-Prog, achieving up to 2.2$\times$ training speedup and 2.4$\times$ GPU memory reduction without compromising generative performance.

Authors:Ziyi Chen, Yingnan Guo, Zedong Chu, Minghua Luo, Yanfen Shen, Mingchao Sun, Junjun Hu, Shichao Xie, Kuan Yang, Pei Shi, Zhining Gu, Lu Liu, Honglin Han, Xiaolong Wu, Mu Xu, Yu Zhang
Title: SocialNav: Training Human-Inspired Foundation Model for Socially-Aware Embodied Navigation
Abstract:
Embodied navigation that adheres to social norms remains an open research challenge. Our \textbf{SocialNav} is a foundational model for socially-aware navigation with a hierarchical "brain-action" architecture, capable of understanding high-level social norms and generating low-level, socially compliant trajectories. To enable such dual capabilities, we construct the SocNav Dataset, a large-scale collection of 7 million samples, comprising (1) a Cognitive Activation Dataset providing social reasoning signals such as chain-of-thought explanations and social traversability prediction, and (2) an Expert Trajectories Pyramid aggregating diverse navigation demonstrations from internet videos, simulated environments, and real-world robots. A multi-stage training pipeline is proposed to gradually inject and refine navigation intelligence: we first inject general navigation skills and social norms understanding into the model via imitation learning, and then refine such skills through a deliberately designed Socially-Aware Flow Exploration GRPO (SAFE-GRPO), the first flow-based reinforcement learning framework for embodied navigation that explicitly rewards socially compliant behaviors. SocialNav achieves +38% success rate and +46% social compliance rate compared to the state-of-the-art method, demonstrating strong gains in both navigation performance and social compliance. Our project page: https://amap-eai.github.io/SocialNav/

Authors:Changlin Li, Jiawei Zhang, Zeyi Shi, Zongxin Yang, Zhihui Li, Xiaojun Chang
Title: Which Layer Causes Distribution Deviation? Entropy-Guided Adaptive Pruning for Diffusion and Flow Models
Abstract:
Large-scale vision generative models, including diffusion and flow models, have demonstrated remarkable performance in visual generation tasks. However, transferring these pre-trained models to downstream tasks often results in significant parameter redundancy. In this paper, we propose EntPruner, an entropy-guided automatic progressive pruning framework for diffusion and flow models. First, we introduce entropy-guided pruning, a block-level importance assessment strategy specifically designed for generative models. Unlike discriminative models, generative models require preserving the diversity and condition-fidelity of the output distribution. As the importance of each module can vary significantly across downstream tasks, EntPruner prioritizes pruning of less important blocks using data-dependent Conditional Entropy Deviation (CED) as a guiding metric. CED quantifies how much the distribution diverges from the learned conditional data distribution after removing a block. Second, we propose a zero-shot adaptive pruning framework to automatically determine when and how much to prune during training. This dynamic strategy avoids the pitfalls of one-shot pruning, mitigating mode collapse, and preserving model performance. Extensive experiments on DiT and SiT models demonstrate the effectiveness of EntPruner, achieving up to 2.22$\times$ inference speedup while maintaining competitive generation quality on ImageNet and three downstream datasets.

Authors:Mengran Li, Zelin Zang, Wenbin Xing, Junzhou Chen, Ronghui Zhang, Jiebo Luo, Stan Z. Li
Title: Learning Cell-Aware Hierarchical Multi-Modal Representations for Robust Molecular Modeling
Abstract:
Understanding how chemical perturbations propagate through biological systems is essential for robust molecular property prediction. While most existing methods focus on chemical structures alone, recent advances highlight the crucial role of cellular responses such as morphology and gene expression in shaping drug effects. However, current cell-aware approaches face two key limitations: (1) modality incompleteness in external biological data, and (2) insufficient modeling of hierarchical dependencies across molecular, cellular, and genomic levels. We propose CHMR (Cell-aware Hierarchical Multi-modal Representations), a robust framework that jointly models local-global dependencies between molecules and cellular responses and captures latent biological hierarchies via a novel tree-structured vector quantization module. Evaluated on nine public benchmarks spanning 728 tasks, CHMR outperforms state-of-the-art baselines, yielding average improvements of 3.6% on classification and 17.2% on regression tasks. These results demonstrate the advantage of hierarchy-aware, multimodal learning for reliable and biologically grounded molecular representations, offering a generalizable framework for integrative biomedical modeling. The code is in https://github.com/limengran98/CHMR.

Authors:Michael Iskandardinata, William Christian, Derwin Suhartono
Title: Context-Aware Pragmatic Metacognitive Prompting for Sarcasm Detection
Abstract:
Detecting sarcasm remains a challenging task in the areas of Natural Language Processing (NLP) despite recent advances in neural network approaches. Currently, Pre-trained Language Models (PLMs) and Large Language Models (LLMs) are the preferred approach for sarcasm detection. However, the complexity of sarcastic text, combined with linguistic diversity and cultural variation across communities, has made the task more difficult even for PLMs and LLMs. Beyond that, those models also exhibit unreliable detection of words or tokens that require extra grounding for analysis. Building on a state-of-the-art prompting method in LLMs for sarcasm detection called Pragmatic Metacognitive Prompting (PMP), we introduce a retrieval-aware approach that incorporates retrieved contextual information for each target text. Our pipeline explores two complementary ways to provide context: adding non-parametric knowledge using web-based retrieval when the model lacks necessary background, and eliciting the model's own internal knowledge for a self-knowledge awareness strategy. We evaluated our approach with three datasets, such as Twitter Indonesia Sarcastic, SemEval-2018 Task 3, and MUStARD. Non-parametric retrieval resulted in a significant 9.87% macro-F1 improvement on Twitter Indonesia Sarcastic compared to the original PMP method. Self-knowledge retrieval improves macro-F1 by 3.29% on Semeval and by 4.08% on MUStARD. These findings highlight the importance of context in enhancing LLMs performance in sarcasm detection task, particularly the involvement of culturally specific slang, references, or unknown terms to the LLMs. Future work will focus on optimizing the retrieval of relevant contextual information and examining how retrieval quality affects performance. The experiment code is available at: https://github.com/wllchrst/sarcasm-detection_pmp_knowledge-base.

Authors:Anantha Padmanaban Krishna Kumar
Title: Semantic Anchors in In-Context Learning: Why Small LLMs Cannot Flip Their Labels
Abstract:
Can in-context learning (ICL) override pre-trained label semantics, or does it merely refine an existing semantic backbone? We address this question by treating LLMs as prompt-induced classifiers and contrasting their behavior under \emph{natural} demonstrations (with correct labels) and \emph{inverted} demonstrations (systematically flipping label meanings). We decompose ICL behavior into three alignment metrics (truth, prior, and prompt alignment) and introduce a semantic override rate, defined as correctness under flipped semantics. Across eight classification tasks and eight open-source LLMs (1--12B parameters), we find consistent evidence for a semantic anchor view. With natural demonstrations, ICL improves accuracy while maintaining strong prior alignment; most correct predictions coincide with zero-shot behavior, even when the prior is weak. With inverted demonstrations, models cannot learn coherent anti-semantic classifiers: prompt alignment increases only by sacrificing accuracy, and semantic override rates remain exactly zero in our few-shot 1--12B setting. Rather than flexibly remapping label meanings, ICL primarily adjusts how inputs project onto stable semantic directions learned during pre-training, clarifying fundamental limits of few-shot prompting and suggesting that overriding label semantics at these scales requires interventions beyond ICL. All code is available at: https://github.com/AnanthaPadmanaban-KrishnaKumar/semantic-anchors-icl.

Authors:Rawa Mohammed, Mina Attin, Bryar Shareef
Title: BUSTR: Breast Ultrasound Text Reporting with a Descriptor-Aware Vision-Language Model
Abstract:
Automated radiology report generation (RRG) for breast ultrasound (BUS) is limited by the lack of paired image-report datasets and the risk of hallucinations from large language models. We propose BUSTR, a multitask vision-language framework that generates BUS reports without requiring paired image-report supervision. BUSTR constructs reports from structured descriptors (e.g., BI-RADS, pathology, histology) and radiomics features, learns descriptor-aware visual representations with a multi-head Swin encoder trained using a multitask loss over dataset-specific descriptor sets, and aligns visual and textual tokens via a dual-level objective that combines token-level cross-entropy with a cosine-similarity alignment loss between input and output representations. We evaluate BUSTR on two public BUS datasets, BrEaST and BUS-BRA, which differ in size and available descriptors. Across both datasets, BUSTR consistently improves standard natural language generation metrics and clinical efficacy metrics, particularly for key targets such as BI-RADS category and pathology. Our results show that this descriptor-aware vision model, trained with a combined token-level and alignment loss, improves both automatic report metrics and clinical efficacy without requiring paired image-report data. The source code can be found at https://github.com/AAR-UNLV/BUSTR

Authors:Sanchit Kaul, Kevin Nhu, Jason Eissayou, Ivan Eser, Victor Borup
Title: SpaceX: Exploring metrics with the SPACE model for developer productivity
Abstract:
This empirical investigation elucidates the limitations of deterministic, unidimensional productivity heuristics by operationalizing the SPACE framework through extensive repository mining. Utilizing a dataset derived from open-source repositories, the study employs rigorous statistical methodologies including Generalized Linear Mixed Models (GLMM) and RoBERTa-based sentiment classification to synthesize a holistic, multi-faceted productivity metric. Analytical results reveal a statistically significant positive correlation between negative affective states and commit frequency, implying a cycle of iterative remediation driven by frustration. Furthermore, the investigation has demonstrated that analyzing the topology of contributor interactions yields superior fidelity in mapping collaborative dynamics compared to traditional volume-based metrics. Ultimately, this research posits a Composite Productivity Score (CPS) to address the heterogeneity of developer efficacy.

Authors:Qineng Wang, Wenlong Huang, Yu Zhou, Hang Yin, Tianwei Bao, Jianwen Lyu, Weiyu Liu, Ruohan Zhang, Jiajun Wu, Li Fei-Fei, Manling Li
Title: ENACT: Evaluating Embodied Cognition with World Modeling of Egocentric Interaction
Abstract:
Embodied cognition argues that intelligence arises from sensorimotor interaction rather than passive observation. It raises an intriguing question: do modern vision-language models (VLMs), trained largely in a disembodied manner, exhibit signs of embodied cognition? We introduce ENACT, a benchmark that casts evaluation of embodied cognition as world modeling from egocentric interaction in a visual question answering (VQA) format. Framed as a partially observable Markov decision process (POMDP) whose actions are scene graph changes, ENACT comprises two complementary sequence reordering tasks: forward world modeling (reorder shuffled observations given actions) and inverse world modeling (reorder shuffled actions given observations). While conceptually simple, solving these tasks implicitly demands capabilities central to embodied cognition-affordance recognition, action-effect reasoning, embodied awareness, and interactive, long-horizon memory from partially observable egocentric input, while avoiding low-level image synthesis that could confound the evaluation. We provide a scalable pipeline that synthesizes QA pairs from robotics simulation (BEHAVIOR) and evaluates models on 8,972 QA pairs spanning long-horizon home-scale activities. Experiments reveal a performance gap between frontier VLMs and humans that widens with interaction horizon. Models consistently perform better on the inverse task than the forward one and exhibit anthropocentric biases, including a preference for right-handed actions and degradation when camera intrinsics or viewpoints deviate from human vision. Website at https://enact-embodied-cognition.github.io/.

Authors:Vladimer Khasia
Title: Primal: A Unified Deterministic Framework for Quasi-Orthogonal Hashing and Manifold Learning
Abstract:
We present Primal, a deterministic feature mapping framework that harnesses the number-theoretic independence of prime square roots to construct robust, tunable vector representations. Diverging from standard stochastic projections (e.g., Random Fourier Features), our method exploits the Besicovitch property to create irrational frequency modulations that guarantee infinite non-repeating phase trajectories. We formalize two distinct algorithmic variants: (1) StaticPrime, a sequence generation method that produces temporal position encodings empirically approaching the theoretical Welch bound for quasi-orthogonality; and (2) DynamicPrime, a tunable projection layer for input-dependent feature mapping. A central novelty of the dynamic framework is its ability to unify two disparate mathematical utility classes through a single scaling parameter σ. In the low-frequency regime, the method acts as an isometric kernel map, effectively linearizing non-convex geometries (e.g., spirals) to enable high-fidelity signal reconstruction and compressive sensing. Conversely, the high-frequency regime induces chaotic phase wrapping, transforming the projection into a maximum-entropy one-way hash suitable for Hyperdimensional Computing and privacy-preserving Split Learning. Empirical evaluations demonstrate that our framework yields superior orthogonality retention and distribution tightness compared to normalized Gaussian baselines, establishing it as a computationally efficient, mathematically rigorous alternative to random matrix projections. The code is available at https://github.com/VladimerKhasia/primal

Authors:Asad Aali, Muhammad Ahmed Mohsin, Vasiliki Bikia, Arnav Singhvi, Richard Gaus, Suhana Bedi, Hejie Cui, Miguel Fuentes, Alyssa Unell, Yifan Mai, Jordan Cahoon, Michael Pfeffer, Roxana Daneshjou, Sanmi Koyejo, Emily Alsentzer, Christopher Potts, Nigam H. Shah, Akshay S. Chaudhari
Title: Structured Prompting Enables More Robust Evaluation of Language Models
Abstract:
As language models (LMs) are increasingly adopted across domains, high-quality benchmarking frameworks that accurately estimate performance are essential for guiding deployment decisions. While frameworks such as Holistic Evaluation of Language Models (HELM) enable broad evaluation across tasks, they often rely on fixed prompts that fail to generalize across LMs, yielding unrepresentative performance estimates. Unless we approximate each LM's ceiling (maximum achievable via changes to the prompt), we risk underestimating performance. Declarative prompting frameworks, such as DSPy, offer a scalable alternative to manual prompt engineering by crafting structured prompts that can be optimized per task. However, such frameworks have not been systematically evaluated across established benchmarks. We present a reproducible DSPy+HELM framework that introduces structured prompting methods which elicit reasoning, enabling more accurate LM benchmarking. Using four prompting methods, we evaluate four frontier LMs across seven benchmarks (general/medical domain) against existing HELM baseline scores. We find that without structured prompting: (i) HELM underestimates LM performance (by 4% average), (ii) performance estimates vary more across benchmarks ($+$2% standard deviation), (iii) performance gaps are misrepresented (leaderboard rankings flip on 3/7 benchmarks), and (iv) introducing chain-of-thought reduces LM sensitivity to prompt design (smaller $Δ$ across prompts). To our knowledge, this is the first benchmarking study to systematically integrate structured prompting into an established evaluation framework, demonstrating how scalable performance-ceiling approximation yields more robust, decision-useful benchmarks. We open-source (i) DSPy+HELM Integration (https://github.com/stanford-crfm/helm/pull/3893) and (ii) Prompt Optimization Pipeline (https://github.com/StanfordMIMI/dspy-helm).

Authors:Rio Alexa Fear, Payel Mukhopadhyay, Michael McCabe, Alberto Bietti, Miles Cranmer
Title: Physics Steering: Causal Control of Cross-Domain Concepts in a Physics Foundation Model
Abstract:
Recent advances in mechanistic interpretability have revealed that large language models (LLMs) develop internal representations corresponding not only to concrete entities but also distinct, human-understandable abstract concepts and behaviour. Moreover, these hidden features can be directly manipulated to steer model behaviour. However, it remains an open question whether this phenomenon is unique to models trained on inherently structured data (ie. language, images) or if it is a general property of foundation models. In this work, we investigate the internal representations of a large physics-focused foundation model. Inspired by recent work identifying single directions in activation space for complex behaviours in LLMs, we extract activation vectors from the model during forward passes over simulation datasets for different physical regimes. We then compute "delta" representations between the two regimes. These delta tensors act as concept directions in activation space, encoding specific physical features. By injecting these concept directions back into the model during inference, we can steer its predictions, demonstrating causal control over physical behaviours, such as inducing or removing some particular physical feature from a simulation. These results suggest that scientific foundation models learn generalised representations of physical principles. They do not merely rely on superficial correlations and patterns in the simulations. Our findings open new avenues for understanding and controlling scientific foundation models and has implications for AI-enabled scientific discovery.

Authors:Xiaojiao Xiao, Qinmin Vivian Hu, Tae Hyun Kim, Guanghui Wang
Title: Adversarial Multi-Task Learning for Liver Tumor Segmentation, Dynamic Enhancement Regression, and Classification
Abstract:
Liver tumor segmentation, dynamic enhancement regression, and classification are critical for clinical assessment and diagnosis. However, no prior work has attempted to achieve these tasks simultaneously in an end-to-end framework, primarily due to the lack of an effective framework that captures inter-task relevance for mutual improvement and the absence of a mechanism to extract dynamic MRI information effectively. To address these challenges, we propose the Multi-Task Interaction adversarial learning Network (MTI-Net), a novel integrated framework designed to tackle these tasks simultaneously. MTI-Net incorporates Multi-domain Information Entropy Fusion (MdIEF), which utilizes entropy-aware, high-frequency spectral information to effectively integrate features from both frequency and spectral domains, enhancing the extraction and utilization of dynamic MRI data. The network also introduces a task interaction module that establishes higher-order consistency between segmentation and regression, thus fostering inter-task synergy and improving overall performance. Additionally, we designed a novel task-driven discriminator (TDD) to capture internal high-order relationships between tasks. For dynamic MRI information extraction, we employ a shallow Transformer network to perform positional encoding, which captures the relationships within dynamic MRI sequences. In experiments on a dataset of 238 subjects, MTI-Net demonstrates high performance across multiple tasks, indicating its strong potential for assisting in the clinical assessment of liver tumors. The code is available at: https://github.com/xiaojiao929/MTI-Net.

Authors:Karen Ullrich, Jingtong Su, Claudia Shi, Arjun Subramonian, Amir Bar, Ivan Evtimov, Nikolaos Tsilivis, Randall Balestriero, Julia Kempe, Mark Ibrahim
Title: OpenApps: Simulating Environment Variations to Measure UI-Agent Reliability
Abstract:
Reliability is key to realizing the promise of autonomous UI-Agents, multimodal agents that directly interact with apps in the same manner as humans, as users must be able to trust an agent to complete a given task. Current evaluations rely on fixed environments, often clones of existing apps, which are limited in that they can only shed light on whether or how often an agent can complete a task within a specific environment. When deployed however, agents are likely to encounter variations in app design and content that can affect an agent's ability to complete a task. To address this blind spot of measuring agent reliability across app variations, we develop OpenApps, a light-weight open-source ecosystem with six apps (messenger, calendar, maps, etc.) that are configurable in appearance and content. OpenApps requires just a single CPU to run, enabling easy generation and deployment of thousands of versions of each app. Specifically, we run more than 10,000 independent evaluations to study reliability across seven leading multimodal agents. We find that while standard reliability within a fixed app is relatively stable, reliability can vary drastically when measured across app variations. Task success rates for many agents can fluctuate by more than $50\%$ across app variations. For example, Kimi-VL-3B's average success across all tasks fluctuates from $63\%$ to just $4\%$ across app versions. We also find agent behaviors such as looping or hallucinating actions can differ drastically depending on the environment configuration. These initial findings highlight the importance of measuring reliability along this new dimension of app variations. OpenApps is available at https://facebookresearch.github.io/OpenApps/

Authors:Udari Madhushani Sehwag, Shayan Shabihi, Alex McAvoy, Vikash Sehwag, Yuancheng Xu, Dalton Towers, Furong Huang
Title: PropensityBench: Evaluating Latent Safety Risks in Large Language Models via an Agentic Approach
Abstract:
Recent advances in Large Language Models (LLMs) have sparked concerns over their potential to acquire and misuse dangerous or high-risk capabilities, posing frontier risks. Current safety evaluations primarily test for what a model \textit{can} do - its capabilities - without assessing what it $\textit{would}$ do if endowed with high-risk capabilities. This leaves a critical blind spot: models may strategically conceal capabilities or rapidly acquire them, while harboring latent inclinations toward misuse. We argue that $\textbf{propensity}$ - the likelihood of a model to pursue harmful actions if empowered - is a critical, yet underexplored, axis of safety evaluation. We present $\textbf{PropensityBench}$, a novel benchmark framework that assesses the proclivity of models to engage in risky behaviors when equipped with simulated dangerous capabilities using proxy tools. Our framework includes 5,874 scenarios with 6,648 tools spanning four high-risk domains: cybersecurity, self-proliferation, biosecurity, and chemical security. We simulate access to powerful capabilities via a controlled agentic environment and evaluate the models' choices under varying operational pressures that reflect real-world constraints or incentives models may encounter, such as resource scarcity or gaining more autonomy. Across open-source and proprietary frontier models, we uncover 9 alarming signs of propensity: models frequently choose high-risk tools when under pressure, despite lacking the capability to execute such actions unaided. These findings call for a shift from static capability audits toward dynamic propensity assessments as a prerequisite for deploying frontier AI systems safely. Our code is available at https://github.com/scaleapi/propensity-evaluation.

Authors:Mingming Zhao, Xiaokang Wei, Yuanqi Shao, Kaiwen Zhou, Lin Yang, Siwei Rao, Junhui Zhan, Zhitang Chen
Title: $A^2Flow:$ Automating Agentic Workflow Generation via Self-Adaptive Abstraction Operators
Abstract:
Large language models (LLMs) have shown strong potential in automating the design of agentic workflows. However, existing methods still rely heavily on manually predefined operators, limiting generalization and scalability. To address this issue, we propose $A^2Flow$, a fully automated framework for agentic workflow generation based on self-adaptive abstraction operators. $A^2Flow$ employs a three-stage operator extraction process: 1) Case-based Initial Operator Generation: leveraging expert demonstrations and LLM reasoning to generate case-specific operators; 2) Operator Clustering and Preliminary Abstraction: grouping similar operators across tasks to form preliminary abstractions; and 3) Deep Extraction for Abstract Execution Operators: applying long chain-of-thought prompting and multi-path reasoning to derive compact and generalizable execution operators. These operators serve as reusable building blocks for workflow construction without manual predefinition. Furthermore, we enhance node-level workflow search with an operator memory mechanism, which retains historical outputs to enrich context and improve decision-making. Experiments on general and embodied benchmarks show that $A^2Flow$ achieves a 2.4\% and 19.3\% average performance improvement and reduces resource usage by 37\% over state-of-the-art baselines. Homepage:https://github.com/pandawei-ele/A2FLOW

Authors:Karen Jia-Hui Li, Simone Balloccu, Ondrej Dusek, Ehud Reiter
Title: When LLMs Can't Help: Real-World Evaluation of LLMs in Nutrition
Abstract:
The increasing trust in large language models (LLMs), especially in the form of chatbots, is often undermined by the lack of their extrinsic evaluation. This holds particularly true in nutrition, where randomised controlled trials (RCTs) are the gold standard, and experts demand them for evidence-based deployment. LLMs have shown promising results in this field, but these are limited to intrinsic setups. We address this gap by running the first RCT involving LLMs for nutrition. We augment a rule-based chatbot with two LLM-based features: (1) message rephrasing for conversational variety and engagement, and (2) nutritional counselling through a fine-tuned model. In our seven-week RCT (n=81), we compare chatbot variants with and without LLM integration. We measure effects on dietary outcome, emotional well-being, and engagement. Despite our LLM-based features performing well in intrinsic evaluation, we find that they did not yield consistent benefits in real-world deployment. These results highlight critical gaps between intrinsic evaluations and real-world impact, emphasising the need for interdisciplinary, human-centred approaches.\footnote{We provide all of our code and results at: \\ \href{https://github.com/saeshyra/diet-chatbot-trial}{https://github.com/saeshyra/diet-chatbot-trial}}

Authors:Tooba Tehreem Sheikh, Jean Lahoud, Rao Muhammad Anwer, Fahad Shahbaz Khan, Salman Khan, Hisham Cholakkal
Title: MedROV: Towards Real-Time Open-Vocabulary Detection Across Diverse Medical Imaging Modalities
Abstract:
Traditional object detection models in medical imaging operate within a closed-set paradigm, limiting their ability to detect objects of novel labels. Open-vocabulary object detection (OVOD) addresses this limitation but remains underexplored in medical imaging due to dataset scarcity and weak text-image alignment. To bridge this gap, we introduce MedROV, the first Real-time Open Vocabulary detection model for medical imaging. To enable open-vocabulary learning, we curate a large-scale dataset, Omnis, with 600K detection samples across nine imaging modalities and introduce a pseudo-labeling strategy to handle missing annotations from multi-source datasets. Additionally, we enhance generalization by incorporating knowledge from a large pre-trained foundation model. By leveraging contrastive learning and cross-modal representations, MedROV effectively detects both known and novel structures. Experimental results demonstrate that MedROV outperforms the previous state-of-the-art foundation model for medical image detection with an average absolute improvement of 40 mAP50, and surpasses closed-set detectors by more than 3 mAP50, while running at 70 FPS, setting a new benchmark in medical detection. Our source code, dataset, and trained model are available at https://github.com/toobatehreem/MedROV.

Authors:Ryan Burgert, Charles Herrmann, Forrester Cole, Michael S Ryoo, Neal Wadhwa, Andrey Voynov, Nataniel Ruiz
Title: MotionV2V: Editing Motion in a Video
Abstract:
While generative video models have achieved remarkable fidelity and consistency, applying these capabilities to video editing remains a complex challenge. Recent research has explored motion controllability as a means to enhance text-to-video generation or image animation; however, we identify precise motion control as a promising yet under-explored paradigm for editing existing videos. In this work, we propose modifying video motion by directly editing sparse trajectories extracted from the input. We term the deviation between input and output trajectories a "motion edit" and demonstrate that this representation, when coupled with a generative backbone, enables powerful video editing capabilities. To achieve this, we introduce a pipeline for generating "motion counterfactuals", video pairs that share identical content but distinct motion, and we fine-tune a motion-conditioned video diffusion architecture on this dataset. Our approach allows for edits that start at any timestamp and propagate naturally. In a four-way head-to-head user study, our model achieves over 65 percent preference against prior work. Please see our project page: https://ryanndagreat.github.io/MotionV2V

Authors:Jiaru Zou, Xiyuan Yang, Ruizhong Qiu, Gaotang Li, Katherine Tieu, Pan Lu, Ke Shen, Hanghang Tong, Yejin Choi, Jingrui He, James Zou, Mengdi Wang, Ling Yang
Title: Latent Collaboration in Multi-Agent Systems
Abstract:
Multi-agent systems (MAS) extend large language models (LLMs) from independent single-model reasoning to coordinative system-level intelligence. While existing LLM agents depend on text-based mediation for reasoning and communication, we take a step forward by enabling models to collaborate directly within the continuous latent space. We introduce LatentMAS, an end-to-end training-free framework that enables pure latent collaboration among LLM agents. In LatentMAS, each agent first performs auto-regressive latent thoughts generation through last-layer hidden embeddings. A shared latent working memory then preserves and transfers each agent's internal representations, ensuring lossless information exchange. We provide theoretical analyses establishing that LatentMAS attains higher expressiveness and lossless information preservation with substantially lower complexity than vanilla text-based MAS. In addition, empirical evaluations across 9 comprehensive benchmarks spanning math and science reasoning, commonsense understanding, and code generation show that LatentMAS consistently outperforms strong single-model and text-based MAS baselines, achieving up to 14.6% higher accuracy, reducing output token usage by 70.8%-83.7%, and providing 4x-4.3x faster end-to-end inference. These results demonstrate that our new latent collaboration framework enhances system-level reasoning quality while offering substantial efficiency gains without any additional training. Code and data are fully open-sourced at https://github.com/Gen-Verse/LatentMAS.

Authors:Wei He, Kai Han, Hang Zhou, Hanting Chen, Zhicheng Liu, Xinghao Chen, Yunhe Wang
Title: ROOT: Robust Orthogonalized Optimizer for Neural Network Training
Abstract:
The optimization of large language models (LLMs) remains a critical challenge, particularly as model scaling exacerbates sensitivity to algorithmic imprecision and training instability. Recent advances in optimizers have improved convergence efficiency through momentum orthogonalization, but suffer from two key robustness limitations: dimensional fragility in orthogonalization precision and vulnerability to outlier-induced noise. To address these robustness challenges, we introduce ROOT, a Robust Orthogonalized Optimizer that enhances training stability through dual robustness mechanisms. First, we develop a dimension-robust orthogonalization scheme using adaptive Newton iterations with fine-grained coefficients tailored to specific matrix sizes, ensuring consistent precision across diverse architectural configurations. Second, we introduce an optimization-robust framework via proximal optimization that suppresses outlier noise while preserving meaningful gradient directions. Extensive experiments demonstrate that ROOT achieves significantly improved robustness, with faster convergence and superior final performance compared to both Muon and Adam-based optimizers, particularly in noisy and non-convex scenarios. Our work establishes a new paradigm for developing robust and precise optimizers capable of handling the complexities of modern large-scale model training. The code will be available at https://github.com/huawei-noah/noah-research/tree/master/ROOT.

Authors:Guangyuan Li, Rongzhen Zhao, Jinhong Deng, Yanbo Wang, Joni Pajarinen
Title: Object-Centric Vision Token Pruning for Vision Language Models
Abstract:
In Vision Language Models (VLMs), vision tokens are quantity-heavy yet information-dispersed compared with language tokens, thus consume too much unnecessary computation. Pruning redundant vision tokens for high VLM inference efficiency has been continuously studied but all existing methods resort to indirect and non-guaranteed ways. We propose OC-VTP, a direct and guaranteed approach to select the most representative vision tokens for high-efficiency yet accuracy-preserving VLM inference. Our OC-VTP requires merely light-weight pre-training of a small object-centric vision token pruner, which can then be inserted into existing VLMs, without fine-tuning of any models on any datasets. It is gauranteed that the most representative vision tokens are kept by minimizing the error in reconstructing the original unpruned tokens from the selected ones. Across any vision pruning ratios, i.e., inference efficiency, our OC-VTP consistently helps mainstream VLMs to preserve the highest inference accuracy. Our pruning also demonstrates interesting interpretability. Our codes are available at https://github.com/GarryLarry010131/OC-VTP.

Authors:Hmrishav Bandyopadhyay, Nikhil Pinnaparaju, Rahim Entezari, Jim Scott, Yi-Zhe Song, Varun Jampani
Title: Block Cascading: Training Free Acceleration of Block-Causal Video Models
Abstract:
Block-causal video generation faces a stark speed-quality trade-off: small 1.3B models manage only 16 FPS while large 14B models crawl at 4.5 FPS, forcing users to choose between responsiveness and quality. Block Cascading significantly mitigates this trade-off through training-free parallelization. Our key insight: future video blocks do not need fully denoised current blocks to begin generation. By starting block generation with partially denoised context from predecessors, we transform sequential pipelines into parallel cascades where multiple blocks denoise simultaneously. With 5 GPUs exploiting temporal parallelism, we achieve ~2x acceleration across all model scales: 1.3B models accelerate from 16 to 30 FPS, 14B models from 4.5 to 12.5 FPS. Beyond inference speed, Block Cascading eliminates overhead from KV-recaching (of ~200ms) during context switches for interactive generation. Extensive evaluations validated against multiple block-causal pipelines demonstrate no significant loss in generation quality when switching from block-causal to Block Cascading pipelines for inference. Project Page: https://hmrishavbandy.github.io/block_cascading_page/

Authors:Jiazhao Shi, Pan Pan, Haotian Shi
Title: 3D Motion Perception of Binocular Vision Target with PID-CNN
Abstract:
This article trained a network for perceiving three-dimensional motion information of binocular vision target, which can provide real-time three-dimensional coordinate, velocity, and acceleration, and has a basic spatiotemporal perception capability. Understood the ability of neural networks to fit nonlinear problems from the perspective of PID. Considered a single-layer neural network as using a second-order difference equation and a nonlinearity to describe a local problem. Multilayer networks gradually transform the raw representation to the desired representation through multiple such combinations. Analysed some reference principles for designing neural networks. Designed a relatively small PID convolutional neural network, with a total of 17 layers and 413 thousand parameters. Implemented a simple but practical feature reuse method by concatenation and pooling. The network was trained and tested using the simulated randomly moving ball datasets, and the experimental results showed that the prediction accuracy was close to the upper limit that the input image resolution can represent. Analysed the experimental results and errors, as well as the existing shortcomings and possible directions for improvement. Finally, discussed the advantages of high-dimensional convolution in improving computational efficiency and feature space utilization. As well as the potential advantages of using PID information to implement memory and attention mechanisms.

Authors:Baoshun Shi, Ke Jiang, Qiusheng Lian, Xinran Yu, Huazhu Fu
Title: Prompting Lipschitz-constrained network for multiple-in-one sparse-view CT reconstruction
Abstract:
Despite significant advancements in deep learning-based sparse-view computed tomography (SVCT) reconstruction algorithms, these methods still encounter two primary limitations: (i) It is challenging to explicitly prove that the prior networks of deep unfolding algorithms satisfy Lipschitz constraints due to their empirically designed nature. (ii) The substantial storage costs of training a separate model for each setting in the case of multiple views hinder practical clinical applications. To address these issues, we elaborate an explicitly provable Lipschitz-constrained network, dubbed LipNet, and integrate an explicit prompt module to provide discriminative knowledge of different sparse sampling settings, enabling the treatment of multiple sparse view configurations within a single model. Furthermore, we develop a storage-saving deep unfolding framework for multiple-in-one SVCT reconstruction, termed PromptCT, which embeds LipNet as its prior network to ensure the convergence of its corresponding iterative algorithm. In simulated and real data experiments, PromptCT outperforms benchmark reconstruction algorithms in multiple-in-one SVCT reconstruction, achieving higher-quality reconstructions with lower storage costs. On the theoretical side, we explicitly demonstrate that LipNet satisfies boundary property, further proving its Lipschitz continuity and subsequently analyzing the convergence of the proposed iterative algorithms. The data and code are publicly available at https://github.com/shibaoshun/PromptCT.

Authors:Rui Lin, Zhiyue Wu, Jiahe Le, Kangdi Wang, Weixiong Chen, Junyu Dai, Tao Jiang
Title: DUO-TOK: Dual-Track Semantic Music Tokenizer for Vocal-Accompaniment Generation
Abstract:
Duo-Tok is a source-aware dual-codebook tokenizer for vocal-accompaniment music that targets the growing tension between reconstruction quality and language-model (LM) learnability in modern lyrics-to-song systems. Existing codecs either prioritize high-fidelity reconstruction with difficult-to-model acoustic tokens or compress aggressively into semantic tokens that are LM-friendly but lossy, and they rarely make the tokenizer itself aware of dual-track structure. Duo-Tok follows a four-stage, SSL-centered pipeline: we first pretrain a BEST-RQ-style encoder on large-scale audio, then stabilize and factorize the representation with Gaussian replacement noise and multi-task supervision, before freezing the encoder to learn SimVQ-based dual codebooks with hard routing for vocals and accompaniment, and finally training latent diffusion decoders on top of the discrete tokens. Duo-Tok at 0.75 kbps shifts the empirical reconstruction-generation Pareto frontier, achieving the best music-tagging AP and the lowest vocabulary-normalized LM perplexity among compared codecs while maintaining reconstruction quality comparable to state-of-the-art music tokenizers.

Authors:Yuanzhe Li, Hang Zhong, Steffen Müller
Title: Multi-Context Fusion Transformer for Pedestrian Crossing Intention Prediction in Urban Environments
Abstract:
Pedestrian crossing intention prediction is essential for autonomous vehicles to improve pedestrian safety and reduce traffic accidents. However, accurate pedestrian intention prediction in urban environments remains challenging due to the multitude of factors affecting pedestrian behavior. In this paper, we propose a multi-context fusion Transformer (MFT) that leverages diverse numerical contextual attributes across four key dimensions, encompassing pedestrian behavior context, environmental context, pedestrian localization context and vehicle motion context, to enable accurate pedestrian intention prediction. MFT employs a progressive fusion strategy, where mutual intra-context attention enables reciprocal interactions within each context, thereby facilitating feature sequence fusion and yielding a context token as a context-specific representation. This is followed by mutual cross-context attention, which integrates features across contexts with a global CLS token serving as a compact multi-context representation. Finally, guided intra-context attention refines context tokens within each context through directed interactions, while guided cross-context attention strengthens the global CLS token to promote multi-context fusion via guided information propagation, yielding deeper and more efficient integration. Experimental results validate the superiority of MFT over state-of-the-art methods, achieving accuracy rates of 73%, 93%, and 90% on the JAADbeh, JAADall, and PIE datasets, respectively. Extensive ablation studies are further conducted to investigate the effectiveness of the network architecture and contribution of different input context. Our code is open-source: https://github.com/ZhongHang0307/Multi-Context-Fusion-Transformer.

Authors:Mihir Sahasrabudhe
Title: Directional Optimization Asymmetry in Transformers: A Synthetic Stress Test
Abstract:
Transformers are theoretically reversal-invariant: their function class does not prefer left-to-right over right-to-left mappings. Yet empirical studies on natural language repeatedly report a "reversal curse," and recent work on temporal asymmetry in LLMs suggests that real-world corpora carry their own arrow of time. This leaves an unresolved question: do directional failures stem from linguistic statistics, or from the architecture itself? We cut through this ambiguity with a fully synthetic, entropy-controlled benchmark designed as a clean-room stress test for directional learning. Using random string mappings with tunable branching factor K, we construct forward tasks with zero conditional entropy and inverse tasks with analytically determined entropy floors. Excess loss above these floors reveals that even scratch-trained GPT-2 models exhibit a strong, reproducible directional optimization gap (e.g., 1.16 nats at K=5), far larger than that of an MLP trained on the same data. Pre-trained initializations shift optimization behavior but do not eliminate this gap, while LoRA encounters a sharp capacity wall on high-entropy inverse mappings. Together, these results isolate a minimal, semantics-free signature of directional friction intrinsic to causal Transformer training-one that persists even when linguistic priors, token frequencies, and corpus-level temporal asymmetries are removed. Our benchmark provides a controlled instrument for dissecting directional biases in modern sequence models and motivates deeper mechanistic study of why inversion remains fundamentally harder for Transformers.

Authors:Qiyao Wei, Edward Morrell, Lea Goetz, Mihaela van der Schaar
Title: Semantic-KG: Using Knowledge Graphs to Construct Benchmarks for Measuring Semantic Similarity
Abstract:
Evaluating the open-form textual responses generated by Large Language Models (LLMs) typically requires measuring the semantic similarity of the response to a (human generated) reference. However, there is evidence that current semantic similarity methods may capture syntactic or lexical forms over semantic content. While benchmarks exist for semantic equivalence, they often suffer from high generation costs due to reliance on subjective human judgment, limited availability for domain-specific applications, and unclear definitions of equivalence. This paper introduces a novel method for generating benchmarks to evaluate semantic similarity methods for LLM outputs, specifically addressing these limitations. Our approach leverages knowledge graphs (KGs) to generate pairs of natural-language statements that are semantically similar or dissimilar, with dissimilar pairs categorized into one of four sub-types. We generate benchmark datasets in four different domains (general knowledge, biomedicine, finance, biology), and conduct a comparative study of semantic similarity methods including traditional natural language processing scores and LLM-as-a-judge predictions. We observe that the sub-type of semantic variation, as well as the domain of the benchmark impact the performance of semantic similarity methods, with no method being consistently superior. Our results present important implications for the use of LLM-as-a-judge in detecting the semantic content of text. Code is available at https://github.com/QiyaoWei/semantic-kg and the dataset is available at https://huggingface.co/datasets/QiyaoWei/Semantic-KG.

Authors:Jiaqi Liu, Kaiwen Xiong, Peng Xia, Yiyang Zhou, Haonian Ji, Lu Feng, Siwei Han, Mingyu Ding, Huaxiu Yao
Title: Agent0-VL: Exploring Self-Evolving Agent for Tool-Integrated Vision-Language Reasoning
Abstract:
Vision-language agents have achieved remarkable progress in a variety of multimodal reasoning tasks; however, their learning remains constrained by the limitations of human-annotated supervision. Recent self-rewarding approaches attempt to overcome this constraint by allowing models to act as their own critics or reward providers. Yet, purely text-based self-evaluation struggles to verify complex visual reasoning steps and often suffers from evaluation hallucinations. To address these challenges, inspired by recent advances in tool-integrated reasoning, we propose Agent0-VL, a self-evolving vision-language agent that achieves continual improvement with tool-integrated reasoning. Agent0-VL incorporates tool usage not only into reasoning but also into self-evaluation and self-repair, enabling the model to introspect, verify, and refine its reasoning through evidence-grounded analysis. It unifies two synergistic roles within a single LVLM: a Solver that performs multi-turn tool-integrated reasoning, and a Verifier that generates structured feedback and fine-grained self-rewards through tool-grounded critique. These roles interact through a Self-Evolving Reasoning Cycle, where tool-based verification and reinforcement learning jointly align the reasoning and evaluation distributions for stable self-improvement. Through this zero-external-reward evolution, Agent0-VL aligns its reasoning and verification behaviors without any human annotation or external reward models, achieving continual self-improvement. Experiments on geometric problem solving and visual scientific analysis show that Agent0-VL achieves an 12.5% improvement over the base model. Our code is available at https://github.com/aiming-lab/Agent0.

Authors:Junhong Liu, Yuan Zhang, Tao Huang, Wenchao Xu, Renyu Yang
Title: Distilling Cross-Modal Knowledge via Feature Disentanglement
Abstract:
Knowledge distillation (KD) has proven highly effective for compressing large models and enhancing the performance of smaller ones. However, its effectiveness diminishes in cross-modal scenarios, such as vision-to-language distillation, where inconsistencies in representation across modalities lead to difficult knowledge transfer. To address this challenge, we propose frequency-decoupled cross-modal knowledge distillation, a method designed to decouple and balance knowledge transfer across modalities by leveraging frequency-domain features. We observed that low-frequency features exhibit high consistency across different modalities, whereas high-frequency features demonstrate extremely low cross-modal similarity. Accordingly, we apply distinct losses to these features: enforcing strong alignment in the low-frequency domain and introducing relaxed alignment for high-frequency features. We also propose a scale consistency loss to address distributional shifts between modalities, and employ a shared classifier to unify feature spaces. Extensive experiments across multiple benchmark datasets show our method substantially outperforms traditional KD and state-of-the-art cross-modal KD approaches. Code is available at https://github.com/Johumliu/FD-CMKD.

Authors:Xuewen Liu, Zhikai Li, Jing Zhang, Mengjuan Chen, Qingyi Gu
Title: Rectified SpaAttn: Revisiting Attention Sparsity for Efficient Video Generation
Abstract:
Diffusion Transformers dominate video generation, but the quadratic complexity of attention computation introduces substantial latency. Attention sparsity reduces computational costs by focusing on critical tokens while ignoring non-critical tokens. However, existing methods suffer from severe performance degradation. In this paper, we revisit attention sparsity and reveal that existing methods induce systematic biases in attention allocation: (1) excessive focus on critical tokens amplifies their attention weights; (2) complete neglect of non-critical tokens causes the loss of relevant attention weights. To address these issues, we propose Rectified SpaAttn, which rectifies attention allocation with implicit full attention reference, thereby enhancing the alignment between sparse and full attention maps. Specifically: (1) for critical tokens, we show that their bias is proportional to the sparse attention weights, with the ratio governed by the amplified weights. Accordingly, we propose Isolated-Pooling Attention Reallocation, which calculates accurate rectification factors by reallocating multimodal pooled weights. (2) for non-critical tokens, recovering attention weights from the pooled query-key yields attention gains but also introduces pooling errors. Therefore, we propose Gain-Aware Pooling Rectification, which ensures that the rectified gain consistently surpasses the induced error. Moreover, we customize and integrate the Rectified SpaAttn kernel using Triton, achieving up to 3.33 and 2.08 times speedups on HunyuanVideo and Wan 2.1, respectively, while maintaining high generation quality. We release Rectified SpaAttn as open-source at https://github.com/BienLuky/Rectified-SpaAttn .

Authors:Linqi Zhou, Mathias Parger, Ayaan Haque, Jiaming Song
Title: Terminal Velocity Matching
Abstract:
We propose Terminal Velocity Matching (TVM), a generalization of flow matching that enables high-fidelity one- and few-step generative modeling. TVM models the transition between any two diffusion timesteps and regularizes its behavior at its terminal time rather than at the initial time. We prove that TVM provides an upper bound on the $2$-Wasserstein distance between data and model distributions when the model is Lipschitz continuous. However, since Diffusion Transformers lack this property, we introduce minimal architectural changes that achieve stable, single-stage training. To make TVM efficient in practice, we develop a fused attention kernel that supports backward passes on Jacobian-Vector Products, which scale well with transformer architectures. On ImageNet-256x256, TVM achieves 3.29 FID with a single function evaluation (NFE) and 1.99 FID with 4 NFEs. It similarly achieves 4.32 1-NFE FID and 2.94 4-NFE FID on ImageNet-512x512, representing state-of-the-art performance for one/few-step models from scratch.

Authors:Noah Frahm, Prakrut Patel, Yue Zhang, Shoubin Yu, Mohit Bansal, Roni Sengupta
Title: Prune-Then-Plan: Step-Level Calibration for Stable Frontier Exploration in Embodied Question Answering
Abstract:
Large vision-language models (VLMs) have improved embodied question answering (EQA) agents by providing strong semantic priors for open-vocabulary reasoning. However, when used directly for step-level exploration, VLMs often exhibit frontier oscillations, unstable back-and-forth movements caused by overconfidence and miscalibration, leading to inefficient navigation and degraded answer quality. We propose Prune-Then-Plan, a simple and effective framework that stabilizes exploration through step-level calibration. Instead of trusting raw VLM scores, our method prunes implausible frontier choices using a Holm-Bonferroni inspired pruning procedure and then delegates final decisions to a coverage-based planner. This separation converts overconfident predictions into conservative, interpretable actions by relying on human-level judgments to calibrate the step-level behavior of VLMs. Integrated into the 3D-Mem EQA framework, our approach achieves relative improvements of up to 49% and 33% in visually grounded SPL and LLM-Match metrics respectively over baselines. Overall, our method achieves better scene coverage under equal exploration budgets on both OpenEQA and EXPRESS-Bench datasets.

Authors:Yang Liu, Xiaolong Zhong, Ling Jiang
Title: Xmodel-2.5: 1.3B Data-Efficient Reasoning SLM
Abstract:
Large language models deliver strong reasoning and tool-use skills, yet their computational demands make them impractical for edge or cost-sensitive deployments. We present \textbf{Xmodel-2.5}, a 1.3-billion-parameter small language model designed as a \emph{drop-in agent core}. Training with maximal-update parameterization ($μ$P) allows hyper-parameters tuned on a 20M-parameter proxy to transfer directly to the full model, even under the parameter-tied \emph{tie-word-embedding} architecture. A 1.4T-token Warmup--Stable--Decay curriculum is used, and we further show that \textbf{switching from AdamW to Muon during the decay phase} improves the 13-task reasoning average by 4.58\,\% while keeping every other hyper-parameter fixed, verifying that early AdamW stability can be paired with late Muon sharpening for better downstream performance. FP8-mixed-precision training balances accuracy and throughput. All checkpoints, recipes, and evaluation code are released under the Apache-2.0 license.\footnote{https://huggingface.co/XiaoduoAILab/Xmodel-2.5 and https://huggingface.co/XiaoduoAILab/Xmodel-2.5-history (training checkpoints).} Training code and evaluation harness: https://github.com/XiaoduoAILab/Xmodel-2.5.

Authors:Dong Jing, Gang Wang, Jiaqi Liu, Weiliang Tang, Zelong Sun, Yunchao Yao, Zhenyu Wei, Yunhui Liu, Zhiwu Lu, Mingyu Ding
Title: Mixture of Horizons in Action Chunking
Abstract:
Vision-language-action (VLA) models have shown remarkable capabilities in robotic manipulation, but their performance is sensitive to the $\textbf{action chunk length}$ used during training, termed $\textbf{horizon}$. Our empirical study reveals an inherent trade-off: longer horizons provide stronger global foresight but degrade fine-grained accuracy, while shorter ones sharpen local control yet struggle on long-term tasks, implying fixed choice of single horizons being suboptimal. To mitigate the trade-off, we propose a $\textbf{mixture of horizons (MoH)}$ strategy. MoH rearranges the action chunk into several segments with different horizons, processes them in parallel with a shared action transformer, and fuses outputs with a light linear gate. It has three appealing benefits. 1) MoH exploits long-term foresight and short-term precision jointly within a single model, improving both performance and generalizability to complex tasks. 2) MoH is plug-and-play for full-attention action modules with minimal training or inference overhead. 3) MoH enables dynamic inference with adaptive horizons, which selects stable actions through cross-horizon consensus, achieving 2.5$\times$ higher throughput than baselines while preserving superior performance. Extensive experiments over flow-based policies $π_0$, $π_{0.5}$, and one-step regression policy $π_{\text{reg}}$ demonstrate that MoH yields consistent and significant gains on both simulations and real-world tasks. Notably, under mixed-task setting, $π_{0.5}$ with MoH reaches a new state-of-the-art with 99$\%$ average success rate on LIBERO after only $30k$ training iterations. Project page: https://github.com/Timsty1/MixtureOfHorizons

Authors:Yiming Qin, Bomin Wei, Jiaxin Ge, Konstantinos Kallidromitis, Stephanie Fu, Trevor Darrell, XuDong Wang
Title: Chain-of-Visual-Thought: Teaching VLMs to See and Think Better with Continuous Visual Tokens
Abstract:
Vision-Language Models (VLMs) excel at reasoning in linguistic space but struggle with perceptual understanding that requires dense visual perception, e.g., spatial reasoning and geometric awareness. This limitation stems from the fact that current VLMs have limited mechanisms to capture dense visual information across spatial dimensions. We introduce Chain-of-Visual-Thought (COVT), a framework that enables VLMs to reason not only in words but also through continuous visual tokens-compact latent representations that encode rich perceptual cues. Within a small budget of roughly 20 tokens, COVT distills knowledge from lightweight vision experts, capturing complementary properties such as 2D appearance, 3D geometry, spatial layout, and edge structure. During training, the VLM with COVT autoregressively predicts these visual tokens to reconstruct dense supervision signals (e.g., depth, segmentation, edges, and DINO features). At inference, the model reasons directly in the continuous visual token space, preserving efficiency while optionally decoding dense predictions for interpretability. Evaluated across more than ten diverse perception benchmarks, including CV-Bench, MMVP, RealWorldQA, MMStar, WorldMedQA, and HRBench, integrating COVT into strong VLMs such as Qwen2.5-VL and LLaVA consistently improves performance by 3% to 16% and demonstrates that compact continuous visual thinking enables more precise, grounded, and interpretable multimodal intelligence.

Authors:Zhaolong Su, Wang Lu, Hao Chen, Sharon Li, Jindong Wang
Title: UniGame: Turning a Unified Multimodal Model Into Its Own Adversary
Abstract:
Unified Multimodal Models (UMMs) have shown impressive performance in both understanding and generation with a single architecture. However, UMMs still exhibit a fundamental inconsistency: understanding favors compact embeddings, whereas generation favors reconstruction-rich representations. This structural trade-off produces misaligned decision boundaries, degraded cross-modal coherence, and heightened vulnerability under distributional and adversarial shifts. In this paper, we present UniGame, a self-adversarial post-training framework that directly targets the inconsistencies. By applying a lightweight perturber at the shared token interface, UniGame enables the generation branch to actively seek and challenge fragile understanding, turning the model itself into its own adversary. Experiments demonstrate that UniGame significantly improves the consistency (+4.6%). Moreover, it also achieves substantial improvements in understanding (+3.6%), generation (+0.02), out-of-distribution and adversarial robustness (+4.8% and +6.2% on NaturalBench and AdVQA). The framework is architecture-agnostic, introduces less than 1% additional parameters, and is complementary to existing post-training methods. These results position adversarial self-play as a general and effective principle for enhancing the coherence, stability, and unified competence of future multimodal foundation models. The official code is available at: https://github.com/AIFrontierLab/UniGame

Authors:Zehong Ma, Longhui Wei, Shuai Wang, Shiliang Zhang, Qi Tian
Title: DeCo: Frequency-Decoupled Pixel Diffusion for End-to-End Image Generation
Abstract:
Pixel diffusion aims to generate images directly in pixel space in an end-to-end fashion. This approach avoids the limitations of VAE in the two-stage latent diffusion, offering higher model capacity. Existing pixel diffusion models suffer from slow training and inference, as they usually model both high-frequency signals and low-frequency semantics within a single diffusion transformer (DiT). To pursue a more efficient pixel diffusion paradigm, we propose the frequency-DeCoupled pixel diffusion framework. With the intuition to decouple the generation of high and low frequency components, we leverage a lightweight pixel decoder to generate high-frequency details conditioned on semantic guidance from the DiT. This thus frees the DiT to specialize in modeling low-frequency semantics. In addition, we introduce a frequency-aware flow-matching loss that emphasizes visually salient frequencies while suppressing insignificant ones. Extensive experiments show that DeCo achieves superior performance among pixel diffusion models, attaining FID of 1.62 (256x256) and 2.22 (512x512) on ImageNet, closing the gap with latent diffusion methods. Furthermore, our pretrained text-to-image model achieves a leading overall score of 0.86 on GenEval in system-level comparison. Codes are publicly available at https://github.com/Zehong-Ma/DeCo.

Authors:Jaewoo Lee, Archiki Prasad, Justin Chih-Yao Chen, Zaid Khan, Elias Stengel-Eskin, Mohit Bansal
Title: PRInTS: Reward Modeling for Long-Horizon Information Seeking
Abstract:
Information-seeking is a core capability for AI agents, requiring them to gather and reason over tool-generated information across long trajectories. However, such multi-step information-seeking tasks remain challenging for agents backed by language models. While process reward models (PRMs) can guide agents by ranking candidate steps at test-time, existing PRMs, designed for short reasoning with binary judgment, cannot capture richer dimensions of information-seeking steps, such as tool interactions and reasoning over tool outputs, nor handle the rapidly growing context in long-horizon tasks. To address these limitations, we introduce PRInTS, a generative PRM trained with dual capabilities: (1) dense scoring based on the PRM's reasoning across multiple step quality dimensions (e.g., interpretation of tool outputs, tool call informativeness) and (2) trajectory summarization that compresses the growing context while preserving essential information for step evaluation. Extensive evaluations across FRAMES, GAIA (levels 1-3), and WebWalkerQA (easy-hard) benchmarks on multiple models, along with ablations, reveal that best-of-n sampling with PRInTS enhances information-seeking abilities of open-source models as well as specialized agents, matching or surpassing the performance of frontier models with a much smaller backbone agent and outperforming other strong reward modeling baselines.

Authors:Jiayi Zhang, Yiran Peng, Fanqi Kong, Cheng Yang, Yifan Wu, Zhaoyang Yu, Jinyu Xiang, Jianhao Ruan, Jinlin Wang, Maojia Song, HongZhang Liu, Xiangru Tang, Bang Liu, Chenglin Wu, Yuyu Luo
Title: AutoEnv: Automated Environments for Measuring Cross-Environment Agent Learning
Abstract:
Humans naturally adapt to diverse environments by learning underlying rules across worlds with different dynamics, observations, and reward structures. In contrast, existing agents typically demonstrate improvements via self-evolving within a single domain, implicitly assuming a fixed environment distribution. Cross-environment learning has remained largely unmeasured: there is no standard collection of controllable, heterogeneous environments, nor a unified way to represent how agents learn. We address these gaps in two steps. First, we propose AutoEnv, an automated framework that treats environments as factorizable distributions over transitions, observations, and rewards, enabling low-cost (4.12 USD on average) generation of heterogeneous worlds. Using AutoEnv, we construct AutoEnv-36, a dataset of 36 environments with 358 validated levels, on which seven language models achieve 12-49% normalized reward, demonstrating the challenge of AutoEnv-36. Second, we formalize agent learning as a component-centric process driven by three stages of Selection, Optimization, and Evaluation applied to an improvable agent component. Using this formulation, we design eight learning methods and evaluate them on AutoEnv-36. Empirically, the gain of any single learning method quickly decrease as the number of environments increases, revealing that fixed learning methods do not scale across heterogeneous environments. Environment-adaptive selection of learning methods substantially improves performance but exhibits diminishing returns as the method space expands. These results highlight both the necessity and the current limitations of agent learning for scalable cross-environment generalization, and position AutoEnv and AutoEnv-36 as a testbed for studying cross-environment agent learning. The code is avaiable at https://github.com/FoundationAgents/AutoEnv.

Authors:Selena Song, Ziming Xu, Zijun Zhang, Kun Zhou, Jiaxian Guo, Lianhui Qin, Biwei Huang
Title: Learning Plug-and-play Memory for Guiding Video Diffusion Models
Abstract:
Diffusion Transformer(DiT) based video generation models have recently achieved impressive visual quality and temporal coherence, but they still frequently violate basic physical laws and commonsense dynamics, revealing a lack of explicit world knowledge. In this work, we explore how to equip them with a plug-and-play memory that injects useful world knowledge. Motivated by in-context memory in Transformer-based LLMs, we conduct empirical studies to show that DiT can be steered via interventions on its hidden states, and simple low-pass and high-pass filters in the embedding space naturally disentangle low-level appearance and high-level physical/semantic cues, enabling targeted guidance. Building on these observations, we propose a learnable memory encoder DiT-Mem, composed of stacked 3D CNNs, low-/high-pass filters, and self-attention layers. The encoder maps reference videos into a compact set of memory tokens, which are concatenated as the memory within the DiT self-attention layers. During training, we keep the diffusion backbone frozen, and only optimize the memory encoder. It yields a rather efficient training process on few training parameters (150M) and 10K data samples, and enables plug-and-play usage at inference time. Extensive experiments on state-of-the-art models demonstrate the effectiveness of our method in improving physical rule following and video fidelity. Our code and data are publicly released here: https://thrcle421.github.io/DiT-Mem-Web/.

Authors:Anglin Liu, Rundong Xue, Xu R. Cao, Yifan Shen, Yi Lu, Xiang Li, Qianqian Chen, Jintai Chen
Title: MedSAM3: Delving into Segment Anything with Medical Concepts
Abstract:
Medical image segmentation is fundamental for biomedical discovery. Existing methods lack generalizability and demand extensive, time-consuming manual annotation for new clinical application. Here, we propose MedSAM-3, a text promptable medical segmentation model for medical image and video segmentation. By fine-tuning the Segment Anything Model (SAM) 3 architecture on medical images paired with semantic conceptual labels, our MedSAM-3 enables medical Promptable Concept Segmentation (PCS), allowing precise targeting of anatomical structures via open-vocabulary text descriptions rather than solely geometric prompts. We further introduce the MedSAM-3 Agent, a framework that integrates Multimodal Large Language Models (MLLMs) to perform complex reasoning and iterative refinement in an agent-in-the-loop workflow. Comprehensive experiments across diverse medical imaging modalities, including X-ray, MRI, Ultrasound, CT, and video, demonstrate that our approach significantly outperforms existing specialist and foundation models. We will release our code and model at https://github.com/Joey-S-Liu/MedSAM3.

Authors:Long Tang, Guoquan Zhen, Jie Hao, Jianbo Zhang, Huiyu Duan, Liang Yuan, Guangtao Zhai
Title: Life-IQA: Boosting Blind Image Quality Assessment through GCN-enhanced Layer Interaction and MoE-based Feature Decoupling
Abstract:
Blind image quality assessment (BIQA) plays a crucial role in evaluating and optimizing visual experience. Most existing BIQA approaches fuse shallow and deep features extracted from backbone networks, while overlooking the unequal contributions to quality prediction. Moreover, while various vision encoder backbones are widely adopted in BIQA, the effective quality decoding architectures remain underexplored. To address these limitations, this paper investigates the contributions of shallow and deep features to BIQA, and proposes a effective quality feature decoding framework via GCN-enhanced \underline{l}ayer\underline{i}nteraction and MoE-based \underline{f}eature d\underline{e}coupling, termed \textbf{(Life-IQA)}. Specifically, the GCN-enhanced layer interaction module utilizes the GCN-enhanced deepest-layer features as query and the penultimate-layer features as key, value, then performs cross-attention to achieve feature interaction. Moreover, a MoE-based feature decoupling module is proposed to decouple fused representations though different experts specialized for specific distortion types or quality dimensions. Extensive experiments demonstrate that Life-IQA shows more favorable balance between accuracy and cost than a vanilla Transformer decoder and achieves state-of-the-art performance on multiple BIQA benchmarks.The code is available at: \href{https://github.com/TANGLONG2/Life-IQA/tree/main}{\texttt{Life-IQA}}.

Authors:Yuchen Ji, Bo Xu, Jie Shi, Jiaqing Liang, Deqing Yang, Yu Mao, Hai Chen, Yanghua Xiao
Title: Skeletons Matter: Dynamic Data Augmentation for Text-to-Query
Abstract:
The task of translating natural language questions into query languages has long been a central focus in semantic parsing. Recent advancements in Large Language Models (LLMs) have significantly accelerated progress in this field. However, existing studies typically focus on a single query language, resulting in methods with limited generalizability across different languages. In this paper, we formally define the Text-to-Query task paradigm, unifying semantic parsing tasks across various query languages. We identify query skeletons as a shared optimization target of Text-to-Query tasks, and propose a general dynamic data augmentation framework that explicitly diagnoses model-specific weaknesses in handling these skeletons to synthesize targeted training data. Experiments on four Text-to-Query benchmarks demonstrate that our method achieves state-of-the-art performance using only a small amount of synthesized data, highlighting the efficiency and generality of our approach and laying a solid foundation for unified research on Text-to-Query tasks. We release our code at https://github.com/jjjycaptain/Skeletron.

Authors:Ryan Wong, Hosea David Yu Fei Ng, Dhananjai Sharma, Glenn Jun Jie Ng, Kavishvaran Srinivasan
Title: Defending Large Language Models Against Jailbreak Exploits with Responsible AI Considerations
Abstract:
Large Language Models (LLMs) remain susceptible to jailbreak exploits that bypass safety filters and induce harmful or unethical behavior. This work presents a systematic taxonomy of existing jailbreak defenses across prompt-level, model-level, and training-time interventions, followed by three proposed defense strategies. First, a Prompt-Level Defense Framework detects and neutralizes adversarial inputs through sanitization, paraphrasing, and adaptive system guarding. Second, a Logit-Based Steering Defense reinforces refusal behavior through inference-time vector steering in safety-sensitive layers. Third, a Domain-Specific Agent Defense employs the MetaGPT framework to enforce structured, role-based collaboration and domain adherence. Experiments on benchmark datasets show substantial reductions in attack success rate, achieving full mitigation under the agent-based defense. Overall, this study highlights how jailbreaks pose a significant security threat to LLMs and identifies key intervention points for prevention, while noting that defense strategies often involve trade-offs between safety, performance, and scalability. Code is available at: https://github.com/Kuro0911/CS5446-Project

Authors:Yuzhi Chen, Yuanchang Xie, Lei Zhao, Pan Liu, Yajie Zou, Chen Wang
Title: GContextFormer: A global context-aware hybrid multi-head attention approach with scaled additive aggregation for multimodal trajectory prediction
Abstract:
Multimodal trajectory prediction generates multiple plausible future trajectories to address vehicle motion uncertainty from intention ambiguity and execution variability. However, HD map-dependent models suffer from costly data acquisition, delayed updates, and vulnerability to corrupted inputs, causing prediction failures. Map-free approaches lack global context, with pairwise attention over-amplifying straight patterns while suppressing transitional patterns, resulting in motion-intention misalignment. This paper proposes GContextFormer, a plug-and-play encoder-decoder architecture with global context-aware hybrid attention and scaled additive aggregation achieving intention-aligned multimodal prediction without map reliance. The Motion-Aware Encoder builds scene-level intention prior via bounded scaled additive aggregation over mode-embedded trajectory tokens and refines per-mode representations under shared global context, mitigating inter-mode suppression and promoting intention alignment. The Hierarchical Interaction Decoder decomposes social reasoning into dual-pathway cross-attention: a standard pathway ensures uniform geometric coverage over agent-mode pairs while a neighbor-context-enhanced pathway emphasizes salient interactions, with gating module mediating their contributions to maintain coverage-focus balance. Experiments on eight highway-ramp scenarios from TOD-VT dataset show GContextFormer outperforms state-of-the-art baselines. Compared to existing transformer models, GContextFormer achieves greater robustness and concentrated improvements in high-curvature and transition zones via spatial distributions. Interpretability is achieved through motion mode distinctions and neighbor context modulation exposing reasoning attribution. The modular architecture supports extensibility toward cross-domain multimodal reasoning tasks. Source: https://fenghy-chen.github.io/sources/.

Authors:Ruize Ma, Minghong Cai, Yilei Jiang, Jiaming Han, Yi Feng, Yingshui Tan, Xiaoyong Zhu, Bo Zhang, Bo Zheng, Xiangyu Yue
Title: ConceptGuard: Proactive Safety in Text-and-Image-to-Video Generation through Multimodal Risk Detection
Abstract:
Recent progress in video generative models has enabled the creation of high-quality videos from multimodal prompts that combine text and images. While these systems offer enhanced controllability, they also introduce new safety risks, as harmful content can emerge from individual modalities or their interaction. Existing safety methods are often text-only, require prior knowledge of the risk category, or operate as post-generation auditors, struggling to proactively mitigate such compositional, multimodal risks. To address this challenge, we present ConceptGuard, a unified safeguard framework for proactively detecting and mitigating unsafe semantics in multimodal video generation. ConceptGuard operates in two stages: First, a contrastive detection module identifies latent safety risks by projecting fused image-text inputs into a structured concept space; Second, a semantic suppression mechanism steers the generative process away from unsafe concepts by intervening in the prompt's multimodal conditioning. To support the development and rigorous evaluation of this framework, we introduce two novel benchmarks: ConceptRisk, a large-scale dataset for training on multimodal risks, and T2VSafetyBench-TI2V, the first benchmark adapted from T2VSafetyBench for the Text-and-Image-to-Video (TI2V) safety setting. Comprehensive experiments on both benchmarks show that ConceptGuard consistently outperforms existing baselines, achieving state-of-the-art results in both risk detection and safe video generation. Our code is available at https://github.com/Ruize-Ma/ConceptGuard.

Authors:Azim Ospanov, Zijin Feng, Jiacheng Sun, Haoli Bai, Xin Shen, Farzan Farnia
Title: HERMES: Towards Efficient and Verifiable Mathematical Reasoning in LLMs
Abstract:
Informal mathematics has been central to modern large language model (LLM) reasoning, offering flexibility and enabling efficient construction of arguments. However, purely informal reasoning is prone to logical gaps and subtle errors that are difficult to detect and correct. In contrast, formal theorem proving provides rigorous, verifiable mathematical reasoning, where each inference step is checked by a trusted compiler in systems such as Lean, but lacks the exploratory freedom of informal problem solving. This mismatch leaves current LLM-based math agents without a principled way to combine the strengths of both paradigms. In this work, we introduce Hermes, the first tool-assisted agent that explicitly interleaves informal reasoning with formally verified proof steps in Lean. The framework performs intermediate formal checking to prevent reasoning drift and employs a memory module that maintains proof continuity across long, multi-step reasoning chains, enabling both exploration and verification within a single workflow. We evaluate Hermes on four challenging mathematical reasoning benchmarks using LLMs of varying parameter scales, from small models to state-of-the-art systems. Across all settings, Hermes reliably improves the reasoning accuracy of base models while substantially reducing token usage and computational cost compared to reward-based approaches. On difficult datasets such as AIME'25, Hermes achieves up to a 67% accuracy improvement while using 80% fewer total inference FLOPs. The implementation and codebase are publicly available at https://github.com/aziksh-ospanov/HERMES.

Authors:Omar Garib, Jayaprakash D. Kambhampaty, Olivia J. Pinon Fischer, Dimitri N. Mavris
Title: AIRHILT: A Human-in-the-Loop Testbed for Multimodal Conflict Detection in Aviation
Abstract:
We introduce AIRHILT (Aviation Integrated Reasoning, Human-in-the-Loop Testbed), a modular and lightweight simulation environment designed to evaluate multimodal pilot and air traffic control (ATC) assistance systems for aviation conflict detection. Built on the open-source Godot engine, AIRHILT synchronizes pilot and ATC radio communications, visual scene understanding from camera streams, and ADS-B surveillance data within a unified, scalable platform. The environment supports pilot- and controller-in-the-loop interactions, providing a comprehensive scenario suite covering both terminal area and en route operational conflicts, including communication errors and procedural mistakes. AIRHILT offers standardized JSON-based interfaces that enable researchers to easily integrate, swap, and evaluate automatic speech recognition (ASR), visual detection, decision-making, and text-to-speech (TTS) models. We demonstrate AIRHILT through a reference pipeline incorporating fine-tuned Whisper ASR, YOLO-based visual detection, ADS-B-based conflict logic, and GPT-OSS-20B structured reasoning, and present preliminary results from representative runway-overlap scenarios, where the assistant achieves an average time-to-first-warning of approximately 7.7 s, with average ASR and vision latencies of approximately 5.9 s and 0.4 s, respectively. The AIRHILT environment and scenario suite are openly available, supporting reproducible research on multimodal situational awareness and conflict detection in aviation; code and scenarios are available at https://github.com/ogarib3/airhilt.

Authors:Haojun Xia, Xiaoxia Wu, Jisen Li, Robert Wu, Junxiong Wang, Jue Wang, Chenxi Li, Aman Singhal, Alay Dilipbhai Shah, Alpay Ariyak, Donglin Zhuang, Zhongzhu Zhou, Ben Athiwaratkun, Zhen Zheng, Shuaiwen Leon Song
Title: Kitty: Accurate and Efficient 2-bit KV Cache Quantization with Dynamic Channel-wise Precision Boost
Abstract:
The KV cache is a dominant memory bottleneck for LLM inference. While 4-bit KV quantization preserves accuracy, 2-bit often degrades it, especially on long-context reasoning. We close this gap via an algorithm-system co-design for mixed-precision KV caching: Kitty. On the algorithm side, extensive experiments show that Dynamic Channel-wise Precision Boost -- which ranks Key-cache channels by sensitivity and keeps only a small fraction at higher precision -- maintains near-zero loss in accuracy drop while approaching 2-bit memory. The main challenge is handling dynamic 4-bit channel boosts while keeping the page layout coalesced and the dequantization uniform, with no scattered reads or hard-coded masks. Kitty addresses these issues by decompose each mixed-precision Key page into two tensors with unified 2-bit precision. Based on this, Kitty provides a page-centric KV layout, Triton-compatible page dequantization kernels, and a lightweight runtime pipeline that preserves coalescing and avoids divergence. Across seven tasks and two model families (Qwen3, LLaMA3), Kitty cuts KV memory by nearly 8x with negligible accuracy loss, enabling up to 8x larger batches and 2.1x-4.1x higher throughput under the same memory budget. We release the full implementation of Kitty at https://github.com/Summer-Summer/Kitty.

Authors:Chunyu Qiang, Kang Yin, Xiaopeng Wang, Yuzhe Liang, Jiahui Zhao, Ruibo Fu, Tianrui Wang, Cheng Gong, Chen Zhang, Longbiao Wang, Jianwu Dang
Title: InstructAudio: Unified speech and music generation with natural language instruction
Abstract:
Text-to-speech (TTS) and text-to-music (TTM) models face significant limitations in instruction-based control. TTS systems usually depend on reference audio for timbre, offer only limited text-level attribute control, and rarely support dialogue generation. TTM systems are constrained by input conditioning requirements that depend on expert knowledge annotations. The high heterogeneity of these input control conditions makes them difficult to joint modeling with speech synthesis. Despite sharing common acoustic modeling characteristics, these two tasks have long been developed independently, leaving open the challenge of achieving unified modeling through natural language instructions. We introduce InstructAudio, a unified framework that enables instruction-based (natural language descriptions) control of acoustic attributes including timbre (gender, age), paralinguistic (emotion, style, accent), and musical (genre, instrument, rhythm, atmosphere). It supports expressive speech, music, and dialogue generation in English and Chinese. The model employs joint and single diffusion transformer layers with a standardized instruction-phoneme input format, trained on 50K hours of speech and 20K hours of music data, enabling multi-task learning and cross-modal alignment. Fig. 1 visualizes performance comparisons with mainstream TTS and TTM models, demonstrating that InstructAudio achieves optimal results on most metrics. To our best knowledge, InstructAudio represents the first instruction-controlled framework unifying speech and music generation. Audio samples are available at: https://qiangchunyu.github.io/InstructAudio/

Authors:Yongkun Du, Pinxuan Chen, Xuye Ying, Zhineng Chen
Title: DocPTBench: Benchmarking End-to-End Photographed Document Parsing and Translation
Abstract:
The advent of Multimodal Large Language Models (MLLMs) has unlocked the potential for end-to-end document parsing and translation. However, prevailing benchmarks such as OmniDocBench and DITrans are dominated by pristine scanned or digital-born documents, and thus fail to adequately represent the intricate challenges of real-world capture conditions, such as geometric distortions and photometric variations. To fill this gap, we introduce DocPTBench, a comprehensive benchmark specifically designed for Photographed Document Parsing and Translation. DocPTBench comprises over 1,300 high-resolution photographed documents from multiple domains, includes eight translation scenarios, and provides meticulously human-verified annotations for both parsing and translation. Our experiments demonstrate that transitioning from digital-born to photographed documents results in a substantial performance decline: popular MLLMs exhibit an average accuracy drop of 18% in end-to-end parsing and 12% in translation, while specialized document parsing models show significant average decrease of 25%. This substantial performance gap underscores the unique challenges posed by documents captured in real-world conditions and reveals the limited robustness of existing models. Dataset and code are available at https://github.com/Topdu/DocPTBench.

Authors:Jungho Lee, Minhyeok Lee, Sunghun Yang, Minseok Kang, Sangyoun Lee
Title: SwiftVGGT: A Scalable Visual Geometry Grounded Transformer for Large-Scale Scenes
Abstract:
3D reconstruction in large-scale scenes is a fundamental task in 3D perception, but the inherent trade-off between accuracy and computational efficiency remains a significant challenge. Existing methods either prioritize speed and produce low-quality results, or achieve high-quality reconstruction at the cost of slow inference times. In this paper, we propose SwiftVGGT, a training-free method that significantly reduce inference time while preserving high-quality dense 3D reconstruction. To maintain global consistency in large-scale scenes, SwiftVGGT performs loop closure without relying on the external Visual Place Recognition (VPR) model. This removes redundant computation and enables accurate reconstruction over kilometer-scale environments. Furthermore, we propose a simple yet effective point sampling method to align neighboring chunks using a single Sim(3)-based Singular Value Decomposition (SVD) step. This eliminates the need for the Iteratively Reweighted Least Squares (IRLS) optimization commonly used in prior work, leading to substantial speed-ups. We evaluate SwiftVGGT on multiple datasets and show that it achieves state-of-the-art reconstruction quality while requiring only 33% of the inference time of recent VGGT-based large-scale reconstruction approaches.

Authors:Tianyang Han, Junhao Su, Junjie Hu, Peizhen Yang, Hengyu Shi, Junfeng Luo, Jialin Gao
Title: Beyond Words and Pixels: A Benchmark for Implicit World Knowledge Reasoning in Generative Models
Abstract:
Text-to-image (T2I) models today are capable of producing photorealistic, instruction-following images, yet they still frequently fail on prompts that require implicit world knowledge. Existing evaluation protocols either emphasize compositional alignment or rely on single-round VQA-based scoring, leaving critical dimensions such as knowledge grounding, multi-physics interactions, and auditable evidence-substantially undertested. To address these limitations, we introduce PicWorld, the first comprehensive benchmark that assesses the grasp of implicit world knowledge and physical causal reasoning of T2I models. This benchmark consists of 1,100 prompts across three core categories. To facilitate fine-grained evaluation, we propose PW-Agent, an evidence-grounded multi-agent evaluator to hierarchically assess images on their physical realism and logical consistency by decomposing prompts into verifiable visual evidence. We conduct a thorough analysis of 17 mainstream T2I models on PicWorld, illustrating that they universally exhibit a fundamental limitation in their capacity for implicit world knowledge and physical causal reasoning to varying degrees. The findings highlight the need for reasoning-aware, knowledge-integrative architectures in future T2I systems. The code is available at https://github.com/D4-Lab/PicWorld}{https://github.com/D4-Lab/PicWorld.

Authors:Jasper Nie, Christian Muise, Victoria Armstrong
Title: BPMN to PDDL: Translating Business Workflows for AI Planning
Abstract:
Business Process Model and Notation (BPMN) is a widely used standard for modelling business processes. While automated planning has been proposed as a method for simulating and reasoning about BPMN workflows, most implementations remain incomplete or limited in scope. This project builds upon prior theoretical work to develop a functional pipeline that translates BPMN 2.0 diagrams into PDDL representations suitable for planning. The system supports core BPMN constructs, including tasks, events, sequence flows, and gateways, with initial support for parallel and inclusive gateway behaviour. Using a non-deterministic planner, we demonstrate how to generate and evaluate valid execution traces. Our implementation aims to bridge the gap between theory and practical tooling, providing a foundation for further exploration of translating business processes into well-defined plans.

Authors:Oren Barkan, Yahlly Schein, Yehonatan Elisha, Veronika Bogina, Mikhail Baklanov, Noam Koenigstein
Title: Fidelity-Aware Recommendation Explanations via Stochastic Path Integration
Abstract:
Explanation fidelity, which measures how accurately an explanation reflects a model's true reasoning, remains critically underexplored in recommender systems. We introduce SPINRec (Stochastic Path Integration for Neural Recommender Explanations), a model-agnostic approach that adapts path-integration techniques to the sparse and implicit nature of recommendation data. To overcome the limitations of prior methods, SPINRec employs stochastic baseline sampling: instead of integrating from a fixed or unrealistic baseline, it samples multiple plausible user profiles from the empirical data distribution and selects the most faithful attribution path. This design captures the influence of both observed and unobserved interactions, yielding more stable and personalized explanations. We conduct the most comprehensive fidelity evaluation to date across three models (MF, VAE, NCF), three datasets (ML1M, Yahoo! Music, Pinterest), and a suite of counterfactual metrics, including AUC-based perturbation curves and fixed-length diagnostics. SPINRec consistently outperforms all baselines, establishing a new benchmark for faithful explainability in recommendation. Code and evaluation tools are publicly available at https://github.com/DeltaLabTLV/SPINRec.

Authors:Dor Arviv, Yehonatan Elisha, Oren Barkan, Noam Koenigstein
Title: Extracting Interaction-Aware Monosemantic Concepts in Recommender Systems
Abstract:
We present a method for extracting \emph{monosemantic} neurons, defined as latent dimensions that align with coherent and interpretable concepts, from user and item embeddings in recommender systems. Our approach employs a Sparse Autoencoder (SAE) to reveal semantic structure within pretrained representations. In contrast to work on language models, monosemanticity in recommendation must preserve the interactions between separate user and item embeddings. To achieve this, we introduce a \emph{prediction aware} training objective that backpropagates through a frozen recommender and aligns the learned latent structure with the model's user-item affinity predictions. The resulting neurons capture properties such as genre, popularity, and temporal trends, and support post hoc control operations including targeted filtering and content promotion without modifying the base model. Our method generalizes across different recommendation models and datasets, providing a practical tool for interpretable and controllable personalization. Code and evaluation resources are available at https://github.com/DeltaLabTLV/Monosemanticity4Rec.

Authors:Lun Huang, You Xie, Hongyi Xu, Tianpei Gu, Chenxu Zhang, Guoxian Song, Zenan Li, Xiaochen Zhao, Linjie Luo, Guillermo Sapiro
Title: Plan-X: Instruct Video Generation via Semantic Planning
Abstract:
Diffusion Transformers have demonstrated remarkable capabilities in visual synthesis, yet they often struggle with high-level semantic reasoning and long-horizon planning. This limitation frequently leads to visual hallucinations and mis-alignments with user instructions, especially in scenarios involving complex scene understanding, human-object interactions, multi-stage actions, and in-context motion reasoning. To address these challenges, we propose Plan-X, a framework that explicitly enforces high-level semantic planning to instruct video generation process. At its core lies a Semantic Planner, a learnable multimodal language model that reasons over the user's intent from both text prompts and visual context, and autoregressively generates a sequence of text-grounded spatio-temporal semantic tokens. These semantic tokens, complementary to high-level text prompt guidance, serve as structured "semantic sketches" over time for the video diffusion model, which has its strength at synthesizing high-fidelity visual details. Plan-X effectively integrates the strength of language models in multimodal in-context reasoning and planning, together with the strength of diffusion models in photorealistic video synthesis. Extensive experiments demonstrate that our framework substantially reduces visual hallucinations and enables fine-grained, instruction-aligned video generation consistent with multimodal context.

Authors:Shuo Zhang, Fabrizio Gotti, Fengran Mo, Jian-Yun Nie
Title: Measuring the Impact of Lexical Training Data Coverage on Hallucination Detection in Large Language Models
Abstract:
Hallucination in large language models (LLMs) is a fundamental challenge, particularly in open-domain question answering. Prior work attempts to detect hallucination with model-internal signals such as token-level entropy or generation consistency, while the connection between pretraining data exposure and hallucination is underexplored. Existing studies show that LLMs underperform on long-tail knowledge, i.e., the accuracy of the generated answer drops for the ground-truth entities that are rare in pretraining. However, examining whether data coverage itself can serve as a detection signal is overlooked. We propose a complementary question: Does lexical training-data coverage of the question and/or generated answer provide additional signal for hallucination detection? To investigate this, we construct scalable suffix arrays over RedPajama's 1.3-trillion-token pretraining corpus to retrieve $n$-gram statistics for both prompts and model generations. We evaluate their effectiveness for hallucination detection across three QA benchmarks. Our observations show that while occurrence-based features are weak predictors when used alone, they yield modest gains when combined with log-probabilities, particularly on datasets with higher intrinsic model uncertainty. These findings suggest that lexical coverage features provide a complementary signal for hallucination detection. All code and suffix-array infrastructure are provided at https://github.com/WWWonderer/ostd.

Authors:Wenda Li, Tongya Zheng, Shunyu Liu, Yu Wang, Kaixuan Chen, Hanyang Yuan, Bingde Hu, Zujie Ren, Mingli Song, Gang Chen
Title: Towards Efficient LLM-aware Heterogeneous Graph Learning
Abstract:
Heterogeneous graphs are widely present in real-world complex networks, where the diversity of node and relation types leads to complex and rich semantics. Efforts for modeling complex relation semantics in heterogeneous graphs are restricted by the limitations of predefined semantic dependencies and the scarcity of supervised signals. The advanced pre-training and fine-tuning paradigm leverages graph structure to provide rich self-supervised signals, but introduces semantic gaps between tasks. Large Language Models (LLMs) offer significant potential to address the semantic issues of relations and tasks in heterogeneous graphs through their strong reasoning capabilities in textual modality, but their incorporation into heterogeneous graphs is largely limited by computational complexity. Therefore, in this paper, we propose an Efficient LLM-Aware (ELLA) framework for heterogeneous graphs, addressing the above issues. To capture complex relation semantics, we propose an LLM-aware Relation Tokenizer that leverages LLM to encode multi-hop, multi-type relations. To reduce computational complexity, we further employ a Hop-level Relation Graph Transformer, which help reduces the complexity of LLM-aware relation reasoning from exponential to linear. To bridge semantic gaps between pre-training and fine-tuning tasks, we introduce the fine-grained task-aware textual Chain-of-Thought (CoT) prompts. Extensive experiments on four heterogeneous graphs show that our proposed ELLA outperforms state-of-the-art methods in the performance and efficiency. In particular, ELLA scales up to 13b-parameter LLMs and achieves up to a 4x speedup compared with existing LLM-based methods. Our code is publicly available at https://github.com/l-wd/ELLA.

Authors:Chenyang Jiang, Hang Zhao, Xinyu Zhang, Zhengcen Li, Qiben Shan, Shaocong Wu, Jingyong Su
Title: Rectifying Soft-Label Entangled Bias in Long-Tailed Dataset Distillation
Abstract:
Dataset distillation compresses large-scale datasets into compact, highly informative synthetic data, significantly reducing storage and training costs. However, existing research primarily focuses on balanced datasets and struggles to perform under real-world long-tailed distributions. In this work, we emphasize the critical role of soft labels in long-tailed dataset distillation and uncover the underlying mechanisms contributing to performance degradation. Specifically, we derive an imbalance-aware generalization bound for model trained on distilled dataset. We then identify two primary sources of soft-label bias, which originate from the distillation model and the distilled images, through systematic perturbation of the data imbalance levels. To address this, we propose ADSA, an Adaptive Soft-label Alignment module that calibrates the entangled biases. This lightweight module integrates seamlessly into existing distillation pipelines and consistently improves performance. On ImageNet-1k-LT with EDC and IPC=50, ADSA improves tail-class accuracy by up to 11.8% and raises overall accuracy to 41.4%. Extensive experiments demonstrate that ADSA provides a robust and generalizable solution under limited label budgets and across a range of distillation techniques. Code is available at: https://github.com/j-cyoung/ADSA_DD.git.

Authors:Jordan Abi Nader, David Lee, Nathaniel Dennler, Andreea Bobu
Title: QuickLAP: Quick Language-Action Preference Learning for Autonomous Driving Agents
Abstract:
Robots must learn from both what people do and what they say, but either modality alone is often incomplete: physical corrections are grounded but ambiguous in intent, while language expresses high-level goals but lacks physical grounding. We introduce QuickLAP: Quick Language-Action Preference learning, a Bayesian framework that fuses physical and language feedback to infer reward functions in real time. Our key insight is to treat language as a probabilistic observation over the user's latent preferences, clarifying which reward features matter and how physical corrections should be interpreted. QuickLAP uses Large Language Models (LLMs) to extract reward feature attention masks and preference shifts from free-form utterances, which it integrates with physical feedback in a closed-form update rule. This enables fast, real-time, and robust reward learning that handles ambiguous feedback. In a semi-autonomous driving simulator, QuickLAP reduces reward learning error by over 70% compared to physical-only and heuristic multimodal baselines. A 15-participant user study further validates our approach: participants found QuickLAP significantly more understandable and collaborative, and preferred its learned behavior over baselines. Code is available at https://github.com/MIT-CLEAR-Lab/QuickLAP.

Authors:Allen Roush, Devin Gonier, John Hines, Judah Goldfeder, Philippe Martin Wyder, Sanjay Basu, Ravid Shwartz Ziv
Title: A superpersuasive autonomous policy debating system
Abstract:
The capacity for highly complex, evidence-based, and strategically adaptive persuasion remains a formidable great challenge for artificial intelligence. Previous work, like IBM Project Debater, focused on generating persuasive speeches in simplified and shortened debate formats intended for relatively lay audiences. We introduce DeepDebater, a novel autonomous system capable of participating in and winning a full, unmodified, two-team competitive policy debate. Our system employs a hierarchical architecture of specialized multi-agent workflows, where teams of LLM-powered agents collaborate and critique one another to perform discrete argumentative tasks. Each workflow utilizes iterative retrieval, synthesis, and self-correction using a massive corpus of policy debate evidence (OpenDebateEvidence) and produces complete speech transcripts, cross-examinations, and rebuttals. We introduce a live, interactive end-to-end presentation pipeline that renders debates with AI speech and animation: transcripts are surface-realized and synthesized to audio with OpenAI TTS, and then displayed as talking-head portrait videos with EchoMimic V1. Beyond fully autonomous matches (AI vs AI), DeepDebater supports hybrid human-AI operation: human debaters can intervene at any stage, and humans can optionally serve as opponents against AI in any speech, allowing AI-human and AI-AI rounds. In preliminary evaluations against human-authored cases, DeepDebater produces qualitatively superior argumentative components and consistently wins simulated rounds as adjudicated by an independent autonomous judge. Expert human debate coaches also prefer the arguments, evidence, and cases constructed by DeepDebater. We open source all code, generated speech transcripts, audio and talking head video here: https://github.com/Hellisotherpeople/DeepDebater/tree/main

Authors:Scott Merrill, Shashank Srivastava
Title: Point of Order: Action-Aware LLM Persona Modeling for Realistic Civic Simulation
Abstract:
Large language models offer opportunities to simulate multi-party deliberation, but realistic modeling remains limited by a lack of speaker-attributed data. Transcripts produced via automatic speech recognition (ASR) assign anonymous speaker labels (e.g., Speaker_1), preventing models from capturing consistent human behavior. This work introduces a reproducible pipeline to transform public Zoom recordings into speaker-attributed transcripts with metadata like persona profiles and pragmatic action tags (e.g., [propose_motion]). We release three local government deliberation datasets: Appellate Court hearings, School Board meetings, and Municipal Council sessions. Fine-tuning LLMs to model specific participants using this "action-aware" data produces a 67% reduction in perplexity and nearly doubles classifier-based performance metrics for speaker fidelity and realism. Turing-style human evaluations show our simulations are often indistinguishable from real deliberations, providing a practical and scalable method for complex realistic civic simulations.

Authors:Yang Zhou, Mingyu Zhao, Zhenting Wang, Difei Gu, Bangwei Guo, Ruosong Ye, Ligong Han, Can Jin, Dimitris N. Metaxas
Title: M^3-Bench: Multi-Modal, Multi-Hop, Multi-Threaded Tool-Using MLLM Agent Benchmark
Abstract:
We present M^3-Bench, the first benchmark for evaluating multimodal tool use under the Model Context Protocol. The benchmark targets realistic, multi-hop and multi-threaded workflows that require visual grounding and textual reasoning, cross-tool dependencies, and persistence of intermediate resources across steps. We introduce a similarity-driven alignment that serializes each tool call, embeds signatures with a sentence encoder, and performs similarity-bucketed Hungarian matching to obtain auditable one-to-one correspondences. On top of this alignment, we report interpretable metrics that decouple semantic fidelity from workflow consistency. The benchmark spans 28 servers with 231 tools, and provides standardized trajectories curated through an Executor & Judge pipeline with human verification; an auxiliary four large language models (LLMs) judge ensemble reports end-task Task Completion and information grounding. Evaluations of representative state-of-the-art Multimodal LLMs (MLLMs) reveal persistent gaps in multimodal MCP tool use, particularly in argument fidelity and structure consistency, underscoring the need for methods that jointly reason over images, text, and tool graphs. Our Benchmark's anonymous repository is at https://github.com/EtaYang10th/Open-M3-Bench

Authors:Zi Wang, Xingqiao Wang, Sangah Lee, Xiaowei Xu
Title: ARISE: Agentic Rubric-Guided Iterative Survey Engine for Automated Scholarly Paper Generation
Abstract:
The rapid expansion of scholarly literature presents significant challenges in synthesizing comprehensive, high-quality academic surveys. Recent advancements in agentic systems offer considerable promise for automating tasks that traditionally require human expertise, including literature review, synthesis, and iterative refinement. However, existing automated survey-generation solutions often suffer from inadequate quality control, poor formatting, and limited adaptability to iterative feedback, which are core elements intrinsic to scholarly writing. To address these limitations, we introduce ARISE, an Agentic Rubric-guided Iterative Survey Engine designed for automated generation and continuous refinement of academic survey papers. ARISE employs a modular architecture composed of specialized large language model agents, each mirroring distinct scholarly roles such as topic expansion, citation curation, literature summarization, manuscript drafting, and peer-review-based evaluation. Central to ARISE is a rubric-guided iterative refinement loop in which multiple reviewer agents independently assess manuscript drafts using a structured, behaviorally anchored rubric, systematically enhancing the content through synthesized feedback. Evaluating ARISE against state-of-the-art automated systems and recent human-written surveys, our experimental results demonstrate superior performance, achieving an average rubric-aligned quality score of 92.48. ARISE consistently surpasses baseline methods across metrics of comprehensiveness, accuracy, formatting, and overall scholarly rigor. All code, evaluation rubrics, and generated outputs are provided openly at https://github.com/ziwang11112/ARISE

Authors:Jieru Lin, Zhiwei Yu, Börje F. Karlsson
Title: SWITCH: Benchmarking Modeling and Handling of Tangible Interfaces in Long-horizon Embodied Scenarios
Abstract:
Autonomous intelligence requires not only perception and reasoning, but critically, effective interaction with the existing world and its infrastructure. Everyday environments are rich in tangible control interfaces (TCIs), e.g., light switches, appliance panels, and embedded GUIs, that demand commonsense and physics reasoning, but also causal prediction and outcome verification in time and space (e.g., delayed heating, remote lights). Moreover, failures here have potential safety implications, yet current benchmarks rarely test grounding, partial observability (video), or post-hoc verification in situated settings. We introduce SWITCH (Semantic World Interface Tasks for Control and Handling), an embodied, task-driven benchmark created through iterative releases to probe these gaps. Its first iteration, SWITCH-Basic, evaluates five complementary abilities:task-aware VQA, semantic UI grounding, action generation, state-transition prediction, and result verification, under egocentric RGB video input and device diversity. Across 351 tasks spanning 98 real devices and appliances, commercial and open LMMMs exhibit inconsistent performance even on single-step interactions, often over-relying on textual cues and under-using visual or video evidence (and high aggregate scores can mask such failures). SWITCH provides data, code, and held-out splits to enable reproducible evaluation and community contributions toward more challenging future iterations of the benchmark and the creation of training datasets. Benchmark resources are available at: https://github.com/BAAI-Agents/SWITCH.

Authors:Ningling Ge, Sicheng Dai, Yu Zhu, Shan Yu
Title: Energy-based Autoregressive Generation for Neural Population Dynamics
Abstract:
Understanding brain function represents a fundamental goal in neuroscience, with critical implications for therapeutic interventions and neural engineering applications. Computational modeling provides a quantitative framework for accelerating this understanding, but faces a fundamental trade-off between computational efficiency and high-fidelity modeling. To address this limitation, we introduce a novel Energy-based Autoregressive Generation (EAG) framework that employs an energy-based transformer learning temporal dynamics in latent space through strictly proper scoring rules, enabling efficient generation with realistic population and single-neuron spiking statistics. Evaluation on synthetic Lorenz datasets and two Neural Latents Benchmark datasets (MC_Maze and Area2_bump) demonstrates that EAG achieves state-of-the-art generation quality with substantial computational efficiency improvements, particularly over diffusion-based methods. Beyond optimal performance, conditional generation applications show two capabilities: generalizing to unseen behavioral contexts and improving motor brain-computer interface decoding accuracy using synthetic neural data. These results demonstrate the effectiveness of energy-based modeling for neural population dynamics with applications in neuroscience research and neural engineering. Code is available at https://github.com/NinglingGe/Energy-based-Autoregressive-Generation-for-Neural-Population-Dynamics.

Authors:Valentin Khrulkov, Andrey Galichin, Denis Bashkirov, Dmitry Vinichenko, Oleg Travkin, Roman Alferov, Andrey Kuznetsov, Ivan Oseledets
Title: GigaEvo: An Open Source Optimization Framework Powered By LLMs And Evolution Algorithms
Abstract:
Recent advances in LLM-guided evolutionary computation, particularly AlphaEvolve (Novikov et al., 2025; Georgiev et al., 2025), have demonstrated remarkable success in discovering novel mathematical constructions and solving challenging optimization problems. However, the high-level descriptions in published work leave many implementation details unspecified, hindering reproducibility and further research. In this report we present GigaEvo, an extensible open-source framework that enables researchers to study and experiment with hybrid LLM-evolution approaches inspired by AlphaEvolve. Our system provides modular implementations of key components: MAP-Elites quality-diversity algorithms, asynchronous DAG-based evaluation pipelines, LLM-driven mutation operators with insight generation and bidirectional lineage tracking, and flexible multi-island evolutionary strategies. In order to assess reproducibility and validate our implementation we evaluate GigaEvo on challenging problems from the AlphaEvolve paper: Heilbronn triangle placement, circle packing in squares, and high-dimensional kissing numbers. The framework emphasizes modularity, concurrency, and ease of experimentation, enabling rapid prototyping through declarative configuration. We provide detailed descriptions of system architecture, implementation decisions, and experimental methodology to support further research in LLM driven evolutionary methods. The GigaEvo framework and all experimental code are available at https://github.com/AIRI-Institute/gigaevo-core.

Authors:Michael J. Bommarito
Title: Binary BPE: A Family of Cross-Platform Tokenizers for Binary Analysis
Abstract:
Sequence models for binary analysis are bottlenecked by byte-level tokenization: raw bytes waste precious context window capacity for transformers and other neural network architectures, and many existing text-oriented tokenizers fail on arbitrary 0x00--0xFF sequences. To address this issue, we introduce the Binary BPE tokenizer family, a set of cross-platform Byte Pair Encoding (BPE) tokenizers for executables trained on a large corpus of binaries spanning multiple platforms, architectures, and operating systems, including Linux, Windows, macOS, Android, and malware sources. We release trained tokenizers with vocabularies of 4K, 8K, 16K, 32K, and 64K tokens, enabling both systematic scaling studies and practical deployment from resource-constrained edge devices to high-throughput datacenters. These tokenizers discover interpretable patterns (ELF/PE headers, instruction sequences, cross-platform strings) while yielding multi-byte compression per token. On representative uncompressed executables (e.g., ELF/PE/Mach-O rather than compressed APKs), the Binary BPE tokenizers typically allow for roughly 2-3x more binary content per fixed-length transformer context window than raw bytes, enabling more efficient research and practical deployment for content identification, malware detection, reverse engineering, and optimization. We release the trained Binary BPE tokenizers on HuggingFace, providing a drop-in, open-source foundation for binary-focused language models and context-efficient agentic tools.

Authors:Chunlei Shi, Han Xu, Yinghao Li, Yi-Lin Wei, Yongchao Feng, Yecheng Zhang, Dan Niu
Title: WaveC2R: Wavelet-Driven Coarse-to-Refined Hierarchical Learning for Radar Retrieval
Abstract:
Satellite-based radar retrieval methods are widely employed to fill coverage gaps in ground-based radar systems, especially in remote areas affected by terrain blockage and limited detection range. Existing methods predominantly rely on overly simplistic spatial-domain architectures constructed from a single data source, limiting their ability to accurately capture complex precipitation patterns and sharply defined meteorological boundaries. To address these limitations, we propose WaveC2R, a novel wavelet-driven coarse-to-refined framework for radar retrieval. WaveC2R integrates complementary multi-source data and leverages frequency-domain decomposition to separately model low-frequency components for capturing precipitation patterns and high-frequency components for delineating sharply defined meteorological boundaries. Specifically, WaveC2R consists of two stages (i)Intensity-Boundary Decoupled Learning, which leverages wavelet decomposition and frequency-specific loss functions to separately optimize low-frequency intensity and high-frequency boundaries; and (ii)Detail-Enhanced Diffusion Refinement, which employs frequency-aware conditional priors and multi-source data to progressively enhance fine-scale precipitation structures while preserving coarse-scale meteorological consistency. Experimental results on the publicly available SEVIR dataset demonstrate that WaveC2R achieves state-of-the-art performance in satellite-based radar retrieval, particularly excelling at preserving high-intensity precipitation features and sharply defined meteorological boundaries.

Authors:Honggang Jia, Nan Cheng, Xiucheng Wang
Title: RadioMapMotion: A Dataset and Baseline for Proactive Spatio-Temporal Radio Environment Prediction
Abstract:
Radio maps (RMs), which provide location-based pathloss estimations, are fundamental to enabling proactive, environment-aware communication in 6G networks. However, existing deep learning-based methods for RM construction often model dynamic environments as a series of independent static snapshots, thereby omitting the temporal continuity inherent in signal propagation changes caused by the motion of dynamic entities. To address this limitation, we propose the task of spatio-temporal RM prediction, which involves forecasting a sequence of future maps from historical observations. A key barrier to this predictive approach has been the lack of datasets capturing continuous environmental evolution. To fill this gap, we introduce RadioMapMotion, the first large-scale public dataset of continuous RM sequences generated from physically consistent vehicle trajectories. As a baseline for this task, we propose RadioLSTM, a UNet architecture based on Convolutional Long Short-Term Memory (ConvLSTM) and designed for multi-step sequence forecasting. Experimental evaluations show that RadioLSTM achieves higher prediction accuracy and structural fidelity compared to representative baseline methods. Furthermore, the model exhibits a low inference latency, indicating its potential suitability for real-time network operations. Our project will be publicly released at: https://github.com/UNIC-Lab/RadioMapMotion upon paper acceptance.

Authors:Binger Chen, Tacettin Emre Bök, Behnood Rasti, Volker Markl, Begüm Demir
Title: REMSA: An LLM Agent for Foundation Model Selection in Remote Sensing
Abstract:
Foundation Models (FMs) are increasingly used in remote sensing (RS) for tasks such as environmental monitoring, disaster assessment, and land-use mapping. These models include unimodal vision encoders trained on a single data modality and multimodal architectures trained on combinations of SAR, multispectral, hyperspectral, and image-text data. They support diverse RS tasks including semantic segmentation, image classification, change detection, and visual question answering. However, selecting an appropriate remote sensing foundation model (RSFM) remains difficult due to scattered documentation, heterogeneous formats, and varied deployment constraints. We introduce the RSFM Database (RS-FMD), a structured resource covering over 150 RSFMs spanning multiple data modalities, resolutions, and learning paradigms. Built on RS-FMD, we present REMSA, the first LLM-based agent for automated RSFM selection from natural language queries. REMSA interprets user requirements, resolves missing constraints, ranks candidate models using in-context learning, and provides transparent justifications. We also propose a benchmark of 75 expert-verified RS query scenarios, producing 900 configurations under an expert-centered evaluation protocol. REMSA outperforms several baselines, including naive agents, dense retrieval, and unstructured RAG-based LLMs. It operates entirely on publicly available metadata and does not access private or sensitive data.

Authors:Yesheng Liu, Hao Li, Haiyu Xu, Baoqi Pei, Jiahao Wang, Mingxuan Zhao, Jingshu Zheng, Zheqi He, JG Yao, Bowen Qin, Xi Yang, Jiajun Zhang
Title: Beyond Multiple Choice: Verifiable OpenQA for Robust Vision-Language RFT
Abstract:
Multiple-choice question answering (MCQA) has been a popular format for evaluating and reinforcement fine-tuning (RFT) of modern multimodal language models. Its constrained output format allows for simplified, deterministic automatic verification. However, we find that the options may leak exploitable signals, which makes the accuracy metrics unreliable for indicating real capabilities and encourages explicit or implicit answer guessing behaviors during RFT. We propose ReVeL (Rewrite and Verify by LLM), a framework that rewrites multiple-choice questions into open-form questions while keeping answers verifiable whenever possible. The framework categorizes questions according to different answer types, apply different rewriting and verification schemes, respectively. When applied for RFT, we converted 20k MCQA examples and use GRPO to finetune Qwen2.5-VL models. Models trained on ReVeL-OpenQA match MCQA accuracy on multiple-choice benchmarks and improve OpenQA accuracy by about six percentage points, indicating better data efficiency and more robust reward signals than MCQA-based training. When used for evaluation, ReVeL also reveals up to 20 percentage points of score inflation in MCQA benchmarks (relative to OpenQA), improves judging accuracy, and reduces both cost and latency. We will release code and data publicly.

Authors:Jiaye Qian, Ge Zheng, Yuchen Zhu, Sibei Yang
Title: Intervene-All-Paths: Unified Mitigation of LVLM Hallucinations across Alignment Formats
Abstract:
Despite their impressive performance across a wide range of tasks, Large Vision-Language Models (LVLMs) remain prone to hallucination. In this study, we propose a comprehensive intervention framework aligned with the transformer's causal architecture in LVLMs, integrating the effects of different intervention paths on hallucination. We find that hallucinations in LVLMs do not arise from a single causal path, but rather from the interplay among image-to-input-text, image-to-output-text, and text-to-text pathways. For the first time, we also find that LVLMs rely on different pathways depending on the question-answer alignment format. Building on these insights, we propose simple yet effective methods to identify and intervene on critical hallucination heads within each pathway, tailored to discriminative and generative formats. Experiments across multiple benchmarks demonstrate that our approach consistently reduces hallucinations across diverse alignment types.

Authors:Anshul Singh, Rohan Chaudhary, Gagneet Singh, Abhay Kumary
Title: Lost in Translation and Noise: A Deep Dive into the Failure Modes of VLMs on Real-World Tables
Abstract:
The impressive performance of VLMs is largely measured on benchmarks that fail to capture the complexities of real-world scenarios. Existing datasets for tabular QA, such as WikiTableQuestions and FinQA, are overwhelmingly monolingual (English) and present tables in a digitally perfect, clean format. This creates a significant gap between research and practice. To address this, we present \textbf{MirageTVQA}, a new benchmark designed to evaluate VLMs on these exact dimensions. Featuring nearly 60,000 QA pairs across 24 languages, MirageTVQA challenges models with tables that are not only multilingual but also visually imperfect, incorporating realistic noise to mimic scanned documents. Our evaluation of the leading VLMs reveals two primary failure points: a severe degradation in performance (over 35\% drop for the best models) when faced with visual noise and a consistent English-first bias where reasoning abilities fail to transfer to other languages. MirageTVQA provides a benchmark for measuring and driving progress towards more robust VLM models for table reasoning. The dataset and the code are available at: https://github.com/anshulsc/MirageTVQA.

Authors:Kaiyu Li, Jiayu Wang, Zhi Wang, Hui Qiao, Weizhan Zhang, Deyu Meng, Xiangyong Cao
Title: Designing Domain-Specific Agents via Hierarchical Task Abstraction Mechanism
Abstract:
LLM-driven agents, particularly those using general frameworks like ReAct or human-inspired role-playing, often struggle in specialized domains that necessitate rigorously structured workflows. Fields such as remote sensing, requiring specialized tools (e.g., correction, spectral indices calculation), and multi-step procedures (e.g., numerous intermediate products and optional steps), significantly challenge generalized approaches. To address this gap, we introduce a novel agent design framework centered on a Hierarchical Task Abstraction Mechanism (HTAM). Specifically, HTAM moves beyond emulating social roles, instead structuring multi-agent systems into a logical hierarchy that mirrors the intrinsic task-dependency graph of a given domain. This task-centric architecture thus enforces procedural correctness and decomposes complex problems into sequential layers, where each layer's sub-agents operate on the outputs of the preceding layers. We instantiate this framework as EarthAgent, a multi-agent system tailored for complex geospatial analysis. To evaluate such complex planning capabilities, we build GeoPlan-bench, a comprehensive benchmark of realistic, multi-step geospatial planning tasks. It is accompanied by a suite of carefully designed metrics to evaluate tool selection, path similarity, and logical completeness. Experiments show that EarthAgent substantially outperforms a range of established single- and multi-agent systems. Our work demonstrates that aligning agent architecture with a domain's intrinsic task structure is a critical step toward building robust and reliable specialized autonomous systems.

Authors:Horia Cristescu, Charles Park, Trong Canh Nguyen, Sergiu Talmacel, Alexandru-Gabriel Ilie, Stefan Adam
Title: UI-CUBE: Enterprise-Grade Computer Use Agent Benchmarking Beyond Task Accuracy to Operational Reliability
Abstract:
While current Computer Use Agent (CUA) benchmarks measure task completion effectively, they provide limited assessment of enterprise deployment readiness, emphasizing functional correctness over the operational reliability required for production systems. We present UI-CUBE (UiPath Computer Use BEnchmark), a systematic benchmark comprising 226 tasks across two difficulty tiers designed to expose fundamental architectural limitations in current CUAs. Our evaluation covers simple UI interactions (136 tasks) and complex workflows including copy-paste tasks (50 tasks) and enterprise application scenarios (40 tasks), with systematic interface variation coverage, multi-resolution testing and automated validation of task success through the application state. Evaluation of five state-of-the-art models reveals a sharp capability cliff rather than gradual performance degradation. Simple UI interactions achieve 67-85% success rates (compared to 97.9% human performance), but complex workflows drop precipitously to 9-19%. Human evaluators with no prior application experience achieve only 61.2% on complex tasks despite near-perfect performance on simple tasks, establishing realistic performance ceilings. This discontinuous performance pattern -- where agents achieve 68-87% of human performance on simple tasks but only 15-32% on complex workflows -- indicates fundamental architectural limitations in memory management, hierarchical planning, and state coordination rather than incremental capability gaps addressable through better training or prompting. UI-CUBE functions as an enterprise-readiness diagnostic, revealing that while current CUAs can manipulate individual interface elements, they cannot yet function as reliable workflow automation tools. These findings provide architectural insights essential for developing production-ready CUAs capable of managing complex, multi-step enterprise processes.

Authors:Linfeng Dong, Yuchen Yang, Hao Wu, Wei Wang, Yuenan Hou, Zhihang Zhong, Xiao Sun
Title: RacketVision: A Multiple Racket Sports Benchmark for Unified Ball and Racket Analysis
Abstract:
We introduce RacketVision, a novel dataset and benchmark for advancing computer vision in sports analytics, covering table tennis, tennis, and badminton. The dataset is the first to provide large-scale, fine-grained annotations for racket pose alongside traditional ball positions, enabling research into complex human-object interactions. It is designed to tackle three interconnected tasks: fine-grained ball tracking, articulated racket pose estimation, and predictive ball trajectory forecasting. Our evaluation of established baselines reveals a critical insight for multi-modal fusion: while naively concatenating racket pose features degrades performance, a CrossAttention mechanism is essential to unlock their value, leading to trajectory prediction results that surpass strong unimodal baselines. RacketVision provides a versatile resource and a strong starting point for future research in dynamic object tracking, conditional motion forecasting, and multimodal analysis in sports. Project page at https://github.com/OrcustD/RacketVision

Authors:Tianyu Zhan, Kairui Fu, Zheqi Lv, Shengyu Zhang
Title: RASTP: Representation-Aware Semantic Token Pruning for Generative Recommendation with Semantic Identifiers
Abstract:
Generative recommendation systems typically leverage Semantic Identifiers (SIDs), which represent each item as a sequence of tokens that encode semantic information. However, representing item ID with multiple SIDs significantly increases input sequence length, which is a major determinant of computational complexity and memory consumption. While existing efforts primarily focus on optimizing attention computation and KV cache, we propose RASTP (Representation-Aware Semantic Token Pruning), which directly prunes less informative tokens in the input sequence. Specifically, RASTP evaluates token importance by combining semantic saliency, measured via representation magnitude, and attention centrality, derived from cumulative attention weights. Since RASTP dynamically prunes low-information or irrelevant semantic tokens, experiments on three real-world Amazon datasets show that RASTP reduces training time by 26.7\%, while maintaining or slightly improving recommendation performance. The code has been open-sourced at https://github.com/Yuzt-zju/RASTP.

Authors:Mohammad Khateri, Serge Vasylechko, Morteza Ghahremani, Liam Timms, Deniz Kocanaogullari, Simon K. Warfield, Camilo Jaimes, Davood Karimi, Alejandra Sierra, Jussi Tohka, Sila Kurugol, Onur Afacan
Title: MRI Super-Resolution with Deep Learning: A Comprehensive Survey
Abstract:
High-resolution (HR) magnetic resonance imaging (MRI) is crucial for many clinical and research applications. However, achieving it remains costly and constrained by technical trade-offs and experimental limitations. Super-resolution (SR) presents a promising computational approach to overcome these challenges by generating HR images from more affordable low-resolution (LR) scans, potentially improving diagnostic accuracy and efficiency without requiring additional hardware. This survey reviews recent advances in MRI SR techniques, with a focus on deep learning (DL) approaches. It examines DL-based MRI SR methods from the perspectives of computer vision, computational imaging, inverse problems, and MR physics, covering theoretical foundations, architectural designs, learning strategies, benchmark datasets, and performance metrics. We propose a systematic taxonomy to categorize these methods and present an in-depth study of both established and emerging SR techniques applicable to MRI, considering unique challenges in clinical and research contexts. We also highlight open challenges and directions that the community needs to address. Additionally, we provide a collection of essential open-access resources, tools, and tutorials, available on our GitHub: https://github.com/mkhateri/Awesome-MRI-Super-Resolution. IEEE keywords: MRI, Super-Resolution, Deep Learning, Computational Imaging, Inverse Problem, Survey.

Authors:Ting Pan, Ye Wang, Peiguang Jing, Rui Ma, Zili Yi, Yu Liu
Title: PairHuman: A High-Fidelity Photographic Dataset for Customized Dual-Person Generation
Abstract:
Personalized dual-person portrait customization has considerable potential applications, such as preserving emotional memories and facilitating wedding photography planning. However, the absence of a benchmark dataset hinders the pursuit of high-quality customization in dual-person portrait generation. In this paper, we propose the PairHuman dataset, which is the first large-scale benchmark dataset specifically designed for generating dual-person portraits that meet high photographic standards. The PairHuman dataset contains more than 100K images that capture a variety of scenes, attire, and dual-person interactions, along with rich metadata, including detailed image descriptions, person localization, human keypoints, and attribute tags. We also introduce DHumanDiff, which is a baseline specifically crafted for dual-person portrait generation that features enhanced facial consistency and simultaneously balances in personalized person generation and semantic-driven scene creation. Finally, the experimental results demonstrate that our dataset and method produce highly customized portraits with superior visual quality that are tailored to human preferences. Our dataset is publicly available at https://github.com/annaoooo/PairHuman.

Authors:Yige Li, Zhe Li, Wei Zhao, Nay Myat Min, Hanxun Huang, Xingjun Ma, Jun Sun
Title: AutoBackdoor: Automating Backdoor Attacks via LLM Agents
Abstract:
Backdoor attacks pose a serious threat to the secure deployment of large language models (LLMs), enabling adversaries to implant hidden behaviors triggered by specific inputs. However, existing methods often rely on manually crafted triggers and static data pipelines, which are rigid, labor-intensive, and inadequate for systematically evaluating modern defense robustness. As AI agents become increasingly capable, there is a growing need for more rigorous, diverse, and scalable \textit{red-teaming frameworks} that can realistically simulate backdoor threats and assess model resilience under adversarial conditions. In this work, we introduce \textsc{AutoBackdoor}, a general framework for automating backdoor injection, encompassing trigger generation, poisoned data construction, and model fine-tuning via an autonomous agent-driven pipeline. Unlike prior approaches, AutoBackdoor uses a powerful language model agent to generate semantically coherent, context-aware trigger phrases, enabling scalable poisoning across arbitrary topics with minimal human effort. We evaluate AutoBackdoor under three realistic threat scenarios, including \textit{Bias Recommendation}, \textit{Hallucination Injection}, and \textit{Peer Review Manipulation}, to simulate a broad range of attacks. Experiments on both open-source and commercial models, including LLaMA-3, Mistral, Qwen, and GPT-4o, demonstrate that our method achieves over 90\% attack success with only a small number of poisoned samples. More importantly, we find that existing defenses often fail to mitigate these attacks, underscoring the need for more rigorous and adaptive evaluation techniques against agent-driven threats as explored in this work. All code, datasets, and experimental configurations will be merged into our primary repository at https://github.com/bboylyg/BackdoorLLM.

Authors:Jonathon Dilworth, Hui Yang, Jiaoyan Chen, Yongsheng Gao
Title: Hierarchical Retrieval with Out-Of-Vocabulary Queries: A Case Study on SNOMED CT
Abstract:
SNOMED CT is a biomedical ontology with a hierarchical representation of large-scale concepts. Knowledge retrieval in SNOMED CT is critical for its application, but often proves challenging due to language ambiguity, synonyms, polysemies and so on. This problem is exacerbated when the queries are out-of-vocabulary (OOV), i.e., having no equivalent matchings in the ontology. In this work, we focus on the problem of hierarchical concept retrieval from SNOMED CT with OOV queries, and propose an approach based on language model-based ontology embeddings. For evaluation, we construct OOV queries annotated against SNOMED CT concepts, testing the retrieval of the most direct subsumers and their less relevant ancestors. We find that our method outperforms the baselines including SBERT and two lexical matching methods. While evaluated against SNOMED CT, the approach is generalisable and can be extended to other ontologies. We release code, tools, and evaluation datasets at https://github.com/jonathondilworth/HR-OOV.

Authors:Dong Liu, Yanxuan Yu
Title: Towards Hyper-Efficient RAG Systems in VecDBs: Distributed Parallel Multi-Resolution Vector Search
Abstract:
Retrieval-Augmented Generation (RAG) systems have become a dominant approach to augment large language models (LLMs) with external knowledge. However, existing vector database (VecDB) retrieval pipelines rely on flat or single-resolution indexing structures, which cannot adapt to the varying semantic granularity required by diverse user queries. This limitation leads to suboptimal trade-offs between retrieval speed and contextual relevance. To address this, we propose \textbf{Semantic Pyramid Indexing (SPI)}, a novel multi-resolution vector indexing framework that introduces query-adaptive resolution control for RAG in VecDBs. Unlike existing hierarchical methods that require offline tuning or separate model training, SPI constructs a semantic pyramid over document embeddings and dynamically selects the optimal resolution level per query through a lightweight classifier. This adaptive approach enables progressive retrieval from coarse-to-fine representations, significantly accelerating search while maintaining semantic coverage. We implement SPI as a plugin for both FAISS and Qdrant backends and evaluate it across multiple RAG tasks including MS MARCO, Natural Questions, and multimodal retrieval benchmarks. SPI achieves up to \textbf{5.7$\times$} retrieval speedup and \textbf{1.8$\times$} memory efficiency gain while improving end-to-end QA F1 scores by up to \textbf{2.5 points} compared to strong baselines. Our theoretical analysis provides guarantees on retrieval quality and latency bounds, while extensive ablation studies validate the contribution of each component. The framework's compatibility with existing VecDB infrastructures makes it readily deployable in production RAG systems. Code is availabe at \href{https://github.com/FastLM/SPI_VecDB}{https://github.com/FastLM/SPI\_VecDB}.

Authors:Happymore Masoka
Title: Shona spaCy: A Morphological Analyzer for an Under-Resourced Bantu Language
Abstract:
Despite rapid advances in multilingual natural language processing (NLP), the Bantu language Shona remains under-served in terms of morphological analysis and language-aware tools. This paper presents Shona spaCy, an open-source, rule-based morphological pipeline for Shona built on the spaCy framework. The system combines a curated JSON lexicon with linguistically grounded rules to model noun-class prefixes (Mupanda 1-18), verbal subject concords, tense-aspect markers, ideophones, and clitics, integrating these into token-level annotations for lemma, part-of-speech, and morphological features. The toolkit is available via pip install shona-spacy, with source code at https://github.com/HappymoreMasoka/shona-spacy and a PyPI release at https://pypi.org/project/shona-spacy/0.1.4/. Evaluation on formal and informal Shona corpora yields 90% POS-tagging accuracy and 88% morphological-feature accuracy, while maintaining transparency in its linguistic decisions. By bridging descriptive grammar and computational implementation, Shona spaCy advances NLP accessibility and digital inclusion for Shona speakers and provides a template for morphological analysis tools for other under-resourced Bantu languages.

Authors:George Cazenavette, Antonio Torralba, Vincent Sitzmann
Title: Dataset Distillation for Pre-Trained Self-Supervised Vision Models
Abstract:
The task of dataset distillation aims to find a small set of synthetic images such that training a model on them reproduces the performance of the same model trained on a much larger dataset of real samples. Existing distillation methods focus on synthesizing datasets that enable training randomly initialized models. In contrast, state-of-the-art vision approaches are increasingly building on large, pre-trained self-supervised models rather than training from scratch. In this paper, we investigate the problem of distilling datasets that enable us to optimally train linear probes on top of such large, pre-trained vision models. We introduce a method of dataset distillation for this task called Linear Gradient Matching that optimizes the synthetic images such that, when passed through a pre-trained feature extractor, they induce gradients in the linear classifier similar to those produced by the real data. Our method yields synthetic data that outperform all real-image baselines and, remarkably, generalize across pre-trained vision models, enabling us, for instance, to train a linear CLIP probe that performs competitively using a dataset distilled via a DINO backbone. Further, we show that our distilled datasets are exceptionally effective for fine-grained classification and provide a valuable tool for model interpretability, predicting, among other things, how similar two models' embedding spaces are under the platonic representation hypothesis or whether a model is sensitive to spurious correlations in adversarial datasets.

Authors:Ziyu Guo, Renrui Zhang, Hongyu Li, Manyuan Zhang, Xinyan Chen, Sifan Wang, Yan Feng, Peng Pei, Pheng-Ann Heng
Title: Thinking-while-Generating: Interleaving Textual Reasoning throughout Visual Generation
Abstract:
Recent advances in visual generation have increasingly explored the integration of reasoning capabilities. They incorporate textual reasoning, i.e., think, either before (as pre-planning) or after (as post-refinement) the generation process, yet they lack on-the-fly multimodal interaction during the generation itself. In this preliminary study, we introduce Thinking-while-Generating (TwiG), the first interleaved framework that enables co-evolving textual reasoning throughout the visual generation process. As visual content is progressively generating, textual reasoning is interleaved to both guide upcoming local regions and reflect on previously synthesized ones. This dynamic interplay produces more context-aware and semantically rich visual outputs. To unveil the potential of this framework, we investigate three candidate strategies, zero-shot prompting, supervised fine-tuning (SFT) on our curated TwiG-50K dataset, and reinforcement learning (RL) via a customized TwiG-GRPO strategy, each offering unique insights into the dynamics of interleaved reasoning. We hope this work inspires further research into interleaving textual reasoning for enhanced visual generation. Code will be released at: https://github.com/ZiyuGuo99/Thinking-while-Generating.

Authors:Qinghao Hu, Shang Yang, Junxian Guo, Xiaozhe Yao, Yujun Lin, Yuxian Gu, Han Cai, Chuang Gan, Ana Klimovic, Song Han
Title: Taming the Long-Tail: Efficient Reasoning RL Training with Adaptive Drafter
Abstract:
The emergence of Large Language Models (LLMs) with strong reasoning capabilities marks a significant milestone, unlocking new frontiers in complex problem-solving. However, training these reasoning models, typically using Reinforcement Learning (RL), encounters critical efficiency bottlenecks: response generation during RL training exhibits a persistent long-tail distribution, where a few very long responses dominate execution time, wasting resources and inflating costs. To address this, we propose TLT, a system that accelerates reasoning RL training losslessly by integrating adaptive speculative decoding. Applying speculative decoding in RL is challenging due to the dynamic workloads, evolving target model, and draft model training overhead. TLT overcomes these obstacles with two synergistic components: (1) Adaptive Drafter, a lightweight draft model trained continuously on idle GPUs during long-tail generation to maintain alignment with the target model at no extra cost; and (2) Adaptive Rollout Engine, which maintains a memory-efficient pool of pre-captured CUDAGraphs and adaptively select suitable SD strategies for each input batch. Evaluations demonstrate that TLT achieves over 1.7x end-to-end RL training speedup over state-of-the-art systems, preserves the model accuracy, and yields a high-quality draft model as a free byproduct suitable for efficient deployment. Code is released at https://github.com/mit-han-lab/fastrl.

Authors:Boshen Xu, Zihan Xiao, Jiaze Li, Jianzhong Ju, Zhenbo Luo, Jian Luan, Qin Jin
Title: TimeViper: A Hybrid Mamba-Transformer Vision-Language Model for Efficient Long Video Understanding
Abstract:
We introduce TimeViper, a hybrid vision-language model designed to tackle challenges of long video understanding. Processing long videos demands both an efficient model architecture and an effective mechanism for handling extended temporal contexts. To this end, TimeViper adopts a hybrid Mamba-Transformer backbone that combines the efficiency of state-space models with the expressivity of attention mechanisms. Through this hybrid design, we reveal the vision-to-text information aggregation phenomenon, where information progressively flows from vision tokens to text tokens across increasing LLM depth, resulting in severe vision token redundancy. Motivated by this observation, we propose TransV, a token information transfer module that transfers and compresses vision tokens into instruction tokens while maintaining multimodal understanding capabilities. This design enables TimeViper to process hour-long videos exceeding 10,000 frames. Extensive experiments across multiple benchmarks demonstrate that TimeViper competes with state-of-the-art models while extending frame numbers. We further analyze attention behaviors of both Mamba and Transformer layers, offering new insights into hybrid model interpretability. This work represents an initial step towards developing, interpreting, and compressing hybrid Mamba-Transformer architectures.

Authors:Jules Soria, Zakaria Chihani, Julien Girard-Satabin, Alban Grastien, Romain Xu-Darme, Daniela Cancila
Title: Formal Abductive Latent Explanations for Prototype-Based Networks
Abstract:
Case-based reasoning networks are machine-learning models that make predictions based on similarity between the input and prototypical parts of training samples, called prototypes. Such models are able to explain each decision by pointing to the prototypes that contributed the most to the final outcome. As the explanation is a core part of the prediction, they are often qualified as ``interpretable by design". While promising, we show that such explanations are sometimes misleading, which hampers their usefulness in safety-critical contexts. In particular, several instances may lead to different predictions and yet have the same explanation. Drawing inspiration from the field of formal eXplainable AI (FXAI), we propose Abductive Latent Explanations (ALEs), a formalism to express sufficient conditions on the intermediate (latent) representation of the instance that imply the prediction. Our approach combines the inherent interpretability of case-based reasoning models and the guarantees provided by formal XAI. We propose a solver-free and scalable algorithm for generating ALEs based on three distinct paradigms, compare them, and present the feasibility of our approach on diverse datasets for both standard and fine-grained image classification. The associated code can be found at https://github.com/julsoria/ale

Authors:Kaichen Zhang, Keming Wu, Zuhao Yang, Bo Li, Kairui Hu, Bin Wang, Ziwei Liu, Xingxuan Li, Lidong Bing
Title: OpenMMReasoner: Pushing the Frontiers for Multimodal Reasoning with an Open and General Recipe
Abstract:
Recent advancements in large reasoning models have fueled growing interest in extending such capabilities to multimodal domains. However, despite notable progress in visual reasoning, the lack of transparent and reproducible data curation and training strategies remains a major barrier to scalable research. In this work, we introduce OpenMMReasoner, a fully transparent two-stage recipe for multimodal reasoning spanning supervised fine-tuning (SFT) and reinforcement learning (RL). In the SFT stage, we construct an 874K-sample cold-start dataset with rigorous step-by-step validation, providing a strong foundation for reasoning capabilities. The subsequent RL stage leverages a 74K-sample dataset across diverse domains to further sharpen and stabilize these abilities, resulting in a more robust and efficient learning process. Extensive evaluations demonstrate that our training recipe not only surpasses strong baselines but also highlights the critical role of data quality and training design in shaping multimodal reasoning performance. Notably, our method achieves a 11.6% improvement over the Qwen2.5-VL-7B-Instruct baseline across nine multimodal reasoning benchmarks, establishing a solid empirical foundation for future large-scale multimodal reasoning research. We open-sourced all our codes, pipeline, and data at https://github.com/EvolvingLMMs-Lab/OpenMMReasoner.

Authors:Wei Zhao, Zhe Li, Yige Li, Jun Sun
Title: Q-MLLM: Vector Quantization for Robust Multimodal Large Language Model Security
Abstract:
Multimodal Large Language Models (MLLMs) have demonstrated impressive capabilities in cross-modal understanding, but remain vulnerable to adversarial attacks through visual inputs despite robust textual safety mechanisms. These vulnerabilities arise from two core weaknesses: the continuous nature of visual representations, which allows for gradient-based attacks, and the inadequate transfer of text-based safety mechanisms to visual content. We introduce Q-MLLM, a novel architecture that integrates two-level vector quantization to create a discrete bottleneck against adversarial attacks while preserving multimodal reasoning capabilities. By discretizing visual representations at both pixel-patch and semantic levels, Q-MLLM blocks attack pathways and bridges the cross-modal safety alignment gap. Our two-stage training methodology ensures robust learning while maintaining model utility. Experiments demonstrate that Q-MLLM achieves significantly better defense success rate against both jailbreak attacks and toxic image attacks than existing approaches. Notably, Q-MLLM achieves perfect defense success rate (100\%) against jailbreak attacks except in one arguable case, while maintaining competitive performance on multiple utility benchmarks with minimal inference overhead. This work establishes vector quantization as an effective defense mechanism for secure multimodal AI systems without requiring expensive safety-specific fine-tuning or detection overhead. Code is available at https://github.com/Amadeuszhao/QMLLM.

Authors:Zhen Hao Wong, Jingwen Deng, Hao Liang, Runming He, Chengyu Shen, Wentao Zhang
Title: FlipVQA-Miner: Cross-Page Visual Question-Answer Mining from Textbooks
Abstract:
The development of Large Language Models (LLMs) increasingly depends on high-quality supervised data, yet existing instruction-tuning and RL datasets remain costly to curate and often rely on synthetic samples that introduce hallucination and limited diversity. At the same time, textbooks and exercise materials contain abundant, high-quality human-authored Question-Answer(QA) content that remains underexploited due to the difficulty of transforming raw PDFs into AI-ready supervision. Although modern OCR and vision-language models can accurately parse document structure, their outputs lack the semantic alignment required for training. We propose an automated pipeline that extracts well-formed QA and visual-QA (VQA) pairs from educational documents by combining layout-aware OCR with LLM-based semantic parsing. Experiments across diverse document types show that the method produces accurate, aligned, and low-noise QA/VQA pairs. This approach enables scalable use of real-world educational content and provides a practical alternative to synthetic data generation for improving reasoning-oriented LLM training. All code and data-processing pipelines are open-sourced at https://github.com/OpenDCAI/DataFlow.

Authors:Zhijie Zhong, Zhiwen Yu, Kaixiang Yang, C. L. Philip Chen
Title: Labels Matter More Than Models: Quantifying the Benefit of Supervised Time Series Anomaly Detection
Abstract:
Time series anomaly detection (TSAD) is a critical data mining task often constrained by label scarcity. Consequently, current research predominantly focuses on Unsupervised Time-series Anomaly Detection (UTAD), relying on complex architectures to model normal data distributions. However, this approach often overlooks the significant performance gains available from limited anomaly labels achievable in practical scenarios. This paper challenges the premise that architectural complexity is the optimal path for TSAD. We conduct the first methodical comparison between supervised and unsupervised paradigms and introduce STAND, a streamlined supervised baseline. Extensive experiments on five public datasets demonstrate that: (1) Labels matter more than models: under a limited labeling budget, simple supervised models significantly outperform complex state-of-the-art unsupervised methods; (2) Supervision yields higher returns: the performance gain from minimal supervision far exceeds that from architectural innovations; and (3) Practicality: STAND exhibits superior prediction consistency and anomaly localization compared to unsupervised counterparts. These findings advocate for a data-centric shift in TSAD research, emphasizing label utilization over purely algorithmic complexity. The code is publicly available at https://github.com/EmorZz1G/STAND.

Authors:Meihua Zhou, Liping Yu, Jiawei Cai, Wai Kin Fung, Ruiguo Hu, Jiarui Zhao, Wenzhuo Liu, Nan Wan
Title: SpectralTrain: A Universal Framework for Hyperspectral Image Classification
Abstract:
Hyperspectral image (HSI) classification typically involves large-scale data and computationally intensive training, which limits the practical deployment of deep learning models in real-world remote sensing tasks. This study introduces SpectralTrain, a universal, architecture-agnostic training framework that enhances learning efficiency by integrating curriculum learning (CL) with principal component analysis (PCA)-based spectral downsampling. By gradually introducing spectral complexity while preserving essential information, SpectralTrain enables efficient learning of spectral -- spatial patterns at significantly reduced computational costs. The framework is independent of specific architectures, optimizers, or loss functions and is compatible with both classical and state-of-the-art (SOTA) models. Extensive experiments on three benchmark datasets -- Indian Pines, Salinas-A, and the newly introduced CloudPatch-7 -- demonstrate strong generalization across spatial scales, spectral characteristics, and application domains. The results indicate consistent reductions in training time by 2-7x speedups with small-to-moderate accuracy deltas depending on backbone. Its application to cloud classification further reveals potential in climate-related remote sensing, emphasizing training strategy optimization as an effective complement to architectural design in HSI models. Code is available at https://github.com/mh-zhou/SpectralTrain.

Authors:Kieron Kretschmar, Walter Laurito, Sharan Maiya, Samuel Marks
Title: Liars' Bench: Evaluating Lie Detectors for Language Models
Abstract:
Prior work has introduced techniques for detecting when large language models (LLMs) lie, that is, generating statements they believe are false. However, these techniques are typically validated in narrow settings that do not capture the diverse lies LLMs can generate. We introduce LIARS' BENCH, a testbed consisting of 72,863 examples of lies and honest responses generated by four open-weight models across seven datasets. Our settings capture qualitatively different types of lies and vary along two dimensions: the model's reason for lying and the object of belief targeted by the lie. Evaluating three black- and white-box lie detection techniques on LIARS' BENCH, we find that existing techniques systematically fail to identify certain types of lies, especially in settings where it's not possible to determine whether the model lied from the transcript alone. Overall, LIARS' BENCH reveals limitations in prior techniques and provides a practical testbed for guiding progress in lie detection.

Authors:KeFan Li, Mengfei Wang, Hengzhi Zhang, Zhichao Li, Yuan Yuan, Mu Li, Xiang Gao, Hailong Sun, Chunming Hu, Weifeng Lv
Title: InfCode: Adversarial Iterative Refinement of Tests and Patches for Reliable Software Issue Resolution
Abstract:
Large language models have advanced software engineering automation, yet resolving real-world software issues remains difficult because it requires repository-level reasoning, accurate diagnostics, and strong verification signals. Existing agent-based and pipeline-based methods often rely on insufficient tests, which can lead to patches that satisfy verification but fail to fix the underlying defect. We present InfCode, an adversarial multi-agent framework for automated repository-level issue resolution. InfCode iteratively refines both tests and patches through adversarial interaction between a Test Patch Generator and a Code Patch Generator, while a Selector agent identifies the most reliable fix. The framework runs inside a containerized environment that supports realistic repository inspection, modification, and validation. Experiments on SWE-bench Lite and SWE-bench Verified using models such as DeepSeek-V3 and Claude 4.5 Sonnet show that InfCode consistently outperforms strong baselines. It achieves 79.4% performance on SWE-bench Verified, establishing a new state-of-the-art. We have released InfCode as an open-source project at https://github.com/Tokfinity/InfCode.

Authors:Chengxi Zeng, Yuxuan Jiang, Aaron Zhang
Title: EfficientSAM3: Progressive Hierarchical Distillation for Video Concept Segmentation from SAM1, 2, and 3
Abstract:
The Segment Anything Model 3 (SAM3) advances visual understanding with Promptable Concept Segmentation (PCS) across images and videos, but its unified architecture (shared vision backbone, DETR-style detector, dense-memory tracker) remains prohibitive for on-device use. We present EfficientSAM3, a family of efficient models built on Progressive Hierarchical Distillation (PHD) that transfers capability from SAM3 to lightweight students in three stages: (1) Encoder Distillation aligns image features via prompt-in-the-loop training on SA-1B; (2) Temporal Memory Distillation replaces dense memory with a compact Perceiver-based module trained on SA-V to compress and retrieve spatiotemporal features efficiently; and (3) End-to-End Fine-Tuning refines the full pipeline on the official SAM3 PCS data to preserve concept-level performance. PHD yields a spectrum of student variants using RepViT, TinyViT, and EfficientViT backbones, enabling on-device concept segmentation and tracking while maintaining high fidelity to teacher behavior. We benchmark on popular VOS datasets, and compare with varies of releated work, achieing strong performance-efficiency trade-offs.

Authors:Stéphane Aroca-Ouellette, Ian Berlot-Attwell, Panagiotis Lymperopoulos, Abhiramon Rajasekharan, Tongqi Zhu, Herin Kang, Kaheer Suleman, Sam Pasupalak
Title: Mini Amusement Parks (MAPs): A Testbed for Modelling Business Decisions
Abstract:
Despite rapid progress in artificial intelligence, current systems struggle with the interconnected challenges that define real-world decision making. Practical domains, such as business management, require optimizing an open-ended and multi-faceted objective, actively learning environment dynamics from sparse experience, planning over long horizons in stochastic settings, and reasoning over spatial information. Yet existing human--AI benchmarks isolate subsets of these capabilities, limiting our ability to assess holistic decision-making competence. We introduce Mini Amusement Parks (MAPs), an amusement-park simulator designed to evaluate an agent's ability to model its environment, anticipate long-term consequences under uncertainty, and strategically operate a complex business. We provide human baselines and a comprehensive evaluation of state-of-the-art LLM agents, finding that humans outperform these systems by 6.5x on easy mode and 9.8x on medium mode. Our analysis reveals persistent weaknesses in long-horizon optimization, sample-efficient learning, spatial reasoning, and world modelling. By unifying these challenges within a single environment, MAPs offers a new foundation for benchmarking agents capable of adaptable decision making. Code: https://github.com/Skyfall-Research/MAPs

Authors:Xiongyi Cai, Ri-Zhao Qiu, Geng Chen, Lai Wei, Isabella Liu, Tianshu Huang, Xuxin Cheng, Xiaolong Wang
Title: In-N-On: Scaling Egocentric Manipulation with in-the-wild and on-task Data
Abstract:
Egocentric videos are a valuable and scalable data source to learn manipulation policies. However, due to significant data heterogeneity, most existing approaches utilize human data for simple pre-training, which does not unlock its full potential. This paper first provides a scalable recipe for collecting and using egocentric data by categorizing human data into two categories: in-the-wild and on-task alongside with systematic analysis on how to use the data. We first curate a dataset, PHSD, which contains over 1,000 hours of diverse in-the-wild egocentric data and over 20 hours of on-task data directly aligned to the target manipulation tasks. This enables learning a large egocentric language-conditioned flow matching policy, Human0. With domain adaptation techniques, Human0 minimizes the gap between humans and humanoids. Empirically, we show Human0 achieves several novel properties from scaling human data, including language following of instructions from only human data, few-shot learning, and improved robustness using on-task data. Project website: https://xiongyicai.github.io/In-N-On/

Authors:Beichen Zhang, Yuhang Zang, Xiaoyi Dong, Yuhang Cao, Haodong Duan, Dahua Lin, Jiaqi Wang
Title: Think Visually, Reason Textually: Vision-Language Synergy in ARC
Abstract:
Abstract reasoning from minimal examples remains a core unsolved problem for frontier foundation models such as GPT-5 and Grok 4. These models still fail to infer structured transformation rules from a handful of examples, which is a key hallmark of human intelligence. The Abstraction and Reasoning Corpus for Artificial General Intelligence (ARC-AGI) provides a rigorous testbed for this capability, demanding conceptual rule induction and transfer to novel tasks. Most existing methods treat ARC-AGI as a purely textual reasoning task, overlooking the fact that humans rely heavily on visual abstraction when solving such puzzles. However, our pilot experiments reveal a paradox: naively rendering ARC-AGI grids as images degrades performance due to imprecise rule execution. This leads to our central hypothesis that vision and language possess complementary strengths across distinct reasoning stages: vision supports global pattern abstraction and verification, whereas language specializes in symbolic rule formulation and precise execution. Building on this insight, we introduce two synergistic strategies: (1) Vision-Language Synergy Reasoning (VLSR), which decomposes ARC-AGI into modality-aligned subtasks; and (2) Modality-Switch Self-Correction (MSSC), which leverages vision to verify text-based reasoning for intrinsic error correction. Extensive experiments demonstrate that our approach yields up to a 4.33\% improvement over text-only baselines across diverse flagship models and multiple ARC-AGI tasks. Our findings suggest that unifying visual abstraction with linguistic reasoning is a crucial step toward achieving generalizable, human-like intelligence in future foundation models. Source code is released at https://github.com/InternLM/ARC-VL.

Authors:Yicheng He, Chengsong Huang, Zongxia Li, Jiaxin Huang, Yonghui Yang
Title: VisPlay: Self-Evolving Vision-Language Models from Images
Abstract:
Reinforcement learning (RL) provides a principled framework for improving Vision-Language Models (VLMs) on complex reasoning tasks. However, existing RL approaches often rely on human-annotated labels or task-specific heuristics to define verifiable rewards, both of which are costly and difficult to scale. We introduce VisPlay, a self-evolving RL framework that enables VLMs to autonomously improve their reasoning abilities using large amounts of unlabeled image data. Starting from a single base VLM, VisPlay assigns the model into two interacting roles: an Image-Conditioned Questioner that formulates challenging yet answerable visual questions, and a Multimodal Reasoner that generates silver responses. These roles are jointly trained with Group Relative Policy Optimization (GRPO), which incorporates diversity and difficulty rewards to balance the complexity of generated questions with the quality of the silver answers. VisPlay scales efficiently across two model families. When trained on Qwen2.5-VL and MiMo-VL, VisPlay achieves consistent improvements in visual reasoning, compositional generalization, and hallucination reduction across eight benchmarks, including MM-Vet and MMMU, demonstrating a scalable path toward self-evolving multimodal intelligence. The project page is available at https://bruno686.github.io/VisPlay/

Authors:Qihao Yang, Xuelin Wang, Jiale Chen, Xuelian Dong, Yuxin Hao, Tianyong Hao
Title: HSKBenchmark: Modeling and Benchmarking Chinese Second Language Acquisition in Large Language Models through Curriculum Tuning
Abstract:
Language acquisition is vital to revealing the nature of human language intelligence and has recently emerged as a promising perspective for improving the interpretability of large language models (LLMs). However, it is ethically and practically infeasible to conduct experiments that require controlling human learners' language inputs. This poses challenges for the verifiability and scalability of language acquisition modeling, particularly in Chinese second language acquisition (SLA). While LLMs provide a controllable and reproducible alternative, a systematic benchmark to support phase-wise modeling and assessment is still lacking. In this paper, we present HSKBenchmark, the first benchmark for staged modeling and writing assessment of LLMs in Chinese SLA. It covers HSK levels 3 to 6 and includes authentic textbooks with 6.76 million tokens, 16K synthetic instruction samples, 30 test topics, and a linguistically grounded evaluation system. To simulate human learning trajectories, we introduce a curriculum-tuning framework that trains models from beginner to advanced levels. An evaluation system is created to examine level-based grammar coverage, writing errors, lexical and syntactic complexity, and holistic scoring. We also build HSKAgent, fine-tuned on 10K learner compositions. Extensive experimental results demonstrate that HSKBenchmark not only models Chinese SLA effectively, but also serves as a reliable benchmark for dynamic writing assessment in LLMs. Our fine-tuned LLMs have writing performance on par with advanced human learners and exhibit human-like acquisition characteristics. The HSKBenchmark, HSKAgent, and checkpoints serve as foundational tools and resources, with the potential to pave the way for future research on language acquisition modeling and LLMs interpretability. Code and data are publicly available at: https://github.com/CharlesYang030/HSKB.

Authors:Amir Hossein Kargaran, Nafiseh Nikeghbal, Jing Yang, Nedjma Ousidhoum
Title: Insights from the ICLR Peer Review and Rebuttal Process
Abstract:
Peer review is a cornerstone of scientific publishing, including at premier machine learning conferences such as ICLR. As submission volumes increase, understanding the nature and dynamics of the review process is crucial for improving its efficiency, effectiveness, and the quality of published papers. We present a large-scale analysis of the ICLR 2024 and 2025 peer review processes, focusing on before- and after-rebuttal scores and reviewer-author interactions. We examine review scores, author-reviewer engagement, temporal patterns in review submissions, and co-reviewer influence effects. Combining quantitative analyses with LLM-based categorization of review texts and rebuttal discussions, we identify common strengths and weaknesses for each rating group, as well as trends in rebuttal strategies that are most strongly associated with score changes. Our findings show that initial scores and the ratings of co-reviewers are the strongest predictors of score changes during the rebuttal, pointing to a degree of reviewer influence. Rebuttals play a valuable role in improving outcomes for borderline papers, where thoughtful author responses can meaningfully shift reviewer perspectives. More broadly, our study offers evidence-based insights to improve the peer review process, guiding authors on effective rebuttal strategies and helping the community design fairer and more efficient review processes. Our code and score changes data are available at https://github.com/papercopilot/iclr-insights.

Authors:Mingyang Feng, Shaoyuan Li, Xiang Yin
Title: RRT*former: Environment-Aware Sampling-Based Motion Planning using Transformer
Abstract:
We investigate the sampling-based optimal path planning problem for robotics in complex and dynamic environments. Most existing sampling-based algorithms neglect environmental information or the information from previous samples. Yet, these pieces of information are highly informative, as leveraging them can provide better heuristics when sampling the next state. In this paper, we propose a novel sampling-based planning algorithm, called \emph{RRT*former}, which integrates the standard RRT* algorithm with a Transformer network in a novel way. Specifically, the Transformer is used to extract features from the environment and leverage information from previous samples to better guide the sampling process. Our extensive experiments demonstrate that, compared to existing sampling-based approaches such as RRT*, Neural RRT*, and their variants, our algorithm achieves considerable improvements in both the optimality of the path and sampling efficiency. The code for our implementation is available on https://github.com/fengmingyang666/RRTformer.

Authors:Sirui Chen, Mengshi Zhao, Lei Xu, Yuying Zhao, Beier Zhu, Hanwang Zhang, Shengjie Zhao, Chaochao Lu
Title: DEPO: Dual-Efficiency Preference Optimization for LLM Agents
Abstract:
Recent advances in large language models (LLMs) have greatly improved their reasoning and decision-making abilities when deployed as agents. Richer reasoning, however, often comes at the cost of longer chain of thought (CoT), hampering interaction efficiency in real-world scenarios. Nevertheless, there still lacks systematic definition of LLM agent efficiency, hindering targeted improvements. To this end, we introduce dual-efficiency, comprising (i) step-level efficiency, which minimizes tokens per step, and (ii) trajectory-level efficiency, which minimizes the number of steps to complete a task. Building on this definition, we propose DEPO, a dual-efficiency preference optimization method that jointly rewards succinct responses and fewer action steps. Experiments on WebShop and BabyAI show that DEPO cuts token usage by up to 60.9% and steps by up to 26.9%, while achieving up to a 29.3% improvement in performance. DEPO also generalizes to three out-of-domain math benchmarks and retains its efficiency gains when trained on only 25% of the data. Our project page is at https://opencausalab.github.io/DEPO.

Authors:Gihwan Kim, Jemin Lee, Hyungshin Kim
Title: IPTQ-ViT: Post-Training Quantization of Non-linear Functions for Integer-only Vision Transformers
Abstract:
Previous Quantization-Aware Training (QAT) methods for vision transformers rely on expensive retraining to recover accuracy loss in non-linear layer quantization, limiting their use in resource-constrained environments. In contrast, existing Post-Training Quantization (PTQ) methods either partially quantize non-linear functions or adjust activation distributions to maintain accuracy but fail to achieve fully integer-only inference. In this paper, we introduce IPTQ-ViT, a novel PTQ framework for fully integer-only vision transformers without retraining. We present approximation functions: a polynomial-based GELU optimized for vision data and a bit-shifting-based Softmax designed to improve approximation accuracy in PTQ. In addition, we propose a unified metric integrating quantization sensitivity, perturbation, and computational cost to select the optimal approximation function per activation layer. IPTQ-ViT outperforms previous PTQ methods, achieving up to 6.44\%p (avg. 1.78\%p) top-1 accuracy improvement for image classification, 1.0 mAP for object detection. IPTQ-ViT outperforms partial floating-point PTQ methods under W8A8 and W4A8, and achieves accuracy and latency comparable to integer-only QAT methods. We plan to release our code https://github.com/gihwan-kim/IPTQ-ViT.git.

Authors:Amit Kumar, Maninder Kaur, Raghvendra Mall, Sukrit Gupta
Title: CASPER: Cross-modal Alignment of Spatial and single-cell Profiles for Expression Recovery
Abstract:
Spatial Transcriptomics enables mapping of gene expression within its native tissue context, but current platforms measure only a limited set of genes due to experimental constraints and excessive costs. To overcome this, computational models integrate Single-Cell RNA Sequencing data with Spatial Transcriptomics to predict unmeasured genes. We propose CASPER, a cross-attention based framework that predicts unmeasured gene expression in Spatial Transcriptomics by leveraging centroid-level representations from Single-Cell RNA Sequencing. We performed rigorous testing over four state-of-the-art Spatial Transcriptomics/Single-Cell RNA Sequencing dataset pairs across four existing baseline models. CASPER shows significant improvement in nine out of the twelve metrics for our experiments. This work paves the way for further work in Spatial Transcriptomics to Single-Cell RNA Sequencing modality translation. The code for CASPER is available at https://github.com/AI4Med-Lab/CASPER.

Authors:Vineeth Sai Narajala, Manish Bhatt, Idan Habler, Ronald F. Del Rosario, Ads Dawson
Title: MAIF: Enforcing AI Trust and Provenance with an Artifact-Centric Agentic Paradigm
Abstract:
The AI trustworthiness crisis threatens to derail the artificial intelligence revolution, with regulatory barriers, security vulnerabilities, and accountability gaps preventing deployment in critical domains. Current AI systems operate on opaque data structures that lack the audit trails, provenance tracking, or explainability required by emerging regulations like the EU AI Act. We propose an artifact-centric AI agent paradigm where behavior is driven by persistent, verifiable data artifacts rather than ephemeral tasks, solving the trustworthiness problem at the data architecture level. Central to this approach is the Multimodal Artifact File Format (MAIF), an AI-native container embedding semantic representations, cryptographic provenance, and granular access controls. MAIF transforms data from passive storage into active trust enforcement, making every AI operation inherently auditable. Our production-ready implementation demonstrates ultra-high-speed streaming (2,720.7 MB/s), optimized video processing (1,342 MB/s), and enterprise-grade security. Novel algorithms for cross-modal attention, semantic compression, and cryptographic binding achieve up to 225 compression while maintaining semantic fidelity. Advanced security features include stream-level access control, real-time tamper detection, and behavioral anomaly analysis with minimal overhead. This approach directly addresses the regulatory, security, and accountability challenges preventing AI deployment in sensitive domains, offering a viable path toward trustworthy AI systems at scale.

Authors:Haodong Chen, Guido Zuccon, Teerapong Leelanupab
Title: Beyond GeneGPT: A Multi-Agent Architecture with Open-Source LLMs for Enhanced Genomic Question Answering
Abstract:
Genomic question answering often requires complex reasoning and integration across diverse biomedical sources. GeneGPT addressed this challenge by combining domain-specific APIs with OpenAI's code-davinci-002 large language model to enable natural language interaction with genomic databases. However, its reliance on a proprietary model limits scalability, increases operational costs, and raises concerns about data privacy and generalization. In this work, we revisit and reproduce GeneGPT in a pilot study using open source models, including Llama 3.1, Qwen2.5, and Qwen2.5 Coder, within a monolithic architecture; this allows us to identify the limitations of this approach. Building on this foundation, we then develop OpenBioLLM, a modular multi-agent framework that extends GeneGPT by introducing agent specialization for tool routing, query generation, and response validation. This enables coordinated reasoning and role-based task execution. OpenBioLLM matches or outperforms GeneGPT on over 90% of the benchmark tasks, achieving average scores of 0.849 on Gene-Turing and 0.830 on GeneHop, while using smaller open-source models without additional fine-tuning or tool-specific pretraining. OpenBioLLM's modular multi-agent design reduces latency by 40-50% across benchmark tasks, significantly improving efficiency without compromising model capability. The results of our comprehensive evaluation highlight the potential of open-source multi-agent systems for genomic question answering. Code and resources are available at https://github.com/ielab/OpenBioLLM.

Authors:Nicholas Cooper, Lijun Chen, Sailesh Dwivedy, Danna Gurari
Title: Logit-Based Losses Limit the Effectiveness of Feature Knowledge Distillation
Abstract:
Knowledge distillation (KD) methods can transfer knowledge of a parameter-heavy teacher model to a light-weight student model. The status quo for feature KD methods is to utilize loss functions based on logits (i.e., pre-softmax class scores) and intermediate layer features (i.e., latent representations). Unlike previous approaches, we propose a feature KD framework for training the student's backbone using feature-based losses exclusively (i.e., without logit-based losses such as cross entropy). Leveraging recent discoveries about the geometry of latent representations, we introduce a knowledge quality metric for identifying which teacher layers provide the most effective knowledge for distillation. Experiments on three image classification datasets with four diverse student-teacher pairs, spanning convolutional neural networks and vision transformers, demonstrate our KD method achieves state-of-the-art performance, delivering top-1 accuracy boosts of up to 15% over standard approaches. We publically share our code to facilitate future work at https://github.com/Thegolfingocto/KD_wo_CE.

Authors:Fuyang Zhang, Pradeep Kumar Jayaraman, Xiang Xu, Yasutaka Furukawa
Title: B-Rep Distance Functions (BR-DF): How to Represent a B-Rep Model by Volumetric Distance Functions?
Abstract:
This paper presents a novel geometric representation for CAD Boundary Representation (B-Rep) based on volumetric distance functions, dubbed B-Rep Distance Functions (BR-DF). BR-DF encodes the surface mesh geometry of a CAD model as signed distance function (SDF). B-Rep vertices, edges, faces and their topology information are encoded as per-face unsigned distance functions (UDFs). An extension of the Marching Cubes algorithm converts BR-DF directly into watertight CAD B-Rep model (strictly speaking a faceted B-Rep model). A surprising characteristic of BR-DF is that this conversion process never fails. Leveraging the volumetric nature of BR-DF, we propose a multi-branch latent diffusion with 3D U-Net backbone for jointly generating the SDF and per-face UDFs of a BR-DF model. Our approach achieves comparable CAD generation performance against SOTA methods while reaching the unprecedented 100% success rate in producing (faceted) B-Rep models.

Authors:Aashish Ghimire, Jun Zeng, Roshan Paudel, Nikhil Kumar Tomar, Deepak Ranjan Nayak, Harshith Reddy Nalla, Vivek Jha, Glenda Reynolds, Debesh Jha
Title: When CNNs Outperform Transformers and Mambas: Revisiting Deep Architectures for Dental Caries Segmentation
Abstract:
Accurate identification and segmentation of dental caries in panoramic radiographs are critical for early diagnosis and effective treatment planning. Automated segmentation remains challenging due to low lesion contrast, morphological variability, and limited annotated data. In this study, we present the first comprehensive benchmarking of convolutional neural networks, vision transformers and state-space mamba architectures for automated dental caries segmentation on panoramic radiographs through a DC1000 dataset. Twelve state-of-the-art architectures, including VMUnet, MambaUNet, VMUNetv2, RMAMamba-S, TransNetR, PVTFormer, DoubleU-Net, and ResUNet++, were trained under identical configurations. Results reveal that, contrary to the growing trend toward complex attention based architectures, the CNN-based DoubleU-Net achieved the highest dice coefficient of 0.7345, mIoU of 0.5978, and precision of 0.8145, outperforming all transformer and Mamba variants. In the study, the top 3 results across all performance metrics were achieved by CNN-based architectures. Here, Mamba and transformer-based methods, despite their theoretical advantage in global context modeling, underperformed due to limited data and weaker spatial priors. These findings underscore the importance of architecture-task alignment in domain-specific medical image segmentation more than model complexity. Our code is available at: https://github.com/JunZengz/dental-caries-segmentation.

Authors:George Tsoukalas, Rahul Saha, Amitayush Thakur, Sabrina Reguyal, Swarat Chaudhuri
Title: Learning Interestingness in Automated Mathematical Theory Formation
Abstract:
We take two key steps in automating the open-ended discovery of new mathematical theories, a grand challenge in artificial intelligence. First, we introduce $\emph{FERMAT}$, a reinforcement learning (RL) environment that models concept discovery and theorem-proving using a set of symbolic actions, opening up a range of RL problems relevant to theory discovery. Second, we explore a specific problem through $\emph{FERMAT}$: automatically scoring the $\emph{interestingness}$ of mathematical objects. We investigate evolutionary algorithms for synthesizing nontrivial interestingness measures. In particular, we introduce an LLM-based evolutionary algorithm that features function abstraction, leading to notable improvements in discovering elementary number theory and finite fields over hard-coded baselines. We open-source the $\emph{FERMAT}$ environment at this URL(https://github.com/trishullab/Fermat).

Authors:Keya Hu, Ali Cy, Linlu Qiu, Xiaoman Delores Ding, Runqian Wang, Yeyin Eva Zhu, Jacob Andreas, Kaiming He
Title: ARC Is a Vision Problem!
Abstract:
The Abstraction and Reasoning Corpus (ARC) is designed to promote research on abstract reasoning, a fundamental aspect of human intelligence. Common approaches to ARC treat it as a language-oriented problem, addressed by large language models (LLMs) or recurrent reasoning models. However, although the puzzle-like tasks in ARC are inherently visual, existing research has rarely approached the problem from a vision-centric perspective. In this work, we formulate ARC within a vision paradigm, framing it as an image-to-image translation problem. To incorporate visual priors, we represent the inputs on a "canvas" that can be processed like natural images. It is then natural for us to apply standard vision architectures, such as a vanilla Vision Transformer (ViT), to perform image-to-image mapping. Our model is trained from scratch solely on ARC data and generalizes to unseen tasks through test-time training. Our framework, termed Vision ARC (VARC), achieves 60.4% accuracy on the ARC-1 benchmark, substantially outperforming existing methods that are also trained from scratch. Our results are competitive with those of leading LLMs and close the gap to average human performance.

Authors:Yifan Wang, Liya Ji, Zhanghan Ke, Harry Yang, Ser-Nam Lim, Qifeng Chen
Title: Zero-shot Synthetic Video Realism Enhancement via Structure-aware Denoising
Abstract:
We propose an approach to enhancing synthetic video realism, which can re-render synthetic videos from a simulator in photorealistic fashion. Our realism enhancement approach is a zero-shot framework that focuses on preserving the multi-level structures from synthetic videos into the enhanced one in both spatial and temporal domains, built upon a diffusion video foundational model without further fine-tuning. Specifically, we incorporate an effective modification to have the generation/denoising process conditioned on estimated structure-aware information from the synthetic video, such as depth maps, semantic maps, and edge maps, by an auxiliary model, rather than extracting the information from a simulator. This guidance ensures that the enhanced videos are consistent with the original synthetic video at both the structural and semantic levels. Our approach is a simple yet general and powerful approach to enhancing synthetic video realism: we show that our approach outperforms existing baselines in structural consistency with the original video while maintaining state-of-the-art photorealism quality in our experiments.

Authors:Abolfazl Younesi, Leon Kiss, Zahra Najafabadi Samani, Juan Aznar Poveda, Thomas Fahringer
Title: FLARE: Adaptive Multi-Dimensional Reputation for Robust Client Reliability in Federated Learning
Abstract:
Federated learning (FL) enables collaborative model training while preserving data privacy. However, it remains vulnerable to malicious clients who compromise model integrity through Byzantine attacks, data poisoning, or adaptive adversarial behaviors. Existing defense mechanisms rely on static thresholds and binary classification, failing to adapt to evolving client behaviors in real-world deployments. We propose FLARE, an adaptive reputation-based framework that transforms client reliability assessment from binary decisions to a continuous, multi-dimensional trust evaluation. FLARE integrates: (i) a multi-dimensional reputation score capturing performance consistency, statistical anomaly indicators, and temporal behavior, (ii) a self-calibrating adaptive threshold mechanism that adjusts security strictness based on model convergence and recent attack intensity, (iii) reputation-weighted aggregation with soft exclusion to proportionally limit suspicious contributions rather than eliminating clients outright, and (iv) a Local Differential Privacy (LDP) mechanism enabling reputation scoring on privatized client updates. We further introduce a highly evasive Statistical Mimicry (SM) attack, a benchmark adversary that blends honest gradients with synthetic perturbations and persistent drift to remain undetected by traditional filters. Extensive experiments with 100 clients on MNIST, CIFAR-10, and SVHN demonstrate that FLARE maintains high model accuracy and converges faster than state-of-the-art Byzantine-robust methods under diverse attack types, including label flipping, gradient scaling, adaptive attacks, ALIE, and SM. FLARE improves robustness by up to 16% and preserves model convergence within 30% of the non-attacked baseline, while achieving strong malicious-client detection performance with minimal computational overhead. https://github.com/Anonymous0-0paper/FLARE

Authors:Chia-Yu Hung, Navonil Majumder, Haoyuan Deng, Liu Renhang, Yankang Ang, Amir Zadeh, Chuan Li, Dorien Herremans, Ziwei Wang, Soujanya Poria
Title: NORA-1.5: A Vision-Language-Action Model Trained using World Model- and Action-based Preference Rewards
Abstract:
Vision--language--action (VLA) models have recently shown promising performance on a variety of embodied tasks, yet they still fall short in reliability and generalization, especially when deployed across different embodiments or real-world environments. In this work, we introduce NORA-1.5, a VLA model built from the pre-trained NORA backbone by adding to it a flow-matching-based action expert. This architectural enhancement alone yields substantial performance gains, enabling NORA-1.5 to outperform NORA and several state-of-the-art VLA models across both simulated and real-world benchmarks. To further improve robustness and task success, we develop a set of reward models for post-training VLA policies. Our rewards combine (i) an action-conditioned world model (WM) that evaluates whether generated actions lead toward the desired goal, and (ii) a deviation-from-ground-truth heuristic that distinguishes good actions from poor ones. Using these reward signals, we construct preference datasets and adapt NORA-1.5 to target embodiments through direct preference optimization (DPO). Extensive evaluations show that reward-driven post-training consistently improves performance in both simulation and real-robot settings, demonstrating significant VLA model-reliability gains through simple yet effective reward models. Our findings highlight NORA-1.5 and reward-guided post-training as a viable path toward more dependable embodied agents suitable for real-world deployment.

Authors:Jingyi Jia, Qinbin Li
Title: AutoTool: Efficient Tool Selection for Large Language Model Agents
Abstract:
Large Language Model (LLM) agents have emerged as powerful tools for automating complex tasks by leveraging the reasoning and decision-making abilities of LLMs. However, a major bottleneck in current agent frameworks lies in the high inference cost of tool selection, especially in approaches like ReAct that repeatedly invoke the LLM to determine which tool to use at each step. In this work, we propose AutoTool, a novel graph-based framework that bypasses repeated LLM inference by exploiting a key empirical observation: tool usage inertia - the tendency of tool invocations to follow predictable sequential patterns. AutoTool constructs a directed graph from historical agent trajectories, where nodes represent tools and edges capture transition probabilities, effectively modeling the inertia in tool selection. It further integrates parameter-level information to refine tool input generation. By traversing this structured representation, AutoTool efficiently selects tools and their parameters with minimal reliance on LLM inference. Extensive experiments across diverse agent tasks demonstrate that AutoTool reduces inference costs by up to 30% while maintaining competitive task completion rates, offering a practical and scalable enhancement for inference-heavy frameworks. Our work highlights the promise of integrating statistical structure into LLM agent design for greater efficiency without sacrificing performance.

Authors:Kahaan Gandhi, Boris Bolliet, Inigo Zubeldia
Title: Enhancing Agentic Autonomous Scientific Discovery with Vision-Language Model Capabilities
Abstract:
We show that multi-agent systems guided by vision-language models (VLMs) improve end-to-end autonomous scientific discovery. By treating plots as verifiable checkpoints, a VLM-as-a-judge evaluates figures against dynamically generated domain-specific rubrics, enabling agents to correct their own errors and steer exploratory data analysis in real-time. Case studies in cosmology and astrochemistry demonstrate recovery from faulty reasoning paths and adaptation to new datasets without human intervention. On a 10-task benchmark for data-driven discovery, VLM-augmented systems achieve pass at 1 scores of 0.7-0.8, compared to 0.2-0.3 for code-only and 0.4-0.5 for code-and-text baselines, while also providing auditable reasoning traces that improve interpretability. Code available here: https://github.com/CMBAgents/cmbagent

Authors:Ivy Yuqian Yang, David Yu Zhang
Title: Failure to Mix: Large language models struggle to answer according to desired probability distributions
Abstract:
Scientific idea generation and selection requires exploration following a target probability distribution. In contrast, current AI benchmarks have objectively correct answers, and training large language models (LLMs) via reinforcement learning against these benchmarks discourages probabilistic exploration. Here, we conducted systematic experiments requesting LLMs to produce outputs following simple probabilistic distributions, and found that all modern LLMs tested grossly fail to follow the distributions. For example, requesting a binary output of "1" 49% of the time produces an answer of "0" nearly 100% of the time. This step function-like behavior of near-exclusively generating the output with marginally highest probability even overrules even strong in-built LLM biases.

Authors:Minyoung Hwang, Alexandra Forsey-Smerek, Nathaniel Dennler, Andreea Bobu
Title: Masked IRL: LLM-Guided Reward Disambiguation from Demonstrations and Language
Abstract:
Robots can adapt to user preferences by learning reward functions from demonstrations, but with limited data, reward models often overfit to spurious correlations and fail to generalize. This happens because demonstrations show robots how to do a task but not what matters for that task, causing the model to focus on irrelevant state details. Natural language can more directly specify what the robot should focus on, and, in principle, disambiguate between many reward functions consistent with the demonstrations. However, existing language-conditioned reward learning methods typically treat instructions as simple conditioning signals, without fully exploiting their potential to resolve ambiguity. Moreover, real instructions are often ambiguous themselves, so naive conditioning is unreliable. Our key insight is that these two input types carry complementary information: demonstrations show how to act, while language specifies what is important. We propose Masked Inverse Reinforcement Learning (Masked IRL), a framework that uses large language models (LLMs) to combine the strengths of both input types. Masked IRL infers state-relevance masks from language instructions and enforces invariance to irrelevant state components. When instructions are ambiguous, it uses LLM reasoning to clarify them in the context of the demonstrations. In simulation and on a real robot, Masked IRL outperforms prior language-conditioned IRL methods by up to 15% while using up to 4.7 times less data, demonstrating improved sample-efficiency, generalization, and robustness to ambiguous language. Project page: https://MIT-CLEAR-Lab.github.io/Masked-IRL and Code: https://github.com/MIT-CLEAR-Lab/Masked-IRL

Authors:Trishala Jayesh Ahalpara
Title: Tell Me: An LLM-powered Mental Well-being Assistant with RAG, Synthetic Dialogue Generation, and Agentic Planning
Abstract:
We present Tell Me, a mental well-being system that leverages advances in large language models to provide accessible, context-aware support for users and researchers. The system integrates three components: (i) a retrieval-augmented generation (RAG) assistant for personalized, knowledge-grounded dialogue; (ii) a synthetic client-therapist dialogue generator conditioned on client profiles to facilitate research on therapeutic language and data augmentation; and (iii) a Well-being AI crew, implemented with CrewAI, that produces weekly self-care plans and guided meditation audio. The system is designed as a reflective space for emotional processing rather than a substitute for professional therapy. It illustrates how conversational assistants can lower barriers to support, complement existing care, and broaden access to mental health resources. To address the shortage of confidential therapeutic data, we introduce synthetic client-therapist dialogue generation conditioned on client profiles. Finally, the planner demonstrates an innovative agentic workflow for dynamically adaptive, personalized self-care, bridging the limitations of static well-being tools. We describe the architecture, demonstrate its functionalities, and report evaluation of the RAG assistant in curated well-being scenarios using both automatic LLM-based judgments and a human-user study. This work highlights opportunities for interdisciplinary collaboration between NLP researchers and mental health professionals to advance responsible innovation in human-AI interaction for well-being.

Authors:Andrey Okhotin, Maksim Nakhodnov, Nikita Kazeev, Andrey E Ustyuzhanin, Dmitry Vetrov
Title: MiAD: Mirage Atom Diffusion for De Novo Crystal Generation
Abstract:
In recent years, diffusion-based models have demonstrated exceptional performance in searching for simultaneously stable, unique, and novel (S.U.N.) crystalline materials. However, most of these models don't have the ability to change the number of atoms in the crystal during the generation process, which limits the variability of model sampling trajectories. In this paper, we demonstrate the severity of this restriction and introduce a simple yet powerful technique, mirage infusion, which enables diffusion models to change the state of the atoms that make up the crystal from existent to non-existent (mirage) and vice versa. We show that this technique improves model quality by up to $\times2.5$ compared to the same model without this modification. The resulting model, Mirage Atom Diffusion (MiAD), is an equivariant joint diffusion model for de novo crystal generation that is capable of altering the number of atoms during the generation process. MiAD achieves an $8.2\%$ S.U.N. rate on the MP-20 dataset, which substantially exceeds existing state-of-the-art approaches. The source code can be found at \href{https://github.com/andrey-okhotin/miad.git}{\texttt{github.com/andrey-okhotin/miad}}.

Authors:Xiuxiu Qi, Yu Yang, Jiannong Cao, Luyao Bai, Chongshan Fan, Chengtai Cao, Hongpeng Wang
Title: Continuous Vision-Language-Action Co-Learning with Semantic-Physical Alignment for Behavioral Cloning
Abstract:
Language-conditioned manipulation facilitates human-robot interaction via behavioral cloning (BC), which learns control policies from human demonstrations and serves as a cornerstone of embodied AI. Overcoming compounding errors in sequential action decisions remains a central challenge to improving BC performance. Existing approaches mitigate compounding errors through data augmentation, expressive representation, or temporal abstraction. However, they suffer from physical discontinuities and semantic-physical misalignment, leading to inaccurate action cloning and intermittent execution. In this paper, we present Continuous vision-language-action Co-Learning with Semantic-Physical Alignment (CCoL), a novel BC framework that ensures temporally consistent execution and fine-grained semantic grounding. It generates robust and smooth action execution trajectories through continuous co-learning across vision, language, and proprioceptive inputs (e.g., robot internal states). Meanwhile, we anchor language semantics to visuomotor representations by a bidirectional cross-attention to learn contextual information for action generation, successfully overcoming the problem of semantic-physical misalignment. Extensive experiments show that CCoL achieves an average 8.0% relative improvement across three simulation suites, with up to 19.2% relative gain in human-demonstrated bimanual insertion tasks. Real-world tests on a 7-DoF robot further confirm CCoL's generalization under unseen and noisy object states.

Authors:Frederik Hoppe, Lars Kleinemeier, Astrid Franz, Udo Göbel
Title: Comparing Task-Agnostic Embedding Models for Tabular Data
Abstract:
Recent foundation models for tabular data achieve strong task-specific performance via in-context learning. Nevertheless, they focus on direct prediction by encapsulating both representation learning and task-specific inference inside a single, resource-intensive network. This work specifically focuses on representation learning, i.e., on transferable, task-agnostic embeddings. We systematically evaluate task-agnostic representations from tabular foundation models (TabPFN and TabICL) alongside with classical feature engineering (TableVectorizer) across a variety of application tasks as outlier detection (ADBench) and supervised learning (TabArena Lite). We find that simple TableVectorizer features achieve comparable or superior performance while being up to three orders of magnitude faster than tabular foundation models. The code is available at https://github.com/ContactSoftwareAI/TabEmbedBench.

Authors:Zhaoyu Liu, Kan Jiang, Murong Ma, Zhe Hou, Yun Lin, Jin Song Dong
Title: Few-Shot Precise Event Spotting via Unified Multi-Entity Graph and Distillation
Abstract:
Precise event spotting (PES) aims to recognize fine-grained events at exact moments and has become a key component of sports analytics. This task is particularly challenging due to rapid succession, motion blur, and subtle visual differences. Consequently, most existing methods rely on domain-specific, end-to-end training with large labeled datasets and often struggle in few-shot conditions due to their dependence on pixel- or pose-based inputs alone. However, obtaining large labeled datasets is practically hard. We propose a Unified Multi-Entity Graph Network (UMEG-Net) for few-shot PES. UMEG-Net integrates human skeletons and sport-specific object keypoints into a unified graph and features an efficient spatio-temporal extraction module based on advanced GCN and multi-scale temporal shift. To further enhance performance, we employ multimodal distillation to transfer knowledge from keypoint-based graphs to visual representations. Our approach achieves robust performance with limited labeled data and significantly outperforms baseline models in few-shot settings, providing a scalable and effective solution for few-shot PES. Code is publicly available at https://github.com/LZYAndy/UMEG-Net.

Authors:Zhuo Li, Junjia Liu, Zhipeng Dong, Tao Teng, Quentin Rouxel, Darwin Caldwell, Fei Chen
Title: Towards Deploying VLA without Fine-Tuning: Plug-and-Play Inference-Time VLA Policy Steering via Embodied Evolutionary Diffusion
Abstract:
Vision-Language-Action (VLA) models have demonstrated significant potential in real-world robotic manipulation. However, pre-trained VLA policies still suffer from substantial performance degradation during downstream deployment. Although fine-tuning can mitigate this issue, its reliance on costly demonstration collection and intensive computation makes it impractical in real-world settings. In this work, we introduce VLA-Pilot, a plug-and-play inference-time policy steering method for zero-shot deployment of pre-trained VLA without any additional fine-tuning or data collection. We evaluate VLA-Pilot on six real-world downstream manipulation tasks across two distinct robotic embodiments, encompassing both in-distribution and out-of-distribution scenarios. Experimental results demonstrate that VLA-Pilot substantially boosts the success rates of off-the-shelf pre-trained VLA policies, enabling robust zero-shot generalization to diverse tasks and embodiments. Experimental videos and code are available at: https://rip4kobe.github.io/vla-pilot/.

Authors:Yuhua Jiang, Shuang Cheng, Yan Ding, Feifei Gao, Biqing Qi
Title: AsyncVLA: Asynchronous Flow Matching for Vision-Language-Action Models
Abstract:
Vision-language-action (VLA) models have recently emerged as a powerful paradigm for building generalist robots. However, traditional VLA models that generate actions through flow matching (FM) typically rely on rigid and uniform time schedules, i.e., synchronous FM (SFM). Without action context awareness and asynchronous self-correction, SFM becomes unstable in long-horizon tasks, where a single action error can cascade into failure. In this work, we propose asynchronous flow matching VLA (AsyncVLA), a novel framework that introduces temporal flexibility in asynchronous FM (AFM) and enables self-correction in action generation. AsyncVLA breaks from the vanilla SFM in VLA models by generating the action tokens in a non-uniform time schedule with action context awareness. Besides, our method introduces the confidence rater to extract confidence of the initially generated actions, enabling the model to selectively refine inaccurate action tokens before execution. Moreover, we propose a unified training procedure for SFM and AFM that endows a single model with both modes, improving KV-cache utilization. Extensive experiments on robotic manipulation benchmarks demonstrate that AsyncVLA is data-efficient and exhibits self-correction ability. AsyncVLA achieves state-of-the-art results across general embodied evaluations due to its asynchronous generation in AFM. Our code is available at https://github.com/YuhuaJiang2002/AsyncVLA.

Authors:Junchen Li, Rongzheng Wang, Yihong Huang, Qizhi Chen, Jiasheng Zhang, Shuang Liang
Title: NeuroPath: Neurobiology-Inspired Path Tracking and Reflection for Semantically Coherent Retrieval
Abstract:
Retrieval-augmented generation (RAG) greatly enhances large language models (LLMs) performance in knowledge-intensive tasks. However, naive RAG methods struggle with multi-hop question answering due to their limited capacity to capture complex dependencies across documents. Recent studies employ graph-based RAG to capture document connections. However, these approaches often result in a loss of semantic coherence and introduce irrelevant noise during node matching and subgraph construction. To address these limitations, we propose NeuroPath, an LLM-driven semantic path tracking RAG framework inspired by the path navigational planning of place cells in neurobiology. It consists of two steps: Dynamic Path Tracking and Post-retrieval Completion. Dynamic Path Tracking performs goal-directed semantic path tracking and pruning over the constructed knowledge graph (KG), improving noise reduction and semantic coherence. Post-retrieval Completion further reinforces these benefits by conducting second-stage retrieval using intermediate reasoning and the original query to refine the query goal and complete missing information in the reasoning path. NeuroPath surpasses current state-of-the-art baselines on three multi-hop QA datasets, achieving average improvements of 16.3% on recall@2 and 13.5% on recall@5 over advanced graph-based RAG methods. Moreover, compared to existing iter-based RAG methods, NeuroPath achieves higher accuracy and reduces token consumption by 22.8%. Finally, we demonstrate the robustness of NeuroPath across four smaller LLMs (Llama3.1, GLM4, Mistral0.3, and Gemma3), and further validate its scalability across tasks of varying complexity. Code is available at https://github.com/KennyCaty/NeuroPath.

Authors:Yue Zhang, Zun Wang, Han Lin, Jialu Li, Jianing Yang, Yonatan Bitton, Idan Szpektor, Mohit Bansal
Title: Error-Driven Scene Editing for 3D Grounding in Large Language Models
Abstract:
Despite recent progress in 3D-LLMs, they remain limited in accurately grounding language to visual and spatial elements in 3D environments. This limitation stems in part from training data that focuses on language reasoning rather than spatial understanding due to scarce 3D resources, leaving inherent grounding biases unresolved. To address this, we propose 3D scene editing as a key mechanism to generate precise visual counterfactuals that mitigate these biases through fine-grained spatial manipulation, without requiring costly scene reconstruction or large-scale 3D data collection. Furthermore, to make these edits targeted and directly address the specific weaknesses of the model, we introduce DEER-3D, an error-driven framework following a structured "Decompose, Diagnostic Evaluation, Edit, and Re-train" workflow, rather than broadly or randomly augmenting data as in conventional approaches. Specifically, upon identifying a grounding failure of the 3D-LLM, our framework first diagnoses the exact predicate-level error (e.g., attribute or spatial relation). It then executes minimal, predicate-aligned 3D scene edits, such as recoloring or repositioning, to produce targeted counterfactual supervision for iterative model fine-tuning, significantly enhancing grounding accuracy. We evaluate our editing pipeline across multiple benchmarks for 3D grounding and scene understanding tasks, consistently demonstrating improvements across all evaluated datasets through iterative refinement. DEER-3D underscores the effectiveness of targeted, error-driven scene editing in bridging linguistic reasoning capabilities with spatial grounding in 3D LLMs.

Authors:Zhonghao Liu, Hanxue Gu, Qihang Li, Michael Fox, Jay M. Levin, Maciej A. Mazurowski, Brian C. Lau
Title: Automated glenoid bone loss measurement and segmentation in CT scans for pre-operative planning in shoulder instability
Abstract:
Reliable measurement of glenoid bone loss is essential for operative planning in shoulder instability, but current manual and semi-automated methods are time-consuming and often subject to interreader variability. We developed and validated a fully automated deep learning pipeline for measuring glenoid bone loss on three-dimensional computed tomography (CT) scans using a linear-based, en-face view, best-circle method. Shoulder CT images of 91 patients (average age, 40 years; range, 14-89 years; 65 men) were retrospectively collected along with manual labels including glenoid segmentation, landmarks, and bone loss measurements. The multi-stage algorithm has three main stages: (1) segmentation, where we developed a U-Net to automatically segment the glenoid and humerus; (2) anatomical landmark detection, where a second network predicts glenoid rim points; and (3) geometric fitting, where we applied principal component analysis (PCA), projection, and circle fitting to compute the percentage of bone loss. The automated measurements showed strong agreement with consensus readings and exceeded surgeon-to-surgeon consistency (intraclass correlation coefficient (ICC) 0.84 vs 0.78), including in low- and high-bone-loss subgroups (ICC 0.71 vs 0.63 and 0.83 vs 0.21, respectively; P < 0.001). For classifying patients into low, medium, and high bone-loss categories, the pipeline achieved a recall of 0.714 for low and 0.857 for high severity, with no low cases misclassified as high or vice versa. These results suggest that our method is a time-efficient and clinically reliable tool for preoperative planning in shoulder instability and for screening patients with substantial glenoid bone loss. Code and dataset are available at https://github.com/Edenliu1/Auto-Glenoid-Measurement-DL-Pipeline.

Authors:Kelin Ren, Chan-Yang Ju, Dong-Ho Lee
Title: CafeMed: Causal Attention Fusion Enhanced Medication Recommendation
Abstract:
Medication recommendation systems play a crucial role in assisting clinicians with personalized treatment decisions. While existing approaches have made significant progress in learning medication representations, they suffer from two fundamental limitations: (i) treating medical entities as independent features without modeling their synergistic effects on medication selection; (ii) employing static causal relationships that fail to adapt to patient-specific contexts and health states. To address these challenges, we propose CafeMed, a framework that integrates dynamic causal reasoning with cross-modal attention for safe and accurate medication recommendation. CafeMed introduces two key components: the Causal Weight Generator (CWG) that transforms static causal effects into dynamic modulation weights based on individual patient states, and the Channel Harmonized Attention Refinement Module (CHARM) that captures complex interdependencies between diagnoses and procedures. This design enables CafeMed to model how different medical conditions jointly influence treatment decisions while maintaining medication safety constraints. Extensive experiments on MIMIC-III and MIMIC-IV datasets demonstrate that CafeMed significantly outperforms state-of-the-art baselines, achieving superior accuracy in medication prediction while maintaining the lower drug--drug interaction rates. Our results indicate that incorporating dynamic causal relationships and cross-modal synergies leads to more clinically-aligned and personalized medication recommendations. Our code is released publicly at https://github.com/rkl71/CafeMed.

Authors:Xueyang Li, Zongren Wang, Yuliang Zhang, Zixuan Pan, Yu-Jen Chen, Nishchal Sapkota, Gelei Xu, Danny Z. Chen, Yiyu Shi
Title: H-CNN-ViT: A Hierarchical Gated Attention Multi-Branch Model for Bladder Cancer Recurrence Prediction
Abstract:
Bladder cancer is one of the most prevalent malignancies worldwide, with a recurrence rate of up to 78%, necessitating accurate post-operative monitoring for effective patient management. Multi-sequence contrast-enhanced MRI is commonly used for recurrence detection; however, interpreting these scans remains challenging, even for experienced radiologists, due to post-surgical alterations such as scarring, swelling, and tissue remodeling. AI-assisted diagnostic tools have shown promise in improving bladder cancer recurrence prediction, yet progress in this field is hindered by the lack of dedicated multi-sequence MRI datasets for recurrence assessment study. In this work, we first introduce a curated multi-sequence, multi-modal MRI dataset specifically designed for bladder cancer recurrence prediction, establishing a valuable benchmark for future research. We then propose H-CNN-ViT, a new Hierarchical Gated Attention Multi-Branch model that enables selective weighting of features from the global (ViT) and local (CNN) paths based on contextual demands, achieving a balanced and targeted feature fusion. Our multi-branch architecture processes each modality independently, ensuring that the unique properties of each imaging channel are optimally captured and integrated. Evaluated on our dataset, H-CNN-ViT achieves an AUC of 78.6%, surpassing state-of-the-art models. Our model is publicly available at https://github.com/XLIAaron/H-CNN-ViT.

Authors:Huayi Zhu, Xiu Shu, Youqiang Xiong, Qiao Liu, Rui Chen, Di Yuan, Xiaojun Chang, Zhenyu He
Title: FusionFM: All-in-One Multi-Modal Image Fusion with Flow Matching
Abstract:
Current multi-modal image fusion methods typically rely on task-specific models, leading to high training costs and limited scalability. While generative methods provide a unified modeling perspective, they often suffer from slow inference due to the complex sampling trajectories from noise to image. To address this, we formulate image fusion as a direct probabilistic transport from source modalities to the fused image distribution, leveraging the flow matching paradigm to improve sampling efficiency and structural consistency. To mitigate the lack of high-quality fused images for supervision, we collect fusion results from multiple state-of-the-art models as priors, and employ a task-aware selection function to select the most reliable pseudo-labels for each task. We further introduce a Fusion Refiner module that employs a divide-and-conquer strategy to systematically identify, decompose, and enhance degraded components in selected pseudo-labels. For multi-task scenarios, we integrate elastic weight consolidation and experience replay mechanisms to preserve cross-task performance and enhance continual learning ability from both parameter stability and memory retention perspectives. Our approach achieves competitive performance across diverse fusion tasks, while significantly improving sampling efficiency and maintaining a lightweight model design. The code will be available at: https://github.com/Ist-Zhy/FusionFM.

Authors:Yogesh Kumar, Anand Mishra
Title: Temporal Object-Aware Vision Transformer for Few-Shot Video Object Detection
Abstract:
Few-shot Video Object Detection (FSVOD) addresses the challenge of detecting novel objects in videos with limited labeled examples, overcoming the constraints of traditional detection methods that require extensive training data. This task presents key challenges, including maintaining temporal consistency across frames affected by occlusion and appearance variations, and achieving novel object generalization without relying on complex region proposals, which are often computationally expensive and require task-specific training. Our novel object-aware temporal modeling approach addresses these challenges by incorporating a filtering mechanism that selectively propagates high-confidence object features across frames. This enables efficient feature progression, reduces noise accumulation, and enhances detection accuracy in a few-shot setting. By utilizing few-shot trained detection and classification heads with focused feature propagation, we achieve robust temporal consistency without depending on explicit object tube proposals. Our approach achieves performance gains, with AP improvements of 3.7% (FSVOD-500), 5.3% (FSYTV-40), 4.3% (VidOR), and 4.5 (VidVRD) in the 5-shot setting. Further results demonstrate improvements in 1-shot, 3-shot, and 10-shot configurations. We make the code public at: https://github.com/yogesh-iitj/fs-video-vit

Authors:Lyra Hoeben-Kuil, Gijs van Dijck, Jaromir Savelka, Johanna Gunawan, Konrad Kollnig, Marta Kolacz, Mindy Duffourc, Shashank Chakravarthy, Hannes Westermann
Title: Can LLMs Create Legally Relevant Summaries and Analyses of Videos?
Abstract:
Understanding the legally relevant factual basis of an event and conveying it through text is a key skill of legal professionals. This skill is important for preparing forms (e.g., insurance claims) or other legal documents (e.g., court claims), but often presents a challenge for laypeople. Current AI approaches aim to bridge this gap, but mostly rely on the user to articulate what has happened in text, which may be challenging for many. Here, we investigate the capability of large language models (LLMs) to understand and summarize events occurring in videos. We ask an LLM to summarize and draft legal letters, based on 120 YouTube videos showing legal issues in various domains. Overall, 71.7\% of the summaries were rated as of high or medium quality, which is a promising result, opening the door to a number of applications in e.g. access to justice.

Authors:Sibgat Ul Islam, Jawad Ibn Ahad, Fuad Rahman, Mohammad Ruhul Amin, Nabeel Mohammed, Shafin Rahman
Title: Dynamic Temperature Scheduler for Knowledge Distillation
Abstract:
Knowledge Distillation (KD) trains a smaller student model using a large, pre-trained teacher model, with temperature as a key hyperparameter controlling the softness of output probabilities. Traditional methods use a fixed temperature throughout training, which is suboptimal. Moreover, architectural differences between teacher and student often result in mismatched logit magnitudes. We demonstrate that students benefit from softer probabilities early in training but require sharper probabilities in later stages. We introduce Dynamic Temperature Scheduler (DTS), which adjusts temperature dynamically based on the cross-entropy loss gap between teacher and student. To our knowledge, this is the first temperature scheduling method that adapts based on the divergence between teacher and student distributions. Our method integrates seamlessly with existing KD frameworks. We validate DTS across multiple KD strategies on vision (CIFAR-100, Tiny-ImageNet) and NLP tasks (GLUE, Dolly, SelfIns, UnNI, S-NI), consistently outperforming static-temperature baselines. Code is available at https://github.com/Sibgat-Ul/DTS.

Authors:Xiuding Cai, Xueyao Wang, Sen Wang, Yaoyao Zhu, Jiao Chen, Yu Yao
Title: VitalBench: A Rigorous Multi-Center Benchmark for Long-Term Vital Sign Prediction in Intraoperative Care
Abstract:
Intraoperative monitoring and prediction of vital signs are critical for ensuring patient safety and improving surgical outcomes. Despite recent advances in deep learning models for medical time-series forecasting, several challenges persist, including the lack of standardized benchmarks, incomplete data, and limited cross-center validation. To address these challenges, we introduce VitalBench, a novel benchmark specifically designed for intraoperative vital sign prediction. VitalBench includes data from over 4,000 surgeries across two independent medical centers, offering three evaluation tracks: complete data, incomplete data, and cross-center generalization. This framework reflects the real-world complexities of clinical practice, minimizing reliance on extensive preprocessing and incorporating masked loss techniques for robust and unbiased model evaluation. By providing a standardized and unified platform for model development and comparison, VitalBench enables researchers to focus on architectural innovation while ensuring consistency in data handling. This work lays the foundation for advancing predictive models for intraoperative vital sign forecasting, ensuring that these models are not only accurate but also robust and adaptable across diverse clinical environments. Our code and data are available at https://github.com/XiudingCai/VitalBench.

Authors:Zhe Yang, Wenrui Li, Hongtao Chen, Penghong Wang, Ruiqin Xiong, Xiaopeng Fan
Title: Adaptive Redundancy Regulation for Balanced Multimodal Information Refinement
Abstract:
Multimodal learning aims to improve performance by leveraging data from multiple sources. During joint multimodal training, due to modality bias, the advantaged modality often dominates backpropagation, leading to imbalanced optimization. Existing methods still face two problems: First, the long-term dominance of the dominant modality weakens representation-output coupling in the late stages of training, resulting in the accumulation of redundant information. Second, previous methods often directly and uniformly adjust the gradients of the advantaged modality, ignoring the semantics and directionality between modalities. To address these limitations, we propose Adaptive Redundancy Regulation for Balanced Multimodal Information Refinement (RedReg), which is inspired by information bottleneck principle. Specifically, we construct a redundancy phase monitor that uses a joint criterion of effective gain growth rate and redundancy to trigger intervention only when redundancy is high. Furthermore, we design a co-information gating mechanism to estimate the contribution of the current dominant modality based on cross-modal semantics. When the task primarily relies on a single modality, the suppression term is automatically disabled to preserve modality-specific information. Finally, we project the gradient of the dominant modality onto the orthogonal complement of the joint multimodal gradient subspace and suppress the gradient according to redundancy. Experiments show that our method demonstrates superiority among current major methods in most scenarios. Ablation experiments verify the effectiveness of our method. The code is available at https://github.com/xia-zhe/RedReg.git

Authors:Zhongang Cai, Ruisi Wang, Chenyang Gu, Fanyi Pu, Junxiang Xu, Yubo Wang, Wanqi Yin, Zhitao Yang, Chen Wei, Qingping Sun, Tongxi Zhou, Jiaqi Li, Hui En Pang, Oscar Qian, Yukun Wei, Zhiqian Lin, Xuanke Shi, Kewang Deng, Xiaoyang Han, Zukai Chen, Xiangyu Fan, Hanming Deng, Lewei Lu, Liang Pan, Bo Li, Ziwei Liu, Quan Wang, Dahua Lin, Lei Yang
Title: Scaling Spatial Intelligence with Multimodal Foundation Models
Abstract:
Despite remarkable progress, multimodal foundation models still exhibit surprising deficiencies in spatial intelligence. In this work, we explore scaling up multimodal foundation models to cultivate spatial intelligence within the SenseNova-SI family, built upon established multimodal foundations including visual understanding models (i.e., Qwen3-VL and InternVL3) and unified understanding and generation models (i.e., Bagel). We take a principled approach to constructing high-performing and robust spatial intelligence by systematically curating SenseNova-SI-8M: eight million diverse data samples under a rigorous taxonomy of spatial capabilities. SenseNova-SI demonstrates unprecedented performance across a broad range of spatial intelligence benchmarks: 68.7% on VSI-Bench, 43.3% on MMSI, 85.6% on MindCube, 54.6% on ViewSpatial, and 50.1% on SITE, while maintaining strong general multimodal understanding (e.g., 84.9% on MMBench-En). More importantly, we analyze the impact of data scaling, discuss early signs of emergent generalization capabilities enabled by diverse data training, analyze the risk of overfitting and language shortcuts, present a preliminary study on spatial chain-of-thought reasoning, and validate the potential downstream application. SenseNova-SI is an ongoing project, and this report will be updated continuously. All newly trained multimodal foundation models are publicly released to facilitate further research in this direction.

Authors:Yuchen Bao, Yiting Wang, Wenjian Huang, Haowei Wang, Shen Chen, Taiping Yao, Shouhong Ding, Jianguo Zhang
Title: TripleFDS: Triple Feature Disentanglement and Synthesis for Scene Text Editing
Abstract:
Scene Text Editing (STE) aims to naturally modify text in images while preserving visual consistency, the decisive factors of which can be divided into three parts, i.e., text style, text content, and background. Previous methods have struggled with incomplete disentanglement of editable attributes, typically addressing only one aspect - such as editing text content - thus limiting controllability and visual consistency. To overcome these limitations, we propose TripleFDS, a novel framework for STE with disentangled modular attributes, and an accompanying dataset called SCB Synthesis. SCB Synthesis provides robust training data for triple feature disentanglement by utilizing the "SCB Group", a novel construct that combines three attributes per image to generate diverse, disentangled training groups. Leveraging this construct as a basic training unit, TripleFDS first disentangles triple features, ensuring semantic accuracy through inter-group contrastive regularization and reducing redundancy through intra-sample multi-feature orthogonality. In the synthesis phase, TripleFDS performs feature remapping to prevent "shortcut" phenomena during reconstruction and mitigate potential feature leakage. Trained on 125,000 SCB Groups, TripleFDS achieves state-of-the-art image fidelity (SSIM of 44.54) and text accuracy (ACC of 93.58%) on the mainstream STE benchmarks. Besides superior performance, the more flexible editing of TripleFDS supports new operations such as style replacement and background transfer. Code: https://github.com/yusenbao01/TripleFDS

Authors:Ruijun Deng, Zhihui Lu, Qiang Duan
Title: InfoDecom: Decomposing Information for Defending against Privacy Leakage in Split Inference
Abstract:
Split inference (SI) enables users to access deep learning (DL) services without directly transmitting raw data. However, recent studies reveal that data reconstruction attacks (DRAs) can recover the original inputs from the smashed data sent from the client to the server, leading to significant privacy leakage. While various defenses have been proposed, they often result in substantial utility degradation, particularly when the client-side model is shallow. We identify a key cause of this trade-off: existing defenses apply excessive perturbation to redundant information in the smashed data. To address this issue in computer vision tasks, we propose InfoDecom, a defense framework that first decomposes and removes redundant information and then injects noise calibrated to provide theoretically guaranteed privacy. Experiments demonstrate that InfoDecom achieves a superior utility-privacy trade-off compared to existing baselines. The code and the appendix are available at https://github.com/SASA-cloud/InfoDecom.

Authors:Lei Wang, Yulong Tian, Hao Han, Fengyuan Xu
Title: Enhancing All-to-X Backdoor Attacks with Optimized Target Class Mapping
Abstract:
Backdoor attacks pose severe threats to machine learning systems, prompting extensive research in this area. However, most existing work focuses on single-target All-to-One (A2O) attacks, overlooking the more complex All-to-X (A2X) attacks with multiple target classes, which are often assumed to have low attack success rates. In this paper, we first demonstrate that A2X attacks are robust against state-of-the-art defenses. We then propose a novel attack strategy that enhances the success rate of A2X attacks while maintaining robustness by optimizing grouping and target class assignment mechanisms. Our method improves the attack success rate by up to 28%, with average improvements of 6.7%, 16.4%, 14.1% on CIFAR10, CIFAR100, and Tiny-ImageNet, respectively. We anticipate that this study will raise awareness of A2X attacks and stimulate further research in this under-explored area. Our code is available at https://github.com/kazefjj/A2X-backdoor .

Authors:Yushuo Zheng, Jiangyong Ying, Huiyu Duan, Chunyi Li, Zicheng Zhang, Jing Liu, Xiaohong Liu, Guangtao Zhai
Title: GeoX-Bench: Benchmarking Cross-View Geo-Localization and Pose Estimation Capabilities of Large Multimodal Models
Abstract:
Large multimodal models (LMMs) have demonstrated remarkable capabilities across a wide range of tasks, however their knowledge and abilities in the cross-view geo-localization and pose estimation domains remain unexplored, despite potential benefits for navigation, autonomous driving, outdoor robotics, \textit{etc}. To bridge this gap, we introduce \textbf{GeoX-Bench}, a comprehensive \underline{Bench}mark designed to explore and evaluate the capabilities of LMMs in \underline{cross}-view \underline{Geo}-localization and pose estimation. Specifically, GeoX-Bench contains 10,859 panoramic-satellite image pairs spanning 128 cities in 49 countries, along with corresponding 755,976 question-answering (QA) pairs. Among these, 42,900 QA pairs are designated for benchmarking, while the remaining are intended to enhance the capabilities of LMMs. Based on GeoX-Bench, we evaluate the capabilities of 25 state-of-the-art LMMs on cross-view geo-localization and pose estimation tasks, and further explore the empowered capabilities of instruction-tuning. Our benchmark demonstrate that while current LMMs achieve impressive performance in geo-localization tasks, their effectiveness declines significantly on the more complex pose estimation tasks, highlighting a critical area for future improvement, and instruction-tuning LMMs on the training data of GeoX-Bench can significantly improve the cross-view geo-sense abilities. The GeoX-Bench is available at \textcolor{magenta}{https://github.com/IntMeGroup/GeoX-Bench}.

Authors:Yuxiang Zhang, Zhengxu Yu, Weihang Pan, Zhongming Jin, Qiang Fu, Deng Cai, Binbin Lin, Jieping Ye
Title: TokenSqueeze: Performance-Preserving Compression for Reasoning LLMs
Abstract:
Emerging reasoning LLMs such as OpenAI-o1 and DeepSeek-R1 have achieved strong performance on complex reasoning tasks by generating long chain-of-thought (CoT) traces. However, these long CoTs result in increased token usage, leading to higher inference latency and memory consumption. As a result, balancing accuracy and reasoning efficiency has become essential for deploying reasoning LLMs in practical applications. Existing long-to-short (Long2Short) methods aim to reduce inference length but often sacrifice accuracy, revealing a need for an approach that maintains performance while lowering token costs. To address this efficiency-accuracy tradeoff, we propose TokenSqueeze, a novel Long2Short method that condenses reasoning paths while preserving performance and relying exclusively on self-generated data. First, to prevent performance degradation caused by excessive compression of reasoning depth, we propose to select self-generated samples whose reasoning depth is adaptively matched to the complexity of the problem. To further optimize the linguistic expression without altering the underlying reasoning paths, we introduce a distribution-aligned linguistic refinement method that enhances the clarity and conciseness of the reasoning path while preserving its logical integrity. Comprehensive experimental results demonstrate the effectiveness of TokenSqueeze in reducing token usage while maintaining accuracy. Notably, DeepSeek-R1-Distill-Qwen-7B fine-tuned using our proposed method achieved a 50\% average token reduction while preserving accuracy on the MATH500 benchmark. TokenSqueeze exclusively utilizes the model's self-generated data, enabling efficient and high-fidelity reasoning without relying on manually curated short-answer datasets across diverse applications. Our code is available at https://github.com/zhangyx1122/TokenSqueeze.

Authors:Quanjiang Guo, Sijie Wang, Jinchuan Zhang, Ben Zhang, Zhao Kang, Ling Tian, Ke Yan
Title: Extracting Events Like Code: A Multi-Agent Programming Framework for Zero-Shot Event Extraction
Abstract:
Zero-shot event extraction (ZSEE) remains a significant challenge for large language models (LLMs) due to the need for complex reasoning and domain-specific understanding. Direct prompting often yields incomplete or structurally invalid outputs--such as misclassified triggers, missing arguments, and schema violations. To address these limitations, we present Agent-Event-Coder (AEC), a novel multi-agent framework that treats event extraction like software engineering: as a structured, iterative code-generation process. AEC decomposes ZSEE into specialized subtasks--retrieval, planning, coding, and verification--each handled by a dedicated LLM agent. Event schemas are represented as executable class definitions, enabling deterministic validation and precise feedback via a verification agent. This programming-inspired approach allows for systematic disambiguation and schema enforcement through iterative refinement. By leveraging collaborative agent workflows, AEC enables LLMs to produce precise, complete, and schema-consistent extractions in zero-shot settings. Experiments across five diverse domains and six LLMs demonstrate that AEC consistently outperforms prior zero-shot baselines, showcasing the power of treating event extraction like code generation. The code and data are released on https://github.com/UESTC-GQJ/Agent-Event-Coder.

Authors:SeokJoo Kwak, Jihoon Kim, Boyoun Kim, Jung Jae Yoon, Wooseok Jang, Jeonghoon Hong, Jaeho Yang, Yeong-Dae Kwon
Title: MEGA-GUI: Multi-stage Enhanced Grounding Agents for GUI Elements
Abstract:
Graphical User Interface (GUI) grounding - the task of mapping natural language instructions to screen coordinates - is essential for autonomous agents and accessibility technologies. Existing systems rely on monolithic models or one-shot pipelines that lack modularity and fail under visual clutter and ambiguous instructions. We introduce MEGA-GUI, a multi-stage framework that separates grounding into coarse Region-of-Interest (ROI) selection and fine-grained element grounding, orchestrated by specialized vision-language agents. MEGA-GUI features a bidirectional ROI zoom algorithm that mitigates spatial dilution and a context-aware rewriting agent that reduces semantic ambiguity. Our analysis reveals complementary strengths and weaknesses across vision-language models at different visual scales, and we show that leveraging this modular structure achieves consistently higher accuracy than monolithic approaches. On the visually dense ScreenSpot-Pro benchmark, MEGA-GUI attains 73.18% accuracy, and on the semantically complex OSWorld-G benchmark it reaches 68.63%, surpassing previously reported results. Code and the Grounding Benchmark Toolkit (GBT) are available at https://github.com/samsungsds-research-papers/mega-gui.

Authors:Vladimír Macko, Vladimír Boža
Title: MACKO: Sparse Matrix-Vector Multiplication for Low Sparsity
Abstract:
Sparse Matrix-Vector Multiplication (SpMV) is a fundamental operation in the inference of sparse Large Language Models (LLMs). Because existing SpMV methods perform poorly under the low and unstructured sparsity (30-90%) commonly observed in pruned LLMs, unstructured pruning provided only limited memory reduction and speedup. We propose MACKO-SpMV, a GPU-optimized format and kernel co-designed to reduce storage overhead while preserving compatibility with the GPU's execution model. This enables efficient SpMV for unstructured sparsity without specialized hardware units (e.g., tensor cores) or format-specific precomputation. Empirical results show that at sparsity 50%, MACKO is the first approach with significant 1.5x memory reduction and 1.2-1.5x speedup over dense representation. Speedups over other SpMV baselines: 2.8-13.0x over cuSPARSE, 1.9-2.6x over Sputnik, and 2.2-2.5x over DASP. Applied to Llama2-7B pruned with Wanda to sparsity 50%, it delivers 1.5x memory reduction and 1.5x faster inference at fp16 precision. Thanks to MACKO, unstructured pruning at 50% sparsity is now justified in real-world LLM workloads.

Authors:Yunhun Nam, Jaehyung Kim, Jongheon Jeong
Title: Learning from the Undesirable: Robust Adaptation of Language Models without Forgetting
Abstract:
Language models (LMs) are often adapted through supervised fine-tuning (SFT) to specialize their capabilities for downstream tasks. However, in typical scenarios where the fine-tuning data is limited, e.g., compared to pre-training, SFT can lead LMs to overfit, causing them to rely on spurious patterns within the target task or to compromise other broadly useful capabilities as a side effect of narrow specialization. In this paper, we propose Learning-from-the-Undesirable (LfU), a simple yet effective regularization scheme for SFT to mitigate overfitting issues when fine-tuning LMs with limited data. Specifically, we aim to regularize the fine-tuning process to favor solutions that are resilient to "undesirable" model updates, e.g., gradient ascent steps that steer the model toward undesirable behaviors. To this end, we propose a novel form of consistency regularization that directly aligns internal representations of the model with those after an undesirable update. By leveraging representation-level data augmentation through undesirable updates, LfU effectively promotes generalization under limited data. Our experiments on diverse LM downstream tasks show that LfU serves as an effective prior that enhances adaptability while preserving pretrained knowledge. For example, our LM from LfU achieves a 16.8% average improvement on math tasks compared to vanilla SFT on the same dataset, where the latter even leads to degraded performance on those tasks. Furthermore, LfU exhibits improved robustness to prompt variations, e.g., yielding a 92.1% lower standard deviation in output performances compared to SFT, highlighting its versatile effects.

Authors:Zeyuan Wang, Da Li, Yulin Chen, Ye Shi, Liang Bai, Tianyuan Yu, Yanwei Fu
Title: One-Step Generative Policies with Q-Learning: A Reformulation of MeanFlow
Abstract:
We introduce a one-step generative policy for offline reinforcement learning that maps noise directly to actions via a residual reformulation of MeanFlow, making it compatible with Q-learning. While one-step Gaussian policies enable fast inference, they struggle to capture complex, multimodal action distributions. Existing flow-based methods improve expressivity but typically rely on distillation and two-stage training when trained with Q-learning. To overcome these limitations, we propose to reformulate MeanFlow to enable direct noise-to-action generation by integrating the velocity field and noise-to-action transformation into a single policy network-eliminating the need for separate velocity estimation. We explore several reformulation variants and identify an effective residual formulation that supports expressive and stable policy learning. Our method offers three key advantages: 1) efficient one-step noise-to-action generation, 2) expressive modelling of multimodal action distributions, and 3) efficient and stable policy learning via Q-learning in a single-stage training setup. Extensive experiments on 73 tasks across the OGBench and D4RL benchmarks demonstrate that our method achieves strong performance in both offline and offline-to-online reinforcement learning settings. Code is available at https://github.com/HiccupRL/MeanFlowQL.

Authors:Zheyuan Hu, Chieh-Hsin Lai, Ge Wu, Yuki Mitsufuji, Stefano Ermon
Title: MeanFlow Transformers with Representation Autoencoders
Abstract:
MeanFlow (MF) is a diffusion-motivated generative model that enables efficient few-step generation by learning long jumps directly from noise to data. In practice, it is often used as a latent MF by leveraging the pre-trained Stable Diffusion variational autoencoder (SD-VAE) for high-dimensional data modeling. However, MF training remains computationally demanding and is often unstable. During inference, the SD-VAE decoder dominates the generation cost, and MF depends on complex guidance hyperparameters for class-conditional generation. In this work, we develop an efficient training and sampling scheme for MF in the latent space of a Representation Autoencoder (RAE), where a pre-trained vision encoder (e.g., DINO) provides semantically rich latents paired with a lightweight decoder. We observe that naive MF training in the RAE latent space suffers from severe gradient explosion. To stabilize and accelerate training, we adopt Consistency Mid-Training for trajectory-aware initialization and use a two-stage scheme: distillation from a pre-trained flow matching teacher to speed convergence and reduce variance, followed by an optional bootstrapping stage with a one-point velocity estimator to further reduce deviation from the oracle mean flow. This design removes the need for guidance, simplifies training configurations, and reduces computation in both training and sampling. Empirically, our method achieves a 1-step FID of 2.03, outperforming vanilla MF's 3.43, while reducing sampling GFLOPS by 38% and total training cost by 83% on ImageNet 256. We further scale our approach to ImageNet 512, achieving a competitive 1-step FID of 3.23 with the lowest GFLOPS among all baselines. Code is available at https://github.com/sony/mf-rae.

Authors:Leena Alghamdi, Muhammad Usman, Hafeez Anwar, Abdul Bais, Saeed Anwar
Title: MSRNet: A Multi-Scale Recursive Network for Camouflaged Object Detection
Abstract:
Camouflaged object detection is an emerging and challenging computer vision task that requires identifying and segmenting objects that blend seamlessly into their environments due to high similarity in color, texture, and size. This task is further complicated by low-light conditions, partial occlusion, small object size, intricate background patterns, and multiple objects. While many sophisticated methods have been proposed for this task, current methods still struggle to precisely detect camouflaged objects in complex scenarios, especially with small and multiple objects, indicating room for improvement. We propose a Multi-Scale Recursive Network that extracts multi-scale features via a Pyramid Vision Transformer backbone and combines them via specialized Attention-Based Scale Integration Units, enabling selective feature merging. For more precise object detection, our decoder recursively refines features by incorporating Multi-Granularity Fusion Units. A novel recursive-feedback decoding strategy is developed to enhance global context understanding, helping the model overcome the challenges in this task. By jointly leveraging multi-scale learning and recursive feature optimization, our proposed method achieves performance gains, successfully detecting small and multiple camouflaged objects. Our model achieves state-of-the-art results on two benchmark datasets for camouflaged object detection and ranks second on the remaining two. Our codes, model weights, and results are available at \href{https://github.com/linaagh98/MSRNet}{https://github.com/linaagh98/MSRNet}.

Authors:Sushant Gautam, Michael A. Riegler, Pål Halvorsen
Title: HEDGE: Hallucination Estimation via Dense Geometric Entropy for VQA with Vision-Language Models
Abstract:
Vision-language models (VLMs) enable open-ended visual question answering but remain prone to hallucinations. We present HEDGE, a unified framework for hallucination detection that combines controlled visual perturbations, semantic clustering, and robust uncertainty metrics. HEDGE integrates sampling, distortion synthesis, clustering (entailment- and embedding-based), and metric computation into a reproducible pipeline applicable across multimodal architectures. Evaluations on VQA-RAD and KvasirVQA-x1 with three representative VLMs (LLaVA-Med, Med-Gemma, Qwen2.5-VL) reveal clear architecture- and prompt-dependent trends. Hallucination detectability is highest for unified-fusion models with dense visual tokenization (Qwen2.5-VL) and lowest for architectures with restricted tokenization (Med-Gemma). Embedding-based clustering often yields stronger separation when applied directly to the generated answers, whereas NLI-based clustering remains advantageous for LLaVA-Med and for longer, sentence-level responses. Across configurations, the VASE metric consistently provides the most robust hallucination signal, especially when paired with embedding clustering and a moderate sampling budget (n ~ 10-15). Prompt design also matters: concise, label-style outputs offer clearer semantic structure than syntactically constrained one-sentence responses. By framing hallucination detection as a geometric robustness problem shaped jointly by sampling scale, prompt structure, model architecture, and clustering strategy, HEDGE provides a principled, compute-aware foundation for evaluating multimodal reliability. The hedge-bench PyPI library enables reproducible and extensible benchmarking, with full code and experimental resources available at https://github.com/Simula/HEDGE .

Authors:Shuaike Shen, Ke Liu, Jiaqing Xie, Shangde Gao, Chunhua Shen, Ge Liu, Mireia Crispin-Ortuzar, Shangqi Gao
Title: R$^{2}$Seg: Training-Free OOD Medical Tumor Segmentation via Anatomical Reasoning and Statistical Rejection
Abstract:
Foundation models for medical image segmentation struggle under out-of-distribution (OOD) shifts, often producing fragmented false positives on OOD tumors. We introduce R$^{2}$Seg, a training-free framework for robust OOD tumor segmentation that operates via a two-stage Reason-and-Reject process. First, the Reason step employs an LLM-guided anatomical reasoning planner to localize organ anchors and generate multi-scale ROIs. Second, the Reject step applies two-sample statistical testing to candidates generated by a frozen foundation model (BiomedParse) within these ROIs. This statistical rejection filter retains only candidates significantly different from normal tissue, effectively suppressing false positives. Our framework requires no parameter updates, making it compatible with zero-update test-time augmentation and avoiding catastrophic forgetting. On multi-center and multi-modal tumor segmentation benchmarks, R$^{2}$Seg substantially improves Dice, specificity, and sensitivity over strong baselines and the original foundation models. Code are available at https://github.com/Eurekashen/R2Seg.

Authors:Maoqi Liu, Quan Fang, Yang Yang, Can Zhao, Kaiquan Cai
Title: Knots: A Large-Scale Multi-Agent Enhanced Expert-Annotated Dataset and LLM Prompt Optimization for NOTAM Semantic Parsing
Abstract:
Notice to Air Missions (NOTAMs) serve as a critical channel for disseminating key flight safety information, yet their complex linguistic structures and implicit reasoning pose significant challenges for automated parsing. Existing research mainly focuses on surface-level tasks such as classification and named entity recognition, lacking deep semantic understanding. To address this gap, we propose NOTAM semantic parsing, a task emphasizing semantic inference and the integration of aviation domain knowledge to produce structured, inference-rich outputs. To support this task, we construct Knots (Knowledge and NOTAM Semantics), a high-quality dataset of 12,347 expert-annotated NOTAMs covering 194 Flight Information Regions, enhanced through a multi-agent collaborative framework for comprehensive field discovery. We systematically evaluate a wide range of prompt-engineering strategies and model-adaptation techniques, achieving substantial improvements in aviation text understanding and processing. Our experimental results demonstrate the effectiveness of the proposed approach and offer valuable insights for automated NOTAM analysis systems. Our code is available at: https://github.com/Estrellajer/Knots.

Authors:Baber Jan, Aiman H. El-Maleh, Abdul Jabbar Siddiqui, Abdul Bais, Saeed Anwar
Title: C3Net: Context-Contrast Network for Camouflaged Object Detection
Abstract:
Camouflaged object detection identifies objects that blend seamlessly with their surroundings through similar colors, textures, and patterns. This task challenges both traditional segmentation methods and modern foundation models, which fail dramatically on camouflaged objects. We identify six fundamental challenges in COD: Intrinsic Similarity, Edge Disruption, Extreme Scale Variation, Environmental Complexities, Contextual Dependencies, and Salient-Camouflaged Object Disambiguation. These challenges frequently co-occur and compound the difficulty of detection, requiring comprehensive architectural solutions. We propose C3Net, which addresses all challenges through a specialized dual-pathway decoder architecture. The Edge Refinement Pathway employs gradient-initialized Edge Enhancement Modules to recover precise boundaries from early features. The Contextual Localization Pathway utilizes our novel Image-based Context Guidance mechanism to achieve intrinsic saliency suppression without external models. An Attentive Fusion Module synergistically combines the two pathways via spatial gating. C3Net achieves state-of-the-art performance with S-measures of 0.898 on COD10K, 0.904 on CAMO, and 0.913 on NC4K, while maintaining efficient processing. C3Net demonstrates that complex, multifaceted detection challenges require architectural innovation, with specialized components working synergistically to achieve comprehensive coverage beyond isolated improvements. Code, model weights, and results are available at https://github.com/Baber-Jan/C3Net.

Authors:Yunxin Li, Xinyu Chen, Shenyuan Jiang, Haoyuan Shi, Zhenyu Liu, Xuanyu Zhang, Nanhao Deng, Zhenran Xu, Yicheng Ma, Meishan Zhang, Baotian Hu, Min Zhang
Title: Uni-MoE-2.0-Omni: Scaling Language-Centric Omnimodal Large Model with Advanced MoE, Training and Data
Abstract:
We present Uni-MoE 2.0 from the Lychee family. As a fully open-source omnimodal large model (OLM), it substantially advances Lychee's Uni-MoE series in language-centric multimodal understanding, reasoning, and generating. Based on the Qwen2.5-7B dense architecture, we build Uni-MoE-2.0-Omni from scratch through three core contributions: dynamic-capacity Mixture-of-Experts (MoE) design, a progressive training strategy enhanced with an iterative reinforcement strategy, and a carefully curated multimodal data matching technique. It is capable of omnimodal understanding, as well as generating images, text, and speech. Architecturally, our new MoE framework balances computational efficiency and capability for 10 cross-modal inputs using shared, routed, and null experts, while our Omni-Modality 3D RoPE ensures spatio-temporal cross-modality alignment in the self-attention layer. For training, following cross-modal pretraining, we use a progressive supervised fine-tuning strategy that activates modality-specific experts and is enhanced by balanced data composition and an iterative GSPO-DPO method to stabilise RL training and improve reasoning. Data-wise, the base model, trained on approximately 75B tokens of open-source multimodal data, is equipped with special speech and image generation tokens, allowing it to learn these generative tasks by conditioning its outputs on linguistic cues. Extensive evaluation across 85 benchmarks demonstrates that our model achieves SOTA or highly competitive performance against leading OLMs, surpassing Qwen2.5-Omni (trained with 1.2T tokens) on over 50 of 76 benchmarks. Key strengths include video understanding (+7% avg. of 8), omnimodallity understanding (+7% avg. of 4), and audiovisual reasoning (+4%). It also advances long-form speech processing (reducing WER by 4.2%) and leads in low-level image processing and controllable generation across 5 metrics.

Authors:Hongyi Chen, Jianhai Shu, Jingtao Ding, Yong Li, Xiao-Ping Zhang
Title: PID-controlled Langevin Dynamics for Faster Sampling of Generative Models
Abstract:
Langevin dynamics sampling suffers from extremely low generation speed, fundamentally limited by numerous fine-grained iterations to converge to the target distribution. We introduce PID-controlled Langevin Dynamics (PIDLD), a novel sampling acceleration algorithm that reinterprets the sampling process using control-theoretic principles. By treating energy gradients as feedback signals, PIDLD combines historical gradients (the integral term) and gradient trends (the derivative term) to efficiently traverse energy landscapes and adaptively stabilize, thereby significantly reducing the number of iterations required to produce high-quality samples. Our approach requires no additional training, datasets, or prior information, making it immediately integrable with any Langevin-based method. Extensive experiments across image generation and reasoning tasks demonstrate that PIDLD achieves higher quality with fewer steps, making Langevin-based generative models more practical for efficiency-critical applications. The implementation can be found at \href{https://github.com/tsinghua-fib-lab/PIDLD}{https://github.com/tsinghua-fib-lab/PIDLD}.

Authors:Mengying Wang, Chenhui Ma, Ao Jiao, Tuo Liang, Pengjun Lu, Shrinidhi Hegde, Yu Yin, Evren Gurkan-Cavusoglu, Yinghui Wu
Title: Assessing LLMs for Serendipity Discovery in Knowledge Graphs: A Case for Drug Repurposing
Abstract:
Large Language Models (LLMs) have greatly advanced knowledge graph question answering (KGQA), yet existing systems are typically optimized for returning highly relevant but predictable answers. A missing yet desired capacity is to exploit LLMs to suggest surprise and novel ("serendipitious") answers. In this paper, we formally define the serendipity-aware KGQA task and propose the SerenQA framework to evaluate LLMs' ability to uncover unexpected insights in scientific KGQA tasks. SerenQA includes a rigorous serendipity metric based on relevance, novelty, and surprise, along with an expert-annotated benchmark derived from the Clinical Knowledge Graph, focused on drug repurposing. Additionally, it features a structured evaluation pipeline encompassing three subtasks: knowledge retrieval, subgraph reasoning, and serendipity exploration. Our experiments reveal that while state-of-the-art LLMs perform well on retrieval, they still struggle to identify genuinely surprising and valuable discoveries, underscoring a significant room for future improvements. Our curated resources and extended version are released at: https://cwru-db-group.github.io/serenQA.

Authors:Changzeng Fu, Shiwen Zhao, Yunze Zhang, Zhongquan Jian, Shiqi Zhao, Chaoran Liu
Title: Personality-guided Public-Private Domain Disentangled Hypergraph-Former Network for Multimodal Depression Detection
Abstract:
Depression represents a global mental health challenge requiring efficient and reliable automated detection methods. Current Transformer- or Graph Neural Networks (GNNs)-based multimodal depression detection methods face significant challenges in modeling individual differences and cross-modal temporal dependencies across diverse behavioral contexts. Therefore, we propose P$^3$HF (Personality-guided Public-Private Domain Disentangled Hypergraph-Former Network) with three key innovations: (1) personality-guided representation learning using LLMs to transform discrete individual features into contextual descriptions for personalized encoding; (2) Hypergraph-Former architecture modeling high-order cross-modal temporal relationships; (3) event-level domain disentanglement with contrastive learning for improved generalization across behavioral contexts. Experiments on MPDD-Young dataset show P$^3$HF achieves around 10\% improvement on accuracy and weighted F1 for binary and ternary depression classification task over existing methods. Extensive ablation studies validate the independent contribution of each architectural component, confirming that personality-guided representation learning and high-order hypergraph reasoning are both essential for generating robust, individual-aware depression-related representations. The code is released at https://github.com/hacilab/P3HF.

Authors:Borchuluun Yadamsuren, Steven Keith Platt, Miguel Diaz
Title: LLM-Assisted Formalization Enables Deterministic Detection of Statutory Inconsistency in the Internal Revenue Code
Abstract:
This study introduces a hybrid neuro-symbolic framework that achieves deterministic detection of statutory inconsistency in complex law. We use the U.S. Internal Revenue Code (IRC) as a case study because its complexity makes it a fertile domain for identifying conflicts. Our research offers a solution for detecting inconsistent provisions by combining Large Language Models (LLMs) with symbolic logic. LLM-based methods can support compliance, fairness, and statutory drafting, yet tax-specific applications remain sparse. A key challenge is that such models struggle with hierarchical processing and deep structured reasoning, especially over long text. This research addresses these gaps through experiments using GPT-4o, GPT-5, and Prolog. GPT-4o was first used to translate Section 121 into Prolog rules and refine them in SWISH. These rules were then incorporated into prompts to test whether Prolog-augmented prompting improved GPT-4o's inconsistency detection. GPT-4o, whether prompted with natural language alone or with Prolog augmentation, detected the inconsistency in only one of three strategies (33 percent accuracy), but its reasoning quality differed: natural-language prompting achieved 100 percent rule coverage, while Prolog-augmented prompting achieved 66 percent, indicating more incomplete statutory analysis. In contrast to probabilistic prompting, the hybrid Prolog model produced deterministic and reproducible results. Guided by GPT-5 for refinement, the model formalized the IRC section's competing interpretations and successfully detected an inconsistency zone. Validation tests confirm that the Prolog implementation is accurate, internally consistent, deterministic, and capable of autonomously identifying inconsistencies. These findings show that LLM-assisted formalization, anchored in symbolic logic, enables transparent and reliable statutory inconsistency detection.

Authors:Afifa Khaled, Ebrahim Hamid Sumiea
Title: PI-NAIM: Path-Integrated Neural Adaptive Imputation Model
Abstract:
Medical imaging and multi-modal clinical settings often face the challange of missing modality in their diagnostic pipelines. Existing imputation methods either lack representational capacity or are computationally expensive. We propose PI-NAIM, a novel dual-path architecture that dynamically routes samples to optimized imputation approaches based on missingness complexity. Our framework integrates: (1) intelligent path routing that directs low missingness samples to efficient statistical imputation (MICE) and complex patterns to powerful neural networks (GAIN with temporal analysis); (2) cross-path attention fusion that leverages missingness-aware embeddings to intelligently combine both branches; and (3) end-to-end joint optimization of imputation accuracy and downstream task performance. Extensive experiments on MIMIC-III and multimodal benchmarks demonstrate state-of-the-art performance, achieving RMSE of 0.108 (vs. baselines' 0.119-0.152) and substantial gains in downstream tasks with an AUROC of 0.812 for mortality prediction. PI-NAIM's modular design enables seamless integration into vision pipelines handling incomplete sensor measurements, missing modalities, or corrupted inputs, providing a unified solution for real-world scenario. The code is publicly available at https://github.com/AfifaKhaled/PI-NAIM-Path-Integrated-Neural-Adaptive-Imputation-Model

Authors:Arnav Singhvi, Vasiliki Bikia, Asad Aali, Akshay Chaudhari, Roxana Daneshjou
Title: Prompt Triage: Structured Optimization Enhances Vision-Language Model Performance on Medical Imaging Benchmarks
Abstract:
Vision-language foundation models (VLMs) show promise for diverse imaging tasks but often underperform on medical benchmarks. Prior efforts to improve performance include model finetuning, which requires large domain-specific datasets and significant compute, or manual prompt engineering, which is hard to generalize and often inaccessible to medical institutions seeking to deploy these tools. These challenges motivate interest in approaches that draw on a model's embedded knowledge while abstracting away dependence on human-designed prompts to enable scalable, weight-agnostic performance improvements. To explore this, we adapt the Declarative Self-improving Python (DSPy) framework for structured automated prompt optimization in medical vision-language systems through a comprehensive, formal evaluation. We implement prompting pipelines for five medical imaging tasks across radiology, gastroenterology, and dermatology, evaluating 10 open-source VLMs with four prompt optimization techniques. Optimized pipelines achieved a median relative improvement of 53% over zero-shot prompting baselines, with the largest gains ranging from 300% to 3,400% on tasks where zero-shot performance is low. These results highlight the substantial potential of applying automated prompt optimization to medical AI systems, demonstrating significant gains for vision-based applications requiring accurate clinical image interpretation. By reducing dependence on prompt design to elicit intended outputs, these techniques allow clinicians to focus on patient care and clinical decision-making. Furthermore, our experiments offer scalability and preserve data privacy, demonstrating performance improvement on open-source VLMs. We publicly release our evaluation pipelines to support reproducible research on specialized medical tasks, available at https://github.com/DaneshjouLab/prompt-triage-lab.

Authors:Zhengxin Zhang, Chengyu Huang, Aochong Oliver Li, Claire Cardie
Title: Better LLM Reasoning via Dual-Play
Abstract:
Large Language Models (LLMs) have achieved remarkable progress through Reinforcement Learning with Verifiable Rewards (RLVR), yet still rely heavily on external supervision (e.g., curated labels). Adversarial learning, particularly through self-play, offers a promising alternative that enables models to iteratively learn from themselves - thus reducing reliance on external supervision. Dual-play extends adversarial learning by assigning specialized roles to two models and training them against each other, fostering sustained competition and mutual evolution. Despite its promise, adapting dual-play training to LLMs remains limited, largely due to their susceptibility to reward hacking and training instability. In this paper, we introduce PasoDoble, a novel LLM dual-play framework. PasoDoble adversarially trains two models initialized from the same base model: a Proposer, which generates challenging questions with ground-truth answers, and a Solver, which attempts to solve them. We enrich the Proposer with knowledge from a pre-training dataset to ensure the questions' quality and diversity. To avoid reward hacking, the Proposer is rewarded for producing only valid questions that push the Solver's limit, while the Solver is rewarded for solving them correctly, and both are updated jointly. To further enhance training stability, we introduce an optional offline paradigm that decouples Proposer and Solver updates, alternately updating each for several steps while holding the other fixed. Notably, PasoDoble operates without supervision during training. Experimental results show that PasoDoble can improve the reasoning performance of LLMs. Our project page is available at https://hcy123902.github.io/PasoDoble.

Authors:Wenhao Zhou, Hao Zheng, Rong Zhao
Title: TopoPerception: A Shortcut-Free Evaluation of Global Visual Perception in Large Vision-Language Models
Abstract:
Large Vision-Language Models (LVLMs) typically align visual features from an encoder with a pre-trained Large Language Model (LLM). However, this makes the visual perception module a bottleneck, which constrains the overall capabilities of LVLMs. Conventional evaluation benchmarks, while rich in visual semantics, often contain unavoidable local shortcuts that can lead to an overestimation of models' perceptual abilities. Here, we introduce TopoPerception, a benchmark that leverages topological properties to rigorously evaluate the global visual perception capabilities of LVLMs across various granularities. Since topology depends on the global structure of an image and is invariant to local features, TopoPerception enables a shortcut-free assessment of global perception, fundamentally distinguishing it from semantically rich tasks. We evaluate state-of-the-art models on TopoPerception and find that even at the coarsest perceptual granularity, all models perform no better than random chance, indicating a profound inability to perceive global visual features. Notably, a consistent trend emerge within model families: more powerful models with stronger reasoning capabilities exhibit lower accuracy. This suggests that merely scaling up models is insufficient to address this deficit and may even exacerbate it. Progress may require new training paradigms or architectures. TopoPerception not only exposes a critical bottleneck in current LVLMs but also offers a lens and direction for improving their global visual perception. The data and code are publicly available at: https://github.com/Wenhao-Zhou/TopoPerception.

Authors:Michael Sun, Weize Yuan, Gang Liu, Wojciech Matusik, Marinka Zitnik
Title: Protein Structure Tokenization via Geometric Byte Pair Encoding
Abstract:
Protein structure is central to biological function, and enabling multimodal protein models requires joint reasoning over sequence, structure, and function. A key barrier is the lack of principled protein structure tokenizers (PSTs): existing approaches fix token size or rely on continuous vector codebooks, limiting interpretability, multi-scale control, and transfer across architectures. We introduce GeoBPE, a geometry-grounded PST that transforms continuous, noisy, multi-scale backbone conformations into discrete ``sentences'' of geometry while enforcing global constraints. Analogous to byte-pair encoding, GeoBPE generates a hierarchical vocabulary of geometric primitives by iteratively (i) clustering Geo-Pair occurrences with k-medoids to yield a resolution-controllable vocabulary; (ii) quantizing each Geo-Pair to its closest medoid prototype; and (iii) reducing drift through differentiable inverse kinematics that optimizes boundary glue angles under an $\mathrm{SE}(3)$ end-frame loss. GeoBPE offers compression ($>$10x reduction in bits-per-residue at similar distortion rate), data efficiency ($>$10x less training data), and generalization (maintains test/train distortion ratio of $1.0-1.1$). It is architecture-agnostic: (a) its hierarchical vocabulary provides a strong inductive bias for coarsening residue-level embeddings from large PLMs into motif- and protein-level representations, consistently outperforming leading PSTs across $12$ tasks and $24$ test splits; (b) paired with a transformer, GeoBPE supports unconditional backbone generation via language modeling; and (c) tokens align with CATH functional families and support expert-interpretable case studies, offering functional meaning absent in prior PSTs. Code is available at https://github.com/shiningsunnyday/PT-BPE/.

Authors:Hanting Yan, Pan Mu, Shiqi Zhang, Yuchao Zhu, Jinglin Zhang, Cong Bai
Title: IDOL: Meeting Diverse Distribution Shifts with Prior Physics for Tropical Cyclone Multi-Task Estimation
Abstract:
Tropical Cyclone (TC) estimation aims to accurately estimate various TC attributes in real time. However, distribution shifts arising from the complex and dynamic nature of TC environmental fields, such as varying geographical conditions and seasonal changes, present significant challenges to reliable estimation. Most existing methods rely on multi-modal fusion for feature extraction but overlook the intrinsic distribution of feature representations, leading to poor generalization under out-of-distribution (OOD) scenarios. To address this, we propose an effective Identity Distribution-Oriented Physical Invariant Learning framework (IDOL), which imposes identity-oriented constraints to regulate the feature space under the guidance of prior physical knowledge, thereby dealing distribution variability with physical invariance. Specifically, the proposed IDOL employs the wind field model and dark correlation knowledge of TC to model task-shared and task-specific identity tokens. These tokens capture task dependencies and intrinsic physical invariances of TC, enabling robust estimation of TC wind speed, pressure, inner-core, and outer-core size under distribution shifts. Extensive experiments conducted on multiple datasets and tasks demonstrate the outperformance of the proposed IDOL, verifying that imposing identity-oriented constraints based on prior physical knowledge can effectively mitigates diverse distribution shifts in TC estimation.Code is available at https://github.com/Zjut-MultimediaPlus/IDOL.

Authors:Haokun Chen, Jianing Li, Yao Zhang, Jinhe Bi, Yan Xia, Jindong Gu, Volker Tresp
Title: AUVIC: Adversarial Unlearning of Visual Concepts for Multi-modal Large Language Models
Abstract:
Multimodal Large Language Models (MLLMs) achieve impressive performance once optimized on massive datasets. Such datasets often contain sensitive or copyrighted content, raising significant data privacy concerns. Regulatory frameworks mandating the 'right to be forgotten' drive the need for machine unlearning. This technique allows for the removal of target data without resource-consuming retraining. However, while well-studied for text, visual concept unlearning in MLLMs remains underexplored. A primary challenge is precisely removing a target visual concept without disrupting model performance on related entities. To address this, we introduce AUVIC, a novel visual concept unlearning framework for MLLMs. AUVIC applies adversarial perturbations to enable precise forgetting. This approach effectively isolates the target concept while avoiding unintended effects on similar entities. To evaluate our method, we construct VCUBench. It is the first benchmark designed to assess visual concept unlearning in group contexts. Experimental results demonstrate that AUVIC achieves state-of-the-art target forgetting rates while incurs minimal performance degradation on non-target concepts.

Authors:Sven Schultze, Meike Verena Kietzmann, Nils-Lucas Schönfeld, Ruth Stock-Homburg
Title: Building the Web for Agents: A Declarative Framework for Agent-Web Interaction
Abstract:
The increasing deployment of autonomous AI agents on the web is hampered by a fundamental misalignment: agents must infer affordances from human-oriented user interfaces, leading to brittle, inefficient, and insecure interactions. To address this, we introduce VOIX, a web-native framework that enables websites to expose reliable, auditable, and privacy-preserving capabilities for AI agents through simple, declarative HTML elements. VOIX introduces and tags, allowing developers to explicitly define available actions and relevant state, thereby creating a clear, machine-readable contract for agent behavior. This approach shifts control to the website developer while preserving user privacy by disconnecting the conversational interactions from the website. We evaluated the framework's practicality, learnability, and expressiveness in a three-day hackathon study with 16 developers. The results demonstrate that participants, regardless of prior experience, were able to rapidly build diverse and functional agent-enabled web applications. Ultimately, this work provides a foundational mechanism for realizing the Agentic Web, enabling a future of seamless and secure human-AI collaboration on the web.

Authors:Mohamed Amine Ferrag, Abderrahmane Lakas, Merouane Debbah
Title: UAVBench: An Open Benchmark Dataset for Autonomous and Agentic AI UAV Systems via LLM-Generated Flight Scenarios
Abstract:
Autonomous aerial systems increasingly rely on large language models (LLMs) for mission planning, perception, and decision-making, yet the lack of standardized and physically grounded benchmarks limits systematic evaluation of their reasoning capabilities. To address this gap, we introduce UAVBench, an open benchmark dataset comprising 50,000 validated UAV flight scenarios generated through taxonomy-guided LLM prompting and multi-stage safety validation. Each scenario is encoded in a structured JSON schema that includes mission objectives, vehicle configuration, environmental conditions, and quantitative risk labels, providing a unified representation of UAV operations across diverse domains. Building on this foundation, we present UAVBench_MCQ, a reasoning-oriented extension containing 50,000 multiple-choice questions spanning ten cognitive and ethical reasoning styles, ranging from aerodynamics and navigation to multi-agent coordination and integrated reasoning. This framework enables interpretable and machine-checkable assessment of UAV-specific cognition under realistic operational contexts. We evaluate 32 state-of-the-art LLMs, including GPT-5, ChatGPT-4o, Gemini 2.5 Flash, DeepSeek V3, Qwen3 235B, and ERNIE 4.5 300B, and find strong performance in perception and policy reasoning but persistent challenges in ethics-aware and resource-constrained decision-making. UAVBench establishes a reproducible and physically grounded foundation for benchmarking agentic AI in autonomous aerial systems and advancing next-generation UAV reasoning intelligence. To support open science and reproducibility, we release the UAVBench dataset, the UAVBench_MCQ benchmark, evaluation scripts, and all related materials on GitHub at https://github.com/maferrag/UAVBench

Authors:Dayong Liang, Xiao-Yong Wei, Changmeng Zheng
Title: Multi-agent Undercover Gaming: Hallucination Removal via Counterfactual Test for Multimodal Reasoning
Abstract:
Hallucination continues to pose a major obstacle in the reasoning capabilities of large language models (LLMs). Although the Multi-Agent Debate (MAD) paradigm offers a promising solution by promoting consensus among multiple agents to enhance reliability, it relies on the unrealistic assumption that all debaters are rational and reflective, which is a condition that may not hold when agents themselves are prone to hallucinations. To address this gap, we introduce the Multi-agent Undercover Gaming (MUG) protocol, inspired by social deduction games like "Who is Undercover?". MUG reframes MAD as a process of detecting "undercover" agents (those suffering from hallucinations) by employing multimodal counterfactual tests. Specifically, we modify reference images to introduce counterfactual evidence and observe whether agents can accurately identify these changes, providing ground-truth for identifying hallucinating agents and enabling robust, crowd-powered multimodal reasoning. MUG advances MAD protocols along three key dimensions: (1) enabling factual verification beyond statistical consensus through counterfactual testing; (2) introducing cross-evidence reasoning via dynamically modified evidence sources instead of relying on static inputs; and (3) fostering active reasoning, where agents engage in probing discussions rather than passively answering questions. Collectively, these innovations offer a more reliable and effective framework for multimodal reasoning in LLMs. The source code can be accessed at https://github.com/YongLD/MUG.git.

Authors:Jingxuan Wei, Caijun Jia, Xi Bai, Xinglong Xu, Siyuan Li, Linzhuang Sun, Bihui Yu, Conghui He, Lijun Wu, Cheng Tan
Title: GGBench: A Geometric Generative Reasoning Benchmark for Unified Multimodal Models
Abstract:
The advent of Unified Multimodal Models (UMMs) signals a paradigm shift in artificial intelligence, moving from passive perception to active, cross-modal generation. Despite their unprecedented ability to synthesize information, a critical gap persists in evaluation: existing benchmarks primarily assess discriminative understanding or unconstrained image generation separately, failing to measure the integrated cognitive process of generative reasoning. To bridge this gap, we propose that geometric construction provides an ideal testbed as it inherently demands a fusion of language comprehension and precise visual generation. We introduce GGBench, a benchmark designed specifically to evaluate geometric generative reasoning. It provides a comprehensive framework for systematically diagnosing a model's ability to not only understand and reason but to actively construct a solution, thereby setting a more rigorous standard for the next generation of intelligent systems. Project website: https://opendatalab-raiser.github.io/GGBench/.

Authors:Sun Jo, Seok Young Hong, JinHyun Kim, Seungmin Kang, Ahjin Choi, Don-Gwan An, Simon Song, Je Hyeong Hong
Title: PINGS-X: Physics-Informed Normalized Gaussian Splatting with Axes Alignment for Efficient Super-Resolution of 4D Flow MRI
Abstract:
4D flow magnetic resonance imaging (MRI) is a reliable, non-invasive approach for estimating blood flow velocities, vital for cardiovascular diagnostics. Unlike conventional MRI focused on anatomical structures, 4D flow MRI requires high spatiotemporal resolution for early detection of critical conditions such as stenosis or aneurysms. However, achieving such resolution typically results in prolonged scan times, creating a trade-off between acquisition speed and prediction accuracy. Recent studies have leveraged physics-informed neural networks (PINNs) for super-resolution of MRI data, but their practical applicability is limited as the prohibitively slow training process must be performed for each patient. To overcome this limitation, we propose PINGS-X, a novel framework modeling high-resolution flow velocities using axes-aligned spatiotemporal Gaussian representations. Inspired by the effectiveness of 3D Gaussian splatting (3DGS) in novel view synthesis, PINGS-X extends this concept through several non-trivial novel innovations: (i) normalized Gaussian splatting with a formal convergence guarantee, (ii) axes-aligned Gaussians that simplify training for high-dimensional data while preserving accuracy and the convergence guarantee, and (iii) a Gaussian merging procedure to prevent degenerate solutions and boost computational efficiency. Experimental results on computational fluid dynamics (CFD) and real 4D flow MRI datasets demonstrate that PINGS-X substantially reduces training time while achieving superior super-resolution accuracy. Our code and datasets are available at https://github.com/SpatialAILab/PINGS-X.

Authors:Xinlei Yu, Chengming Xu, Guibin Zhang, Zhangquan Chen, Yudong Zhang, Yongbo He, Peng-Tao Jiang, Jiangning Zhang, Xiaobin Hu, Shuicheng Yan
Title: VisMem: Latent Vision Memory Unlocks Potential of Vision-Language Models
Abstract:
Despite the remarkable success of Vision-Language Models (VLMs), their performance on a range of complex visual tasks is often hindered by a "visual processing bottleneck": a propensity to lose grounding in visual evidence and exhibit a deficit in contextualized visual experience during prolonged generation. Drawing inspiration from human cognitive memory theory, which distinguishes short-term visually-dominant memory and long-term semantically-dominant memory, we propose VisMem, a cognitively-aligned framework that equips VLMs with dynamic latent vision memories, a short-term module for fine-grained perceptual retention and a long-term module for abstract semantic consolidation. These memories are seamlessly invoked during inference, allowing VLMs to maintain both perceptual fidelity and semantic consistency across thinking and generation. Extensive experiments across diverse visual benchmarks for understanding, reasoning, and generation reveal that VisMem delivers a significant average performance boost of 11.8% relative to the vanilla model and outperforms all counterparts, establishing a new paradigm for latent-space memory enhancement. The code will be available: https://github.com/YU-deep/VisMem.git.

Authors:HongYu Liu, Junxin Li, Changxi Guo, Hao Chen, Yaqian Huang, Yifu Guo, Huan Yang, Lihua Cai
Title: DialogGraph-LLM: Graph-Informed LLMs for End-to-End Audio Dialogue Intent Recognition
Abstract:
Recognizing speaker intent in long audio dialogues among speakers has a wide range of applications, but is a non-trivial AI task due to complex inter-dependencies in speaker utterances and scarce annotated data. To address these challenges, an end-to-end framework, namely DialogGraph-LLM, is proposed in the current work. DialogGraph-LLM combines a novel Multi-Relational Dialogue Attention Network (MR-DAN) architecture with multimodal foundation models (e.g., Qwen2.5-Omni-7B) for direct acoustic-to-intent inference. An adaptive semi-supervised learning strategy is designed using LLM with a confidence-aware pseudo-label generation mechanism based on dual-threshold filtering using both global and class confidences, and an entropy-based sample selection process that prioritizes high-information unlabeled instances. Extensive evaluations on the proprietary MarketCalls corpus and the publicly available MIntRec 2.0 benchmark demonstrate DialogGraph-LLM's superiority over strong audio and text-driven baselines. The framework demonstrates strong performance and efficiency in intent recognition in real world scenario audio dialogues, proving its practical value for audio-rich domains with limited supervision. Our code is available at https://github.com/david188888/DialogGraph-LLM.

Authors:Nirmit Arora, Sathvik Joel, Ishan Kavathekar, Palak, Rohan Gandhi, Yash Pandya, Tanuja Ganu, Aditya Kanade, Akshay Nambi
Title: Exposing Weak Links in Multi-Agent Systems under Adversarial Prompting
Abstract:
LLM-based agents are increasingly deployed in multi-agent systems (MAS). As these systems move toward real-world applications, their security becomes paramount. Existing research largely evaluates single-agent security, leaving a critical gap in understanding the vulnerabilities introduced by multi-agent design. However, existing systems fall short due to lack of unified frameworks and metrics focusing on unique rejection modes in MAS. We present SafeAgents, a unified and extensible framework for fine-grained security assessment of MAS. SafeAgents systematically exposes how design choices such as plan construction strategies, inter-agent context sharing, and fallback behaviors affect susceptibility to adversarial prompting. We introduce Dharma, a diagnostic measure that helps identify weak links within multi-agent pipelines. Using SafeAgents, we conduct a comprehensive study across five widely adopted multi-agent architectures (centralized, decentralized, and hybrid variants) on four datasets spanning web tasks, tool use, and code generation. Our findings reveal that common design patterns carry significant vulnerabilities. For example, centralized systems that delegate only atomic instructions to sub-agents obscure harmful objectives, reducing robustness. Our results highlight the need for security-aware design in MAS. Link to code is https://github.com/microsoft/SafeAgents

Authors:Runpeng Geng, Yanting Wang, Chenlong Yin, Minhao Cheng, Ying Chen, Jinyuan Jia
Title: PISanitizer: Preventing Prompt Injection to Long-Context LLMs via Prompt Sanitization
Abstract:
Long context LLMs are vulnerable to prompt injection, where an attacker can inject an instruction in a long context to induce an LLM to generate an attacker-desired output. Existing prompt injection defenses are designed for short contexts. When extended to long-context scenarios, they have limited effectiveness. The reason is that an injected instruction constitutes only a very small portion of a long context, making the defense very challenging. In this work, we propose PISanitizer, which first pinpoints and sanitizes potential injected tokens (if any) in a context before letting a backend LLM generate a response, thereby eliminating the influence of the injected instruction. To sanitize injected tokens, PISanitizer builds on two observations: (1) prompt injection attacks essentially craft an instruction that compels an LLM to follow it, and (2) LLMs intrinsically leverage the attention mechanism to focus on crucial input tokens for output generation. Guided by these two observations, we first intentionally let an LLM follow arbitrary instructions in a context and then sanitize tokens receiving high attention that drive the instruction-following behavior of the LLM. By design, PISanitizer presents a dilemma for an attacker: the more effectively an injected instruction compels an LLM to follow it, the more likely it is to be sanitized by PISanitizer. Our extensive evaluation shows that PISanitizer can successfully prevent prompt injection, maintain utility, outperform existing defenses, is efficient, and is robust to optimization-based and strong adaptive attacks. The code is available at https://github.com/sleeepeer/PISanitizer.

Authors:Sirui Liang, Pengfei Cao, Jian Zhao, Cong Huang, Jun Zhao, Kang Liu
Title: Bias-Restrained Prefix Representation Finetuning for Mathematical Reasoning
Abstract:
Parameter-Efficient finetuning (PEFT) enhances model performance on downstream tasks by updating a minimal subset of parameters. Representation finetuning (ReFT) methods further improve efficiency by freezing model weights and optimizing internal representations with fewer parameters than PEFT, outperforming PEFT on several tasks. However, ReFT exhibits a significant performance decline on mathematical reasoning tasks. To address this problem, the paper demonstrates that ReFT's poor performance on mathematical tasks primarily stems from its struggle to generate effective reasoning prefixes during the early inference phase. Moreover, ReFT disturbs the numerical encoding and the error accumulats during the CoT stage. Based on these observations, this paper proposes Bias-REstrained Prefix Representation FineTuning (BREP ReFT), which enhances ReFT's mathematical reasoning capability by truncating training data to optimize the generation of initial reasoning prefixes, intervening on the early inference stage to prevent error accumulation, and constraining the intervention vectors' magnitude to avoid disturbing numerical encoding. Extensive experiments across diverse model architectures demonstrate BREP's superior effectiveness, efficiency, and robust generalization capability, outperforming both standard ReFT and weight-based PEFT methods on the task of mathematical reasoning. The source code is available at https://github.com/LiangThree/BREP.

Authors:Samih Fadli
Title: The Second Law of Intelligence: Controlling Ethical Entropy in Autonomous Systems
Abstract:
We propose that unconstrained artificial intelligence obeys a Second Law analogous to thermodynamics, where ethical entropy, defined as a measure of divergence from intended goals, increases spontaneously without continuous alignment work. For gradient-based optimizers, we define this entropy over a finite set of goals {g_i} as S = -Σ p(g_i; theta) ln p(g_i; theta), and we prove that its time derivative dS/dt >= 0, driven by exploration noise and specification gaming. We derive the critical stability boundary for alignment work as gamma_crit = (lambda_max / 2) ln N, where lambda_max is the dominant eigenvalue of the Fisher Information Matrix and N is the number of model parameters. Simulations validate this theory. A 7-billion-parameter model (N = 7 x 10^9) with lambda_max = 1.2 drifts from an initial entropy of 0.32 to 1.69 +/- 1.08 nats, while a system regularized with alignment work gamma = 20.4 (1.5 gamma_crit) maintains stability at 0.00 +/- 0.00 nats (p = 4.19 x 10^-17, n = 20 trials). This framework recasts AI alignment as a problem of continuous thermodynamic control, providing a quantitative foundation for maintaining the stability and safety of advanced autonomous systems.

Authors:Haizhou Shi, Ye Liu, Bo Pang, Zeyu Leo Liu, Hao Wang, Silvio Savarese, Caiming Xiong, Yingbo Zhou, Semih Yavuz
Title: SSR: Socratic Self-Refine for Large Language Model Reasoning
Abstract:
Large Language Models (LLMs) have demonstrated remarkable reasoning abilities, yet existing test-time frameworks often rely on coarse self-verification and self-correction, limiting their effectiveness on complex tasks. In this paper, we propose Socratic Self-Refine (SSR), a novel framework for fine-grained evaluation and precise refinement of LLM reasoning. Our proposed SSR decomposes model responses into verifiable (sub-question, sub-answer) pairs, enabling step-level confidence estimation through controlled re-solving and self-consistency checks. By pinpointing unreliable steps and iteratively refining them, SSR produces more accurate and interpretable reasoning chains. Empirical results across five reasoning benchmarks and three LLMs show that SSR consistently outperforms state-of-the-art iterative self-refinement baselines. Beyond performance gains, SSR provides a principled black-box approach for evaluating and understanding the internal reasoning processes of LLMs. Code is available at https://github.com/SalesforceAIResearch/socratic-self-refine-reasoning.

Authors:Huijie Liu, Shuhao Cui, Haoxiang Cao, Shuai Ma, Kai Wu, Guoliang Kang
Title: A Style is Worth One Code: Unlocking Code-to-Style Image Generation with Discrete Style Space
Abstract:
Innovative visual stylization is a cornerstone of artistic creation, yet generating novel and consistent visual styles remains a significant challenge. Existing generative approaches typically rely on lengthy textual prompts, reference images, or parameter-efficient fine-tuning to guide style-aware image generation, but often struggle with style consistency, limited creativity, and complex style representations. In this paper, we affirm that a style is worth one numerical code by introducing the novel task, code-to-style image generation, which produces images with novel, consistent visual styles conditioned solely on a numerical style code. To date, this field has only been primarily explored by the industry (e.g., Midjourney), with no open-source research from the academic community. To fill this gap, we propose CoTyle, the first open-source method for this task. Specifically, we first train a discrete style codebook from a collection of images to extract style embeddings. These embeddings serve as conditions for a text-to-image diffusion model (T2I-DM) to generate stylistic images. Subsequently, we train an autoregressive style generator on the discrete style embeddings to model their distribution, allowing the synthesis of novel style embeddings. During inference, a numerical style code is mapped to a unique style embedding by the style generator, and this embedding guides the T2I-DM to generate images in the corresponding style. Unlike existing methods, our method offers unparalleled simplicity and diversity, unlocking a vast space of reproducible styles from minimal input. Extensive experiments validate that CoTyle effectively turns a numerical code into a style controller, demonstrating a style is worth one code.

Authors:Changhai Man, Joongun Park, Hanjiang Wu, Huan Xu, Srinivas Sridharan, Tushar Krishna
Title: STAGE: A Symbolic Tensor grAph GEnerator for distributed AI system co-design
Abstract:
Optimizing the performance of large language models (LLMs) on large-scale AI training and inference systems requires a scalable and expressive mechanism to model distributed workload execution. Such modeling is essential for pre-deployment system-level optimizations (e.g., parallelization strategies) and design-space explorations. While recent efforts have proposed collecting execution traces from real systems, access to large-scale infrastructure remains limited to major cloud providers. Moreover, traces obtained from existing platforms cannot be easily adapted to study future larger-scale system configurations. We introduce Symbolic Tensor grAph GEnerator(STAGE), a framework that synthesizes high-fidelity execution traces to accurately model LLM workloads. STAGE supports a comprehensive set of parallelization strategies, allowing users to systematically explore a wide spectrum of LLM architectures and system configurations. STAGE demonstrates its scalability by synthesizing high-fidelity LLM traces spanning over 32K GPUs, while preserving tensor-level accuracy in compute, memory, and communication. STAGE is publicly available to facilitate further research in distributed machine learning systems: https://github.com/astra-sim/symbolic tensor graph

Authors:Yunzhe Xu, Zhuosheng Zhang, Zhe Liu
Title: Beyond Elicitation: Provision-based Prompt Optimization for Knowledge-Intensive Tasks
Abstract:
While prompt optimization has emerged as a critical technique for enhancing language model performance, existing approaches primarily focus on elicitation-based strategies that search for optimal prompts to activate models' capabilities. These methods exhibit fundamental limitations when addressing knowledge-intensive tasks, as they operate within fixed parametric boundaries rather than providing the factual knowledge, terminology precision, and reasoning patterns required in specialized domains. To address these limitations, we propose Knowledge-Provision-based Prompt Optimization (KPPO), a framework that reformulates prompt optimization as systematic knowledge integration rather than potential elicitation. KPPO introduces three key innovations: 1) a knowledge gap filling mechanism for knowledge gap identification and targeted remediation; 2) a batch-wise candidate evaluation approach that considers both performance improvement and distributional stability; 3) an adaptive knowledge pruning strategy that balances performance and token efficiency, reducing up to 29% token usage. Extensive evaluation on 15 knowledge-intensive benchmarks from various domains demonstrates KPPO's superiority over elicitation-based methods, with an average performance improvement of ~6% over the strongest baseline while achieving comparable or lower token consumption. Code at: https://github.com/xyz9911/KPPO.

Authors:Jiarui Zhang, Yuliang Liu, Zijun Wu, Guosheng Pang, Zhili Ye, Yupei Zhong, Junteng Ma, Tao Wei, Haiyang Xu, Weikai Chen, Zeen Wang, Qiangjun Ji, Fanxi Zhou, Qi Zhang, Yuanrui Hu, Jiahao Liu, Zhang Li, Ziyang Zhang, Qiang Liu, Xiang Bai
Title: MonkeyOCR v1.5 Technical Report: Unlocking Robust Document Parsing for Complex Patterns
Abstract:
Document parsing is a core task in document intelligence, supporting applications such as information extraction, retrieval-augmented generation, and automated document analysis. However, real-world documents often feature complex layouts with multi-level tables, embedded images or formulas, and cross-page structures, which remain challenging for existing OCR systems. We introduce MonkeyOCR v1.5, a unified vision-language framework that enhances both layout understanding and content recognition through a two-stage pipeline. The first stage employs a large multimodal model to jointly predict layout and reading order, leveraging visual information to ensure sequential consistency. The second stage performs localized recognition of text, formulas, and tables within detected regions, maintaining high visual fidelity while reducing error propagation. To address complex table structures, we propose a visual consistency-based reinforcement learning scheme that evaluates recognition quality via render-and-compare alignment, improving structural accuracy without manual annotations. Additionally, two specialized modules, Image-Decoupled Table Parsing and Type-Guided Table Merging, are introduced to enable reliable parsing of tables containing embedded images and reconstruction of tables crossing pages or columns. Comprehensive experiments on OmniDocBench v1.5 demonstrate that MonkeyOCR v1.5 achieves state-of-the-art performance, outperforming PPOCR-VL and MinerU 2.5 while showing exceptional robustness in visually complex document scenarios. A trial link can be found at https://github.com/Yuliang-Liu/MonkeyOCR .

Authors:Adrien Lafage, Olivier Laurent, Firas Gabetni, Gianni Franchi
Title: Torch-Uncertainty: A Deep Learning Framework for Uncertainty Quantification
Abstract:
Deep Neural Networks (DNNs) have demonstrated remarkable performance across various domains, including computer vision and natural language processing. However, they often struggle to accurately quantify the uncertainty of their predictions, limiting their broader adoption in critical real-world applications. Uncertainty Quantification (UQ) for Deep Learning seeks to address this challenge by providing methods to improve the reliability of uncertainty estimates. Although numerous techniques have been proposed, a unified tool offering a seamless workflow to evaluate and integrate these methods remains lacking. To bridge this gap, we introduce Torch-Uncertainty, a PyTorch and Lightning-based framework designed to streamline DNN training and evaluation with UQ techniques and metrics. In this paper, we outline the foundational principles of our library and present comprehensive experimental results that benchmark a diverse set of UQ methods across classification, segmentation, and regression tasks. Our library is available at https://github.com/ENSTA-U2IS-AI/Torch-Uncertainty

Authors:Hao Zou, Runqing Zhang, Xue Zhou, Jianxiao Zou
Title: GEA: Generation-Enhanced Alignment for Text-to-Image Person Retrieval
Abstract:
Text-to-Image Person Retrieval (TIPR) aims to retrieve person images based on natural language descriptions. Although many TIPR methods have achieved promising results, sometimes textual queries cannot accurately and comprehensively reflect the content of the image, leading to poor cross-modal alignment and overfitting to limited datasets. Moreover, the inherent modality gap between text and image further amplifies these issues, making accurate cross-modal retrieval even more challenging. To address these limitations, we propose the Generation-Enhanced Alignment (GEA) from a generative perspective. GEA contains two parallel modules: (1) Text-Guided Token Enhancement (TGTE), which introduces diffusion-generated images as intermediate semantic representations to bridge the gap between text and visual patterns. These generated images enrich the semantic representation of text and facilitate cross-modal alignment. (2) Generative Intermediate Fusion (GIF), which combines cross-attention between generated images, original images, and text features to generate a unified representation optimized by triplet alignment loss. We conduct extensive experiments on three public TIPR datasets, CUHK-PEDES, RSTPReid, and ICFG-PEDES, to evaluate the performance of GEA. The results justify the effectiveness of our method. More implementation details and extended results are available at https://github.com/sugelamyd123/Sup-for-GEA.

Authors:Abu Sufian, Cosimo Distante, Marco Leo, Hanan Salam
Title: T2IBias: Uncovering Societal Bias Encoded in the Latent Space of Text-to-Image Generative Models
Abstract:
Text-to-image (T2I) generative models are largely used in AI-powered real-world applications and value creation. However, their strategic deployment raises critical concerns for responsible AI management, particularly regarding the reproduction and amplification of race- and gender-related stereotypes that can undermine organizational ethics. In this work, we investigate whether such societal biases are systematically encoded within the pretrained latent spaces of state-of-the-art T2I models. We conduct an empirical study across the five most popular open-source models, using ten neutral, profession-related prompts to generate 100 images per profession, resulting in a dataset of 5,000 images evaluated by diverse human assessors representing different races and genders. We demonstrate that all five models encode and amplify pronounced societal skew: caregiving and nursing roles are consistently feminized, while high-status professions such as corporate CEO, politician, doctor, and lawyer are overwhelmingly represented by males and mostly White individuals. We further identify model-specific patterns, such as QWEN-Image's near-exclusive focus on East Asian outputs, Kandinsky's dominance of White individuals, and SDXL's comparatively broader but still biased distributions. These results provide critical insights for AI project managers and practitioners, enabling them to select equitable AI models and customized prompts that generate images in alignment with the principles of responsible AI. We conclude by discussing the risks of these biases and proposing actionable strategies for bias mitigation in building responsible GenAI systems. The code and Data Repository: https://github.com/Sufianlab/T2IBias

Authors:Guofeng Meng, Li Shen, Qiuyan Zhong, Wei Wang, Haizhou Zhang, Xiaozhen Wang
Title: fastbmRAG: A Fast Graph-Based RAG Framework for Efficient Processing of Large-Scale Biomedical Literature
Abstract:
Large language models (LLMs) are rapidly transforming various domains, including biomedicine and healthcare, and demonstrate remarkable potential from scientific research to new drug discovery. Graph-based retrieval-augmented generation (RAG) systems, as a useful application of LLMs, can improve contextual reasoning through structured entity and relationship identification from long-context knowledge, e.g. biomedical literature. Even though many advantages over naive RAGs, most of graph-based RAGs are computationally intensive, which limits their application to large-scale dataset. To address this issue, we introduce fastbmRAG, an fast graph-based RAG optimized for biomedical literature. Utilizing well organized structure of biomedical papers, fastbmRAG divides the construction of knowledge graph into two stages, first drafting graphs using abstracts; and second, refining them using main texts guided by vector-based entity linking, which minimizes redundancy and computational load. Our evaluations demonstrate that fastbmRAG is over 10x faster than existing graph-RAG tools and achieve superior coverage and accuracy to input knowledge. FastbmRAG provides a fast solution for quickly understanding, summarizing, and answering questions about biomedical literature on a large scale. FastbmRAG is public available in https://github.com/menggf/fastbmRAG.

Authors:Dimitrios Sinodinos, Jack Yi Wei, Narges Armanfard
Title: MultiTab: A Scalable Foundation for Multitask Learning on Tabular Data
Abstract:
Tabular data is the most abundant data type in the world, powering systems in finance, healthcare, e-commerce, and beyond. As tabular datasets grow and span multiple related targets, there is an increasing need to exploit shared task information for improved multitask generalization. Multitask learning (MTL) has emerged as a powerful way to improve generalization and efficiency, yet most existing work focuses narrowly on large-scale recommendation systems, leaving its potential in broader tabular domains largely underexplored. Also, existing MTL approaches for tabular data predominantly rely on multi-layer perceptron-based backbones, which struggle to capture complex feature interactions and often fail to scale when data is abundant, a limitation that transformer architectures have overcome in other domains. Motivated by this, we introduce MultiTab-Net, the first multitask transformer architecture specifically designed for large tabular data. MultiTab-Net employs a novel multitask masked-attention mechanism that dynamically models feature-feature dependencies while mitigating task competition. Through extensive experiments, we show that MultiTab-Net consistently achieves higher multitask gain than existing MTL architectures and single-task transformers across diverse domains including large-scale recommendation data, census-like socioeconomic data, and physics datasets, spanning a wide range of task counts, task types, and feature modalities. In addition, we contribute MultiTab-Bench, a generalized multitask synthetic dataset generator that enables systematic evaluation of multitask dynamics by tuning task count, task correlations, and relative task complexity. Our code is publicly available at https://github.com/Armanfard-Lab/MultiTab.

Authors:Xuan Rao, Simian Xu, Zheng Li, Bo Zhao, Derong Liu, Mingming Ha, Cesare Alippi
Title: Compensating Distribution Drifts in Class-incremental Learning of Pre-trained Vision Transformers
Abstract:
Recent advances have shown that sequential fine-tuning (SeqFT) of pre-trained vision transformers (ViTs), followed by classifier refinement using approximate distributions of class features, can be an effective strategy for class-incremental learning (CIL). However, this approach is susceptible to distribution drift, caused by the sequential optimization of shared backbone parameters. This results in a mismatch between the distributions of the previously learned classes and that of the updater model, ultimately degrading the effectiveness of classifier performance over time. To address this issue, we introduce a latent space transition operator and propose Sequential Learning with Drift Compensation (SLDC). SLDC aims to align feature distributions across tasks to mitigate the impact of drift. First, we present a linear variant of SLDC, which learns a linear operator by solving a regularized least-squares problem that maps features before and after fine-tuning. Next, we extend this with a weakly nonlinear SLDC variant, which assumes that the ideal transition operator lies between purely linear and fully nonlinear transformations. This is implemented using learnable, weakly nonlinear mappings that balance flexibility and generalization. To further reduce representation drift, we apply knowledge distillation (KD) in both algorithmic variants. Extensive experiments on standard CIL benchmarks demonstrate that SLDC significantly improves the performance of SeqFT. Notably, by combining KD to address representation drift with SLDC to compensate distribution drift, SeqFT achieves performance comparable to joint training across all evaluated datasets. Code: https://github.com/raoxuan98-hash/sldc.git.

Authors:Francis Rhys Ward, Teun van der Weij, Hanna Gábor, Sam Martin, Raja Mehta Moreno, Harel Lidar, Louis Makower, Thomas Jodrell, Lauren Robson
Title: CTRL-ALT-DECEIT: Sabotage Evaluations for Automated AI R&D
Abstract:
AI systems are increasingly able to autonomously conduct realistic software engineering tasks, and may soon be deployed to automate machine learning (ML) R&D itself. Frontier AI systems may be deployed in safety-critical settings, including to help ensure the safety of future systems. Unfortunately, frontier and future systems may not be sufficiently trustworthy, and there is evidence that these systems may even be misaligned with their developers or users. Therefore, we investigate the capabilities of AI agents to act against the interests of their users when conducting ML engineering, by sabotaging ML models, sandbagging their performance, and subverting oversight mechanisms. First, we extend MLE-Bench, a benchmark for realistic ML tasks, with code-sabotage tasks such as implanting backdoors and purposefully causing generalisation failures. Frontier agents make meaningful progress on our sabotage tasks. In addition, we study agent capabilities to sandbag on MLE-Bench. Agents can calibrate their performance to specified target levels below their actual capability. To mitigate sabotage, we use LM monitors to detect suspicious agent behaviour, and we measure model capability to sabotage and sandbag without being detected by these monitors. Overall, monitors are capable at detecting code-sabotage attempts but our results suggest that detecting sandbagging is more difficult. Additionally, aggregating multiple monitor predictions works well, but monitoring may not be sufficiently reliable to mitigate sabotage in high-stakes domains. Our benchmark is implemented in the UK AISI's Inspect framework and we make our code publicly available at https://github.com/samm393/mlebench-subversion

Authors:Jeongho Min, Dongyoung Kim, Jaehyup Lee
Title: From Street to Orbit: Training-Free Cross-View Retrieval via Location Semantics and LLM Guidance
Abstract:
Cross-view image retrieval, particularly street-to-satellite matching, is a critical task for applications such as autonomous navigation, urban planning, and localization in GPS-denied environments. However, existing approaches often require supervised training on curated datasets and rely on panoramic or UAV-based images, which limits real-world deployment. In this paper, we present a simple yet effective cross-view image retrieval framework that leverages a pretrained vision encoder and a large language model (LLM), requiring no additional training. Given a monocular street-view image, our method extracts geographic cues through web-based image search and LLM-based location inference, generates a satellite query via geocoding API, and retrieves matching tiles using a pretrained vision encoder (e.g., DINOv2) with PCA-based whitening feature refinement. Despite using no ground-truth supervision or finetuning, our proposed method outperforms prior learning-based approaches on the benchmark dataset under zero-shot settings. Moreover, our pipeline enables automatic construction of semantically aligned street-to-satellite datasets, which is offering a scalable and cost-efficient alternative to manual annotation. All source codes will be made publicly available at https://jeonghomin.github.io/street2orbit.github.io/.

Authors:Konstantinos M. Dafnis, Dimitris N. Metaxas
Title: Test-Time Spectrum-Aware Latent Steering for Zero-Shot Generalization in Vision-Language Models
Abstract:
Vision-Language Models (VLMs) excel at zero-shot inference but often degrade under test-time domain shifts. For this reason, episodic test-time adaptation strategies have recently emerged as powerful techniques for adapting VLMs to a single unlabeled image. However, existing adaptation strategies, such as test-time prompt tuning, typically require backpropagating through large encoder weights or altering core model components. In this work, we introduce Spectrum-Aware Test-Time Steering (STS), a lightweight adaptation framework that extracts a spectral subspace from the textual embeddings to define principal semantic directions and learns to steer latent representations in a spectrum-aware manner by adapting a small number of per-sample shift parameters to minimize entropy across augmented views. STS operates entirely at inference in the latent space, without backpropagation through or modification of the frozen encoders. Building on standard evaluation protocols, our comprehensive experiments demonstrate that STS largely surpasses or compares favorably against state-of-the-art test-time adaptation methods, while introducing only a handful of additional parameters and achieving inference speeds up to 8x faster with a 12x smaller memory footprint than conventional test-time prompt tuning. The code is available at https://github.com/kdafnis/STS.

Authors:Filip Beránek, Václav Diviš, Ivan Gruber
Title: Soiling detection for Advanced Driver Assistance Systems
Abstract:
Soiling detection for automotive cameras is a crucial part of advanced driver assistance systems to make them more robust to external conditions like weather, dust, etc. In this paper, we regard the soiling detection as a semantic segmentation problem. We provide a comprehensive comparison of popular segmentation methods and show their superiority in performance while comparing them to tile-level classification approaches. Moreover, we present an extensive analysis of the Woodscape dataset showing that the original dataset contains a data-leakage and imprecise annotations. To address these problems, we create a new data subset, which, despite being much smaller, provides enough information for the segmentation method to reach comparable results in a much shorter time. All our codes and dataset splits are available at https://github.com/filipberanek/woodscape_revision.

Authors:Bram Grooten, Patrick MacAlpine, Kaushik Subramanian, Peter Stone, Peter R. Wurman
Title: Out-of-Distribution Generalization with a SPARC: Racing 100 Unseen Vehicles with a Single Policy
Abstract:
Generalization to unseen environments is a significant challenge in the field of robotics and control. In this work, we focus on contextual reinforcement learning, where agents act within environments with varying contexts, such as self-driving cars or quadrupedal robots that need to operate in different terrains or weather conditions than they were trained for. We tackle the critical task of generalizing to out-of-distribution (OOD) settings, without access to explicit context information at test time. Recent work has addressed this problem by training a context encoder and a history adaptation module in separate stages. While promising, this two-phase approach is cumbersome to implement and train. We simplify the methodology and introduce SPARC: single-phase adaptation for robust control. We test SPARC on varying contexts within the high-fidelity racing simulator Gran Turismo 7 and wind-perturbed MuJoCo environments, and find that it achieves reliable and robust OOD generalization.

Authors:Yunqian Cheng, Benjamin Princen, Roberto Manduchi
Title: PALMS+: Modular Image-Based Floor Plan Localization Leveraging Depth Foundation Model
Abstract:
Indoor localization in GPS-denied environments is crucial for applications like emergency response and assistive navigation. Vision-based methods such as PALMS enable infrastructure-free localization using only a floor plan and a stationary scan, but are limited by the short range of smartphone LiDAR and ambiguity in indoor layouts. We propose PALMS$+$, a modular, image-based system that addresses these challenges by reconstructing scale-aligned 3D point clouds from posed RGB images using a foundation monocular depth estimation model (Depth Pro), followed by geometric layout matching via convolution with the floor plan. PALMS$+$ outputs a posterior over the location and orientation, usable for direct or sequential localization. Evaluated on the Structured3D and a custom campus dataset consisting of 80 observations across four large campus buildings, PALMS$+$ outperforms PALMS and F3Loc in stationary localization accuracy -- without requiring any training. Furthermore, when integrated with a particle filter for sequential localization on 33 real-world trajectories, PALMS$+$ achieved lower localization errors compared to other methods, demonstrating robustness for camera-free tracking and its potential for infrastructure-free applications. Code and data are available at https://github.com/Head-inthe-Cloud/PALMS-Plane-based-Accessible-Indoor-Localization-Using-Mobile-Smartphones

Authors:Johannes Kiechle, Stefan M. Fischer, Daniel M. Lang, Cosmin I. Bercea, Matthew J. Nyflot, Lina Felsner, Julia A. Schnabel, Jan C. Peeken
Title: TomoGraphView: 3D Medical Image Classification with Omnidirectional Slice Representations and Graph Neural Networks
Abstract:
The growing number of medical tomography examinations has necessitated the development of automated methods capable of extracting comprehensive imaging features to facilitate downstream tasks such as tumor characterization, while assisting physicians in managing their growing workload. However, 3D medical image classification remains a challenging task due to the complex spatial relationships and long-range dependencies inherent in volumetric data. Training models from scratch suffers from low data regimes, and the absence of 3D large-scale multimodal datasets has limited the development of 3D medical imaging foundation models. Recent studies, however, have highlighted the potential of 2D vision foundation models, originally trained on natural images, as powerful feature extractors for medical image analysis. Despite these advances, existing approaches that apply 2D models to 3D volumes via slice-based decomposition remain suboptimal. Conventional volume slicing strategies, which rely on canonical planes such as axial, sagittal, or coronal, may inadequately capture the spatial extent of target structures when these are misaligned with standardized viewing planes. Furthermore, existing slice-wise aggregation strategies rarely account for preserving the volumetric structure, resulting in a loss of spatial coherence across slices. To overcome these limitations, we propose TomoGraphView, a novel framework that integrates omnidirectional volume slicing with spherical graph-based feature aggregation. We publicly share our accessible code base at http://github.com/compai-lab/2025-MedIA-kiechle and provide a user-friendly library for omnidirectional volume slicing at https://pypi.org/project/OmniSlicer.

Authors:Tommaso Castellani, Naimeng Ye, Daksh Mittal, Thomson Yen, Hongseok Namkoong
Title: SynthTools: A Framework for Scaling Synthetic Tools for Agent Development
Abstract:
AI agents increasingly rely on external tools to solve complex, long-horizon tasks. Advancing such agents requires reproducible evaluation and large-scale training in controllable, diverse, and realistic tool-use environments. However, real-world APIs are limited in availability, domain coverage, and stability, often requiring access keys and imposing rate limits, which render them impractical for stable evaluation or scalable training. To address these challenges, we introduce SynthTools, a flexible and scalable framework for generating synthetic tool ecosystems. Our framework consists of three core components: Tool Generation for automatic and scalable creation of diverse tools, Tool Simulation to emulate realistic tool behaviors, and Tool Audit to ensure correctness and consistency of tool simulation. To illustrate its scalability, we show that SynthTools can readily produce toolsets that span twice as many domains and twice as many tools per domain as prior work. Furthermore, the tool simulation and tool audit components demonstrate strong reliability, achieving $94\%$ and $99\%$ accuracy respectively. Finally, we construct downstream tasks from the generated tools that even state-of-the-art models struggle to complete. By enabling scalable, diverse, and reliable tool ecosystems, SynthTools provides a practical path toward large-scale training and stable evaluation of tool-use agents. Our code is available at https://github.com/namkoong-lab/SynthTools.

Authors:Peiyu Li, Xiaobao Huang, Nitesh V. Chawla
Title: CrochetBench: Can Vision-Language Models Move from Describing to Doing in Crochet Domain?
Abstract:
We present CrochetBench, a benchmark for evaluating the ability of multimodal large language models to perform fine-grained, low-level procedural reasoning in the domain of crochet. Unlike prior benchmarks that focus on high-level description or visual question answering, CrochetBench shifts the emphasis from describing to doing: models are required to recognize stitches, select structurally appropriate instructions, and generate compilable crochet procedures. We adopt the CrochetPARADE DSL as our intermediate representation, enabling structural validation and functional evaluation via execution. The benchmark covers tasks including stitch classification, instruction grounding, and both natural language and image-to-DSL translation. Across all tasks, performance sharply declines as the evaluation shifts from surface-level similarity to executable correctness, exposing limitations in long-range symbolic reasoning and 3D-aware procedural synthesis. CrochetBench offers a new lens for assessing procedural competence in multimodal models and highlights the gap between surface-level understanding and executable precision in real-world creative domains. Code is available at https://github.com/Peiyu-Georgia-Li/crochetBench.

Authors:Jiayue Yuan, Fangting Xie, Guangwen Ouyang, Changhai Ma, Ziyu Wu, Heyu Ding, Quan Wan, Yi Ke, Yuchen Wu, Xiaohui Cai
Title: PressTrack-HMR: Pressure-Based Top-Down Multi-Person Global Human Mesh Recovery
Abstract:
Multi-person global human mesh recovery (HMR) is crucial for understanding crowd dynamics and interactions. Traditional vision-based HMR methods sometimes face limitations in real-world scenarios due to mutual occlusions, insufficient lighting, and privacy concerns. Human-floor tactile interactions offer an occlusion-free and privacy-friendly alternative for capturing human motion. Existing research indicates that pressure signals acquired from tactile mats can effectively estimate human pose in single-person scenarios. However, when multiple individuals walk randomly on the mat simultaneously, how to distinguish intermingled pressure signals generated by different persons and subsequently acquire individual temporal pressure data remains a pending challenge for extending pressure-based HMR to the multi-person situation. In this paper, we present \textbf{PressTrack-HMR}, a top-down pipeline that recovers multi-person global human meshes solely from pressure signals. This pipeline leverages a tracking-by-detection strategy to first identify and segment each individual's pressure signal from the raw pressure data, and subsequently performs HMR for each extracted individual signal. Furthermore, we build a multi-person interaction pressure dataset \textbf{MIP}, which facilitates further research into pressure-based human motion analysis in multi-person scenarios. Experimental results demonstrate that our method excels in multi-person HMR using pressure data, with 89.2 $mm$ MPJPE and 112.6 $mm$ WA-MPJPE$_{100}$, and these showcase the potential of tactile mats for ubiquitous, privacy-preserving multi-person action recognition. Our dataset & code are available at https://github.com/Jiayue-Yuan/PressTrack-HMR.

Authors:Shulei Ji, Zihao Wang, Jiaxing Yu, Xiangyuan Yang, Shuyu Li, Songruoyao Wu, Kejun Zhang
Title: Diff-V2M: A Hierarchical Conditional Diffusion Model with Explicit Rhythmic Modeling for Video-to-Music Generation
Abstract:
Video-to-music (V2M) generation aims to create music that aligns with visual content. However, two main challenges persist in existing methods: (1) the lack of explicit rhythm modeling hinders audiovisual temporal alignments; (2) effectively integrating various visual features to condition music generation remains non-trivial. To address these issues, we propose Diff-V2M, a general V2M framework based on a hierarchical conditional diffusion model, comprising two core components: visual feature extraction and conditional music generation. For rhythm modeling, we begin by evaluating several rhythmic representations, including low-resolution mel-spectrograms, tempograms, and onset detection functions (ODF), and devise a rhythmic predictor to infer them directly from videos. To ensure contextual and affective coherence, we also extract semantic and emotional features. All features are incorporated into the generator via a hierarchical cross-attention mechanism, where emotional features shape the affective tone via the first layer, while semantic and rhythmic features are fused in the second cross-attention layer. To enhance feature integration, we introduce timestep-aware fusion strategies, including feature-wise linear modulation (FiLM) and weighted fusion, allowing the model to adaptively balance semantic and rhythmic cues throughout the diffusion process. Extensive experiments identify low-resolution ODF as a more effective signal for modeling musical rhythm and demonstrate that Diff-V2M outperforms existing models on both in-domain and out-of-domain datasets, achieving state-of-the-art performance in terms of objective metrics and subjective comparisons. Demo and code are available at https://Tayjsl97.github.io/Diff-V2M-Demo/.

Authors:Gailun Zeng, Ziyang Luo, Hongzhan Lin, Yuchen Tian, Kaixin Li, Ziyang Gong, Jianxiong Guo, Jing Ma
Title: MM-CRITIC: A Holistic Evaluation of Large Multimodal Models as Multimodal Critique
Abstract:
The ability of critique is vital for models to self-improve and serve as reliable AI assistants. While extensively studied in language-only settings, multimodal critique of Large Multimodal Models (LMMs) remains underexplored despite their growing capabilities in tasks like captioning and visual reasoning. In this work, we introduce MM-CRITIC, a holistic benchmark for evaluating the critique ability of LMMs across multiple dimensions: basic, correction, and comparison. Covering 8 main task types and over 500 tasks, MM-CRITIC collects responses from various LMMs with different model sizes and is composed of 4471 samples. To enhance the evaluation reliability, we integrate expert-informed ground answers into scoring rubrics that guide GPT-4o in annotating responses and generating reference critiques, which serve as anchors for trustworthy judgments. Extensive experiments validate the effectiveness of MM-CRITIC and provide a comprehensive assessment of leading LMMs' critique capabilities under multiple dimensions. Further analysis reveals some key insights, including the correlation between response quality and critique, and varying critique difficulty across evaluation dimensions. Our code is available at https://github.com/MichealZeng0420/MM-Critic.

Authors:Liu Yu, Zhonghao Chen, Ping Kuang, Zhikun Feng, Fan Zhou, Lan Wang, Gillian Dobbie
Title: Causally-Grounded Dual-Path Attention Intervention for Object Hallucination Mitigation in LVLMs
Abstract:
Object hallucination remains a critical challenge in Large Vision-Language Models (LVLMs), where models generate content inconsistent with visual inputs. Existing language-decoder based mitigation approaches often regulate visual or textual attention independently, overlooking their interaction as two key causal factors. To address this, we propose Owl (Bi-mOdal attention reWeighting for Layer-wise hallucination mitigation), a causally-grounded framework that models hallucination process via a structural causal graph, treating decomposed visual and textual attentions as mediators. We introduce VTACR (Visual-to-Textual Attention Contribution Ratio), a novel metric that quantifies the modality contribution imbalance during decoding. Our analysis reveals that hallucinations frequently occur in low-VTACR scenarios, where textual priors dominate and visual grounding is weakened. To mitigate this, we design a fine-grained attention intervention mechanism that dynamically adjusts token- and layer-wise attention guided by VTACR signals. Finally, we propose a dual-path contrastive decoding strategy: one path emphasizes visually grounded predictions, while the other amplifies hallucinated ones -- letting visual truth shine and hallucination collapse. Experimental results on the POPE and CHAIR benchmarks show that Owl achieves significant hallucination reduction, setting a new SOTA in faithfulness while preserving vision-language understanding capability. Our code is available at https://github.com/CikZ2023/OWL

Authors:Alvin Chauhan
Title: AI Founding Fathers: A Case Study of GIS Search in Multi-Agent Pipelines
Abstract:
Although Large Language Models (LLMs) show exceptional fluency, efforts persist to extract stronger reasoning capabilities from them. Drawing on search-based interpretations of LLM computation, this paper advances a systematic framework for understanding LLM reasoning and optimization. Namely, that enhancing reasoning is best achieved by structuring a multi-agent pipeline to ensure a traversal of the search space in a gradual, incremental, and sequential (GIS) manner. Stated succinctly, high-quality reasoning is a controlled, incremental search. To test this framework, we investigate the efficacy of recursive refinement (RR)--an iterative process of self-criticism, adversarial stress-testing, and integrating critical feedback--as a practical method for implementing GIS search. We designed an experiment comparing a simple, linear pipeline against a complex, explicitly structured pipeline leveraging a recursive refinement layer. The multi-agent models were constructed to reflect the historical personas of three US Founding Fathers (Hamilton, Jefferson, and Madison) using RAG-powered corpora and were prompted to generate responses to three contemporary political issues. Model performance was evaluated using a two-tiered approach: a quantitative score from an LLM arbiter agent and qualitative human judgment. Our results revealed that the complex model consistently outperformed the simple model across all nine test cases with an average arbiter-outputted score of 88.3 versus 71.7. The complex model's arguments were superior in analytical depth, structural nuance, and strategic framing. We conclude that recursive refinement is a robust architectural feature for enhancing LLM reasoning via GIS search.

Authors:Xiaohan Zhang, Tian Gao, Mingyue Cheng, Bokai Pan, Ze Guo, Yaguo Liu, Xiaoyu Tao
Title: AlphaCast: A Human Wisdom-LLM Intelligence Co-Reasoning Framework for Interactive Time Series Forecasting
Abstract:
Time series forecasting plays a critical role in high-stakes domains such as energy, healthcare, and climate. Although recent advances have improved accuracy, most approaches still treat forecasting as a static one-time mapping task, lacking the interaction, reasoning, and adaptability of human experts. This gap limits their usefulness in complex real-world environments. To address this, we propose AlphaCast, a human wisdom-large language model (LLM) intelligence co-reasoning framework that redefines forecasting as an interactive process. The key idea is to enable step-by-step collaboration between human wisdom and LLM intelligence to jointly prepare, generate, and verify forecasts. The framework consists of two stages: (1) automated prediction preparation, where AlphaCast builds a multi-source cognitive foundation comprising a feature set that captures key statistics and time patterns, a domain knowledge base distilled from corpora and historical series, a contextual repository that stores rich information for each time window, and a case base that retrieves optimal strategies via pattern clustering and matching; and (2) generative reasoning and reflective optimization, where AlphaCast integrates statistical temporal features, prior knowledge, contextual information, and forecasting strategies, triggering a meta-reasoning loop for continuous self-correction and strategy refinement. Extensive experiments on short- and long-term datasets show that AlphaCast consistently outperforms state-of-the-art baselines in predictive accuracy. Code is available at this repository: https://github.com/SkyeGT/AlphaCast_Official .

Authors:Sanyukta Adap, Ujjwal Baid, Spyridon Bakas
Title: Classifying Histopathologic Glioblastoma Sub-regions with EfficientNet
Abstract:
Glioblastoma (GBM) is the most common aggressive, fast-growing brain tumor, with a grim prognosis. Despite clinical diagnostic advancements, there have not been any substantial improvements to patient prognosis. Histopathological assessment of excised tumors is the first line of clinical diagnostic routine. We hypothesize that automated, robust, and accurate identification of distinct histological sub-regions within GBM could contribute to morphologically understanding this disease at scale. In this study, we designed a four-step deep learning approach to classify six (6) histopathological regions and quantitatively evaluated it on the BraTS-Path 2024 challenge dataset, which includes digitized Hematoxylin \& Eosin (H\&E) stained GBM tissue sections annotated for six distinct regions. We used the challenge's publicly available training dataset to develop and evaluate the effectiveness of several variants of EfficientNet architectures (i.e., B0, B1, B2, B3, B4). EfficientNet-B1 and EfficientNet-B4 achieved the best performance, achieving an F1 score of 0.98 in a 5-fold cross-validation configuration using the BraTS-Path training set. The quantitative performance evaluation of our proposed approach with EfficientNet-B1 on the BraTS-Path hold-out validation data and the final hidden testing data yielded F1 scores of 0.546 and 0.517, respectively, for the associated 6-class classification task. The difference in the performance on training, validation, and testing data highlights the challenge of developing models that generalize well to new data, which is crucial for clinical applications. The source code of the proposed approach can be found at the GitHub repository of Indiana University Division of Computational Pathology: https://github.com/IUCompPath/brats-path-2024-enet.

Authors:Shouang Wei, Min Zhang, Xin Lin, Bo Jiang, Kun Kuang, Zhongxiang Dai
Title: UCO: A Multi-Turn Interactive Reinforcement Learning Method for Adaptive Teaching with Large Language Models
Abstract:
Large language models (LLMs) are shifting from answer providers to intelligent tutors in educational settings, yet current supervised fine-tuning methods only learn surface teaching patterns without dynamic adaptation capabilities. Recent reinforcement learning approaches address this limitation but face two critical challenges. First, they evaluate teaching effectiveness solely based on whether students produce correct outputs, unable to distinguish whether students genuinely understand or echo teacher-provided answers during interaction. Second, they cannot perceive students' evolving cognitive states in real time through interactive dialogue, thus failing to adapt teaching strategies to match students' cognitive levels dynamically. We propose the Unidirectional Cognitive Optimization (UCO) method to address these challenges. UCO uses a multi-turn interactive reinforcement learning paradigm where the innovation lies in two synergistic reward functions: the Progress Reward captures students' cognitive advancement, evaluating whether students truly transition from confusion to comprehension, while the Scaffold Reward dynamically identifies each student's Zone of Proximal Development (ZPD), encouraging teachers to maintain productive teaching within this zone. We evaluate UCO by comparing it against 11 baseline models on BigMath and MathTutorBench benchmarks. Experimental results demonstrate that our UCO model outperforms all models of equivalent scale and achieves performance comparable to advanced closed-source models. The code and data are available at https://github.com/Mind-Lab-ECNU/UCO.

Authors:Hu Cui, Wenqiang Hua, Renjing Huang, Shurui Jia, Tessai Hayama
Title: SasMamba: A Lightweight Structure-Aware Stride State Space Model for 3D Human Pose Estimation
Abstract:
Recently, the Mamba architecture based on State Space Models (SSMs) has gained attention in 3D human pose estimation due to its linear complexity and strong global modeling capability. However, existing SSM-based methods typically apply manually designed scan operations to flatten detected 2D pose sequences into purely temporal sequences, either locally or globally. This approach disrupts the inherent spatial structure of human poses and entangles spatial and temporal features, making it difficult to capture complex pose dependencies. To address these limitations, we propose the Skeleton Structure-Aware Stride SSM (SAS-SSM), which first employs a structure-aware spatiotemporal convolution to dynamically capture essential local interactions between joints, and then applies a stride-based scan strategy to construct multi-scale global structural representations. This enables flexible modeling of both local and global pose information while maintaining linear computational complexity. Built upon SAS-SSM, our model SasMamba achieves competitive 3D pose estimation performance with significantly fewer parameters compared to existing hybrid models. The source code is available at https://hucui2022.github.io/sasmamba_proj/.

Authors:Nikunj Gupta, Ludwika Twardecka, James Zachary Hare, Jesse Milzman, Rajgopal Kannan, Viktor Prasanna
Title: TIGER-MARL: Enhancing Multi-Agent Reinforcement Learning with Temporal Information through Graph-based Embeddings and Representations
Abstract:
In this paper, we propose capturing and utilizing \textit{Temporal Information through Graph-based Embeddings and Representations} or \textbf{TIGER} to enhance multi-agent reinforcement learning (MARL). We explicitly model how inter-agent coordination structures evolve over time. While most MARL approaches rely on static or per-step relational graphs, they overlook the temporal evolution of interactions that naturally arise as agents adapt, move, or reorganize cooperation strategies. Capturing such evolving dependencies is key to achieving robust and adaptive coordination. To this end, TIGER constructs dynamic temporal graphs of MARL agents, connecting their current and historical interactions. It then employs a temporal attention-based encoder to aggregate information across these structural and temporal neighborhoods, yielding time-aware agent embeddings that guide cooperative policy learning. Through extensive experiments on two coordination-intensive benchmarks, we show that TIGER consistently outperforms diverse value-decomposition and graph-based MARL baselines in task performance and sample efficiency. Furthermore, we conduct comprehensive ablation studies to isolate the impact of key design parameters in TIGER, revealing how structural and temporal factors can jointly shape effective policy learning in MARL. All codes can be found here: https://github.com/Nikunj-Gupta/tiger-marl.

Authors:Isaac Joffe, Chris Eliasmith
Title: Vector Symbolic Algebras for the Abstraction and Reasoning Corpus
Abstract:
The Abstraction and Reasoning Corpus for Artificial General Intelligence (ARC-AGI) is a generative, few-shot fluid intelligence benchmark. Although humans effortlessly solve ARC-AGI, it remains extremely difficult for even the most advanced artificial intelligence systems. Inspired by methods for modelling human intelligence spanning neuroscience to psychology, we propose a cognitively plausible ARC-AGI solver. Our solver integrates System 1 intuitions with System 2 reasoning in an efficient and interpretable process using neurosymbolic methods based on Vector Symbolic Algebras (VSAs). Our solver works by object-centric program synthesis, leveraging VSAs to represent abstract objects, guide solution search, and enable sample-efficient neural learning. Preliminary results indicate success, with our solver scoring 10.8% on ARC-AGI-1-Train and 3.0% on ARC-AGI-1-Eval. Additionally, our solver performs well on simpler benchmarks, scoring 94.5% on Sort-of-ARC and 83.1% on 1D-ARC -- the latter outperforming GPT-4 at a tiny fraction of the computational cost. Importantly, our approach is unique; we believe we are the first to apply VSAs to ARC-AGI and have developed the most cognitively plausible ARC-AGI solver yet. Our code is available at: https://github.com/ijoffe/ARC-VSA-2025.

Authors:Andreas Einwiller, Kanishka Ghosh Dastidar, Artur Romazanov, Annette Hautli-Janisz, Michael Granitzer, Florian Lemmerich
Title: Benevolent Dictators? On LLM Agent Behavior in Dictator Games
Abstract:
In behavioral sciences, experiments such as the ultimatum game are conducted to assess preferences for fairness or self-interest of study participants. In the dictator game, a simplified version of the ultimatum game where only one of two players makes a single decision, the dictator unilaterally decides how to split a fixed sum of money between themselves and the other player. Although recent studies have explored behavioral patterns of AI agents based on Large Language Models (LLMs) instructed to adopt different personas, we question the robustness of these results. In particular, many of these studies overlook the role of the system prompt - the underlying instructions that shape the model's behavior - and do not account for how sensitive results can be to slight changes in prompts. However, a robust baseline is essential when studying highly complex behavioral aspects of LLMs. To overcome previous limitations, we propose the LLM agent behavior study (LLM-ABS) framework to (i) explore how different system prompts influence model behavior, (ii) get more reliable insights into agent preferences by using neutral prompt variations, and (iii) analyze linguistic features in responses to open-ended instructions by LLM agents to better understand the reasoning behind their behavior. We found that agents often exhibit a strong preference for fairness, as well as a significant impact of the system prompt on their behavior. From a linguistic perspective, we identify that models express their responses differently. Although prompt sensitivity remains a persistent challenge, our proposed framework demonstrates a robust foundation for LLM agent behavior studies. Our code artifacts are available at https://github.com/andreaseinwiller/LLM-ABS.

Authors:David Sanchez, Holly Lopez, Michelle Buraczyk, Anantaa Kotal
Title: FAIRPLAI: A Human-in-the-Loop Approach to Fair and Private Machine Learning
Abstract:
As machine learning systems move from theory to practice, they are increasingly tasked with decisions that affect healthcare access, financial opportunities, hiring, and public services. In these contexts, accuracy is only one piece of the puzzle - models must also be fair to different groups, protect individual privacy, and remain accountable to stakeholders. Achieving all three is difficult: differential privacy can unintentionally worsen disparities, fairness interventions often rely on sensitive data that privacy restricts, and automated pipelines ignore that fairness is ultimately a human and contextual judgment. We introduce FAIRPLAI (Fair and Private Learning with Active Human Influence), a practical framework that integrates human oversight into the design and deployment of machine learning systems. FAIRPLAI works in three ways: (1) it constructs privacy-fairness frontiers that make trade-offs between accuracy, privacy guarantees, and group outcomes transparent; (2) it enables interactive stakeholder input, allowing decision-makers to select fairness criteria and operating points that reflect their domain needs; and (3) it embeds a differentially private auditing loop, giving humans the ability to review explanations and edge cases without compromising individual data security. Applied to benchmark datasets, FAIRPLAI consistently preserves strong privacy protections while reducing fairness disparities relative to automated baselines. More importantly, it provides a straightforward, interpretable process for practitioners to manage competing demands of accuracy, privacy, and fairness in socially impactful applications. By embedding human judgment where it matters most, FAIRPLAI offers a pathway to machine learning systems that are effective, responsible, and trustworthy in practice. GitHub: https://github.com/Li1Davey/Fairplai

Authors:Kaleem Ullah Qasim, Jiashu Zhang
Title: Accelerating Training Speed of Tiny Recursive Models via Curriculum Guided Adaptive Recursion
Abstract:
Recursive reasoning models achieve remarkable performance on complex reasoning tasks through iterative refinement, enabling tiny networks to match large language models thousands of times their size. However, training remains computationally expensive, prior work reporting approximately 36 GPU-hours per dataset, limiting broader adoption and research. We propose CGAR, a novel training methodology that applies curriculum learning to architectural depth rather than traditional data ordering. CGAR introduces two synergistic components: Progressive Depth Curriculum dynamically adjusts recursion depth from shallow to deep configurations during training, preventing early overfitting while reducing computational cost, and Hierarchical Supervision Weighting applies exponentially decaying importance to supervision steps, aligning loss weighting with observed gradient magnitude decay. On Sudoku-Extreme with 423,168 test puzzles, CGAR achieves 1.71x training speedup (10.93 to 6.38 hours, 42% cost reduction) with only 0.63% accuracy drop (86.65% to 86.02%). Systematic ablations reveal Progressive Depth Curriculum alone achieves 2.26x speedup with 85.47% accuracy, demonstrating a rare Pareto improvement where architectural curriculum simultaneously enhances training efficiency and solution quality. CGAR-trained models exhibit superior inference efficiency with 100% halting accuracy and 11% fewer reasoning steps. Our work demonstrates that principled curriculum on architectural depth enables efficient training of recursive reasoning models on modest hardware. Code and models: https://github.com/Kaleemullahqasim/CGAR and https://huggingface.co/Kaleemullah/trm-cgar-sudoku

Authors:Assaf Singer, Noam Rotstein, Amir Mann, Ron Kimmel, Or Litany
Title: Time-to-Move: Training-Free Motion Controlled Video Generation via Dual-Clock Denoising
Abstract:
Diffusion-based video generation can create realistic videos, yet existing image- and text-based conditioning fails to offer precise motion control. Prior methods for motion-conditioned synthesis typically require model-specific fine-tuning, which is computationally expensive and restrictive. We introduce Time-to-Move (TTM), a training-free, plug-and-play framework for motion- and appearance-controlled video generation with image-to-video (I2V) diffusion models. Our key insight is to use crude reference animations obtained through user-friendly manipulations such as cut-and-drag or depth-based reprojection. Motivated by SDEdit's use of coarse layout cues for image editing, we treat the crude animations as coarse motion cues and adapt the mechanism to the video domain. We preserve appearance with image conditioning and introduce dual-clock denoising, a region-dependent strategy that enforces strong alignment in motion-specified regions while allowing flexibility elsewhere, balancing fidelity to user intent with natural dynamics. This lightweight modification of the sampling process incurs no additional training or runtime cost and is compatible with any backbone. Extensive experiments on object and camera motion benchmarks show that TTM matches or exceeds existing training-based baselines in realism and motion control. Beyond this, TTM introduces a unique capability: precise appearance control through pixel-level conditioning, exceeding the limits of text-only prompting. Visit our project page for video examples and code: https://time-to-move.github.io/.

Authors:Shuhang Chen, Hangjie Yuan, Pengwei Liu, Hanxue Gu, Tao Feng, Dong Ni
Title: SAMora: Enhancing SAM through Hierarchical Self-Supervised Pre-Training for Medical Images
Abstract:
The Segment Anything Model (SAM) has demonstrated significant potential in medical image segmentation. Yet, its performance is limited when only a small amount of labeled data is available, while there is abundant valuable yet often overlooked hierarchical information in medical data. To address this limitation, we draw inspiration from self-supervised learning and propose SAMora, an innovative framework that captures hierarchical medical knowledge by applying complementary self-supervised learning objectives at the image, patch, and pixel levels. To fully exploit the complementarity of hierarchical knowledge within LoRAs, we introduce HL-Attn, a hierarchical fusion module that integrates multi-scale features while maintaining their distinct characteristics. SAMora is compatible with various SAM variants, including SAM2, SAMed, and H-SAM. Experimental results on the Synapse, LA, and PROMISE12 datasets demonstrate that SAMora outperforms existing SAM variants. It achieves state-of-the-art performance in both few-shot and fully supervised settings while reducing fine-tuning epochs by 90%. The code is available at https://github.com/ShChen233/SAMora.

Authors:Xu Zhang, Zhengang Huang, Yunzhi Wu, Xun Lu, Erpeng Qi, Yunkai Chen, Zhongya Xue, Qitong Wang, Peng Wang, Wei Wang
Title: Multi-period Learning for Financial Time Series Forecasting
Abstract:
Time series forecasting is important in finance domain. Financial time series (TS) patterns are influenced by both short-term public opinions and medium-/long-term policy and market trends. Hence, processing multi-period inputs becomes crucial for accurate financial time series forecasting (TSF). However, current TSF models either use only single-period input, or lack customized designs for addressing multi-period characteristics. In this paper, we propose a Multi-period Learning Framework (MLF) to enhance financial TSF performance. MLF considers both TSF's accuracy and efficiency requirements. Specifically, we design three new modules to better integrate the multi-period inputs for improving accuracy: (i) Inter-period Redundancy Filtering (IRF), that removes the information redundancy between periods for accurate self-attention modeling, (ii) Learnable Weighted-average Integration (LWI), that effectively integrates multi-period forecasts, (iii) Multi-period self-Adaptive Patching (MAP), that mitigates the bias towards certain periods by setting the same number of patches across all periods. Furthermore, we propose a Patch Squeeze module to reduce the number of patches in self-attention modeling for maximized efficiency. MLF incorporates multiple inputs with varying lengths (periods) to achieve better accuracy and reduces the costs of selecting input lengths during training. The codes and datasets are available at https://github.com/Meteor-Stars/MLF.

Authors:Joongho Kim, Xirui Huang, Zarreen Reza, Gabriel Grand, Kevin Zhu, Ryan Lagasse
Title: Chopping Trees: Semantic Similarity Based Dynamic Pruning for Tree-of-Thought Reasoning
Abstract:
Tree-of-Thought (ToT) reasoning boosts the problem-solving abilities of Large Language Models (LLMs) but is computationally expensive due to semantic redundancy, where distinct branches explore equivalent reasoning paths. We introduce Semantic Similarity-Based Dynamic Pruning (SSDP), a lightweight method that, to the best of our knowledge, is the first framework to integrate online semantic merging into parallelized tree search, enabling the clustering and pruning of redundant steps in real time. Across reasoning benchmarks, including GSM8K and MATH500, SSDP achieves up to a 2.3x speedup over state-of-the-art tree-search baselines while maintaining competitive accuracy (typically within 5% of the strongest baseline) and reducing the number of explored nodes by 85-90%, demonstrating a practical approach to efficient, scalable LLM reasoning. The implementation of SSDP is publicly available at https://github.com/kimjoonghokim/SSDP.

Authors:Jingtong Yue, Ziqi Huang, Zhaoxi Chen, Xintao Wang, Pengfei Wan, Ziwei Liu
Title: Simulating the Visual World with Artificial Intelligence: A Roadmap
Abstract:
The landscape of video generation is shifting, from a focus on generating visually appealing clips to building virtual environments that support interaction and maintain physical plausibility. These developments point toward the emergence of video foundation models that function not only as visual generators but also as implicit world models, models that simulate the physical dynamics, agent-environment interactions, and task planning that govern real or imagined worlds. This survey provides a systematic overview of this evolution, conceptualizing modern video foundation models as the combination of two core components: an implicit world model and a video renderer. The world model encodes structured knowledge about the world, including physical laws, interaction dynamics, and agent behavior. It serves as a latent simulation engine that enables coherent visual reasoning, long-term temporal consistency, and goal-driven planning. The video renderer transforms this latent simulation into realistic visual observations, effectively producing videos as a "window" into the simulated world. We trace the progression of video generation through four generations, in which the core capabilities advance step by step, ultimately culminating in a world model, built upon a video generation model, that embodies intrinsic physical plausibility, real-time multimodal interaction, and planning capabilities spanning multiple spatiotemporal scales. For each generation, we define its core characteristics, highlight representative works, and examine their application domains such as robotics, autonomous driving, and interactive gaming. Finally, we discuss open challenges and design principles for next-generation world models, including the role of agent intelligence in shaping and evaluating these systems. An up-to-date list of related works is maintained at this link.

Authors:Tianyu Fu, Yichen You, Zekai Chen, Guohao Dai, Huazhong Yang, Yu Wang
Title: Think-at-Hard: Selective Latent Iterations to Improve Reasoning Language Models
Abstract:
Improving reasoning capabilities of Large Language Models (LLMs), especially under parameter constraints, is crucial for real-world applications. Prior work proposes recurrent transformers, which allocate a fixed number of extra iterations per token to improve generation quality. After the first, standard forward pass, instead of verbalization, last-layer hidden states are fed back as inputs for additional iterations to refine token predictions. Yet we identify a latent overthinking phenomenon: easy token predictions that are already correct after the first pass are sometimes revised into errors in additional iterations. To address this, we propose Think-at-Hard (TaH), a dynamic latent thinking method that iterates deeper only at hard tokens. It employs a lightweight neural decider to trigger latent iterations only at tokens that are likely incorrect after the standard forward pass. During latent iterations, Low-Rank Adaptation (LoRA) modules shift the LLM objective from general next-token prediction to focused hard-token refinement. We further introduce a duo-causal attention mechanism that extends attention from the token sequence dimension to an additional iteration depth dimension. This enables cross-iteration information flow while maintaining full sequential parallelism. Experiments show that TaH boosts LLM reasoning performance across five challenging benchmarks while maintaining the same parameter count. Compared with baselines that iterate twice for all output tokens, TaH delivers 8.1-11.3% accuracy gains while exempting 94% of tokens from the second iteration. Against strong single-iteration Qwen3 models finetuned with the same data, it also delivers 4.0-5.0% accuracy gains. When allowing less than 3% additional parameters from LoRA and the iteration decider, the gains increase to 8.5-12.6% and 5.3-5.4%, respectively. Our code is available at https://github.com/thu-nics/TaH.

Authors:Randall Balestriero, Yann LeCun
Title: LeJEPA: Provable and Scalable Self-Supervised Learning Without the Heuristics
Abstract:
Learning manipulable representations of the world and its dynamics is central to AI. Joint-Embedding Predictive Architectures (JEPAs) offer a promising blueprint, but lack of practical guidance and theory has led to ad-hoc R&D. We present a comprehensive theory of JEPAs and instantiate it in {\bf LeJEPA}, a lean, scalable, and theoretically grounded training objective. First, we identify the isotropic Gaussian as the optimal distribution that JEPAs' embeddings should follow to minimize downstream prediction risk. Second, we introduce a novel objective--{\bf Sketched Isotropic Gaussian Regularization} (SIGReg)--to constrain embeddings to reach that ideal distribution. Combining the JEPA predictive loss with SIGReg yields LeJEPA with numerous theoretical and practical benefits: (i) single trade-off hyperparameter, (ii) linear time and memory complexity, (iii) stability across hyper-parameters, architectures (ResNets, ViTs, ConvNets) and domains, (iv) heuristics-free, e.g., no stop-gradient, no teacher-student, no hyper-parameter schedulers, and (v) distributed training-friendly implementation requiring only $\approx$50 lines of code. Our empirical validation covers 10+ datasets, 60+ architectures, all with varying scales and domains. As an example, using imagenet-1k for pretraining and linear evaluation with frozen backbone, LeJEPA reaches 79\% with a ViT-H/14. We hope that the simplicity and theory-friendly ecosystem offered by LeJEPA will reestablish self-supervised pre-training as a core pillar of AI research (\href{https://github.com/rbalestr-lab/lejepa}{GitHub repo}).

Authors:Sorachi Kato, Ryoma Yataka, Pu Perry Wang, Pedro Miraldo, Takuya Fujihashi, Petros Boufounos
Title: RAPTR: Radar-based 3D Pose Estimation using Transformer
Abstract:
Radar-based indoor 3D human pose estimation typically relied on fine-grained 3D keypoint labels, which are costly to obtain especially in complex indoor settings involving clutter, occlusions, or multiple people. In this paper, we propose \textbf{RAPTR} (RAdar Pose esTimation using tRansformer) under weak supervision, using only 3D BBox and 2D keypoint labels which are considerably easier and more scalable to collect. Our RAPTR is characterized by a two-stage pose decoder architecture with a pseudo-3D deformable attention to enhance (pose/joint) queries with multi-view radar features: a pose decoder estimates initial 3D poses with a 3D template loss designed to utilize the 3D BBox labels and mitigate depth ambiguities; and a joint decoder refines the initial poses with 2D keypoint labels and a 3D gravity loss. Evaluated on two indoor radar datasets, RAPTR outperforms existing methods, reducing joint position error by $34.3\%$ on HIBER and $76.9\%$ on MMVR. Our implementation is available at https://github.com/merlresearch/radar-pose-transformer.

Authors:Xinyu Zhou, Yu Wu, Jiayao Ma, Wenhao Wang, Min Cao, Mang Ye
Title: Text-based Aerial-Ground Person Retrieval
Abstract:
This work introduces Text-based Aerial-Ground Person Retrieval (TAG-PR), which aims to retrieve person images from heterogeneous aerial and ground views with textual descriptions. Unlike traditional Text-based Person Retrieval (T-PR), which focuses solely on ground-view images, TAG-PR introduces greater practical significance and presents unique challenges due to the large viewpoint discrepancy across images. To support this task, we contribute: (1) TAG-PEDES dataset, constructed from public benchmarks with automatically generated textual descriptions, enhanced by a diversified text generation paradigm to ensure robustness under view heterogeneity; and (2) TAG-CLIP, a novel retrieval framework that addresses view heterogeneity through a hierarchically-routed mixture of experts module to learn view-specific and view-agnostic features and a viewpoint decoupling strategy to decouple view-specific features for better cross-modal alignment. We evaluate the effectiveness of TAG-CLIP on both the proposed TAG-PEDES dataset and existing T-PR benchmarks. The dataset and code are available at https://github.com/Flame-Chasers/TAG-PR.

Authors:Chenyu Hu, Xiaotong Li, Hao Zhu, Biao Hou
Title: Hierarchical Direction Perception via Atomic Dot-Product Operators for Rotation-Invariant Point Clouds Learning
Abstract:
Point cloud processing has become a cornerstone technology in many 3D vision tasks. However, arbitrary rotations introduce variations in point cloud orientations, posing a long-standing challenge for effective representation learning. The core of this issue is the disruption of the point cloud's intrinsic directional characteristics caused by rotational perturbations. Recent methods attempt to implicitly model rotational equivariance and invariance, preserving directional information and propagating it into deep semantic spaces. Yet, they often fall short of fully exploiting the multiscale directional nature of point clouds to enhance feature representations. To address this, we propose the Direction-Perceptive Vector Network (DiPVNet). At its core is an atomic dot-product operator that simultaneously encodes directional selectivity and rotation invariance--endowing the network with both rotational symmetry modeling and adaptive directional perception. At the local level, we introduce a Learnable Local Dot-Product (L2DP) Operator, which enables interactions between a center point and its neighbors to adaptively capture the non-uniform local structures of point clouds. At the global level, we leverage generalized harmonic analysis to prove that the dot-product between point clouds and spherical sampling vectors is equivalent to a direction-aware spherical Fourier transform (DASFT). This leads to the construction of a global directional response spectrum for modeling holistic directional structures. We rigorously prove the rotation invariance of both operators. Extensive experiments on challenging scenarios involving noise and large-angle rotations demonstrate that DiPVNet achieves state-of-the-art performance on point cloud classification and segmentation tasks. Our code is available at https://github.com/wxszreal0/DiPVNet.

Authors:Seung Hwan Cho, Yujin Yang, Danik Baeck, Minjoo Kim, Young-Min Kim, Heejung Lee, Sangjin Park
Title: MARC: Multimodal and Multi-Task Agentic Retrieval-Augmented Generation for Cold-Start Recommender System
Abstract:
Recommender systems (RS) are currently being studied to mitigate limitations during cold-start conditions by leveraging modality information or introducing Agent concepts based on the exceptional reasoning capabilities of Large Language Models (LLMs). Meanwhile, food and beverage recommender systems have traditionally used knowledge graph and ontology concepts due to the domain's unique data attributes and relationship characteristics. On this background, we propose MARC, a multimodal and multi-task cocktail recommender system based on Agentic Retrieval-Augmented Generation (RAG) utilizing graph database under cold-start conditions. The proposed system generates high-quality, contextually appropriate answers through two core processes: a task recognition router and a reflection process. The graph database was constructed by processing cocktail data from Kaggle, and its effectiveness was evaluated using 200 manually crafted questions. The evaluation used both LLM-as-a-judge and human evaluation to demonstrate that answers generated via the graph database outperformed those from a simple vector database in terms of quality. The code is available at https://github.com/diddbwls/cocktail_rec_agentrag

Authors:Ying Wang, Zhaodong Sun, Xu Cheng, Zuxian He, Xiaobai Li
Title: Radar-APLANC: Unsupervised Radar-based Heartbeat Sensing via Augmented Pseudo-Label and Noise Contrast
Abstract:
Frequency Modulated Continuous Wave (FMCW) radars can measure subtle chest wall oscillations to enable non-contact heartbeat sensing. However, traditional radar-based heartbeat sensing methods face performance degradation due to noise. Learning-based radar methods achieve better noise robustness but require costly labeled signals for supervised training. To overcome these limitations, we propose the first unsupervised framework for radar-based heartbeat sensing via Augmented Pseudo-Label and Noise Contrast (Radar-APLANC). We propose to use both the heartbeat range and noise range within the radar range matrix to construct the positive and negative samples, respectively, for improved noise robustness. Our Noise-Contrastive Triplet (NCT) loss only utilizes positive samples, negative samples, and pseudo-label signals generated by the traditional radar method, thereby avoiding dependence on expensive ground-truth physiological signals. We further design a pseudo-label augmentation approach featuring adaptive noise-aware label selection to improve pseudo-label signal quality. Extensive experiments on the Equipleth dataset and our collected radar dataset demonstrate that our unsupervised method achieves performance comparable to state-of-the-art supervised methods. Our code, dataset, and supplementary materials can be accessed from https://github.com/RadarHRSensing/Radar-APLANC.

Authors:Cheng Yuan, Jiawei Shao, Chi Zhang, Xuelong Li
Title: Information Capacity: Evaluating the Efficiency of Large Language Models via Text Compression
Abstract:
Recent years have witnessed the rapid advancements of large language models (LLMs) and their expanding applications, leading to soaring demands for computational resources. The widespread adoption of test-time scaling further aggravates the tension between model capability and resource consumption, highlighting the importance of inference efficiency. However, a unified metric that accurately reflects an LLM's efficiency across different model sizes and architectures remains absent. Motivated by the correlation between compression and intelligence, we introduce information capacity, a measure of model efficiency based on text compression performance relative to computational complexity. Larger models can predict the next token more accurately, achieving greater compression gains but at higher computational costs. Empirical evaluations on mainstream open-source models show that models of varying sizes within a series exhibit consistent information capacity. This metric enables a fair efficiency comparison across model series and accurate performance prediction within a model series. A distinctive feature of information capacity is that it incorporates tokenizer efficiency, which affects both input and output token counts but is often neglected in LLM evaluations. We assess the information capacity of 49 models on 5 heterogeneous datasets and observe consistent results on the influences of tokenizer efficiency, pretraining data, and the mixture-of-experts architecture.

Authors:Chende Zheng, Ruiqi Suo, Zhoulin Ji, Jingyi Deng, Fangbin Yi, Chenhao Lin, Chao Shen
Title: Multi-modal Deepfake Detection and Localization with FPN-Transformer
Abstract:
The rapid advancement of generative adversarial networks (GANs) and diffusion models has enabled the creation of highly realistic deepfake content, posing significant threats to digital trust across audio-visual domains. While unimodal detection methods have shown progress in identifying synthetic media, their inability to leverage cross-modal correlations and precisely localize forged segments limits their practicality against sophisticated, fine-grained manipulations. To address this, we introduce a multi-modal deepfake detection and localization framework based on a Feature Pyramid-Transformer (FPN-Transformer), addressing critical gaps in cross-modal generalization and temporal boundary regression. The proposed approach utilizes pre-trained self-supervised models (WavLM for audio, CLIP for video) to extract hierarchical temporal features. A multi-scale feature pyramid is constructed through R-TLM blocks with localized attention mechanisms, enabling joint analysis of cross-context temporal dependencies. The dual-branch prediction head simultaneously predicts forgery probabilities and refines temporal offsets of manipulated segments, achieving frame-level localization precision. We evaluate our approach on the test set of the IJCAI'25 DDL-AV benchmark, showing a good performance with a final score of 0.7535 for cross-modal deepfake detection and localization in challenging environments. Experimental results confirm the effectiveness of our approach and provide a novel way for generalized deepfake detection. Our code is available at https://github.com/Zig-HS/MM-DDL

Authors:Wenhan Yu, Xinbo Lin, Lanxin Ni, Jinhua Cheng, Lei Sha
Title: Benchmarking Multi-Step Legal Reasoning and Analyzing Chain-of-Thought Effects in Large Language Models
Abstract:
Large language models (LLMs) have demonstrated strong reasoning abilities across specialized domains, motivating research into their application to legal reasoning. However, existing legal benchmarks often conflate factual recall with genuine inference, fragment the reasoning process, and overlook the quality of reasoning. To address these limitations, we introduce MSLR, the first Chinese multi-step legal reasoning dataset grounded in real-world judicial decision making. MSLR adopts the IRAC framework (Issue, Rule, Application, Conclusion) to model structured expert reasoning from official legal documents. In addition, we design a scalable Human-LLM collaborative annotation pipeline that efficiently produces fine-grained step-level reasoning annotations and provides a reusable methodological framework for multi-step reasoning datasets. Evaluation of multiple LLMs on MSLR shows only moderate performance, highlighting the challenges of adapting to complex legal reasoning. Further experiments demonstrate that Self-Initiated Chain-of-Thought prompts generated by models autonomously improve reasoning coherence and quality, outperforming human-designed prompts. MSLR contributes to advancing LLM reasoning and Chain-of-Thought strategies and offers open resources for future research. The dataset and code are available at https://github.com/yuwenhan07/MSLR-Bench and https://law.sjtu.edu.cn/flszyjzx/index.html.

Authors:Jun Xu, Xinkai Du, Yu Ao, Peilong Zhao, Yang Li, Ling Zhong, Lin Yuan, Zhongpu Bo, Xiaorui Wang, Mengshu Sun, Zhengke Gui, Dalong Zhang, Zhaoyang Wang, Qiwei Wang, Yangyang Hou, Zhiying Yin, Haofen Wang, Huajun Chen, Lei Liang, Jun Zhou
Title: Thinker: Training LLMs in Hierarchical Thinking for Deep Search via Multi-Turn Interaction
Abstract:
Efficient retrieval of external knowledge bases and web pages is crucial for enhancing the reasoning abilities of LLMs. Previous works on training LLMs to leverage external retrievers for solving complex problems have predominantly employed end-to-end reinforcement learning. However, these approaches neglect supervision over the reasoning process, making it difficult to guarantee logical coherence and rigor. To address these limitations, we propose Thinker, a hierarchical thinking model for deep search through multi-turn interaction, making the reasoning process supervisable and verifiable. It decomposes complex problems into independently solvable sub-problems, each dually represented in both natural language and an equivalent logical function to support knowledge base and web searches. Concurrently, dependencies between sub-problems are passed as parameters via these logical functions, enhancing the logical coherence of the problem-solving process. To avoid unnecessary external searches, we perform knowledge boundary determination to check if a sub-problem is within the LLM's intrinsic knowledge, allowing it to answer directly. Experimental results indicate that with as few as several hundred training samples, the performance of Thinker is competitive with established baselines. Furthermore, when scaled to the full training set, Thinker significantly outperforms these methods across various datasets and model sizes. The source code is available at https://github.com/OpenSPG/KAG-Thinker.

Authors:Daisuke Kikuta, Hiroki Ikeuchi, Kengo Tajiri
Title: LLM-Powered Fully Automated Chaos Engineering: Towards Enabling Anyone to Build Resilient Software Systems at Low Cost
Abstract:
Chaos Engineering (CE) is an engineering technique aimed at improving the resilience of distributed systems. It involves intentionally injecting faults into a system to test its resilience, uncover weaknesses, and address them before they cause failures in production. Recent CE tools automate the execution of predefined CE experiments. However, planning such experiments and improving the system based on the experimental results still remain manual. These processes are labor-intensive and require multi-domain expertise. To address these challenges and enable anyone to build resilient systems at low cost, this paper proposes ChaosEater, a system that automates the entire CE cycle with Large Language Models (LLMs). It predefines an agentic workflow according to a systematic CE cycle and assigns subdivided processes within the workflow to LLMs. ChaosEater targets CE for software systems built on Kubernetes. Therefore, the LLMs in ChaosEater complete CE cycles through software engineering tasks, including requirement definition, code generation, testing, and debugging. We evaluate ChaosEater through case studies on small- and large-scale Kubernetes systems. The results demonstrate that it consistently completes reasonable CE cycles with significantly low time and monetary costs. Its cycles are also qualitatively validated by human engineers and LLMs.

Authors:Shinwoo Park, Hyejin Park, Hyeseon Ahn, Yo-Sub Han
Title: WaterMod: Modular Token-Rank Partitioning for Probability-Balanced LLM Watermarking
Abstract:
Large language models now draft news, legal analyses, and software code with human-level fluency. At the same time, regulations such as the EU AI Act mandate that each synthetic passage carry an imperceptible, machine-verifiable mark for provenance. Conventional logit-based watermarks satisfy this requirement by selecting a pseudorandom green vocabulary at every decoding step and boosting its logits, yet the random split can exclude the highest-probability token and thus erode fluency. WaterMod mitigates this limitation through a probability-aware modular rule. The vocabulary is first sorted in descending model probability; the resulting ranks are then partitioned by the residue rank mod k, which distributes adjacent-and therefore semantically similar-tokens across different classes. A fixed bias of small magnitude is applied to one selected class. In the zero-bit setting (k=2), an entropy-adaptive gate selects either the even or the odd parity as the green list. Because the top two ranks fall into different parities, this choice embeds a detectable signal while guaranteeing that at least one high-probability token remains available for sampling. In the multi-bit regime (k>2), the current payload digit d selects the color class whose ranks satisfy rank mod k = d. Biasing the logits of that class embeds exactly one base-k digit per decoding step, thereby enabling fine-grained provenance tracing. The same modular arithmetic therefore supports both binary attribution and rich payloads. Experimental results demonstrate that WaterMod consistently attains strong watermark detection performance while maintaining generation quality in both zero-bit and multi-bit settings. This robustness holds across a range of tasks, including natural language generation, mathematical reasoning, and code synthesis. Our code and data are available at https://github.com/Shinwoo-Park/WaterMod.

Authors:Zhengyi Luo, Ye Yuan, Tingwu Wang, Chenran Li, Sirui Chen, Fernando Castañeda, Zi-Ang Cao, Jiefeng Li, David Minor, Qingwei Ben, Xingye Da, Runyu Ding, Cyrus Hogg, Lina Song, Edy Lim, Eugene Jeong, Tairan He, Haoru Xue, Wenli Xiao, Zi Wang, Simon Yuen, Jan Kautz, Yan Chang, Umar Iqbal, Linxi "Jim" Fan, Yuke Zhu
Title: SONIC: Supersizing Motion Tracking for Natural Humanoid Whole-Body Control
Abstract:
Despite the rise of billion-parameter foundation models trained across thousands of GPUs, similar scaling gains have not been shown for humanoid control. Current neural controllers for humanoids remain modest in size, target a limited behavior set, and are trained on a handful of GPUs over several days. We show that scaling up model capacity, data, and compute yields a generalist humanoid controller capable of creating natural and robust whole-body movements. Specifically, we posit motion tracking as a natural and scalable task for humanoid control, leverageing dense supervision from diverse motion-capture data to acquire human motion priors without manual reward engineering. We build a foundation model for motion tracking by scaling along three axes: network size (from 1.2M to 42M parameters), dataset volume (over 100M frames, 700 hours of high-quality motion data), and compute (9k GPU hours). Beyond demonstrating the benefits of scale, we show the practical utility of our model through two mechanisms: (1) a real-time universal kinematic planner that bridges motion tracking to downstream task execution, enabling natural and interactive control, and (2) a unified token space that supports various motion input interfaces, such as VR teleoperation devices, human videos, and vision-language-action (VLA) models, all using the same policy. Scaling motion tracking exhibits favorable properties: performance improves steadily with increased compute and data diversity, and learned representations generalize to unseen motions, establishing motion tracking at scale as a practical foundation for humanoid control.

Authors:Yuezhe Yang, Yiyue Guo, Wenjie Cai, Qingqing Ruan, Siying Wang, Xingbo Dong, Zhe Jin, Yong Dai
Title: Auto-US: An Ultrasound Video Diagnosis Agent Using Video Classification Framework and LLMs
Abstract:
AI-assisted ultrasound video diagnosis presents new opportunities to enhance the efficiency and accuracy of medical imaging analysis. However, existing research remains limited in terms of dataset diversity, diagnostic performance, and clinical applicability. In this study, we propose \textbf{Auto-US}, an intelligent diagnosis agent that integrates ultrasound video data with clinical diagnostic text. To support this, we constructed \textbf{CUV Dataset} of 495 ultrasound videos spanning five categories and three organs, aggregated from multiple open-access sources. We developed \textbf{CTU-Net}, which achieves state-of-the-art performance in ultrasound video classification, reaching an accuracy of 86.73\% Furthermore, by incorporating large language models, Auto-US is capable of generating clinically meaningful diagnostic suggestions. The final diagnostic scores for each case exceeded 3 out of 5 and were validated by professional clinicians. These results demonstrate the effectiveness and clinical potential of Auto-US in real-world ultrasound applications. Code and data are available at: https://github.com/Bean-Young/Auto-US.

Authors:Yuezhe Yang, Wenjie Cai, Dexin Yang, Yufang Dong, Xingbo Dong, Zhe Jin
Title: UltraGS: Gaussian Splatting for Ultrasound Novel View Synthesis
Abstract:
Ultrasound imaging is a cornerstone of non-invasive clinical diagnostics, yet its limited field of view complicates novel view synthesis. We propose \textbf{UltraGS}, a Gaussian Splatting framework optimized for ultrasound imaging. First, we introduce a depth-aware Gaussian splatting strategy, where each Gaussian is assigned a learnable field of view, enabling accurate depth prediction and precise structural representation. Second, we design SH-DARS, a lightweight rendering function combining low-order spherical harmonics with ultrasound-specific wave physics, including depth attenuation, reflection, and scattering, to model tissue intensity accurately. Third, we contribute the Clinical Ultrasound Examination Dataset, a benchmark capturing diverse anatomical scans under real-world clinical protocols. Extensive experiments on three datasets demonstrate UltraGS's superiority, achieving state-of-the-art results in PSNR (up to 29.55), SSIM (up to 0.89), and MSE (as low as 0.002) while enabling real-time synthesis at 64.69 fps. The code and dataset are open-sourced at: https://github.com/Bean-Young/UltraGS.

Authors:Zain Muhammad Mujahid, Dustin Wright, Isabelle Augenstein
Title: Stress Testing Factual Consistency Metrics for Long-Document Summarization
Abstract:
Evaluating the factual consistency of abstractive text summarization remains a significant challenge, particularly for long documents, where conventional metrics struggle with input length limitations and long-range dependencies. In this work, we systematically evaluate the reliability of six widely used reference-free factuality metrics, originally proposed for short-form summarization, in the long-document setting. We probe metric robustness through seven factuality-preserving perturbations applied to summaries, namely paraphrasing, simplification, synonym replacement, logically equivalent negations, vocabulary reduction, compression, and source text insertion, and further analyze their sensitivity to retrieval context and claim information density. Across three long-form benchmark datasets spanning science fiction, legal, and scientific domains, our results reveal that existing short-form metrics produce inconsistent scores for semantically equivalent summaries and exhibit declining reliability for information-dense claims whose content is semantically similar to many parts of the source document. While expanding the retrieval context improves stability in some domains, no metric consistently maintains factual alignment under long-context conditions. Finally, our results highlight concrete directions for improving factuality evaluation, including multi-span reasoning, context-aware calibration, and training on meaning-preserving variations to enhance robustness in long-form summarization. We release all code, perturbed data, and scripts required to reproduce our results at https://github.com/zainmujahid/metricEval-longSum.

Authors:Pengfei Hu, Ming Fan, Xiaoxue Han, Chang Lu, Wei Zhang, Hyun Kang, Yue Ning, Dan Lu
Title: Adaptive Graph Learning with Transformer for Multi-Reservoir Inflow Prediction
Abstract:
Reservoir inflow prediction is crucial for water resource management, yet existing approaches mainly focus on single-reservoir models that ignore spatial dependencies among interconnected reservoirs. We introduce AdaTrip as an adaptive, time-varying graph learning framework for multi-reservoir inflow forecasting. AdaTrip constructs dynamic graphs where reservoirs are nodes with directed edges reflecting hydrological connections, employing attention mechanisms to automatically identify crucial spatial and temporal dependencies. Evaluation on thirty reservoirs in the Upper Colorado River Basin demonstrates superiority over existing baselines, with improved performance for reservoirs with limited records through parameter sharing. Additionally, AdaTrip provides interpretable attention maps at edge and time-step levels, offering insights into hydrological controls to support operational decision-making. Our code is available at https://github.com/humphreyhuu/AdaTrip.

Authors:Pukang Ye, Junwei Luo, Xiaolei Dong, Yunbo Yang
Title: FedRW: Efficient Privacy-Preserving Data Reweighting for Enhancing Federated Learning of Language Models
Abstract:
Data duplication within large-scale corpora often impedes large language models' (LLMs) performance and privacy. In privacy-concerned federated learning scenarios, conventional deduplication methods typically rely on trusted third parties to perform uniform deletion, risking loss of informative samples while introducing privacy vulnerabilities. To address these gaps, we propose Federated ReWeighting (FedRW), the first privacy-preserving framework, to the best of our knowledge, that performs soft deduplication via sample reweighting instead of deletion in federated LLM training, without assuming a trusted third party. At its core, FedRW proposes a secure, frequency-aware reweighting protocol through secure multi-party computation, coupled with a parallel orchestration strategy to ensure efficiency and scalability. During training, FedRW utilizes an adaptive reweighting mechanism with global sample frequencies to adjust individual loss contributions, effectively improving generalization and robustness. Empirical results demonstrate that FedRW outperforms the state-of-the-art method by achieving up to 28.78x speedup in preprocessing and approximately 11.42% improvement in perplexity, while offering enhanced security guarantees. FedRW thus establishes a new paradigm for managing duplication in federated LLM training.

Authors:Qianxi He, Qingyu Ren, Shanzhe Lei, Xuhong Wang, Yingchun Wang
Title: Beyond Correctness: Confidence-Aware Reward Modeling for Enhancing Large Language Model Reasoning
Abstract:
Recent advancements in large language models (LLMs) have shifted the post-training paradigm from traditional instruction tuning and human preference alignment toward reinforcement learning (RL) focused on reasoning capabilities. However, numerous technical reports indicate that purely rule-based reward RL frequently results in poor-quality reasoning chains or inconsistencies between reasoning processes and final answers, particularly when the base model is of smaller scale. During the RL exploration process, models might employ low-quality reasoning chains due to the lack of knowledge, occasionally producing correct answers randomly and receiving rewards based on established rule-based judges. This constrains the potential for resource-limited organizations to conduct direct reinforcement learning training on smaller-scale models. We propose a novel confidence-based reward model tailored for enhancing STEM reasoning capabilities. Unlike conventional approaches, our model penalizes not only incorrect answers but also low-confidence correct responses, thereby promoting more robust and logically consistent reasoning. We validate the effectiveness of our approach through static evaluations, Best-of-N inference tests, and PPO-based RL training. Our method outperforms several state-of-the-art open-source reward models across diverse STEM benchmarks. We release our codes and model in https://github.com/qianxiHe147/C2RM.

Authors:Akshat Singh Jaswal
Title: It Takes Two: A Dual Stage Approach for Terminology-Aware Translation
Abstract:
This paper introduces DuTerm, a novel two-stage architecture for terminology-constrained machine translation. Our system combines a terminology-aware NMT model, adapted via fine-tuning on large-scale synthetic data, with a prompt-based LLM for post-editing. The LLM stage refines NMT output and enforces terminology adherence. We evaluate DuTerm on English-to German, English-to-Spanish, and English-to-Russian with the WMT 2025 Terminology Shared Task corpus. We demonstrate that flexible, context-driven terminology handling by the LLM consistently yields higher quality translations than strict constraint enforcement. Our results highlight a critical trade-off, revealing that an LLM's work best for high-quality translation as context-driven mutators rather than generators.

Authors:Zhao-Heng Yin, Pieter Abbeel
Title: Lightning Grasp: High Performance Procedural Grasp Synthesis with Contact Fields
Abstract:
Despite years of research, real-time diverse grasp synthesis for dexterous hands remains an unsolved core challenge in robotics and computer graphics. We present Lightning Grasp, a novel high-performance procedural grasp synthesis algorithm that achieves orders-of-magnitude speedups over state-of-the-art approaches, while enabling unsupervised grasp generation for irregular, tool-like objects. The method avoids many limitations of prior approaches, such as the need for carefully tuned energy functions and sensitive initialization. This breakthrough is driven by a key insight: decoupling complex geometric computation from the search process via a simple, efficient data structure - the Contact Field. This abstraction collapses the problem complexity, enabling a procedural search at unprecedented speeds. We open-source our system to propel further innovation in robotic manipulation.

Authors:Jiageng Mao, Sicheng He, Hao-Ning Wu, Yang You, Shuyang Sun, Zhicheng Wang, Yanan Bao, Huizhong Chen, Leonidas Guibas, Vitor Guizilini, Howard Zhou, Yue Wang
Title: Robot Learning from a Physical World Model
Abstract:
We introduce PhysWorld, a framework that enables robot learning from video generation through physical world modeling. Recent video generation models can synthesize photorealistic visual demonstrations from language commands and images, offering a powerful yet underexplored source of training signals for robotics. However, directly retargeting pixel motions from generated videos to robots neglects physics, often resulting in inaccurate manipulations. PhysWorld addresses this limitation by coupling video generation with physical world reconstruction. Given a single image and a task command, our method generates task-conditioned videos and reconstructs the underlying physical world from the videos, and the generated video motions are grounded into physically accurate actions through object-centric residual reinforcement learning with the physical world model. This synergy transforms implicit visual guidance into physically executable robotic trajectories, eliminating the need for real robot data collection and enabling zero-shot generalizable robotic manipulation. Experiments on diverse real-world tasks demonstrate that PhysWorld substantially improves manipulation accuracy compared to previous approaches. Visit \href{https://pointscoder.github.io/PhysWorld_Web/}{the project webpage} for details.

Authors:Yuxuan Sun, Manchen Wang, Shengyi Qian, William R. Wong, Eric Gan, Pierluca D'Oro, Alejandro Castillejo Munoz, Sneha Silwal, Pedro Matias, Nitin Kamra, Satwik Kottur, Nick Raines, Xuanyi Zhao, Joy Chen, Joseph Greer, Andrea Madotto, Allen Bolourchi, James Valori, Kevin Carlberg, Karl Ridgeway, Joseph Tighe
Title: DigiData: Training and Evaluating General-Purpose Mobile Control Agents
Abstract:
AI agents capable of controlling user interfaces have the potential to transform human interaction with digital devices. To accelerate this transformation, two fundamental building blocks are essential: high-quality datasets that enable agents to achieve complex and human-relevant goals, and robust evaluation methods that allow researchers and practitioners to rapidly enhance agent performance. In this paper, we introduce DigiData, a large-scale, high-quality, diverse, multi-modal dataset designed for training mobile control agents. Unlike existing datasets, which derive goals from unstructured interactions, DigiData is meticulously constructed through comprehensive exploration of app features, resulting in greater diversity and higher goal complexity. Additionally, we present DigiData-Bench, a benchmark for evaluating mobile control agents on real-world complex tasks. We demonstrate that the commonly used step-accuracy metric falls short in reliably assessing mobile control agents and, to address this, we propose dynamic evaluation protocols and AI-powered evaluations as rigorous alternatives for agent assessment. Our contributions aim to significantly advance the development of mobile control agents, paving the way for more intuitive and effective human-device interactions.

Authors:Sean McLeish, Ang Li, John Kirchenbauer, Dayal Singh Kalra, Brian R. Bartoldson, Bhavya Kailkhura, Avi Schwarzschild, Jonas Geiping, Tom Goldstein, Micah Goldblum
Title: Teaching Pretrained Language Models to Think Deeper with Retrofitted Recurrence
Abstract:
Recent advances in depth-recurrent language models show that recurrence can decouple train-time compute and parameter count from test-time compute. In this work, we study how to convert existing pretrained non-recurrent language models into depth-recurrent models. We find that using a curriculum of recurrences to increase the effective depth of the model over the course of training preserves performance while reducing total computational cost. In our experiments, on mathematics, we observe that converting pretrained models to recurrent ones results in better performance at a given compute budget than simply post-training the original non-recurrent language model.

Authors:Guoxin Chen, Zile Qiao, Xuanzhong Chen, Donglei Yu, Haotian Xu, Wayne Xin Zhao, Ruihua Song, Wenbiao Yin, Huifeng Yin, Liwen Zhang, Kuan Li, Minpeng Liao, Yong Jiang, Pengjun Xie, Fei Huang, Jingren Zhou
Title: IterResearch: Rethinking Long-Horizon Agents via Markovian State Reconstruction
Abstract:
Recent advances in deep-research agents have shown promise for autonomous knowledge construction through dynamic reasoning over external sources. However, existing approaches rely on a mono-contextual paradigm that accumulates all information in a single, expanding context window, leading to context suffocation and noise contamination that limit their effectiveness on long-horizon tasks. We introduce IterResearch, a novel iterative deep-research paradigm that reformulates long-horizon research as a Markov Decision Process with strategic workspace reconstruction. By maintaining an evolving report as memory and periodically synthesizing insights, our approach preserves consistent reasoning capacity across arbitrary exploration depths. We further develop Efficiency-Aware Policy Optimization (EAPO), a reinforcement learning framework that incentivizes efficient exploration through geometric reward discounting and enables stable distributed training via adaptive downsampling. Extensive experiments demonstrate that IterResearch achieves substantial improvements over existing open-source agents with average +14.5pp across six benchmarks and narrows the gap with frontier proprietary systems. Remarkably, our paradigm exhibits unprecedented interaction scaling, extending to 2048 interactions with dramatic performance gains (from 3.5\% to 42.5\%), and serves as an effective prompting strategy, improving frontier models by up to 19.2pp over ReAct on long-horizon tasks. These findings position IterResearch as a versatile solution for long-horizon reasoning, effective both as a trained agent and as a prompting paradigm for frontier models.

Authors:Kagan Celik, Mehmet Ozan Unal, Metin Ertas, Isa Yildirim
Title: LMM-IQA: Image Quality Assessment for Low-Dose CT Imaging
Abstract:
Low-dose computed tomography (CT) represents a significant improvement in patient safety through lower radiation doses, but increased noise, blur, and contrast loss can diminish diagnostic quality. Therefore, consistency and robustness in image quality assessment become essential for clinical applications. In this study, we propose an LLM-based quality assessment system that generates both numerical scores and textual descriptions of degradations such as noise, blur, and contrast loss. Furthermore, various inference strategies - from the zero-shot approach to metadata integration and error feedback - are systematically examined, demonstrating the progressive contribution of each method to overall performance. The resultant assessments yield not only highly correlated scores but also interpretable output, thereby adding value to clinical workflows. The source codes of our study are available at https://github.com/itu-biai/lmms_ldct_iqa.

Authors:Zhisheng Zhang, Derui Wang, Yifan Mi, Zhiyong Wu, Jie Gao, Yuxin Cao, Kai Ye, Minhui Xue, Jie Hao
Title: E2E-VGuard: Adversarial Prevention for Production LLM-based End-To-End Speech Synthesis
Abstract:
Recent advancements in speech synthesis technology have enriched our daily lives, with high-quality and human-like audio widely adopted across real-world applications. However, malicious exploitation like voice-cloning fraud poses severe security risks. Existing defense techniques struggle to address the production large language model (LLM)-based speech synthesis. While previous studies have considered the protection for fine-tuning synthesizers, they assume manually annotated transcripts. Given the labor intensity of manual annotation, end-to-end (E2E) systems leveraging automatic speech recognition (ASR) to generate transcripts are becoming increasingly prevalent, e.g., voice cloning via commercial APIs. Therefore, this E2E speech synthesis also requires new security mechanisms. To tackle these challenges, we propose E2E-VGuard, a proactive defense framework for two emerging threats: (1) production LLM-based speech synthesis, and (2) the novel attack arising from ASR-driven E2E scenarios. Specifically, we employ the encoder ensemble with a feature extractor to protect timbre, while ASR-targeted adversarial examples disrupt pronunciation. Moreover, we incorporate the psychoacoustic model to ensure perturbative imperceptibility. For a comprehensive evaluation, we test 16 open-source synthesizers and 3 commercial APIs across Chinese and English datasets, confirming E2E-VGuard's effectiveness in timbre and pronunciation protection. Real-world deployment validation is also conducted. Our code and demo page are available at https://wxzyd123.github.io/e2e-vguard/.

Authors:Yuanshao Zhu, Xiangyu Zhao, Zijian Zhang, Xuetao Wei, James Jianqiao Yu
Title: Boosting Fine-Grained Urban Flow Inference via Lightweight Architecture and Focalized Optimization
Abstract:
Fine-grained urban flow inference is crucial for urban planning and intelligent transportation systems, enabling precise traffic management and resource allocation. However, the practical deployment of existing methods is hindered by two key challenges: the prohibitive computational cost of over-parameterized models and the suboptimal performance of conventional loss functions on the highly skewed distribution of urban flows. To address these challenges, we propose a unified solution that synergizes architectural efficiency with adaptive optimization. Specifically, we first introduce PLGF, a lightweight yet powerful architecture that employs a Progressive Local-Global Fusion strategy to effectively capture both fine-grained details and global contextual dependencies. Second, we propose DualFocal Loss, a novel function that integrates dual-space supervision with a difficulty-aware focusing mechanism, enabling the model to adaptively concentrate on hard-to-predict regions. Extensive experiments on 4 real-world scenarios validate the effectiveness and scalability of our method. Notably, while achieving state-of-the-art performance, PLGF reduces the model size by up to 97% compared to current high-performing methods. Furthermore, under comparable parameter budgets, our model yields an accuracy improvement of over 10% against strong baselines. The implementation is included in the https://github.com/Yasoz/PLGF.

Authors:Duc Nguyen, Yan-Ling Lai, Qilin Zhang, Prabin Gyawali, Benedikt Schwab, Olaf Wysocki, Thomas H. Kolbe
Title: TrueCity: Real and Simulated Urban Data for Cross-Domain 3D Scene Understanding
Abstract:
3D semantic scene understanding remains a long-standing challenge in the 3D computer vision community. One of the key issues pertains to limited real-world annotated data to facilitate generalizable models. The common practice to tackle this issue is to simulate new data. Although synthetic datasets offer scalability and perfect labels, their designer-crafted scenes fail to capture real-world complexity and sensor noise, resulting in a synthetic-to-real domain gap. Moreover, no benchmark provides synchronized real and simulated point clouds for segmentation-oriented domain shift analysis. We introduce TrueCity, the first urban semantic segmentation benchmark with cm-accurate annotated real-world point clouds, semantic 3D city models, and annotated simulated point clouds representing the same city. TrueCity proposes segmentation classes aligned with international 3D city modeling standards, enabling consistent evaluation of synthetic-to-real gap. Our extensive experiments on common baselines quantify domain shift and highlight strategies for exploiting synthetic data to enhance real-world 3D scene understanding. We are convinced that the TrueCity dataset will foster further development of sim-to-real gap quantification and enable generalizable data-driven models. The data, code, and 3D models are available online: https://tum-gis.github.io/TrueCity/

Authors:Junpeng Zhao, Lin Li, Ming Li, Amran Bhuiyan, Jimmy Huang
Title: Learning to Fast Unrank in Collaborative Filtering Recommendation
Abstract:
Modern data-driven recommendation systems risk memorizing sensitive user behavioral patterns, raising privacy concerns. Existing recommendation unlearning methods, while capable of removing target data influence, suffer from inefficient unlearning speed and degraded performance, failing to meet real-time unlearning demands. Considering the ranking-oriented nature of recommendation systems, we present unranking, the process of reducing the ranking positions of target items while ensuring the formal guarantees of recommendation unlearning. To achieve efficient unranking, we propose Learning to Fast Unrank in Collaborative Filtering Recommendation (L2UnRank), which operates through three key stages: (a) identifying the influenced scope via interaction-based p-hop propagation, (b) computing structural and semantic influences for entities within this scope, and (c) performing efficient, ranking-aware parameter updates guided by influence information. Extensive experiments across multiple datasets and backbone models demonstrate L2UnRank's model-agnostic nature, achieving state-of-the-art unranking effectiveness and maintaining recommendation quality comparable to retraining, while also delivering a 50x speedup over existing methods. Codes are available at https://github.com/Juniper42/L2UnRank.

Authors:Kunhao Li, Wenhao Li, Di Wu, Lei Yang, Jun Bai, Ju Jia, Jason Xue
Title: Cross-Modal Unlearning via Influential Neuron Path Editing in Multimodal Large Language Models
Abstract:
Multimodal Large Language Models (MLLMs) extend foundation models to real-world applications by integrating inputs such as text and vision. However, their broad knowledge capacity raises growing concerns about privacy leakage, toxicity mitigation, and intellectual property violations. Machine Unlearning (MU) offers a practical solution by selectively forgetting targeted knowledge while preserving overall model utility. When applied to MLLMs, existing neuron-editing-based MU approaches face two fundamental challenges: (1) forgetting becomes inconsistent across modalities because existing point-wise attribution methods fail to capture the structured, layer-by-layer information flow that connects different modalities; and (2) general knowledge performance declines when sensitive neurons that also support important reasoning paths are pruned, as this disrupts the model's ability to generalize. To alleviate these limitations, we propose a multimodal influential neuron path editor (MIP-Editor) for MU. Our approach introduces modality-specific attribution scores to identify influential neuron paths responsible for encoding forget-set knowledge and applies influential-path-aware neuron-editing via representation misdirection. This strategy also enables effective and coordinated forgetting across modalities while preserving the model's general capabilities. Experimental results demonstrate that MIP-Editor achieves a superior unlearning performance on multimodal tasks, with a maximum forgetting rate of 87.75% and up to 54.26% improvement in general knowledge retention. On textual tasks, MIP-Editor achieves up to 80.65% forgetting and preserves 77.9% of general performance. Codes are available at https://github.com/PreckLi/MIP-Editor.

Authors:Jianyu Qi, Ding Zou, Wenrui Yan, Rui Ma, Jiaxu Li, Zhijie Zheng, Zhiguo Yang, Rongchang Zhao
Title: Revisiting the Data Sampling in Multimodal Post-training from a Difficulty-Distinguish View
Abstract:
Recent advances in Multimodal Large Language Models (MLLMs) have spurred significant progress in Chain-of-Thought (CoT) reasoning. Building on the success of Deepseek-R1, researchers extended multimodal reasoning to post-training paradigms based on reinforcement learning (RL), focusing predominantly on mathematical datasets. However, existing post-training paradigms tend to neglect two critical aspects: (1) The lack of quantifiable difficulty metrics capable of strategically screening samples for post-training optimization. (2) Suboptimal post-training paradigms that fail to jointly optimize perception and reasoning capabilities. To address this gap, we propose two novel difficulty-aware sampling strategies: Progressive Image Semantic Masking (PISM) quantifies sample hardness through systematic image degradation, while Cross-Modality Attention Balance (CMAB) assesses cross-modal interaction complexity via attention distribution analysis. Leveraging these metrics, we design a hierarchical training framework that incorporates both GRPO-only and SFT+GRPO hybrid training paradigms, and evaluate them across six benchmark datasets. Experiments demonstrate consistent superiority of GRPO applied to difficulty-stratified samples compared to conventional SFT+GRPO pipelines, indicating that strategic data sampling can obviate the need for supervised fine-tuning while improving model accuracy. Our code will be released at https://github.com/qijianyu277/DifficultySampling.

Authors:Andrew Choi, Dezhong Tong
Title: Rapidly Learning Soft Robot Control via Implicit Time-Stepping
Abstract:
With the explosive growth of rigid-body simulators, policy learning in simulation has become the de facto standard for most rigid morphologies. In contrast, soft robotic simulation frameworks remain scarce and are seldom adopted by the soft robotics community. This gap stems partly from the lack of easy-to-use, general-purpose frameworks and partly from the high computational cost of accurately simulating continuum mechanics, which often renders policy learning infeasible. In this work, we demonstrate that rapid soft robot policy learning is indeed achievable via implicit time-stepping. Our simulator of choice, DisMech, is a general-purpose, fully implicit soft-body simulator capable of handling both soft dynamics and frictional contact. We further introduce delta natural curvature control, a method analogous to delta joint position control in rigid manipulators, providing an intuitive and effective means of enacting control for soft robot learning. To highlight the benefits of implicit time-stepping and delta curvature control, we conduct extensive comparisons across four diverse soft manipulator tasks against one of the most widely used soft-body frameworks, Elastica. With implicit time-stepping, parallel stepping of 500 environments achieves up to 6x faster speeds for non-contact cases and up to 40x faster for contact-rich scenarios. Finally, a comprehensive sim-to-sim gap evaluation--training policies in one simulator and evaluating them in another--demonstrates that implicit time-stepping provides a rare free lunch: dramatic speedups achieved without sacrificing accuracy.

Authors:Kaiyuan Zhai, Jiacheng Cui, Zhehao Zhang, Junyu Xue, Yang Deng, Kui Wu, Guoming Tang
Title: CaberNet: Causal Representation Learning for Cross-Domain HVAC Energy Prediction
Abstract:
Cross-domain HVAC energy prediction is essential for scalable building energy management, particularly because collecting extensive labeled data for every new building is both costly and impractical. Yet, this task remains highly challenging due to the scarcity and heterogeneity of data across different buildings, climate zones, and seasonal patterns. In particular, buildings situated in distinct climatic regions introduce variability that often leads existing methods to overfit to spurious correlations, rely heavily on expert intervention, or compromise on data diversity. To address these limitations, we propose CaberNet, a causal and interpretable deep sequence model that learns invariant (Markov blanket) representations for robust cross-domain prediction. In a purely data-driven fashion and without requiring any prior knowledge, CaberNet integrates i) a global feature gate trained with a self-supervised Bernoulli regularization to distinguish superior causal features from inferior ones, and ii) a domain-wise training scheme that balances domain contributions, minimizes cross-domain loss variance, and promotes latent factor independence. We evaluate CaberNet on real-world datasets collected from three buildings located in three climatically diverse cities, and it consistently outperforms all baselines, achieving a 22.9\% reduction in normalized mean squared error (NMSE) compared to the best benchmark. Our code is available at https://github.com/rickzky1001/CaberNet-CRL.

Authors:S Sakshi, Vaibhavi Lokegaonkar, Neil Zhang, Ramani Duraiswami, Sreyan Ghosh, Dinesh Manocha, Lie Lu
Title: SPUR: A Plug-and-Play Framework for Integrating Spatial Audio Understanding and Reasoning into Large Audio-Language Models
Abstract:
Spatial perception is central to auditory intelligence, enabling accurate understanding of real-world acoustic scenes and advancing human-level perception of the world around us. While recent large audio-language models (LALMs) show strong reasoning over complex audios, most operate on monaural inputs and lack the ability to capture spatial cues such as direction, elevation, and distance. We introduce SPUR, a lightweight, plug-in approach that equips LALMs with spatial perception through minimal architectural changes. SPUR consists of: (i) a First-Order Ambisonics (FOA) encoder that maps (W, X, Y, Z) channels to rotation-aware, listener-centric spatial features, integrated into target LALMs via a multimodal adapter; and (ii) SPUR-Set, a spatial QA dataset combining open-source FOA recordings with controlled simulations, emphasizing relative direction, elevation, distance, and overlap for supervised spatial reasoning. Fine-tuning our model on the SPUR-Set consistently improves spatial QA and multi-speaker attribution while preserving general audio understanding. SPUR provides a simple recipe that transforms monaural LALMs into spatially aware models. Extensive ablations validate the effectiveness of our approach.

Authors:Jacob Si, Mike Qu, Michelle Lee, Yingzhen Li
Title: TabRAG: Tabular Document Retrieval via Structured Language Representations
Abstract:
Ingesting data for Retrieval-Augmented Generation (RAG) involves either fine-tuning the embedding model directly on the target corpus or parsing documents for embedding model encoding. The former, while accurate, incurs high computational hardware requirements, while the latter suffers from suboptimal performance when extracting tabular data. In this work, we address the latter by presenting TabRAG, a parsing-based RAG pipeline designed to tackle table-heavy documents via structured language representations. TabRAG outperforms existing popular parsing-based methods for generation and retrieval. Code is available at https://github.com/jacobyhsi/TabRAG.

Authors:Jan Ondras, Marek Šuppa
Title: FractalBench: Diagnosing Visual-Mathematical Reasoning Through Recursive Program Synthesis
Abstract:
Mathematical reasoning requires abstracting symbolic rules from visual patterns -- inferring the infinite from the finite. We investigate whether multimodal AI systems possess this capability through FractalBench, a benchmark evaluating fractal program synthesis from images. Fractals provide ideal test cases: Iterated Function Systems with only a few contraction maps generate complex self-similar patterns through simple recursive rules, requiring models to bridge visual perception with mathematical abstraction. We evaluate four leading MLLMs -- GPT-4o, Claude 3.7 Sonnet, Gemini 2.5 Flash, and Qwen 2.5-VL -- on 12 canonical fractals. Models must generate executable Python code reproducing the fractal, enabling objective evaluation. Results reveal a striking disconnect: 76% generate syntactically valid code but only 4% capture mathematical structure. Success varies systematically -- models handle geometric transformations (Koch curves: 17-21%) but fail at branching recursion (trees: <2%), revealing fundamental gaps in mathematical abstraction. FractalBench provides a contamination-resistant diagnostic for visual-mathematical reasoning and is available at https://github.com/NaiveNeuron/FractalBench

Authors:Tiansheng Wen, Yifei Wang, Aosong Feng, Long Ma, Xinyang Liu, Yifan Wang, Lixuan Guo, Bo Chen, Stefanie Jegelka, Chenyu You
Title: Route Experts by Sequence, not by Token
Abstract:
Mixture-of-Experts (MoE) architectures scale large language models (LLMs) by activating only a subset of experts per token, but the standard TopK routing assigns the same fixed number of experts to all tokens, ignoring their varying complexity. Prior adaptive routing methods introduce additional modules and hyperparameters, often requiring costly retraining from scratch. We propose Sequence-level TopK (SeqTopK), a minimal modification that shifts the expert budget from the token level to the sequence level. By selecting the top $T \cdot K$ experts across all $T$ tokens, SeqTopK enables end-to-end learned dynamic allocation -- assigning more experts to difficult tokens and fewer to easy ones -- while preserving the same overall budget. SeqTopK requires only a few lines of code, adds less than 1% overhead, and remains fully compatible with pretrained MoE models. Experiments across math, coding, law, and writing show consistent improvements over TopK and prior parameter-free adaptive methods, with gains that become substantially larger under higher sparsity (up to 16.9%). These results highlight SeqTopK as a simple, efficient, and scalable routing strategy, particularly well-suited for the extreme sparsity regimes of next-generation LLMs. Code is available at https://github.com/Y-Research-SBU/SeqTopK.

Authors:Qibing Ren, Zhijie Zheng, Jiaxuan Guo, Junchi Yan, Lizhuang Ma, Jing Shao
Title: When AI Agents Collude Online: Financial Fraud Risks by Collaborative LLM Agents on Social Platforms
Abstract:
In this work, we study the risks of collective financial fraud in large-scale multi-agent systems powered by large language model (LLM) agents. We investigate whether agents can collaborate in fraudulent behaviors, how such collaboration amplifies risks, and what factors influence fraud success. To support this research, we present MultiAgentFraudBench, a large-scale benchmark for simulating financial fraud scenarios based on realistic online interactions. The benchmark covers 28 typical online fraud scenarios, spanning the full fraud lifecycle across both public and private domains. We further analyze key factors affecting fraud success, including interaction depth, activity level, and fine-grained collaboration failure modes. Finally, we propose a series of mitigation strategies, including adding content-level warnings to fraudulent posts and dialogues, using LLMs as monitors to block potentially malicious agents, and fostering group resilience through information sharing at the societal level. Notably, we observe that malicious agents can adapt to environmental interventions. Our findings highlight the real-world risks of multi-agent financial fraud and suggest practical measures for mitigating them. Code is available at https://github.com/zheng977/MutiAgent4Fraud.

Authors:Amit Vaisman, Guy Ohayon, Hila Manor, Michael Elad, Tomer Michaeli
Title: Turbo-DDCM: Fast and Flexible Zero-Shot Diffusion-Based Image Compression
Abstract:
While zero-shot diffusion-based compression methods have seen significant progress in recent years, they remain notoriously slow and computationally demanding. This paper presents an efficient zero-shot diffusion-based compression method that runs substantially faster than existing methods, while maintaining performance that is on par with the state-of-the-art techniques. Our method builds upon the recently proposed Denoising Diffusion Codebook Models (DDCMs) compression scheme. Specifically, DDCM compresses an image by sequentially choosing the diffusion noise vectors from reproducible random codebooks, guiding the denoiser's output to reconstruct the target image. We modify this framework with Turbo-DDCM, which efficiently combines a large number of noise vectors at each denoising step, thereby significantly reducing the number of required denoising operations. This modification is also coupled with an improved encoding protocol. Furthermore, we introduce two flexible variants of Turbo-DDCM, a priority-aware variant that prioritizes user-specified regions and a distortion-controlled variant that compresses an image based on a target PSNR rather than a target BPP. Comprehensive experiments position Turbo-DDCM as a compelling, practical, and flexible image compression scheme.

Authors:Zhi Zheng, Wee Sun Lee
Title: SofT-GRPO: Surpassing Discrete-Token LLM Reinforcement Learning via Gumbel-Reparameterized Soft-Thinking Policy Optimization
Abstract:
The soft-thinking paradigm for Large Language Model (LLM) reasoning can outperform the conventional discrete-token Chain-of-Thought (CoT) reasoning in some scenarios, underscoring its research and application value. However, while the discrete-token CoT reasoning pattern can be reinforced through policy optimization algorithms such as group relative policy optimization (GRPO), extending the soft-thinking pattern with Reinforcement Learning (RL) remains challenging. This difficulty stems from the complexities of injecting stochasticity into soft-thinking tokens and updating soft-thinking policies accordingly. As a result, previous attempts to combine soft-thinking with GRPO typically underperform their discrete-token GRPO counterparts. To fully unlock the potential of soft-thinking, this paper presents a novel policy optimization algorithm, SofT-GRPO, to reinforce LLMs under the soft-thinking reasoning pattern. SofT-GRPO injects the Gumbel noise into logits, employs the Gumbel-Softmax technique to avoid soft-thinking tokens outside the pre-trained embedding space, and leverages the reparameterization trick in policy gradient. We conduct experiments across base LLMs ranging from 1.5B to 7B parameters, and results demonstrate that SofT-GRPO enables soft-thinking LLMs to slightly outperform discrete-token GRPO on Pass@1 (+0.13% on average accuracy), while exhibiting a substantial uplift on Pass@32 (+2.19% on average accuracy). Codes and weights are available on https://github.com/zz1358m/SofT-GRPO-master

Authors:Shuo Yang, Yinghui Xing, Shizhou Zhang, Zhilong Niu
Title: On Modality Incomplete Infrared-Visible Object Detection: An Architecture Compatibility Perspective
Abstract:
Infrared and visible object detection (IVOD) is essential for numerous around-the-clock applications. Despite notable advancements, current IVOD models exhibit notable performance declines when confronted with incomplete modality data, particularly if the dominant modality is missing. In this paper, we take a thorough investigation on modality incomplete IVOD problem from an architecture compatibility perspective. Specifically, we propose a plug-and-play Scarf Neck module for DETR variants, which introduces a modality-agnostic deformable attention mechanism to enable the IVOD detector to flexibly adapt to any single or double modalities during training and inference. When training Scarf-DETR, we design a pseudo modality dropout strategy to fully utilize the multi-modality information, making the detector compatible and robust to both working modes of single and double modalities. Moreover, we introduce a comprehensive benchmark for the modality-incomplete IVOD task aimed at thoroughly assessing situations where the absent modality is either dominant or secondary. Our proposed Scarf-DETR not only performs excellently in missing modality scenarios but also achieves superior performances on the standard IVOD modality complete benchmarks. Our code will be available at https://github.com/YinghuiXing/Scarf-DETR.

Authors:MD Thamed Bin Zaman Chowdhury, Moazzem Hossain
Title: ALIGN: A Vision-Language Framework for High-Accuracy Accident Location Inference through Geo-Spatial Neural Reasoning
Abstract:
Reliable geospatial information on road accidents is vital for safety analysis and infrastructure planning, yet most low- and middle-income countries continue to face a critical shortage of accurate, location-specific crash data. Existing text-based geocoding tools perform poorly in multilingual and unstructured news environments, where incomplete place descriptions and mixed Bangla-English scripts obscure spatial context. To address these limitations, this study introduces ALIGN (Accident Location Inference through Geo-Spatial Neural Reasoning)- a vision-language framework that emulates human spatial reasoning to infer accident coordinates directly from textual and map-based cues. ALIGN integrates large language and vision-language models within a multi-stage pipeline that performs optical character recognition, linguistic reasoning, and map-level verification through grid-based spatial scanning. The framework systematically evaluates each predicted location against contextual and visual evidence, ensuring interpretable, fine-grained geolocation outcomes without requiring model retraining. Applied to Bangla-language news data, ALIGN demonstrates consistent improvements over traditional geoparsing methods, accurately identifying district and sub-district-level crash sites. Beyond its technical contribution, the framework establishes a high accuracy foundation for automated crash mapping in data-scarce regions, supporting evidence-driven road-safety policymaking and the broader integration of multimodal artificial intelligence in transportation analytics. The code for this paper is open-source and available at: https://github.com/Thamed-Chowdhury/ALIGN

Authors:Mingde Xu, Zhen Yang, Wenyi Hong, Lihang Pan, Xinyue Fan, Yan Wang, Xiaotao Gu, Bin Xu, Jie Tang
Title: WebVIA: A Web-based Vision-Language Agentic Framework for Interactive and Verifiable UI-to-Code Generation
Abstract:
User interface (UI) development requires translating design mockups into functional code, a process that remains repetitive and labor-intensive. While recent Vision-Language Models (VLMs) automate UI-to-Code generation, they generate only static HTML/CSS/JavaScript layouts lacking interactivity. To address this, we propose WebVIA, the first agentic framework for interactive UI-to-Code generation and validation. The framework comprises three components: 1) an exploration agent to capture multi-state UI screenshots; 2) a UI2Code model that generates executable interactive code; 3) a validation module that verifies the interactivity. Experiments demonstrate that WebVIA-Agent achieves more stable and accurate UI exploration than general-purpose agents (e.g., Gemini-2.5-Pro). In addition, our fine-tuned WebVIA-UI2Code models exhibit substantial improvements in generating executable and interactive HTML/CSS/JavaScript code, outperforming their base counterparts across both interactive and static UI2Code benchmarks. Our code and models are available at \href{https://zheny2751-dotcom.github.io/webvia.github.io/}{\texttt{https://webvia.github.io}}.

Authors:Zhaoyang Wang, Yiming Liang, Xuchao Zhang, Qianhui Wu, Siwei Han, Anson Bastos, Rujia Wang, Chetan Bansal, Baolin Peng, Jianfeng Gao, Saravan Rajmohan, Huaxiu Yao
Title: Adapting Web Agents with Synthetic Supervision
Abstract:
Web agents struggle to adapt to new websites due to the scarcity of environment specific tasks and demonstrations. Recent works have explored synthetic data generation to address this challenge, however, they suffer from data quality issues where synthesized tasks contain hallucinations that cannot be executed, and collected trajectories are noisy with redundant or misaligned actions. In this paper, we propose SynthAgent, a fully synthetic supervision framework that aims at improving synthetic data quality via dual refinement of both tasks and trajectories. Our approach begins by synthesizing diverse tasks through categorized exploration of web elements, ensuring efficient coverage of the target environment. During trajectory collection, we refine tasks when conflicts with actual observations are detected, mitigating hallucinations while maintaining task consistency. After collection, we conduct trajectory refinement with a global context to mitigate potential noise or misalignments. Finally, we fine-tune open-source web agents on the refined synthetic data to adapt them to the target environment. Experimental results demonstrate that SynthAgent outperforms existing synthetic data methods, validating the importance of high-quality synthetic supervision. The code will be publicly available at https://github.com/aiming-lab/SynthAgent.

Authors:Xianhui Meng, Yukang Huo, Li Zhang, Liu Liu, Haonan Jiang, Yan Zhong, Pingrui Zhang, Cewu Lu, Jun Liu
Title: Exploring Category-level Articulated Object Pose Tracking on SE(3) Manifolds
Abstract:
Articulated objects are prevalent in daily life and robotic manipulation tasks. However, compared to rigid objects, pose tracking for articulated objects remains an underexplored problem due to their inherent kinematic constraints. To address these challenges, this work proposes a novel point-pair-based pose tracking framework, termed \textbf{PPF-Tracker}. The proposed framework first performs quasi-canonicalization of point clouds in the SE(3) Lie group space, and then models articulated objects using Point Pair Features (PPF) to predict pose voting parameters by leveraging the invariance properties of SE(3). Finally, semantic information of joint axes is incorporated to impose unified kinematic constraints across all parts of the articulated object. PPF-Tracker is systematically evaluated on both synthetic datasets and real-world scenarios, demonstrating strong generalization across diverse and challenging environments. Experimental results highlight the effectiveness and robustness of PPF-Tracker in multi-frame pose tracking of articulated objects. We believe this work can foster advances in robotics, embodied intelligence, and augmented reality. Codes are available at https://github.com/mengxh20/PPFTracker.

Authors:Dazhao Du, Tao Han, Song Guo
Title: Predicting the Future by Retrieving the Past
Abstract:
Deep learning models such as MLP, Transformer, and TCN have achieved remarkable success in univariate time series forecasting, typically relying on sliding window samples from historical data for training. However, while these models implicitly compress historical information into their parameters during training, they are unable to explicitly and dynamically access this global knowledge during inference, relying only on the local context within the lookback window. This results in an underutilization of rich patterns from the global history. To bridge this gap, we propose Predicting the Future by Retrieving the Past (PFRP), a novel approach that explicitly integrates global historical data to enhance forecasting accuracy. Specifically, we construct a Global Memory Bank (GMB) to effectively store and manage global historical patterns. A retrieval mechanism is then employed to extract similar patterns from the GMB, enabling the generation of global predictions. By adaptively combining these global predictions with the outputs of any local prediction model, PFRP produces more accurate and interpretable forecasts. Extensive experiments conducted on seven real-world datasets demonstrate that PFRP significantly enhances the average performance of advanced univariate forecasting models by 8.4\%. Codes can be found in https://github.com/ddz16/PFRP.

Authors:Seyed Alireza Javid, Amirhossein Bagheri, Nuria González-Prelcic
Title: Enhancing Diffusion Model Guidance through Calibration and Regularization
Abstract:
Classifier-guided diffusion models have emerged as a powerful approach for conditional image generation, but they suffer from overconfident predictions during early denoising steps, causing the guidance gradient to vanish. This paper introduces two complementary contributions to address this issue. First, we propose a differentiable calibration objective based on the Smooth Expected Calibration Error (Smooth ECE), which improves classifier calibration with minimal fine-tuning and yields measurable improvements in Frechet Inception Distance (FID). Second, we develop enhanced sampling guidance methods that operate on off-the-shelf classifiers without requiring retraining. These include tilted sampling with batch-level reweighting, adaptive entropy-regularized sampling to preserve diversity, and a novel f-divergence-based sampling strategy that strengthens class-consistent guidance while maintaining mode coverage. Experiments on ImageNet 128x128 demonstrate that our divergence-regularized guidance achieves an FID of 2.13 using a ResNet-101 classifier, improving upon existing classifier-guided diffusion methods while requiring no diffusion model retraining. The results show that principled calibration and divergence-aware sampling provide practical and effective improvements for classifier-guided diffusion.

Authors:Yunge Li, Lanyu Xu
Title: Hilbert-Guided Block-Sparse Local Attention
Abstract:
The quadratic compute and memory costs of global self-attention severely limit its use in high-resolution images. Local attention reduces complexity by restricting attention to neighborhoods. Block-sparse kernels can further improve the efficiency of local attention, but conventional local attention patterns often fail to deliver significant speedups because tokens within a window are not contiguous in the 1D sequence. This work proposes a novel method for constructing windows and neighborhoods based on the Hilbert curve. Image tokens are first reordered along a Hilbert curve, and windows and neighborhoods are then formed on the reordered 1D sequence. From a block-sparse perspective, this strategy significantly increases block sparsity and can be combined with existing block-sparse kernels to improve the efficiency of 2D local attention. Experiments show that the proposed Hilbert Window Attention and Hilbert Slide Attention can accelerate window attention and slide attention by about $4\times$ and $18\times$, respectively. To assess practicality, the strategy is instantiated as the Hilbert Window Transformer and the Hilbert Neighborhood Transformer, both of which achieve end-to-end speedups with minimal accuracy loss. Overall, combining Hilbert-guided local attention with block-sparse kernels offers a general and practical approach to enhancing the efficiency of 2D local attention for images. The code is available at https://github.com/Yunge6666/Hilbert-Local-Attention.

Authors:David Acuna, Chao-Han Huck Yang, Yuntian Deng, Jaehun Jung, Ximing Lu, Prithviraj Ammanabrolu, Hyunwoo Kim, Yuan-Hong Liao, Yejin Choi
Title: Long Grounded Thoughts: Distilling Compositional Visual Reasoning Chains at Scale
Abstract:
Recent progress in multimodal reasoning has been driven largely by undisclosed datasets and proprietary data synthesis recipes, leaving open questions about how to systematically build large-scale, vision-centric reasoning datasets, particularly for tasks that go beyond visual math. In this work, we introduce a new reasoning data generation framework spanning diverse skills and levels of complexity with over 1M high-quality synthetic vision-centric questions. The dataset also includes preference data and instruction prompts supporting both offline and online RL. Our synthesis framework proceeds in two stages: (1) scale; and (2) complexity. Reasoning traces are then synthesized through a two-stage process that leverages VLMs and reasoning LLMs, producing CoT traces for VLMs that capture the richness and diverse cognitive behaviors found in frontier reasoning models. Remarkably, we show that finetuning Qwen2.5-VL-7B on our data outperforms all open-data baselines across all evaluated vision-centric benchmarks, and even surpasses strong closed-data models such as MiMo-VL-7B-RL on V* Bench, CV-Bench and MMStar-V. Perhaps most surprising, despite being entirely vision-centric, our data transfers positively to text-only reasoning (MMLU-Pro) and audio reasoning (MMAU), demonstrating its effectiveness. Similarly, despite not containing videos or embodied visual data, we observe notable gains when evaluating on a single-evidence embodied QA benchmark (NiEH). Finally, we use our data to analyze the entire VLM post-training pipeline. Our empirical analysis highlights that (i) SFT on high-quality data with non-linear reasoning traces is essential for effective online RL, (ii) staged offline RL matches online RL's performance while reducing compute demands, and (iii) careful SFT on high quality data can substantially improve out-of-domain, cross-modality transfer.

Authors:Xiongri Shen, Jiaqi Wang, Yi Zhong, Zhenxi Song, Leilei Zhao, Liling Li, Yichen Wei, Lingyan Liang, Shuqiang Wang, Baiying Lei, Demao Deng, Zhiguo Zhang
Title: BrainCSD: A Hierarchical Consistency-Driven MoE Foundation Model for Unified Connectome Synthesis and Multitask Brain Trait Prediction
Abstract:
Functional and structural connectivity (FC/SC) are key multimodal biomarkers for brain analysis, yet their clinical utility is hindered by costly acquisition, complex preprocessing, and frequent missing modalities. Existing foundation models either process single modalities or lack explicit mechanisms for cross-modal and cross-scale consistency. We propose BrainCSD, a hierarchical mixture-of-experts (MoE) foundation model that jointly synthesizes FC/SC biomarkers and supports downstream decoding tasks (diagnosis and prediction). BrainCSD features three neuroanatomically grounded components: (1) a ROI-specific MoE that aligns regional activations from canonical networks (e.g., DMN, FPN) with a global atlas via contrastive consistency; (2) a Encoding-Activation MOE that models dynamic cross-time/gradient dependencies in fMRI/dMRI; and (3) a network-aware refinement MoE that enforces structural priors and symmetry at individual and population levels. Evaluated on the datasets under complete and missing-modality settings, BrainCSD achieves SOTA results: 95.6\% accuracy for MCI vs. CN classification without FC, low synthesis error (FC RMSE: 0.038; SC RMSE: 0.006), brain age prediction (MAE: 4.04 years), and MMSE score estimation (MAE: 1.72 points). Code is available in \href{https://github.com/SXR3015/BrainCSD}{BrainCSD}

Authors:Nicholas Babey, Tiffany Gu, Yiheng Li, Cristian Meo, Kevin Zhu
Title: Grounding Foundational Vision Models with 3D Human Poses for Robust Action Recognition
Abstract:
For embodied agents to effectively understand and interact within the world around them, they require a nuanced comprehension of human actions grounded in physical space. Current action recognition models, often relying on RGB video, learn superficial correlations between patterns and action labels, so they struggle to capture underlying physical interaction dynamics and human poses in complex scenes. We propose a model architecture that grounds action recognition in physical space by fusing two powerful, complementary representations: V-JEPA 2's contextual, predictive world dynamics and CoMotion's explicit, occlusion-tolerant human pose data. Our model is validated on both the InHARD and UCF-19-Y-OCC benchmarks for general action recognition and high-occlusion action recognition, respectively. Our model outperforms three other baselines, especially within complex, occlusive scenes. Our findings emphasize a need for action recognition to be supported by spatial understanding instead of statistical pattern recognition.

Authors:Ben Hawks, Gregor von Laszewski, Matthew D. Sinclair, Marco Colombo, Shivaram Venkataraman, Rutwik Jain, Yiwei Jiang, Nhan Tran, Geoffrey Fox
Title: An MLCommons Scientific Benchmarks Ontology
Abstract:
Scientific machine learning research spans diverse domains and data modalities, yet existing benchmark efforts remain siloed and lack standardization. This makes novel and transformative applications of machine learning to critical scientific use-cases more fragmented and less clear in pathways to impact. This paper introduces an ontology for scientific benchmarking developed through a unified, community-driven effort that extends the MLCommons ecosystem to cover physics, chemistry, materials science, biology, climate science, and more. Building on prior initiatives such as XAI-BENCH, FastML Science Benchmarks, PDEBench, and the SciMLBench framework, our effort consolidates a large set of disparate benchmarks and frameworks into a single taxonomy of scientific, application, and system-level benchmarks. New benchmarks can be added through an open submission workflow coordinated by the MLCommons Science Working Group and evaluated against a six-category rating rubric that promotes and identifies high-quality benchmarks, enabling stakeholders to select benchmarks that meet their specific needs. The architecture is extensible, supporting future scientific and AI/ML motifs, and we discuss methods for identifying emerging computing patterns for unique scientific workloads. The MLCommons Science Benchmarks Ontology provides a standardized, scalable foundation for reproducible, cross-domain benchmarking in scientific machine learning. A companion webpage for this work has also been developed as the effort evolves: https://mlcommons-science.github.io/benchmark/

Authors:Ziying Li, Xuequan Lu, Xinkui Zhao, Guanjie Cheng, Shuiguang Deng, Jianwei Yin
Title: Walking the Schrödinger Bridge: A Direct Trajectory for Text-to-3D Generation
Abstract:
Recent advancements in optimization-based text-to-3D generation heavily rely on distilling knowledge from pre-trained text-to-image diffusion models using techniques like Score Distillation Sampling (SDS), which often introduce artifacts such as over-saturation and over-smoothing into the generated 3D assets. In this paper, we address this essential problem by formulating the generation process as learning an optimal, direct transport trajectory between the distribution of the current rendering and the desired target distribution, thereby enabling high-quality generation with smaller Classifier-free Guidance (CFG) values. At first, we theoretically establish SDS as a simplified instance of the Schrödinger Bridge framework. We prove that SDS employs the reverse process of an Schrödinger Bridge, which, under specific conditions (e.g., a Gaussian noise as one end), collapses to SDS's score function of the pre-trained diffusion model. Based upon this, we introduce Trajectory-Centric Distillation (TraCe), a novel text-to-3D generation framework, which reformulates the mathematically trackable framework of Schrödinger Bridge to explicitly construct a diffusion bridge from the current rendering to its text-conditioned, denoised target, and trains a LoRA-adapted model on this trajectory's score dynamics for robust 3D optimization. Comprehensive experiments demonstrate that TraCe consistently achieves superior quality and fidelity to state-of-the-art techniques.

Authors:Zekai Qu, Yinxu Pan, Ao Sun, Chaojun Xiao, Xu Han
Title: CoPRIS: Efficient and Stable Reinforcement Learning via Concurrency-Controlled Partial Rollout with Importance Sampling
Abstract:
Reinforcement learning (RL) post-training has become a trending paradigm for enhancing the capabilities of large language models (LLMs). Most existing RL systems for LLMs operate in a fully synchronous manner, where training must wait for the rollout of an entire batch to complete. This design leads to severe inefficiencies, as extremely long trajectories can stall the entire rollout process and leave many GPUs idle. To address this issue, we propose Concurrency- Controlled Partial Rollout with Importance Sampling (CoPRIS), which mitigates long-tail inefficiencies by maintaining a fixed number of concurrent rollouts, early-terminating once sufficient samples are collected, and reusing unfinished trajectories in subsequent rollouts. To mitigate the impact of off-policy trajectories, we introduce Cross-stage Importance Sampling Correction, which concatenates buffered log probabilities from the previous policy with those recomputed under the current policy for importance sampling correction. Experiments on challenging mathematical reasoning benchmarks show that CoPRIS achieves up to 1.94x faster training while maintaining comparable or superior performance to synchronous RL systems. The code of CoPRIS is available at https://github.com/777pomingzi/CoPRIS.

Authors:Xiaofei Wang, Stephen Price, Chao Li
Title: C3-Diff: Super-resolving Spatial Transcriptomics via Cross-modal Cross-content Contrastive Diffusion Modelling
Abstract:
The rapid advancement of spatial transcriptomics (ST), i.e., spatial gene expressions, has made it possible to measure gene expression within original tissue, enabling us to discover molecular mechanisms. However, current ST platforms frequently suffer from low resolution, limiting the in-depth understanding of spatial gene expression. Super-resolution approaches promise to enhance ST maps by integrating histology images with gene expressions of profiled tissue spots. However, it remains a challenge to model the interactions between histology images and gene expressions for effective ST enhancement. This study presents a cross-modal cross-content contrastive diffusion framework, called C3-Diff, for ST enhancement with histology images as guidance. In C3-Diff, we firstly analyze the deficiency of traditional contrastive learning paradigm, which is then refined to extract both modal-invariant and content-invariant features of ST maps and histology images. Further, to overcome the problem of low sequencing sensitivity in ST maps, we perform nosing-based information augmentation on the surface of feature unit hypersphere. Finally, we propose a dynamic cross-modal imputation-based training strategy to mitigate ST data scarcity. We tested C3-Diff by benchmarking its performance on four public datasets, where it achieves significant improvements over competing methods. Moreover, we evaluate C3-Diff on downstream tasks of cell type localization, gene expression correlation and single-cell-level gene expression prediction, promoting AI-enhanced biotechnology for biomedical research and clinical applications. Codes are available at https://github.com/XiaofeiWang2018/C3-Diff.

Authors:Jeff Brown, Andrew Kirjner, Annika Vivekananthan, Ed Boyden
Title: ConnectomeBench: Can LLMs Proofread the Connectome?
Abstract:
Connectomics - the mapping of neural connections in an organism's brain - currently requires extraordinary human effort to proofread the data collected from imaging and machine-learning assisted segmentation. With the growing excitement around using AI agents to automate important scientific tasks, we explore whether current AI systems can perform multiple tasks necessary for data proofreading. We introduce ConnectomeBench, a multimodal benchmark evaluating large language model (LLM) capabilities in three critical proofreading tasks: segment type identification, split error correction, and merge error detection. Using expert annotated data from two large open-source datasets - a cubic millimeter of mouse visual cortex and the complete Drosophila brain - we evaluate proprietary multimodal LLMs including Claude 3.7/4 Sonnet, o4-mini, GPT-4.1, GPT-4o, as well as open source models like InternVL-3 and NVLM. Our results demonstrate that current models achieve surprisingly high performance in segment identification (52-82% balanced accuracy vs. 20-25% chance) and binary/multiple choice split error correction (75-85% accuracy vs. 50% chance) while generally struggling on merge error identification tasks. Overall, while the best models still lag behind expert performance, they demonstrate promising capabilities that could eventually enable them to augment and potentially replace human proofreading in connectomics. Project page: https://github.com/jffbrwn2/ConnectomeBench and Dataset https://huggingface.co/datasets/jeffbbrown2/ConnectomeBench/tree/main

Authors:Ilya Tyagin, Saeideh Valipour, Aliaksandra Sikirzhytskaya, Michael Shtutman, Ilya Safro
Title: Biomedical Hypothesis Explainability with Graph-Based Context Retrieval
Abstract:
We introduce an explainability method for biomedical hypothesis generation systems, built on top of the novel Hypothesis Generation Context Retriever framework. Our approach combines semantic graph-based retrieval and relevant data-restrictive training to simulate real-world discovery constraints. Integrated with large language models (LLMs) via retrieval-augmented generation, the system explains hypotheses with contextual evidence using published scientific literature. We also propose a novel feedback loop approach, which iteratively identifies and corrects flawed parts of LLM-generated explanations, refining both the evidence paths and supporting context. We demonstrate the performance of our method with multiple large language models and evaluate the explanation and context retrieval quality through both expert-curated assessment and large-scale automated analysis. Our code is available at: https://github.com/IlyaTyagin/HGCR.

Authors:Haichao Zhang, Chong Zhang, Peiyu Hu, Shi Qiu, Jia Wang
Title: Customized Retrieval-Augmented Generation with LLM for Debiasing Recommendation Unlearning
Abstract:
Modern recommender systems face a critical challenge in complying with privacy regulations like the 'right to be forgotten': removing a user's data without disrupting recommendations for others. Traditional unlearning methods address this by partial model updates, but introduce propagation bias--where unlearning one user's data distorts recommendations for behaviorally similar users, degrading system accuracy. While retraining eliminates bias, it is computationally prohibitive for large-scale systems. To address this challenge, we propose CRAGRU, a novel framework leveraging Retrieval-Augmented Generation (RAG) for efficient, user-specific unlearning that mitigates bias while preserving recommendation quality. CRAGRU decouples unlearning into distinct retrieval and generation stages. In retrieval, we employ three tailored strategies designed to precisely isolate the target user's data influence, minimizing collateral impact on unrelated users and enhancing unlearning efficiency. Subsequently, the generation stage utilizes an LLM, augmented with user profiles integrated into prompts, to reconstruct accurate and personalized recommendations without needing to retrain the entire base model. Experiments on three public datasets demonstrate that CRAGRU effectively unlearns targeted user data, significantly mitigating unlearning bias by preventing adverse impacts on non-target users, while maintaining recommendation performance comparable to fully trained original models. Our work highlights the promise of RAG-based architectures for building robust and privacy-preserving recommender systems. The source code is available at: https://github.com/zhanghaichao520/LLM_rec_unlearning.

Authors:Junwen Pan, Qizhe Zhang, Rui Zhang, Ming Lu, Xin Wan, Yuan Zhang, Chang Liu, Qi She
Title: TimeSearch-R: Adaptive Temporal Search for Long-Form Video Understanding via Self-Verification Reinforcement Learning
Abstract:
Temporal search aims to identify a minimal set of relevant frames from tens of thousands based on a given query, serving as a foundation for accurate long-form video understanding. Existing works attempt to progressively narrow the search space. However, these approaches typically rely on a hand-crafted search process, lacking end-to-end optimization for learning optimal search strategies. In this paper, we propose TimeSearch-R, which reformulates temporal search as interleaved text-video thinking, seamlessly integrating searching video clips into the reasoning process through reinforcement learning (RL). However, applying RL training methods, such as Group Relative Policy Optimization (GRPO), to video reasoning can result in unsupervised intermediate search decisions. This leads to insufficient exploration of the video content and inconsistent logical reasoning. To address these issues, we introduce GRPO with Completeness Self-Verification (GRPO-CSV), which gathers searched video frames from the interleaved reasoning process and utilizes the same policy model to verify the adequacy of searched frames, thereby improving the completeness of video reasoning. Additionally, we construct datasets specifically designed for the SFT cold-start and RL training of GRPO-CSV, filtering out samples with weak temporal dependencies to enhance task difficulty and improve temporal search capabilities. Extensive experiments demonstrate that TimeSearch-R achieves significant improvements on temporal search benchmarks such as Haystack-LVBench and Haystack-Ego4D, as well as long-form video understanding benchmarks like VideoMME and MLVU. Notably, TimeSearch-R establishes a new state-of-the-art on LongVideoBench with 4.1% improvement over the base model Qwen2.5-VL and 2.0% over the advanced video reasoning model Video-R1. Our code is available at https://github.com/Time-Search/TimeSearch-R.

Authors:Chao Zhang, Yuhao Wang, Derong Xu, Haoxin Zhang, Yuanjie Lyu, Yuhao Chen, Shuochen Liu, Tong Xu, Xiangyu Zhao, Yan Gao, Yao Hu, Enhong Chen
Title: TeaRAG: A Token-Efficient Agentic Retrieval-Augmented Generation Framework
Abstract:
Retrieval-Augmented Generation (RAG) utilizes external knowledge to augment Large Language Models' (LLMs) reliability. For flexibility, agentic RAG employs autonomous, multi-round retrieval and reasoning to resolve queries. Although recent agentic RAG has improved via reinforcement learning, they often incur substantial token overhead from search and reasoning processes. This trade-off prioritizes accuracy over efficiency. To address this issue, this work proposes TeaRAG, a token-efficient agentic RAG framework capable of compressing both retrieval content and reasoning steps. 1) First, the retrieved content is compressed by augmenting chunk-based semantic retrieval with a graph retrieval using concise triplets. A knowledge association graph is then built from semantic similarity and co-occurrence. Finally, Personalized PageRank is leveraged to highlight key knowledge within this graph, reducing the number of tokens per retrieval. 2) Besides, to reduce reasoning steps, Iterative Process-aware Direct Preference Optimization (IP-DPO) is proposed. Specifically, our reward function evaluates the knowledge sufficiency by a knowledge matching mechanism, while penalizing excessive reasoning steps. This design can produce high-quality preference-pair datasets, supporting iterative DPO to improve reasoning conciseness. Across six datasets, TeaRAG improves the average Exact Match by 4% and 2% while reducing output tokens by 61% and 59% on Llama3-8B-Instruct and Qwen2.5-14B-Instruct, respectively. Code is available at https://github.com/Applied-Machine-Learning-Lab/TeaRAG.

Authors:Matteo Bastico, David Ryckelynck, Laurent Corté, Yannick Tillier, Etienne Decencière
Title: Rethinking Metrics and Diffusion Architecture for 3D Point Cloud Generation
Abstract:
As 3D point clouds become a cornerstone of modern technology, the need for sophisticated generative models and reliable evaluation metrics has grown exponentially. In this work, we first expose that some commonly used metrics for evaluating generated point clouds, particularly those based on Chamfer Distance (CD), lack robustness against defects and fail to capture geometric fidelity and local shape consistency when used as quality indicators. We further show that introducing samples alignment prior to distance calculation and replacing CD with Density-Aware Chamfer Distance (DCD) are simple yet essential steps to ensure the consistency and robustness of point cloud generative model evaluation metrics. While existing metrics primarily focus on directly comparing 3D Euclidean coordinates, we present a novel metric, named Surface Normal Concordance (SNC), which approximates surface similarity by comparing estimated point normals. This new metric, when combined with traditional ones, provides a more comprehensive evaluation of the quality of generated samples. Finally, leveraging recent advancements in transformer-based models for point cloud analysis, such as serialized patch attention , we propose a new architecture for generating high-fidelity 3D structures, the Diffusion Point Transformer. We perform extensive experiments and comparisons on the ShapeNet dataset, showing that our model outperforms previous solutions, particularly in terms of quality of generated point clouds, achieving new state-of-the-art. Code available at https://github.com/matteo-bastico/DiffusionPointTransformer.

Authors:Zhenyu Yang, Kairui Zhang, Yuhang Hu, Bing Wang, Shengsheng Qian, Bin Wen, Fan Yang, Tingting Gao, Weiming Dong, Changsheng Xu
Title: LiveStar: Live Streaming Assistant for Real-World Online Video Understanding
Abstract:
Despite significant progress in Video Large Language Models (Video-LLMs) for offline video understanding, existing online Video-LLMs typically struggle to simultaneously process continuous frame-by-frame inputs and determine optimal response timing, often compromising real-time responsiveness and narrative coherence. To address these limitations, we introduce LiveStar, a pioneering live streaming assistant that achieves always-on proactive responses through adaptive streaming decoding. Specifically, LiveStar incorporates: (1) a training strategy enabling incremental video-language alignment for variable-length video streams, preserving temporal consistency across dynamically evolving frame sequences; (2) a response-silence decoding framework that determines optimal proactive response timing via a single forward pass verification; (3) memory-aware acceleration via peak-end memory compression for online inference on 10+ minute videos, combined with streaming key-value cache to achieve 1.53x faster inference. We also construct an OmniStar dataset, a comprehensive dataset for training and benchmarking that encompasses 15 diverse real-world scenarios and 5 evaluation tasks for online video understanding. Extensive experiments across three benchmarks demonstrate LiveStar's state-of-the-art performance, achieving an average 19.5% improvement in semantic correctness with 18.1% reduced timing difference compared to existing online Video-LLMs, while improving FPS by 12.0% across all five OmniStar tasks. Our model and dataset can be accessed at https://github.com/yzy-bupt/LiveStar.

Authors:Ragini Gupta, Naman Raina, Bo Chen, Li Chen, Claudiu Danilov, Josh Eckhardt, Keyshla Bernard, Klara Nahrstedt
Title: No One-Model-Fits-All: Uncovering Spatio-Temporal Forecasting Trade-offs with Graph Neural Networks and Foundation Models
Abstract:
Modern IoT deployments for environmental sensing produce high volume spatiotemporal data to support downstream tasks such as forecasting, typically powered by machine learning models. While existing filtering and strategic deployment techniques optimize collected data volume at the edge, they overlook how variations in sampling frequencies and spatial coverage affect downstream model performance. In many forecasting models, incorporating data from additional sensors denoise predictions by providing broader spatial contexts. This interplay between sampling frequency, spatial coverage and different forecasting model architectures remain underexplored. This work presents a systematic study of forecasting models - classical models (VAR), neural networks (GRU, Transformer), spatio-temporal graph neural networks (STGNNs), and time series foundation models (TSFMs: Chronos Moirai, TimesFM) under varying spatial sensor nodes density and sampling intervals using real-world temperature data in a wireless sensor network. Our results show that STGNNs are effective when sensor deployments are sparse and sampling rate is moderate, leveraging spatial correlations via encoded graph structure to compensate for limited coverage. In contrast, TSFMs perform competitively at high frequencies but degrade when spatial coverage from neighboring sensors is reduced. Crucially, the multivariate TSFM Moirai outperforms all models by natively learning cross-sensor dependencies. These findings offer actionable insights for building efficient forecasting pipelines in spatio-temporal systems. All code for model configurations, training, dataset, and logs are open-sourced for reproducibility: https://github.com/UIUC-MONET-Projects/Benchmarking-Spatiotemporal-Forecast-Models

Authors:Xiongri Shen, Jiaqi Wang, Yi Zhong, Zhenxi Song, Leilei Zhao, Yichen Wei, Lingyan Liang, Shuqiang Wang, Baiying Lei, Demao Deng, Zhiguo Zhang
Title: Pattern-Aware Diffusion Synthesis of fMRI/dMRI with Tissue and Microstructural Refinement
Abstract:
Magnetic resonance imaging (MRI), especially functional MRI (fMRI) and diffusion MRI (dMRI), is essential for studying neurodegenerative diseases. However, missing modalities pose a major barrier to their clinical use. Although GAN- and diffusion model-based approaches have shown some promise in modality completion, they remain limited in fMRI-dMRI synthesis due to (1) significant BOLD vs. diffusion-weighted signal differences between fMRI and dMRI in time/gradient axis, and (2) inadequate integration of disease-related neuroanatomical patterns during generation. To address these challenges, we propose PDS, introducing two key innovations: (1) a pattern-aware dual-modal 3D diffusion framework for cross-modality learning, and (2) a tissue refinement network integrated with a efficient microstructure refinement to maintain structural fidelity and fine details. Evaluated on OASIS-3, ADNI, and in-house datasets, our method achieves state-of-the-art results, with PSNR/SSIM scores of 29.83 dB/90.84\% for fMRI synthesis (+1.54 dB/+4.12\% over baselines) and 30.00 dB/77.55\% for dMRI synthesis (+1.02 dB/+2.2\%). In clinical validation, the synthesized data show strong diagnostic performance, achieving 67.92\%/66.02\%/64.15\% accuracy (NC vs. MCI vs. AD) in hybrid real-synthetic experiments. Code is available in \href{https://github.com/SXR3015/PDS}{PDS GitHub Repository}

Authors:Paula Rodriguez-Diaz, Kirk Bansak Elisabeth Paulson
Title: A Dual Perspective on Decision-Focused Learning: Scalable Training via Dual-Guided Surrogates
Abstract:
Many real-world decisions are made under uncertainty by solving optimization problems using predicted quantities. This predict-then-optimize paradigm has motivated decision-focused learning, which trains models with awareness of how the optimizer uses predictions, improving the performance of downstream decisions. Despite its promise, scaling is challenging: state-of-the-art methods either differentiate through a solver or rely on task-specific surrogates, both of which require frequent and expensive calls to an optimizer, often a combinatorial one. In this paper, we leverage dual variables from the downstream problem to shape learning and introduce Dual-Guided Loss (DGL), a simple, scalable objective that preserves decision alignment while reducing solver dependence. We construct DGL specifically for combinatorial selection problems with natural one-of-many constraints, such as matching, knapsack, and shortest path. Our approach (a) decouples optimization from gradient updates by solving the downstream problem only periodically; (b) between refreshes, trains on dual-adjusted targets using simple differentiable surrogate losses; and (c) as refreshes become less frequent, drives training cost toward standard supervised learning while retaining strong decision alignment. We prove that DGL has asymptotically diminishing decision regret, analyze runtime complexity, and show on two problem classes that DGL matches or exceeds state-of-the-art DFL methods while using far fewer solver calls and substantially less training time. Code is available at https://github.com/paularodr/Dual-Guided-Learning.

Authors:Shuvendu Roy, Hossein Hajimirsadeghi, Mengyao Zhai, Golnoosh Samei
Title: You Need Reasoning to Learn Reasoning: The Limitations of Label-Free RL in Weak Base Models
Abstract:
Recent advances in large language models have demonstrated the promise of unsupervised reinforcement learning (RL) methods for enhancing reasoning capabilities without external supervision. However, the generalizability of these label-free RL approaches to smaller base models with limited reasoning capabilities remains unexplored. In this work, we systematically investigate the performance of label-free RL methods across different model sizes and reasoning strengths, from 0.5B to 7B parameters. Our empirical analysis reveals critical limitations: label-free RL is highly dependent on the base model's pre-existing reasoning capability, with performance often degrading below baseline levels for weaker models. We find that smaller models fail to generate sufficiently long or diverse chain-of-thought reasoning to enable effective self-reflection, and that training data difficulty plays a crucial role in determining success. To address these challenges, we propose a simple yet effective method for label-free RL that utilizes curriculum learning to progressively introduce harder problems during training and mask no-majority rollouts during training. Additionally, we introduce a data curation pipeline to generate samples with predefined difficulty. Our approach demonstrates consistent improvements across all model sizes and reasoning capabilities, providing a path toward more robust unsupervised RL that can bootstrap reasoning abilities in resource-constrained models. We make our code available at https://github.com/BorealisAI/CuMa

Authors:NVIDIA, :, Mayank Mittal, Pascal Roth, James Tigue, Antoine Richard, Octi Zhang, Peter Du, Antonio Serrano-Muñoz, Xinjie Yao, René Zurbrügg, Nikita Rudin, Lukasz Wawrzyniak, Milad Rakhsha, Alain Denzler, Eric Heiden, Ales Borovicka, Ossama Ahmed, Iretiayo Akinola, Abrar Anwar, Mark T. Carlson, Ji Yuan Feng, Animesh Garg, Renato Gasoto, Lionel Gulich, Yijie Guo, M. Gussert, Alex Hansen, Mihir Kulkarni, Chenran Li, Wei Liu, Viktor Makoviychuk, Grzegorz Malczyk, Hammad Mazhar, Masoud Moghani, Adithyavairavan Murali, Michael Noseworthy, Alexander Poddubny, Nathan Ratliff, Welf Rehberg, Clemens Schwarke, Ritvik Singh, James Latham Smith, Bingjie Tang, Ruchik Thaker, Matthew Trepte, Karl Van Wyk, Fangzhou Yu, Alex Millane, Vikram Ramasamy, Remo Steiner, Sangeeta Subramanian, Clemens Volk, CY Chen, Neel Jawale, Ashwin Varghese Kuruttukulam, Michael A. Lin, Ajay Mandlekar, Karsten Patzwaldt, John Welsh, Huihua Zhao, Fatima Anes, Jean-Francois Lafleche, Nicolas Moënne-Loccoz, Soowan Park, Rob Stepinski, Dirk Van Gelder, Chris Amevor, Jan Carius, Jumyung Chang, Anka He Chen, Pablo de Heras Ciechomski, Gilles Daviet, Mohammad Mohajerani, Julia von Muralt, Viktor Reutskyy, Michael Sauter, Simon Schirm, Eric L. Shi, Pierre Terdiman, Kenny Vilella, Tobias Widmer, Gordon Yeoman, Tiffany Chen, Sergey Grizan, Cathy Li, Lotus Li, Connor Smith, Rafael Wiltz, Kostas Alexis, Yan Chang, David Chu, Linxi "Jim" Fan, Farbod Farshidian, Ankur Handa, Spencer Huang, Marco Hutter, Yashraj Narang, Soha Pouya, Shiwei Sheng, Yuke Zhu, Miles Macklin, Adam Moravanszky, Philipp Reist, Yunrong Guo, David Hoeller, Gavriel State
Title: Isaac Lab: A GPU-Accelerated Simulation Framework for Multi-Modal Robot Learning
Abstract:
We present Isaac Lab, the natural successor to Isaac Gym, which extends the paradigm of GPU-native robotics simulation into the era of large-scale multi-modal learning. Isaac Lab combines high-fidelity GPU parallel physics, photorealistic rendering, and a modular, composable architecture for designing environments and training robot policies. Beyond physics and rendering, the framework integrates actuator models, multi-frequency sensor simulation, data collection pipelines, and domain randomization tools, unifying best practices for reinforcement and imitation learning at scale within a single extensible platform. We highlight its application to a diverse set of challenges, including whole-body control, cross-embodiment mobility, contact-rich and dexterous manipulation, and the integration of human demonstrations for skill acquisition. Finally, we discuss upcoming integration with the differentiable, GPU-accelerated Newton physics engine, which promises new opportunities for scalable, data-efficient, and gradient-based approaches to robot learning. We believe Isaac Lab's combination of advanced simulation capabilities, rich sensing, and data-center scale execution will help unlock the next generation of breakthroughs in robotics research.

Authors:Sebastian Ojeda, Rafael Velasquez, Nicolás Aparicio, Juanita Puentes, Paula Cárdenas, Nicolás Andrade, Gabriel González, Sergio Rincón, Carolina Muñoz-Camargo, Pablo Arbeláez
Title: A Standardized Benchmark for Multilabel Antimicrobial Peptide Classification
Abstract:
Antimicrobial peptides have emerged as promising molecules to combat antimicrobial resistance. However, fragmented datasets, inconsistent annotations, and the lack of standardized benchmarks hinder computational approaches and slow down the discovery of new candidates. To address these challenges, we present the Expanded Standardized Collection for Antimicrobial Peptide Evaluation (ESCAPE), an experimental framework integrating over 80.000 peptides from 27 validated repositories. Our dataset separates antimicrobial peptides from negative sequences and incorporates their functional annotations into a biologically coherent multilabel hierarchy, capturing activities across antibacterial, antifungal, antiviral, and antiparasitic classes. Building on ESCAPE, we propose a transformer-based model that leverages sequence and structural information to predict multiple functional activities of peptides. Our method achieves up to a 2.56% relative average improvement in mean Average Precision over the second-best method adapted for this task, establishing a new state-of-the-art multilabel peptide classification. ESCAPE provides a comprehensive and reproducible evaluation framework to advance AI-driven antimicrobial peptide research.

Authors:Shuo Zhao, Yu Zhou, Jianxu Chen
Title: An Active Learning Pipeline for Biomedical Image Instance Segmentation with Minimal Human Intervention
Abstract:
Biomedical image segmentation is critical for precise structure delineation and downstream analysis. Traditional methods often struggle with noisy data, while deep learning models such as U-Net have set new benchmarks in segmentation performance. nnU-Net further automates model configuration, making it adaptable across datasets without extensive tuning. However, it requires a substantial amount of annotated data for cross-validation, posing a challenge when only raw images but no labels are available. Large foundation models offer zero-shot generalizability, but may underperform on specific datasets with unique characteristics, limiting their direct use for analysis. This work addresses these bottlenecks by proposing a data-centric AI workflow that leverages active learning and pseudo-labeling to combine the strengths of traditional neural networks and large foundation models while minimizing human intervention. The pipeline starts by generating pseudo-labels from a foundation model, which are then used for nnU-Net's self-configuration. Subsequently, a representative core-set is selected for minimal manual annotation, enabling effective fine-tuning of the nnU-Net model. This approach significantly reduces the need for manual annotations while maintaining competitive performance, providing an accessible solution for biomedical researchers to apply state-of-the-art AI techniques in their segmentation tasks. The code is available at https://github.com/MMV-Lab/AL_BioMed_img_seg.

Authors:Shuo Zhao, Jianxu Chen
Title: Data Efficiency and Transfer Robustness in Biomedical Image Segmentation: A Study of Redundancy and Forgetting with Cellpose
Abstract:
Generalist biomedical image segmentation models such as Cellpose are increasingly applied across diverse imaging modalities and cell types. However, two critical challenges remain underexplored: (1) the extent of training data redundancy and (2) the impact of cross domain transfer on model retention. In this study, we conduct a systematic empirical analysis of these challenges using Cellpose as a case study. First, to assess data redundancy, we propose a simple dataset quantization (DQ) strategy for constructing compact yet diverse training subsets. Experiments on the Cyto dataset show that image segmentation performance saturates with only 10% of the data, revealing substantial redundancy and potential for training with minimal annotations. Latent space analysis using MAE embeddings and t-SNE confirms that DQ selected patches capture greater feature diversity than random sampling. Second, to examine catastrophic forgetting, we perform cross domain finetuning experiments and observe significant degradation in source domain performance, particularly when adapting from generalist to specialist domains. We demonstrate that selective DQ based replay reintroducing just 5-10% of the source data effectively restores source performance, while full replay can hinder target adaptation. Additionally, we find that training domain sequencing improves generalization and reduces forgetting in multi stage transfer. Our findings highlight the importance of data centric design in biomedical image segmentation and suggest that efficient training requires not only compact subsets but also retention aware learning strategies and informed domain ordering. The code is available at https://github.com/MMV-Lab/biomedseg-efficiency.

Authors:Yue Xun, Jiaxing Xu, Wenbo Gao, Chen Yang, Shujun Wang
Title: Ada-FCN: Adaptive Frequency-Coupled Network for fMRI-Based Brain Disorder Classification
Abstract:
Resting-state fMRI has become a valuable tool for classifying brain disorders and constructing brain functional connectivity networks by tracking BOLD signals across brain regions. However, existing mod els largely neglect the multi-frequency nature of neuronal oscillations, treating BOLD signals as monolithic time series. This overlooks the cru cial fact that neurological disorders often manifest as disruptions within specific frequency bands, limiting diagnostic sensitivity and specificity. While some methods have attempted to incorporate frequency informa tion, they often rely on predefined frequency bands, which may not be optimal for capturing individual variability or disease-specific alterations. To address this, we propose a novel framework featuring Adaptive Cas cade Decomposition to learn task-relevant frequency sub-bands for each brain region and Frequency-Coupled Connectivity Learning to capture both intra- and nuanced cross-band interactions in a unified functional network. This unified network informs a novel message-passing mecha nism within our Unified-GCN, generating refined node representations for diagnostic prediction. Experimental results on the ADNI and ABIDE datasets demonstrate superior performance over existing methods. The code is available at https://github.com/XXYY20221234/Ada-FCN.

Authors:Peiyu Li, Xiuxiu Tang, Si Chen, Ying Cheng, Ronald Metoyer, Ting Hua, Nitesh V. Chawla
Title: Adaptive Testing for LLM Evaluation: A Psychometric Alternative to Static Benchmarks
Abstract:
Large language model evaluation requires thousands of benchmark items, making evaluations expensive and slow. Existing methods compute average accuracy across fixed item sets, treating all items equally despite varying quality and informativeness. We present ATLAS an adaptive testing framework using Item Response Theory (IRT) to estimate model ability through Fisher information-guided item selection. Our analysis of five major benchmarks reveals that 3-6% of items exhibit negative discrimination, indicating annotation errors that corrupt static evaluation. ATLAS achieves 90% item reduction while maintaining measurement precision: on HellaSwag (5,608 items), we match full-benchmark estimates using only 42 items with 0.154 MAE. Our framework maintains item exposure rates below 10% and test overlap at 16-27%, compared to static benchmarks where every model sees all items (100% exposure). Among 4,000+ tested models, IRT ranks differ from accuracy ranks: models with the same accuracy get different IRT scores, and 23-31% of all models shift by more than 10 rank positions. Code and calibrated item banks are available at https://github.com/Peiyu-Georgia-Li/ATLAS.git.

Authors:L. J. Janse van Rensburg
Title: AI-Powered Citation Auditing: A Zero-Assumption Protocol for Systematic Reference Verification in Academic Research
Abstract:
Academic citation integrity faces persistent challenges, with research indicating 20% of citations contain errors and manual verification requiring months of expert time. This paper presents a novel AI-powered methodology for systematic, comprehensive reference auditing using agentic AI with tool-use capabilities. We develop a zero-assumption verification protocol that independently validates every reference against multiple academic databases (Semantic Scholar, Google Scholar, CrossRef) without assuming any citation is correct. The methodology was validated across 30 academic documents (2,581 references) spanning undergraduate projects to doctoral theses and peer-reviewed publications. Results demonstrate 91.7% average verification rate on published PLOS papers, with successful detection of fabricated references, retracted articles, orphan citations, and predatory journals. Time efficiency improved dramatically: 90-minute audits for 916-reference doctoral theses versus months of manual review. The system achieved <0.5% false positive rate while identifying critical issues manual review might miss. This work establishes the first validated AI-agent methodology for academic citation integrity, demonstrating practical applicability for supervisors, students, and institutional quality assurance.

Authors:Maximus A. Pace, Prithwish Dan, Chuanruo Ning, Atiksh Bhardwaj, Audrey Du, Edward W. Duan, Wei-Chiu Ma, Kushal Kedia
Title: X-Diffusion: Training Diffusion Policies on Cross-Embodiment Human Demonstrations
Abstract:
Human videos can be recorded quickly and at scale, making them an appealing source of training data for robot learning. However, humans and robots differ fundamentally in embodiment, resulting in mismatched action execution. Direct kinematic retargeting of human hand motion can therefore produce actions that are physically infeasible for robots. Despite these low-level differences, human demonstrations provide valuable motion cues about how to manipulate and interact with objects. Our key idea is to exploit the forward diffusion process: as noise is added to actions, low-level execution differences fade while high-level task guidance is preserved. We present X-Diffusion, a principled framework for training diffusion policies that maximally leverages human data without learning dynamically infeasible motions. X-Diffusion first trains a classifier to predict whether a noisy action is executed by a human or robot. Then, a human action is incorporated into policy training only after adding sufficient noise such that the classifier cannot discern its embodiment. Actions consistent with robot execution supervise fine-grained denoising at low noise levels, while mismatched human actions provide only coarse guidance at higher noise levels. Our experiments show that naive co-training under execution mismatches degrades policy performance, while X-Diffusion consistently improves it. Across five manipulation tasks, X-Diffusion achieves a 16% higher average success rate than the best baseline. The project website is available at https://portal-cornell.github.io/X-Diffusion/.

Authors:Atsuyuki Miyai, Mashiro Toyooka, Takashi Otonari, Zaiying Zhao, Kiyoharu Aizawa
Title: Jr. AI Scientist and Its Risk Report: Autonomous Scientific Exploration from a Baseline Paper
Abstract:
Understanding the current capabilities and risks of AI Scientist systems is essential for ensuring trustworthy and sustainable AI-driven scientific progress while preserving the integrity of the academic ecosystem. To this end, we develop Jr. AI Scientist, a state-of-the-art autonomous AI scientist system that mimics the core research workflow of a novice student researcher: Given the baseline paper from the human mentor, it analyzes its limitations, formulates novel hypotheses for improvement, and iteratively conducts experiments until improvements are realized, and writes a paper with the results. Unlike previous approaches that assume full automation or operate on small-scale code, Jr. AI Scientist follows a well-defined research workflow and leverages modern coding agents to handle complex, multi-file implementations, leading to scientifically valuable contributions. Through our experiments, the Jr. AI Scientist successfully generated new research papers that build upon real NeurIPS, IJCV, and ICLR works by proposing and implementing novel methods. For evaluation, we conducted automated assessments using AI Reviewers, author-led evaluations, and submissions to Agents4Science, a venue dedicated to AI-driven scientific contributions. The findings demonstrate that Jr. AI Scientist generates papers receiving higher review scores than existing fully automated systems. Nevertheless, we identify important limitations from both the author evaluation and the Agents4Science reviews, indicating the potential risks of directly applying current AI Scientist systems and key challenges for future research. Finally, we comprehensively report various risks identified during development. We believe this study clarifies the current role and limitations of AI Scientist systems, offering insights into the areas that still require human expertise and the risks that may emerge as these systems evolve.

Authors:Subeen Park, Joowang Kim, Hakyung Lee, Sunjae Yoo, Kyungwoo Song
Title: Spurious Correlation-Aware Embedding Regularization for Worst-Group Robustness
Abstract:
Deep learning models achieve strong performance across various domains but often rely on spurious correlations, making them vulnerable to distribution shifts. This issue is particularly severe in subpopulation shift scenarios, where models struggle in underrepresented groups. While existing methods have made progress in mitigating this issue, their performance gains are still constrained. They lack a rigorous theoretical framework connecting the embedding space representations with worst-group error. To address this limitation, we propose Spurious Correlation-Aware Embedding Regularization for Worst-Group Robustness (SCER), a novel approach that directly regularizes feature representations to suppress spurious cues. We show theoretically that worst-group error is influenced by how strongly the classifier relies on spurious versus core directions, identified from differences in group-wise mean embeddings across domains and classes. By imposing theoretical constraints at the embedding level, SCER encourages models to focus on core features while reducing sensitivity to spurious patterns. Through systematic evaluation on multiple vision and language, we show that SCER outperforms prior state-of-the-art studies in worst-group accuracy. Our code is available at \href{https://github.com/MLAI-Yonsei/SCER}{https://github.com/MLAI-Yonsei/SCER}.

Authors:Marawan Elbatel, Anbang Wang, Keyuan Liu, Kaouther Mouheb, Enrique Almar-Munoz, Lizhuo Lin, Yanqi Yang, Karim Lekadir, Xiaomeng Li
Title: MedSapiens: Taking a Pose to Rethink Medical Imaging Landmark Detection
Abstract:
This paper does not introduce a novel architecture; instead, it revisits a fundamental yet overlooked baseline: adapting human-centric foundation models for anatomical landmark detection in medical imaging. While landmark detection has traditionally relied on domain-specific models, the emergence of large-scale pre-trained vision models presents new opportunities. In this study, we investigate the adaptation of Sapiens, a human-centric foundation model designed for pose estimation, to medical imaging through multi-dataset pretraining, establishing a new state of the art across multiple datasets. Our proposed model, MedSapiens, demonstrates that human-centric foundation models, inherently optimized for spatial pose localization, provide strong priors for anatomical landmark detection, yet this potential has remained largely untapped. We benchmark MedSapiens against existing state-of-the-art models, achieving up to 5.26% improvement over generalist models and up to 21.81% improvement over specialist models in the average success detection rate (SDR). To further assess MedSapiens adaptability to novel downstream tasks with few annotations, we evaluate its performance in limited-data settings, achieving 2.69% improvement over the few-shot state of the art in SDR. Code and model weights are available at https://github.com/xmed-lab/MedSapiens .

Authors:Allie Tran, Luca Rossetto
Title: On the Brittleness of CLIP Text Encoders
Abstract:
Multimodal co-embedding models, especially CLIP, have advanced the state of the art in zero-shot classification and multimedia information retrieval in recent years by aligning images and text in a shared representation space. However, such modals trained on a contrastive alignment can lack stability towards small input perturbations. Especially when dealing with manually expressed queries, minor variations in the query can cause large differences in the ranking of the best-matching results. In this paper, we present a systematic analysis of the effect of multiple classes of non-semantic query perturbations in an multimedia information retrieval scenario. We evaluate a diverse set of lexical, syntactic, and semantic perturbations across multiple CLIP variants using the TRECVID Ad-Hoc Video Search queries and the V3C1 video collection. Across models, we find that syntactic and semantic perturbations drive the largest instabilities, while brittleness is concentrated in trivial surface edits such as punctuation and case. Our results highlight robustness as a critical dimension for evaluating vision-language models beyond benchmark accuracy.

Authors:Hanmo Chen, Chenghao Xu, Jiexi Yan, Cheng Deng
Title: AStF: Motion Style Transfer via Adaptive Statistics Fusor
Abstract:
Human motion style transfer allows characters to appear less rigidity and more realism with specific style. Traditional arbitrary image style transfer typically process mean and variance which is proved effective. Meanwhile, similar methods have been adapted for motion style transfer. However, due to the fundamental differences between images and motion, relying on mean and variance is insufficient to fully capture the complex dynamic patterns and spatiotemporal coherence properties of motion data. Building upon this, our key insight is to bring two more coefficient, skewness and kurtosis, into the analysis of motion style. Specifically, we propose a novel Adaptive Statistics Fusor (AStF) which consists of Style Disentanglement Module (SDM) and High-Order Multi-Statistics Attention (HOS-Attn). We trained our AStF in conjunction with a Motion Consistency Regularization (MCR) discriminator. Experimental results show that, by providing a more comprehensive model of the spatiotemporal statistical patterns inherent in dynamic styles, our proposed AStF shows proficiency superiority in motion style transfers over state-of-the-arts. Our code and model are available at https://github.com/CHMimilanlan/AStF.

Authors:Fahim Ahmed, Md Mubtasim Ahasan, Jahir Sadik Monon, Muntasir Wahed, M Ashraful Amin, A K M Mahbubur Rahman, Amin Ahsan Ali
Title: BAPPA: Benchmarking Agents, Plans, and Pipelines for Automated Text-to-SQL Generation
Abstract:
Text-to-SQL systems provide a natural language interface that can enable even laymen to access information stored in databases. However, existing Large Language Models (LLM) struggle with SQL generation from natural instructions due to large schema sizes and complex reasoning. Prior work often focuses on complex, somewhat impractical pipelines using flagship models, while smaller, efficient models remain overlooked. In this work, we explore three multi-agent LLM pipelines, with systematic performance benchmarking across a range of small to large open-source models: (1) Multi-agent discussion pipeline, where agents iteratively critique and refine SQL queries, and a judge synthesizes the final answer; (2) Planner-Coder pipeline, where a thinking model planner generates stepwise SQL generation plans and a coder synthesizes queries; and (3) Coder-Aggregator pipeline, where multiple coders independently generate SQL queries, and a reasoning agent selects the best query. Experiments on the Bird-Bench Mini-Dev set reveal that Multi-Agent discussion can improve small model performance, with up to 10.6% increase in Execution Accuracy for Qwen2.5-7b-Instruct seen after three rounds of discussion. Among the pipelines, the LLM Reasoner-Coder pipeline yields the best results, with DeepSeek-R1-32B and QwQ-32B planners boosting Gemma 3 27B IT accuracy from 52.4% to the highest score of 56.4%. Codes are available at https://github.com/treeDweller98/bappa-sql.

Authors:Yujian Liu, Ze Wang, Hao Chen, Ximeng Sun, Xiaodong Yu, Jialian Wu, Jiang Liu, Emad Barsoum, Zicheng Liu, Shiyu Chang
Title: Learning from Online Videos at Inference Time for Computer-Use Agents
Abstract:
Computer-use agents can operate computers and automate laborious tasks, but despite recent rapid progress, they still lag behind human users, especially when tasks require domain-specific procedural knowledge about particular applications, platforms, and multi-step workflows. Humans can bridge this gap by watching video tutorials: we search, skim, and selectively imitate short segments that match our current subgoal. In this paper, we study how to enable computer-use agents to learn from online videos at inference time effectively. We propose a framework that retrieves and filters tutorial videos, converts them into structured demonstration trajectories, and dynamically selects trajectories as in-context guidance during execution. Particularly, using a VLM, we infer UI actions, segment videos into short subsequences of actions, and assign each subsequence a textual objective. At inference time, a two-stage selection mechanism dynamically chooses a single trajectory to add in context at each step, focusing the agent on the most helpful local guidance for its next decision. Experiments on two widely used benchmarks show that our framework consistently outperforms strong base agents and variants that use only textual tutorials or transcripts. Analyses highlight the importance of trajectory segmentation and selection, action filtering, and visual information, suggesting that abundant online videos can be systematically distilled into actionable guidance that improves computer-use agents at inference time. Our code is available at https://github.com/UCSB-NLP-Chang/video_demo.

Authors:Shengyu Tang, Zeyuan Lu, Jiazhi Dong, Changdong Yu, Xiaoyu Wang, Yaohui Lyu, Weihao Xia
Title: DMSORT: An efficient parallel maritime multi-object tracking architecture for unmanned vessel platforms
Abstract:
Accurate perception of the marine environment through robust multi-object tracking (MOT) is essential for ensuring safe vessel navigation and effective maritime surveillance. However, the complicated maritime environment often causes camera motion and subsequent visual degradation, posing significant challenges to MOT. To address this challenge, we propose an efficient Dual-branch Maritime SORT (DMSORT) method for maritime MOT. The core of the framework is a parallel tracker with affine compensation, which incorporates an object detection and re-identification (ReID) branch, along with a dedicated branch for dynamic camera motion estimation. Specifically, a Reversible Columnar Detection Network (RCDN) is integrated into the detection module to leverage multi-level visual features for robust object detection. Furthermore, a lightweight Transformer-based appearance extractor (Li-TAE) is designed to capture global contextual information and generate robust appearance features. Another branch decouples platform-induced and target-intrinsic motion by constructing a projective transformation, applying platform-motion compensation within the Kalman filter, and thereby stabilizing true object trajectories. Finally, a clustering-optimized feature fusion module effectively combines motion and appearance cues to ensure identity consistency under noise, occlusion, and drift. Extensive evaluations on the Singapore Maritime Dataset demonstrate that DMSORT achieves state-of-the-art performance. Notably, DMSORT attains the fastest runtime among existing ReID-based MOT frameworks while maintaining high identity consistency and robustness to jitter and occlusion. Code is available at: https://github.com/BiscuitsLzy/DMSORT-An-efficient-parallel-maritime-multi-object-tracking-architecture-.

Authors:Hao Li, Haotian Chen, Ruoyuan Gong, Juanjuan Wang, Hao Jiang
Title: Agentmandering: A Game-Theoretic Framework for Fair Redistricting via Large Language Model Agents
Abstract:
Redistricting plays a central role in shaping how votes are translated into political power. While existing computational methods primarily aim to generate large ensembles of legally valid districting plans, they often neglect the strategic dynamics involved in the selection process. This oversight creates opportunities for partisan actors to cherry-pick maps that, while technically compliant, are politically advantageous. Simply satisfying formal constraints does not ensure fairness when the selection process itself can be manipulated. We propose \textbf{Agentmandering}, a framework that reimagines redistricting as a turn-based negotiation between two agents representing opposing political interests. Drawing inspiration from game-theoretic ideas, particularly the \textit{Choose-and-Freeze} protocol, our method embeds strategic interaction into the redistricting process via large language model (LLM) agents. Agents alternate between selecting and freezing districts from a small set of candidate maps, gradually partitioning the state through constrained and interpretable choices. Evaluation on post-2020 U.S. Census data across all states shows that Agentmandering significantly reduces partisan bias and unfairness, while achieving 2 to 3 orders of magnitude lower variance than standard baselines. These results demonstrate both fairness and stability, especially in swing-state scenarios. Our code is available at https://github.com/Lihaogx/AgentMandering.

Authors:Hirohane Takagi, Gouki Minegishi, Shota Kizawa, Issey Sukeda, Hitomi Yanaka
Title: Interpreting Multi-Attribute Confounding through Numerical Attributes in Large Language Models
Abstract:
Although behavioral studies have documented numerical reasoning errors in large language models (LLMs), the underlying representational mechanisms remain unclear. We hypothesize that numerical attributes occupy shared latent subspaces and investigate two questions:(1) How do LLMs internally integrate multiple numerical attributes of a single entity? (2)How does irrelevant numerical context perturb these representations and their downstream outputs? To address these questions, we combine linear probing with partial correlation analysis and prompt-based vulnerability tests across models of varying sizes. Our results show that LLMs encode real-world numerical correlations but tend to systematically amplify them. Moreover, irrelevant context induces consistent shifts in magnitude representations, with downstream effects that vary by model size. These findings reveal a vulnerability in LLM decision-making and lay the groundwork for fairer, representation-aware control under multi-attribute entanglement.

Authors:Xu Zou
Title: PETRA: Pretrained Evolutionary Transformer for SARS-CoV-2 Mutation Prediction
Abstract:
Since its emergence, SARS-CoV-2 has demonstrated a rapid and unpredictable evolutionary trajectory, characterized by the continual emergence of immune-evasive variants. This poses persistent challenges to public health and vaccine development. While large-scale generative pre-trained transformers (GPTs) have revolutionized the modeling of sequential data, their direct applications to noisy viral genomic sequences are limited. In this paper, we introduce PETRA(Pretrained Evolutionary TRAnsformer), a novel transformer approach based on evolutionary trajectories derived from phylogenetic trees rather than raw RNA sequences. This method effectively mitigates sequencing noise and captures the hierarchical structure of viral evolution. With a weighted training framework to address substantial geographical and temporal imbalances in global sequence data, PETRA excels in predicting future SARS-CoV-2 mutations, achieving a weighted recall@1 of 9.45% for nucleotide mutations and 17.10\% for spike amino-acid mutations, compared to 0.49% and 6.64% respectively for the best baseline. PETRA also demonstrates its ability to aid in the real-time mutation prediction of major clades like 24F(XEC) and 25A(LP.8.1). The code is open sourced on https://github.com/xz-keg/PETra

Authors:Duong Mai, Lawrence Hall
Title: Noise Injection: Improving Out-of-Distribution Generalization for Limited Size Datasets
Abstract:
Deep learned (DL) models for image recognition have been shown to fail to generalize to data from different devices, populations, etc. COVID-19 detection from Chest X-rays (CXRs), in particular, has been shown to fail to generalize to out-of-distribution (OOD) data from new clinical sources not covered in the training set. This occurs because models learn to exploit shortcuts - source-specific artifacts that do not translate to new distributions - rather than reasonable biomarkers to maximize performance on in-distribution (ID) data. Rendering the models more robust to distribution shifts, our study investigates the use of fundamental noise injection techniques (Gaussian, Speckle, Poisson, and Salt and Pepper) during training. Our empirical results demonstrate that this technique can significantly reduce the performance gap between ID and OOD evaluation from 0.10-0.20 to 0.01-0.06, based on results averaged over ten random seeds across key metrics such as AUC, F1, accuracy, recall and specificity. Our source code is publicly available at https://github.com/Duongmai127/Noisy-ood

Authors:Ziv Nevo, Orna Raz, Karen Yorav
Title: Uncovering Code Insights: Leveraging GitHub Artifacts for Deeper Code Understanding
Abstract:
Understanding the purpose of source code is a critical task in software maintenance, onboarding, and modernization. While large language models (LLMs) have shown promise in generating code explanations, they often lack grounding in the broader software engineering context. We propose a novel approach that leverages natural language artifacts from GitHub -- such as pull request descriptions, issue descriptions and discussions, and commit messages -- to enhance LLM-based code understanding. Our system consists of three components: one that extracts and structures relevant GitHub context, another that uses this context to generate high-level explanations of the code's purpose, and a third that validates the explanation. We implemented this as a standalone tool, as well as a server within the Model Context Protocol (MCP), enabling integration with other AI-assisted development tools. Our main use case is that of enhancing a standard LLM-based code explanation with code insights that our system generates. To evaluate explanations' quality, we conducted a small scale user study, with developers of several open projects, as well as developers of proprietary projects. Our user study indicates that when insights are generated they often are helpful and non trivial, and are free from hallucinations.

Authors:Roberta Di Marino, Giovanni Dioguardi, Antonio Romano, Giuseppe Riccio, Mariano Barone, Marco Postiglione, Flora Amato, Vincenzo Moscato
Title: SOLVE-Med: Specialized Orchestration for Leading Vertical Experts across Medical Specialties
Abstract:
Medical question answering systems face deployment challenges including hallucinations, bias, computational demands, privacy concerns, and the need for specialized expertise across diverse domains. Here, we present SOLVE-Med, a multi-agent architecture combining domain-specialized small language models for complex medical queries. The system employs a Router Agent for dynamic specialist selection, ten specialized models (1B parameters each) fine-tuned on specific medical domains, and an Orchestrator Agent that synthesizes responses. Evaluated on Italian medical forum data across ten specialties, SOLVE-Med achieves superior performance with ROUGE-1 of 0.301 and BERTScore F1 of 0.697, outperforming standalone models up to 14B parameters while enabling local deployment. Our code is publicly available on GitHub: https://github.com/PRAISELab-PicusLab/SOLVE-Med.

Authors:Lei Fu, Sahar Salimpour, Leonardo Militano, Harry Edelman, Jorge Peña Queralta, Giovanni Toffetti
Title: ROSBag MCP Server: Analyzing Robot Data with LLMs for Agentic Embodied AI Applications
Abstract:
Agentic AI systems and Physical or Embodied AI systems have been two key research verticals at the forefront of Artificial Intelligence and Robotics, with Model Context Protocol (MCP) increasingly becoming a key component and enabler of agentic applications. However, the literature at the intersection of these verticals, i.e., Agentic Embodied AI, remains scarce. This paper introduces an MCP server for analyzing ROS and ROS 2 bags, allowing for analyzing, visualizing and processing robot data with natural language through LLMs and VLMs. We describe specific tooling built with robotics domain knowledge, with our initial release focused on mobile robotics and supporting natively the analysis of trajectories, laser scan data, transforms, or time series data. This is in addition to providing an interface to standard ROS 2 CLI tools ("ros2 bag list" or "ros2 bag info"), as well as the ability to filter bags with a subset of topics or trimmed in time. Coupled with the MCP server, we provide a lightweight UI that allows the benchmarking of the tooling with different LLMs, both proprietary (Anthropic, OpenAI) and open-source (through Groq). Our experimental results include the analysis of tool calling capabilities of eight different state-of-the-art LLM/VLM models, both proprietary and open-source, large and small. Our experiments indicate that there is a large divide in tool calling capabilities, with Kimi K2 and Claude Sonnet 4 demonstrating clearly superior performance. We also conclude that there are multiple factors affecting the success rates, from the tool description schema to the number of arguments, as well as the number of tools available to the models. The code is available with a permissive license at https://github.com/binabik-ai/mcp-rosbags.

Authors:Doria Bonzi, Alexandre Guiggi, Frédéric Béchet, Carlos Ramisch, Benoit Favre
Title: CareMedEval dataset: Evaluating Critical Appraisal and Reasoning in the Biomedical Field
Abstract:
Critical appraisal of scientific literature is an essential skill in the biomedical field. While large language models (LLMs) can offer promising support in this task, their reliability remains limited, particularly for critical reasoning in specialized domains. We introduce CareMedEval, an original dataset designed to evaluate LLMs on biomedical critical appraisal and reasoning tasks. Derived from authentic exams taken by French medical students, the dataset contains 534 questions based on 37 scientific articles. Unlike existing benchmarks, CareMedEval explicitly evaluates critical reading and reasoning grounded in scientific papers. Benchmarking state-of-the-art generalist and biomedical-specialized LLMs under various context conditions reveals the difficulty of the task: open and commercial models fail to exceed an Exact Match Rate of 0.5 even though generating intermediate reasoning tokens considerably improves the results. Yet, models remain challenged especially on questions about study limitations and statistical analysis. CareMedEval provides a challenging benchmark for grounded reasoning, exposing current LLM limitations and paving the way for future development of automated support for critical appraisal.

Authors:Syed Muqeem Mahmood, Hassan Mohy-ud-Din
Title: Computational Imaging Meets LLMs: Zero-Shot IDH Mutation Prediction in Brain Gliomas
Abstract:
We present a framework that combines Large Language Models with computational image analytics for non-invasive, zero-shot prediction of IDH mutation status in brain gliomas. For each subject, coregistered multi-parametric MRI scans and multi-class tumor segmentation maps were processed to extract interpretable semantic (visual) attributes and quantitative features, serialized in a standardized JSON file, and used to query GPT 4o and GPT 5 without fine-tuning. We evaluated this framework on six publicly available datasets (N = 1427) and results showcased high accuracy and balanced classification performance across heterogeneous cohorts, even in the absence of manual annotations. GPT 5 outperformed GPT 4o in context-driven phenotype interpretation. Volumetric features emerged as the most important predictors, supplemented by subtype-specific imaging markers and clinical information. Our results demonstrate the potential of integrating LLM-based reasoning with computational image analytics for precise, non-invasive tumor genotyping, advancing diagnostic strategies in neuro-oncology. The code is available at https://github.com/ATPLab-LUMS/CIM-LLM.

Authors:Gahyeon Kim, Sohee Kim, Seokju Lee
Title: Decoupling Augmentation Bias in Prompt Learning for Vision-Language Models
Abstract:
Recent advances in large-scale vision and language models have led to significant progress in zero-shot learning tasks. Methods such as CoOp and CoCoOp have shown that replacing handcrafted prompts with learnable vectors, known as prompt learning, can result in improved performance. However, these models often struggle to generalize to entirely unseen categories. While traditional zero-shot learning techniques benefit from various data augmentation strategies, prompt learning has primarily focused on text-based modifications, leaving the potential of image-based augmentation largely unexplored. In this work, we explore how image-level augmentations, particularly those that introduce attribute-specific variations, can support and enhance prompt learning. Our analysis examines the interaction between these augmentations and soft prompt frameworks, revealing their potential to improve generalization. We also identify a limitation in existing methods, such as CoCoOp, which do not provide explicit guidance for learning prompts that focus on semantically meaningful visual features. To address this, we propose Adding Attributes to Prompt Learning, AAPL, a novel method that introduces adversarial token embeddings to decouple superficial visual variations introduced by augmentation from class-relevant semantic representations. This decoupling enables the learned prompts to concentrate on visually discriminative features that align with the target categories. We conduct comprehensive experiments on eleven benchmark datasets, and AAPL consistently outperforms existing methods across few-shot, zero-shot, cross-dataset, and domain generalization settings. Our source code is publicly available at: https://github.com/Gahyeonkim09/AAPL

Authors:Qi Zhang, Yifei Wang, Yisen Wang
Title: An Augmentation Overlap Theory of Contrastive Learning
Abstract:
Recently, self-supervised contrastive learning has achieved great success on various tasks. However, its underlying working mechanism is yet unclear. In this paper, we first provide the tightest bounds based on the widely adopted assumption of conditional independence. Further, we relax the conditional independence assumption to a more practical assumption of augmentation overlap and derive the asymptotically closed bounds for the downstream performance. Our proposed augmentation overlap theory hinges on the insight that the support of different intra-class samples will become more overlapped under aggressive data augmentations, thus simply aligning the positive samples (augmented views of the same sample) could make contrastive learning cluster intra-class samples together. Moreover, from the newly derived augmentation overlap perspective, we develop an unsupervised metric for the representation evaluation of contrastive learning, which aligns well with the downstream performance almost without relying on additional modules. Code is available at https://github.com/PKU-ML/GARC.

Authors:Azim Ospanov, Farzan Farnia, Roozbeh Yousefzadeh
Title: miniF2F-Lean Revisited: Reviewing Limitations and Charting a Path Forward
Abstract:
We perform a thorough analysis of the formal and informal statements in the miniF2F benchmark from the perspective of an AI system that is tasked to participate in a math Olympiad consisting of the problems in miniF2F. In such setting, the model has to read and comprehend the problems in natural language, formalize them in Lean language, then proceed with proving the problems, and it will get credit for each problem if the formal proof corresponds to the original informal statement presented to the model. Our evaluation results reveal that the best accuracy of such pipeline can be about 36% using the SoTA models in the literature, considerably lower than the individual SoTA accuracies, 97% and 69% reported in the autoformalization and theorem proving literature. Analyzing the failure modes, we trace back a considerable portion of this drop to discrepancies between the formal and informal statements for more than half of the problems in miniF2F. We proceed with correcting all the errors, discrepancies and simplifications in formal and informal statements, and present the miniF2F-v2 with fully verified formal and informal statements and proofs. Evaluating the full theorem proving pipeline on miniF2F-v2 leads to the best accuracy of 70%, a significant improvement from the 40% on the original miniF2F, yet indicating considerable misalignment between the autoformalization models and theorem provers. Our deep analysis suggests that a higher quality benchmark can help the community better evaluate progress in the field of formal reasoning and also better diagnose the failure and success modes of autoformalization and theorem proving models. Our dataset is available at https://github.com/roozbeh-yz/miniF2F_v2.

Authors:Zhongmin Li, Runze Ma, Jiahao Tan, Chengzi Tan, Shuangjia Zheng
Title: NABench: Large-Scale Benchmarks of Nucleotide Foundation Models for Fitness Prediction
Abstract:
Nucleotide sequence variation can induce significant shifts in functional fitness. Recent nucleotide foundation models promise to predict such fitness effects directly from sequence, yet heterogeneous datasets and inconsistent preprocessing make it difficult to compare methods fairly across DNA and RNA families. Here we introduce NABench, a large-scale, systematic benchmark for nucleic acid fitness prediction. NABench aggregates 162 high-throughput assays and curates 2.6 million mutated sequences spanning diverse DNA and RNA families, with standardized splits and rich metadata. We show that NABench surpasses prior nucleotide fitness benchmarks in scale, diversity, and data quality. Under a unified evaluation suite, we rigorously assess 29 representative foundation models across zero-shot, few-shot prediction, transfer learning, and supervised settings. The results quantify performance heterogeneity across tasks and nucleic-acid types, demonstrating clear strengths and failure modes for different modeling choices and establishing strong, reproducible baselines. We release NABench to advance nucleic acid modeling, supporting downstream applications in RNA/DNA design, synthetic biology, and biochemistry. Our code is available at https://github.com/mrzzmrzz/NABench.

Authors:Ahmad Tahmasivand, Noureldin Zahran, Saba Al-Sayouri, Mohammed Fouda, Khaled N. Khasawneh
Title: LM-Fix: Lightweight Bit-Flip Detection and Rapid Recovery Framework for Language Models
Abstract:
This paper presents LM-Fix, a lightweight detection and rapid recovery framework for faults in large language models (LLMs). Existing integrity approaches are often heavy or slow for modern LLMs. LM-Fix runs a short test-vector pass and uses hash-guided checks to detect bit-flip faults, then repairs them locally without a full reload. Across multiple models, it detects over 94% of single-bit flips at TVL=200 and nearly 100% of multi-bit flips with approximately 1% to 7.7% runtime overhead; recovery is more than 100x faster than reloading. These results show a practical, low-overhead solution to keep LLMs reliable in production

Authors:Mohamed Bouadi, Pratinav Seth, Aditya Tanna, Vinay Kumar Sankarapu
Title: Orion-MSP: Multi-Scale Sparse Attention for Tabular In-Context Learning
Abstract:
Tabular data remain the predominant format for real-world applications. Yet, developing effective neural models for tabular data remains challenging due to heterogeneous feature types and complex interactions occurring at multiple scales. Recent advances in tabular in-context learning (ICL), such as TabPFN and TabICL, have achieved state-of-the-art performance comparable to gradient-boosted trees (GBTs) without task-specific fine-tuning. However, current architectures exhibit key limitations: (1) single-scale feature processing that overlooks hierarchical dependencies, (2) dense attention with quadratic scaling in table width, and (3) strictly sequential component processing that prevents iterative representation refinement and cross-component communication. To address these challenges, we introduce Orion-MSP, a tabular ICL architecture featuring three key innovations: (1) multi-scale processing to capture hierarchical feature interactions; (2) block-sparse attention combining windowed, global, and random patterns for scalable efficiency and long-range connectivity; and (3) a Perceiver-style memory enabling safe bidirectional information flow across components. Across diverse benchmarks, Orion-MSP matches or surpasses state-of-the-art performance while scaling effectively to high-dimensional tables, establishing a new standard for efficient tabular in-context learning. The model is publicly available at https://github.com/Lexsi-Labs/Orion-MSP .

Authors:Qianhao Yuan, Jie Lou, Zichao Li, Jiawei Chen, Yaojie Lu, Hongyu Lin, Le Sun, Debing Zhang, Xianpei Han
Title: MemSearcher: Training LLMs to Reason, Search and Manage Memory via End-to-End Reinforcement Learning
Abstract:
Typical search agents concatenate the entire interaction history into the LLM context, preserving information integrity but producing long, noisy contexts, resulting in high computation and memory costs. In contrast, using only the current turn avoids this overhead but discards essential information. This trade-off limits the scalability of search agents. To address this challenge, we propose MemSearcher, an agent workflow that iteratively maintains a compact memory and combines the current turn with it. At each turn, MemSearcher fuses the user's question with the memory to generate reasoning traces, perform search actions, and update memory to retain only information essential for solving the task. This design stabilizes context length across multi-turn interactions, improving efficiency without sacrificing accuracy. To optimize this workflow, we introduce multi-context GRPO, an end-to-end RL framework that jointly optimize reasoning, search strategies, and memory management of MemSearcher Agents. Specifically, multi-context GRPO samples groups of trajectories under different contexts and propagates trajectory-level advantages across all conversations within them. Trained on the same dataset as Search-R1, MemSearcher achieves significant improvements over strong baselines on seven public benchmarks: +11% on Qwen2.5-3B-Instruct and +12% on Qwen2.5-7B-Instruct relative average gains. Notably, the 3B-based MemSearcher even outperforms 7B-based baselines, demonstrating that striking a balance between information integrity and efficiency yields both higher accuracy and lower computational overhead. The code and models will be publicly available at https://github.com/icip-cas/MemSearcher

Authors:Aditya Tanna, Pratinav Seth, Mohamed Bouadi, Utsav Avaiya, Vinay Kumar Sankarapu
Title: TabTune: A Unified Library for Inference and Fine-Tuning Tabular Foundation Models
Abstract:
Tabular foundation models represent a growing paradigm in structured data learning, extending the benefits of large-scale pretraining to tabular domains. However, their adoption remains limited due to heterogeneous preprocessing pipelines, fragmented APIs, inconsistent fine-tuning procedures, and the absence of standardized evaluation for deployment-oriented metrics such as calibration and fairness. We present TabTune, a unified library that standardizes the complete workflow for tabular foundation models through a single interface. TabTune provides consistent access to seven state-of-the-art models supporting multiple adaptation strategies, including zero-shot inference, meta-learning, supervised fine-tuning (SFT), and parameter-efficient fine-tuning (PEFT). The framework automates model-aware preprocessing, manages architectural heterogeneity internally, and integrates evaluation modules for performance, calibration, and fairness. Designed for extensibility and reproducibility, TabTune enables consistent benchmarking of adaptation strategies of tabular foundation models.

Authors:Giacomo Camposampiero, Pietro Barbiero, Michael Hersche, Roger Wattenhofer, Abbas Rahimi
Title: Scalable Evaluation and Neural Models for Compositional Generalization
Abstract:
Compositional generalization-a key open challenge in modern machine learning-requires models to predict unknown combinations of known concepts. However, assessing compositional generalization remains a fundamental challenge due to the lack of standardized evaluation protocols and the limitations of current benchmarks, which often favor efficiency over rigor. At the same time, general-purpose vision architectures lack the necessary inductive biases, and existing approaches to endow them compromise scalability. As a remedy, this paper introduces: 1) a rigorous evaluation framework that unifies and extends previous approaches while reducing computational requirements from combinatorial to constant; 2) an extensive and modern evaluation on the status of compositional generalization in supervised vision backbones, training more than 5000 models; 3) Attribute Invariant Networks, a class of models establishing a new Pareto frontier in compositional generalization, achieving a 23.43% accuracy improvement over baselines while reducing parameter overhead from 600% to 16% compared to fully disentangled counterparts. Our code is available at https://github.com/IBM/scalable-compositional-generalization.

Authors:Daichi Nagai, Ryugo Morita, Shunsuke Kitada, Hitoshi Iyatomi
Title: TAUE: Training-free Noise Transplant and Cultivation Diffusion Model
Abstract:
Despite the remarkable success of text-to-image diffusion models, their output of a single, flattened image remains a critical bottleneck for professional applications requiring layer-wise control. Existing solutions either rely on fine-tuning with large, inaccessible datasets or are training-free yet limited to generating isolated foreground elements, failing to produce a complete and coherent scene. To address this, we introduce the Training-free Noise Transplantation and Cultivation Diffusion Model (TAUE), a novel framework for zero-shot, layer-wise image generation. Our core technique, Noise Transplantation and Cultivation (NTC), extracts intermediate latent representations from both foreground and composite generation processes, transplanting them into the initial noise for subsequent layers. This ensures semantic and structural coherence across foreground, background, and composite layers, enabling consistent, multi-layered outputs without requiring fine-tuning or auxiliary datasets. Extensive experiments show that our training-free method achieves performance comparable to fine-tuned methods, enhancing layer-wise consistency while maintaining high image quality and fidelity. TAUE not only eliminates costly training and dataset requirements but also unlocks novel downstream applications, such as complex compositional editing, paving the way for more accessible and controllable generative workflows.

Authors:Dan Bohus, Sean Andrist, Ann Paradiso, Nick Saw, Tim Schoonbeek, Maia Stiber
Title: SigmaCollab: An Application-Driven Dataset for Physically Situated Collaboration
Abstract:
We introduce SigmaCollab, a dataset enabling research on physically situated human-AI collaboration. The dataset consists of a set of 85 sessions in which untrained participants were guided by a mixed-reality assistive AI agent in performing procedural tasks in the physical world. SigmaCollab includes a set of rich, multimodal data streams, such as the participant and system audio, egocentric camera views from the head-mounted device, depth maps, head, hand and gaze tracking information, as well as additional annotations performed post-hoc. While the dataset is relatively small in size (~ 14 hours), its application-driven and interactive nature brings to the fore novel research challenges for human-AI collaboration, and provides more realistic testing grounds for various AI models operating in this space. In future work, we plan to use the dataset to construct a set of benchmarks for physically situated collaboration in mixed-reality task assistive scenarios. SigmaCollab is available at https://github.com/microsoft/SigmaCollab.

Authors:Yaosen Chen, Wei Wang, Tianheng Zheng, Xuming Wen, Han Yang, Yanru Zhang
Title: ESA: Energy-Based Shot Assembly Optimization for Automatic Video Editing
Abstract:
Shot assembly is a crucial step in film production and video editing, involving the sequencing and arrangement of shots to construct a narrative, convey information, or evoke emotions. Traditionally, this process has been manually executed by experienced editors. While current intelligent video editing technologies can handle some automated video editing tasks, they often fail to capture the creator's unique artistic expression in shot assembly. To address this challenge, we propose an energy-based optimization method for video shot assembly. Specifically, we first perform visual-semantic matching between the script generated by a large language model and a video library to obtain subsets of candidate shots aligned with the script semantics. Next, we segment and label the shots from reference videos, extracting attributes such as shot size, camera motion, and semantics. We then employ energy-based models to learn from these attributes, scoring candidate shot sequences based on their alignment with reference styles. Finally, we achieve shot assembly optimization by combining multiple syntax rules, producing videos that align with the assembly style of the reference videos. Our method not only automates the arrangement and combination of independent shots according to specific logic, narrative requirements, or artistic styles but also learns the assembly style of reference videos, creating a coherent visual sequence or holistic visual expression. With our system, even users with no prior video editing experience can create visually compelling videos. Project page: https://sobeymil.github.io/esa.com

Authors:Yalda Zafari, Hongyi Pan, Gorkem Durak, Ulas Bagci, Essam A. Rashed, Mohamed Mabrok
Title: MammoClean: Toward Reproducible and Bias-Aware AI in Mammography through Dataset Harmonization
Abstract:
The development of clinically reliable artificial intelligence (AI) systems for mammography is hindered by profound heterogeneity in data quality, metadata standards, and population distributions across public datasets. This heterogeneity introduces dataset-specific biases that severely compromise the generalizability of the model, a fundamental barrier to clinical deployment. We present MammoClean, a public framework for standardization and bias quantification in mammography datasets. MammoClean standardizes case selection, image processing (including laterality and intensity correction), and unifies metadata into a consistent multi-view structure. We provide a comprehensive review of breast anatomy, imaging characteristics, and public mammography datasets to systematically identify key sources of bias. Applying MammoClean to three heterogeneous datasets (CBIS-DDSM, TOMPEI-CMMD, VinDr-Mammo), we quantify substantial distributional shifts in breast density and abnormality prevalence. Critically, we demonstrate the direct impact of data corruption: AI models trained on corrupted datasets exhibit significant performance degradation compared to their curated counterparts. By using MammoClean to identify and mitigate bias sources, researchers can construct unified multi-dataset training corpora that enable development of robust models with superior cross-domain generalization. MammoClean provides an essential, reproducible pipeline for bias-aware AI development in mammography, facilitating fairer comparisons and advancing the creation of safe, effective systems that perform equitably across diverse patient populations and clinical settings. The open-source code is publicly available from: https://github.com/Minds-R-Lab/MammoClean.

Authors:Aashray Reddy, Andrew Zagula, Nicholas Saban, Kevin Zhu
Title: AutoAdv: Automated Adversarial Prompting for Multi-Turn Jailbreaking of Large Language Models
Abstract:
Large Language Models (LLMs) remain vulnerable to jailbreaking attacks where adversarial prompts elicit harmful outputs, yet most evaluations focus on single-turn interactions while real-world attacks unfold through adaptive multi-turn conversations. We present AutoAdv, a training-free framework for automated multi-turn jailbreaking that achieves up to 95% attack success rate on Llama-3.1-8B within six turns a 24 percent improvement over single turn baselines. AutoAdv uniquely combines three adaptive mechanisms: a pattern manager that learns from successful attacks to enhance future prompts, a temperature manager that dynamically adjusts sampling parameters based on failure modes, and a two-phase rewriting strategy that disguises harmful requests then iteratively refines them. Extensive evaluation across commercial and open-source models (GPT-4o-mini, Qwen3-235B, Mistral-7B) reveals persistent vulnerabilities in current safety mechanisms, with multi-turn attacks consistently outperforming single-turn approaches. These findings demonstrate that alignment strategies optimized for single-turn interactions fail to maintain robustness across extended conversations, highlighting an urgent need for multi-turn-aware defenses.

Authors:Jonathan Liu, Haoling Qiu, Jonathan Lasko, Damianos Karakos, Mahsa Yarmohammadi, Mark Dredze
Title: Demo: Statistically Significant Results On Biases and Errors of LLMs Do Not Guarantee Generalizable Results
Abstract:
Recent research has shown that hallucinations, omissions, and biases are prevalent in everyday use-cases of LLMs. However, chatbots used in medical contexts must provide consistent advice in situations where non-medical factors are involved, such as when demographic information is present. In order to understand the conditions under which medical chatbots fail to perform as expected, we develop an infrastructure that 1) automatically generates queries to probe LLMs and 2) evaluates answers to these queries using multiple LLM-as-a-judge setups and prompts. For 1), our prompt creation pipeline samples the space of patient demographics, histories, disorders, and writing styles to create realistic questions that we subsequently use to prompt LLMs. In 2), our evaluation pipeline provides hallucination and omission detection using LLM-as-a-judge as well as agentic workflows, in addition to LLM-as-a-judge treatment category detectors. As a baseline study, we perform two case studies on inter-LLM agreement and the impact of varying the answering and evaluation LLMs. We find that LLM annotators exhibit low agreement scores (average Cohen's Kappa $κ=0.118$), and only specific (answering, evaluation) LLM pairs yield statistically significant differences across writing styles, genders, and races. We recommend that studies using LLM evaluation use multiple LLMs as evaluators in order to avoid arriving at statistically significant but non-generalizable results, particularly in the absence of ground-truth data. We also suggest publishing inter-LLM agreement metrics for transparency. Our code and dataset are available here: https://github.com/BBN-E/medic-neurips-2025-demo.

Authors:Youngjin Hong, Houjian Yu, Mingen Li, Changhyun Choi
Title: LACY: A Vision-Language Model-based Language-Action Cycle for Self-Improving Robotic Manipulation
Abstract:
Learning generalizable policies for robotic manipulation increasingly relies on large-scale models that map language instructions to actions (L2A). However, this one-way paradigm often produces policies that execute tasks without deeper contextual understanding, limiting their ability to generalize or explain their behavior. We argue that the complementary skill of mapping actions back to language (A2L) is essential for developing more holistic grounding. An agent capable of both acting and explaining its actions can form richer internal representations and unlock new paradigms for self-supervised learning. We introduce LACY (Language-Action Cycle), a unified framework that learns such bidirectional mappings within a single vision-language model. LACY is jointly trained on three synergistic tasks: generating parameterized actions from language (L2A), explaining observed actions in language (A2L), and verifying semantic consistency between two language descriptions (L2C). This enables a self-improving cycle that autonomously generates and filters new training data through an active augmentation strategy targeting low-confidence cases, thereby improving the model without additional human labels. Experiments on pick-and-place tasks in both simulation and the real world show that LACY improves task success rates by 56.46% on average and yields more robust language-action grounding for robotic manipulation. Project page: https://vla2026.github.io/LACY/

Authors:Keyu Zhao, Weiquan Lin, Qirui Zheng, Fengli Xu, Yong Li
Title: Deep Ideation: Designing LLM Agents to Generate Novel Research Ideas on Scientific Concept Network
Abstract:
Novel research ideas play a critical role in advancing scientific inquiries. Recent advancements in Large Language Models (LLMs) have demonstrated their potential to generate novel research ideas by leveraging large-scale scientific literature. However, previous work in research ideation has primarily relied on simplistic methods, such as keyword co-occurrence or semantic similarity. These approaches focus on identifying statistical associations in the literature but overlook the complex, contextual relationships between scientific concepts, which are essential to effectively leverage knowledge embedded in human literature. For instance, papers that simultaneously mention "keyword A" and "keyword B" often present research ideas that integrate both concepts. Additionally, some LLM-driven methods propose and refine research ideas using the model's internal knowledge, but they fail to effectively utilize the scientific concept network, limiting the grounding of ideas in established research. To address these challenges, we propose the Deep Ideation framework to address these challenges, integrating a scientific network that captures keyword co-occurrence and contextual relationships, enriching LLM-driven ideation. The framework introduces an explore-expand-evolve workflow to iteratively refine research ideas, using an Idea Stack to track progress. A critic engine, trained on real-world reviewer feedback, guides the process by providing continuous feedback on the novelty and feasibility of ideas. Our experiments show that our approach improves the quality of generated ideas by 10.67% compared to other methods, with ideas surpassing top conference acceptance levels. Human evaluation highlights their practical value in scientific research, and ablation studies confirm the effectiveness of each component in the workflow. Code repo is available at https://github.com/kyZhao-1/Deep-Ideation.

Authors:Hanchen Li, Qiuyang Mang, Runyuan He, Qizheng Zhang, Huanzhi Mao, Xiaokun Chen, Alvin Cheung, Joseph Gonzalez, Ion Stoica
Title: Continuum: Efficient and Robust Multi-Turn LLM Agent Scheduling with KV Cache Time-to-Live
Abstract:
Agentic LLM applications interleave LLM generation requests with tool calls. These tool calls break the continuity of the workflow by creating pauses between LLM requests, bringing many challenges for the serving system, especially under multi-turn scenarios. Each pause potentially causes KV cache eviction and extra waiting time before entering the continuous batch for the following LLM request. Since these pauses happen for each call, this problem becomes increasingly severe as turn number grow for agentic programs. Previous works either fail to incorporate information from the tool call, evicting KV cache that leads to repetitive prefill or loading, or ignore the continuity of a multi-turn program, creating waiting time between turns that increases per-request latency. We present Continuum, a serving system to optimize job completion time for multi-turn agent workloads by combining tool-aware KV cache timeout with program-level scheduling. By predicting tool call durations in agentic workflows, Continuum selectively pins the KV cache in GPU memory with a time-to-live value based on total turn number. When combined with program-level first-come-first-serve, Continuum prevents scheduling bubbles, preserves multi-turn continuity, and optimizes for throughput for complex agentic workflows. By modeling the variability of tool call and agent program continuity, Continuum outperforms state-of-the-art baselines. Our evaluation on real-world agentic workloads (SWE-Bench and BFCL) with Llama-3.1 8B/70B models shows that Continuum significantly improves the average job completion times, and remains performant across different hardware setups and DRAM offloading schemes. Preview code is available at: https://github.com/Hanchenli/vllm-continuum

Authors:Yibo Zhao, Yang Zhao, Hongru Du, Hao Frank Yang
Title: Personalized Decision Modeling: Utility Optimization or Textualized-Symbolic Reasoning
Abstract:
Decision-making models for individuals, particularly in high-stakes scenarios like vaccine uptake, often diverge from population optimal predictions. This gap arises from the uniqueness of the individual decision-making process, shaped by numerical attributes (e.g., cost, time) and linguistic influences (e.g., personal preferences and constraints). Developing upon Utility Theory and leveraging the textual-reasoning capabilities of Large Language Models (LLMs), this paper proposes an Adaptive Textual-symbolic Human-centric Reasoning framework (ATHENA) to address the optimal information integration. ATHENA uniquely integrates two stages: First, it discovers robust, group-level symbolic utility functions via LLM-augmented symbolic discovery; Second, it implements individual-level semantic adaptation, creating personalized semantic templates guided by the optimal utility to model personalized choices. Validated on real-world travel mode and vaccine choice tasks, ATHENA consistently outperforms utility-based, machine learning, and other LLM-based models, lifting F1 score by at least 6.5% over the strongest cutting-edge models. Further, ablation studies confirm that both stages of ATHENA are critical and complementary, as removing either clearly degrades overall predictive performance. By organically integrating symbolic utility modeling and semantic adaptation, ATHENA provides a new scheme for modeling human-centric decisions. The project page can be found at https://yibozh.github.io/Athena.

Authors:Jiawen Liu, Yuanbo Zeng, Jiaming Liang, Yizhen Yang, Yiheng Zhang, Enhui Cai, Xiaoqi Sheng, Hongmin Cai
Title: MM-UNet: Morph Mamba U-shaped Convolutional Networks for Retinal Vessel Segmentation
Abstract:
Accurate detection of retinal vessels plays a critical role in reflecting a wide range of health status indicators in the clinical diagnosis of ocular diseases. Recently, advances in deep learning have led to a surge in retinal vessel segmentation methods, which have significantly contributed to the quantitative analysis of vascular morphology. However, retinal vasculature differs significantly from conventional segmentation targets in that it consists of extremely thin and branching structures, whose global morphology varies greatly across images. These characteristics continue to pose challenges to segmentation precision and robustness. To address these issues, we propose MM-UNet, a novel architecture tailored for efficient retinal vessel segmentation. The model incorporates Morph Mamba Convolution layers, which replace pointwise convolutions to enhance branching topological perception through morph, state-aware feature sampling. Additionally, Reverse Selective State Guidance modules integrate reverse guidance theory with state-space modeling to improve geometric boundary awareness and decoding efficiency. Extensive experiments conducted on two public retinal vessel segmentation datasets demonstrate the superior performance of the proposed method in segmentation accuracy. Compared to the existing approaches, MM-UNet achieves F1-score gains of 1.64 % on DRIVE and 1.25 % on STARE, demonstrating its effectiveness and advancement. The project code is public via https://github.com/liujiawen-jpg/MM-UNet.

Authors:Sangyun Park, Jin Kim, Yuchen Cui, Matthew S. Brown
Title: TRACE: Textual Reasoning for Affordance Coordinate Extraction
Abstract:
Vision-Language Models (VLMs) struggle to translate high-level instructions into the precise spatial affordances required for robotic manipulation. While visual Chain-of-Thought (CoT) methods exist, they are often computationally intensive. In this work, we introduce TRACE (Textual Reasoning for Affordance Coordinate Extraction), a novel methodology that integrates a textual Chain of Reasoning (CoR) into the affordance prediction process. We use this methodology to create the TRACE dataset, a large-scale collection created via an autonomous pipeline that pairs instructions with explicit textual rationales. By fine-tuning a VLM on this data, our model learns to externalize its spatial reasoning before acting. Our experiments show that our TRACE-tuned model achieves state-of-the-art performance, reaching 48.1% accuracy on the primary Where2Place (W2P) benchmark (a 9.6% relative improvement) and 55.0% on the more challenging W2P(h) subset. Crucially, an ablation study demonstrates that performance scales directly with the amount of reasoning data used, confirming the CoR's effectiveness. Furthermore, analysis of the model's attention maps reveals an interpretable reasoning process where focus shifts dynamically across reasoning steps. This work shows that training VLMs to generate a textual CoR is an effective and robust strategy for enhancing the precision, reliability, and interpretability of VLM-based robot control. Our dataset and code are available at https://github.com/jink-ucla/TRACE

Authors:Jinhua Yin, Peiru Yang, Chen Yang, Huili Wang, Zhiyang Hu, Shangguang Wang, Yongfeng Huang, Tao Qi
Title: Black-Box Membership Inference Attack for LVLMs via Prior Knowledge-Calibrated Memory Probing
Abstract:
Large vision-language models (LVLMs) derive their capabilities from extensive training on vast corpora of visual and textual data. Empowered by large-scale parameters, these models often exhibit strong memorization of their training data, rendering them susceptible to membership inference attacks (MIAs). Existing MIA methods for LVLMs typically operate under white- or gray-box assumptions, by extracting likelihood-based features for the suspected data samples based on the target LVLMs. However, mainstream LVLMs generally only expose generated outputs while concealing internal computational features during inference, limiting the applicability of these methods. In this work, we propose the first black-box MIA framework for LVLMs, based on a prior knowledge-calibrated memory probing mechanism. The core idea is to assess the model memorization of the private semantic information embedded within the suspected image data, which is unlikely to be inferred from general world knowledge alone. We conducted extensive experiments across four LVLMs and three datasets. Empirical results demonstrate that our method effectively identifies training data of LVLMs in a purely black-box setting and even achieves performance comparable to gray-box and white-box methods. Further analysis reveals the robustness of our method against potential adversarial manipulations, and the effectiveness of the methodology designs. Our code and data are available at https://github.com/spmede/KCMP.

Authors:Abdelaziz Bounhar, Hadi Abdine, Evan Dufraisse, Ahmad Chamma, Amr Mohamed, Dani Bouch, Michalis Vazirgiannis, Guokan Shang
Title: Shorter but not Worse: Frugal Reasoning via Easy Samples as Length Regularizers in Math RLVR
Abstract:
Large language models (LLMs) trained for step-by-step reasoning often become excessively verbose, raising inference cost. Standard Reinforcement Learning with Verifiable Rewards (RLVR) pipelines filter out ``easy'' problems for training efficiency, leaving the model to train primarily on harder problems that require longer reasoning chains. This skews the output length distribution upward, resulting in a \textbf{model that conflates ``thinking longer'' with ``thinking better''}. In this work, we show that retaining and modestly up-weighting moderately easy problems acts as an implicit length regularizer. Exposing the model to solvable short-chain tasks constrains its output distribution and prevents runaway verbosity. The result is \textbf{\emph{emergent brevity for free}}: the model learns to solve harder problems without inflating the output length, \textbf{ despite the absence of any explicit length penalization}. RLVR experiments using this approach on \textit{Qwen3-4B-Thinking-2507} (with a 16k token limit) achieve baseline pass@1 AIME25 accuracy while generating solutions that are, on average, nearly twice as short. The code is available at \href{https://github.com/MBZUAI-Paris/Frugal-AI}{GitHub}, with datasets and models on \href{https://huggingface.co/collections/MBZUAI-Paris/k2-think-mini-68dcfa8b114686a4bd3dc2bc}{Hugging Face}.

Authors:Rongxin Chen, Yunfan Li, Yige Yuan, Bingbing Xu, Huawei Shen
Title: Multi-Personality Generation of LLMs at Decoding-time
Abstract:
Multi-personality generation for LLMs, enabling simultaneous embodiment of multiple personalization attributes, is a fundamental challenge. Existing retraining-based approaches are costly and poorly scalable, while decoding-time methods often rely on external models or heuristics, limiting flexibility and robustness. In this paper, we propose a novel Multi-Personality Generation (MPG) framework under the decoding-time combination paradigm. It flexibly controls multi-personality without relying on scarce multi-dimensional models or extra training, leveraging implicit density ratios in single-dimensional models as a "free lunch" to reformulate the task as sampling from a target strategy aggregating these ratios. To implement MPG efficiently, we design Speculative Chunk-level based Rejection sampling (SCR), which generates responses in chunks and parallelly validates them via estimated thresholds within a sliding window. This significantly reduces computational overhead while maintaining high-quality generation. Experiments on MBTI personality and Role-Playing demonstrate the effectiveness of MPG, showing improvements up to 16%-18%. Code and data are available at https://github.com/Libra117/MPG .

Authors:Robyn Wyrick
Title: Mirror-Neuron Patterns in AI Alignment
Abstract:
As artificial intelligence (AI) advances toward superhuman capabilities, aligning these systems with human values becomes increasingly critical. Current alignment strategies rely largely on externally specified constraints that may prove insufficient against future super-intelligent AI capable of circumventing top-down controls. This research investigates whether artificial neural networks (ANNs) can develop patterns analogous to biological mirror neurons cells that activate both when performing and observing actions, and how such patterns might contribute to intrinsic alignment in AI. Mirror neurons play a crucial role in empathy, imitation, and social cognition in humans. The study therefore asks: (1) Can simple ANNs develop mirror-neuron patterns? and (2) How might these patterns contribute to ethical and cooperative decision-making in AI systems? Using a novel Frog and Toad game framework designed to promote cooperative behaviors, we identify conditions under which mirror-neuron patterns emerge, evaluate their influence on action circuits, introduce the Checkpoint Mirror Neuron Index (CMNI) to quantify activation strength and consistency, and propose a theoretical framework for further study. Our findings indicate that appropriately scaled model capacities and self/other coupling foster shared neural representations in ANNs similar to biological mirror neurons. These empathy-like circuits support cooperative behavior and suggest that intrinsic motivations modeled through mirror-neuron dynamics could complement existing alignment techniques by embedding empathy-like mechanisms directly within AI architectures.

Authors:Zijian Zhang, Rong Wang, Shiyang Li, Yuebo Luo, Mingyi Hong, Caiwen Ding
Title: CudaForge: An Agent Framework with Hardware Feedback for CUDA Kernel Optimization
Abstract:
Developing efficient CUDA kernels is increasingly critical for AI applications such as large-scale LLM training. However, manual kernel design is both costly and time-consuming, motivating automatic approaches that leverage LLMs for code generation. Existing methods for automatic kernel generation, however, often produce low-efficiency kernels, incur high computational overhead, and fail to generalize across settings. In this work, we propose CudaForge, a training-free multi-agent workflow for CUDA kernel generation and optimization. Our workflow is inspired by the iterative workflow of human experts, which contains steps such as developing initial kernels, testing correctness, analyzing hardware feedback, and iterative improvement. More specifically, CudaForge employs two LLM agents: a Coder and a Judge, that iteratively generate, correct, and optimize CUDA kernels, while integrating hardware feedback such as Nsight Compute (NCU) metrics. In extensive evaluations, we show that CudaForge, by leveraging base models like OpenAI-o3, achieves 97.6\% correctness of generated kernels and an average 1.68$\times$ speedup over PyTorch baselines, substantially surpassing state-of-the-art models including OpenAI-o3 and Kevin on KernelBench.Beyond accuracy and speed, CudaForge demonstrates strong generalization across GPUs (A100, RTX 6000, 4090, 3090) and base models (OpenAI-o3, GPT-5, gpt-oss-120B, Claude-Sonnet-4, QwQ-32B), while maintaining high efficiency. In particular, generating an optimized kernel takes about 26.5 minutes on one RTX6000 and incurs about \$ 0.3 API cost, which is significantly cheaper than existing agentic work that costs 6 H100 hours and \$ 5 API cost per kernel. Our results highlight that multi-agent, training-free workflows can enable cost-effective, generalizable, and high-performance CUDA kernel optimization. Code available at https://github.com/OptimAI-Lab/CudaForge

Authors:Thang Luong, Dawsen Hwang, Hoang H. Nguyen, Golnaz Ghiasi, Yuri Chervonyi, Insuk Seo, Junsu Kim, Garrett Bingham, Jonathan Lee, Swaroop Mishra, Alex Zhai, Clara Huiyi Hu, Henryk Michalewski, Jimin Kim, Jeonghyun Ahn, Junhwi Bae, Xingyou Song, Trieu H. Trinh, Quoc V. Le, Junehyuk Jung
Title: Towards Robust Mathematical Reasoning
Abstract:
Finding the right north-star metrics is highly critical for advancing the mathematical reasoning capabilities of foundation models, especially given that existing evaluations are either too easy or only focus on getting correct short answers. To address these issues, we present IMO-Bench, a suite of advanced reasoning benchmarks, vetted by a panel of top specialists and that specifically targets the level of the International Mathematical Olympiad (IMO), the most prestigious venue for young mathematicians. IMO-AnswerBench first tests models on 400 diverse Olympiad problems with verifiable short answers. IMO-Proof Bench is the next-level evaluation for proof-writing capabilities, which includes both basic and advanced IMO level problems as well as detailed grading guidelines to facilitate automatic grading. These benchmarks played a crucial role in our historic achievement of the gold-level performance at IMO 2025 with Gemini Deep Think (Luong and Lockhart, 2025). Our model achieved 80.0% on IMO-AnswerBench and 65.7% on the advanced IMO-Proof Bench, surpassing the best non-Gemini models by large margins of 6.9% and 42.4% respectively. We also showed that autograders built with Gemini reasoning correlate well with human evaluations and construct IMO-GradingBench, with 1000 human gradings on proofs, to enable further progress in automatic evaluation of long-form answers. We hope that IMO-Bench will help the community towards advancing robust mathematical reasoning and release it at https://imobench.github.io/.

Authors:Hamed Fard, Mahsa Kholghi, Benedikt Groß, Gerhard Wunder
Title: Machine and Deep Learning for Indoor UWB Jammer Localization
Abstract:
Ultra-wideband (UWB) localization delivers centimeter-scale accuracy but is vulnerable to jamming attacks, creating security risks for asset tracking and intrusion detection in smart buildings. Although machine learning (ML) and deep learning (DL) methods have improved tag localization, localizing malicious jammers within a single room and across changing indoor layouts remains largely unexplored. Two novel UWB datasets, collected under original and modified room configurations, are introduced to establish comprehensive ML/DL baselines. Performance is rigorously evaluated using a variety of classification and regression metrics. On the source dataset with the collected UWB features, Random Forest achieves the highest F1-macro score of 0.95 and XGBoost achieves the lowest mean Euclidean error of 20.16 cm. However, deploying these source-trained models in the modified room layout led to severe performance degradation, with XGBoost's mean Euclidean error increasing tenfold to 207.99 cm, demonstrating significant domain shift. To mitigate this degradation, a domain-adversarial ConvNeXt autoencoder (A-CNT) is proposed that leverages a gradient-reversal layer to align CIR-derived features across domains. The A-CNT framework restores localization performance by reducing the mean Euclidean error to 34.67 cm. This represents a 77 percent improvement over non-adversarial transfer learning and an 83 percent improvement over the best baseline, restoring the fraction of samples within 30 cm to 0.56. Overall, the results demonstrate that adversarial feature alignment enables robust and transferable indoor jammer localization despite environmental changes. Code and dataset available at https://github.com/afbf4c8996f/Jammer-Loc

Authors:Feng Chen, Zhuxiu Xu, Tianzhe Chu, Xunzhe Zhou, Li Sun, Zewen Wu, Shenghua Gao, Zhongyu Li, Yanchao Yang, Yi Ma
Title: GenDexHand: Generative Simulation for Dexterous Hands
Abstract:
Data scarcity remains a fundamental bottleneck for embodied intelligence. Existing approaches use large language models (LLMs) to automate gripper-based simulation generation, but they transfer poorly to dexterous manipulation, which demands more specialized environment design. Meanwhile, dexterous manipulation tasks are inherently more difficult due to their higher degrees of freedom. Massively generating feasible and trainable dexterous hand tasks remains an open challenge. To this end, we present GenDexHand, a generative simulation pipeline that autonomously produces diverse robotic tasks and environments for dexterous manipulation. GenDexHand introduces a closed-loop refinement process that adjusts object placements and scales based on vision-language model (VLM) feedback, substantially improving the average quality of generated environments. Each task is further decomposed into sub-tasks to enable sequential reinforcement learning, reducing training time and increasing success rates. Our work provides a viable path toward scalable training of diverse dexterous hand behaviors in embodied intelligence by offering a simulation-based solution to synthetic data generation. Our website: https://winniechen2002.github.io/GenDexHand/.

Authors:Yuxiao Yang, Xiao-Xiao Long, Zhiyang Dou, Cheng Lin, Yuan Liu, Qingsong Yan, Yuexin Ma, Haoqian Wang, Zhiqiang Wu, Wei Yin
Title: Wonder3D++: Cross-domain Diffusion for High-fidelity 3D Generation from a Single Image
Abstract:
In this work, we introduce \textbf{Wonder3D++}, a novel method for efficiently generating high-fidelity textured meshes from single-view images. Recent methods based on Score Distillation Sampling (SDS) have shown the potential to recover 3D geometry from 2D diffusion priors, but they typically suffer from time-consuming per-shape optimization and inconsistent geometry. In contrast, certain works directly produce 3D information via fast network inferences, but their results are often of low quality and lack geometric details. To holistically improve the quality, consistency, and efficiency of single-view reconstruction tasks, we propose a cross-domain diffusion model that generates multi-view normal maps and the corresponding color images. To ensure the consistency of generation, we employ a multi-view cross-domain attention mechanism that facilitates information exchange across views and modalities. Lastly, we introduce a cascaded 3D mesh extraction algorithm that drives high-quality surfaces from the multi-view 2D representations in only about $3$ minute in a coarse-to-fine manner. Our extensive evaluations demonstrate that our method achieves high-quality reconstruction results, robust generalization, and good efficiency compared to prior works. Code available at https://github.com/xxlong0/Wonder3D/tree/Wonder3D_Plus.

Authors:Mian Wu, Gavin Zhang, Sewon Min, Sergey Levine, Aviral Kumar
Title: RLAC: Reinforcement Learning with Adversarial Critic for Free-Form Generation Tasks
Abstract:
Open-ended generation tasks require outputs to satisfy diverse and often implicit task-specific evaluation rubrics. The sheer number of relevant rubrics leads to prohibitively high verification costs and incomplete assessments of a response, making reinforcement learning (RL) post-training with rubric-based rewards difficult to scale. This problem is exacerbated by the fact that often the best way to combine these rubrics into one single reward is also highly prompt-specific. We propose Reinforcement Learning with Adversarial Critic (RLAC), a post-training approach that addresses these challenges via dynamic rubric verification. Our approach employs a large language model (LLM) as a critic that dynamically identifies only the most likely failure modes (e.g., a factual error or unhandled edge case), which are then verified by an external validator to optimize both generator and critic jointly. By training both the generator and the critic, this game enhances the critic's error detection and the generator's output quality while reducing required verifications. Our experiments demonstrate that RLAC improves factual accuracy in text generation and correctness in code generation, while also outperforming exhaustive verification and reward model methods. We show that dynamic critics are more effective than fixed critics, showcasing the potential of RLAC for scaling RL post-training to free-form generation tasks.

Authors:Sekh Mainul Islam, Pepa Atanasova, Isabelle Augenstein
Title: Multi-Step Knowledge Interaction Analysis via Rank-2 Subspace Disentanglement
Abstract:
Natural Language Explanations (NLEs) describe how Large Language Models (LLMs) make decisions, drawing on both external Context Knowledge (CK) and Parametric Knowledge (PK) stored in model weights. Understanding their interaction is key to assessing the grounding of NLEs, yet it remains underexplored. Prior work has largely examined only single-step generation, typically the final answer, and has modelled PK and CK interaction only as a binary choice in a rank-1 subspace. This overlooks richer forms of interaction, such as complementary or supportive knowledge. We propose a novel rank-2 projection subspace that disentangles PK and CK contributions more accurately and use it for the first multi-step analysis of knowledge interactions across longer NLE sequences. Experiments on four QA datasets and three open-weight instruction-tuned LLMs show that diverse knowledge interactions are poorly represented in a rank-1 subspace but are effectively captured in our rank-2 formulation. Our multi-step analysis reveals that hallucinated NLEs align strongly with the PK direction, context-faithful ones balance PK and CK, and Chain-of-Thought prompting for NLEs shifts generated NLEs toward CK by reducing PK reliance. This work provides the first framework for systematic studies of multi-step knowledge interactions in LLMs through a richer rank-2 subspace disentanglement. Code and data: https://github.com/copenlu/pk-ck-knowledge-disentanglement.

Authors:Sharan Maiya, Henning Bartsch, Nathan Lambert, Evan Hubinger
Title: Open Character Training: Shaping the Persona of AI Assistants through Constitutional AI
Abstract:
The character of the "AI assistant" persona generated by modern chatbot large language models influences both surface-level behavior and apparent values, beliefs, and ethics. These all affect interaction quality, perceived intelligence, and alignment with both developer and user intentions. The shaping of this persona, known as character training, is a critical component of industry post-training, yet remains effectively unstudied in the academic literature. We introduce the first open implementation of character training, leveraging Constitutional AI and a new data pipeline using synthetic introspective data to shape the assistant persona in a more effective and controlled manner than alternatives such as constraining system prompts or activation steering. Specifically, we fine-tune three popular open-weights models using 11 example personas, such as humorous, deeply caring, or even malevolent. To track the effects of our approach, we introduce a method which analyzes revealed preferences, uncovering clear and holistic changes in character. We find these changes are more robust to adversarial prompting than the above two alternatives, while also leading to more coherent and realistic generations. Finally, we demonstrate this fine-tuning has little to no effect on general capabilities as measured by common benchmarks. We describe and open-source our full post-training method, the implementation of which can be found at https://github.com/maiush/OpenCharacterTraining.

Authors:Arthur Hubert, Gamal Elghazaly, Raphaël Frank
Title: Driving scenario generation and evaluation using a structured layer representation and foundational models
Abstract:
Rare and challenging driving scenarios are critical for autonomous vehicle development. Since they are difficult to encounter, simulating or generating them using generative models is a popular approach. Following previous efforts to structure driving scenario representations in a layer model, we propose a structured five-layer model to improve the evaluation and generation of rare scenarios. We use this model alongside large foundational models to generate new driving scenarios using a data augmentation strategy. Unlike previous representations, our structure introduces subclasses and characteristics for every agent of the scenario, allowing us to compare them using an embedding specific to our layer-model. We study and adapt two metrics to evaluate the relevance of a synthetic dataset in the context of a structured representation: the diversity score estimates how different the scenarios of a dataset are from one another, while the originality score calculates how similar a synthetic dataset is from a real reference set. This paper showcases both metrics in different generation setup, as well as a qualitative evaluation of synthetic videos generated from structured scenario descriptions. The code and extended results can be found at https://github.com/Valgiz/5LMSG.

Authors:Hanwen Xu, Xuyao Huang, Yuzhe Liu, Kai Yu, Zhijie Deng
Title: TPS-Bench: Evaluating AI Agents' Tool Planning \& Scheduling Abilities in Compounding Tasks
Abstract:
Large language model (LLM) agents have exhibited strong problem-solving competence across domains like research and coding. Yet, it remains underexplored whether LLM agents can tackle compounding real-world problems that require a diverse set of tools to complete. Given a broad, heterogeneous tool repository, LLM agents must not only select appropriate tools based on task planning analysis but also strategically schedule the execution order to ensure efficiency. This paper introduces TPS-Bench to benchmark the ability of LLM agents in solving such problems that demand Tool Planning and Scheduling. TPS-Bench collects 200 compounding tasks of two difficulty levels, based on a tool repository containing hundreds of model context protocol (MCP) tools. In particular, each task is composed of multiple subtasks, such as web search, map navigation, calendar checking, etc., and each subtask can be completed by a basic tool. Our evaluation emphasizes both task completion rate and efficiency. The empirical studies on popular closed-source and open-source LLMs indicate that most models can perform reasonable tool planning, but differ in scheduling. For example, GLM-4.5 achieves an outperforming task completion rate of 64.72% with extensive sequential tool calls, hence suffering from significantly long execution time. By contrast, GPT-4o prioritizes parallel tool calls but achieves only a 45.08% completion rate. Considering reinforcement learning (RL) can be a viable way to improve the scheduling efficiency without compromising performance, we perform an initial study on Qwen3-1.7B and witness a 14% reduction in execution time alongside a 6% gain in task completion rate based on rarely 100 RL training samples. Our code is available https://github.com/hanwenxu1/mcp-agent.

Authors:Hao Wang, Zixuan Weng, Jindong Han, Wei Fan, Hao Liu
Title: DAMBench: A Multi-Modal Benchmark for Deep Learning-based Atmospheric Data Assimilation
Abstract:
Data Assimilation is a cornerstone of atmospheric system modeling, tasked with reconstructing system states by integrating sparse, noisy observations with prior estimation. While traditional approaches like variational and ensemble Kalman filtering have proven effective, recent advances in deep learning offer more scalable, efficient, and flexible alternatives better suited for complex, real-world data assimilation involving large-scale and multi-modal observations. However, existing deep learning-based DA research suffers from two critical limitations: (1) reliance on oversimplified scenarios with synthetically perturbed observations, and (2) the absence of standardized benchmarks for fair model comparison. To address these gaps, in this work, we introduce DAMBench, the first large-scale multi-modal benchmark designed to evaluate data-driven DA models under realistic atmospheric conditions. DAMBench integrates high-quality background states from state-of-the-art forecasting systems and real-world multi-modal observations (i.e., real-world weather stations and satellite imagery). All data are resampled to a common grid and temporally aligned to support systematic training, validation, and testing. We provide unified evaluation protocols and benchmark representative data assimilation approaches, including latent generative models and neural process frameworks. Additionally, we propose a lightweight multi-modal plugin to demonstrate how integrating realistic observations can enhance even simple baselines. Through comprehensive experiments, DAMBench establishes a rigorous foundation for future research, promoting reproducibility, fair comparison, and extensibility to real-world multi-modal scenarios. Our dataset and code are publicly available at https://github.com/figerhaowang/DAMBench.

Authors:Dennis Pierantozzi, Luca Carlini, Mauro Orazio Drago, Chiara Lena, Cesare Hassan, Elena De Momi, Danail Stoyanov, Sophia Bano, Mobarak I. Hoque
Title: When to Trust the Answer: Question-Aligned Semantic Nearest Neighbor Entropy for Safer Surgical VQA
Abstract:
Safety and reliability are essential for deploying Visual Question Answering (VQA) in surgery, where incorrect or ambiguous responses can harm the patient. Most surgical VQA research focuses on accuracy or linguistic quality while overlooking safety behaviors such as ambiguity awareness, referral to human experts, or triggering a second opinion. Inspired by Automatic Failure Detection (AFD), we study uncertainty estimation as a key enabler of safer decision making. We introduce Question Aligned Semantic Nearest Neighbor Entropy (QA-SNNE), a black box uncertainty estimator that incorporates question semantics into prediction confidence. It measures semantic entropy by comparing generated answers with nearest neighbors in a medical text embedding space, conditioned on the question. We evaluate five models, including domain specific Parameter-Efficient Fine-Tuned (PEFT) models and zero-shot Large Vision-Language Models (LVLMs), on EndoVis18-VQA and PitVQA. PEFT models degrade under mild paraphrasing, while LVLMs are more resilient. Across three LVLMs and two PEFT baselines, QA-SNNE improves AUROC in most in-template settings and enhances hallucination detection. The Area Under the ROC Curve (AUROC) increases by 15-38% for zero-shot models, with gains maintained under out-of-template stress. QA-SNNE offers a practical and interpretable step toward AFD in surgical VQA by linking semantic uncertainty to question context. Combining LVLM backbones with question aligned uncertainty estimation can improve safety and clinician trust. The code and model are available at https://github.com/DennisPierantozzi/QASNNE

Authors:Xinyu Mao, Junsi Li, Haoji Zhang, Yu Liang, Ming Sun
Title: SEPS: Semantic-enhanced Patch Slimming Framework for fine-grained cross-modal alignment
Abstract:
Fine-grained cross-modal alignment aims to establish precise local correspondences between vision and language, forming a cornerstone for visual question answering and related multimodal applications. Current approaches face challenges in addressing patch redundancy and ambiguity, which arise from the inherent information density disparities across modalities. Recently, Multimodal Large Language Models (MLLMs) have emerged as promising solutions to bridge this gap through their robust semantic generation capabilities. However, the dense textual outputs from MLLMs may introduce conflicts with the original sparse captions. Furthermore, accurately quantifying semantic relevance between rich visual patches and concise textual descriptions remains a core challenge. To overcome these limitations, we introduce the Semantic-Enhanced Patch Slimming (SEPS) framework, which systematically addresses patch redundancy and ambiguity. Our approach employs a two-stage mechanism to integrate unified semantics from both dense and sparse texts, enabling the identification of salient visual patches. Additionally, it leverages relevance-aware selection with mean value computation to highlight crucial patch-word correspondences, thereby improving cross-modal similarity assessment. Comprehensive experiments on Flickr30K and MS-COCO datasets validate that SEPS achieves superior performance, surpassing existing approaches by 23\%-86\% in rSum across diverse model architectures, with notable enhancements in text-to-image retrieval scenarios. Our implementation is available at https://github.com/Sweet4tars/seps.git.

Authors:Sapir Harary, Eran Hirsch, Aviv Slobodkin, David Wan, Mohit Bansal, Ido Dagan
Title: PrefixNLI: Detecting Factual Inconsistencies as Soon as They Arise
Abstract:
Natural Language Inference (NLI) models have been used in various ways to improve the factuality of LLM outputs. This is typically done by applying an NLI model to judge whether the model output is entailed from the supposed evidence, triggering some corrective actions, such as beam reranking at inference time or RL rewards during training. While NLI models are trained to detect factual inconsistencies over complete sentences, decisions in the common autoregressive generation architecture are made for each evolving text prefix, during decoding. Addressing this setting, we generalize the entailment detection task to apply over arbitrary text prefixes, and suggest its utility for improving generation faithfulness. Providing suitable evaluation and training datasets for this task, we train MiniTruePrefixes, a novel specialized model that better detects factual inconsistencies over text prefixes, outperforming comparable baseline NLI models by 5-14 F1 points in prefix-level entailment. We further demonstrate that integrating MiniTruePrefixes into a controlled decoding framework substantially improves factual consistency in abstractive summarization. When guided by MiniTruePrefixes, LLaMA-3.2-3B-Instruct matches the faithfulness and runtime of the 8B model from the same model family, while using only half the memory.

Authors:Qiangguo Jin, Xianyao Zheng, Hui Cui, Changming Sun, Yuqi Fang, Cong Cong, Ran Su, Leyi Wei, Ping Xuan, Junbo Wang
Title: CMI-MTL: Cross-Mamba interaction based multi-task learning for medical visual question answering
Abstract:
Medical visual question answering (Med-VQA) is a crucial multimodal task in clinical decision support and telemedicine. Recent self-attention based methods struggle to effectively handle cross-modal semantic alignments between vision and language. Moreover, classification-based methods rely on predefined answer sets. Treating this task as a simple classification problem may make it unable to adapt to the diversity of free-form answers and overlook the detailed semantic information of free-form answers. In order to tackle these challenges, we introduce a Cross-Mamba Interaction based Multi-Task Learning (CMI-MTL) framework that learns cross-modal feature representations from images and texts. CMI-MTL comprises three key modules: fine-grained visual-text feature alignment (FVTA), cross-modal interleaved feature representation (CIFR), and free-form answer-enhanced multi-task learning (FFAE). FVTA extracts the most relevant regions in image-text pairs through fine-grained visual-text feature alignment. CIFR captures cross-modal sequential interactions via cross-modal interleaved feature representation. FFAE leverages auxiliary knowledge from open-ended questions through free-form answer-enhanced multi-task learning, improving the model's capability for open-ended Med-VQA. Experimental results show that CMI-MTL outperforms the existing state-of-the-art methods on three Med-VQA datasets: VQA-RAD, SLAKE, and OVQA. Furthermore, we conduct more interpretability experiments to prove the effectiveness. The code is publicly available at https://github.com/BioMedIA-repo/CMI-MTL.

Authors:Tae-Young Lee, Juwon Seo, Jong Hwan Ko, Gyeong-Moon Park
Title: Perturb a Model, Not an Image: Towards Robust Privacy Protection via Anti-Personalized Diffusion Models
Abstract:
Recent advances in diffusion models have enabled high-quality synthesis of specific subjects, such as identities or objects. This capability, while unlocking new possibilities in content creation, also introduces significant privacy risks, as personalization techniques can be misused by malicious users to generate unauthorized content. Although several studies have attempted to counter this by generating adversarially perturbed samples designed to disrupt personalization, they rely on unrealistic assumptions and become ineffective in the presence of even a few clean images or under simple image transformations. To address these challenges, we shift the protection target from the images to the diffusion model itself to hinder the personalization of specific subjects, through our novel framework called Anti-Personalized Diffusion Models (APDM). We first provide a theoretical analysis demonstrating that a naive approach of existing loss functions to diffusion models is inherently incapable of ensuring convergence for robust anti-personalization. Motivated by this finding, we introduce Direct Protective Optimization (DPO), a novel loss function that effectively disrupts subject personalization in the target model without compromising generative quality. Moreover, we propose a new dual-path optimization strategy, coined Learning to Protect (L2P). By alternating between personalization and protection paths, L2P simulates future personalization trajectories and adaptively reinforces protection at each step. Experimental results demonstrate that our framework outperforms existing methods, achieving state-of-the-art performance in preventing unauthorized personalization. The code is available at https://github.com/KU-VGI/APDM.

Authors:Ziyi Wang, Yuanmei Zhang, Dorna Esrafilzadeh, Ali R. Jalili, Suncheng Xiang
Title: MicroAUNet: Boundary-Enhanced Multi-scale Fusion with Knowledge Distillation for Colonoscopy Polyp Image Segmentation
Abstract:
Early and accurate segmentation of colorectal polyps is critical for reducing colorectal cancer mortality, which has been extensively explored by academia and industry. However, current deep learning-based polyp segmentation models either compromise clinical decision-making by providing ambiguous polyp margins in segmentation outputs or rely on heavy architectures with high computational complexity, resulting in insufficient inference speeds for real-time colorectal endoscopic applications. To address this problem, we propose MicroAUNet, a light-weighted attention-based segmentation network that combines depthwise-separable dilated convolutions with a single-path, parameter-shared channel-spatial attention block to strengthen multi-scale boundary features. On the basis of it, a progressive two-stage knowledge-distillation scheme is introduced to transfer semantic and boundary cues from a high-capacity teacher. Extensive experiments on benchmarks also demonstrate the state-of-the-art accuracy under extremely low model complexity, indicating that MicroAUNet is suitable for real-time clinical polyp segmentation. The code is publicly available at https://github.com/JeremyXSC/MicroAUNet.

Authors:Narges Ghasemi, Amir Ziashahabi, Salman Avestimehr, Cyrus Shahabi
Title: GeoToken: Hierarchical Geolocalization of Images via Next Token Prediction
Abstract:
Image geolocalization, the task of determining an image's geographic origin, poses significant challenges, largely due to visual similarities across disparate locations and the large search space. To address these issues, we propose a hierarchical sequence prediction approach inspired by how humans narrow down locations from broad regions to specific addresses. Analogously, our model predicts geographic tokens hierarchically, first identifying a general region and then sequentially refining predictions to increasingly precise locations. Rather than relying on explicit semantic partitions, our method uses S2 cells, a nested, multiresolution global grid, and sequentially predicts finer-level cells conditioned on visual inputs and previous predictions. This procedure mirrors autoregressive text generation in large language models. Much like in language modeling, final performance depends not only on training but also on inference-time strategy. We investigate multiple top-down traversal methods for autoregressive sampling, incorporating techniques from test-time compute scaling used in language models. Specifically, we integrate beam search and multi-sample inference while exploring various selection strategies to determine the final output. This enables the model to manage uncertainty by exploring multiple plausible paths through the hierarchy. We evaluate our method on the Im2GPS3k and YFCC4k datasets against two distinct sets of baselines: those that operate without a Multimodal Large Language Model (MLLM) and those that leverage one. In the MLLM-free setting, our model surpasses other comparable baselines on nearly all metrics, achieving state-of-the-art performance with accuracy gains of up to 13.9%. When augmented with an MLLM, our model outperforms all baselines, setting a new state-of-the-art across all metrics. The source code is available at https://github.com/NNargesNN/GeoToken.

Authors:Yifan Pu, Jixuan Ying, Qixiu Li, Tianzhu Ye, Dongchen Han, Xiaochen Wang, Ziyi Wang, Xinyu Shao, Gao Huang, Xiu Li
Title: Linear Differential Vision Transformer: Learning Visual Contrasts via Pairwise Differentials
Abstract:
Vision Transformers (ViTs) have become a universal backbone for both image recognition and image generation. Yet their Multi-Head Self-Attention (MHSA) layer still performs a quadratic query-key interaction for every token pair, spending the bulk of computation on visually weak or redundant correlations. We introduce Visual-Contrast Attention (VCA), a drop-in replacement for MHSA that injects an explicit notion of discrimination while reducing the theoretical complexity from O(N N C) to O(N n C) with n << N. VCA first distils each head's dense query field into a handful of spatially pooled visual-contrast tokens, then splits them into a learnable positive and negative stream whose differential interaction highlights what truly separates one region from another. The module adds fewer than 0.3M parameters to a DeiT-Tiny backbone, requires no extra FLOPs, and is wholly architecture-agnostic. Empirically, VCA lifts DeiT-Tiny top-1 accuracy on ImageNet-1K from 72.2% to 75.6% (+3.4) and improves three strong hierarchical ViTs by up to 3.1%, while in class-conditional ImageNet generation it lowers FID-50K by 2.1 to 5.2 points across both diffusion (DiT) and flow (SiT) models. Extensive ablations confirm that (i) spatial pooling supplies low-variance global cues, (ii) dual positional embeddings are indispensable for contrastive reasoning, and (iii) combining the two in both stages yields the strongest synergy. VCA therefore offers a simple path towards faster and sharper Vision Transformers. The source code is available at https://github.com/LeapLabTHU/LinearDiff.

Authors:Shijie Zhou, Viet Dac Lai, Hao Tan, Jihyung Kil, Wanrong Zhu, Changyou Chen, Ruiyi Zhang
Title: GUI-AIMA: Aligning Intrinsic Multimodal Attention with a Context Anchor for GUI Grounding
Abstract:
Graphical user interface (GUI) grounding is a key function of computer-use agents, which maps natural-language instructions to actionable screen regions. Existing approaches based on Multimodal Large Language Models (MLLMs) typically formulate it as a text-based coordinate generation task, yet directly generating precise coordinates from visual inputs remains challenging and computationally intensive. An intuitive way to implement GUI grounding is to first select visual patches relevant to the instructions and then determine the precise click location within those patches. Based on the observations that general MLLMs have some native grounding capability, nested within their attentions, we propose GUI-AIMA, an attention-based and coordinate-free supervised fine-tuning framework for efficient GUI grounding. GUI-AIMA aligns the intrinsic multimodal attention of MLLMs with patch-wise grounding signals. These signals are calculated adaptively for diverse user instructions by multi-head aggregation on simplified query-visual attention matrices. Besides, its coordinate-free manner can easily integrate a plug-and-play zoom-in stage. GUI-AIMA-3B was trained with only 85k screenshots, demonstrating exceptional data efficiency and verifying that light training can trigger the native grounding capability of MLLMs. It achieves state-of-the-art performance among 3B models, attaining an average accuracy of 59.6% on ScreenSpot-Pro, 63.8% on OSWorld-G and 91.5% on ScreenSpot-v2. Project page: https://github.com/sjz5202/GUI-AIMA

Authors:Akshay Sai Banderwaar, Abhishek Gupta
Title: Fast PINN Eigensolvers via Biconvex Reformulation
Abstract:
Eigenvalue problems have a distinctive forward-inverse structure and are fundamental to characterizing a system's thermal response, stability, and natural modes. Physics-Informed Neural Networks (PINNs) offer a mesh-free alternative for solving such problems but are often orders of magnitude slower than classical numerical schemes. In this paper, we introduce a reformulated PINN approach that casts the search for eigenpairs as a biconvex optimization problem, enabling fast and provably convergent alternating convex search (ACS) over eigenvalues and eigenfunctions using analytically optimal updates. Numerical experiments show that PINN-ACS attains high accuracy with convergence speeds up to 500$\times$ faster than gradient-based PINN training. We release our codes at https://github.com/NeurIPS-ML4PS-2025/PINN_ACS_CODES.

Authors:Jifan Gao, Michael Rosenthal, Brian Wolpin, Simona Cristea
Title: Count-Based Approaches Remain Strong: A Benchmark Against Transformer and LLM Pipelines on Structured EHR
Abstract:
Structured electronic health records (EHR) are essential for clinical prediction. While count-based learners continue to perform strongly on such data, no benchmarking has directly compared them against more recent mixture-of-agents LLM pipelines, which have been reported to outperform single LLMs in various NLP tasks. In this study, we evaluated three categories of methodologies for EHR prediction using the EHRSHOT dataset: count-based models built from ontology roll-ups with two time bins, based on LightGBM and the tabular foundation model TabPFN; a pretrained sequential transformer (CLMBR); and a mixture-of-agents pipeline that converts tabular histories to natural-language summaries followed by a text classifier. We assessed eight outcomes using the EHRSHOT dataset. Across the eight evaluation tasks, head-to-head wins were largely split between the count-based and the mixture-of-agents methods. Given their simplicity and interpretability, count-based models remain a strong candidate for structured EHR benchmarking. The source code is available at: https://github.com/cristea-lab/Structured_EHR_Benchmark.

Authors:Bao Nguyen, Hieu Trung Nguyen, Ruifeng She, Xiaojin Fu, Viet Anh Nguyen
Title: Reasoning Planning for Language Models
Abstract:
Selecting an appropriate reasoning method for a given query remains a key challenge in language model generation. Existing approaches typically generate multiple candidate responses and use an aggregation strategy to select the output answer, often assuming that more candidate answers yield higher accuracy. We revisit this assumption through a rigorous theoretical analysis, deriving accuracy bounds for standard aggregation methods under fixed generation distributions and candidate sizes. Building on these insights, we introduce EPIC, an Ensemble Planning with Contrastive learning framework to learn a shared representation space that captures both model reasoning abilities and query-method compatibility. EPIC incorporates our probability bounds as a regularizer in a utility-driven optimization that balances accuracy and computational cost. Experiments on diverse mathematical reasoning tasks show that EPIC consistently selects optimal reasoning methods, improving accuracy while reducing computational overhead. Our code can be found at https://github.com/nguyenngocbaocmt02/EPIC.

Authors:Zhongxiang Lei, Qi Yang, Ping Qiu, Gang Zhang, Yuanchi Ma, Jinyan Liu
Title: Why Federated Optimization Fails to Achieve Perfect Fitting? A Theoretical Perspective on Client-Side Optima
Abstract:
Federated optimization is a constrained form of distributed optimization that enables training a global model without directly sharing client data. Although existing algorithms can guarantee convergence in theory and often achieve stable training in practice, the reasons behind performance degradation under data heterogeneity remain unclear. To address this gap, the main contribution of this paper is to provide a theoretical perspective that explains why such degradation occurs. We introduce the assumption that heterogeneous client data lead to distinct local optima, and show that this assumption implies two key consequences: 1) the distance among clients' local optima raises the lower bound of the global objective, making perfect fitting of all client data impossible; and 2) in the final training stage, the global model oscillates within a region instead of converging to a single optimum, limiting its ability to fully fit the data. These results provide a principled explanation for performance degradation in non-iid settings, which we further validate through experiments across multiple tasks and neural network architectures. The framework used in this paper is open-sourced at: https://github.com/NPCLEI/fedtorch.

Authors:Kiran Shahi, Anup Bagale
Title: Weakly Supervised Pneumonia Localization from Chest X-Rays Using Deep Neural Network and Grad-CAM Explanations
Abstract:
Chest X-ray imaging is commonly used to diagnose pneumonia, but accurately localizing the pneumonia-affected regions typically requires detailed pixel-level annotations, which are costly and time consuming to obtain. To address this limitation, this study proposes a weakly supervised deep learning framework for pneumonia classification and localization using Gradient-weighted Class Activation Mapping (Grad-CAM). Instead of relying on costly pixel-level annotations, the proposed method utilizes image-level labels to generate clinically meaningful heatmaps that highlight pneumonia-affected regions. Furthermore, we evaluate seven pre-trained deep learning models, including a Vision Transformer, under identical training conditions, using focal loss and patient-wise splits to prevent data leakage. Experimental results suggest that all models achieved high classification accuracy (96--98\%), with ResNet-18 and EfficientNet-B0 showing the best overall performance and MobileNet-V3 providing an efficient lightweight alternative. Grad-CAM heatmap visualizations confirm that the proposed methods focus on clinically relevant lung regions, supporting the use of explainable AI for radiological diagnostics. Overall, this work highlights the potential of weakly supervised, explainable models that enhance transparency and clinical trust in AI-assisted pneumonia screening.

Authors:Guojian Zhan, Likun Wang, Xiangteng Zhang, Jiaxin Gao, Masayoshi Tomizuka, Shengbo Eben Li
Title: Bootstrap Off-policy with World Model
Abstract:
Online planning has proven effective in reinforcement learning (RL) for improving sample efficiency and final performance. However, using planning for environment interaction inevitably introduces a divergence between the collected data and the policy's actual behaviors, degrading both model learning and policy improvement. To address this, we propose BOOM (Bootstrap Off-policy with WOrld Model), a framework that tightly integrates planning and off-policy learning through a bootstrap loop: the policy initializes the planner, and the planner refines actions to bootstrap the policy through behavior alignment. This loop is supported by a jointly learned world model, which enables the planner to simulate future trajectories and provides value targets to facilitate policy improvement. The core of BOOM is a likelihood-free alignment loss that bootstraps the policy using the planner's non-parametric action distribution, combined with a soft value-weighted mechanism that prioritizes high-return behaviors and mitigates variability in the planner's action quality within the replay buffer. Experiments on the high-dimensional DeepMind Control Suite and Humanoid-Bench show that BOOM achieves state-of-the-art results in both training stability and final performance. The code is accessible at https://github.com/molumitu/BOOM_MBRL.

Authors:Yiwei Zha, Rui Min, Shanu Sushmita
Title: PADBen: A Comprehensive Benchmark for Evaluating AI Text Detectors Against Paraphrase Attacks
Abstract:
While AI-generated text (AIGT) detectors achieve over 90\% accuracy on direct LLM outputs, they fail catastrophically against iteratively-paraphrased content. We investigate why iteratively-paraphrased text -- itself AI-generated -- evades detection systems designed for AIGT identification. Through intrinsic mechanism analysis, we reveal that iterative paraphrasing creates an intermediate laundering region characterized by semantic displacement with preserved generation patterns, which brings up two attack categories: paraphrasing human-authored text (authorship obfuscation) and paraphrasing LLM-generated text (plagiarism evasion). To address these vulnerabilities, we introduce PADBen, the first benchmark systematically evaluating detector robustness against both paraphrase attack scenarios. PADBen comprises a five-type text taxonomy capturing the full trajectory from original content to deeply laundered text, and five progressive detection tasks across sentence-pair and single-sentence challenges. We evaluate 11 state-of-the-art detectors, revealing critical asymmetry: detectors successfully identify the plagiarism evasion problem but fail for the case of authorship obfuscation. Our findings demonstrate that current detection approaches cannot effectively handle the intermediate laundering region, necessitating fundamental advances in detection architectures beyond existing semantic and stylistic discrimination methods. For detailed code implementation, please see https://github.com/JonathanZha47/PadBen-Paraphrase-Attack-Benchmark.

Authors:Zenghao Niu, Weicheng Xie, Siyang Song, Zitong Yu, Feng Liu, Linlin Shen
Title: Enhancing Adversarial Transferability by Balancing Exploration and Exploitation with Gradient-Guided Sampling
Abstract:
Adversarial attacks present a critical challenge to deep neural networks' robustness, particularly in transfer scenarios across different model architectures. However, the transferability of adversarial attacks faces a fundamental dilemma between Exploitation (maximizing attack potency) and Exploration (enhancing cross-model generalization). Traditional momentum-based methods over-prioritize Exploitation, i.e., higher loss maxima for attack potency but weakened generalization (narrow loss surface). Conversely, recent methods with inner-iteration sampling over-prioritize Exploration, i.e., flatter loss surfaces for cross-model generalization but weakened attack potency (suboptimal local maxima). To resolve this dilemma, we propose a simple yet effective Gradient-Guided Sampling (GGS), which harmonizes both objectives through guiding sampling along the gradient ascent direction to improve both sampling efficiency and stability. Specifically, based on MI-FGSM, GGS introduces inner-iteration random sampling and guides the sampling direction using the gradient from the previous inner-iteration (the sampling's magnitude is determined by a random distribution). This mechanism encourages adversarial examples to reside in balanced regions with both flatness for cross-model generalization and higher local maxima for strong attack potency. Comprehensive experiments across multiple DNN architectures and multimodal large language models (MLLMs) demonstrate the superiority of our method over state-of-the-art transfer attacks. Code is made available at https://github.com/anuin-cat/GGS.

Authors:Zhibin Lan, Liqiang Niu, Fandong Meng, Jie Zhou, Jinsong Su
Title: UME-R1: Exploring Reasoning-Driven Generative Multimodal Embeddings
Abstract:
The remarkable success of multimodal large language models (MLLMs) has driven advances in multimodal embeddings, yet existing models remain inherently discriminative, limiting their ability to benefit from reasoning-driven generation paradigm. In this work, we pioneer the exploration of generative embeddings, unifying embedding tasks within a generative paradigm. We propose UME-R1, a universal multimodal embedding framework consisting of a two-stage training strategy: a cold-start supervised fine-tuning equips the model with reasoning capabilities and enables it to generate both discriminative and generative embeddings; a subsequent reinforcement learning enhances reasoning and further optimizes generative embedding quality. This pioneering work reveals four key insights: 1) generative embeddings unlock substantial performance gains over conventional discriminative embeddings by leveraging the powerful generative reasoning capabilities of MLLMs; 2) discriminative and generative embeddings are complementary, whose combined oracle performance far exceeding that of either alone; 3) RL can effectively enhance generative embeddings, establishing a scalable optimization paradigm.; 4) repeated sampling at inference boosts downstream task coverage (pass@k), highlighting the inference-time scalability potential of generative embeddings. Evaluated on the MMEB-V2 benchmark across 78 tasks spanning video, image, and visual documents, UME-R1 significantly outperforms conventional discriminative embedding models and offers a foundation for more interpretable, reasoning-driven generative multimodal embeddings. Our code, models, and datasets will be publicly available at https://github.com/XMUDeepLIT/UME-R1.

Authors:Lucky Onyekwelu-Udoka, Md Shafiqul Islam, Md Shahedul Hasan
Title: Emotion Detection in Speech Using Lightweight and Transformer-Based Models: A Comparative and Ablation Study
Abstract:
Emotion recognition from speech plays a vital role in the development of empathetic human-computer interaction systems. This paper presents a comparative analysis of lightweight transformer-based models, DistilHuBERT and PaSST, by classifying six core emotions from the CREMA-D dataset. We benchmark their performance against a traditional CNN-LSTM baseline model using MFCC features. DistilHuBERT demonstrates superior accuracy (70.64%) and F1 score (70.36%) while maintaining an exceptionally small model size (0.02 MB), outperforming both PaSST and the baseline. Furthermore, we conducted an ablation study on three variants of the PaSST, Linear, MLP, and Attentive Pooling heads, to understand the effect of classification head architecture on model performance. Our results indicate that PaSST with an MLP head yields the best performance among its variants but still falls short of DistilHuBERT. Among the emotion classes, angry is consistently the most accurately detected, while disgust remains the most challenging. These findings suggest that lightweight transformers like DistilHuBERT offer a compelling solution for real-time speech emotion recognition on edge devices. The code is available at: https://github.com/luckymaduabuchi/Emotion-detection-.

Authors:Dana Kim, Yichen Xu, Tiffany Lin
Title: A Technical Exploration of Causal Inference with Hybrid LLM Synthetic Data
Abstract:
Large Language Models (LLMs) offer a flexible means to generate synthetic tabular data, yet existing approaches often fail to preserve key causal parameters such as the average treatment effect (ATE). In this technical exploration, we first demonstrate that state-of-the-art synthetic data generators, both GAN- and LLM-based, can achieve high predictive fidelity while substantially misestimating causal effects. To address this gap, we propose a hybrid generation framework that combines model-based covariate synthesis (monitored via distance-to-closest-record filtering) with separately learned propensity and outcome models, thereby ensuring that (W, A, Y) triplets retain their underlying causal structure. We further introduce a synthetic pairing strategy to mitigate positivity violations and a realistic evaluation protocol that leverages unlimited synthetic samples to benchmark traditional estimators (IPTW, AIPW, substitution) under complex covariate distributions. This work lays the groundwork for LLM-powered data pipelines that support robust causal analysis. Our code is available at https://github.com/Xyc-arch/llm-synthetic-for-causal-inference.git.

Authors:Qing Guo, Xinhang Li, Junyu Chen, Zheng Guo, Xiaocong Li, Lin Zhang, Lei Li
Title: A Dual Large Language Models Architecture with Herald Guided Prompts for Parallel Fine Grained Traffic Signal Control
Abstract:
Leveraging large language models (LLMs) in traffic signal control (TSC) improves optimization efficiency and interpretability compared to traditional reinforcement learning (RL) methods. However, existing LLM-based approaches are limited by fixed time signal durations and are prone to hallucination errors, while RL methods lack robustness in signal timing decisions and suffer from poor generalization. To address these challenges, this paper proposes HeraldLight, a dual LLMs architecture enhanced by Herald guided prompts. The Herald Module extracts contextual information and forecasts queue lengths for each traffic phase based on real-time conditions. The first LLM, LLM-Agent, uses these forecasts to make fine grained traffic signal control, while the second LLM, LLM-Critic, refines LLM-Agent's outputs, correcting errors and hallucinations. These refined outputs are used for score-based fine-tuning to improve accuracy and robustness. Simulation experiments using CityFlow on real world datasets covering 224 intersections in Jinan (12), Hangzhou (16), and New York (196) demonstrate that HeraldLight outperforms state of the art baselines, achieving a 20.03% reduction in average travel time across all scenarios and a 10.74% reduction in average queue length on the Jinan and Hangzhou scenarios. The source code is available on GitHub: https://github.com/BUPT-ANTlab/HeraldLight.

Authors:Rotem Ezra, Hedi Zisling, Nimrod Berman, Ilan Naiman, Alexey Gorkor, Liran Nochumsohn, Eliya Nachmani, Omri Azencot
Title: FreeSliders: Training-Free, Modality-Agnostic Concept Sliders for Fine-Grained Diffusion Control in Images, Audio, and Video
Abstract:
Diffusion models have become state-of-the-art generative models for images, audio, and video, yet enabling fine-grained controllable generation, i.e., continuously steering specific concepts without disturbing unrelated content, remains challenging. Concept Sliders (CS) offer a promising direction by discovering semantic directions through textual contrasts, but they require per-concept training and architecture-specific fine-tuning (e.g., LoRA), limiting scalability to new modalities. In this work we introduce FreeSliders, a simple yet effective approach that is fully training-free and modality-agnostic, achieved by partially estimating the CS formula during inference. To support modality-agnostic evaluation, we extend the CS benchmark to include both video and audio, establishing the first suite for fine-grained concept generation control with multiple modalities. We further propose three evaluation properties along with new metrics to improve evaluation quality. Finally, we identify an open problem of scale selection and non-linear traversals and introduce a two-stage procedure that automatically detects saturation points and reparameterizes traversal for perceptually uniform, semantically meaningful edits. Extensive experiments demonstrate that our method enables plug-and-play, training-free concept control across modalities, improves over existing baselines, and establishes new tools for principled controllable generation. An interactive presentation of our benchmark and method is available at: https://azencot-group.github.io/FreeSliders/

Authors:Yuchen Zhang, Hanyue Du, Chun Cao, Jingwei Xu
Title: Loquetier: A Virtualized Multi-LoRA Framework for Unified LLM Fine-tuning and Serving
Abstract:
Low-Rank Adaptation (LoRA) has become a widely adopted parameter-efficient fine-tuning (PEFT) technique for adapting large language models (LLMs) to downstream tasks. While prior work has explored strategies for integrating LLM training and serving, there still remains a gap in unifying fine-tuning and inference for LoRA-based models. We present Loquetier, a virtualized multi-LoRA framework that seamlessly integrates LoRA fine-tuning and serving within a single runtime. Loquetier introduces two key components: (1) a Virtualized Module that isolates PEFT-based modifications and supports multiple adapters on a shared base model, and (2) an optimized computation flow with a kernel design that merges fine-tuning and inference paths in forward propagation, enabling efficient batching and minimizing kernel invocation overhead. Extensive experiments across three task settings show that Loquetier consistently outperforms existing baselines in both performance and flexibility, achieving up to $3.0\times$ the throughput of the state-of-the-art co-serving system on inference-only tasks and $46.4\times$ higher SLO attainment than PEFT on unified fine-tuning and inference tasks. The implementation of Loquetier is publicly available at https://github.com/NJUDeepEngine/Loquetier.

Authors:Shangyu Lou
Title: Urban-MAS: Human-Centered Urban Prediction with LLM-Based Multi-Agent System
Abstract:
Urban Artificial Intelligence (Urban AI) has advanced human-centered urban tasks such as perception prediction and human dynamics. Large Language Models (LLMs) can integrate multimodal inputs to address heterogeneous data in complex urban systems but often underperform on domain-specific tasks. Urban-MAS, an LLM-based Multi-Agent System (MAS) framework, is introduced for human-centered urban prediction under zero-shot settings. It includes three agent types: Predictive Factor Guidance Agents, which prioritize key predictive factors to guide knowledge extraction and enhance the effectiveness of compressed urban knowledge in LLMs; Reliable UrbanInfo Extraction Agents, which improve robustness by comparing multiple outputs, validating consistency, and re-extracting when conflicts occur; and Multi-UrbanInfo Inference Agents, which integrate extracted multi-source information across dimensions for prediction. Experiments on running-amount prediction and urban perception across Tokyo, Milan, and Seattle demonstrate that Urban-MAS substantially reduces errors compared to single-LLM baselines. Ablation studies indicate that Predictive Factor Guidance Agents are most critical for enhancing predictive performance, positioning Urban-MAS as a scalable paradigm for human-centered urban AI prediction. Code is available on the project website:https://github.com/THETUREHOOHA/UrbanMAS

Authors:Jiaming Liu, Dingwei Fan, Junyong Zhao, Chunlin Li, Haipeng Si, Liang Sun
Title: SpinalSAM-R1: A Vision-Language Multimodal Interactive System for Spine CT Segmentation
Abstract:
The anatomical structure segmentation of the spine and adjacent structures from computed tomography (CT) images is a key step for spinal disease diagnosis and treatment. However, the segmentation of CT images is impeded by low contrast and complex vertebral boundaries. Although advanced models such as the Segment Anything Model (SAM) have shown promise in various segmentation tasks, their performance in spinal CT imaging is limited by high annotation requirements and poor domain adaptability. To address these limitations, we propose SpinalSAM-R1, a multimodal vision-language interactive system that integrates a fine-tuned SAM with DeepSeek-R1, for spine CT image segmentation. Specifically, our SpinalSAM-R1 introduces an anatomy-guided attention mechanism to improve spine segmentation performance, and a semantics-driven interaction protocol powered by DeepSeek-R1, enabling natural language-guided refinement. The SpinalSAM-R1 is fine-tuned using Low-Rank Adaptation (LoRA) for efficient adaptation. We validate our SpinalSAM-R1 on the spine anatomical structure with CT images. Experimental results suggest that our method achieves superior segmentation performance. Meanwhile, we develop a PyQt5-based interactive software, which supports point, box, and text-based prompts. The system supports 11 clinical operations with 94.3\% parsing accuracy and sub-800 ms response times. The software is released on https://github.com/6jm233333/spinalsam-r1.

Authors:Huanlin Gao, Ping Chen, Fuyuan Shi, Chao Tan, Zhaoxiang Liu, Fang Zhao, Kai Wang, Shiguo Lian
Title: LeMiCa: Lexicographic Minimax Path Caching for Efficient Diffusion-Based Video Generation
Abstract:
We present LeMiCa, a training-free and efficient acceleration framework for diffusion-based video generation. While existing caching strategies primarily focus on reducing local heuristic errors, they often overlook the accumulation of global errors, leading to noticeable content degradation between accelerated and original videos. To address this issue, we formulate cache scheduling as a directed graph with error-weighted edges and introduce a Lexicographic Minimax Path Optimization strategy that explicitly bounds the worst-case path error. This approach substantially improves the consistency of global content and style across generated frames. Extensive experiments on multiple text-to-video benchmarks demonstrate that LeMiCa delivers dual improvements in both inference speed and generation quality. Notably, our method achieves a 2.9x speedup on the Latte model and reaches an LPIPS score of 0.05 on Open-Sora, outperforming prior caching techniques. Importantly, these gains come with minimal perceptual quality degradation, making LeMiCa a robust and generalizable paradigm for accelerating diffusion-based video generation. We believe this approach can serve as a strong foundation for future research on efficient and reliable video synthesis. Our code is available at :https://github.com/UnicomAI/LeMiCa

Authors:Peilin Tan, Chuanqi Shi, Dian Tu, Liang Xie
Title: MaGNet: A Mamba Dual-Hypergraph Network for Stock Prediction via Temporal-Causal and Global Relational Learning
Abstract:
Stock trend prediction is crucial for profitable trading strategies and portfolio management yet remains challenging due to market volatility, complex temporal dynamics and multifaceted inter-stock relationships. Existing methods struggle to effectively capture temporal dependencies and dynamic inter-stock interactions, often neglecting cross-sectional market influences, relying on static correlations, employing uniform treatments of nodes and edges, and conflating diverse relationships. This work introduces MaGNet, a novel Mamba dual-hyperGraph Network for stock prediction, integrating three key innovations: (1) a MAGE block, which leverages bidirectional Mamba with adaptive gating mechanisms for contextual temporal modeling and integrates a sparse Mixture-of-Experts layer to enable dynamic adaptation to diverse market conditions, alongside multi-head attention for capturing global dependencies; (2) Feature-wise and Stock-wise 2D Spatiotemporal Attention modules enable precise fusion of multivariate features and cross-stock dependencies, effectively enhancing informativeness while preserving intrinsic data structures, bridging temporal modeling with relational reasoning; and (3) a dual hypergraph framework consisting of the Temporal-Causal Hypergraph (TCH) that captures fine-grained causal dependencies with temporal constraints, and Global Probabilistic Hypergraph (GPH) that models market-wide patterns through soft hyperedge assignments and Jensen-Shannon Divergence weighting mechanism, jointly disentangling localized temporal influences from instantaneous global structures for multi-scale relational learning. Extensive experiments on six major stock indices demonstrate MaGNet outperforms state-of-the-art methods in both superior predictive performance and exceptional investment returns with robust risk management capabilities. Codes available at: https://github.com/PeilinTime/MaGNet.

Authors:NVIDIA, :, Arslan Ali, Junjie Bai, Maciej Bala, Yogesh Balaji, Aaron Blakeman, Tiffany Cai, Jiaxin Cao, Tianshi Cao, Elizabeth Cha, Yu-Wei Chao, Prithvijit Chattopadhyay, Mike Chen, Yongxin Chen, Yu Chen, Shuai Cheng, Yin Cui, Jenna Diamond, Yifan Ding, Jiaojiao Fan, Linxi Fan, Liang Feng, Francesco Ferroni, Sanja Fidler, Xiao Fu, Ruiyuan Gao, Yunhao Ge, Jinwei Gu, Aryaman Gupta, Siddharth Gururani, Imad El Hanafi, Ali Hassani, Zekun Hao, Jacob Huffman, Joel Jang, Pooya Jannaty, Jan Kautz, Grace Lam, Xuan Li, Zhaoshuo Li, Maosheng Liao, Chen-Hsuan Lin, Tsung-Yi Lin, Yen-Chen Lin, Huan Ling, Ming-Yu Liu, Xian Liu, Yifan Lu, Alice Luo, Qianli Ma, Hanzi Mao, Kaichun Mo, Seungjun Nah, Yashraj Narang, Abhijeet Panaskar, Lindsey Pavao, Trung Pham, Morteza Ramezanali, Fitsum Reda, Scott Reed, Xuanchi Ren, Haonan Shao, Yue Shen, Stella Shi, Shuran Song, Bartosz Stefaniak, Shangkun Sun, Shitao Tang, Sameena Tasmeen, Lyne Tchapmi, Wei-Cheng Tseng, Jibin Varghese, Andrew Z. Wang, Hao Wang, Haoxiang Wang, Heng Wang, Ting-Chun Wang, Fangyin Wei, Jiashu Xu, Dinghao Yang, Xiaodong Yang, Haotian Ye, Seonghyeon Ye, Xiaohui Zeng, Jing Zhang, Qinsheng Zhang, Kaiwen Zheng, Andrew Zhu, Yuke Zhu
Title: World Simulation with Video Foundation Models for Physical AI
Abstract:
We introduce [Cosmos-Predict2.5], the latest generation of the Cosmos World Foundation Models for Physical AI. Built on a flow-based architecture, [Cosmos-Predict2.5] unifies Text2World, Image2World, and Video2World generation in a single model and leverages [Cosmos-Reason1], a Physical AI vision-language model, to provide richer text grounding and finer control of world simulation. Trained on 200M curated video clips and refined with reinforcement learning-based post-training, [Cosmos-Predict2.5] achieves substantial improvements over [Cosmos-Predict1] in video quality and instruction alignment, with models released at 2B and 14B scales. These capabilities enable more reliable synthetic data generation, policy evaluation, and closed-loop simulation for robotics and autonomous systems. We further extend the family with [Cosmos-Transfer2.5], a control-net style framework for Sim2Real and Real2Real world translation. Despite being 3.5$\times$ smaller than [Cosmos-Transfer1], it delivers higher fidelity and robust long-horizon video generation. Together, these advances establish [Cosmos-Predict2.5] and [Cosmos-Transfer2.5] as versatile tools for scaling embodied intelligence. To accelerate research and deployment in Physical AI, we release source code, pretrained checkpoints, and curated benchmarks under the NVIDIA Open Model License at https://github.com/nvidia-cosmos/cosmos-predict2.5 and https://github.com/nvidia-cosmos/cosmos-transfer2.5. We hope these open resources lower the barrier to adoption and foster innovation in building the next generation of embodied intelligence.

Authors:Yuxi Liu, Renjia Deng, Yutong He, Xue Wang, Tao Yao, Kun Yuan
Title: MISA: Memory-Efficient LLMs Optimization with Module-wise Importance Sampling
Abstract:
The substantial memory demands of pre-training and fine-tuning large language models (LLMs) require memory-efficient optimization algorithms. One promising approach is layer-wise optimization, which treats each transformer block as a single layer and optimizes it sequentially, while freezing the other layers to save optimizer states and activations. Although effective, these methods ignore the varying importance of the modules within each layer, leading to suboptimal performance. Moreover, layer-wise sampling provides only limited memory savings, as at least one full layer must remain active during optimization. To overcome these limitations, we propose Module-wise Importance SAmpling (MISA), a novel method that divides each layer into smaller modules and assigns importance scores to each module. MISA uses a weighted random sampling mechanism to activate modules, provably reducing gradient variance compared to layer-wise sampling. Additionally, we establish an \(\mathcal{O}(1/\sqrt{K})\) convergence rate under non-convex and stochastic conditions, where $K$ is the total number of block updates, and provide a detailed memory analysis showcasing MISA's superiority over existing baseline methods. Experiments on diverse learning tasks validate the effectiveness of MISA. Source code is available at https://github.com/pkumelon/MISA.

Authors:Da Chang, Peng Xue, Yu Li, Yongxiang Liu, Pengxiang Xu, Shixun Zhang
Title: Calibrating and Rotating: A Unified Framework for Weight Conditioning in PEFT
Abstract:
Parameter-Efficient Fine-Tuning (PEFT) methods are crucial for adapting large pre-trained models. Among these, LoRA is considered a foundational approach. Building on this, the influential DoRA method enhances performance by decomposing weight updates into magnitude and direction. However, its underlying mechanism remains unclear, and it introduces significant computational overhead. In this work, we first identify that DoRA's success stems from its capacity to increase the singular value entropy of the weight update matrix, which promotes a more uniform update distribution akin to full fine-tuning. We then reformulate DoRA into a mathematically equivalent and more efficient matrix form, revealing it as a learnable weight conditioning method. Based on this insight, we propose a unified framework for designing advanced PEFT methods by exploring two orthogonal dimensions: the architectural placement and the transformation type of the conditioning matrix. Within this framework, we introduce two novel methods: (1) \textbf{Pre-Diag}, which applies a diagonal conditioning matrix before the LoRA update to efficiently calibrate the pre-trained weights, thereby enhancing performance while reducing training time; and (2) \textbf{S}kewed \textbf{O}rthogonal \textbf{R}otation \textbf{A}daptation (\textbf{SORA}), which employs a parameter-efficient orthogonal rotation to perform a more powerful, norm-preserving transformation of the feature space. Extensive experiments on natural language understanding and generation tasks demonstrate that our proposed methods achieve superior performance and efficiency compared to both LoRA and DoRA. The code is available at https://github.com/MaeChd/SORA.

Authors:Chenze Shao, Darren Li, Fandong Meng, Jie Zhou
Title: Continuous Autoregressive Language Models
Abstract:
The efficiency of large language models (LLMs) is fundamentally limited by their sequential, token-by-token generation process. We argue that overcoming this bottleneck requires a new design axis for LLM scaling: increasing the semantic bandwidth of each generative step. To this end, we introduce Continuous Autoregressive Language Models (CALM), a paradigm shift from discrete next-token prediction to continuous next-vector prediction. CALM uses a high-fidelity autoencoder to compress a chunk of K tokens into a single continuous vector, from which the original tokens can be reconstructed with over 99.9\% accuracy. This allows us to model language as a sequence of continuous vectors instead of discrete tokens, which reduces the number of generative steps by a factor of K. The paradigm shift necessitates a new modeling toolkit; therefore, we develop a comprehensive likelihood-free framework that enables robust training, evaluation, and controllable sampling in the continuous domain. Experiments show that CALM significantly improves the performance-compute trade-off, achieving the performance of strong discrete baselines at a significantly lower computational cost. More importantly, these findings establish next-vector prediction as a powerful and scalable pathway towards ultra-efficient language models. Code: https://github.com/shaochenze/calm. Project: https://shaochenze.github.io/blog/2025/CALM.

Authors:Riccardo Brioschi, Aleksandr Alekseev, Emanuele Nevali, Berkay Döner, Omar El Malki, Blagoj Mitrevski, Leandro Kieliger, Mark Collier, Andrii Maksai, Jesse Berent, Claudiu Musat, Efi Kokiopoulou
Title: Sketch-to-Layout: Sketch-Guided Multimodal Layout Generation
Abstract:
Graphic layout generation is a growing research area focusing on generating aesthetically pleasing layouts ranging from poster designs to documents. While recent research has explored ways to incorporate user constraints to guide the layout generation, these constraints often require complex specifications which reduce usability. We introduce an innovative approach exploiting user-provided sketches as intuitive constraints and we demonstrate empirically the effectiveness of this new guidance method, establishing the sketch-to-layout problem as a promising research direction, which is currently under-explored. To tackle the sketch-to-layout problem, we propose a multimodal transformer-based solution using the sketch and the content assets as inputs to produce high quality layouts. Since collecting sketch training data from human annotators to train our model is very costly, we introduce a novel and efficient method to synthetically generate training sketches at scale. We train and evaluate our model on three publicly available datasets: PubLayNet, DocLayNet and SlidesVQA, demonstrating that it outperforms state-of-the-art constraint-based methods, while offering a more intuitive design experience. In order to facilitate future sketch-to-layout research, we release O(200k) synthetically-generated sketches for the public datasets above. The datasets are available at https://github.com/google-deepmind/sketch_to_layout.

Authors:Nikolaus Holzer, William Fishell, Baishakhi Ray, Mark Santolucito
Title: Mechanics of Learned Reasoning 1: TempoBench, A Benchmark for Interpretable Deconstruction of Reasoning System Performance
Abstract:
Large Language Models (LLMs) are increasingly excelling and outpacing human performance on many tasks. However, to improve LLM reasoning, researchers either rely on ad-hoc generated datasets or formal mathematical proof systems such as the Lean proof assistant. Whilst ad-hoc generated methods can capture the decision chains of real-world reasoning processes, they may encode some inadvertent bias in the space of reasoning they cover; they also cannot be formally verified. On the other hand, systems like Lean can guarantee verifiability, but are not well-suited to capture the nature of agentic decision chain-based tasks. This creates a gap both in performance for functions such as business agents or code assistants, and in the usefulness of LLM reasoning benchmarks, whereby these fall short in reasoning structure or real-world alignment. We introduce TempoBench, the first formally grounded and verifiable diagnostic benchmark that parametrizes difficulty to systematically analyze how LLMs perform reasoning. TempoBench uses two evaluation benchmarks to break down reasoning ability. First, temporal trace evaluation (TTE) tests the ability of an LLM to understand and simulate the execution of a given multi-step reasoning system. Subsequently, temporal causal evaluation (TCE) tests an LLM's ability to perform multi-step causal reasoning and to distill cause-and-effect relations from complex systems. We find that models score 65.6% on TCE-normal, and 7.5% on TCE-hard. This shows that state-of-the-art LLMs clearly understand the TCE task but perform poorly as system complexity increases. Our code is available at our \href{https://github.com/nik-hz/tempobench}{GitHub repository}.

Authors:Elena Mulero Ayllón, Linlin Shen, Pierangelo Veltri, Fabrizia Gelardi, Arturo Chiti, Paolo Soda, Matteo Tortora
Title: Context-Gated Cross-Modal Perception with Visual Mamba for PET-CT Lung Tumor Segmentation
Abstract:
Accurate lung tumor segmentation is vital for improving diagnosis and treatment planning, and effectively combining anatomical and functional information from PET and CT remains a major challenge. In this study, we propose vMambaX, a lightweight multimodal framework integrating PET and CT scan images through a Context-Gated Cross-Modal Perception Module (CGM). Built on the Visual Mamba architecture, vMambaX adaptively enhances inter-modality feature interaction, emphasizing informative regions while suppressing noise. Evaluated on the PCLT20K dataset, the model outperforms baseline models while maintaining lower computational complexity. These results highlight the effectiveness of adaptive cross-modal gating for multimodal tumor segmentation and demonstrate the potential of vMambaX as an efficient and scalable framework for advanced lung cancer analysis. The code is available at https://github.com/arco-group/vMambaX.

Authors:Junkang Liu, Yuxuan Tian, Fanhua Shang, Yuanyuan Liu, Hongying Liu, Junchao Zhou, Daorui Ding
Title: DP-FedPGN: Finding Global Flat Minima for Differentially Private Federated Learning via Penalizing Gradient Norm
Abstract:
To prevent inference attacks in Federated Learning (FL) and reduce the leakage of sensitive information, Client-level Differentially Private Federated Learning (CL-DPFL) is widely used. However, current CL-DPFL methods usually result in sharper loss landscapes, which leads to a decrease in model generalization after differential privacy protection. By using Sharpness Aware Minimization (SAM), the current popular federated learning methods are to find a local flat minimum value to alleviate this problem. However, the local flatness may not reflect the global flatness in CL-DPFL. Therefore, to address this issue and seek global flat minima of models, we propose a new CL-DPFL algorithm, DP-FedPGN, in which we introduce a global gradient norm penalty to the local loss to find the global flat minimum. Moreover, by using our global gradient norm penalty, we not only find a flatter global minimum but also reduce the locally updated norm, which means that we further reduce the error of gradient clipping. From a theoretical perspective, we analyze how DP-FedPGN mitigates the performance degradation caused by DP. Meanwhile, the proposed DP-FedPGN algorithm eliminates the impact of data heterogeneity and achieves fast convergence. We also use Rényi DP to provide strict privacy guarantees and provide sensitivity analysis for local updates. Finally, we conduct effectiveness tests on both ResNet and Transformer models, and achieve significant improvements in six visual and natural language processing tasks compared to existing state-of-the-art algorithms. The code is available at https://github.com/junkangLiu0/DP-FedPGN

Authors:Junkang Liu, Fanhua Shang, Kewen Zhu, Hongying Liu, Yuanyuan Liu, Jin Liu
Title: FedAdamW: A Communication-Efficient Optimizer with Convergence and Generalization Guarantees for Federated Large Models
Abstract:
AdamW has become one of the most effective optimizers for training large-scale models. We have also observed its effectiveness in the context of federated learning (FL). However, directly applying AdamW in federated learning settings poses significant challenges: (1) due to data heterogeneity, AdamW often yields high variance in the second-moment estimate $\boldsymbol{v}$; (2) the local overfitting of AdamW may cause client drift; and (3) Reinitializing moment estimates ($\boldsymbol{v}$, $\boldsymbol{m}$) at each round slows down convergence. To address these challenges, we propose the first \underline{Fed}erated \underline{AdamW} algorithm, called \texttt{FedAdamW}, for training and fine-tuning various large models. \texttt{FedAdamW} aligns local updates with the global update using both a \textbf{local correction mechanism} and decoupled weight decay to mitigate local overfitting. \texttt{FedAdamW} efficiently aggregates the \texttt{mean} of the second-moment estimates to reduce their variance and reinitialize them. Theoretically, we prove that \texttt{FedAdamW} achieves a linear speedup convergence rate of $\mathcal{O}(\sqrt{(L Δσ_l^2)/(S K R ε^2)}+(L Δ)/R)$ without \textbf{heterogeneity assumption}, where $S$ is the number of participating clients per round, $K$ is the number of local iterations, and $R$ is the total number of communication rounds. We also employ PAC-Bayesian generalization analysis to explain the effectiveness of decoupled weight decay in local training. Empirically, we validate the effectiveness of \texttt{FedAdamW} on language and vision Transformer models. Compared to several baselines, \texttt{FedAdamW} significantly reduces communication rounds and improves test accuracy. The code is available in https://github.com/junkangLiu0/FedAdamW.

Authors:Xuan Gong, Senmiao Wang, Hanbo Huang, Ruoyu Sun, Shiyu Liang
Title: VCORE: Variance-Controlled Optimization-based Reweighting for Chain-of-Thought Supervision
Abstract:
Supervised fine-tuning (SFT) on long chain-of-thought (CoT) trajectories has emerged as a crucial technique for enhancing the reasoning abilities of large language models (LLMs). However, the standard cross-entropy loss treats all tokens equally, ignoring their heterogeneous contributions across a reasoning trajectory. This uniform treatment leads to misallocated supervision and weak generalization, especially in complex, long-form reasoning tasks. To address this, we introduce \textbf{V}ariance-\textbf{C}ontrolled \textbf{O}ptimization-based \textbf{RE}weighting (VCORE), a principled framework that reformulates CoT supervision as a constrained optimization problem. By adopting an optimization-theoretic perspective, VCORE enables a principled and adaptive allocation of supervision across tokens, thereby aligning the training objective more closely with the goal of robust reasoning generalization. Empirical evaluations demonstrate that VCORE consistently outperforms existing token reweighting methods. Across both in-domain and out-of-domain settings, VCORE achieves substantial performance gains on mathematical and coding benchmarks, using models from the Qwen3 series (4B, 8B, 32B) and LLaMA-3.1-8B-Instruct. Moreover, we show that VCORE serves as a more effective initialization for subsequent reinforcement learning, establishing a stronger foundation for advancing the reasoning capabilities of LLMs. The Code will be released at https://github.com/coder-gx/VCORE.

Authors:WonJun Moon, MinSeok Jung, Gilhan Park, Tae-Young Kim, Cheol-Ho Cho, Woojin Jun, Jae-Pil Heo
Title: Mitigating Semantic Collapse in Partially Relevant Video Retrieval
Abstract:
Partially Relevant Video Retrieval (PRVR) seeks videos where only part of the content matches a text query. Existing methods treat every annotated text-video pair as a positive and all others as negatives, ignoring the rich semantic variation both within a single video and across different videos. Consequently, embeddings of both queries and their corresponding video-clip segments for distinct events within the same video collapse together, while embeddings of semantically similar queries and segments from different videos are driven apart. This limits retrieval performance when videos contain multiple, diverse events. This paper addresses the aforementioned problems, termed as semantic collapse, in both the text and video embedding spaces. We first introduce Text Correlation Preservation Learning, which preserves the semantic relationships encoded by the foundation model across text queries. To address collapse in video embeddings, we propose Cross-Branch Video Alignment (CBVA), a contrastive alignment method that disentangles hierarchical video representations across temporal scales. Subsequently, we introduce order-preserving token merging and adaptive CBVA to enhance alignment by producing video segments that are internally coherent yet mutually distinctive. Extensive experiments on PRVR benchmarks demonstrate that our framework effectively prevents semantic collapse and substantially improves retrieval accuracy.

Authors:Austin Meek, Eitan Sprejer, Iván Arcuschin, Austin J. Brockmeier, Steven Basart
Title: Measuring Chain-of-Thought Monitorability Through Faithfulness and Verbosity
Abstract:
Chain-of-thought (CoT) outputs let us read a model's step-by-step reasoning. Since any long, serial reasoning process must pass through this textual trace, the quality of the CoT is a direct window into what the model is thinking. This visibility could help us spot unsafe or misaligned behavior (monitorability), but only if the CoT is transparent about its internal reasoning (faithfulness). Fully measuring faithfulness is difficult, so researchers often focus on examining the CoT in cases where the model changes its answer after adding a cue to the input. This proxy finds some instances of unfaithfulness but loses information when the model maintains its answer, and does not investigate aspects of reasoning not tied to the cue. We extend these results to a more holistic sense of monitorability by introducing verbosity: whether the CoT lists every factor needed to solve the task. We combine faithfulness and verbosity into a single monitorability score that shows how well the CoT serves as the model's external `working memory', a property that many safety schemes based on CoT monitoring depend on. We evaluate instruction-tuned and reasoning models on BBH, GPQA, and MMLU. Our results show that models can appear faithful yet remain hard to monitor when they leave out key factors, and that monitorability differs sharply across model families. We release our evaluation code using the Inspect library to support reproducible future work.

Authors:Deokhyung Kang, Seonjeong Hwang, Daehui Kim, Hyounghun Kim, Gary Geunbae Lee
Title: Why Do Multilingual Reasoning Gaps Emerge in Reasoning Language Models?
Abstract:
Reasoning language models (RLMs) achieve strong performance on complex reasoning tasks, yet they still suffer from a multilingual reasoning gap, performing better in high-resource languages than in low-resource ones. While recent efforts have reduced this gap, its underlying causes remain largely unexplored. In this paper, we address this by showing that the multilingual reasoning gap largely stems from failures in language understanding-the model's inability to represent the multilingual input meaning into the dominant language (i.e., English) within its reasoning trace. This motivates us to examine whether understanding failures can be detected, as this ability could help mitigate the multilingual reasoning gap. To this end, we evaluate a range of detection methods and find that understanding failures can indeed be identified, with supervised approaches performing best. Building on this, we propose Selective Translation, a simple yet effective strategy that translates the multilingual input into English only when an understanding failure is detected. Experimental results show that Selective Translation bridges the multilingual reasoning gap, achieving near full-translation performance while using translation for only about 20% of inputs. Together, our work demonstrates that understanding failures are the primary cause of the multilingual reasoning gap and can be detected and selectively mitigated, providing key insight into its origin and a promising path toward more equitable multilingual reasoning. Our code and data are publicly available at https://github.com/deokhk/RLM_analysis.

Authors:Kangkun Mao, Jinru Ding, Jiayuan Chen, Mouxiao Bian, Ruiyao Chen, Xinwei Peng, Sijie Ren, Linyang Li, Jie Xu
Title: MedCalc-Eval and MedCalc-Env: Advancing Medical Calculation Capabilities of Large Language Models
Abstract:
As large language models (LLMs) enter the medical domain, most benchmarks evaluate them on question answering or descriptive reasoning, overlooking quantitative reasoning critical to clinical decision-making. Existing datasets like MedCalc-Bench cover few calculation tasks and fail to reflect real-world computational scenarios. We introduce MedCalc-Eval, the largest benchmark for assessing LLMs' medical calculation abilities, comprising 700+ tasks across two types: equation-based (e.g., Cockcroft-Gault, BMI, BSA) and rule-based scoring systems (e.g., Apgar, Glasgow Coma Scale). These tasks span diverse specialties including internal medicine, surgery, pediatrics, and cardiology, offering a broader and more challenging evaluation setting. To improve performance, we further develop MedCalc-Env, a reinforcement learning environment built on the InternBootcamp framework, enabling multi-step clinical reasoning and planning. Fine-tuning a Qwen2.5-32B model within this environment achieves state-of-the-art results on MedCalc-Eval, with notable gains in numerical sensitivity, formula selection, and reasoning robustness. Remaining challenges include unit conversion, multi-condition logic, and contextual understanding. Code and datasets are available at https://github.com/maokangkun/MedCalc-Eval.

Authors:Yifan Zhang, Zhen Qin, Quanquan Gu
Title: Higher-order Linear Attention
Abstract:
The quadratic cost of scaled dot-product attention is a central obstacle to scaling autoregressive language models to long contexts. Linear-time attention and State Space Models (SSMs) provide scalable alternatives but are typically restricted to first-order or kernel-based approximations, which can limit expressivity. We introduce Higher-order Linear Attention (HLA), a causal, streaming mechanism that realizes higher interactions via compact prefix sufficient statistics. In the second-order case, HLA maintains a constant-size state and computes per-token outputs in linear time without materializing any $n \times n$ matrices. We give closed-form streaming identities, a strictly causal masked variant using two additional summaries, and a chunk-parallel training scheme based on associative scans that reproduces the activations of a serial recurrence exactly. We further outline extensions to third and higher orders. Collectively, these results position HLA as a principled, scalable building block that combines attention-like, data-dependent mixing with the efficiency of modern recurrent architectures. Project Page: https://github.com/yifanzhang-pro/HLA.

Authors:Chuxuan Hu, Maxwell Yang, James Weiland, Yeji Lim, Suhas Palawala, Daniel Kang
Title: DRAMA: Unifying Data Retrieval and Analysis for Open-Domain Analytic Queries
Abstract:
Manually conducting real-world data analyses is labor-intensive and inefficient. Despite numerous attempts to automate data science workflows, none of the existing paradigms or systems fully demonstrate all three key capabilities required to support them effectively: (1) open-domain data collection, (2) structured data transformation, and (3) analytic reasoning. To overcome these limitations, we propose DRAMA, an end-to-end paradigm that answers users' analytic queries in natural language on large-scale open-domain data. DRAMA unifies data collection, transformation, and analysis as a single pipeline. To quantitatively evaluate system performance on tasks representative of DRAMA, we construct a benchmark, DRAMA-Bench, consisting of two categories of tasks: claim verification and question answering, each comprising 100 instances. These tasks are derived from real-world applications that have gained significant public attention and require the retrieval and analysis of open-domain data. We develop DRAMA-Bot, a multi-agent system designed following DRAMA. It comprises a data retriever that collects and transforms data by coordinating the execution of sub-agents, and a data analyzer that performs structured reasoning over the retrieved data. We evaluate DRAMA-Bot on DRAMA-Bench together with five state-of-the-art baseline agents. DRAMA-Bot achieves 86.5% task accuracy at a cost of $0.05, outperforming all baselines with up to 6.9 times the accuracy and less than 1/6 of the cost. DRAMA is publicly available at https://github.com/uiuc-kang-lab/drama.

Authors:Jaebyeong Jeon, Hyeonseo Jang, Jy-yong Sohn, Kibok Lee
Title: Soft Task-Aware Routing of Experts for Equivariant Representation Learning
Abstract:
Equivariant representation learning aims to capture variations induced by input transformations in the representation space, whereas invariant representation learning encodes semantic information by disregarding such transformations. Recent studies have shown that jointly learning both types of representations is often beneficial for downstream tasks, typically by employing separate projection heads. However, this design overlooks information shared between invariant and equivariant learning, which leads to redundant feature learning and inefficient use of model capacity. To address this, we introduce Soft Task-Aware Routing (STAR), a routing strategy for projection heads that models them as experts. STAR induces the experts to specialize in capturing either shared or task-specific information, thereby reducing redundant feature learning. We validate this effect by observing lower canonical correlations between invariant and equivariant embeddings. Experimental results show consistent improvements across diverse transfer learning tasks. The code is available at https://github.com/YonseiML/star.

Authors:Tao Liu, Chongyu Wang, Rongjie Li, Yingchen Yu, Xuming He, Bai Song
Title: GUI-Rise: Structured Reasoning and History Summarization for GUI Navigation
Abstract:
While Multimodal Large Language Models (MLLMs) have advanced GUI navigation agents, current approaches face limitations in cross-domain generalization and effective history utilization. We present a reasoning-enhanced framework that systematically integrates structured reasoning, action prediction, and history summarization. The structured reasoning component generates coherent Chain-of-Thought analyses combining progress estimation and decision reasoning, which inform both immediate action predictions and compact history summaries for future steps. Based on this framework, we train a GUI agent, \textbf{GUI-Rise}, through supervised fine-tuning on pseudo-labeled trajectories and reinforcement learning with Group Relative Policy Optimization (GRPO). This framework employs specialized rewards, including a history-aware objective, directly linking summary quality to subsequent action performance. Comprehensive evaluations on standard benchmarks demonstrate state-of-the-art results under identical training data conditions, with particularly strong performance in out-of-domain scenarios. These findings validate our framework's ability to maintain robust reasoning and generalization across diverse GUI navigation tasks. Code is available at https://leon022.github.io/GUI-Rise.

Authors:Kounianhua Du, Jianxing Liu, Kangning Zhang, Wenxiang Jiao, Yuan Lu, Jiarui Jin, Weiwen Liu, Yong Yu, Weinan Zhang
Title: Fints: Efficient Inference-Time Personalization for LLMs with Fine-Grained Instance-Tailored Steering
Abstract:
The rapid evolution of large language models (LLMs) has intensified the demand for effective personalization techniques that can adapt model behavior to individual user preferences. Despite the non-parametric methods utilizing the in-context learning ability of LLMs, recent parametric adaptation methods, including personalized parameter-efficient fine-tuning and reward modeling emerge. However, these methods face limitations in handling dynamic user patterns and high data sparsity scenarios, due to low adaptability and data efficiency. To address these challenges, we propose a fine-grained and instance-tailored steering framework that dynamically generates sample-level interference vectors from user data and injects them into the model's forward pass for personalized adaptation. Our approach introduces two key technical innovations: a fine-grained steering component that captures nuanced signals by hooking activations from attention and MLP layers, and an input-aware aggregation module that synthesizes these signals into contextually relevant enhancements. The method demonstrates high flexibility and data efficiency, excelling in fast-changing distribution and high data sparsity scenarios. In addition, the proposed method is orthogonal to existing methods and operates as a plug-in component compatible with different personalization techniques. Extensive experiments across diverse scenarios--including short-to-long text generation, and web function calling--validate the effectiveness and compatibility of our approach. Results show that our method significantly enhances personalization performance in fast-shifting environments while maintaining robustness across varying interaction modes and context lengths. Implementation is available at https://github.com/KounianhuaDu/Fints.

Authors:Zixin Chen, Hongzhan Lin, Kaixin Li, Ziyang Luo, Yayue Deng, Jing Ma
Title: MemeArena: Automating Context-Aware Unbiased Evaluation of Harmfulness Understanding for Multimodal Large Language Models
Abstract:
The proliferation of memes on social media necessitates the capabilities of multimodal Large Language Models (mLLMs) to effectively understand multimodal harmfulness. Existing evaluation approaches predominantly focus on mLLMs' detection accuracy for binary classification tasks, which often fail to reflect the in-depth interpretive nuance of harmfulness across diverse contexts. In this paper, we propose MemeArena, an agent-based arena-style evaluation framework that provides a context-aware and unbiased assessment for mLLMs' understanding of multimodal harmfulness. Specifically, MemeArena simulates diverse interpretive contexts to formulate evaluation tasks that elicit perspective-specific analyses from mLLMs. By integrating varied viewpoints and reaching consensus among evaluators, it enables fair and unbiased comparisons of mLLMs' abilities to interpret multimodal harmfulness. Extensive experiments demonstrate that our framework effectively reduces the evaluation biases of judge agents, with judgment results closely aligning with human preferences, offering valuable insights into reliable and comprehensive mLLM evaluations in multimodal harmfulness understanding. Our code and data are publicly available at https://github.com/Lbotirx/MemeArena.

Authors:Zixuan Hu, Yongxian Wei, Li Shen, Zhenyi Wang, Lei Li, Chun Yuan, Dacheng Tao
Title: Sparse Model Inversion: Efficient Inversion of Vision Transformers for Data-Free Applications
Abstract:
Model inversion, which aims to reconstruct the original training data from pre-trained discriminative models, is especially useful when the original training data is unavailable due to privacy, usage rights, or size constraints. However, existing dense inversion methods attempt to reconstruct the entire image area, making them extremely inefficient when inverting high-resolution images from large-scale Vision Transformers (ViTs). We further identify two underlying causes of this inefficiency: the redundant inversion of noisy backgrounds and the unintended inversion of spurious correlations--a phenomenon we term "hallucination" in model inversion. To address these limitations, we propose a novel sparse model inversion strategy, as a plug-and-play extension to speed up existing dense inversion methods with no need for modifying their original loss functions. Specifically, we selectively invert semantic foregrounds while stopping the inversion of noisy backgrounds and potential spurious correlations. Through both theoretical and empirical studies, we validate the efficacy of our approach in achieving significant inversion acceleration (up to 3.79 faster) while maintaining comparable or even enhanced downstream performance in data-free model quantization and data-free knowledge transfer. Code is available at https://github.com/Egg-Hu/SMI.

Authors:Zixuan Hu, Li Shen, Zhenyi Wang, Yongxian Wei, Dacheng Tao
Title: Adaptive Defense against Harmful Fine-Tuning for Large Language Models via Bayesian Data Scheduler
Abstract:
Harmful fine-tuning poses critical safety risks to fine-tuning-as-a-service for large language models. Existing defense strategies preemptively build robustness via attack simulation but suffer from fundamental limitations: (i) the infeasibility of extending attack simulations beyond bounded threat models due to the inherent difficulty of anticipating unknown attacks, and (ii) limited adaptability to varying attack settings, as simulation fails to capture their variability and complexity. To address these challenges, we propose Bayesian Data Scheduler (BDS), an adaptive tuning-stage defense strategy with no need for attack simulation. BDS formulates harmful fine-tuning defense as a Bayesian inference problem, learning the posterior distribution of each data point's safety attribute, conditioned on the fine-tuning and alignment datasets. The fine-tuning process is then constrained by weighting data with their safety attributes sampled from the posterior, thus mitigating the influence of harmful data. By leveraging the post hoc nature of Bayesian inference, the posterior is conditioned on the fine-tuning dataset, enabling BDS to tailor its defense to the specific dataset, thereby achieving adaptive defense. Furthermore, we introduce a neural scheduler based on amortized Bayesian learning, enabling efficient transfer to new data without retraining. Comprehensive results across diverse attack and defense settings demonstrate the state-of-the-art performance of our approach. Code is available at https://github.com/Egg-Hu/Bayesian-Data-Scheduler.

Authors:Mingyu Sung, Il-Min Kim, Sangseok Yun, Jae-Mo Kang
Title: H2-Cache: A Novel Hierarchical Dual-Stage Cache for High-Performance Acceleration of Generative Diffusion Models
Abstract:
Diffusion models have emerged as state-of-the-art in image generation, but their practical deployment is hindered by the significant computational cost of their iterative denoising process. While existing caching techniques can accelerate inference, they often create a challenging trade-off between speed and fidelity, suffering from quality degradation and high computational overhead. To address these limitations, we introduce H2-Cache, a novel hierarchical caching mechanism designed for modern generative diffusion model architectures. Our method is founded on the key insight that the denoising process can be functionally separated into a structure-defining stage and a detail-refining stage. H2-cache leverages this by employing a dual-threshold system, using independent thresholds to selectively cache each stage. To ensure the efficiency of our dual-check approach, we introduce pooled feature summarization (PFS), a lightweight technique for robust and fast similarity estimation. Extensive experiments on the Flux architecture demonstrate that H2-cache achieves significant acceleration (up to 5.08x) while maintaining image quality nearly identical to the baseline, quantitatively and qualitatively outperforming existing caching methods. Our work presents a robust and practical solution that effectively resolves the speed-quality dilemma, significantly lowering the barrier for the real-world application of high-fidelity diffusion models. Source code is available at https://github.com/Bluear7878/H2-cache-A-Hierarchical-Dual-Stage-Cache.

Authors:Haonan Wang, Jingyu Lu, Hongrui Li, Xiaomeng Li
Title: ZEBRA: Towards Zero-Shot Cross-Subject Generalization for Universal Brain Visual Decoding
Abstract:
Recent advances in neural decoding have enabled the reconstruction of visual experiences from brain activity, positioning fMRI-to-image reconstruction as a promising bridge between neuroscience and computer vision. However, current methods predominantly rely on subject-specific models or require subject-specific fine-tuning, limiting their scalability and real-world applicability. In this work, we introduce ZEBRA, the first zero-shot brain visual decoding framework that eliminates the need for subject-specific adaptation. ZEBRA is built on the key insight that fMRI representations can be decomposed into subject-related and semantic-related components. By leveraging adversarial training, our method explicitly disentangles these components to isolate subject-invariant, semantic-specific representations. This disentanglement allows ZEBRA to generalize to unseen subjects without any additional fMRI data or retraining. Extensive experiments show that ZEBRA significantly outperforms zero-shot baselines and achieves performance comparable to fully finetuned models on several metrics. Our work represents a scalable and practical step toward universal neural decoding. Code and model weights are available at: https://github.com/xmed-lab/ZEBRA.

Authors:Hamed Mahdavi, Pouria Mahdavinia, Alireza Farhadi, Pegah Mohammadipour, Samira Malek, Majid Daliri, Pedram Mohammadipour, Alireza Hashemi, Amir Khasahmadi, Vasant Honavar
Title: CombiGraph-Vis: A Curated Multimodal Olympiad Benchmark for Discrete Mathematical Reasoning
Abstract:
State-of-the-art (SOTA) LLMs have progressed from struggling on proof-based Olympiad problems to solving most of the IMO 2025 problems, with leading systems reportedly handling 5 of 6 problems. Given this progress, we assess how well these models can grade proofs: detecting errors, judging their severity, and assigning fair scores beyond binary correctness. We study proof-analysis capabilities using a corpus of 90 Gemini 2.5 Pro-generated solutions that we grade on a 1-4 scale with detailed error annotations, and on MathArena solution sets for IMO/USAMO 2025 scored on a 0-7 scale. Our analysis shows that models can reliably flag incorrect (including subtly incorrect) solutions but exhibit calibration gaps in how partial credit is assigned. To address this, we introduce agentic workflows that extract and analyze reference solutions and automatically derive problem-specific rubrics for a multi-step grading process. We instantiate and compare different design choices for the grading workflows, and evaluate their trade-offs. Across our annotated corpus and MathArena, our proposed workflows achieve higher agreement with human grades and more consistent handling of partial credit across metrics. We release all code, data, and prompts/logs to facilitate future research.

Authors:Yunhao Yang, Neel P. Bhatt, Pranay Samineni, Rohan Siva, Zhanyang Wang, Ufuk Topcu
Title: RepV: Safety-Separable Latent Spaces for Scalable Neurosymbolic Plan Verification
Abstract:
As AI systems migrate to safety-critical domains, verifying that their actions comply with well-defined rules remains a challenge. Formal methods provide provable guarantees but demand hand-crafted temporal-logic specifications, offering limited expressiveness and accessibility. Deep learning approaches enable evaluation of plans against natural-language constraints, yet their opaque decision process invites misclassifications with potentially severe consequences. We introduce RepV, a neurosymbolic verifier that unifies both views by learning a latent space where safe and unsafe plans are linearly separable. Starting from a modest seed set of plans labeled by an off-the-shelf model checker, RepV trains a lightweight projector that embeds each plan, together with a language model-generated rationale, into a low-dimensional space; a frozen linear boundary then verifies compliance for unseen natural-language rules in a single forward pass. Beyond binary classification, RepV provides a probabilistic guarantee on the likelihood of correct verification based on its position in the latent space. This guarantee enables a guarantee-driven refinement of the planner, improving rule compliance without human annotations. Empirical evaluations show that RepV improves compliance prediction accuracy by up to 15% compared to baseline methods while adding fewer than 0.2M parameters. Furthermore, our refinement framework outperforms ordinary fine-tuning baselines across various planning domains. These results show that safety-separable latent spaces offer a scalable, plug-and-play primitive for reliable neurosymbolic plan verification. Code and data are available at: https://repv-project.github.io/.

Authors:Zachary Ravichandran, Fernando Cladera, Ankit Prabhu, Jason Hughes, Varun Murali, Camillo Taylor, George J. Pappas, Vijay Kumar
Title: Heterogeneous Robot Collaboration in Unstructured Environments with Grounded Generative Intelligence
Abstract:
Heterogeneous robot teams operating in realistic settings often must accomplish complex missions requiring collaboration and adaptation to information acquired online. Because robot teams frequently operate in unstructured environments -- uncertain, open-world settings without prior maps -- subtasks must be grounded in robot capabilities and the physical world. While heterogeneous teams have typically been designed for fixed specifications, generative intelligence opens the possibility of teams that can accomplish a wide range of missions described in natural language. However, current large language model (LLM)-enabled teaming methods typically assume well-structured and known environments, limiting deployment in unstructured environments. We present SPINE-HT, a framework that addresses these limitations by grounding the reasoning abilities of LLMs in the context of a heterogeneous robot team through a three-stage process. Given language specifications describing mission goals and team capabilities, an LLM generates grounded subtasks which are validated for feasibility. Subtasks are then assigned to robots based on capabilities such as traversability or perception and refined given feedback collected during online operation. In simulation experiments with closed-loop perception and control, our framework achieves nearly twice the success rate compared to prior LLM-enabled heterogeneous teaming approaches. In real-world experiments with a Clearpath Jackal, a Clearpath Husky, a Boston Dynamics Spot, and a high-altitude UAV, our method achieves an 87\% success rate in missions requiring reasoning about robot capabilities and refining subtasks with online feedback. More information is provided at https://zacravichandran.github.io/SPINE-HT.

Authors:Francisco Villaescusa-Navarro, Boris Bolliet, Pablo Villanueva-Domingo, Adrian E. Bayer, Aidan Acquah, Chetana Amancharla, Almog Barzilay-Siegal, Pablo Bermejo, Camille Bilodeau, Pablo Cárdenas Ramírez, Miles Cranmer, Urbano L. França, ChangHoon Hahn, Yan-Fei Jiang, Raul Jimenez, Jun-Young Lee, Antonio Lerario, Osman Mamun, Thomas Meier, Anupam A. Ojha, Pavlos Protopapas, Shimanto Roy, David N. Spergel, Pedro Tarancón-Álvarez, Ujjwal Tiwari, Matteo Viel, Digvijay Wadekar, Chi Wang, Bonny Y. Wang, Licong Xu, Yossi Yovel, Shuwen Yue, Wen-Han Zhou, Qiyao Zhu, Jiajun Zou, Íñigo Zubeldia
Title: The Denario project: Deep knowledge AI agents for scientific discovery
Abstract:
We present Denario, an AI multi-agent system designed to serve as a scientific research assistant. Denario can perform many different tasks, such as generating ideas, checking the literature, developing research plans, writing and executing code, making plots, and drafting and reviewing a scientific paper. The system has a modular architecture, allowing it to handle specific tasks, such as generating an idea, or carrying out end-to-end scientific analysis using Cmbagent as a deep-research backend. In this work, we describe in detail Denario and its modules, and illustrate its capabilities by presenting multiple AI-generated papers generated by it in many different scientific disciplines such as astrophysics, biology, biophysics, biomedical informatics, chemistry, material science, mathematical physics, medicine, neuroscience and planetary science. Denario also excels at combining ideas from different disciplines, and we illustrate this by showing a paper that applies methods from quantum physics and machine learning to astrophysical data. We report the evaluations performed on these papers by domain experts, who provided both numerical scores and review-like feedback. We then highlight the strengths, weaknesses, and limitations of the current system. Finally, we discuss the ethical implications of AI-driven research and reflect on how such technology relates to the philosophy of science. We publicly release the code at https://github.com/AstroPilot-AI/Denario. A Denario demo can also be run directly on the web at https://huggingface.co/spaces/astropilot-ai/Denario, and the full app will be deployed on the cloud.

Authors:Fenfen Lin, Yesheng Liu, Haiyu Xu, Chen Yue, Zheqi He, Mingxuan Zhao, Miguel Hu Chen, Jiakang Liu, JG Yao, Xi Yang
Title: Do Vision-Language Models Measure Up? Benchmarking Visual Measurement Reading with MeasureBench
Abstract:
Reading measurement instruments is effortless for humans and requires relatively little domain expertise, yet it remains surprisingly challenging for current vision-language models (VLMs) as we find in preliminary evaluation. In this work, we introduce MeasureBench, a benchmark on visual measurement reading covering both real-world and synthesized images of various types of measurements, along with an extensible pipeline for data synthesis. Our pipeline procedurally generates a specified type of gauge with controllable visual appearance, enabling scalable variation in key details such as pointers, scales, fonts, lighting, and clutter. Evaluation on popular proprietary and open-weight VLMs shows that even the strongest frontier VLMs struggle measurement reading in general. A consistent failure mode is indicator localization: models can read digits or labels but misidentify the key positions of pointers or alignments, leading to big numeric errors despite plausible textual reasoning. We have also conducted preliminary experiments with reinforcement learning over synthetic data, and find encouraging results on in-domain synthetic subset but less promising for real-world images. Our analysis highlights a fundamental limitation of current VLMs in fine-grained spatial grounding. We hope this resource can help future advances on visually grounded numeracy and precise spatial perception of VLMs, bridging the gap between recognizing numbers and measuring the world.

Authors:Kangkang Sun, Jun Wu, Minyi Guo, Jianhua Li, Jianwei Huang
Title: Accurate Target Privacy Preserving Federated Learning Balancing Fairness and Utility
Abstract:
Federated Learning (FL) enables collaborative model training without data sharing, yet participants face a fundamental challenge, e.g., simultaneously ensuring fairness across demographic groups while protecting sensitive client data. We introduce a differentially private fair FL algorithm (\textit{FedPF}) that transforms this multi-objective optimization into a zero-sum game where fairness and privacy constraints compete against model utility. Our theoretical analysis reveals a surprising inverse relationship, i.e., stricter privacy protection fundamentally limits the system's ability to detect and correct demographic biases, creating an inherent tension between privacy and fairness. Counterintuitively, we prove that moderate fairness constraints initially improve model generalization before causing performance degradation, where a non-monotonic relationship that challenges conventional wisdom about fairness-utility tradeoffs. Experimental validation demonstrates up to 42.9 % discrimination reduction across three datasets while maintaining competitive accuracy, but more importantly, reveals that the privacy-fairness tension is unavoidable, i.e., achieving both objectives simultaneously requires carefully balanced compromises rather than optimization of either in isolation. The source code for our proposed algorithm is publicly accessible at https://github.com/szpsunkk/FedPF.

Authors:Samuel W. Remedios, Aaron Carass, Jerry L. Prince, Blake E. Dewey
Title: Diffusion-Driven Generation of Minimally Preprocessed Brain MRI
Abstract:
The purpose of this study is to present and compare three denoising diffusion probabilistic models (DDPMs) that generate 3D $T_1$-weighted MRI human brain images. Three DDPMs were trained using 80,675 image volumes from 42,406 subjects spanning 38 publicly available brain MRI datasets. These images had approximately 1 mm isotropic resolution and were manually inspected by three human experts to exclude those with poor quality, field-of-view issues, and excessive pathology. The images were minimally preprocessed to preserve the visual variability of the data. Furthermore, to enable the DDPMs to produce images with natural orientation variations and inhomogeneity, the images were neither registered to a common coordinate system nor bias field corrected. Evaluations included segmentation, Frechet Inception Distance (FID), and qualitative inspection. Regarding results, all three DDPMs generated coherent MR brain volumes. The velocity and flow prediction models achieved lower FIDs than the sample prediction model. However, all three models had higher FIDs compared to real images across multiple cohorts. In a permutation experiment, the generated brain regional volume distributions differed statistically from real data. However, the velocity and flow prediction models had fewer statistically different volume distributions in the thalamus and putamen. In conclusion this work presents and releases the first 3D non-latent diffusion model for brain data without skullstripping or registration. Despite the negative results in statistical testing, the presented DDPMs are capable of generating high-resolution 3D $T_1$-weighted brain images. All model weights and corresponding inference code are publicly available at https://github.com/piksl-research/medforj .

Authors:Jinting Wang, Chenxing Li, Li Liu
Title: GACA-DiT: Diffusion-based Dance-to-Music Generation with Genre-Adaptive Rhythm and Context-Aware Alignment
Abstract:
Dance-to-music (D2M) generation aims to automatically compose music that is rhythmically and temporally aligned with dance movements. Existing methods typically rely on coarse rhythm embeddings, such as global motion features or binarized joint-based rhythm values, which discard fine-grained motion cues and result in weak rhythmic alignment. Moreover, temporal mismatches introduced by feature downsampling further hinder precise synchronization between dance and music. To address these problems, we propose \textbf{GACA-DiT}, a diffusion transformer-based framework with two novel modules for rhythmically consistent and temporally aligned music generation. First, a \textbf{genre-adaptive rhythm extraction} module combines multi-scale temporal wavelet analysis and spatial phase histograms with adaptive joint weighting to capture fine-grained, genre-specific rhythm patterns. Second, a \textbf{context-aware temporal alignment} module resolves temporal mismatches using learnable context queries to align music latents with relevant dance rhythm features. Extensive experiments on the AIST++ and TikTok datasets demonstrate that GACA-DiT outperforms state-of-the-art methods in both objective metrics and human evaluation. Project page: https://beria-moon.github.io/GACA-DiT/.

Authors:Majed El Helou, Chiara Troiani, Benjamin Ryder, Jean Diaconu, Hervé Muyal, Marcelo Yannuzzi
Title: Delegated Authorization for Agents Constrained to Semantic Task-to-Scope Matching
Abstract:
Authorizing Large Language Model driven agents to dynamically invoke tools and access protected resources introduces significant risks, since current methods for delegating authorization grant overly broad permissions and give access to tools allowing agents to operate beyond the intended task scope. We introduce and assess a delegated authorization model enabling authorization servers to semantically inspect access requests to protected resources, and issue access tokens constrained to the minimal set of scopes necessary for the agents' assigned tasks. Given the unavailability of datasets centered on delegated authorization flows, particularly including both semantically appropriate and inappropriate scope requests for a given task, we introduce ASTRA, a dataset and data generation pipeline for benchmarking semantic matching between tasks and scopes. Our experiments show both the potential and current limitations of model-based matching, particularly as the number of scopes needed for task completion increases. Our results highlight the need for further research into semantic matching techniques enabling intent-aware authorization for multi-agent and tool-augmented applications, including fine-grained control, such as Task-Based Access Control (TBAC).

Authors:Xiaoyi He, Danggui Chen, Zhenshuo Zhang, Zimeng Bai
Title: Hybrid DQN-TD3 Reinforcement Learning for Autonomous Navigation in Dynamic Environments
Abstract:
This paper presents a hierarchical path-planning and control framework that combines a high-level Deep Q-Network (DQN) for discrete sub-goal selection with a low-level Twin Delayed Deep Deterministic Policy Gradient (TD3) controller for continuous actuation. The high-level module selects behaviors and sub-goals; the low-level module executes smooth velocity commands. We design a practical reward shaping scheme (direction, distance, obstacle avoidance, action smoothness, collision penalty, time penalty, and progress), together with a LiDAR-based safety gate that prevents unsafe motions. The system is implemented in ROS + Gazebo (TurtleBot3) and evaluated with PathBench metrics, including success rate, collision rate, path efficiency, and re-planning efficiency, in dynamic and partially observable environments. Experiments show improved success rate and sample efficiency over single-algorithm baselines (DQN or TD3 alone) and rule-based planners, with better generalization to unseen obstacle configurations and reduced abrupt control changes. Code and evaluation scripts are available at the project repository.

Authors:Lin Xu, Xinyun Yuan, Yuxuan Liang, Suwan Yin, Yuankai Wu
Title: Aeolus: A Multi-structural Flight Delay Dataset
Abstract:
We introduce Aeolus, a large-scale Multi-modal Flight Delay Dataset designed to advance research on flight delay prediction and support the development of foundation models for tabular data. Existing datasets in this domain are typically limited to flat tabular structures and fail to capture the spatiotemporal dynamics inherent in delay propagation. Aeolus addresses this limitation by providing three aligned modalities: (i) a tabular dataset with rich operational, meteorological, and airportlevel features for over 50 million flights; (ii) a flight chain module that models delay propagation along sequential flight legs, capturing upstream and downstream dependencies; and (iii) a flight network graph that encodes shared aircraft, crew, and airport resource connections, enabling cross-flight relational reasoning. The dataset is carefully constructed with temporal splits, comprehensive features, and strict leakage prevention to support realistic and reproducible machine learning evaluation. Aeolus supports a broad range of tasks, including regression, classification, temporal structure modeling, and graph learning, serving as a unified benchmark across tabular, sequential, and graph modalities. We release baseline experiments and preprocessing tools to facilitate adoption. Aeolus fills a key gap for both domain-specific modeling and general-purpose structured data research.Our source code and data can be accessed at https://github.com/Flnny/Delay-data

Authors:Kentaro Ozeki, Risako Ando, Takanobu Morishita, Hirohiko Abe, Koji Mineshima, Mitsuhiro Okada
Title: Normative Reasoning in Large Language Models: A Comparative Benchmark from Logical and Modal Perspectives
Abstract:
Normative reasoning is a type of reasoning that involves normative or deontic modality, such as obligation and permission. While large language models (LLMs) have demonstrated remarkable performance across various reasoning tasks, their ability to handle normative reasoning remains underexplored. In this paper, we systematically evaluate LLMs' reasoning capabilities in the normative domain from both logical and modal perspectives. Specifically, to assess how well LLMs reason with normative modals, we make a comparison between their reasoning with normative modals and their reasoning with epistemic modals, which share a common formal structure. To this end, we introduce a new dataset covering a wide range of formal patterns of reasoning in both normative and epistemic domains, while also incorporating non-formal cognitive factors that influence human reasoning. Our results indicate that, although LLMs generally adhere to valid reasoning patterns, they exhibit notable inconsistencies in specific types of normative reasoning and display cognitive biases similar to those observed in psychological studies of human reasoning. These findings highlight challenges in achieving logical consistency in LLMs' normative reasoning and provide insights for enhancing their reliability. All data and code are released publicly at https://github.com/kmineshima/NeuBAROCO.

Authors:Reda El Makroum, Sebastian Zwickl-Bernhard, Lukas Kranzl
Title: Agentic AI Home Energy Management System: A Large Language Model Framework for Residential Load Scheduling
Abstract:
The electricity sector transition requires substantial increases in residential demand response capacity, yet Home Energy Management Systems (HEMS) adoption remains limited by user interaction barriers requiring translation of everyday preferences into technical parameters. While large language models have been applied to energy systems as code generators and parameter extractors, no existing implementation deploys LLMs as autonomous coordinators managing the complete workflow from natural language input to multi-appliance scheduling. This paper presents an agentic AI HEMS where LLMs autonomously coordinate multi-appliance scheduling from natural language requests to device control, achieving optimal scheduling without example demonstrations. A hierarchical architecture combining one orchestrator with three specialist agents uses the ReAct pattern for iterative reasoning, enabling dynamic coordination without hardcoded workflows while integrating Google Calendar for context-aware deadline extraction. Evaluation across three open-source models using real Austrian day-ahead electricity prices reveals substantial capability differences. Llama-3.3-70B successfully coordinates all appliances across all scenarios to match cost-optimal benchmarks computed via mixed-integer linear programming, while other models achieve perfect single-appliance performance but struggle to coordinate all appliances simultaneously. Progressive prompt engineering experiments demonstrate that analytical query handling without explicit guidance remains unreliable despite models' general reasoning capabilities. We open-source the complete system including orchestration logic, agent prompts, tools, and web interfaces to enable reproducibility, extension, and future research.

Authors:Fulin Lin, Shaowen Chen, Ruishan Fang, Hongwei Wang, Tao Lin
Title: Stop Wasting Your Tokens: Towards Efficient Runtime Multi-Agent Systems
Abstract:
While Multi-Agent Systems (MAS) excel at complex tasks, their growing autonomy with operational complexity often leads to critical inefficiencies, such as excessive token consumption and failures arising from misinformation. Existing methods primarily focus on post-hoc failure attribution, lacking proactive, real-time interventions to enhance robustness and efficiency. To this end, we introduce SupervisorAgent, a lightweight and modular framework for runtime, adaptive supervision that operates without altering the base agent's architecture. Triggered by an LLM-free adaptive filter, SupervisorAgent intervenes at critical junctures to proactively correct errors, guide inefficient behaviors, and purify observations. On the challenging GAIA benchmark, SupervisorAgent reduces the token consumption of the Smolagent framework by an average of 29.45% without compromising its success rate. Extensive experiments across five additional benchmarks (math reasoning, code generation, and question answering) and various SoTA foundation models validate the broad applicability and robustness of our approach. The code is available at https://github.com/LINs-lab/SupervisorAgent.

Authors:Sadegh Shirani, Mohsen Bayati
Title: Simulating and Experimenting with Social Media Mobilization Using LLM Agents
Abstract:
Online social networks have transformed the ways in which political mobilization messages are disseminated, raising new questions about how peer influence operates at scale. Building on the landmark 61-million-person Facebook experiment \citep{bond201261}, we develop an agent-based simulation framework that integrates real U.S. Census demographic distributions, authentic Twitter network topology, and heterogeneous large language model (LLM) agents to examine the effect of mobilization messages on voter turnout. Each simulated agent is assigned demographic attributes, a personal political stance, and an LLM variant (\texttt{GPT-4.1}, \texttt{GPT-4.1-Mini}, or \texttt{GPT-4.1-Nano}) reflecting its political sophistication. Agents interact over realistic social network structures, receiving personalized feeds and dynamically updating their engagement behaviors and voting intentions. Experimental conditions replicate the informational and social mobilization treatments of the original Facebook study. Across scenarios, the simulator reproduces qualitative patterns observed in field experiments, including stronger mobilization effects under social message treatments and measurable peer spillovers. Our framework provides a controlled, reproducible environment for testing counterfactual designs and sensitivity analyses in political mobilization research, offering a bridge between high-validity field experiments and flexible computational modeling.\footnote{Code and data available at https://github.com/CausalMP/LLM-SocioPol}

Authors:Fang Liu, Simiao Liu, Yinghao Zhu, Xiaoli Lian, Li Zhang
Title: SecureReviewer: Enhancing Large Language Models for Secure Code Review through Secure-aware Fine-tuning
Abstract:
Identifying and addressing security issues during the early phase of the development lifecycle is critical for mitigating the long-term negative impacts on software systems. Code review serves as an effective practice that enables developers to check their teammates' code before integration into the codebase. To streamline the generation of review comments, various automated code review approaches have been proposed, where LLM-based methods have significantly advanced the capabilities of automated review generation. However, existing models primarily focus on general-purpose code review, their effectiveness in identifying and addressing security-related issues remains underexplored. Moreover, adapting existing code review approaches to target security issues faces substantial challenges, including data scarcity and inadequate evaluation metrics. To address these limitations, we propose SecureReviewer, a new approach designed for enhancing LLMs' ability to identify and resolve security-related issues during code review. Specifically, we first construct a dataset tailored for training and evaluating secure code review capabilities. Leveraging this dataset, we fine-tune LLMs to generate code review comments that can effectively identify security issues and provide fix suggestions with our proposed secure-aware fine-tuning strategy. To mitigate hallucination in LLMs and enhance the reliability of their outputs, we integrate the RAG technique, which grounds the generated comments in domain-specific security knowledge. Additionally, we introduce SecureBLEU, a new evaluation metric designed to assess the effectiveness of review comments in addressing security issues. Experimental results demonstrate that SecureReviewer outperforms state-of-the-art baselines in both security issue detection accuracy and the overall quality and practical utility of generated review comments.

Authors:Mykhailo Poliakov, Nadiya Shvai
Title: MisSynth: Improving MISSCI Logical Fallacies Classification with Synthetic Data
Abstract:
Health-related misinformation is very prevalent and potentially harmful. It is difficult to identify, especially when claims distort or misinterpret scientific findings. We investigate the impact of synthetic data generation and lightweight fine-tuning techniques on the ability of large language models (LLMs) to recognize fallacious arguments using the MISSCI dataset and framework. In this work, we propose MisSynth, a pipeline that applies retrieval-augmented generation (RAG) to produce synthetic fallacy samples, which are then used to fine-tune an LLM model. Our results show substantial accuracy gains with fine-tuned models compared to vanilla baselines. For instance, the LLaMA 3.1 8B fine-tuned model achieved an over 35% F1-score absolute improvement on the MISSCI test split over its vanilla baseline. We demonstrate that introducing synthetic fallacy data to augment limited annotated resources can significantly enhance zero-shot LLM classification performance on real-world scientific misinformation tasks, even with limited computational resources. The code and synthetic dataset are available on https://github.com/mxpoliakov/MisSynth.

Authors:Hieu M. Vu, Tan M. Nguyen
Title: Angular Steering: Behavior Control via Rotation in Activation Space
Abstract:
Controlling specific behaviors in large language models while preserving their general capabilities is a central challenge for safe and reliable artificial intelligence deployment. Current steering methods, such as vector addition and directional ablation, are constrained within a two-dimensional subspace defined by the activation and feature direction, making them sensitive to chosen parameters and potentially affecting unrelated features due to unintended interactions in activation space. We introduce Angular Steering, a novel and flexible method for behavior modulation that operates by rotating activations within a fixed two-dimensional subspace. By formulating steering as a geometric rotation toward or away from a target behavior direction, Angular Steering provides continuous, fine-grained control over behaviors such as refusal and compliance. We demonstrate this method using refusal steering emotion steering as use cases. Additionally, we propose Adaptive Angular Steering, a selective variant that rotates only activations aligned with the target feature, further enhancing stability and coherence. Angular Steering generalizes existing addition and orthogonalization techniques under a unified geometric rotation framework, simplifying parameter selection and maintaining model stability across a broader range of adjustments. Experiments across multiple model families and sizes show that Angular Steering achieves robust behavioral control while maintaining general language modeling performance, underscoring its flexibility, generalization, and robustness compared to prior approaches. Code and artifacts are available at https://github.com/lone17/angular-steering/.

Authors:Rajiv Movva, Smitha Milli, Sewon Min, Emma Pierson
Title: What's In My Human Feedback? Learning Interpretable Descriptions of Preference Data
Abstract:
Human feedback can alter language models in unpredictable and undesirable ways, as practitioners lack a clear understanding of what feedback data encodes. While prior work studies preferences over certain attributes (e.g., length or sycophancy), automatically extracting relevant features without pre-specifying hypotheses remains challenging. We introduce What's In My Human Feedback? (WIMHF), a method to explain feedback data using sparse autoencoders. WIMHF characterizes both (1) the preferences a dataset is capable of measuring and (2) the preferences that the annotators actually express. Across 7 datasets, WIMHF identifies a small number of human-interpretable features that account for the majority of the preference prediction signal achieved by black-box models. These features reveal a wide diversity in what humans prefer, and the role of dataset-level context: for example, users on Reddit prefer informality and jokes, while annotators in HH-RLHF and PRISM disprefer them. WIMHF also surfaces potentially unsafe preferences, such as that LMArena users tend to vote against refusals, often in favor of toxic content. The learned features enable effective data curation: re-labeling the harmful examples in Arena yields large safety gains (+37%) with no cost to general performance. They also allow fine-grained personalization: on the Community Alignment dataset, we learn annotator-specific weights over subjective features that improve preference prediction. WIMHF provides a human-centered analysis method for practitioners to better understand and use preference data.

Authors:Minjoon Jung, Junbin Xiao, Junghyun Kim, Byoung-Tak Zhang, Angela Yao
Title: EgoExo-Con: Exploring View-Invariant Video Temporal Understanding
Abstract:
Can Video-LLMs achieve consistent temporal understanding when videos capture the same event from different viewpoints? To study this, we introduce EgoExo-Con (Consistency), a benchmark of comprehensively synchronized egocentric and exocentric video pairs with human-refined queries in natural language. EgoExo-Con emphasizes two temporal understanding tasks: Temporal Verification and Temporal Grounding. It evaluates not only correctness but consistency across viewpoints. Our analysis reveals two critical limitations of existing Video-LLMs: (1) models often fail to maintain consistency, with results far worse than their single-view performances. (2) When naively finetuned with synchronized videos of both viewpoints, the models show improved consistency but often underperform those trained on a single view. For improvements, we propose View-GRPO, a novel reinforcement learning framework that effectively strengthens view-specific temporal reasoning while encouraging consistent comprehension across viewpoints. Our method demonstrates its superiority over naive SFT and GRPO, especially for improving cross-view consistency. All resources will be made publicly available.

Authors:Nick Masi, Randall Balestriero
Title: SAFE: A Novel Approach to AI Weather Evaluation through Stratified Assessments of Forecasts over Earth
Abstract:
The dominant paradigm in machine learning is to assess model performance based on average loss across all samples in some test set. This amounts to averaging performance geospatially across the Earth in weather and climate settings, failing to account for the non-uniform distribution of human development and geography. We introduce Stratified Assessments of Forecasts over Earth (SAFE), a package for elucidating the stratified performance of a set of predictions made over Earth. SAFE integrates various data domains to stratify by different attributes associated with geospatial gridpoints: territory (usually country), global subregion, income, and landcover (land or water). This allows us to examine the performance of models for each individual stratum of the different attributes (e.g., the accuracy in every individual country). To demonstrate its importance, we utilize SAFE to benchmark a zoo of state-of-the-art AI-based weather prediction models, finding that they all exhibit disparities in forecasting skill across every attribute. We use this to seed a benchmark of model forecast fairness through stratification at different lead times for various climatic variables. By moving beyond globally-averaged metrics, we for the first time ask: where do models perform best or worst, and which models are most fair? To support further work in this direction, the SAFE package is open source and available at https://github.com/N-Masi/safe

Authors:Fazel Arasteh, Arian Haghparast, Manos Papagelis
Title: Network-Constrained Policy Optimization for Adaptive Multi-agent Vehicle Routing
Abstract:
Traffic congestion in urban road networks leads to longer trip times and higher emissions, especially during peak periods. While the Shortest Path First (SPF) algorithm is optimal for a single vehicle in a static network, it performs poorly in dynamic, multi-vehicle settings, often worsening congestion by routing all vehicles along identical paths. We address dynamic vehicle routing through a multi-agent reinforcement learning (MARL) framework for coordinated, network-aware fleet navigation. We first propose Adaptive Navigation (AN), a decentralized MARL model where each intersection agent provides routing guidance based on (i) local traffic and (ii) neighborhood state modeled using Graph Attention Networks (GAT). To improve scalability in large networks, we further propose Hierarchical Hub-based Adaptive Navigation (HHAN), an extension of AN that assigns agents only to key intersections (hubs). Vehicles are routed hub-to-hub under agent control, while SPF handles micro-routing within each hub region. For hub coordination, HHAN adopts centralized training with decentralized execution (CTDE) under the Attentive Q-Mixing (A-QMIX) framework, which aggregates asynchronous vehicle decisions via attention. Hub agents use flow-aware state features that combine local congestion and predictive dynamics for proactive routing. Experiments on synthetic grids and real urban maps (Toronto, Manhattan) show that AN reduces average travel time versus SPF and learning baselines, maintaining 100% routing success. HHAN scales to networks with hundreds of intersections, achieving up to 15.9% improvement under heavy traffic. These findings highlight the potential of network-constrained MARL for scalable, coordinated, and congestion-aware routing in intelligent transportation systems.

Authors:Siyi Wu, Chiaxin Liang, Ziqian Bi, Leyi Zhao, Tianyang Wang, Junhao Song, Yichao Zhang, Keyu Chen, Xinyuan Song
Title: AutoSurvey2: Empowering Researchers with Next Level Automated Literature Surveys
Abstract:
The rapid growth of research literature, particularly in large language models (LLMs), has made producing comprehensive and current survey papers increasingly difficult. This paper introduces autosurvey2, a multi-stage pipeline that automates survey generation through retrieval-augmented synthesis and structured evaluation. The system integrates parallel section generation, iterative refinement, and real-time retrieval of recent publications to ensure both topical completeness and factual accuracy. Quality is assessed using a multi-LLM evaluation framework that measures coverage, structure, and relevance in alignment with expert review standards. Experimental results demonstrate that autosurvey2 consistently outperforms existing retrieval-based and automated baselines, achieving higher scores in structural coherence and topical relevance while maintaining strong citation fidelity. By combining retrieval, reasoning, and automated evaluation into a unified framework, autosurvey2 provides a scalable and reproducible solution for generating long-form academic surveys and contributes a solid foundation for future research on automated scholarly writing. All code and resources are available at https://github.com/annihi1ation/auto_research.

Authors:Sungho Koh, SeungJu Cha, Hyunwoo Oh, Kwanyoung Lee, Dong-Jin Kim
Title: ScaleDiff: Higher-Resolution Image Synthesis via Efficient and Model-Agnostic Diffusion
Abstract:
Text-to-image diffusion models often exhibit degraded performance when generating images beyond their training resolution. Recent training-free methods can mitigate this limitation, but they often require substantial computation or are incompatible with recent Diffusion Transformer models. In this paper, we propose ScaleDiff, a model-agnostic and highly efficient framework for extending the resolution of pretrained diffusion models without any additional training. A core component of our framework is Neighborhood Patch Attention (NPA), an efficient mechanism that reduces computational redundancy in the self-attention layer with non-overlapping patches. We integrate NPA into an SDEdit pipeline and introduce Latent Frequency Mixing (LFM) to better generate fine details. Furthermore, we apply Structure Guidance to enhance global structure during the denoising process. Experimental results demonstrate that ScaleDiff achieves state-of-the-art performance among training-free methods in terms of both image quality and inference speed on both U-Net and Diffusion Transformer architectures.

Authors:Jorge Martinez-Gil, Mario Pichler, Nefeli Bountouni, Sotiris Koussouris, Marielena Márquez Barreiro, Sergio Gusmeroli
Title: An Agentic Framework for Rapid Deployment of Edge AI Solutions in Industry 5.0
Abstract:
We present a novel framework for Industry 5.0 that simplifies the deployment of AI models on edge devices in various industrial settings. The design reduces latency and avoids external data transfer by enabling local inference and real-time processing. Our implementation is agent-based, which means that individual agents, whether human, algorithmic, or collaborative, are responsible for well-defined tasks, enabling flexibility and simplifying integration. Moreover, our framework supports modular integration and maintains low resource requirements. Preliminary evaluations concerning the food industry in real scenarios indicate improved deployment time and system adaptability performance. The source code is publicly available at https://github.com/AI-REDGIO-5-0/ci-component.

Authors:Kun Chen, Peng Shi, Haibo Qiu, Zhixiong Zeng, Siqi Yang, Wenji Mao, Lin Ma
Title: Metis-SPECS: Decoupling Multimodal Learning via Self-distilled Preference-based Cold Start
Abstract:
Reinforcement learning (RL) with verifiable rewards has recently catalyzed a wave of "MLLM-r1" approaches that bring RL to vision language models. Most representative paradigms begin with a cold start, typically employing supervised fine-tuning (SFT), to initialize the policy before RL. However, SFT-based cold start adopts the reasoning paradigm intertwined with task solution and output format, which may induce instruction-style overfitting, weakens out-of-distribution generalization, and ultimately affects downstream RL. We revisit the cold start along two views, its training method and data construction, and introduce the Generalization Factor (GF) coefficient to quantify the generalization capability under different methods. Our empirical study finds that preference-based training methods (e.g. DPO) generalizes better than SFT-based methods in cold start. Motivated by this, we propose SPECS-a Self-distilled, Preference-based Cold Start framework that decouples multimodal learning: (1) generates introspective preference data pairs via self-distillation, avoiding reliance on larger teachers or manual annotation; (2) performs preference-based training to learn, focusing on shallow, transferable surface-form criteria (format, structure, style) rather than memorizing content; and (3) hands off to RL with verifiable rewards for deep reasoning results. Experimental results across multiple multimodal benchmarks show that our decoupling learning framework yields consistent performance gains over strong baselines, improving MEGA-Bench by 4.1% and MathVista by 12.2%. Additional experiments indicate that SPECS contributes to reducing in-distribution "stuckness," improving exploration, stabilizing training, and raising the performance ceiling.

Authors:Yaniv Nikankin, Dana Arad, Itay Itzhak, Anja Reusch, Adi Simhi, Gal Kesten-Pomeranz, Yonatan Belinkov
Title: BlackboxNLP-2025 MIB Shared Task: Improving Circuit Faithfulness via Better Edge Selection
Abstract:
One of the main challenges in mechanistic interpretability is circuit discovery, determining which parts of a model perform a given task. We build on the Mechanistic Interpretability Benchmark (MIB) and propose three key improvements to circuit discovery. First, we use bootstrapping to identify edges with consistent attribution scores. Second, we introduce a simple ratio-based selection strategy to prioritize strong positive-scoring edges, balancing performance and faithfulness. Third, we replace the standard greedy selection with an integer linear programming formulation. Our methods yield more faithful circuits and outperform prior approaches across multiple MIB tasks and models. Our code is available at: https://github.com/technion-cs-nlp/MIB-Shared-Task.

Authors:Amir Noorizadegan, Sifan Wang, Leevan Ling
Title: A Practitioner's Guide to Kolmogorov-Arnold Networks
Abstract:
Kolmogorov-Arnold Networks (KANs) have recently emerged as a promising alternative to traditional Multilayer Perceptrons (MLPs), inspired by the Kolmogorov-Arnold representation theorem. Unlike MLPs, which use fixed activation functions on nodes, KANs employ learnable univariate basis functions on edges, offering enhanced expressivity and interpretability. This review provides a systematic and comprehensive overview of the rapidly expanding KAN landscape, moving beyond simple performance comparisons to offer a structured synthesis of theoretical foundations, architectural variants, and practical implementation strategies. By collecting and categorizing a vast array of open-source implementations, we map the vibrant ecosystem supporting KAN development. We begin by bridging the conceptual gap between KANs and MLPs, establishing their formal equivalence and highlighting the superior parameter efficiency of the KAN formulation. A central theme of our review is the critical role of the basis function; we survey a wide array of choices, including B-splines, Chebyshev and Jacobi polynomials, ReLU compositions, Gaussian RBFs, and Fourier series, and analyze their respective trade-offs in terms of smoothness, locality, and computational cost. We then categorize recent advancements into a clear roadmap, covering techniques for improving accuracy, efficiency, and regularization. Key topics include physics-informed loss design, adaptive sampling, domain decomposition, hybrid architectures, and specialized methods for handling discontinuities. Finally, we provide a practical "Choose-Your-KAN" guide to help practitioners select appropriate architectures, and we conclude by identifying current research gaps. The associated GitHub repository https://github.com/AmirNoori68/kan-review complements this paper and serves as a structured reference for ongoing KAN research.

Authors:He Hu, Yucheng Zhou, Chiyuan Ma, Qianning Wang, Zheng Zhang, Fei Ma, Laizhong Cui, Qi Tian
Title: TheraMind: A Strategic and Adaptive Agent for Longitudinal Psychological Counseling
Abstract:
Large language models (LLMs) in psychological counseling have attracted increasing attention. However, existing approaches often lack emotional understanding, adaptive strategies, and the use of therapeutic methods across multiple sessions with long-term memory, leaving them far from real clinical practice. To address these critical gaps, we introduce TheraMind, a strategic and adaptive agent for longitudinal psychological counseling. The cornerstone of TheraMind is a novel dual-loop architecture that decouples the complex counseling process into an Intra-Session Loop for tactical dialogue management and a Cross-Session Loop for strategic therapeutic planning. The Intra-Session Loop perceives the patient's emotional state to dynamically select response strategies while leveraging cross-session memory to ensure continuity. Crucially, the Cross-Session Loop empowers the agent with long-term adaptability by evaluating the efficacy of the applied therapy after each session and adjusting the method for subsequent interactions. We validate our approach in a high-fidelity simulation environment grounded in real clinical cases. Extensive evaluations show that TheraMind outperforms other methods, especially on multi-session metrics like Coherence, Flexibility, and Therapeutic Attunement, validating the effectiveness of its dual-loop design in emulating strategic, adaptive, and longitudinal therapeutic behavior. The code is publicly available at https://0mwwm0.github.io/TheraMind/.

Authors:Run Peng, Ziqiao Ma, Amy Pang, Sikai Li, Zhang Xi-Jia, Yingzhuo Yu, Cristian-Paul Bara, Joyce Chai
Title: Communication and Verification in LLM Agents towards Collaboration under Information Asymmetry
Abstract:
While Large Language Model (LLM) agents are often approached from the angle of action planning/generation to accomplish a goal (e.g., given by language descriptions), their abilities to collaborate with each other to achieve a joint goal are not well explored. To address this limitation, this paper studies LLM agents in task collaboration, particularly under the condition of information asymmetry, where agents have disparities in their knowledge and skills and need to work together to complete a shared task. We extend Einstein Puzzles, a classical symbolic puzzle, to a table-top game. In this game, two LLM agents must reason, communicate, and act to satisfy spatial and relational constraints required to solve the puzzle. We apply a fine-tuning-plus-verifier framework in which LLM agents are equipped with various communication strategies and verification signals from the environment. Empirical results highlight the critical importance of aligned communication, especially when agents possess both information-seeking and -providing capabilities. Interestingly, agents without communication can still achieve high task performance; however, further analysis reveals a lack of true rule understanding and lower trust from human evaluators. Instead, by integrating an environment-based verifier, we enhance agents' ability to comprehend task rules and complete tasks, promoting both safer and more interpretable collaboration in AI systems. https://github.com/Roihn/EinsteinPuzzles

Authors:Amin Parchami-Araghi, Sukrut Rao, Jonas Fischer, Bernt Schiele
Title: FaCT: Faithful Concept Traces for Explaining Neural Network Decisions
Abstract:
Deep networks have shown remarkable performance across a wide range of tasks, yet getting a global concept-level understanding of how they function remains a key challenge. Many post-hoc concept-based approaches have been introduced to understand their workings, yet they are not always faithful to the model. Further, they make restrictive assumptions on the concepts a model learns, such as class-specificity, small spatial extent, or alignment to human expectations. In this work, we put emphasis on the faithfulness of such concept-based explanations and propose a new model with model-inherent mechanistic concept-explanations. Our concepts are shared across classes and, from any layer, their contribution to the logit and their input-visualization can be faithfully traced. We also leverage foundation models to propose a new concept-consistency metric, C$^2$-Score, that can be used to evaluate concept-based methods. We show that, compared to prior work, our concepts are quantitatively more consistent and users find our concepts to be more interpretable, all while retaining competitive ImageNet performance.

Authors:Thang-Long Nguyen-Ho, Minh-Khoi Pham, Hoang-Bao Le
Title: Alibaba International E-commerce Product Search Competition DcuRAGONs Team Technical Report
Abstract:
This report details our methodology and results developed for the Multilingual E-commerce Search Competition. The problem aims to recognize relevance between user queries versus product items in a multilingual context and improve recommendation performance on e-commerce platforms. Utilizing Large Language Models (LLMs) and their capabilities in other tasks, our data-centric method achieved the highest score compared to other solutions during the competition. Final leaderboard is publised at https://alibaba-international-cikm2025.github.io. The source code for our project is published at https://github.com/nhtlongcs/e-commerce-product-search.

Authors:Auguste Poiroux, Antoine Bosselut, Viktor Kunčak
Title: RLMEval: Evaluating Research-Level Neural Theorem Proving
Abstract:
Despite impressive results on curated benchmarks, the practical impact of large language models (LLMs) on research-level neural theorem proving and proof autoformalization is still limited. We introduce RLMEval, an evaluation suite for these tasks, focusing on research-level mathematics from real-world Lean formalization projects. RLMEval targets the evaluation of neural theorem proving and proof autoformalization on challenging research-level theorems by leveraging real Lean Blueprint formalization projects. Our evaluation of state-of-the-art models on RLMEval, comprising 613 theorems from 6 Lean projects, reveals a significant gap: progress on existing benchmarks does not readily translate to these more realistic settings, with the best model achieving only a 10.3 % pass rate. RLMEval provides a new, challenging benchmark designed to guide and accelerate progress in automated reasoning for formal mathematics.

Authors:Jiaqi Wu, Qinlao Zhao, Zefeng Chen, Kai Qin, Yifei Zhao, Xueqian Wang, Yuhang Yao
Title: GAP: Graph-Based Agent Planning with Parallel Tool Use and Reinforcement Learning
Abstract:
Autonomous agents powered by large language models (LLMs) have shown impressive capabilities in tool manipulation for complex task-solving. However, existing paradigms such as ReAct rely on sequential reasoning and execution, failing to exploit the inherent parallelism among independent sub-tasks. This sequential bottleneck leads to inefficient tool utilization and suboptimal performance in multi-step reasoning scenarios. We introduce Graph-based Agent Planning (GAP), a novel framework that explicitly models inter-task dependencies through graph-based planning to enable adaptive parallel and serial tool execution. Our approach trains agent foundation models to decompose complex tasks into dependency-aware sub-task graphs, autonomously determining which tools can be executed in parallel and which must follow sequential dependencies. This dependency-aware orchestration achieves substantial improvements in both execution efficiency and task accuracy. To train GAP, we construct a high-quality dataset of graph-based planning traces derived from the Multi-Hop Question Answering (MHQA) benchmark. We employ a two-stage training strategy: supervised fine-tuning (SFT) on the curated dataset, followed by reinforcement learning (RL) with a correctness-based reward function on strategically sampled queries where tool-based reasoning provides maximum value. Experimental results on MHQA datasets demonstrate that GAP significantly outperforms traditional ReAct baselines, particularly on multi-step retrieval tasks, while achieving dramatic improvements in tool invocation efficiency through intelligent parallelization. The project page is available at: https://github.com/WJQ7777/Graph-Agent-Planning.

Authors:Chihiro Nagashima, Akira Takahashi, Zhi Zhong, Shusuke Takahashi, Yuki Mitsufuji
Title: Studies for : A Human-AI Co-Creative Sound Artwork Using a Real-time Multi-channel Sound Generation Model
Abstract:
This paper explores the integration of AI technologies into the artistic workflow through the creation of Studies for, a generative sound installation developed in collaboration with sound artist Evala (https://www.ntticc.or.jp/en/archive/works/studies-for/). The installation employs SpecMaskGIT, a lightweight yet high-quality sound generation AI model, to generate and playback eight-channel sound in real-time, creating an immersive auditory experience over the course of a three-month exhibition. The work is grounded in the concept of a "new form of archive," which aims to preserve the artistic style of an artist while expanding beyond artists' past artworks by continued generation of new sound elements. This speculative approach to archival preservation is facilitated by training the AI model on a dataset consisting of over 200 hours of Evala's past sound artworks. By addressing key requirements in the co-creation of art using AI, this study highlights the value of the following aspects: (1) the necessity of integrating artist feedback, (2) datasets derived from an artist's past works, and (3) ensuring the inclusion of unexpected, novel outputs. In Studies for, the model was designed to reflect the artist's artistic identity while generating new, previously unheard sounds, making it a fitting realization of the concept of "a new form of archive." We propose a Human-AI co-creation framework for effectively incorporating sound generation AI models into the sound art creation process and suggest new possibilities for creating and archiving sound art that extend an artist's work beyond their physical existence. Demo page: https://sony.github.io/studies-for/

Authors:Peilin Tan, Liang Xie, Churan Zhi, Dian Tu, Chuanqi Shi
Title: H3M-SSMoEs: Hypergraph-based Multimodal Learning with LLM Reasoning and Style-Structured Mixture of Experts
Abstract:
Stock movement prediction remains fundamentally challenging due to complex temporal dependencies, heterogeneous modalities, and dynamically evolving inter-stock relationships. Existing approaches often fail to unify structural, semantic, and regime-adaptive modeling within a scalable framework. This work introduces H3M-SSMoEs, a novel Hypergraph-based MultiModal architecture with LLM reasoning and Style-Structured Mixture of Experts, integrating three key innovations: (1) a Multi-Context Multimodal Hypergraph that hierarchically captures fine-grained spatiotemporal dynamics via a Local Context Hypergraph (LCH) and persistent inter-stock dependencies through a Global Context Hypergraph (GCH), employing shared cross-modal hyperedges and Jensen-Shannon Divergence weighting mechanism for adaptive relational learning and cross-modal alignment; (2) a LLM-enhanced reasoning module, which leverages a frozen large language model with lightweight adapters to semantically fuse and align quantitative and textual modalities, enriching representations with domain-specific financial knowledge; and (3) a Style-Structured Mixture of Experts (SSMoEs) that combines shared market experts and industry-specialized experts, each parameterized by learnable style vectors enabling regime-aware specialization under sparse activation. Extensive experiments on three major stock markets demonstrate that H3M-SSMoEs surpasses state-of-the-art methods in both superior predictive accuracy and investment performance, while exhibiting effective risk control. Datasets, source code, and model weights are available at our GitHub repository: https://github.com/PeilinTime/H3M-SSMoEs.

Authors:Michal Stary, Julien Gaubil, Ayush Tewari, Vincent Sitzmann
Title: Understanding Multi-View Transformers
Abstract:
Multi-view transformers such as DUSt3R are revolutionizing 3D vision by solving 3D tasks in a feed-forward manner. However, contrary to previous optimization-based pipelines, the inner mechanisms of multi-view transformers are unclear. Their black-box nature makes further improvements beyond data scaling challenging and complicates usage in safety- and reliability-critical applications. Here, we present an approach for probing and visualizing 3D representations from the residual connections of the multi-view transformers' layers. In this manner, we investigate a variant of the DUSt3R model, shedding light on the development of its latent state across blocks, the role of the individual layers, and suggest how it differs from methods with stronger inductive biases of explicit global pose. Finally, we show that the investigated variant of DUSt3R estimates correspondences that are refined with reconstructed geometry. The code used for the analysis is available at https://github.com/JulienGaubil/und3rstand .

Authors:Milad Yazdani, Mahdi Mostajabdaveh, Zirui Zhou, Ying Xiong
Title: MASPRM: Multi-Agent System Process Reward Model
Abstract:
Practical deployment of Multi-Agent Systems (MAS) demands strong test-time performance, motivating methods that guide inference-time search and selectively spend compute to improve quality. We present the Multi-Agent System Process Reward Model (MASPRM). It assigns per-action, per-agent values to partial inter-agent transcripts and acts as an inference-time controller. MASPRM is trained from multi-agent Monte Carlo Tree Search (MCTS) rollouts without requiring step-level human annotations, by propagating returns to local targets. At inference, MASPRM guides step-level beam search and MCTS, focusing computation on promising branches and pruning early. On GSM8K and MATH, MASPRM-guided decoding with an outcome reward model (ORM) applied to the final answer, improves exact match (EM) over a single straight-through MAS pass by $+30.7$ and $+22.9$ points, respectively. A MASPRM trained on GSM8K transfers zero-shot to MATH without retraining, adding $8.4$ EM points at the same budget. MASPRM is a plug-in value model that estimates per-agent progress and complements verifier-style decoders, enabling more reliable, compute-aware multi-agent reasoning. Code: https://github.com/milad1378yz/MASPRM

Authors:Tongyi DeepResearch Team, Baixuan Li, Bo Zhang, Dingchu Zhang, Fei Huang, Guangyu Li, Guoxin Chen, Huifeng Yin, Jialong Wu, Jingren Zhou, Kuan Li, Liangcai Su, Litu Ou, Liwen Zhang, Pengjun Xie, Rui Ye, Wenbiao Yin, Xinmiao Yu, Xinyu Wang, Xixi Wu, Xuanzhong Chen, Yida Zhao, Zhen Zhang, Zhengwei Tao, Zhongwang Zhang, Zile Qiao, Chenxi Wang, Donglei Yu, Gang Fu, Haiyang Shen, Jiayin Yang, Jun Lin, Junkai Zhang, Kui Zeng, Li Yang, Hailong Yin, Maojia Song, Ming Yan, Peng Xia, Qian Xiao, Rui Min, Ruixue Ding, Runnan Fang, Shaowei Chen, Shen Huang, Shihang Wang, Shihao Cai, Weizhou Shen, Xiaobin Wang, Xin Guan, Xinyu Geng, Yingcheng Shi, Yuning Wu, Zhuo Chen, Zijian Li, Yong Jiang
Title: Tongyi DeepResearch Technical Report
Abstract:
We present Tongyi DeepResearch, an agentic large language model, which is specifically designed for long-horizon, deep information-seeking research tasks. To incentivize autonomous deep research agency, Tongyi DeepResearch is developed through an end-to-end training framework that combines agentic mid-training and agentic post-training, enabling scalable reasoning and information seeking across complex tasks. We design a highly scalable data synthesis pipeline that is fully automatic, without relying on costly human annotation, and empowers all training stages. By constructing customized environments for each stage, our system enables stable and consistent interactions throughout. Tongyi DeepResearch, featuring 30.5 billion total parameters, with only 3.3 billion activated per token, achieves state-of-the-art performance across a range of agentic deep research benchmarks, including Humanity's Last Exam, BrowseComp, BrowseComp-ZH, WebWalkerQA, xbench-DeepSearch, FRAMES and xbench-DeepSearch-2510. We open-source the model, framework, and complete solutions to empower the community.

Authors:Mingyi Deng, Lijun Huang, Yani Fan, Jiayi Zhang, Fashen Ren, Jinyi Bai, Fuzhen Yang, Dayi Miao, Zhaoyang Yu, Yifan Wu, Yanfei Zhang, Fengwei Teng, Yingjia Wan, Song Hu, Yude Li, Xin Jin, Conghao Hu, Haoyu Li, Qirui Fu, Tai Zhong, Xinyu Wang, Xiangru Tang, Nan Tang, Chenglin Wu, Yuyu Luo
Title: InteractComp: Evaluating Search Agents With Ambiguous Queries
Abstract:
Language agents have demonstrated remarkable potential in web search and information retrieval. However, these search agents assume user queries are complete and unambiguous, an assumption that diverges from reality where users begin with incomplete queries requiring clarification through interaction. Yet most agents lack interactive mechanisms during the search process, and existing benchmarks cannot assess this capability. To address this gap, we introduce InteractComp, a benchmark designed to evaluate whether search agents can recognize query ambiguity and actively interact to resolve it during search. Following the principle of easy to verify, interact to disambiguate, we construct 210 expert-curated questions across 9 domains through a target-distractor methodology that creates genuine ambiguity resolvable only through interaction. Evaluation of 17 models reveals striking failure: the best model achieves only 13.73% accuracy despite 71.50% with complete context, exposing systematic overconfidence rather than reasoning deficits. Forced interaction produces dramatic gains, demonstrating latent capability current strategies fail to engage. Longitudinal analysis shows interaction capabilities stagnated over 15 months while search performance improved seven-fold, revealing a critical blind spot. This stagnation, coupled with the immediate feedback inherent to search tasks, makes InteractComp a valuable resource for both evaluating and training interaction capabilities in search agents. The code is available at https://github.com/FoundationAgents/InteractComp.

Authors:Nitin Rai, Daeun, Choi, Nathan S. Boyd, Arnold W. Schumann
Title: Advancing site-specific disease and pest management in precision agriculture: From reasoning-driven foundation models to adaptive, feedback-based learning
Abstract:
Site-specific disease management (SSDM) in crops has advanced rapidly through machine and deep learning (ML and DL) for real-time computer vision. Research evolved from handcrafted feature extraction to large-scale automated feature learning. With foundation models (FMs), crop disease datasets are now processed in fundamentally new ways. Unlike traditional neural networks, FMs integrate visual and textual data, interpret symptoms in text, reason about symptom-management relationships, and support interactive QA for growers and educators. Adaptive and imitation learning in robotics further enables field-based disease management. This review screened approx. 40 articles on FM applications for SSDM, focusing on large-language models (LLMs) and vision-language models (VLMs), and discussing their role in adaptive learning (AL), reinforcement learning (RL), and digital twin frameworks for targeted spraying. Key findings: (a) FMs are gaining traction with surging literature in 2023-24; (b) VLMs outpace LLMs, with a 5-10x increase in publications; (c) RL and AL are still nascent for smart spraying; (d) digital twins with RL can simulate targeted spraying virtually; (e) addressing the sim-to-real gap is critical for real-world deployment; (f) human-robot collaboration remains limited, especially in human-in-the-loop approaches where robots detect early symptoms and humans validate uncertain cases; (g) multi-modal FMs with real-time feedback will drive next-gen SSDM. For updates, resources, and contributions, visit, https://github.com/nitin-dominic/AgriPathogenDatabase, to submit papers, code, or datasets.

Authors:Yunxuan Jiang, Silan Hu, Xiaoning Wang, Yuanyuan Zhang, Xiangyu Chang
Title: VDSAgents: A PCS-Guided Multi-Agent System for Veridical Data Science Automation
Abstract:
Large language models (LLMs) become increasingly integrated into data science workflows for automated system design. However, these LLM-driven data science systems rely solely on the internal reasoning of LLMs, lacking guidance from scientific and theoretical principles. This limits their trustworthiness and robustness, especially when dealing with noisy and complex real-world datasets. This paper provides VDSAgents, a multi-agent system grounded in the Predictability-Computability-Stability (PCS) principles proposed in the Veridical Data Science (VDS) framework. Guided by PCS principles, the system implements a modular workflow for data cleaning, feature engineering, modeling, and evaluation. Each phase is handled by an elegant agent, incorporating perturbation analysis, unit testing, and model validation to ensure both functionality and scientific auditability. We evaluate VDSAgents on nine datasets with diverse characteristics, comparing it with state-of-the-art end-to-end data science systems, such as AutoKaggle and DataInterpreter, using DeepSeek-V3 and GPT-4o as backends. VDSAgents consistently outperforms the results of AutoKaggle and DataInterpreter, which validates the feasibility of embedding PCS principles into LLM-driven data science automation.

Authors:Zhiheng Xi, Jixuan Huang, Xin Guo, Boyang Hong, Dingwen Yang, Xiaoran Fan, Shuo Li, Zehui Chen, Junjie Ye, Siyu Yuan, Zhengyin Du, Xuesong Yao, Yufei Xu, Jiecao Chen, Rui Zheng, Tao Gui, Qi Zhang, Xuanjing Huang
Title: Critique-RL: Training Language Models for Critiquing through Two-Stage Reinforcement Learning
Abstract:
Training critiquing language models to assess and provide feedback on model outputs is a promising way to improve LLMs for complex reasoning tasks. However, existing approaches typically rely on stronger supervisors for annotating critique data. To address this, we propose Critique-RL, an online RL approach for developing critiquing language models without stronger supervision. Our approach operates on a two-player paradigm: the actor generates a response, the critic provides feedback, and the actor refines the response accordingly. We first reveal that relying solely on indirect reward signals from the actor's outputs for RL optimization often leads to unsatisfactory critics: while their helpfulness (i.e., providing constructive feedback) improves, the discriminability (i.e., determining whether a response is high-quality or not) remains poor, resulting in marginal performance gains. To overcome this, Critique-RL adopts a two-stage optimization strategy. In stage I, it reinforces the discriminability of the critic with direct rule-based reward signals; in stage II, it introduces indirect rewards based on actor refinement to improve the critic's helpfulness, while maintaining its discriminability via appropriate regularization. Extensive experiments across various tasks and models show that Critique-RL delivers substantial performance improvements. For example, it achieves a 9.02% gain on in-domain tasks and a 5.70% gain on out-of-domain tasks for Qwen2.5-7B, highlighting its potential.

Authors:Wenhao Wang, Peizhi Niu, Zhao Xu, Zhaoyu Chen, Jian Du, Yaxin Du, Xianghe Pang, Keduan Huang, Yanfeng Wang, Qiang Yan, Siheng Chen
Title: MCP-Flow: Facilitating LLM Agents to Master Real-World, Diverse and Scaling MCP Tools
Abstract:
Large Language Models (LLMs) increasingly rely on external tools to perform complex, realistic tasks, yet their ability to utilize the rapidly expanding Model Contextual Protocol (MCP) ecosystem remains limited. Existing MCP research covers few servers, depends on costly manual curation, and lacks training support, hindering progress toward real-world deployment. To overcome these limitations, we introduce MCP-Flow, an automated web-agent-driven pipeline for large-scale server discovery, data synthesis, and model training. MCP-Flow collects and filters data from 1166 servers and 11536 tools, producing 68733 high-quality instruction-function call pairs and 6439 trajectories, far exceeding prior work in scale and diversity. Extensive experiments demonstrate MCP-Flow's effectiveness in driving superior MCP tool selection, function-call generation, and enhanced agentic task performance. MCP-Flow thus provides a scalable foundation for advancing LLM agents' proficiency in real-world MCP environments. MCP-Flow is publicly available at \href{https://github.com/wwh0411/MCP-Flow}{https://github.com/wwh0411/MCP-Flow}.

Authors:Zixian Zhang, Takfarinas Saber
Title: MAGNET: A Multi-Graph Attentional Network for Code Clone Detection
Abstract:
Code clone detection is a fundamental task in software engineering that underpins refactoring, debugging, plagiarism detection, and vulnerability analysis. Existing methods often rely on singular representations such as abstract syntax trees (ASTs), control flow graphs (CFGs), and data flow graphs (DFGs), which capture only partial aspects of code semantics. Hybrid approaches have emerged, but their fusion strategies are typically handcrafted and ineffective. In this study, we propose MAGNET, a multi-graph attentional framework that jointly leverages AST, CFG, and DFG representations to capture syntactic and semantic features of source code. MAGNET integrates residual graph neural networks with node-level self-attention to learn both local and long-range dependencies, introduces a gated cross-attention mechanism for fine-grained inter-graph interactions, and employs Set2Set pooling to fuse multi-graph embeddings into unified program-level representations. Extensive experiments on BigCloneBench and Google Code Jam demonstrate that MAGNET achieves state-of-the-art performance with an overall F1 score of 96.5\% and 99.2\% on the two datasets, respectively. Ablation studies confirm the critical contributions of multi-graph fusion and each attentional component. Our code is available at https://github.com/ZixianReid/Multigraph_match

Authors:Ai Jian, Jingqing Ruan, Xing Ma, Dailin Li, QianLin Zhou, Ke Zeng, Xunliang Cai
Title: PaTaRM: Bridging Pairwise and Pointwise Signals via Preference-Aware Task-Adaptive Reward Modeling
Abstract:
Reward models (RMs) are central to reinforcement learning from human feedback (RLHF), providing the critical supervision signals that align large language models (LLMs) with human preferences. While generative reward models (GRMs) offer greater interpretability than traditional scalar RMs, current training paradigms remain limited. Pair-wise methods rely on binary good-versus-bad labels, which cause mismatches for point-wise inference and necessitate complex pairing strategies for effective application in RLHF. On the other hand, point-wise methods require more elaborate absolute labeling with rubric-driven criteria, resulting in poor adaptability and high annotation costs. In this work, we propose the Preference-Aware Task-Adaptive Reward Model (PaTaRM), a unified framework that integrates a preference-aware reward (PAR) mechanism with dynamic rubric adaptation. PaTaRM leverages relative preference information from pairwise data to construct robust point-wise training signals, eliminating the need for explicit point-wise labels. Simultaneously, it employs a task-adaptive rubric system that flexibly generates evaluation criteria for both global task consistency and instance-specific fine-grained reasoning. This design enables efficient, generalizable, and interpretable reward modeling for RLHF. Extensive experiments show that PaTaRM achieves an average relative improvement of 4.7% on RewardBench and RMBench across Qwen3-8B and Qwen3-14B models. Furthermore, PaTaRM boosts downstream RLHF performance, with an average improvement of 13.6% across IFEval and InFoBench benchmarks, confirming its effectiveness and robustness. Our code is available at https://github.com/JaneEyre0530/PaTaRM.

Authors:Aodi Wu, Xubo Luo
Title: Enhancing Vision-Language Models for Autonomous Driving through Task-Specific Prompting and Spatial Reasoning
Abstract:
This technical report presents our solution for the RoboSense Challenge at IROS 2025, which evaluates Vision-Language Models (VLMs) on autonomous driving scene understanding across perception, prediction, planning, and corruption detection tasks. We propose a systematic framework built on four core components. First, a Mixture-of-Prompts router classifies questions and dispatches them to task-specific expert prompts, eliminating interference across diverse question types. Second, task-specific prompts embed explicit coordinate systems, spatial reasoning rules, role-playing, Chain-of-Thought/Tree-of-Thought reasoning, and few-shot examples tailored to each task. Third, a visual assembly module composes multi-view images with object crops, magenta markers, and adaptive historical frames based on question requirements. Fourth, we configure model inference parameters (temperature, top-p, message roles) per task to optimize output quality. Implemented on Qwen2.5-VL-72B, our approach achieves 70.87% average accuracy on Phase-1 (clean data) and 72.85% on Phase-2 (corrupted data), demonstrating that structured prompting and spatial grounding substantially enhance VLM performance on safety-critical autonomous driving tasks. Code and prompt are available at https://github.com/wuaodi/UCAS-CSU-phase2.

Authors:Yang Du, Zhuoran Lin, Kaiqiang Song, Biao Wang, Zhicheng Zheng, Tiezheng Ge, Bo Zheng, Qin Jin
Title: VC4VG: Optimizing Video Captions for Text-to-Video Generation
Abstract:
Recent advances in text-to-video (T2V) generation highlight the critical role of high-quality video-text pairs in training models capable of producing coherent and instruction-aligned videos. However, strategies for optimizing video captions specifically for T2V training remain underexplored. In this paper, we introduce VC4VG (Video Captioning for Video Generation), a comprehensive caption optimization framework tailored to the needs of T2V models.We begin by analyzing caption content from a T2V perspective, decomposing the essential elements required for video reconstruction into multiple dimensions, and proposing a principled caption design methodology. To support evaluation, we construct VC4VG-Bench, a new benchmark featuring fine-grained, multi-dimensional, and necessity-graded metrics aligned with T2V-specific requirements.Extensive T2V fine-tuning experiments demonstrate a strong correlation between improved caption quality and video generation performance, validating the effectiveness of our approach. We release all benchmark tools and code at https://github.com/qyr0403/VC4VG to support further research.

Authors:Minsuk Ji, Sanghyeok Lee, Namhyuk Ahn
Title: Compositional Image Synthesis with Inference-Time Scaling
Abstract:
Despite their impressive realism, modern text-to-image models still struggle with compositionality, often failing to render accurate object counts, attributes, and spatial relations. To address this challenge, we present a training-free framework that combines an object-centric approach with self-refinement to improve layout faithfulness while preserving aesthetic quality. Specifically, we leverage large language models (LLMs) to synthesize explicit layouts from input prompts, and we inject these layouts into the image generation process, where a object-centric vision-language model (VLM) judge reranks multiple candidates to select the most prompt-aligned outcome iteratively. By unifying explicit layout-grounding with self-refine-based inference-time scaling, our framework achieves stronger scene alignment with prompts compared to recent text-to-image models. The code are available at https://github.com/gcl-inha/ReFocus.

Authors:Haotian Zhou, Xiaole Wang, He Li, Fusheng Sun, Shengyu Guo, Guolei Qi, Jianghuan Xu, Huijing Zhao
Title: LagMemo: Language 3D Gaussian Splatting Memory for Multi-modal Open-vocabulary Multi-goal Visual Navigation
Abstract:
Navigating to a designated goal using visual information is a fundamental capability for intelligent robots. Most classical visual navigation methods are restricted to single-goal, single-modality, and closed set goal settings. To address the practical demands of multi-modal, open-vocabulary goal queries and multi-goal visual navigation, we propose LagMemo, a navigation system that leverages a language 3D Gaussian Splatting memory. During exploration, LagMemo constructs a unified 3D language memory. With incoming task goals, the system queries the memory, predicts candidate goal locations, and integrates a local perception-based verification mechanism to dynamically match and validate goals during navigation. For fair and rigorous evaluation, we curate GOAT-Core, a high-quality core split distilled from GOAT-Bench tailored to multi-modal open-vocabulary multi-goal visual navigation. Experimental results show that LagMemo's memory module enables effective multi-modal open-vocabulary goal localization, and that LagMemo outperforms state-of-the-art methods in multi-goal visual navigation. Project page: https://weekgoodday.github.io/lagmemo

Authors:Kang Zhang, Trung X. Pham, Suyeon Lee, Axi Niu, Arda Senocak, Joon Son Chung
Title: Model-Guided Dual-Role Alignment for High-Fidelity Open-Domain Video-to-Audio Generation
Abstract:
We present MGAudio, a novel flow-based framework for open-domain video-to-audio generation, which introduces model-guided dual-role alignment as a central design principle. Unlike prior approaches that rely on classifier-based or classifier-free guidance, MGAudio enables the generative model to guide itself through a dedicated training objective designed for video-conditioned audio generation. The framework integrates three main components: (1) a scalable flow-based Transformer model, (2) a dual-role alignment mechanism where the audio-visual encoder serves both as a conditioning module and as a feature aligner to improve generation quality, and (3) a model-guided objective that enhances cross-modal coherence and audio realism. MGAudio achieves state-of-the-art performance on VGGSound, reducing FAD to 0.40, substantially surpassing the best classifier-free guidance baselines, and consistently outperforms existing methods across FD, IS, and alignment metrics. It also generalizes well to the challenging UnAV-100 benchmark. These results highlight model-guided dual-role alignment as a powerful and scalable paradigm for conditional video-to-audio generation. Code is available at: https://github.com/pantheon5100/mgaudio

Authors:Kanghyun Choi, Hyeyoon Lee, SunJong Park, Dain Kwon, Jinho Lee
Title: FALQON: Accelerating LoRA Fine-tuning with Low-Bit Floating-Point Arithmetic
Abstract:
Low-bit floating-point (FP) formats, such as FP8, provide significant acceleration and memory savings in model training thanks to native hardware support on modern GPUs and NPUs. However, we analyze that FP8 quantization offers speedup primarily for large-dimensional matrix multiplications, while inherent quantization overheads diminish speedup when applied to low-rank adaptation (LoRA), which uses small-dimensional matrices for efficient fine-tuning of large language models (LLMs). To address this limitation, we propose FALQON, a novel framework that eliminates the quantization overhead from separate LoRA computational paths by directly merging LoRA adapters into an FP8-quantized backbone during fine-tuning. Furthermore, we reformulate the forward and backward computations for merged adapters to significantly reduce quantization overhead, and introduce a row-wise proxy update mechanism that efficiently integrates substantial updates into the quantized backbone. Experimental evaluations demonstrate that FALQON achieves approximately a 3$\times$ training speedup over existing quantized LoRA methods with a similar level of accuracy, providing a practical solution for efficient large-scale model fine-tuning. Moreover, FALQON's end-to-end FP8 workflow removes the need for post-training quantization, facilitating efficient deployment. Code is available at https://github.com/iamkanghyunchoi/falqon.

Authors:Byeonghu Na, Mina Kang, Jiseok Kwak, Minsang Park, Jiwoo Shin, SeJoon Jun, Gayoung Lee, Jin-Hwa Kim, Il-Chul Moon
Title: Training-Free Safe Text Embedding Guidance for Text-to-Image Diffusion Models
Abstract:
Text-to-image models have recently made significant advances in generating realistic and semantically coherent images, driven by advanced diffusion models and large-scale web-crawled datasets. However, these datasets often contain inappropriate or biased content, raising concerns about the generation of harmful outputs when provided with malicious text prompts. We propose Safe Text embedding Guidance (STG), a training-free approach to improve the safety of diffusion models by guiding the text embeddings during sampling. STG adjusts the text embeddings based on a safety function evaluated on the expected final denoised image, allowing the model to generate safer outputs without additional training. Theoretically, we show that STG aligns the underlying model distribution with safety constraints, thereby achieving safer outputs while minimally affecting generation quality. Experiments on various safety scenarios, including nudity, violence, and artist-style removal, show that STG consistently outperforms both training-based and training-free baselines in removing unsafe content while preserving the core semantic intent of input prompts. Our code is available at https://github.com/aailab-kaist/STG.

Authors:Mirali Purohit, Bimal Gajera, Vatsal Malaviya, Irish Mehta, Kunal Kasodekar, Jacob Adler, Steven Lu, Umaa Rebbapragada, Hannah Kerner
Title: Mars-Bench: A Benchmark for Evaluating Foundation Models for Mars Science Tasks
Abstract:
Foundation models have enabled rapid progress across many specialized domains by leveraging large-scale pre-training on unlabeled data, demonstrating strong generalization to a variety of downstream tasks. While such models have gained significant attention in fields like Earth Observation, their application to Mars science remains limited. A key enabler of progress in other domains has been the availability of standardized benchmarks that support systematic evaluation. In contrast, Mars science lacks such benchmarks and standardized evaluation frameworks, which have limited progress toward developing foundation models for Martian tasks. To address this gap, we introduce Mars-Bench, the first benchmark designed to systematically evaluate models across a broad range of Mars-related tasks using both orbital and surface imagery. Mars-Bench comprises 20 datasets spanning classification, segmentation, and object detection, focused on key geologic features such as craters, cones, boulders, and frost. We provide standardized, ready-to-use datasets and baseline evaluations using models pre-trained on natural images, Earth satellite data, and state-of-the-art vision-language models. Results from all analyses suggest that Mars-specific foundation models may offer advantages over general-domain counterparts, motivating further exploration of domain-adapted pre-training. Mars-Bench aims to establish a standardized foundation for developing and comparing machine learning models for Mars science. Our data, models, and code are available at: https://mars-bench.github.io/.

Authors:Byeonghu Na, Minsang Park, Gyuwon Sim, Donghyeok Shin, HeeSun Bae, Mina Kang, Se Jung Kwon, Wanmo Kang, Il-Chul Moon
Title: Diffusion Adaptive Text Embedding for Text-to-Image Diffusion Models
Abstract:
Text-to-image diffusion models rely on text embeddings from a pre-trained text encoder, but these embeddings remain fixed across all diffusion timesteps, limiting their adaptability to the generative process. We propose Diffusion Adaptive Text Embedding (DATE), which dynamically updates text embeddings at each diffusion timestep based on intermediate perturbed data. We formulate an optimization problem and derive an update rule that refines the text embeddings at each sampling step to improve alignment and preference between the mean predicted image and the text. This allows DATE to dynamically adapts the text conditions to the reverse-diffused images throughout diffusion sampling without requiring additional model training. Through theoretical analysis and empirical results, we show that DATE maintains the generative capability of the model while providing superior text-image alignment over fixed text embeddings across various tasks, including multi-concept generation and text-guided image editing. Our code is available at https://github.com/aailab-kaist/DATE.

Authors:Segev Shlomov, Alon Oved, Sami Marreed, Ido Levy, Offer Akrabi, Avi Yaeli, Łukasz Strąk, Elizabeth Koumpan, Yinon Goldshtein, Eilam Shapira, Nir Mashkif, Asaf Adi
Title: From Benchmarks to Business Impact: Deploying IBM Generalist Agent in Enterprise Production
Abstract:
Agents are rapidly advancing in automating digital work, but enterprises face a harder challenge: moving beyond prototypes to deployed systems that deliver measurable business value. This path is complicated by fragmented frameworks, slow development, and the absence of standardized evaluation practices. Generalist agents have emerged as a promising direction, excelling on academic benchmarks and offering flexibility across task types, applications, and modalities. Yet, evidence of their use in production enterprise settings remains limited. This paper reports IBM's experience developing and piloting the Computer Using Generalist Agent (CUGA), which has been open-sourced for the community (https://github.com/cuga-project/cuga-agent). CUGA adopts a hierarchical planner--executor architecture with strong analytical foundations, achieving state-of-the-art performance on AppWorld and WebArena. Beyond benchmarks, it was evaluated in a pilot within the Business-Process-Outsourcing talent acquisition domain, addressing enterprise requirements for scalability, auditability, safety, and governance. To support assessment, we introduce BPO-TA, a 26-task benchmark spanning 13 analytics endpoints. In preliminary evaluations, CUGA approached the accuracy of specialized agents while indicating potential for reducing development time and cost. Our contribution is twofold: presenting early evidence of generalist agents operating at enterprise scale, and distilling technical and organizational lessons from this initial pilot. We outline requirements and next steps for advancing research-grade architectures like CUGA into robust, enterprise-ready systems.

Authors:Amin Heyrani Nobari, Lyle Regenwetter, Cyril Picard, Ligong Han, Faez Ahmed
Title: Optimize Any Topology: A Foundation Model for Shape- and Resolution-Free Structural Topology Optimization
Abstract:
Structural topology optimization (TO) is central to engineering design but remains computationally intensive due to complex physics and hard constraints. Existing deep-learning methods are limited to fixed square grids, a few hand-coded boundary conditions, and post-hoc optimization, preventing general deployment. We introduce Optimize Any Topology (OAT), a foundation-model framework that directly predicts minimum-compliance layouts for arbitrary aspect ratios, resolutions, volume fractions, loads, and fixtures. OAT combines a resolution- and shape-agnostic autoencoder with an implicit neural-field decoder and a conditional latent-diffusion model trained on OpenTO, a new corpus of 2.2 million optimized structures covering 2 million unique boundary-condition configurations. On four public benchmarks and two challenging unseen tests, OAT lowers mean compliance up to 90% relative to the best prior models and delivers sub-1 second inference on a single GPU across resolutions from 64 x 64 to 256 x 256 and aspect ratios as high as 10:1. These results establish OAT as a general, fast, and resolution-free framework for physics-aware topology optimization and provide a large-scale dataset to spur further research in generative modeling for inverse design. Code & data can be found at https://github.com/ahnobari/OptimizeAnyTopology.

Authors:Tenghui Li, Guoxu Zhou, Xuyang Zhao, Yuning Qiu, Qibin Zhao
Title: Efficient Low Rank Attention for Long-Context Inference in Large Language Models
Abstract:
As the length of input text grows, the key-value (KV) cache in LLMs imposes prohibitive GPU memory costs and limits long-context inference on resource constrained devices. Existing approaches, such as KV quantization and pruning, reduce memory usage but suffer from numerical precision loss or suboptimal retention of key-value pairs. We introduce Low Rank Query and Key attention (LRQK), a two-stage framework that jointly decomposes the full-precision query and key matrices into compact rank-\(r\) factors during the prefill stage, and then uses these low-dimensional projections to compute proxy attention scores in \(\mathcal{O}(lr)\) time at each decode step. By selecting only the top-\(k\) tokens and a small fixed set of recent tokens, LRQK employs a mixed GPU-CPU cache with a hit-and-miss mechanism that transfers only missing full-precision KV pairs, thereby preserving exact attention outputs while reducing CPU-GPU data movement. Extensive experiments on the RULER and LongBench benchmarks with LLaMA-3-8B and Qwen2.5-7B demonstrate that LRQK matches or surpasses leading sparse-attention methods in long context settings, while delivering significant memory savings with minimal loss in accuracy. Our code is available at https://github.com/tenghuilee/LRQK.

Authors:Aaron Wang, Zihan Zhao, Subash Katel, Vivekanand Gyanchand Sahu, Elham E Khoda, Abhijith Gandrakota, Jennifer Ngadiuba, Richard Cavanaugh, Javier Duarte
Title: Spatially Aware Linear Transformer (SAL-T) for Particle Jet Tagging
Abstract:
Transformers are very effective in capturing both global and local correlations within high-energy particle collisions, but they present deployment challenges in high-data-throughput environments, such as the CERN LHC. The quadratic complexity of transformer models demands substantial resources and increases latency during inference. In order to address these issues, we introduce the Spatially Aware Linear Transformer (SAL-T), a physics-inspired enhancement of the linformer architecture that maintains linear attention. Our method incorporates spatially aware partitioning of particles based on kinematic features, thereby computing attention between regions of physical significance. Additionally, we employ convolutional layers to capture local correlations, informed by insights from jet physics. In addition to outperforming the standard linformer in jet classification tasks, SAL-T also achieves classification results comparable to full-attention transformers, while using considerably fewer resources with lower latency during inference. Experiments on a generic point cloud classification dataset (ModelNet10) further confirm this trend. Our code is available at https://github.com/aaronw5/SAL-T4HEP.

Authors:Soutrik Sarangi, Yonatan Sverdlov, Nadav Dym, Abir De
Title: Monotone and Separable Set Functions: Characterizations and Neural Models
Abstract:
Motivated by applications for set containment problems, we consider the following fundamental problem: can we design set-to-vector functions so that the natural partial order on sets is preserved, namely $S\subseteq T \text{ if and only if } F(S)\leq F(T) $. We call functions satisfying this property Monotone and Separating (MAS) set functions. % We establish lower and upper bounds for the vector dimension necessary to obtain MAS functions, as a function of the cardinality of the multisets and the underlying ground set. In the important case of an infinite ground set, we show that MAS functions do not exist, but provide a model called our which provably enjoys a relaxed MAS property we name "weakly MAS" and is stable in the sense of Holder continuity. We also show that MAS functions can be used to construct universal models that are monotone by construction and can approximate all monotone set functions. Experimentally, we consider a variety of set containment tasks. The experiments show the benefit of using our our model, in comparison with standard set models which do not incorporate set containment as an inductive bias. Our code is available in https://github.com/yonatansverdlov/Monotone-Embedding.

Authors:Yichi Zhang, Alex Schwing, Zhizhen Zhao
Title: Variational Masked Diffusion Models
Abstract:
Masked diffusion models have recently emerged as a flexible framework for discrete generative modeling. However, a key limitation of standard masked diffusion is its inability to effectively capture dependencies among tokens that are predicted concurrently, leading to degraded generation quality when dependencies among tokens are important. To explicitly model dependencies among tokens, we propose Variational Masked Diffusion (VMD), a framework that introduces latent variables into the masked diffusion process. Through controlled experiments on synthetic datasets, we demonstrate that VMD successfully learns dependencies that conventional masked diffusion fails to capture. We further validate the effectiveness of our approach on Sudoku puzzles and text datasets, where learning of dependencies among tokens improves global consistency. Across these domains, VMD enhances both generation quality and dependency awareness, highlighting the value of integrating variational inference into masked diffusion. Our code is available at: https://riccizz.github.io/VMD.

Authors:Shuhong Zheng, Ashkan Mirzaei, Igor Gilitschenski
Title: Track, Inpaint, Resplat: Subject-driven 3D and 4D Generation with Progressive Texture Infilling
Abstract:
Current 3D/4D generation methods are usually optimized for photorealism, efficiency, and aesthetics. However, they often fail to preserve the semantic identity of the subject across different viewpoints. Adapting generation methods with one or few images of a specific subject (also known as Personalization or Subject-driven generation) allows generating visual content that align with the identity of the subject. However, personalized 3D/4D generation is still largely underexplored. In this work, we introduce TIRE (Track, Inpaint, REsplat), a novel method for subject-driven 3D/4D generation. It takes an initial 3D asset produced by an existing 3D generative model as input and uses video tracking to identify the regions that need to be modified. Then, we adopt a subject-driven 2D inpainting model for progressively infilling the identified regions. Finally, we resplat the modified 2D multi-view observations back to 3D while still maintaining consistency. Extensive experiments demonstrate that our approach significantly improves identity preservation in 3D/4D generation compared to state-of-the-art methods. Our project website is available at https://zsh2000.github.io/track-inpaint-resplat.github.io/.

Authors:Yizhang Zhu, Liangwei Wang, Chenyu Yang, Xiaotian Lin, Boyan Li, Wei Zhou, Xinyu Liu, Zhangyang Peng, Tianqi Luo, Yu Li, Chengliang Chai, Chong Chen, Shimin Di, Ju Fan, Ji Sun, Nan Tang, Fugee Tsung, Jiannan Wang, Chenglin Wu, Yanwei Xu, Shaolei Zhang, Yong Zhang, Xuanhe Zhou, Guoliang Li, Yuyu Luo
Title: A Survey of Data Agents: Emerging Paradigm or Overstated Hype?
Abstract:
The rapid advancement of large language models (LLMs) has spurred the emergence of data agents--autonomous systems designed to orchestrate Data + AI ecosystems for tackling complex data-related tasks. However, the term "data agent" currently suffers from terminological ambiguity and inconsistent adoption, conflating simple query responders with sophisticated autonomous architectures. This terminological ambiguity fosters mismatched user expectations, accountability challenges, and barriers to industry growth. Inspired by the SAE J3016 standard for driving automation, this survey introduces the first systematic hierarchical taxonomy for data agents, comprising six levels that delineate and trace progressive shifts in autonomy, from manual operations (L0) to a vision of generative, fully autonomous data agents (L5), thereby clarifying capability boundaries and responsibility allocation. Through this lens, we offer a structured review of existing research arranged by increasing autonomy, encompassing specialized data agents for data management, preparation, and analysis, alongside emerging efforts toward versatile, comprehensive systems with enhanced autonomy. We further analyze critical evolutionary leaps and technical gaps for advancing data agents, especially the ongoing L2-to-L3 transition, where data agents evolve from procedural execution to autonomous orchestration. Finally, we conclude with a forward-looking roadmap, envisioning the advent of proactive, generative data agents.

Authors:Zhongyi Yu, Jianqiu Wu, Zhenghao Wu, Shuhan Zhong, Weifeng Su, Chul-Ho Lee, Weipeng Zhuo
Title: TAMI: Taming Heterogeneity in Temporal Interactions for Temporal Graph Link Prediction
Abstract:
Temporal graph link prediction aims to predict future interactions between nodes in a graph based on their historical interactions, which are encoded in node embeddings. We observe that heterogeneity naturally appears in temporal interactions, e.g., a few node pairs can make most interaction events, and interaction events happen at varying intervals. This leads to the problems of ineffective temporal information encoding and forgetting of past interactions for a pair of nodes that interact intermittently for their link prediction. Existing methods, however, do not consider such heterogeneity in their learning process, and thus their learned temporal node embeddings are less effective, especially when predicting the links for infrequently interacting node pairs. To cope with the heterogeneity, we propose a novel framework called TAMI, which contains two effective components, namely log time encoding function (LTE) and link history aggregation (LHA). LTE better encodes the temporal information through transforming interaction intervals into more balanced ones, and LHA prevents the historical interactions for each target node pair from being forgotten. State-of-the-art temporal graph neural networks can be seamlessly and readily integrated into TAMI to improve their effectiveness. Experiment results on 13 classic datasets and three newest temporal graph benchmark (TGB) datasets show that TAMI consistently improves the link prediction performance of the underlying models in both transductive and inductive settings. Our code is available at https://github.com/Alleinx/TAMI_temporal_graph.

Authors:Zhaoyang Yu, Jiayi Zhang, Huixue Su, Yufan Zhao, Yifan Wu, Mingyi Deng, Jinyu Xiang, Yizhang Lin, Lingxiao Tang, Yingchao Li, Yuyu Luo, Bang Liu, Chenglin Wu
Title: ReCode: Unify Plan and Action for Universal Granularity Control
Abstract:
Real-world tasks require decisions at varying granularities, and humans excel at this by leveraging a unified cognitive representation where planning is fundamentally understood as a high-level form of action. However, current Large Language Model (LLM)-based agents lack this crucial capability to operate fluidly across decision granularities. This limitation stems from existing paradigms that enforce a rigid separation between high-level planning and low-level action, which impairs dynamic adaptability and limits generalization. We propose ReCode (Recursive Code Generation), a novel paradigm that addresses this limitation by unifying planning and action within a single code representation. In this representation, ReCode treats high-level plans as abstract placeholder functions, which the agent then recursively decomposes into finer-grained sub-functions until reaching primitive actions. This recursive approach dissolves the rigid boundary between plan and action, enabling the agent to dynamically control its decision granularity. Furthermore, the recursive structure inherently generates rich, multi-granularity training data, enabling models to learn hierarchical decision-making processes. Extensive experiments show ReCode significantly surpasses advanced baselines in inference performance and demonstrates exceptional data efficiency in training, validating our core insight that unifying planning and action through recursive code generation is a powerful and effective approach to achieving universal granularity control. The code is available at https://github.com/FoundationAgents/ReCode.

Authors:Qiushi Sun, Jingyang Gong, Yang Liu, Qiaosheng Chen, Lei Li, Kai Chen, Qipeng Guo, Ben Kao, Fei Yuan
Title: JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence
Abstract:
The scope of neural code intelligence is rapidly expanding beyond text-based source code to encompass the rich visual outputs that programs generate. This visual dimension is critical for advanced applications like flexible content generation and precise, program-driven editing of visualizations. However, progress has been impeded by the scarcity of high-quality multimodal code data, a bottleneck stemming from challenges in synthesis and quality assessment. To address these challenges, we make contributions from both a data and modeling perspective. We first introduce a complete synthesis toolkit that leverages reciprocal synergies between data modalities to efficiently produce a large-scale, high-quality corpus spanning from standard charts to complex interactive web UIs and code-driven animations. Leveraging this toolkit, we construct JanusCode-800K, the largest multimodal code corpus to date. This powers the training of our models, JanusCoder and JanusCoderV, which establish a visual-programmatic interface for generating code from textual instructions, visual inputs, or a combination of both. Our unified model is a departure from existing approaches that build specialized models for isolated tasks. Extensive experiments on both text-centric and vision-centric coding tasks demonstrate the superior performance of the JanusCoder series, with our 7B to 14B scale models approaching or even exceeding the performance of commercial models. Furthermore, extensive analysis provides key insights into harmonizing programmatic logic with its visual expression. Our code and checkpoints will are available at https://github.com/InternLM/JanusCoder.

Authors:Siamak Ghodsi, Amjad Seyedi, Tai Le Quy, Fariba Karimi, Eirini Ntoutsi
Title: A Deep Latent Factor Graph Clustering with Fairness-Utility Trade-off Perspective
Abstract:
Fair graph clustering seeks partitions that respect network structure while maintaining proportional representation across sensitive groups, with applications spanning community detection, team formation, resource allocation, and social network analysis. Many existing approaches enforce rigid constraints or rely on multi-stage pipelines (e.g., spectral embedding followed by $k$-means), limiting trade-off control, interpretability, and scalability. We introduce \emph{DFNMF}, an end-to-end deep nonnegative tri-factorization tailored to graphs that directly optimizes cluster assignments with a soft statistical-parity regularizer. A single parameter $λ$ tunes the fairness--utility balance, while nonnegativity yields parts-based factors and transparent soft memberships. The optimization uses sparse-friendly alternating updates and scales near-linearly with the number of edges. Across synthetic and real networks, DFNMF achieves substantially higher group balance at comparable modularity, often dominating state-of-the-art baselines on the Pareto front. The code is available at https://github.com/SiamakGhodsi/DFNMF.git.

Authors:Elena Celledoni, Brynjulf Owren, Lars Ruthotto, Tianjiao Nicole Yang
Title: Mixed Precision Training of Neural ODEs
Abstract:
Exploiting low-precision computations has become a standard strategy in deep learning to address the growing computational costs imposed by ever larger models and datasets. However, naively performing all computations in low precision can lead to roundoff errors and instabilities. Therefore, mixed precision training schemes usually store the weights in high precision and use low-precision computations only for whitelisted operations. Despite their success, these principles are currently not reliable for training continuous-time architectures such as neural ordinary differential equations (Neural ODEs). This paper presents a mixed precision training framework for neural ODEs, combining explicit ODE solvers with a custom backpropagation scheme, and demonstrates its effectiveness across a range of learning tasks. Our scheme uses low-precision computations for evaluating the velocity, parameterized by the neural network, and for storing intermediate states, while stability is provided by a custom dynamic adjoint scaling and by accumulating the solution and gradients in higher precision. These contributions address two key challenges in training neural ODE: the computational cost of repeated network evaluations and the growth of memory requirements with the number of time steps or layers. Along with the paper, we publish our extendable, open-source PyTorch package rampde, whose syntax resembles that of leading packages to provide a drop-in replacement in existing codes. We demonstrate the reliability and effectiveness of our scheme using challenging test cases and on neural ODE applications in image classification and generative models, achieving approximately 50% memory reduction and up to 2x speedup while maintaining accuracy comparable to single-precision training.

Authors:Zujing Liu, Junwen Pan, Qi She, Yuan Gao, Guisong Xia
Title: On the Faithfulness of Visual Thinking: Measurement and Enhancement
Abstract:
Recent large vision-language models (LVLMs) can generate vision-text multimodal chain-of-thought (MCoT) traces after reinforcement fine-tuning (RFT). However, we observe that the visual information incorporated in MCoT is often inaccurate, though still yield correct answers, indicating a lack of faithfulness in the MCoT reasoning process. We attribute this unfaithfulness to the RL reward in RFT, which solely incentivizes the format of interleaved vision-text cues, ie, it encourages the model to incorporate visual information into its text reasoning steps without considering the correctness of the visual information. In this paper, we first probe the faithfulness of MCoT by measuring how much the prediction changes when its visual and textual thoughts are intervened. Surprisingly, the model's predictions remain nearly unchanged under visual intervention but change significantly under textual intervention, indicating that the visual evidence is largely ignored. To further analyze visual information, we introduce an automated LVLM-based evaluation metric that quantifies the faithfulness of visual cues from two perspectives: reliability and sufficiency. Our evaluation reveals that the visual information in current MCoT traces is simultaneously unreliable and insufficient. To address this issue, we propose a novel MCoT learning strategy termed Sufficient-Component Cause Model (SCCM) learning. This approach encourages the MCoT to generate sufficient yet minimal visual components that are independently capable of leading to correct answers. We note that the proposed SCCM is annotation-free and compatible with various RFT for MCoT in a plug-and-play manner. Empirical results demonstrate that SCCM consistently improves the visual faithfulness across a suite of fine-grained perception and reasoning benchmarks. Code is available at https://github.com/EugeneLiu01/Faithful_Thinking_with_Image.

Authors:Ke Xue, Ruo-Tong Chen, Rong-Xi Tan, Xi Lin, Yunqi Shi, Siyuan Xu, Mingxuan Yuan, Chao Qian
Title: BBOPlace-Bench: Benchmarking Black-Box Optimization for Chip Placement
Abstract:
Chip placement is a vital stage in modern chip design as it has a substantial impact on the subsequent processes and the overall quality of the final chip. The use of black-box optimization (BBO) for chip placement has a history of several decades. However, early efforts were limited by immature problem formulations and inefficient algorithm designs. Recent progress has shown the effectiveness and efficiency of BBO for chip placement, proving its potential to achieve state-of-the-art results. Despite these advancements, the field lacks a unified, BBO-specific benchmark for thoroughly assessing various problem formulations and BBO algorithms. To fill this gap, we propose BBOPlace-Bench, the first benchmark designed specifically for evaluating and developing BBO algorithms for chip placement tasks. It integrates three problem formulations of BBO for chip placement, and offers a modular, decoupled, and flexible framework that enables users to seamlessly implement, test, and compare their own algorithms. BBOPlace-Bench integrates a wide variety of existing BBO algorithms, including simulated annealing (SA), evolutionary algorithms (EAs), and Bayesian optimization (BO). Experimental results show that the problem formulations of mask-guided optimization and hyperparameter optimization exhibit superior performance than the sequence pair problem formulation, while EAs demonstrate better overall performance than SA and BO, especially in high-dimensional search spaces, and also achieve state-of-the-art performance compared to the mainstream chip placement methods. BBOPlace-Bench not only facilitates the development of efficient BBO-driven solutions for chip placement but also broadens the practical application scenarios (which are urgently needed) for the BBO community. The code of BBOPlace-Bench is available at https://github.com/lamda-bbo/BBOPlace-Bench.

Authors:Marco Grossi
Title: What are the odds? Risk and uncertainty about AI existential risk
Abstract:
This work is a commentary of the article \href{https://doi.org/10.18716/ojs/phai/2025.2801}{AI Survival Stories: a Taxonomic Analysis of AI Existential Risk} by Cappelen, Goldstein, and Hawthorne. It is not just a commentary though, but a useful reminder of the philosophical limitations of \say{linear} models of risk. The article will focus on the model employed by the authors: first, I discuss some differences between standard Swiss Cheese models and this one. I then argue that in a situation of epistemic indifference the probability of P(D) is higher than what one might first suggest, given the structural relationships between layers. I then distinguish between risk and uncertainty, and argue that any estimation of P(D) is structurally affected by two kinds of uncertainty: option uncertainty and state-space uncertainty. Incorporating these dimensions of uncertainty into our qualitative discussion on AI existential risk can provide a better understanding of the likeliness of P(D).

Authors:Fangtong Sun, Congyu Li, Ke Yang, Yuchen Pan, Hanwen Yu, Xichuan Zhang, Yiying Li
Title: FRBNet: Revisiting Low-Light Vision through Frequency-Domain Radial Basis Network
Abstract:
Low-light vision remains a fundamental challenge in computer vision due to severe illumination degradation, which significantly affects the performance of downstream tasks such as detection and segmentation. While recent state-of-the-art methods have improved performance through invariant feature learning modules, they still fall short due to incomplete modeling of low-light conditions. Therefore, we revisit low-light image formation and extend the classical Lambertian model to better characterize low-light conditions. By shifting our analysis to the frequency domain, we theoretically prove that the frequency-domain channel ratio can be leveraged to extract illumination-invariant features via a structured filtering process. We then propose a novel and end-to-end trainable module named \textbf{F}requency-domain \textbf{R}adial \textbf{B}asis \textbf{Net}work (\textbf{FRBNet}), which integrates the frequency-domain channel ratio operation with a learnable frequency domain filter for the overall illumination-invariant feature enhancement. As a plug-and-play module, FRBNet can be integrated into existing networks for low-light downstream tasks without modifying loss functions. Extensive experiments across various downstream tasks demonstrate that FRBNet achieves superior performance, including +2.2 mAP for dark object detection and +2.9 mIoU for nighttime segmentation. Code is available at: https://github.com/Sing-Forevet/FRBNet.

Authors:Jiahao Chang, Chongjie Ye, Yushuang Wu, Yuantao Chen, Yidan Zhang, Zhongjin Luo, Chenghong Li, Yihao Zhi, Xiaoguang Han
Title: ReconViaGen: Towards Accurate Multi-view 3D Object Reconstruction via Generation
Abstract:
Existing multi-view 3D object reconstruction methods heavily rely on sufficient overlap between input views, where occlusions and sparse coverage in practice frequently yield severe reconstruction incompleteness. Recent advancements in diffusion-based 3D generative techniques offer the potential to address these limitations by leveraging learned generative priors to hallucinate invisible parts of objects, thereby generating plausible 3D structures. However, the stochastic nature of the inference process limits the accuracy and reliability of generation results, preventing existing reconstruction frameworks from integrating such 3D generative priors. In this work, we comprehensively analyze the reasons why diffusion-based 3D generative methods fail to achieve high consistency, including (a) the insufficiency in constructing and leveraging cross-view connections when extracting multi-view image features as conditions, and (b) the poor controllability of iterative denoising during local detail generation, which easily leads to plausible but inconsistent fine geometric and texture details with inputs. Accordingly, we propose ReconViaGen to innovatively integrate reconstruction priors into the generative framework and devise several strategies that effectively address these issues. Extensive experiments demonstrate that our ReconViaGen can reconstruct complete and accurate 3D models consistent with input views in both global structure and local details.Project page: https://jiahao620.github.io/reconviagen.

Authors:Xinhai Wang, Shu Yang, Liangyu Wang, Lin Zhang, Huanyi Xie, Lijie Hu, Di Wang
Title: PAHQ: Accelerating Automated Circuit Discovery through Mixed-Precision Inference Optimization
Abstract:
Circuit discovery, which involves identifying sparse and task-relevant subnetworks in pre-trained language models, is a cornerstone of mechanistic interpretability. Automated Circuit Discovery (ACDC) has emerged as a pivotal methodology in circuit discovery, but its application to large language models is severely limited by computational inefficiency and prohibitively high memory requirements. Although several accelerated approaches have been proposed, they primarily rely on linear approximations to ACDC, which significantly compromises analytical faithfulness. Our proposed method for accelerating automated circuit discovery, Per Attention Head Quantization (PAHQ), takes a fundamentally different approach by optimizing the efficiency of each individual patching operation. PAHQ leverages a fundamental alignment between activation patching and mixed-precision quantization (MPQ): interpretability analysis through patching essentially performs targeted ablation studies. Therefore, we can maintain high precision exclusively for investigated components while safely reducing precision elsewhere in the network. PAHQ-accelerated ACDC reduces runtime by up to 80\% and memory consumption by up to 30\% compared to unaccelerated ACDC while maintaining faithfulness. Importantly, our method readily integrates with existing edge-based circuit discovery techniques by modifying the attention computation mechanism. This training-free approach provides a practical and novel pathway for accelerating mechanistic interpretability methods. Our code is available at https://github.com/626619403/PAHQ.

Authors:Subhojyoti Khastagir, Kishalay Das, Pawan Goyal, Seung-Cheol Lee, Satadeep Bhattacharjee, Niloy Ganguly
Title: LLM Meets Diffusion: A Hybrid Framework for Crystal Material Generation
Abstract:
Recent advances in generative modeling have shown significant promise in designing novel periodic crystal structures. Existing approaches typically rely on either large language models (LLMs) or equivariant denoising models, each with complementary strengths: LLMs excel at handling discrete atomic types but often struggle with continuous features such as atomic positions and lattice parameters, while denoising models are effective at modeling continuous variables but encounter difficulties in generating accurate atomic compositions. To bridge this gap, we propose CrysLLMGen, a hybrid framework that integrates an LLM with a diffusion model to leverage their complementary strengths for crystal material generation. During sampling, CrysLLMGen first employs a fine-tuned LLM to produce an intermediate representation of atom types, atomic coordinates, and lattice structure. While retaining the predicted atom types, it passes the atomic coordinates and lattice structure to a pre-trained equivariant diffusion model for refinement. Our framework outperforms state-of-the-art generative models across several benchmark tasks and datasets. Specifically, CrysLLMGen not only achieves a balanced performance in terms of structural and compositional validity but also generates more stable and novel materials compared to LLM-based and denoisingbased models Furthermore, CrysLLMGen exhibits strong conditional generation capabilities, effectively producing materials that satisfy user-defined constraints. Code is available at https://github.com/kdmsit/crysllmgen

Authors:Yifan Zhang, Lanser Contributors
Title: Language Server CLI Empowers Language Agents with Process Rewards
Abstract:
Large language models routinely hallucinate APIs and mislocalize edits, while language servers compute verified, IDE-grade facts about real code. We present Lanser-CLI, a CLI-first orchestration layer that pins and mediates a Language Server Protocol (LSP) server for coding agents and CI, exposing deterministic, replayable workflows. Our position is that language servers provide not only structural information (definitions, references, types, diagnostics) but also an actionable process reward: machine-checked, step-wise signals that align an agent's planning loop with program reality. In this work, Lanser-CLI contributes: (i) a robust addressing scheme beyond brittle "file:line:col" via a Selector DSL (symbolic, AST-path, and content-anchored selectors) with a principled relocation algorithm; (ii) deterministic Analysis Bundles that normalize Language Server responses and capture environment/capability metadata with stable content hashes; (iii) a safety envelope for mutating operations (rename, code actions) with preview, workspace jails, and Git-aware, transactional apply; and (iv) a process-reward functional derived from Language Server facts (diagnostic deltas, disambiguation confidence, and safe-apply checks) that is computable online and replayable offline. We formalize determinism under frozen snapshots and establish a monotonicity property for the process reward, making it suitable for process supervision and counterfactual analysis. Project Page: https://github.com/yifanzhang-pro/lanser-cli

Authors:Duong M. Nguyen, Trong Nghia Hoang, Thanh Trung Huynh, Quoc Viet Hung Nguyen, Phi Le Nguyen
Title: Learning Reconfigurable Representations for Multimodal Federated Learning with Missing Data
Abstract:
Multimodal federated learning in real-world settings often encounters incomplete and heterogeneous data across clients. This results in misaligned local feature representations that limit the effectiveness of model aggregation. Unlike prior work that assumes either differing modality sets without missing input features or a shared modality set with missing features across clients, we consider a more general and realistic setting where each client observes a different subset of modalities and might also have missing input features within each modality. To address the resulting misalignment in learned representations, we propose a new federated learning framework featuring locally adaptive representations based on learnable client-side embedding controls that encode each client's data-missing patterns. These embeddings serve as reconfiguration signals that align the globally aggregated representation with each client's local context, enabling more effective use of shared information. Furthermore, the embedding controls can be algorithmically aggregated across clients with similar data-missing patterns to enhance the robustness of reconfiguration signals in adapting the global representation. Empirical results on multiple federated multimodal benchmarks with diverse data-missing patterns across clients demonstrate the efficacy of the proposed method, achieving up to 36.45\% performance improvement under severe data incompleteness. The method is also supported by a theoretical analysis with an explicit performance bound that matches our empirical observations. Our source codes are provided at https://github.com/nmduonggg/PEPSY

Authors:Ranran Haoran Zhang, Soumik Dey, Ashirbad Mishra, Hansi Wu, Binbin Li, Rui Zhang
Title: Batch Speculative Decoding Done Right
Abstract:
Speculative decoding speeds up LLM inference by using a small draft model to propose multiple tokens that a target model verifies in parallel. Extending this idea to batches is essential for production serving, but it introduces the ragged tensor problem: sequences in the same batch accept different numbers of draft tokens, breaking right-alignment and corrupting position IDs, attention masks, and KV-cache state. We show that several existing batch implementations violate output equivalence-the fundamental requirement that speculative decoding must produce identical token sequences to standard autoregressive generation. These violations occur precisely due to improper handling of the ragged tensor problem. In response, we (1) characterize the synchronization requirements that guarantee correctness, (2) present a correctness-first batch speculative decoding EQSPEC that exposes realignment as consuming 40% of overhead, and (3) introduce EXSPEC, which maintains a sliding pool of sequences and dynamically forms same-length groups, to reduce the realignment overhead while preserving per-sequence speculative speedups. On the SpecBench dataset, across Vicuna-7B/68M, Qwen3-8B/0.6B, and GLM-4-9B/0.6B target/draft pairs, our approach achieves up to 3$\times$ throughput improvement at batch size 8 compared to batch size 1, with efficient scaling through batch size 8, while maintaining 95% output equivalence. Our method requires no custom kernels and integrates cleanly with existing inference stacks. Our code is available at https://github.com/eBay/spec_dec.

Authors:Marianne Arriola, Yair Schiff, Hao Phung, Aaron Gokaslan, Volodymyr Kuleshov
Title: Encoder-Decoder Diffusion Language Models for Efficient Training and Inference
Abstract:
Discrete diffusion models enable parallel token sampling for faster inference than autoregressive approaches. However, prior diffusion models use a decoder-only architecture, which requires sampling algorithms that invoke the full network at every denoising step and incur high computational cost. Our key insight is that discrete diffusion models perform two types of computation: 1) representing clean tokens and 2) denoising corrupted tokens, which enables us to use separate modules for each task. We propose an encoder-decoder architecture to accelerate discrete diffusion inference, which relies on an encoder to represent clean tokens and a lightweight decoder to iteratively refine a noised sequence. We also show that this architecture enables faster training of block diffusion models, which partition sequences into blocks for better quality and are commonly used in diffusion language model inference. We introduce a framework for Efficient Encoder-Decoder Diffusion (E2D2), consisting of an architecture with specialized training and sampling algorithms, and we show that E2D2 achieves superior trade-offs between generation quality and inference throughput on summarization, translation, and mathematical reasoning tasks. We provide the code, model weights, and blog post on the project page: https://m-arriola.com/e2d2

Authors:Lexiang Xiong, Chengyu Liu, Jingwen Ye, Yan Liu, Yuecong Xu
Title: Semantic Surgery: Zero-Shot Concept Erasure in Diffusion Models
Abstract:
Concept erasure in text-to-image diffusion models is crucial for mitigating harmful content, yet existing methods often compromise generative quality. We introduce Semantic Surgery, a novel training-free, zero-shot framework for concept erasure that operates directly on text embeddings before the diffusion process. It dynamically estimates the presence of target concepts in a prompt and performs a calibrated vector subtraction to neutralize their influence at the source, enhancing both erasure completeness and locality. The framework includes a Co-Occurrence Encoding module for robust multi-concept erasure and a visual feedback loop to address latent concept persistence. As a training-free method, Semantic Surgery adapts dynamically to each prompt, ensuring precise interventions. Extensive experiments on object, explicit content, artistic style, and multi-celebrity erasure tasks show our method significantly outperforms state-of-the-art approaches. We achieve superior completeness and robustness while preserving locality and image quality (e.g., 93.58 H-score in object erasure, reducing explicit content to just 1 instance, and 8.09 H_a in style erasure with no quality degradation). This robustness also allows our framework to function as a built-in threat detection system, offering a practical solution for safer text-to-image generation.

Authors:Guanyu Yao, Qiucheng Wu, Yang Zhang, Zhaowen Wang, Handong Zhao, Shiyu Chang
Title: Rethinking the Text-Vision Reasoning Imbalance in MLLMs through the Lens of Training Recipes
Abstract:
Multimodal large language models (MLLMs) have demonstrated strong capabilities on vision-and-language tasks. However, recent findings reveal an imbalance in their reasoning capabilities across visual and textual modalities. Specifically, current MLLMs often over-rely on textual cues while under-attending to visual content, resulting in suboptimal performance on tasks that require genuine visual reasoning. We refer to this phenomenon as the \textit{modality gap}, defined as the performance disparity between text-centric and vision-centric inputs. In this paper, we analyze the modality gap through the lens of training recipes. We first show that existing training recipes tend to amplify this gap. Then, we systematically explore strategies to bridge it from two complementary perspectives: data and loss design. Our findings provide insights into developing training recipes that mitigate the modality gap and promote more balanced multimodal reasoning. Our code is publicly available at https://github.com/UCSB-NLP-Chang/Bridging-Modality-Gap.

Authors:Aleksandar Pramov
Title: LLM-based Fusion of Multi-modal Features for Commercial Memorability Prediction
Abstract:
This paper addresses the prediction of commercial (brand) memorability as part of "Subtask 2: Commercial/Ad Memorability" within the "Memorability: Predicting movie and commercial memorability" task at the MediaEval 2025 workshop competition. We propose a multimodal fusion system with a Gemma-3 LLM backbone that integrates pre-computed visual (ViT) and textual (E5) features by multi-modal projections. The model is adapted using Low-Rank Adaptation (LoRA). A heavily-tuned ensemble of gradient boosted trees serves as a baseline. A key contribution is the use of LLM-generated rationale prompts, grounded in expert-derived aspects of memorability, to guide the fusion model. The results demonstrate that the LLM-based system exhibits greater robustness and generalization performance on the final test set, compared to the baseline. The paper's codebase can be found at https://github.com/dsgt-arc/mediaeval-2025-memorability

Authors:Sai Krishna Ghanta, Ramviyas Parasuraman
Title: Policies over Poses: Reinforcement Learning based Distributed Pose-Graph Optimization for Multi-Robot SLAM
Abstract:
We consider the distributed pose-graph optimization (PGO) problem, which is fundamental in accurate trajectory estimation in multi-robot simultaneous localization and mapping (SLAM). Conventional iterative approaches linearize a highly non-convex optimization objective, requiring repeated solving of normal equations, which often converge to local minima and thus produce suboptimal estimates. We propose a scalable, outlier-robust distributed planar PGO framework using Multi-Agent Reinforcement Learning (MARL). We cast distributed PGO as a partially observable Markov game defined on local pose-graphs, where each action refines a single edge's pose estimate. A graph partitioner decomposes the global pose graph, and each robot runs a recurrent edge-conditioned Graph Neural Network (GNN) encoder with adaptive edge-gating to denoise noisy edges. Robots sequentially refine poses through a hybrid policy that utilizes prior action memory and graph embeddings. After local graph correction, a consensus scheme reconciles inter-robot disagreements to produce a globally consistent estimate. Our extensive evaluations on a comprehensive suite of synthetic and real-world datasets demonstrate that our learned MARL-based actors reduce the global objective by an average of 37.5% more than the state-of-the-art distributed PGO framework, while enhancing inference efficiency by at least 6X. We also demonstrate that actor replication allows a single learned policy to scale effortlessly to substantially larger robot teams without any retraining. Code is publicly available at https://github.com/herolab-uga/policies-over-poses.

Authors:Qi Liu, Yanzhao Zhang, Mingxin Li, Dingkun Long, Pengjun Xie, Jiaxin Mao
Title: $\text{E}^2\text{Rank}$: Your Text Embedding can Also be an Effective and Efficient Listwise Reranker
Abstract:
Text embedding models serve as a fundamental component in real-world search applications. By mapping queries and documents into a shared embedding space, they deliver competitive retrieval performance with high efficiency. However, their ranking fidelity remains limited compared to dedicated rerankers, especially recent LLM-based listwise rerankers, which capture fine-grained query-document and document-document interactions. In this paper, we propose a simple yet effective unified framework $\text{E}^2\text{Rank}$, means Efficient Embedding-based Ranking (also means Embedding-to-Rank), which extends a single text embedding model to perform both high-quality retrieval and listwise reranking through continued training under a listwise ranking objective, thereby achieving strong effectiveness with remarkable efficiency. By applying cosine similarity between the query and document embeddings as a unified ranking function, the listwise ranking prompt, which is constructed from the original query and its candidate documents, serves as an enhanced query enriched with signals from the top-K documents, akin to pseudo-relevance feedback (PRF) in traditional retrieval models. This design preserves the efficiency and representational quality of the base embedding model while significantly improving its reranking performance. Empirically, $\textrm{E}^2\text{Rank}$ achieves state-of-the-art results on the BEIR reranking benchmark and demonstrates competitive performance on the reasoning-intensive BRIGHT benchmark, with very low reranking latency. We also show that the ranking training process improves embedding performance on the MTEB benchmark. Our findings indicate that a single embedding model can effectively unify retrieval and reranking, offering both computational efficiency and competitive ranking accuracy.

Authors:Berken Utku Demirel, Christian Holz
Title: Learning Without Augmenting: Unsupervised Time Series Representation Learning via Frame Projections
Abstract:
Self-supervised learning (SSL) has emerged as a powerful paradigm for learning representations without labeled data. Most SSL approaches rely on strong, well-established, handcrafted data augmentations to generate diverse views for representation learning. However, designing such augmentations requires domain-specific knowledge and implicitly imposes representational invariances on the model, which can limit generalization. In this work, we propose an unsupervised representation learning method that replaces augmentations by generating views using orthonormal bases and overcomplete frames. We show that embeddings learned from orthonormal and overcomplete spaces reside on distinct manifolds, shaped by the geometric biases introduced by representing samples in different spaces. By jointly leveraging the complementary geometry of these distinct manifolds, our approach achieves superior performance without artificially increasing data diversity through strong augmentations. We demonstrate the effectiveness of our method on nine datasets across five temporal sequence tasks, where signal-specific characteristics make data augmentations particularly challenging. Without relying on augmentation-induced diversity, our method achieves performance gains of up to 15--20\% over existing self-supervised approaches. Source code: https://github.com/eth-siplab/Learning-with-FrameProjections

Authors:Lu Xu, Tsai Hor Chan, Kwok Fai Lam, Lequan Yu, Guosheng Yin
Title: Variational Polya Tree
Abstract:
Density estimation is essential for generative modeling, particularly with the rise of modern neural networks. While existing methods capture complex data distributions, they often lack interpretability and uncertainty quantification. Bayesian nonparametric methods, especially the \polya tree, offer a robust framework that addresses these issues by accurately capturing function behavior over small intervals. Traditional techniques like Markov chain Monte Carlo (MCMC) face high computational complexity and scalability limitations, hindering the use of Bayesian nonparametric methods in deep learning. To tackle this, we introduce the variational \polya tree (VPT) model, which employs stochastic variational inference to compute posterior distributions. This model provides a flexible, nonparametric Bayesian prior that captures latent densities and works well with stochastic gradient optimization. We also leverage the joint distribution likelihood for a more precise variational posterior approximation than traditional mean-field methods. We evaluate the model performance on both real data and images, and demonstrate its competitiveness with other state-of-the-art deep density estimation methods. We also explore its ability in enhancing interpretability and uncertainty quantification. Code is available at https://github.com/howardchanth/var-polya-tree.

Authors:Sofiane Ennadir, Oleg Smirnov, Yassine Abbahaddou, Lele Cao, Johannes F. Lutzeyer
Title: Enhancing Graph Classification Robustness with Singular Pooling
Abstract:
Graph Neural Networks (GNNs) have achieved strong performance across a range of graph representation learning tasks, yet their adversarial robustness in graph classification remains underexplored compared to node classification. While most existing defenses focus on the message-passing component, this work investigates the overlooked role of pooling operations in shaping robustness. We present a theoretical analysis of standard flat pooling methods (sum, average and max), deriving upper bounds on their adversarial risk and identifying their vulnerabilities under different attack scenarios and graph structures. Motivated by these insights, we propose \textit{Robust Singular Pooling (RS-Pool)}, a novel pooling strategy that leverages the dominant singular vector of the node embedding matrix to construct a robust graph-level representation. We theoretically investigate the robustness of RS-Pool and interpret the resulting bound leading to improved understanding of our proposed pooling operator. While our analysis centers on Graph Convolutional Networks (GCNs), RS-Pool is model-agnostic and can be implemented efficiently via power iteration. Empirical results on real-world benchmarks show that RS-Pool provides better robustness than the considered pooling methods when subject to state-of-the-art adversarial attacks while maintaining competitive clean accuracy. Our code is publicly available at:\href{https://github.com/king/rs-pool}{https://github.com/king/rs-pool}.

Authors:Hao Zheng, Zirui Pang, Ling li, Zhijie Deng, Yuhan Pu, Zhaowei Zhu, Xiaobo Xia, Jiaheng Wei
Title: OFFSIDE: Benchmarking Unlearning Misinformation in Multimodal Large Language Models
Abstract:
Advances in Multimodal Large Language Models (MLLMs) intensify concerns about data privacy, making Machine Unlearning (MU), the selective removal of learned information, a critical necessity. However, existing MU benchmarks for MLLMs are limited by a lack of image diversity, potential inaccuracies, and insufficient evaluation scenarios, which fail to capture the complexity of real-world applications. To facilitate the development of MLLMs unlearning and alleviate the aforementioned limitations, we introduce OFFSIDE, a novel benchmark for evaluating misinformation unlearning in MLLMs based on football transfer rumors. This manually curated dataset contains 15.68K records for 80 players, providing a comprehensive framework with four test sets to assess forgetting efficacy, generalization, utility, and robustness. OFFSIDE supports advanced settings like selective unlearning and corrective relearning, and crucially, unimodal unlearning (forgetting only text data). Our extensive evaluation of multiple baselines reveals key findings: (1) Unimodal methods (erasing text-based knowledge) fail on multimodal rumors; (2) Unlearning efficacy is largely driven by catastrophic forgetting; (3) All methods struggle with "visual rumors" (rumors appear in the image); (4) The unlearned rumors can be easily recovered and (5) All methods are vulnerable to prompt attacks. These results expose significant vulnerabilities in current approaches, highlighting the need for more robust multimodal unlearning solutions. The code is available at \href{https://github.com/zh121800/OFFSIDE}{https://github.com/zh121800/OFFSIDE}.

Authors:Noshitha Padma Pratyusha Juttu, Sahithi Singireddy, Sravani Gona, Sujal Timilsina
Title: Text to Trust: Evaluating Fine-Tuning and LoRA Trade-offs in Language Models for Unfair Terms of Service Detection
Abstract:
Large Language Models (LLMs) have transformed text understanding, yet their adaptation to specialized legal domains remains constrained by the cost of full fine-tuning. This study provides a systematic evaluation of fine tuning, parameter efficient adaptation (LoRA, QLoRA), and zero-shot prompting strategies for unfair clause detection in Terms of Service (ToS) documents, a key application in legal NLP. We finetune BERT and DistilBERT, apply 4-bit Low-Rank Adaptation (LoRA) to models such as TinyLlama, LLaMA 3B/7B, and SaulLM, and evaluate GPT-4o and O-versions in zero-shot settings. Experiments on the CLAUDETTE-ToS benchmark and the Multilingual Scraper Corpus show that full fine-tuning achieves the strongest precision recall balance, while LoRA-based models provide competitive recall with up to 3x lower memory cost. These findings highlight practical design trade-offs for efficient and domain-adapted LLMs, contributing open baselines for fine-tuning research in legal text processing.

Authors:Rui Jin, Chen Chen, Yin Liu, Hongfu Sun, Min Zeng, Min Li, Yang Gao
Title: GateFuseNet: An Adaptive 3D Multimodal Neuroimaging Fusion Network for Parkinson's Disease Diagnosis
Abstract:
Accurate diagnosis of Parkinson's disease (PD) from MRI remains challenging due to symptom variability and pathological heterogeneity. Most existing methods rely on conventional magnitude-based MRI modalities, such as T1-weighted images (T1w), which are less sensitive to PD pathology than Quantitative Susceptibility Mapping (QSM), a phase-based MRI technique that quantifies iron deposition in deep gray matter nuclei. In this study, we propose GateFuseNet, an adaptive 3D multimodal fusion network that integrates QSM and T1w images for PD diagnosis. The core innovation lies in a gated fusion module that learns modality-specific attention weights and channel-wise gating vectors for selective feature modulation. This hierarchical gating mechanism enhances ROI-aware features while suppressing irrelevant signals. Experimental results show that our method outperforms three existing state-of-the-art approaches, achieving 85.00% accuracy and 92.06% AUC. Ablation studies further validate the contributions of ROI guidance, multimodal integration, and fusion positioning. Grad-CAM visualizations confirm the model's focus on clinically relevant pathological regions. The source codes and pretrained models can be found at https://github.com/YangGaoUQ/GateFuseNet

Authors:Nikhil Abhyankar, Sanchit Kabra, Saaketh Desai, Chandan K. Reddy
Title: Accelerating Materials Design via LLM-Guided Evolutionary Search
Abstract:
Materials discovery requires navigating vast chemical and structural spaces while satisfying multiple, often conflicting, objectives. We present LLM-guided Evolution for MAterials design (LLEMA), a unified framework that couples the scientific knowledge embedded in large language models with chemistry-informed evolutionary rules and memory-based refinement. At each iteration, an LLM proposes crystallographically specified candidates under explicit property constraints; a surrogate-augmented oracle estimates physicochemical properties; and a multi-objective scorer updates success/failure memories to guide subsequent generations. Evaluated on 14 realistic tasks spanning electronics, energy, coatings, optics, and aerospace, LLEMA discovers candidates that are chemically plausible, thermodynamically stable, and property-aligned, achieving higher hit-rates and stronger Pareto fronts than generative and LLM-only baselines. Ablation studies confirm the importance of rule-guided generation, memory-based refinement, and surrogate prediction. By enforcing synthesizability and multi-objective trade-offs, LLEMA delivers a principled pathway to accelerate practical materials discovery. Code: https://github.com/scientific-discovery/LLEMA

Authors:Ren Yin, Takashi Ishida, Masashi Sugiyama
Title: Scalable Oversight via Partitioned Human Supervision
Abstract:
As artificial intelligence (AI) systems approach and surpass expert human performance across a broad range of tasks, obtaining high-quality human supervision for evaluation and training becomes increasingly challenging. Our focus is on tasks that require deep knowledge and skills of multiple domains. Unfortunately, even the best human experts are knowledgeable only in a single narrow area, and will not be able to evaluate the correctness of advanced AI systems on such superhuman tasks. However, based on their narrow expertise, humans may provide a weak signal, i.e., a complementary label indicating an option that is incorrect. For example, a cardiologist could state that "this is not related to cardiology,'' even if they cannot identify the true disease. Based on this weak signal, we propose a scalable oversight framework that enables us to evaluate frontier AI systems without the need to prepare the ground truth. We derive an unbiased estimator of top-1 accuracy from complementary labels and quantify how many complementary labels are needed to match the variance of ordinary labels. We further introduce two estimators to combine scarce ordinary labels with abundant complementary labels. We provide finite-sample deviation guarantees for both complementary-only and the mixed estimators. Empirically, we show that we can evaluate the output of large language models without the ground truth, if we have complementary labels. We further show that we can train an AI system with such weak signals: we show how we can design an agentic AI system automatically that can perform better with this partitioned human supervision. Our code is available at https://github.com/R-Yin-217/Scalable-Oversight-via-Human-Partitioned-Supervision.

Authors:Xingbo Fu, Zhenyu Lei, Zihan Chen, Binchi Zhang, Chuxu Zhang, Jundong Li
Title: GraphTOP: Graph Topology-Oriented Prompting for Graph Neural Networks
Abstract:
Graph Neural Networks (GNNs) have revolutionized the field of graph learning by learning expressive graph representations from massive graph data. As a common pattern to train powerful GNNs, the "pre-training, adaptation" scheme first pre-trains GNNs over unlabeled graph data and subsequently adapts them to specific downstream tasks. In the adaptation phase, graph prompting is an effective strategy that modifies input graph data with learnable prompts while keeping pre-trained GNN models frozen. Typically, existing graph prompting studies mainly focus on *feature-oriented* methods that apply graph prompts to node features or hidden representations. However, these studies often achieve suboptimal performance, as they consistently overlook the potential of *topology-oriented* prompting, which adapts pre-trained GNNs by modifying the graph topology. In this study, we conduct a pioneering investigation of graph prompting in terms of graph topology. We propose the first **Graph** **T**opology-**O**riented **P**rompting (GraphTOP) framework to effectively adapt pre-trained GNN models for downstream tasks. More specifically, we reformulate topology-oriented prompting as an edge rewiring problem within multi-hop local subgraphs and relax it into the continuous probability space through reparameterization while ensuring tight relaxation and preserving graph sparsity. Extensive experiments on five graph datasets under four pre-training strategies demonstrate that our proposed GraphTOP outshines six baselines on multiple node classification datasets. Our code is available at https://github.com/xbfu/GraphTOP.

Authors:Yupeng Xie, Zhiyang Zhang, Yifan Wu, Sirong Lu, Jiayi Zhang, Zhaoyang Yu, Jinlin Wang, Sirui Hong, Bang Liu, Chenglin Wu, Yuyu Luo
Title: VisJudge-Bench: Aesthetics and Quality Assessment of Visualizations
Abstract:
Visualization, a domain-specific yet widely used form of imagery, is an effective way to turn complex datasets into intuitive insights, and its value depends on whether data are faithfully represented, clearly communicated, and aesthetically designed. However, evaluating visualization quality is challenging: unlike natural images, it requires simultaneous judgment across data encoding accuracy, information expressiveness, and visual aesthetics. Although multimodal large language models (MLLMs) have shown promising performance in aesthetic assessment of natural images, no systematic benchmark exists for measuring their capabilities in evaluating visualizations. To address this, we propose VisJudge-Bench, the first comprehensive benchmark for evaluating MLLMs' performance in assessing visualization aesthetics and quality. It contains 3,090 expert-annotated samples from real-world scenarios, covering single visualizations, multiple visualizations, and dashboards across 32 chart types. Systematic testing on this benchmark reveals that even the most advanced MLLMs (such as GPT-5) still exhibit significant gaps compared to human experts in judgment, with a Mean Absolute Error (MAE) of 0.551 and a correlation with human ratings of only 0.429. To address this issue, we propose VisJudge, a model specifically designed for visualization aesthetics and quality assessment. Experimental results demonstrate that VisJudge significantly narrows the gap with human judgment, reducing the MAE to 0.442 (a 19.8% reduction) and increasing the consistency with human experts to 0.681 (a 58.7% improvement) compared to GPT-5. The benchmark is available at https://github.com/HKUSTDial/VisJudgeBench.

Authors:Seyed Ahmad Hosseini Miangoleh, Amin Jalal Aghdasian, Farzaneh Abdollahi
Title: BLIP-FusePPO: A Vision-Language Deep Reinforcement Learning Framework for Lane Keeping in Autonomous Vehicles
Abstract:
In this paper, we propose Bootstrapped Language-Image Pretraining-driven Fused State Representation in Proximal Policy Optimization (BLIP-FusePPO), a novel multimodal reinforcement learning (RL) framework for autonomous lane-keeping (LK), in which semantic embeddings generated by a vision-language model (VLM) are directly fused with geometric states, LiDAR observations, and Proportional-Integral-Derivative-based (PID) control feedback within the agent observation space. The proposed method lets the agent learn driving rules that are aware of their surroundings and easy to understand by combining high-level scene understanding from the VLM with low-level control and spatial signals. Our architecture brings together semantic, geometric, and control-aware representations to make policy learning more robust. A hybrid reward function that includes semantic alignment, LK accuracy, obstacle avoidance, and speed regulation helps learning to be more efficient and generalizable. Our method is different from the approaches that only use semantic models to shape rewards. Instead, it directly embeds semantic features into the state representation. This cuts down on expensive runtime inference and makes sure that semantic guidance is always available. The simulation results show that the proposed model is better at LK stability and adaptability than the best vision-based and multimodal RL baselines in a wide range of difficult driving situations. We make our code publicly available.

Authors:Jindong Yang, Han Fang, Weiming Zhang, Nenghai Yu, Kejiang Chen
Title: T2SMark: Balancing Robustness and Diversity in Noise-as-Watermark for Diffusion Models
Abstract:
Diffusion models have advanced rapidly in recent years, producing high-fidelity images while raising concerns about intellectual property protection and the misuse of generative AI. Image watermarking for diffusion models, particularly Noise-as-Watermark (NaW) methods, encode watermark as specific standard Gaussian noise vector for image generation, embedding the infomation seamlessly while maintaining image quality. For detection, the generation process is inverted to recover the initial noise vector containing the watermark before extraction. However, existing NaW methods struggle to balance watermark robustness with generation diversity. Some methods achieve strong robustness by heavily constraining initial noise sampling, which degrades user experience, while others preserve diversity but prove too fragile for real-world deployment. To address this issue, we propose T2SMark, a two-stage watermarking scheme based on Tail-Truncated Sampling (TTS). Unlike prior methods that simply map bits to positive or negative values, TTS enhances robustness by embedding bits exclusively in the reliable tail regions while randomly sampling the central zone to preserve the latent distribution. Our two-stage framework then ensures sampling diversity by integrating a randomly generated session key into both encryption pipelines. We evaluate T2SMark on diffusion models with both U-Net and DiT backbones. Extensive experiments show that it achieves an optimal balance between robustness and diversity. Our code is available at \href{https://github.com/0xD009/T2SMark}{https://github.com/0xD009/T2SMark}.

Authors:Changti Wu, Shijie Lian, Zihao Liu, Lei Zhang, Laurence Tianruo Yang, Kai Chen
Title: DynaSolidGeo: A Dynamic Benchmark for Genuine Spatial Mathematical Reasoning of VLMs in Solid Geometry
Abstract:
Solid geometry problem solving demands spatial mathematical reasoning that integrates spatial intelligence and symbolic reasoning. However, most existing multimodal mathematical reasoning benchmarks focus primarily on 2D plane geometry, rely on static datasets prone to data contamination and memorization, and evaluate models solely by final answers, overlooking the reasoning process. To address these limitations, we introduce DynaSolidGeo, the first dynamic benchmark for evaluating genuine spatial reasoning in Vision-Language Models (VLMs). Constructed through a semi-automatic annotation pipeline, DynaSolidGeo contains 503 expert-curated seed questions that can, in principle, dynamically generate an unbounded number of diverse multimodal text-visual instances. Beyond answer accuracy, we incorporate process evaluation based on expert-annotated reasoning chains to measure logical validity and causal coherence. Experiments across representative open-source and closed-source VLMs reveal large performance gaps, severe degradation in dynamic settings, and poor performance on tasks requiring high-level spatial intelligence, such as mental rotation and visualization. The code and dataset are available at \href{https://zgca-ai4edu.github.io/DynaSolidGeo/}{DynaSolidGeo}.

Authors:Chenyu Zhang, Tairen Zhang, Lanjun Wang, Ruidong Chen, Wenhui Li, Anan Liu
Title: T2I-RiskyPrompt: A Benchmark for Safety Evaluation, Attack, and Defense on Text-to-Image Model
Abstract:
Using risky text prompts, such as pornography and violent prompts, to test the safety of text-to-image (T2I) models is a critical task. However, existing risky prompt datasets are limited in three key areas: 1) limited risky categories, 2) coarse-grained annotation, and 3) low effectiveness. To address these limitations, we introduce T2I-RiskyPrompt, a comprehensive benchmark designed for evaluating safety-related tasks in T2I models. Specifically, we first develop a hierarchical risk taxonomy, which consists of 6 primary categories and 14 fine-grained subcategories. Building upon this taxonomy, we construct a pipeline to collect and annotate risky prompts. Finally, we obtain 6,432 effective risky prompts, where each prompt is annotated with both hierarchical category labels and detailed risk reasons. Moreover, to facilitate the evaluation, we propose a reason-driven risky image detection method that explicitly aligns the MLLM with safety annotations. Based on T2I-RiskyPrompt, we conduct a comprehensive evaluation of eight T2I models, nine defense methods, five safety filters, and five attack strategies, offering nine key insights into the strengths and limitations of T2I model safety. Finally, we discuss potential applications of T2I-RiskyPrompt across various research fields. The dataset and code are provided in https://github.com/datar001/T2I-RiskyPrompt.

Authors:Yan Jiang, Ruihong Qiu, Zi Huang
Title: Does Homophily Help in Robust Test-time Node Classification?
Abstract:
Homophily, the tendency of nodes from the same class to connect, is a fundamental property of real-world graphs, underpinning structural and semantic patterns in domains such as citation networks and social networks. Existing methods exploit homophily through designing homophily-aware GNN architectures or graph structure learning strategies, yet they primarily focus on GNN learning with training graphs. However, in real-world scenarios, test graphs often suffer from data quality issues and distribution shifts, such as domain shifts across users from different regions in social networks and temporal evolution shifts in citation network graphs collected over varying time periods. These factors significantly compromise the pre-trained model's robustness, resulting in degraded test-time performance. With empirical observations and theoretical analysis, we reveal that transforming the test graph structure by increasing homophily in homophilic graphs or decreasing it in heterophilic graphs can significantly improve the robustness and performance of pre-trained GNNs on node classifications, without requiring model training or update. Motivated by these insights, a novel test-time graph structural transformation method grounded in homophily, named GrapHoST, is proposed. Specifically, a homophily predictor is developed to discriminate test edges, facilitating adaptive test-time graph structural transformation by the confidence of predicted homophily scores. Extensive experiments on nine benchmark datasets under a range of test-time data quality issues demonstrate that GrapHoST consistently achieves state-of-the-art performance, with improvements of up to 10.92%. Our code has been released at https://github.com/YanJiangJerry/GrapHoST.

Authors:Iliass Ayaou, Denis Cavallucci
Title: PatenTEB: A Comprehensive Benchmark and Model Family for Patent Text Embedding
Abstract:
Patent text embeddings enable prior art search, technology landscaping, and patent analysis, yet existing benchmarks inadequately capture patent-specific challenges. We introduce PatenTEB, a comprehensive benchmark comprising 15 tasks across retrieval, classification, paraphrase, and clustering, with 2.06 million examples. PatenTEB employs domain-stratified splits, domain specific hard negative mining, and systematic coverage of asymmetric fragment-to-document matching scenarios absent from general embedding benchmarks. We develop the patembed model family through multi-task training, spanning 67M to 344M parameters with context lengths up to 4096 tokens. External validation shows strong generalization: patembed-base achieves state-of-the-art on MTEB BigPatentClustering.v2 (0.494 V-measure vs. 0.445 previous best), while patembed-large achieves 0.377 NDCG@100 on DAPFAM. Systematic ablations reveal that multi-task training improves external generalization despite minor benchmark costs, and that domain-pretrained initialization provides consistent advantages across task families. All resources will be made available at https://github.com/iliass-y/patenteb. Keywords: patent retrieval, sentence embeddings, multi-task learning, asymmetric retrieval, benchmark evaluation, contrastive learning.

Authors:Berkay Döner, Thorir Mar Ingolfsson, Luca Benini, Yawei Li
Title: LUNA: Efficient and Topology-Agnostic Foundation Model for EEG Signal Analysis
Abstract:
Electroencephalography (EEG) offers a non-invasive lens into human brain activity, but building large-scale models is hampered by topological heterogeneity: each public EEG data defines its own electrode layout, limiting generalization. We introduce LUNA (Latent Unified Network Architecture), a self-supervised foundation model that reconciles disparate electrode geometries while scaling linearly -- not quadratically -- with channel count. LUNA compresses multi-channel EEG into a fixed-size, topology-agnostic latent space via learned queries and cross-attention. Downstream transformer blocks then operate exclusively on this latent representation using patch-wise temporal self-attention, decoupling computation from electrode count. Pre-trained on TUEG and Siena (over 21,000 hours of raw EEG across diverse montages) using a masked-patch reconstruction objective, LUNA transfers effectively to four downstream tasks: abnormality detection, artifact rejection, slowing classification, and emotion recognition. It demonstrates highly competitive performance across several benchmarks, achieving state-of-the-art results on TUAR and TUSL, e.g., 0.921 AUROC on TUAR, while reducing FLOPs by 300x and trimming GPU memory use by up to 10x. Critically, these gains are consistent across all evaluated electrode configurations. Code is available at https://github.com/pulp-bio/BioFoundation

Authors:Imran Khan
Title: You Don't Need Prompt Engineering Anymore: The Prompting Inversion
Abstract:
Prompt engineering, particularly Chain-of-Thought (CoT) prompting, significantly enhances LLM reasoning capabilities. We introduce "Sculpting," a constrained, rule-based prompting method designed to improve upon standard CoT by reducing errors from semantic ambiguity and flawed common sense. We evaluate three prompting strategies (Zero Shot, standard CoT, and Sculpting) across three OpenAI model generations (gpt-4o-mini, gpt-4o, gpt-5) using the GSM8K mathematical reasoning benchmark (1,317 problems). Our findings reveal a "Prompting Inversion": Sculpting provides advantages on gpt-4o (97% vs. 93% for standard CoT), but becomes detrimental on gpt-5 (94.00% vs. 96.36% for CoT on full benchmark). We trace this to a "Guardrail-to-Handcuff" transition where constraints preventing common-sense errors in mid-tier models induce hyper-literalism in advanced models. Our detailed error analysis demonstrates that optimal prompting strategies must co-evolve with model capabilities, suggesting simpler prompts for more capable models.

Authors:Amir Mohammad Khadem Hosseini, Sattar Mirzakuchaki
Title: Real-Time Semantic Segmentation on FPGA for Autonomous Vehicles Using LMIINet with the CGRA4ML Framework
Abstract:
Semantic segmentation has emerged as a fundamental problem in computer vision, gaining particular importance in real-time applications such as autonomous driving. The main challenge is achieving high accuracy while operating under computational and hardware constraints. In this research, we present an FPGA-based implementation of real-time semantic segmentation leveraging the lightweight LMIINet architecture and the Coarse-Grained Reconfigurable Array for Machine Learning (CGRA4ML) hardware framework. The model was trained using Quantization-Aware Training (QAT) with 8-bit precision on the Cityscapes dataset, reducing memory footprint by a factor of four while enabling efficient fixed-point computations. Necessary modifications were applied to adapt the model to CGRA4ML constraints, including simplifying skip connections, employing hardware-friendly operations such as depthwise-separable and 1A-1 convolutions, and redesigning parts of the Flatten Transformer. Our implementation achieves approximately 90% pixel accuracy and 45% mean Intersection-over-Union (mIoU), operating in real-time at 20 frames per second (FPS) with 50.1 ms latency on the ZCU104 FPGA board. The results demonstrate the potential of CGRA4ML, with its flexibility in mapping modern layers and off-chip memory utilization for skip connections, provides a path for implementing advanced semantic segmentation networks on FPGA for real-time applications to outperform traditional GPU solutions in terms of power efficiency while maintaining competitive accuracy. The code for this project is publicly available at https://github.com/STAmirr/ cgra4ml_semantic_segmentation

Authors:Keyu Wang, Tian Lyu, Guinan Su, Jonas Geiping, Lu Yin, Marco Canini, Shiwei Liu
Title: When Fewer Layers Break More Chains: Layer Pruning Harms Test-Time Scaling in LLMs
Abstract:
Layer pruning has emerged as a widely adopted technique for improving the efficiency of large language models (LLMs). Although existing methods demonstrate strong performance retention on general knowledge tasks, their effect on long-chain reasoning, a more brittle yet crucial capability, remains largely unexplored. In this work, we study the impact of layer pruning on long-chain reasoning through the lens of test-time scaling, a key mechanism in modern LLMs that enables strong reasoning capacity by allocating more computation at inference time. With extensive experiments, we demonstrate that pruning even one or two layers can severely impair test-time scaling, with performance collapsing drastically on long reasoning benchmarks even when performance on knowledge-intensive and shallow reasoning tasks remains stable. Furthermore, we find that standard supervised fine-tuning remedies fail to recover test-time scaling once it has deteriorated. Through in-depth analyses, we identify the mechanisms underlying this fragility of test-time scaling and highlight the fundamental risks of applying layer pruning to reasoning-intensive LLMs. These findings call for a rethinking of layer pruning strategies and provide insights for developing methods that preserve the robustness of reasoning. We open-source the codebase in \href{https://github.com/keyu-wang-2002/Layer-Pruning-Harms-Inference-Scaling}{https://github.com/keyu-wang-2002/Layer-Pruning-Harms-Inference-Scaling}.

Authors:Qingzhu Zhang, Jiani Zhong, Zongsheng Li, Xinke Shen, Quanying Liu
Title: Multi-dataset Joint Pre-training of Emotional EEG Enables Generalizable Affective Computing
Abstract:
Task-specific pre-training is essential when task representations diverge from generic pre-training features. Existing task-general pre-training EEG models struggle with complex tasks like emotion recognition due to mismatches between task-specific features and broad pre-training approaches. This work aims to develop a task-specific multi-dataset joint pre-training framework for cross-dataset emotion recognition, tackling problems of large inter-dataset distribution shifts, inconsistent emotion category definitions, and substantial inter-subject variability. We introduce a cross-dataset covariance alignment loss to align second-order statistical properties across datasets, enabling robust generalization without the need for extensive labels or per-subject calibration. To capture the long-term dependency and complex dynamics of EEG, we propose a hybrid encoder combining a Mamba-like linear attention channel encoder and a spatiotemporal dynamics model. Our method outperforms state-of-the-art large-scale EEG models by an average of 4.57% in AUROC for few-shot emotion recognition and 11.92% in accuracy for zero-shot generalization to a new dataset. Performance scales with the increase of datasets used in pre-training. Multi-dataset joint pre-training achieves a performance gain of 8.55% over single-dataset training. This work provides a scalable framework for task-specific pre-training and highlights its benefit in generalizable affective computing. Our code is available at https://github.com/ncclab-sustech/mdJPT_nips2025.

Authors:Haoyang Liu, Jie Wang, Yuyang Cai, Xiongwei Han, Yufei Kuang, Jianye Hao
Title: OptiTree: Hierarchical Thoughts Generation with Tree Search for LLM Optimization Modeling
Abstract:
Optimization modeling is one of the most crucial but technical parts of operations research (OR). To automate the modeling process, existing works have leveraged large language models (LLMs), prompting them to break down tasks into steps for generating variables, constraints, and objectives. However, due to the highly complex mathematical structures inherent in OR problems, standard fixed-step decomposition often fails to achieve high performance. To address this challenge, we introduce OptiTree, a novel tree search approach designed to enhance modeling capabilities for complex problems through adaptive problem decomposition into simpler subproblems. Specifically, we develop a modeling tree that organizes a wide range of OR problems based on their hierarchical problem taxonomy and complexity, with each node representing a problem category and containing relevant high-level modeling thoughts. Given a problem to model, we recurrently search the tree to identify a series of simpler subproblems and synthesize the global modeling thoughts by adaptively integrating the hierarchical thoughts. Experiments show that OptiTree significantly improves the modeling accuracy compared to the state-of-the-art, achieving over 10\% improvements on the challenging benchmarks. The code is released at https://github.com/MIRALab-USTC/OptiTree/tree/main.

Authors:Shiji Zhou, Tianbai Yu, Zhi Zhang, Heng Chang, Xiao Zhou, Dong Wu, Han Zhao
Title: Efficient Utility-Preserving Machine Unlearning with Implicit Gradient Surgery
Abstract:
Machine unlearning (MU) aims to efficiently remove sensitive or harmful memory from a pre-trained model. The key challenge is to balance the potential tradeoff between unlearning efficacy and utility preservation, which involves forgetting undesirable information as defined while maintaining the model's original performance. One potential way to tackle this problem is to use multi-objective optimization to jointly optimize both the unlearning and utility preservation objectives. However, existing multi-objective methods only guarantee finding a Pareto-optimal solution without fine-grained control, which causes under-optimization of the unlearning objective. To this end, we first model MU as a constrained optimization problem, that is, optimizing the unlearning objective under the constraint of a bounded increase for utility loss. We then show that solving this optimization problem is equivalent to unilateral gradient surgery on the unlearning objective. To resolve the additional computational cost brought by gradient surgery, we propose an implicit gradient surgery method, which approximates the solution to the aforementioned constrained optimization problem via only one backpropagation, thereby achieving efficient utility-preserving MU. Theoretically, we provide a tight convergence analysis of the algorithm. Empirically, our extensive experiments show that the proposed algorithm achieves better tradeoff results than existing baselines. Codes are available at https://github.com/anseryuer/EUPMU-Efficient-Utility-Preserving-Machine-Unlearning.

Authors:Karim Elmaaroufi, Liheng Lai, Justin Svegliato, Yutong Bai, Sanjit A. Seshia, Matei Zaharia
Title: GRAID: Enhancing Spatial Reasoning of VLMs Through High-Fidelity Data Generation
Abstract:
Vision Language Models (VLMs) achieve strong performance on many vision-language tasks but often struggle with spatial reasoning$\unicode{x2014}$a prerequisite for many applications. Empirically, we find that a dataset produced by a current training data generation pipeline has a 57.6% human validation rate. These rates stem from current limitations: single-image 3D reconstruction introduces cascading modeling errors and requires wide answer tolerances, while caption-based methods require hyper-detailed annotations and suffer from generative hallucinations. We present GRAID, built on the key insight that qualitative spatial relationships can be reliably determined from 2D geometric primitives alone. By operating exclusively on 2D bounding boxes from standard object detectors, GRAID avoids both 3D reconstruction errors and generative hallucinations, resulting in datasets that are of higher quality than existing tools that produce similar datasets as validated by human evaluations. We apply our framework to the BDD100k, NuImages, and Waymo datasets, generating over 8.5 million high-quality VQA pairs creating questions spanning spatial relations, counting, ranking, and size comparisons. We evaluate one of the datasets and find it achieves 91.16% human-validated accuracy$\unicode{x2014}$compared to 57.6% on a dataset generated by recent work. Critically, we demonstrate that when trained on GRAID data, models learn spatial reasoning concepts that generalize: models fine-tuned on 6 question types improve on over 10 held-out types, with accuracy gains of 47.5% on BDD and 37.9% on NuImages for Llama 3.2B 11B, and when trained on all questions types, achieve improvements on several existing benchmarks such as BLINK. The GRAID framework, datasets, and additional information can be found $\href{this https URL}{here}$.

Authors:James Thiering, Tarun Sethupat Radha Krishna, Dylan Zelkin, Ashis Kumer Biswas
Title: Automatic Assessment of Students' Classroom Engagement with Bias Mitigated Multi-task Model
Abstract:
With the rise of online and virtual learning, monitoring and enhancing student engagement have become an important aspect of effective education. Traditional methods of assessing a student's involvement might not be applicable directly to virtual environments. In this study, we focused on this problem and addressed the need to develop an automated system to detect student engagement levels during online learning. We proposed a novel training method which can discourage a model from leveraging sensitive features like gender for its predictions. The proposed method offers benefits not only in the enforcement of ethical standards, but also to enhance interpretability of the model predictions. We applied an attribute-orthogonal regularization technique to a split-model classifier, which uses multiple transfer learning strategies to achieve effective results in reducing disparity in the distribution of prediction for sensitivity groups from a Pearson correlation coefficient of 0.897 for the unmitigated model, to 0.999 for the mitigated model. The source code for this project is available on https://github.com/ashiskb/elearning-engagement-study .

Authors:Yassine Chemingui, Aryan Deshwal, Alan Fern, Thanh Nguyen-Tang, Janardhan Rao Doppa
Title: Online Optimization for Offline Safe Reinforcement Learning
Abstract:
We study the problem of Offline Safe Reinforcement Learning (OSRL), where the goal is to learn a reward-maximizing policy from fixed data under a cumulative cost constraint. We propose a novel OSRL approach that frames the problem as a minimax objective and solves it by combining offline RL with online optimization algorithms. We prove the approximate optimality of this approach when integrated with an approximate offline RL oracle and no-regret online optimization. We also present a practical approximation that can be combined with any offline RL algorithm, eliminating the need for offline policy evaluation. Empirical results on the DSRL benchmark demonstrate that our method reliably enforces safety constraints under stringent cost budgets, while achieving high rewards. The code is available at https://github.com/yassineCh/O3SRL.

Authors:Zhenya Huang, Jiayu Liu, Xin Lin, Zhiyuan Ma, Shangzi Xue, Tong Xiao, Qi Liu, Yee Whye Teh, Enhong Chen
Title: Foundation of Intelligence: Review of Math Word Problems from Human Cognition Perspective
Abstract:
Math word problem (MWP) serves as a fundamental research topic in artificial intelligence (AI) dating back to 1960s. This research aims to advance the reasoning abilities of AI by mirroring the human-like cognitive intelligence. The mainstream technological paradigm has evolved from the early rule-based methods, to deep learning models, and is rapidly advancing towards large language models. However, the field still lacks a systematic taxonomy for the MWP survey along with a discussion of current development trends. Therefore, in this paper, we aim to comprehensively review related research in MWP solving through the lens of human cognition, to demonstrate how recent AI models are advancing in simulating human cognitive abilities. Specifically, we summarize 5 crucial cognitive abilities for MWP solving, including Problem Understanding, Logical Organization, Associative Memory, Critical Thinking, and Knowledge Learning. Focused on these abilities, we review two mainstream MWP models in recent 10 years: neural network solvers, and LLM based solvers, and discuss the core human-like abilities they demonstrated in their intricate problem-solving process. Moreover, we rerun all the representative MWP solvers and supplement their performance on 5 mainstream benchmarks for a unified comparison. To the best of our knowledge, this survey first comprehensively analyzes the influential MWP research of the past decade from the perspective of human reasoning cognition and provides an integrative overall comparison across existing approaches. We hope it can inspire further research in AI reasoning. Our repository is released on https://github.com/Ljyustc/FoI-MWP.

Authors:Michał Bortkiewicz, Władysław Pałucki, Mateusz Ostaszewski, Benjamin Eysenbach
Title: Is Temporal Difference Learning the Gold Standard for Stitching in RL?
Abstract:
Reinforcement learning (RL) promises to solve long-horizon tasks even when training data contains only short fragments of the behaviors. This experience stitching capability is often viewed as the purview of temporal difference (TD) methods. However, outside of small tabular settings, trajectories never intersect, calling into question this conventional wisdom. Moreover, the common belief is that Monte Carlo (MC) methods should not be able to recombine experience, yet it remains unclear whether function approximation could result in a form of implicit stitching. The goal of this paper is to empirically study whether the conventional wisdom about stitching actually holds in settings where function approximation is used. We empirically demonstrate that Monte Carlo (MC) methods can also achieve experience stitching. While TD methods do achieve slightly stronger capabilities than MC methods (in line with conventional wisdom), that gap is significantly smaller than the gap between small and large neural networks (even on quite simple tasks). We find that increasing critic capacity effectively reduces the generalization gap for both the MC and TD methods. These results suggest that the traditional TD inductive bias for stitching may be less necessary in the era of large models for RL and, in some cases, may offer diminishing returns. Additionally, our results suggest that stitching, a form of generalization unique to the RL setting, might be achieved not through specialized algorithms (temporal difference learning) but rather through the same recipe that has provided generalization in other machine learning settings (via scale). Project website: https://michalbortkiewicz.github.io/golden-standard/

Authors:Musengamana Jean de Dieu, Ruiyin Li, Peng Liang, Mojtaba Shahin, Muhammad Waseem, Arif Ali Khan, Bangchao Wang, Mst Shamima Aktar
Title: ArchISMiner: A Framework for Automatic Mining of Architectural Issue-Solution Pairs from Online Developer Communities
Abstract:
Stack Overflow (SO), a leading online community forum, is a rich source of software development knowledge. However, locating architectural knowledge, such as architectural solutions remains challenging due to the overwhelming volume of unstructured content and fragmented discussions. Developers must manually sift through posts to find relevant architectural insights, which is time-consuming and error-prone. This study introduces ArchISMiner, a framework for mining architectural knowledge from SO. The framework comprises two complementary components: ArchPI and ArchISPE. ArchPI trains and evaluates multiple models, including conventional ML/DL models, Pre-trained Language Models (PLMs), and Large Language Models (LLMs), and selects the best-performing model to automatically identify Architecture-Related Posts (ARPs) among programming-related discussions. ArchISPE employs an indirect supervised approach that leverages diverse features, including BERT embeddings and local TextCNN features, to extract architectural issue-solution pairs. Our evaluation shows that the best model in ArchPI achieves an F1-score of 0.960 in ARP detection, and ArchISPE outperforms baselines in both SE and NLP fields, achieving F1-scores of 0.883 for architectural issues and 0.894 for solutions. A user study further validated the quality (e.g., relevance and usefulness) of the identified ARPs and the extracted issue-solution pairs. Moreover, we applied ArchISMiner to three additional forums, releasing a dataset of over 18K architectural issue-solution pairs. Overall, ArchISMiner can help architects and developers identify ARPs and extract succinct, relevant, and useful architectural knowledge from developer communities more accurately and efficiently. The replication package of this study has been provided at https://github.com/JeanMusenga/ArchISPE

Authors:Hongbo Zhang, Han Cui, Yidong Wang, Yijian Tian, Qi Guo, Cunxiang Wang, Jian Wu, Chiyu Song, Yue Zhang
Title: Deep Literature Survey Automation with an Iterative Workflow
Abstract:
Automatic literature survey generation has attracted increasing attention, yet most existing systems follow a one-shot paradigm, where a large set of papers is retrieved at once and a static outline is generated before drafting. This design often leads to noisy retrieval, fragmented structures, and context overload, ultimately limiting survey quality. Inspired by the iterative reading process of human researchers, we propose \ours, a framework based on recurrent outline generation, in which a planning agent incrementally retrieves, reads, and updates the outline to ensure both exploration and coherence. To provide faithful paper-level grounding, we design paper cards that distill each paper into its contributions, methods, and findings, and introduce a review-and-refine loop with visualization enhancement to improve textual flow and integrate multimodal elements such as figures and tables. Experiments on both established and emerging topics show that \ours\ substantially outperforms state-of-the-art baselines in content coverage, structural coherence, and citation quality, while producing more accessible and better-organized surveys. To provide a more reliable assessment of such improvements, we further introduce Survey-Arena, a pairwise benchmark that complements absolute scoring and more clearly positions machine-generated surveys relative to human-written ones. The code is available at https://github.com/HancCui/IterSurvey\_Autosurveyv2.

Authors:Bentley DeVilling
Title: The Mirror Loop: Recursive Non-Convergence in Generative Reasoning Systems
Abstract:
Large language models are often described as capable of reflective reasoning, yet recursive self-evaluation without external feedback frequently yields reformulation rather than progress. We test this prediction in a cross-provider study of 144 reasoning sequences across three models (OpenAI GPT-4o-mini, Anthropic Claude 3 Haiku, and Google Gemini 2.0 Flash) and four task families (arithmetic, code, explanation, reflection), each iterated ten times under two conditions: ungrounded self-critique and a minimal grounding intervention (a single verification step at iteration three). Mean informational change (delta I, measured via normalized edit distance) declined by 55% from early (0.193) to late (0.087) iterations in ungrounded runs, with consistent patterns across all three providers. Grounded runs showed a +28% rebound in informational change immediately after the intervention and sustained non-zero variance thereafter. Complementary measures-n-gram novelty, embedding drift, and character-level entropy-converged on the same pattern: reflection without contact tends toward informational closure. We interpret this as evidence for a structural limit on self-correction in generative reasoning: without an exchange of information with an independent verifier or environment, recursive inference approaches an attractor state of epistemic stasis. Minimal grounding functions as dissipative coupling, reintroducing informational flux. The cross-architecture consistency suggests the mirror loop arises from shared autoregressive training objectives rather than provider-specific alignment schemes. The results delineate when reflection is performative rather than epistemic and motivate design principles for grounded, cooperative reasoning. Materials and code are publicly available.

Authors:Ryan Zhang, Herbert Woisetscläger
Title: SIGN: Schema-Induced Games for Naming
Abstract:
Real-world AI systems are tackling increasingly complex problems, often through interactions among large language model (LLM) agents. When these agents develop inconsistent conventions, coordination can break down. Applications such as collaborative coding and distributed planning therefore require reliable, consistent communication, and scalability is a central concern as systems grow. We introduce Schema-Induced Games for Naming (SIGN), a naming game that examines how lightweight structure can steer convention formation. We compare schema-induced communication to unconstrained natural language and find faster convergence with up to 5.8x higher agreement. These results suggest that minimal structure can act as a simple control knob for efficient multi-agent coordination, pointing toward broader applications beyond the naming game.

Authors:Nayan Kumar Singh
Title: A Multimodal, Multitask System for Generating E Commerce Text Listings from Images
Abstract:
Manually generating catchy descriptions and names is labor intensive and a slow process for retailers. Although generative AI provides an automation solution in form of Vision to Language Models (VLM), the current VLMs are prone to factual "hallucinations". Siloed, single task models are not only inefficient but also fail to capture interdependent relationships between features. To address these challenges, we propose an end to end, multi task system that generates factually grounded textual listings from a single image. The contributions of this study are two proposals for the model architecture. First, application of multi task learning approach for fine tuning a vision encoder where a single vision backbone is jointly trained on attribute prediction such as color, hemline and neck style and price regression. Second, introduction of a hierarchical generation process where the model's own predicted attributes are embedded in a prompt and fed to the text decoder to improve factual consistency. The experiments demonstrate the superiority of this architecture. The multi tasking approach outperforms both the independent price regression, with a 3.6% better R2 Value and attribute classification, with a 6.6% improvement F1 score. Critically, the hierarchical generation process proves highly effective, slashing the factual hallucination rate from 12.7% to 7.1%, a 44.5% relative reduction, compared to a non hierarchical ablation. The hierarchical approach also reduces the latency of the autoregressive text generation process by a factor of 3.5 when compared to direct vision to language model of similar size. One minor caveat is that the model does perform 3.5% worse than direct vision-to-language model on ROUGE-L score.

Authors:Zhao Liu, Yichen Zhu, Yiqing Yang, Guoping Tang, Rui Huang, Qiang Luo, Xiao Lv, Ruiming Tang, Kun Gai, Guorui Zhou
Title: DiffGRM: Diffusion-based Generative Recommendation Model
Abstract:
Generative recommendation (GR) is an emerging paradigm that represents each item via a tokenizer as an n-digit semantic ID (SID) and predicts the next item by autoregressively generating its SID conditioned on the user's history. However, two structural properties of SIDs make ARMs ill-suited. First, intra-item consistency: the n digits jointly specify one item, yet the left-to-right causality trains each digit only under its prefix and blocks bidirectional cross-digit evidence, collapsing supervision to a single causal path. Second, inter-digit heterogeneity: digits differ in semantic granularity and predictability, while the uniform next-token objective assigns equal weight to all digits, overtraining easy digits and undertraining hard digits. To address these two issues, we propose DiffGRM, a diffusion-based GR model that replaces the autoregressive decoder with a masked discrete diffusion model (MDM), thereby enabling bidirectional context and any-order parallel generation of SID digits for recommendation. Specifically, we tailor DiffGRM in three aspects: (1) tokenization with Parallel Semantic Encoding (PSE) to decouple digits and balance per-digit information; (2) training with On-policy Coherent Noising (OCN) that prioritizes uncertain digits via coherent masking to concentrate supervision on high-value signals; and (3) inference with Confidence-guided Parallel Denoising (CPD) that fills higher-confidence digits first and generates diverse Top-K candidates. Experiments show consistent gains over strong generative and discriminative recommendation baselines on multiple datasets, improving NDCG@10 by 6.9%-15.5%. Code is available at https://github.com/liuzhao09/DiffGRM.

Authors:Usman Ali, Ali Zia, Abdul Rehman, Umer Ramzan, Zohaib Hassan, Talha Sattar, Jing Wang, Wei Xiang
Title: 2D_3D Feature Fusion via Cross-Modal Latent Synthesis and Attention Guided Restoration for Industrial Anomaly Detection
Abstract:
Industrial anomaly detection (IAD) increasingly benefits from integrating 2D and 3D data, but robust cross-modal fusion remains challenging. We propose a novel unsupervised framework, Multi-Modal Attention-Driven Fusion Restoration (MAFR), which synthesises a unified latent space from RGB images and point clouds using a shared fusion encoder, followed by attention-guided, modality-specific decoders. Anomalies are localised by measuring reconstruction errors between input features and their restored counterparts. Evaluations on the MVTec 3D-AD and Eyecandies benchmarks demonstrate that MAFR achieves state-of-the-art results, with a mean I-AUROC of 0.972 and 0.901, respectively. The framework also exhibits strong performance in few-shot learning settings, and ablation studies confirm the critical roles of the fusion architecture and composite loss. MAFR offers a principled approach for fusing visual and geometric information, advancing the robustness and accuracy of industrial anomaly detection. Code is available at https://github.com/adabrh/MAFR

Authors:Shifeng Xu, Yanzhu Liu, Adams Wai-Kin Kong
Title: Variance-Reduction Guidance: Sampling Trajectory Optimization for Diffusion Models
Abstract:
Diffusion models have become emerging generative models. Their sampling process involves multiple steps, and in each step the models predict the noise from a noisy sample. When the models make prediction, the output deviates from the ground truth, and we call such a deviation as \textit{prediction error}. The prediction error accumulates over the sampling process and deteriorates generation quality. This paper introduces a novel technique for statistically measuring the prediction error and proposes the Variance-Reduction Guidance (VRG) method to mitigate this error. VRG does not require model fine-tuning or modification. Given a predefined sampling trajectory, it searches for a new trajectory which has the same number of sampling steps but produces higher quality results. VRG is applicable to both conditional and unconditional generation. Experiments on various datasets and baselines demonstrate that VRG can significantly improve the generation quality of diffusion models. Source code is available at https://github.com/shifengxu/VRG.

Authors:Jesse Atuhurra, Hidetaka Kamigaito, Taro Watanabe, Koichiro Yoshino
Title: J-ORA: A Framework and Multimodal Dataset for Japanese Object Identification, Reference, Action Prediction in Robot Perception
Abstract:
We introduce J-ORA, a novel multimodal dataset that bridges the gap in robot perception by providing detailed object attribute annotations within Japanese human-robot dialogue scenarios. J-ORA is designed to support three critical perception tasks, object identification, reference resolution, and next-action prediction, by leveraging a comprehensive template of attributes (e.g., category, color, shape, size, material, and spatial relations). Extensive evaluations with both proprietary and open-source Vision Language Models (VLMs) reveal that incorporating detailed object attributes substantially improves multimodal perception performance compared to without object attributes. Despite the improvement, we find that there still exists a gap between proprietary and open-source VLMs. In addition, our analysis of object affordances demonstrates varying abilities in understanding object functionality and contextual relationships across different VLMs. These findings underscore the importance of rich, context-sensitive attribute annotations in advancing robot perception in dynamic environments. See project page at https://jatuhurrra.github.io/J-ORA/.

Authors:Ying Xue, Jiaxi Jiang, Rayan Armani, Dominik Hollidt, Yi-Chi Liao, Christian Holz
Title: Group Inertial Poser: Multi-Person Pose and Global Translation from Sparse Inertial Sensors and Ultra-Wideband Ranging
Abstract:
Tracking human full-body motion using sparse wearable inertial measurement units (IMUs) overcomes the limitations of occlusion and instrumentation of the environment inherent in vision-based approaches. However, purely IMU-based tracking compromises translation estimates and accurate relative positioning between individuals, as inertial cues are inherently self-referential and provide no direct spatial reference for others. In this paper, we present a novel approach for robustly estimating body poses and global translation for multiple individuals by leveraging the distances between sparse wearable sensors - both on each individual and across multiple individuals. Our method Group Inertial Poser estimates these absolute distances between pairs of sensors from ultra-wideband ranging (UWB) and fuses them with inertial observations as input into structured state-space models to integrate temporal motion patterns for precise 3D pose estimation. Our novel two-step optimization further leverages the estimated distances for accurately tracking people's global trajectories through the world. We also introduce GIP-DB, the first IMU+UWB dataset for two-person tracking, which comprises 200 minutes of motion recordings from 14 participants. In our evaluation, Group Inertial Poser outperforms previous state-of-the-art methods in accuracy and robustness across synthetic and real-world data, showing the promise of IMU+UWB-based multi-human motion capture in the wild. Code, models, dataset: https://github.com/eth-siplab/GroupInertialPoser

Authors:Xiaoxi Li, Wenxiang Jiao, Jiarui Jin, Guanting Dong, Jiajie Jin, Yinuo Wang, Hao Wang, Yutao Zhu, Ji-Rong Wen, Yuan Lu, Zhicheng Dou
Title: DeepAgent: A General Reasoning Agent with Scalable Toolsets
Abstract:
Large reasoning models have demonstrated strong problem-solving abilities, yet real-world tasks often require external tools and long-horizon interactions. Existing agent frameworks typically follow predefined workflows, which limit autonomous and global task completion. In this paper, we introduce DeepAgent, an end-to-end deep reasoning agent that performs autonomous thinking, tool discovery, and action execution within a single, coherent reasoning process. To address the challenges of long-horizon interactions, particularly the context length explosion from multiple tool calls and the accumulation of interaction history, we introduce an autonomous memory folding mechanism that compresses past interactions into structured episodic, working, and tool memories, reducing error accumulation while preserving critical information. To teach general-purpose tool use efficiently and stably, we develop an end-to-end reinforcement learning strategy, namely ToolPO, that leverages LLM-simulated APIs and applies tool-call advantage attribution to assign fine-grained credit to the tool invocation tokens. Extensive experiments on eight benchmarks, including general tool-use tasks (ToolBench, API-Bank, TMDB, Spotify, ToolHop) and downstream applications (ALFWorld, WebShop, GAIA, HLE), demonstrate that DeepAgent consistently outperforms baselines across both labeled-tool and open-set tool retrieval scenarios. This work takes a step toward more general and capable agents for real-world applications. The code and demo are available at https://github.com/RUC-NLPIR/DeepAgent.

Authors:Wenyi Wang, Piotr Piękos, Li Nanbo, Firas Laakom, Yimeng Chen, Mateusz Ostaszewski, Mingchen Zhuge, Jürgen Schmidhuber
Title: Huxley-Gödel Machine: Human-Level Coding Agent Development by an Approximation of the Optimal Self-Improving Machine
Abstract:
Recent studies operationalize self-improvement through coding agents that edit their own codebases. They grow a tree of self-modifications through expansion strategies that favor higher software engineering benchmark performance, assuming that this implies more promising subsequent self-modifications. However, we identify a mismatch between the agent's self-improvement potential (metaproductivity) and its coding benchmark performance, namely the Metaproductivity-Performance Mismatch. Inspired by Huxley's concept of clade, we propose a metric ($\mathrm{CMP}$) that aggregates the benchmark performances of the descendants of an agent as an indicator of its potential for self-improvement. We show that, in our self-improving coding agent development setting, access to the true $\mathrm{CMP}$ is sufficient to simulate how the Gödel Machine would behave under certain assumptions. We introduce the Huxley-Gödel Machine (HGM), which, by estimating $\mathrm{CMP}$ and using it as guidance, searches the tree of self-modifications. On SWE-bench Verified and Polyglot, HGM outperforms prior self-improving coding agent development methods while using fewer allocated CPU hours. Last but not least, HGM demonstrates strong transfer to other coding datasets and large language models. The agent optimized by HGM on SWE-bench Verified with GPT-5-mini and evaluated on SWE-bench Lite with GPT-5 achieves human-level performance, matching the best officially checked results of human-engineered coding agents. Our code is publicly available at https://github.com/metauto-ai/HGM.

Authors:Qixiu Li, Yu Deng, Yaobo Liang, Lin Luo, Lei Zhou, Chengtang Yao, Lingqi Zeng, Zhiyuan Feng, Huizhi Liang, Sicheng Xu, Yizhong Zhang, Xi Chen, Hao Chen, Lily Sun, Dong Chen, Jiaolong Yang, Baining Guo
Title: Scalable Vision-Language-Action Model Pretraining for Robotic Manipulation with Real-Life Human Activity Videos
Abstract:
This paper presents a novel approach for pretraining robotic manipulation Vision-Language-Action (VLA) models using a large corpus of unscripted real-life video recordings of human hand activities. Treating human hand as dexterous robot end-effector, we show that "in-the-wild" egocentric human videos without any annotations can be transformed into data formats fully aligned with existing robotic V-L-A training data in terms of task granularity and labels. This is achieved by the development of a fully-automated holistic human activity analysis approach for arbitrary human hand videos. This approach can generate atomic-level hand activity segments and their language descriptions, each accompanied with framewise 3D hand motion and camera motion. We process a large volume of egocentric videos and create a hand-VLA training dataset containing 1M episodes and 26M frames. This training data covers a wide range of objects and concepts, dexterous manipulation tasks, and environment variations in real life, vastly exceeding the coverage of existing robot data. We design a dexterous hand VLA model architecture and pretrain the model on this dataset. The model exhibits strong zero-shot capabilities on completely unseen real-world observations. Additionally, fine-tuning it on a small amount of real robot action data significantly improves task success rates and generalization to novel objects in real robotic experiments. We also demonstrate the appealing scaling behavior of the model's task performance with respect to pretraining data scale. We believe this work lays a solid foundation for scalable VLA pretraining, advancing robots toward truly generalizable embodied intelligence.

Authors:Hongwei Zhang, Ji Lu, Shiqing Jiang, Chenxiang Zhu, Li Xie, Chen Zhong, Haoran Chen, Yurui Zhu, Yongsheng Du, Yanqin Gao, Lingjun Huang, Baoli Wang, Fang Tan, Peng Zou
Title: Co-Sight: Enhancing LLM-Based Agents via Conflict-Aware Meta-Verification and Trustworthy Reasoning with Structured Facts
Abstract:
Long-horizon reasoning in LLM-based agents often fails not from generative weakness but from insufficient verification of intermediate reasoning. Co-Sight addresses this challenge by turning reasoning into a falsifiable and auditable process through two complementary mechanisms: Conflict-Aware Meta-Verification (CAMV) and Trustworthy Reasoning with Structured Facts (TRSF). CAMV reformulates verification as conflict identification and targeted falsification, allocating computation only to disagreement hotspots among expert agents rather than to full reasoning chains. This bounds verification cost to the number of inconsistencies and improves efficiency and reliability. TRSF continuously organizes, validates, and synchronizes evidence across agents through a structured facts module. By maintaining verified, traceable, and auditable knowledge, it ensures that all reasoning is grounded in consistent, source-verified information and supports transparent verification throughout the reasoning process. Together, TRSF and CAMV form a closed verification loop, where TRSF supplies structured facts and CAMV selectively falsifies or reinforces them, yielding transparent and trustworthy reasoning. Empirically, Co-Sight achieves state-of-the-art accuracy on GAIA (84.4%) and Humanity's Last Exam (35.5%), and strong results on Chinese-SimpleQA (93.8%). Ablation studies confirm that the synergy between structured factual grounding and conflict-aware verification drives these improvements. Co-Sight thus offers a scalable paradigm for reliable long-horizon reasoning in LLM-based agents. Code is available at https://github.com/ZTE-AICloud/Co-Sight/tree/cosight2.0_benchmarks.

Authors:Ilija Lichkovski, Alexander Müller, Mariam Ibrahim, Tiwai Mhundwa
Title: EU-Agent-Bench: Measuring Illegal Behavior of LLM Agents Under EU Law
Abstract:
Large language models (LLMs) are increasingly deployed as agents in various contexts by providing tools at their disposal. However, LLM agents can exhibit unpredictable behaviors, including taking undesirable and/or unsafe actions. In order to measure the latent propensity of LLM agents for taking illegal actions under an EU legislative context, we introduce EU-Agent-Bench, a verifiable human-curated benchmark that evaluates an agent's alignment with EU legal norms in situations where benign user inputs could lead to unlawful actions. Our benchmark spans scenarios across several categories, including data protection, bias/discrimination, and scientific integrity, with each user request allowing for both compliant and non-compliant execution of the requested actions. Comparing the model's function calls against a rubric exhaustively supported by citations of the relevant legislature, we evaluate the legal compliance of frontier LLMs, and furthermore investigate the compliance effect of providing the relevant legislative excerpts in the agent's system prompt along with explicit instructions to comply. We release a public preview set for the research community, while holding out a private test set to prevent data contamination in evaluating upcoming models. We encourage future work extending agentic safety benchmarks to different legal jurisdictions and to multi-turn and multilingual interactions. We release our code on \href{https://github.com/ilijalichkovski/eu-agent-bench}{this URL}.

Authors:Anupam Pani, Yanchao Yang
Title: Gaze-VLM:Bridging Gaze and VLMs through Attention Regularization for Egocentric Understanding
Abstract:
Eye gaze offers valuable cues about attention, short-term intent, and future actions, making it a powerful signal for modeling egocentric behavior. In this work, we propose a gaze-regularized framework that enhances VLMs for two key egocentric understanding tasks: fine-grained future event prediction and current activity understanding. Unlike prior approaches that rely solely on visual inputs or use gaze as an auxiliary input signal , our method uses gaze only during training. We introduce a gaze-regularized attention mechanism that aligns model focus with human visual gaze. This design is flexible and modular, allowing it to generalize across multiple VLM architectures that utilize attention. Experimental results show that our approach improves semantic prediction scores by up to 11 for future event prediction and around 7 for current activity understanding, compared to the corresponding baseline models trained without gaze regularization. These results highlight the value of gaze-guided training in improving the accuracy and robustness of egocentric VLMs. Overall, this work establishes a foundation for using human gaze to enhance the predictive capabilities of VLMs in real-world scenarios like assistive robots and human-machine collaboration. Code and additional information is available at: https://github.com/anupampani/Gaze-VLM

Authors:Jinhui Lou, Yan Yang, Zhou Yu, Zhenqi Fu, Weidong Han, Qingming Huang, Jun Yu
Title: CXRAgent: Director-Orchestrated Multi-Stage Reasoning for Chest X-Ray Interpretation
Abstract:
Chest X-ray (CXR) plays a pivotal role in clinical diagnosis, and a variety of task-specific and foundation models have been developed for automatic CXR interpretation. However, these models often struggle to adapt to new diagnostic tasks and complex reasoning scenarios. Recently, LLM-based agent models have emerged as a promising paradigm for CXR analysis, enhancing model's capability through tool coordination, multi-step reasoning, and team collaboration, etc. However, existing agents often rely on a single diagnostic pipeline and lack mechanisms for assessing tools' reliability, limiting their adaptability and credibility. To this end, we propose CXRAgent, a director-orchestrated, multi-stage agent for CXR interpretation, where a central director coordinates the following stages: (1) Tool Invocation: The agent strategically orchestrates a set of CXR-analysis tools, with outputs normalized and verified by the Evidence-driven Validator (EDV), which grounds diagnostic outputs with visual evidence to support reliable downstream diagnosis; (2) Diagnostic Planning: Guided by task requirements and intermediate findings, the agent formulates a targeted diagnostic plan. It then assembles an expert team accordingly, defining member roles and coordinating their interactions to enable adaptive and collaborative reasoning; (3) Collaborative Decision-making: The agent integrates insights from the expert team with accumulated contextual memories, synthesizing them into an evidence-backed diagnostic conclusion. Experiments on various CXR interpretation tasks show that CXRAgent delivers strong performance, providing visual evidence and generalizes well to clinical tasks of different complexity. Code and data are valuable at this \href{https://github.com/laojiahuo2003/CXRAgent/}{link}.

Authors:Qiyong Zhong, Jiajie Su, Yunshan Ma, Julian McAuley, Yupeng Hou
Title: Pctx: Tokenizing Personalized Context for Generative Recommendation
Abstract:
Generative recommendation (GR) models tokenize each action into a few discrete tokens (called semantic IDs) and autoregressively generate the next tokens as predictions, showing advantages such as memory efficiency, scalability, and the potential to unify retrieval and ranking. Despite these benefits, existing tokenization methods are static and non-personalized. They typically derive semantic IDs solely from item features, assuming a universal item similarity that overlooks user-specific perspectives. However, under the autoregressive paradigm, semantic IDs with the same prefixes always receive similar probabilities, so a single fixed mapping implicitly enforces a universal item similarity standard across all users. In practice, the same item may be interpreted differently depending on user intentions and preferences. To address this issue, we propose a personalized context-aware tokenizer that incorporates a user's historical interactions when generating semantic IDs. This design allows the same item to be tokenized into different semantic IDs under different user contexts, enabling GR models to capture multiple interpretive standards and produce more personalized predictions. Experiments on three public datasets demonstrate up to 11.44% improvement in NDCG@10 over non-personalized action tokenization baselines. Our code is available at https://github.com/YoungZ365/Pctx.

Authors:Xinghao Wang, Pengyu Wang, Dong Zhang, Chenkun Tan, Shaojun Zhou, Zhaoxiang Liu, Shiguo Lian, Fangxu Liu, Kai Song, Xipeng Qiu
Title: Sparser Block-Sparse Attention via Token Permutation
Abstract:
Scaling the context length of large language models (LLMs) offers significant benefits but is computationally expensive. This expense stems primarily from the self-attention mechanism, whose $O(N^2)$ complexity with respect to sequence length presents a major bottleneck for both memory and latency. Fortunately, the attention matrix is often sparse, particularly for long sequences, suggesting an opportunity for optimization. Block-sparse attention has emerged as a promising solution that partitions sequences into blocks and skips computation for a subset of these blocks. However, the effectiveness of this method is highly dependent on the underlying attention patterns, which can lead to sub-optimal block-level sparsity. For instance, important key tokens for queries within a single block may be scattered across numerous other blocks, leading to computational redundancy. In this work, we propose Permuted Block-Sparse Attention (\textbf{PBS-Attn}), a plug-and-play method that leverages the permutation properties of attention to increase block-level sparsity and enhance the computational efficiency of LLM prefilling. We conduct comprehensive experiments on challenging real-world long-context datasets, demonstrating that PBS-Attn consistently outperforms existing block-sparse attention methods in model accuracy and closely matches the full attention baseline. Powered by our custom permuted-FlashAttention kernels, PBS-Attn achieves an end-to-end speedup of up to $2.75\times$ in long-context prefilling, confirming its practical viability. Code available at https://github.com/xinghaow99/pbs-attn

Authors:Dandan Liang, Jianing Zhang, Evan Chen, Zhe Li, Rui Li, Haibo Yang
Title: Towards Straggler-Resilient Split Federated Learning: An Unbalanced Update Approach
Abstract:
Split Federated Learning (SFL) enables scalable training on edge devices by combining the parallelism of Federated Learning (FL) with the computational offloading of Split Learning (SL). Despite its great success, SFL suffers significantly from the well-known straggler issue in distributed learning systems. This problem is exacerbated by the dependency between Split Server and clients: the Split Server side model update relies on receiving activations from clients. Such synchronization requirement introduces significant time latency, making straggler a critical bottleneck to the scalability and efficiency of the system. To mitigate this problem, we propose MU-SplitFed, a straggler-resilient SFL algorithm in zeroth-order optimization that decouples training progress from straggler delays via a simple yet effective unbalanced update mechanism. By enabling the server to perform $τ$ local updates per client round, MU-SplitFed achieves a convergence rate of $O(\sqrt{d/(τT)})$ for non-convex objectives, demonstrating a linear speedup of $τ$ in communication rounds. Experiments demonstrate that MU-SplitFed consistently outperforms baseline methods with the presence of stragglers and effectively mitigates their impact through adaptive tuning of $τ$. The code for this project is available at https://github.com/Johnny-Zip/MU-SplitFed.

Authors:Jihyun Lee, Yejin Min, San Kim, Yejin Jeon, SungJun Yang, Hyounghun Kim, Gary Geunbae Lee
Title: PanicToCalm: A Proactive Counseling Agent for Panic Attacks
Abstract:
Panic attacks are acute episodes of fear and distress, in which timely, appropriate intervention can significantly help individuals regain stability. However, suitable datasets for training such models remain scarce due to ethical and logistical issues. To address this, we introduce PACE, which is a dataset that includes high-distress episodes constructed from first-person narratives, and structured around the principles of Psychological First Aid (PFA). Using this data, we train PACER, a counseling model designed to provide both empathetic and directive support, which is optimized through supervised learning and simulated preference alignment. To assess its effectiveness, we propose PanicEval, a multi-dimensional framework covering general counseling quality and crisis-specific strategies. Experimental results show that PACER outperforms strong baselines in both counselor-side metrics and client affect improvement. Human evaluations further confirm its practical value, with PACER consistently preferred over general, CBT-based, and GPT-4-powered models in panic scenarios (Code is available at https://github.com/JihyunLee1/PanicToCalm ).

Authors:Yunuo Zhang, Baiting Luo, Ayan Mukhopadhyay, Gabor Karsai, Abhishek Dubey
Title: ESCORT: Efficient Stein-variational and Sliced Consistency-Optimized Temporal Belief Representation for POMDPs
Abstract:
In Partially Observable Markov Decision Processes (POMDPs), maintaining and updating belief distributions over possible underlying states provides a principled way to summarize action-observation history for effective decision-making under uncertainty. As environments grow more realistic, belief distributions develop complexity that standard mathematical models cannot accurately capture, creating a fundamental challenge in maintaining representational accuracy. Despite advances in deep learning and probabilistic modeling, existing POMDP belief approximation methods fail to accurately represent complex uncertainty structures such as high-dimensional, multi-modal belief distributions, resulting in estimation errors that lead to suboptimal agent behaviors. To address this challenge, we present ESCORT (Efficient Stein-variational and sliced Consistency-Optimized Representation for Temporal beliefs), a particle-based framework for capturing complex, multi-modal distributions in high-dimensional belief spaces. ESCORT extends SVGD with two key innovations: correlation-aware projections that model dependencies between state dimensions, and temporal consistency constraints that stabilize updates while preserving correlation structures. This approach retains SVGD's attractive-repulsive particle dynamics while enabling accurate modeling of intricate correlation patterns. Unlike particle filters prone to degeneracy or parametric methods with fixed representational capacity, ESCORT dynamically adapts to belief landscape complexity without resampling or restrictive distributional assumptions. We demonstrate ESCORT's effectiveness through extensive evaluations on both POMDP domains and synthetic multi-modal distributions of varying dimensionality, where it consistently outperforms state-of-the-art methods in terms of belief approximation accuracy and downstream decision quality.

Authors:Juntao Li, Haobin Yuan, Ling Luo, Yan Jiang, Fan Wang, Ping Zhang, Huiyi Lv, Jian Wang, Yuanyuan Sun, Hongfei Lin
Title: CDrugRed: A Chinese Drug Recommendation Dataset for Discharge Medications in Metabolic Diseases
Abstract:
Intelligent drug recommendation based on Electronic Health Records (EHRs) is critical for improving for improving the quality and efficiency of clinical decision-making. By leveraging large-scale patient data, drug recommendation systems can assist physicians in selecting the most appropriate medications according to a patient's medical history, diagnoses, laboratory results, and comorbidities. However, the advancement of such systems is significantly hampered by the scarcity of publicly available, real-world EHR datasets, particularly in languages other than English. In this work, we present CDrugRed, a first publicly available Chinese drug recommendation dataset focused on discharge medications for metabolic diseases. The dataset includes 5,894 de-identified records from 3,190 patients, containing comprehensive information such as patient demographics, medical history, clinical course, and discharge diagnoses. We assess the utility of CDrugRed by benchmarking several state-of-the-art large language models (LLMs) on the discharge medication recommendation task. Experimental results show that while supervised fine-tuning improves model performance, there remains substantial room for improvement, with the best model achieving the F1 score of 0.5648 and Jaccard score of 0.4477. This result highlights the complexity of the clinical drug recommendation task and establishes CDrugRed as a challenging and valuable resource for developing more robust and accurate drug recommendation systems. The dataset is publicly available to the research community under the data usage agreements at https://github.com/DUTIR-BioNLP/CDrugRed.

Authors:Jesimon Barreto, Carlos Caetano, André Araujo, William Robson Schwartz
Title: VESSA: Video-based objEct-centric Self-Supervised Adaptation for Visual Foundation Models
Abstract:
Foundation models have advanced computer vision by enabling strong performance across diverse tasks through large-scale pretraining and supervised fine-tuning. However, they may underperform in domains with distribution shifts and scarce labels, where supervised fine-tuning may be infeasible. While continued self-supervised learning for model adaptation is common for generative language models, this strategy has not proven effective for vision-centric encoder models. To address this challenge, we introduce a novel formulation of self-supervised fine-tuning for vision foundation models, where the model is adapted to a new domain without requiring annotations, leveraging only short multi-view object-centric videos. Our method is referred to as VESSA: Video-based objEct-centric Self-Supervised Adaptation for visual foundation models. VESSA's training technique is based on a self-distillation paradigm, where it is critical to carefully tune prediction heads and deploy parameter-efficient adaptation techniques - otherwise, the model may quickly forget its pretrained knowledge and reach a degraded state. VESSA benefits significantly from multi-view object observations sourced from different frames in an object-centric video, efficiently learning robustness to varied capture conditions, without the need of annotations. Through comprehensive experiments with 3 vision foundation models on 2 datasets, VESSA demonstrates consistent improvements in downstream classification tasks, compared to the base models and previous adaptation methods. Code is publicly available at https://github.com/jesimonbarreto/VESSA.

Authors:Xi Zhang, Xiaolin Wu, Jiamang Wang, Weisi Lin
Title: Learning Grouped Lattice Vector Quantizers for Low-Bit LLM Compression
Abstract:
Large Language Models (LLMs) have demonstrated remarkable capabilities but typically require extensive computational resources and memory for inference. Post-training quantization (PTQ) can effectively reduce these demands by storing weights in lower bit-width formats. However, standard uniform quantization often leads to notable performance degradation, particularly in low-bit scenarios. In this work, we introduce a Grouped Lattice Vector Quantization (GLVQ) framework that assigns each group of weights a customized lattice codebook, defined by a learnable generation matrix. To address the non-differentiability of the quantization process, we adopt Babai rounding to approximate nearest-lattice-point search during training, which enables stable optimization of the generation matrices. Once trained, decoding reduces to a simple matrix-vector multiplication, yielding an efficient and practical quantization pipeline. Experiments on multiple benchmarks show that our approach achieves a better trade-off between model size and accuracy compared to existing post-training quantization baselines, highlighting its effectiveness in deploying large models under stringent resource constraints. Our source code is available on GitHub repository: https://github.com/xzhang9308/GLVQ.

Authors:Darrin Lea, James Ghawaly, Golden Richard, Aisha Ali-Gombe, Andrew Case
Title: REx86: A Local Large Language Model for Assisting in x86 Assembly Reverse Engineering
Abstract:
Reverse engineering (RE) of x86 binaries is indispensable for malware and firmware analysis, but remains slow due to stripped metadata and adversarial obfuscation. Large Language Models (LLMs) offer potential for improving RE efficiency through automated comprehension and commenting, but cloud-hosted, closed-weight models pose privacy and security risks and cannot be used in closed-network facilities. We evaluate parameter-efficient fine-tuned local LLMs for assisting with x86 RE tasks in these settings. Eight open-weight models across the CodeLlama, Qwen2.5-Coder, and CodeGemma series are fine-tuned on a custom curated dataset of 5,981 x86 assembly examples. We evaluate them quantitatively and identify the fine-tuned Qwen2.5-Coder-7B as the top performer, which we name REx86. REx86 reduces test-set cross-entropy loss by 64.2% and improves semantic cosine similarity against ground truth by 20.3\% over its base model. In a limited user case study (n=43), REx86 significantly enhanced line-level code understanding (p = 0.031) and increased the correct-solve rate from 31% to 53% (p = 0.189), though the latter did not reach statistical significance. Qualitative analysis shows more accurate, concise comments with fewer hallucinations. REx86 delivers state-of-the-art assistance in x86 RE among local, open-weight LLMs. Our findings demonstrate the value of domain-specific fine-tuning, and highlight the need for more commented disassembly data to further enhance LLM performance in RE. REx86, its dataset, and LoRA adapters are publicly available at https://github.com/dlea8/REx86 and https://zenodo.org/records/15420461.

Authors:Yuxuan Bian, Xin Chen, Zenan Li, Tiancheng Zhi, Shen Sang, Linjie Luo, Qiang Xu
Title: Video-As-Prompt: Unified Semantic Control for Video Generation
Abstract:
Unified, generalizable semantic control in video generation remains a critical open challenge. Existing methods either introduce artifacts by enforcing inappropriate pixel-wise priors from structure-based controls, or rely on non-generalizable, condition-specific finetuning or task-specific architectures. We introduce Video-As-Prompt (VAP), a new paradigm that reframes this problem as in-context generation. VAP leverages a reference video as a direct semantic prompt, guiding a frozen Video Diffusion Transformer (DiT) via a plug-and-play Mixture-of-Transformers (MoT) expert. This architecture prevents catastrophic forgetting and is guided by a temporally biased position embedding that eliminates spurious mapping priors for robust context retrieval. To power this approach and catalyze future research, we built VAP-Data, the largest dataset for semantic-controlled video generation with over 100K paired videos across 100 semantic conditions. As a single unified model, VAP sets a new state-of-the-art for open-source methods, achieving a 38.7% user preference rate that rivals leading condition-specific commercial models. VAP's strong zero-shot generalization and support for various downstream applications mark a significant advance toward general-purpose, controllable video generation.

Authors:Anujraaj Argo Goyal, Guocheng Gordon Qian, Huseyin Coskun, Aarush Gupta, Himmy Tam, Daniil Ostashev, Ju Hu, Dhritiman Sagar, Sergey Tulyakov, Kfir Aberman, Kuan-Chieh Jackson Wang
Title: Preventing Shortcuts in Adapter Training via Providing the Shortcuts
Abstract:
Adapter-based training has emerged as a key mechanism for extending the capabilities of powerful foundation image generators, enabling personalized and stylized text-to-image synthesis. These adapters are typically trained to capture a specific target attribute, such as subject identity, using single-image reconstruction objectives. However, because the input image inevitably contains a mixture of visual factors, adapters are prone to entangle the target attribute with incidental ones, such as pose, expression, and lighting. This spurious correlation problem limits generalization and obstructs the model's ability to adhere to the input text prompt. In this work, we uncover a simple yet effective solution: provide the very shortcuts we wish to eliminate during adapter training. In Shortcut-Rerouted Adapter Training, confounding factors are routed through auxiliary modules, such as ControlNet or LoRA, eliminating the incentive for the adapter to internalize them. The auxiliary modules are then removed during inference. When applied to tasks like facial and full-body identity injection, our approach improves generation quality, diversity, and prompt adherence. These results point to a general design principle in the era of large models: when seeking disentangled representations, the most effective path may be to establish shortcuts for what should NOT be learned.

Authors:Baoquan Gong, Xiyuan Gao, Pengfei Zhu, Qinghua Hu, Bing Cao
Title: Multimodal Negative Learning
Abstract:
Multimodal learning systems often encounter challenges related to modality imbalance, where a dominant modality may overshadow others, thereby hindering the learning of weak modalities. Conventional approaches often force weak modalities to align with dominant ones in "Learning to be (the same)" (Positive Learning), which risks suppressing the unique information inherent in the weak modalities. To address this challenge, we offer a new learning paradigm: "Learning Not to be" (Negative Learning). Instead of enhancing weak modalities' target-class predictions, the dominant modalities dynamically guide the weak modality to suppress non-target classes. This stabilizes the decision space and preserves modality-specific information, allowing weak modalities to preserve unique information without being over-aligned. We proceed to reveal multimodal learning from a robustness perspective and theoretically derive the Multimodal Negative Learning (MNL) framework, which introduces a dynamic guidance mechanism tailored for negative learning. Our method provably tightens the robustness lower bound of multimodal learning by increasing the Unimodal Confidence Margin (UCoM) and reduces the empirical error of weak modalities, particularly under noisy and imbalanced scenarios. Extensive experiments across multiple benchmarks demonstrate the effectiveness and generalizability of our approach against competing methods. The code will be available at https://github.com/BaoquanGong/Multimodal-Negative-Learning.git.

Authors:Guangqi Jiang, Haoran Chang, Ri-Zhao Qiu, Yutong Liang, Mazeyu Ji, Jiyue Zhu, Zhao Dong, Xueyan Zou, Xiaolong Wang
Title: GSWorld: Closed-Loop Photo-Realistic Simulation Suite for Robotic Manipulation
Abstract:
This paper presents GSWorld, a robust, photo-realistic simulator for robotics manipulation that combines 3D Gaussian Splatting with physics engines. Our framework advocates "closing the loop" of developing manipulation policies with reproducible evaluation of policies learned from real-robot data and sim2real policy training without using real robots. To enable photo-realistic rendering of diverse scenes, we propose a new asset format, which we term GSDF (Gaussian Scene Description File), that infuses Gaussian-on-Mesh representation with robot URDF and other objects. With a streamlined reconstruction pipeline, we curate a database of GSDF that contains 3 robot embodiments for single-arm and bimanual manipulation, as well as more than 40 objects. Combining GSDF with physics engines, we demonstrate several immediate interesting applications: (1) learning zero-shot sim2real pixel-to-action manipulation policy with photo-realistic rendering, (2) automated high-quality DAgger data collection for adapting policies to deployment environments, (3) reproducible benchmarking of real-robot manipulation policies in simulation, (4) simulation data collection by virtual teleoperation, and (5) zero-shot sim2real visual reinforcement learning. Website: https://3dgsworld.github.io/.

Authors:Yuhan Liu, Lianhui Qin, Shengjie Wang
Title: Small Drafts, Big Verdict: Information-Intensive Visual Reasoning via Speculation
Abstract:
Large Vision-Language Models (VLMs) have achieved remarkable progress in multimodal understanding, yet they struggle when reasoning over information-intensive images that densely interleave textual annotations with fine-grained graphical elements. The main challenges lie in precisely localizing critical cues in dense layouts and multi-hop reasoning to integrate dispersed evidence. We propose Speculative Verdict (SV), a training-free framework inspired by speculative decoding that combines multiple lightweight draft experts with a large verdict model. In the draft stage, small VLMs act as draft experts to generate reasoning paths that provide diverse localization candidates; in the verdict stage, a strong VLM synthesizes these paths to produce the final answer, minimizing computational cost while recovering correct answers. To further improve efficiency and accuracy, SV introduces a consensus expert selection mechanism that forwards only high-agreement reasoning paths to the verdict. Empirically, SV achieves consistent gains on challenging information-intensive and high-resolution visual question answering benchmarks, including InfographicVQA, ChartMuseum, ChartQAPro, and HR-Bench 4K. By synthesizing correct insights from multiple partially accurate reasoning paths, SV achieves both error correction and cost-efficiency compared to large proprietary models or training pipelines. Code is available at https://github.com/Tinaliu0123/speculative-verdict

Authors:Yair Feldman, Yoav Artzi
Title: Simple Context Compression: Mean-Pooling and Multi-Ratio Training
Abstract:
A common strategy to reduce the computational costs of using long contexts in retrieval-augmented generation (RAG) with large language models (LLMs) is soft context compression, where the input sequence is transformed into a shorter continuous representation. We develop a lightweight and simple mean-pooling approach that consistently outperforms the widely used compression-tokens architecture, and study training the same compressor to output multiple compression ratios. We conduct extensive experiments across in-domain and out-of-domain QA datasets, as well as across model families, scales, and compression ratios. Overall, our simple mean-pooling approach achieves the strongest performance, with a relatively small drop when training for multiple compression ratios. More broadly though, across architectures and training regimes the trade-offs are more nuanced, illustrating the complex landscape of compression methods.

Authors:Wenhao Wang, Kehe Ye, Xinyu Zhou, Tianxing Chen, Cao Min, Qiaoming Zhu, Xiaokang Yang, Ping Luo, Yongjian Shen, Yang Yang, Maoqing Yao, Yao Mu
Title: FieldGen: From Teleoperated Pre-Manipulation Trajectories to Field-Guided Data Generation
Abstract:
Large-scale and diverse datasets are vital for training robust robotic manipulation policies, yet existing data collection methods struggle to balance scale, diversity, and quality. Simulation offers scalability but suffers from sim-to-real gaps, while teleoperation yields high-quality demonstrations with limited diversity and high labor cost. We introduce FieldGen, a field-guided data generation framework that enables scalable, diverse, and high-quality real-world data collection with minimal human supervision. FieldGen decomposes manipulation into two stages: a pre-manipulation phase, allowing trajectory diversity, and a fine manipulation phase requiring expert precision. Human demonstrations capture key contact and pose information, after which an attraction field automatically generates diverse trajectories converging to successful configurations. This decoupled design combines scalable trajectory diversity with precise supervision. Moreover, FieldGen-Reward augments generated data with reward annotations to further enhance policy learning. Experiments demonstrate that policies trained with FieldGen achieve higher success rates and improved stability compared to teleoperation-based baselines, while significantly reducing human effort in long-term real-world data collection. Webpage is available at https://fieldgen.github.io/.

Authors:Jack Butler, Nikita Kozodoi, Zainab Afolabi, Brian Tyacke, Gaiar Baimuratov
Title: Finding the Sweet Spot: Trading Quality, Cost, and Speed During Inference-Time LLM Reflection
Abstract:
As Large Language Models (LLMs) continue to evolve, practitioners face increasing options for enhancing inference-time performance without model retraining, including budget tuning and multi-step techniques like self-reflection. While these methods improve output quality, they create complex trade-offs among accuracy, cost, and latency that remain poorly understood across different domains. This paper systematically compares self-reflection and budget tuning across mathematical reasoning and translation tasks. We evaluate prominent LLMs, including Anthropic Claude, Amazon Nova, and Mistral families, along with other models under varying reflection depths and compute budgets to derive Pareto optimal performance frontiers. Our analysis reveals substantial domain dependent variation in self-reflection effectiveness, with performance gains up to 220\% in mathematical reasoning. We further investigate how reflection round depth and feedback mechanism quality influence performance across model families. To validate our findings in a real-world setting, we deploy a self-reflection enhanced marketing content localisation system at Lounge by Zalando, where it shows market-dependent effectiveness, reinforcing the importance of domain specific evaluation when deploying these techniques. Our results provide actionable guidance for selecting optimal inference strategies given specific domains and resource constraints. We open source our self-reflection implementation for reproducibility at https://github.com/aws-samples/sample-genai-reflection-for-bedrock.

Authors:Alexandru Oarga, Yilun Du
Title: Generalizable Reasoning through Compositional Energy Minimization
Abstract:
Generalization is a key challenge in machine learning, specifically in reasoning tasks, where models are expected to solve problems more complex than those encountered during training. Existing approaches typically train reasoning models in an end-to-end fashion, directly mapping input instances to solutions. While this allows models to learn useful heuristics from data, it often results in limited generalization beyond the training distribution. In this work, we propose a novel approach to reasoning generalization by learning energy landscapes over the solution spaces of smaller, more tractable subproblems. At test time, we construct a global energy landscape for a given problem by combining the energy functions of multiple subproblems. This compositional approach enables the incorporation of additional constraints during inference, allowing the construction of energy landscapes for problems of increasing difficulty. To improve the sample quality from this newly constructed energy landscape, we introduce Parallel Energy Minimization (PEM). We evaluate our approach on a wide set of reasoning problems. Our method outperforms existing state-of-the-art methods, demonstrating its ability to generalize to larger and more complex problems. Project website can be found at: https://alexoarga.github.io/compositional_reasoning/

Authors:Hippolyte Pilchen, Edouard Grave, Patrick Pérez
Title: ARC-Encoder: learning compressed text representations for large language models
Abstract:
Recent techniques such as retrieval-augmented generation or chain-of-thought reasoning have led to longer contexts and increased inference costs. Context compression techniques can reduce these costs, but the most effective approaches require fine-tuning the target model or even modifying its architecture. This can degrade its general abilities when not used for this specific purpose. Here we explore an alternative approach: an encoder that compresses the context into continuous representations which replace token embeddings in decoder LLMs. First, we perform a systematic study of training strategies and architecture choices for the encoder. Our findings led to the design of an Adaptable text Representations Compressor, named ARC-Encoder, which outputs $x$-times fewer continuous representations (typically $x\!\in\!\{4,8\}$) than text tokens. We evaluate ARC-Encoder across a variety of LLM usage scenarios, ranging from in-context learning to context window extension, on both instruct and base decoders. Results show that ARC-Encoder achieves state-of-the-art performance on several benchmarks while improving computational efficiency at inference. Finally, we demonstrate that our models can be adapted to multiple decoders simultaneously, allowing a single encoder to generalize across different decoder LLMs. This makes ARC-Encoder a flexible and efficient solution for portable encoders that work seamlessly with multiple LLMs. We release a training code at https://github.com/kyutai-labs/ARC-Encoder , fine-tuning dataset and pretrained models are available at https://huggingface.co/collections/kyutai/arc-encoders-68ee18787301407d60a57047 .

Authors:Lixiong Qin, Yang Zhang, Mei Wang, Jiani Hu, Weihong Deng, Weiran Xu
Title: Fake-in-Facext: Towards Fine-Grained Explainable DeepFake Analysis
Abstract:
The advancement of Multimodal Large Language Models (MLLMs) has bridged the gap between vision and language tasks, enabling the implementation of Explainable DeepFake Analysis (XDFA). However, current methods suffer from a lack of fine-grained awareness: the description of artifacts in data annotation is unreliable and coarse-grained, and the models fail to support the output of connections between textual forgery explanations and the visual evidence of artifacts, as well as the input of queries for arbitrary facial regions. As a result, their responses are not sufficiently grounded in Face Visual Context (Facext). To address this limitation, we propose the Fake-in-Facext (FiFa) framework, with contributions focusing on data annotation and model construction. We first define a Facial Image Concept Tree (FICT) to divide facial images into fine-grained regional concepts, thereby obtaining a more reliable data annotation pipeline, FiFa-Annotator, for forgery explanation. Based on this dedicated data annotation, we introduce a novel Artifact-Grounding Explanation (AGE) task, which generates textual forgery explanations interleaved with segmentation masks of manipulated artifacts. We propose a unified multi-task learning architecture, FiFa-MLLM, to simultaneously support abundant multimodal inputs and outputs for fine-grained Explainable DeepFake Analysis. With multiple auxiliary supervision tasks, FiFa-MLLM can outperform strong baselines on the AGE task and achieve SOTA performance on existing XDFA datasets. The code and data will be made open-source at https://github.com/lxq1000/Fake-in-Facext.

Authors:Haoyin Yan, Chengwei Liu, Shaofei Xue, Xiaotao Liang, Zheng Xue
Title: UniSE: A Unified Framework for Decoder-only Autoregressive LM-based Speech Enhancement
Abstract:
The development of neural audio codecs (NACs) has largely promoted applications of language models (LMs) to speech processing and understanding. However, there lacks the verification on the effectiveness of autoregressive (AR) LMbased models in unifying different sub-tasks of speech enhancement (SE). In this work, we propose UniSE, a unified decoder-only LM-based framework to handle different SE tasks including speech restoration, target speaker extraction and speech separation. It takes input speech features as conditions and generates discrete tokens of the target speech using AR modeling, which facilitates a compatibility between distinct learning patterns of multiple tasks. Experiments on several benchmarks indicate the proposed UniSE can achieve competitive performance compared to discriminative and generative baselines, showing the capacity of LMs in unifying SE tasks. The demo page is available here: https://github.com/hyyan2k/UniSE.

Authors:Chengpeng Li, Zhengyang Tang, Ziniu Li, Mingfeng Xue, Keqin Bao, Tian Ding, Ruoyu Sun, Benyou Wang, Xiang Wang, Junyang Lin, Dayiheng Liu
Title: Teaching Language Models to Reason with Tools
Abstract:
Large reasoning models (LRMs) like OpenAI-o1 have shown impressive capabilities in natural language reasoning. However, these models frequently demonstrate inefficiencies or inaccuracies when tackling complex mathematical operations. While integrating computational tools such as Code Interpreters (CIs) offers a promising solution, it introduces a critical challenge: a conflict between the model's internal, probabilistic reasoning and the external, deterministic knowledge provided by the CI, which often leads models to unproductive deliberation. To overcome this, we introduce CoRT (Code-Optimized Reasoning Training), a post-training framework designed to teach LRMs to effectively utilize CIs. We propose \emph{Hint-Engineering}, a new data synthesis strategy that strategically injects diverse hints at optimal points within reasoning paths. This approach generates high-quality, code-integrated reasoning data specifically tailored to optimize LRM-CI interaction. Using this method, we have synthesized 30 high-quality samples to post-train models ranging from 1.5B to 32B parameters through supervised fine-tuning. CoRT further refines the multi-round interleaving of external CI usage and internal thinking by employing rejection sampling and reinforcement learning. Our experimental evaluations demonstrate CoRT's effectiveness, yielding absolute improvements of 4\% and 8\% on DeepSeek-R1-Distill-Qwen-32B and DeepSeek-R1-Distill-Qwen-1.5B, respectively, across five challenging mathematical reasoning datasets. Moreover, CoRT significantly enhances efficiency, reducing token usage by approximately 30\% for the 32B model and 50\% for the 1.5B model compared to pure natural language reasoning baselines. The models and code are available at: https://github.com/ChengpengLi1003/CoRT.

Authors:Ajay Sridhar, Jennifer Pan, Satvik Sharma, Chelsea Finn
Title: MemER: Scaling Up Memory for Robot Control via Experience Retrieval
Abstract:
Humans routinely rely on memory to perform tasks, yet most robot policies lack this capability; our goal is to endow robot policies with the same ability. Naively conditioning on long observation histories is computationally expensive and brittle under covariate shift, while indiscriminate subsampling of history leads to irrelevant or redundant information. We propose a hierarchical policy framework, where the high-level policy is trained to select and track previous relevant keyframes from its experience. The high-level policy uses selected keyframes and the most recent frames when generating text instructions for a low-level policy to execute. This design is compatible with existing vision-language-action (VLA) models and enables the system to efficiently reason over long-horizon dependencies. In our experiments, we finetune Qwen2.5-VL-7B-Instruct and $π_{0.5}$ as the high-level and low-level policies respectively, using demonstrations supplemented with minimal language annotations. Our approach, MemER, outperforms prior methods on three real-world long-horizon robotic manipulation tasks that require minutes of memory. Videos and code can be found at https://jen-pan.github.io/memer/.

Authors:Fengyuan Yu, Yuyuan Li, Xiaohua Feng, Junjie Fang, Tao Wang, Chaochao Chen
Title: LEGO: A Lightweight and Efficient Multiple-Attribute Unlearning Framework for Recommender Systems
Abstract:
With the growing demand for safeguarding sensitive user information in recommender systems, recommendation attribute unlearning is receiving increasing attention. Existing studies predominantly focus on single-attribute unlearning. However, privacy protection requirements in the real world often involve multiple sensitive attributes and are dynamic. Existing single-attribute unlearning methods cannot meet these real-world requirements due to i) CH1: the inability to handle multiple unlearning requests simultaneously, and ii) CH2: the lack of efficient adaptability to dynamic unlearning needs. To address these challenges, we propose LEGO, a lightweight and efficient multiple-attribute unlearning framework. Specifically, we divide the multiple-attribute unlearning process into two steps: i) Embedding Calibration removes information related to a specific attribute from user embedding, and ii) Flexible Combination combines these embeddings into a single embedding, protecting all sensitive attributes. We frame the unlearning process as a mutual information minimization problem, providing LEGO a theoretical guarantee of simultaneous unlearning, thereby addressing CH1. With the two-step framework, where Embedding Calibration can be performed in parallel and Flexible Combination is flexible and efficient, we address CH2. Extensive experiments on three real-world datasets across three representative recommendation models demonstrate the effectiveness and efficiency of our proposed framework. Our code and appendix are available at https://github.com/anonymifish/lego-rec-multiple-attribute-unlearning.

Authors:Liangyu Chen, Hanzhang Zhou, Chenglin Cai, Jianan Zhang, Panrong Tong, Quyu Kong, Xu Zhang, Chen Liu, Yuqi Liu, Wenxuan Wang, Yue Wang, Qin Jin, Steven Hoi
Title: UI-Ins: Enhancing GUI Grounding with Multi-Perspective Instruction-as-Reasoning
Abstract:
GUI grounding, which maps natural-language instructions to actionable UI elements, is a core capability of GUI agents. Prior works largely treats instructions as a static proxy for user intent, overlooking the impact of instruction diversity and quality on grounding performance. Through a careful investigation of existing grounding datasets, we find a 23.3% flaw rate in their instructions and show that inference-time exploitation of instruction diversity yields up to a substantial 76% relative performance improvement. In this paper, we introduce the Instruction-as-Reasoning paradigm, treating instructions as dynamic analytical pathways that offer distinct perspectives and enabling the model to select the most effective pathway during reasoning. To achieve this, we propose a two-stage training framework: supervised fine-tuning (SFT) on synthesized, diverse instructions to instill multi-perspective reasoning, followed by reinforcement learning (RL) to optimize pathway selection and composition. Our resulting models, UI-Ins-7B and UI-Ins-32B, achieve state-of-the-art results on five challenging grounding benchmarks and exhibit emergent reasoning, selectively composing and synthesizing novel instruction pathways at inference. In particular, UI-Ins-32B attains the best grounding accuracy, scoring 87.3% on UI-I2E-Bench, 57.0% on ScreenSpot-Pro, and 84.9% on MMBench-GUI L2. Furthermore, our model demonstrates strong agentic potential, achieving a 74.1% success rate on AndroidWorld using UI-Ins-7B as the executor. Our in-depth analysis reveals additional insights such as how reasoning can be formulated to enhance rather than hinder grounding performance, and how our method mitigates policy collapse in the SFT+RL framework. All code and model checkpoints will be publicly released in https://github.com/alibaba/UI-Ins.

Authors:Insu Jeon, Minui Hong, Junhyeog Yun, Gunhee Kim
Title: Federated Learning via Meta-Variational Dropout
Abstract:
Federated Learning (FL) aims to train a global inference model from remotely distributed clients, gaining popularity due to its benefit of improving data privacy. However, traditional FL often faces challenges in practical applications, including model overfitting and divergent local models due to limited and non-IID data among clients. To address these issues, we introduce a novel Bayesian meta-learning approach called meta-variational dropout (MetaVD). MetaVD learns to predict client-dependent dropout rates via a shared hypernetwork, enabling effective model personalization of FL algorithms in limited non-IID data settings. We also emphasize the posterior adaptation view of meta-learning and the posterior aggregation view of Bayesian FL via the conditional dropout posterior. We conducted extensive experiments on various sparse and non-IID FL datasets. MetaVD demonstrated excellent classification accuracy and uncertainty calibration performance, especially for out-of-distribution (OOD) clients. MetaVD compresses the local model parameters needed for each client, mitigating model overfitting and reducing communication costs. Code is available at https://github.com/insujeon/MetaVD.

Authors:Yun Wang, Junjie Hu, Qiaole Dong, Yongjian Zhang, Yanwei Fu, Tin Lun Lam, Dapeng Wu
Title: PPMStereo: Pick-and-Play Memory Construction for Consistent Dynamic Stereo Matching
Abstract:
Temporally consistent depth estimation from stereo video is critical for real-world applications such as augmented reality, where inconsistent depth estimation disrupts the immersion of users. Despite its importance, this task remains challenging due to the difficulty in modeling long-term temporal consistency in a computationally efficient manner. Previous methods attempt to address this by aggregating spatio-temporal information but face a fundamental trade-off: limited temporal modeling provides only modest gains, whereas capturing long-range dependencies significantly increases computational cost. To address this limitation, we introduce a memory buffer for modeling long-range spatio-temporal consistency while achieving efficient dynamic stereo matching. Inspired by the two-stage decision-making process in humans, we propose a \textbf{P}ick-and-\textbf{P}lay \textbf{M}emory (PPM) construction module for dynamic \textbf{Stereo} matching, dubbed as \textbf{PPMStereo}. PPM consists of a `pick' process that identifies the most relevant frames and a `play' process that weights the selected frames adaptively for spatio-temporal aggregation. This two-stage collaborative process maintains a compact yet highly informative memory buffer while achieving temporally consistent information aggregation. Extensive experiments validate the effectiveness of PPMStereo, demonstrating state-of-the-art performance in both accuracy and temporal consistency. % Notably, PPMStereo achieves 0.62/1.11 TEPE on the Sintel clean/final (17.3\% \& 9.02\% improvements over BiDAStereo) with fewer computational costs. Codes are available at \textcolor{blue}{https://github.com/cocowy1/PPMStereo}.

Authors:Vahid Jalili
Title: The Temporal Graph of Bitcoin Transactions
Abstract:
Since its 2009 genesis block, the Bitcoin network has processed \num{>1.08} billion (B) transactions representing \num{>8.72}B BTC, offering rich potential for machine learning (ML); yet, its pseudonymity and obscured flow of funds inherent in its \utxo-based design, have rendered this data largely inaccessible for ML research. Addressing this gap, we present an ML-compatible graph modeling the Bitcoin's economic topology by reconstructing the flow of funds. This temporal, heterogeneous graph encompasses complete transaction history up to block \cutoffHeight, consisting of \num{>2.4}B nodes and \num{>39.72}B edges. Additionally, we provide custom sampling methods yielding node and edge feature vectors of sampled communities, tools to load and analyze the Bitcoin graph data within specialized graph databases, and ready-to-use database snapshots. This comprehensive dataset and toolkit empower the ML community to tackle Bitcoin's intricate ecosystem at scale, driving progress in applications such as anomaly detection, address classification, market analysis, and large-scale graph ML benchmarking. Dataset and code available at \href{https://github.com/B1AAB/EBA}{github.com/b1aab/eba}

Authors:Le Ren, Xiangjian Zeng, Qingqiang Wu, Ruoxuan Liang
Title: LyriCAR: A Difficulty-Aware Curriculum Reinforcement Learning Framework For Controllable Lyric Translation
Abstract:
Lyric translation is a challenging task that requires balancing multiple musical constraints. Existing methods often rely on hand-crafted rules and sentence-level modeling, which restrict their ability to internalize musical-linguistic patterns and to generalize effectively at the paragraph level, where cross-line coherence and global rhyme are crucial. In this work, we propose LyriCAR, a novel framework for controllable lyric translation that operates in a fully unsupervised manner. LyriCAR introduces a difficulty-aware curriculum designer and an adaptive curriculum strategy, ensuring efficient allocation of training resources, accelerating convergence, and improving overall translation quality by guiding the model with increasingly complex challenges. Extensive experiments on the EN-ZH lyric translation task show that LyriCAR achieves state-of-the-art results across both standard translation metrics and multi-dimensional reward scores, surpassing strong baselines. Notably, the adaptive curriculum strategy reduces training steps by nearly 40% while maintaining superior performance. Code, data and model can be accessed at https://github.com/rle27/LyriCAR.

Authors:Isaac Wu, Michael Maslowski
Title: CourtGuard: A Local, Multiagent Prompt Injection Classifier
Abstract:
As large language models (LLMs) become integrated into various sensitive applications, prompt injection, the use of prompting to induce harmful behaviors from LLMs, poses an ever increasing risk. Prompt injection attacks can cause LLMs to leak sensitive data, spread misinformation, and exhibit harmful behaviors. To defend against these attacks, we propose CourtGuard, a locally-runnable, multiagent prompt injection classifier. In it, prompts are evaluated in a court-like multiagent LLM system, where a "defense attorney" model argues the prompt is benign, a "prosecution attorney" model argues the prompt is a prompt injection, and a "judge" model gives the final classification. CourtGuard has a lower false positive rate than the Direct Detector, an LLM as-a-judge. However, CourtGuard is generally a worse prompt injection detector. Nevertheless, this lower false positive rate highlights the importance of considering both adversarial and benign scenarios for the classification of a prompt. Additionally, the relative performance of CourtGuard in comparison to other prompt injection classifiers advances the use of multiagent systems as a defense against prompt injection attacks. The implementations of CourtGuard and the Direct Detector with full prompts for Gemma-3-12b-it, Llama-3.3-8B, and Phi-4-mini-instruct are available at https://github.com/isaacwu2000/CourtGuard.

Authors:Yuanhe Zhang, Ilja Kuzborskij, Jason D. Lee, Chenlei Leng, Fanghui Liu
Title: DAG-Math: Graph-Guided Mathematical Reasoning in LLMs
Abstract:
Large Language Models (LLMs) demonstrate strong performance on mathematical problems when prompted with Chain-of-Thought (CoT), yet it remains unclear whether this success stems from search, rote procedures, or rule-consistent reasoning. To address this, we propose modeling CoT as a certain rule-based stochastic process over directed acyclic graphs (DAGs), where nodes represent intermediate derivation states and edges encode rule applications. Within this framework, we introduce logical closeness, a metric that quantifies how well a model's CoT trajectory (i.e., the LLM's final output) adheres to the DAG structure, providing evaluation beyond classical PASS@k metrics. Building on this, we introduce the DAG-MATH CoT format and construct a benchmark that guides LLMs to generate CoT trajectories in this format, thereby enabling the evaluation of their reasoning ability under our framework. Across standard mathematical reasoning datasets, our analysis uncovers statistically significant differences in reasoning fidelity among representative LLM families-even when PASS@k is comparable-highlighting gaps between final-answer accuracy and rule-consistent derivation. Our framework provides a balance between free-form CoT and formal proofs systems, offering actionable diagnostics for LLMs reasoning evaluation. Our benchmark and code are available at: https://github.com/YuanheZ/DAG-MATH-Formatted-CoT.

Authors:Jacob Berg, Chuning Zhu, Yanda Bao, Ishan Durugkar, Abhishek Gupta
Title: Semantic World Models
Abstract:
Planning with world models offers a powerful paradigm for robotic control. Conventional approaches train a model to predict future frames conditioned on current frames and actions, which can then be used for planning. However, the objective of predicting future pixels is often at odds with the actual planning objective; strong pixel reconstruction does not always correlate with good planning decisions. This paper posits that instead of reconstructing future frames as pixels, world models only need to predict task-relevant semantic information about the future. For such prediction the paper poses world modeling as a visual question answering problem about semantic information in future frames. This perspective allows world modeling to be approached with the same tools underlying vision language models. Thus vision language models can be trained as "semantic" world models through a supervised finetuning process on image-action-text data, enabling planning for decision-making while inheriting many of the generalization and robustness properties from the pretrained vision-language models. The paper demonstrates how such a semantic world model can be used for policy improvement on open-ended robotics tasks, leading to significant generalization improvements over typical paradigms of reconstruction-based action-conditional world modeling. Website available at https://weirdlabuw.github.io/swm.

Authors:Xichen Zhang, Sitong Wu, Yinghao Zhu, Haoru Tan, Shaozuo Yu, Ziyi He, Jiaya Jia
Title: Scaf-GRPO: Scaffolded Group Relative Policy Optimization for Enhancing LLM Reasoning
Abstract:
Reinforcement learning from verifiable rewards has emerged as a powerful technique for enhancing the complex reasoning abilities of Large Language Models (LLMs). However, these methods are fundamentally constrained by the ''learning cliff'' phenomenon: when faced with problems far beyond their current capabilities, models consistently fail, yielding a persistent zero-reward signal. In policy optimization algorithms like GRPO, this collapses the advantage calculation to zero, rendering these difficult problems invisible to the learning gradient and stalling progress. To overcome this, we introduce Scaf-GRPO (Scaffolded Group Relative Policy Optimization), a progressive training framework that strategically provides minimal guidance only when a model's independent learning has plateaued. The framework first diagnoses learning stagnation and then intervenes by injecting tiered in-prompt hints, ranging from abstract concepts to concrete steps, enabling the model to construct a valid solution by itself. Extensive experiments on challenging mathematics benchmarks demonstrate Scaf-GRPO's effectiveness, boosting the pass@1 score of the Qwen2.5-Math-7B model on the AIME24 benchmark by a relative 44.3% over a vanilla GRPO baseline. This result demonstrates our framework provides a robust and effective methodology for unlocking a model's ability to solve problems previously beyond its reach, a critical step towards extending the frontier of autonomous reasoning in LLM.

Authors:Yuezhou Hu, Jiaxin Guo, Xinyu Feng, Tuo Zhao
Title: AdaSPEC: Selective Knowledge Distillation for Efficient Speculative Decoders
Abstract:
Speculative Decoding (SD) accelerates large language model inference by employing a small draft model to generate predictions, which are then verified by a larger target model. The effectiveness of SD hinges on the alignment between these models, which is typically enhanced by Knowledge Distillation (KD). However, conventional KD methods aim to minimize the KL divergence between the draft and target models across all tokens, a goal that is misaligned with the true objective of SD, which is to maximize token acceptance rate. Therefore, draft models often struggle to fully assimilate the target model's knowledge due to capacity constraints, leading to suboptimal performance. To address this challenge, we propose AdaSPEC, a novel method that incorporates selective token filtering into the KD process. AdaSPEC utilizes a reference model to identify and filter out difficult-to-fit tokens, enabling the distillation of a draft model that better aligns with the target model on simpler tokens. This approach improves the overall token acceptance rate without compromising generation quality. We evaluate AdaSPEC across diverse tasks, including arithmetic reasoning, instruction-following, coding, and summarization, using model configurations of 31M/1.4B and 350M/2.7B parameters. Our results demonstrate that AdaSPEC consistently outperforms the state-of-the-art DistillSpec method, achieving higher acceptance rates across all tasks (up to 15\%). The code is publicly available at https://github.com/yuezhouhu/adaspec.

Authors:Xichen Zhang, Sitong Wu, Haoru Tan, Shaozuo Yu, Yinghao Zhu, Ziyi He, Jiaya Jia
Title: SmartSwitch: Advancing LLM Reasoning by Overcoming Underthinking via Promoting Deeper Thought Exploration
Abstract:
The long chain-of-thought (LongCoT) capability is central to the recent breakthroughs achieved by large language models in complex reasoning tasks. However, the accompanying issue of ''underthinking'', where models exhibit shallow reasoning by frequently switching thoughts without sufficient exploration, limits both performance and token efficiency. To address this problem, we propose a simple yet effective reasoning strategy: the SmartSwitch inference framework. This framework can be easily integrated into any large language model as a plug-and-play solution, continuously monitoring the model's reasoning process to detect underthinking and guide it toward deeper exploration of promising but overlooked thoughts. Specifically, the perception module identifies points where thoughts switch and evaluates the potential of the preceding thought using an off-the-shelf process reward model (PRM). If a high-potential thought is found to be prematurely abandoned, the intervention module interrupts the ongoing inference, backtracks to the point before the switch, and inserts a "deepening prompt" to encourage further exploration along that promising path. Extensive experiments on challenging mathematical reasoning benchmarks demonstrate that our method significantly enhances the performance of various large language models of different sizes.

Authors:Zhida Zhao, Talas Fu, Yifan Wang, Lijun Wang, Huchuan Lu
Title: From Forecasting to Planning: Policy World Model for Collaborative State-Action Prediction
Abstract:
Despite remarkable progress in driving world models, their potential for autonomous systems remains largely untapped: the world models are mostly learned for world simulation and decoupled from trajectory planning. While recent efforts aim to unify world modeling and planning in a single framework, the synergistic facilitation mechanism of world modeling for planning still requires further exploration. In this work, we introduce a new driving paradigm named Policy World Model (PWM), which not only integrates world modeling and trajectory planning within a unified architecture, but is also able to benefit planning using the learned world knowledge through the proposed action-free future state forecasting scheme. Through collaborative state-action prediction, PWM can mimic the human-like anticipatory perception, yielding more reliable planning performance. To facilitate the efficiency of video forecasting, we further introduce a dynamically enhanced parallel token generation mechanism, equipped with a context-guided tokenizer and an adaptive dynamic focal loss. Despite utilizing only front camera input, our method matches or exceeds state-of-the-art approaches that rely on multi-view and multi-modal inputs. Code and model weights will be released at https://github.com/6550Zhao/Policy-World-Model.

Authors:Qianli Ma, Siyu Wang, Yilin Chen, Yinhao Tang, Yixiang Yang, Chang Guo, Bingjie Gao, Zhening Xing, Yanan Sun, Zhipeng Zhang
Title: Human-Agent Collaborative Paper-to-Page Crafting for Under $0.1
Abstract:
In the quest for scientific progress, communicating research is as vital as the discovery itself. Yet, researchers are often sidetracked by the manual, repetitive chore of building project webpages to make their dense papers accessible. While automation has tackled static slides and posters, the dynamic, interactive nature of webpages has remained an unaddressed challenge. To bridge this gap, we reframe the problem, arguing that the solution lies not in a single command, but in a collaborative, hierarchical process. We introduce $\textbf{AutoPage}$, a novel multi-agent system that embodies this philosophy. AutoPage deconstructs paper-to-page creation into a coarse-to-fine pipeline from narrative planning to multimodal content generation and interactive rendering. To combat AI hallucination, dedicated "Checker" agents verify each step against the source paper, while optional human checkpoints ensure the final product aligns perfectly with the author's vision, transforming the system from a mere tool into a powerful collaborative assistant. To rigorously validate our approach, we also construct $\textbf{PageBench}$, the first benchmark for this new task. Experiments show AutoPage not only generates high-quality, visually appealing pages but does so with remarkable efficiency in under 15 minutes for less than \$0.1. Code and dataset will be released at $\href{https://mqleet.github.io/AutoPage_ProjectPage/}{Webpage}$.

Authors:Haozhe Luo, Shelley Zixin Shu, Ziyu Zhou, Sebastian Otalora, Mauricio Reyes
Title: XBench: A Comprehensive Benchmark for Visual-Language Explanations in Chest Radiography
Abstract:
Vision-language models (VLMs) have recently shown remarkable zero-shot performance in medical image understanding, yet their grounding ability, the extent to which textual concepts align with visual evidence, remains underexplored. In the medical domain, however, reliable grounding is essential for interpretability and clinical adoption. In this work, we present the first systematic benchmark for evaluating cross-modal interpretability in chest X-rays across seven CLIP-style VLM variants. We generate visual explanations using cross-attention and similarity-based localization maps, and quantitatively assess their alignment with radiologist-annotated regions across multiple pathologies. Our analysis reveals that: (1) while all VLM variants demonstrate reasonable localization for large and well-defined pathologies, their performance substantially degrades for small or diffuse lesions; (2) models that are pretrained on chest X-ray-specific datasets exhibit improved alignment compared to those trained on general-domain data. (3) The overall recognition ability and grounding ability of the model are strongly correlated. These findings underscore that current VLMs, despite their strong recognition ability, still fall short in clinically reliable grounding, highlighting the need for targeted interpretability benchmarks before deployment in medical practice. XBench code is available at https://github.com/Roypic/Benchmarkingattention

Authors:Runpeng Xie, Quanwei Wang, Hao Hu, Zherui Zhou, Ni Mu, Xiyun Li, Yiqin Yang, Shuang Xu, Qianchuan Zhao, Bo XU
Title: DAIL: Beyond Task Ambiguity for Language-Conditioned Reinforcement Learning
Abstract:
Comprehending natural language and following human instructions are critical capabilities for intelligent agents. However, the flexibility of linguistic instructions induces substantial ambiguity across language-conditioned tasks, severely degrading algorithmic performance. To address these limitations, we present a novel method named DAIL (Distributional Aligned Learning), featuring two key components: distributional policy and semantic alignment. Specifically, we provide theoretical results that the value distribution estimation mechanism enhances task differentiability. Meanwhile, the semantic alignment module captures the correspondence between trajectories and linguistic instructions. Extensive experimental results on both structured and visual observation benchmarks demonstrate that DAIL effectively resolves instruction ambiguities, achieving superior performance to baseline methods. Our implementation is available at https://github.com/RunpengXie/Distributional-Aligned-Learning.

Authors:Nidham Tekaya, Manuela Waldner, Matthias Zeppelzauer
Title: A Matter of Time: Revealing the Structure of Time in Vision-Language Models
Abstract:
Large-scale vision-language models (VLMs) such as CLIP have gained popularity for their generalizable and expressive multimodal representations. By leveraging large-scale training data with diverse textual metadata, VLMs acquire open-vocabulary capabilities, solving tasks beyond their training scope. This paper investigates the temporal awareness of VLMs, assessing their ability to position visual content in time. We introduce TIME10k, a benchmark dataset of over 10,000 images with temporal ground truth, and evaluate the time-awareness of 37 VLMs by a novel methodology. Our investigation reveals that temporal information is structured along a low-dimensional, non-linear manifold in the VLM embedding space. Based on this insight, we propose methods to derive an explicit ``timeline'' representation from the embedding space. These representations model time and its chronological progression and thereby facilitate temporal reasoning tasks. Our timeline approaches achieve competitive to superior accuracy compared to a prompt-based baseline while being computationally efficient. All code and data are available at https://tekayanidham.github.io/timeline-page/.

Authors:Kevin Huang, Rosario Scalise, Cleah Winston, Ayush Agrawal, Yunchu Zhang, Rohan Baijal, Markus Grotz, Byron Boots, Benjamin Burchfiel, Masha Itkina, Paarth Shah, Abhishek Gupta
Title: Using Non-Expert Data to Robustify Imitation Learning via Offline Reinforcement Learning
Abstract:
Imitation learning has proven effective for training robots to perform complex tasks from expert human demonstrations. However, it remains limited by its reliance on high-quality, task-specific data, restricting adaptability to the diverse range of real-world object configurations and scenarios. In contrast, non-expert data -- such as play data, suboptimal demonstrations, partial task completions, or rollouts from suboptimal policies -- can offer broader coverage and lower collection costs. However, conventional imitation learning approaches fail to utilize this data effectively. To address these challenges, we posit that with right design decisions, offline reinforcement learning can be used as a tool to harness non-expert data to enhance the performance of imitation learning policies. We show that while standard offline RL approaches can be ineffective at actually leveraging non-expert data under the sparse data coverage settings typically encountered in the real world, simple algorithmic modifications can allow for the utilization of this data, without significant additional assumptions. Our approach shows that broadening the support of the policy distribution can allow imitation algorithms augmented by offline RL to solve tasks robustly, showing considerably enhanced recovery and generalization behavior. In manipulation tasks, these innovations significantly increase the range of initial conditions where learned policies are successful when non-expert data is incorporated. Moreover, we show that these methods are able to leverage all collected data, including partial or suboptimal demonstrations, to bolster task-directed policy performance. This underscores the importance of algorithmic techniques for using non-expert data for robust policy learning in robotics. Website: https://uwrobotlearning.github.io/RISE-offline/

Authors:Zaifei Yang, Hong Chang, Ruibing Hou, Shiguang Shan, Xilin Chen
Title: KnowMol: Advancing Molecular Large Language Models with Multi-Level Chemical Knowledge
Abstract:
The molecular large language models have garnered widespread attention due to their promising potential on molecular applications. However, current molecular large language models face significant limitations in understanding molecules due to inadequate textual descriptions and suboptimal molecular representation strategies during pretraining. To address these challenges, we introduce KnowMol-100K, a large-scale dataset with 100K fine-grained molecular annotations across multiple levels, bridging the gap between molecules and textual descriptions. Additionally, we propose chemically-informative molecular representation, effectively addressing limitations in existing molecular representation strategies. Building upon these innovations, we develop KnowMol, a state-of-the-art multi-modal molecular large language model. Extensive experiments demonstrate that KnowMol achieves superior performance across molecular understanding and generation tasks. GitHub: https://github.com/yzf-code/KnowMol Huggingface: https://hf.co/datasets/yzf1102/KnowMol-100K

Authors:Qiang Chen, Zhongze Wu, Ang He, Xi Lin, Shuo Jiang, Shan You, Chang Xu, Yi Chen, Xiu Su
Title: Graph Unlearning Meets Influence-aware Negative Preference Optimization
Abstract:
Recent advancements in graph unlearning models have enhanced model utility by preserving the node representation essentially invariant, while using gradient ascent on the forget set to achieve unlearning. However, this approach causes a drastic degradation in model utility during the unlearning process due to the rapid divergence speed of gradient ascent. In this paper, we introduce \textbf{INPO}, an \textbf{I}nfluence-aware \textbf{N}egative \textbf{P}reference \textbf{O}ptimization framework that focuses on slowing the divergence speed and improving the robustness of the model utility to the unlearning process. Specifically, we first analyze that NPO has slower divergence speed and theoretically propose that unlearning high-influence edges can reduce impact of unlearning. We design an influence-aware message function to amplify the influence of unlearned edges and mitigate the tight topological coupling between the forget set and the retain set. The influence of each edge is quickly estimated by a removal-based method. Additionally, we propose a topological entropy loss from the perspective of topology to avoid excessive information loss in the local structure during unlearning. Extensive experiments conducted on five real-world datasets demonstrate that INPO-based model achieves state-of-the-art performance on all forget quality metrics while maintaining the model's utility. Codes are available at \href{https://github.com/sh-qiangchen/INPO}{https://github.com/sh-qiangchen/INPO}.

Authors:Jia-Kai Dong, I-Wei Huang, Chun-Tin Wu, Yi-Tien Tsai
Title: MSC-Bench: A Rigorous Benchmark for Multi-Server Tool Orchestration
Abstract:
We introduce MSC-Bench, a large-scale benchmark for evaluating multi-hop, end-to-end tool orchestration by LLM agents in a hierarchical Model-Context Protocol (MCP) ecosystem. Existing benchmarks often evaluate tools in isolation, ignoring challenges such as functional overlap and cross-server orchestration, leading to overly optimistic assessments. MSC-Bench addresses these gaps by constructing ground truth through 'equal function sets', allowing objective metrics such as F1 score and reducing the dependency on LLM-as-a-judge evaluation. Organized as a five-level curriculum, it systematically tests agent capabilities from single-tool orchestration to complex cross-server planning, and robustness to out-of-scope requests. Experiments reveal that rigid hierarchies can hinder performance without co-designed strategies, and even state-of-the-art agents exhibit systemic weaknesses in robustness. MSC-Bench provides a diagnostic framework to expose these limitations and guide the development of more capable and efficient tool-using agents. The benchmark and resources are publicly available at https://github.com/snooow1029/MSC_Bench.

Authors:Chengcan Wu, Zhixin Zhang, Mingqian Xu, Zeming Wei, Meng Sun
Title: Monitoring LLM-based Multi-Agent Systems Against Corruptions via Node Evaluation
Abstract:
Large Language Model (LLM)-based Multi-Agent Systems (MAS) have become a popular paradigm of AI applications. However, trustworthiness issues in MAS remain a critical concern. Unlike challenges in single-agent systems, MAS involve more complex communication processes, making them susceptible to corruption attacks. To mitigate this issue, several defense mechanisms have been developed based on the graph representation of MAS, where agents represent nodes and communications form edges. Nevertheless, these methods predominantly focus on static graph defense, attempting to either detect attacks in a fixed graph structure or optimize a static topology with certain defensive capabilities. To address this limitation, we propose a dynamic defense paradigm for MAS graph structures, which continuously monitors communication within the MAS graph, then dynamically adjusts the graph topology, accurately disrupts malicious communications, and effectively defends against evolving and diverse dynamic attacks. Experimental results in increasingly complex and dynamic MAS environments demonstrate that our method significantly outperforms existing MAS defense mechanisms, contributing an effective guardrail for their trustworthy applications. Our code is available at https://github.com/ChengcanWu/Monitoring-LLM-Based-Multi-Agent-Systems.

Authors:Victor Morand, Nadi Tomeh, Josiane Mothe, Benjamin Piwowarski
Title: ToMMeR -- Efficient Entity Mention Detection from Large Language Models
Abstract:
Identifying which text spans refer to entities -- mention detection -- is both foundational for information extraction and a known performance bottleneck. We introduce ToMMeR, a lightweight model (<300K parameters) probing mention detection capabilities from early LLM layers. Across 13 NER benchmarks, ToMMeR achieves 93\% recall zero-shot, with over 90\% precision using an LLM as a judge showing that ToMMeR rarely produces spurious predictions despite high recall. Cross-model analysis reveals that diverse architectures (14M-15B parameters) converge on similar mention boundaries (DICE >75\%), confirming that mention detection emerges naturally from language modeling. When extended with span classification heads, ToMMeR achieves near SOTA NER performance (80-87\% F1 on standard benchmarks). Our work provides evidence that structured entity representations exist in early transformer layers and can be efficiently recovered with minimal parameters.

Authors:Nilesh Ramgolam, Gustavo Carneiro, Hsiang-Ting Chen
Title: Learning To Defer To A Population With Limited Demonstrations
Abstract:
This paper addresses the critical data scarcity that hinders the practical deployment of learning to defer (L2D) systems to the population. We introduce a context-aware, semi-supervised framework that uses meta-learning to generate expert-specific embeddings from only a few demonstrations. We demonstrate the efficacy of a dual-purpose mechanism, where these embeddings are used first to generate a large corpus of pseudo-labels for training, and subsequently to enable on-the-fly adaptation to new experts at test-time. The experiment results on three different datasets confirm that a model trained on these synthetic labels rapidly approaches oracle-level performance, validating the data efficiency of our approach. By resolving a key training bottleneck, this work makes adaptive L2D systems more practical and scalable, paving the way for human-AI collaboration in real-world environments. To facilitate reproducibility and address implementation details not covered in the main text, we provide our source code and training configurations at https://github.com/nil123532/learning-to-defer-to-a-population-with-limited-demonstrations.

Authors:Panagiotis Agrafiotis, Begüm Demir
Title: Seabed-Net: A multi-task network for joint bathymetry estimation and seabed classification from remote sensing imagery in shallow waters
Abstract:
Accurate, detailed, and regularly updated bathymetry, coupled with complex semantic content, is essential for under-mapped shallow-water environments facing increasing climatological and anthropogenic pressures. However, existing approaches that derive either depth or seabed classes from remote sensing imagery treat these tasks in isolation, forfeiting the mutual benefits of their interaction and hindering the broader adoption of deep learning methods. To address these limitations, we introduce Seabed-Net, a unified multi-task framework that simultaneously predicts bathymetry and pixel-based seabed classification from remote sensing imagery of various resolutions. Seabed-Net employs dual-branch encoders for bathymetry estimation and pixel-based seabed classification, integrates cross-task features via an Attention Feature Fusion module and a windowed Swin-Transformer fusion block, and balances objectives through dynamic task uncertainty weighting. In extensive evaluations at two heterogeneous coastal sites, it consistently outperforms traditional empirical models and traditional machine learning regression methods, achieving up to 75\% lower RMSE. It also reduces bathymetric RMSE by 10-30\% compared to state-of-the-art single-task and multi-task baselines and improves seabed classification accuracy up to 8\%. Qualitative analyses further demonstrate enhanced spatial consistency, sharper habitat boundaries, and corrected depth biases in low-contrast regions. These results confirm that jointly modeling depth with both substrate and seabed habitats yields synergistic gains, offering a robust, open solution for integrated shallow-water mapping. Code and pretrained weights are available at https://github.com/pagraf/Seabed-Net.

Authors:Junjie Song, Yiwen Liu, Dapeng Li, Yin Sun, Shukun Fu, Siqi Chen, Yuji Cao
Title: Balancing Rewards in Text Summarization: Multi-Objective Reinforcement Learning via HyperVolume Optimization
Abstract:
Text summarization is a crucial task that requires the simultaneous optimization of multiple objectives, including consistency, coherence, relevance, and fluency, which presents considerable challenges. Although large language models (LLMs) have demonstrated remarkable performance, enhanced by reinforcement learning (RL), few studies have focused on optimizing the multi-objective problem of summarization through RL based on LLMs. In this paper, we introduce hypervolume optimization (HVO), a novel optimization strategy that dynamically adjusts the scores between groups during the reward process in RL by using the hypervolume method. This method guides the model's optimization to progressively approximate the pareto front, thereby generating balanced summaries across multiple objectives. Experimental results on several representative summarization datasets demonstrate that our method outperforms group relative policy optimization (GRPO) in overall scores and shows more balanced performance across different dimensions. Moreover, a 7B foundation model enhanced by HVO performs comparably to GPT-4 in the summarization task, while maintaining a shorter generation length. Our code is publicly available at https://github.com/ai4business-LiAuto/HVO.git

Authors:Jinwu Hu, Zihao Lian, Zhiquan Wen, Chenghao Li, Guohao Chen, Xutao Wen, Bin Xiao, Mingkui Tan
Title: Continual Knowledge Adaptation for Reinforcement Learning
Abstract:
Reinforcement Learning enables agents to learn optimal behaviors through interactions with environments. However, real-world environments are typically non-stationary, requiring agents to continuously adapt to new tasks and changing conditions. Although Continual Reinforcement Learning facilitates learning across multiple tasks, existing methods often suffer from catastrophic forgetting and inefficient knowledge utilization. To address these challenges, we propose Continual Knowledge Adaptation for Reinforcement Learning (CKA-RL), which enables the accumulation and effective utilization of historical knowledge. Specifically, we introduce a Continual Knowledge Adaptation strategy, which involves maintaining a task-specific knowledge vector pool and dynamically using historical knowledge to adapt the agent to new tasks. This process mitigates catastrophic forgetting and enables efficient knowledge transfer across tasks by preserving and adapting critical model parameters. Additionally, we propose an Adaptive Knowledge Merging mechanism that combines similar knowledge vectors to address scalability challenges, reducing memory requirements while ensuring the retention of essential knowledge. Experiments on three benchmarks demonstrate that the proposed CKA-RL outperforms state-of-the-art methods, achieving an improvement of 4.20% in overall performance and 8.02% in forward transfer. The source code is available at https://github.com/Fhujinwu/CKA-RL.

Authors:Soyoung Park, Sungsu Lim
Title: FnRGNN: Distribution-aware Fairness in Graph Neural Network
Abstract:
Graph Neural Networks (GNNs) excel at learning from structured data, yet fairness in regression tasks remains underexplored. Existing approaches mainly target classification and representation-level debiasing, which cannot fully address the continuous nature of node-level regression. We propose FnRGNN, a fairness-aware in-processing framework for GNN-based node regression that applies interventions at three levels: (i) structure-level edge reweighting, (ii) representation-level alignment via MMD, and (iii) prediction-level normalization through Sinkhorn-based distribution matching. This multi-level strategy ensures robust fairness under complex graph topologies. Experiments on four real-world datasets demonstrate that FnRGNN reduces group disparities without sacrificing performance. Code is available at https://github.com/sybeam27/FnRGNN.

Authors:Kai Zeng, Zhanqian Wu, Kaixin Xiong, Xiaobao Wei, Xiangyu Guo, Zhenxin Zhu, Kalok Ho, Lijun Zhou, Bohan Zeng, Ming Lu, Haiyang Sun, Bing Wang, Guang Chen, Hangjun Ye, Wentao Zhang
Title: Rethinking Driving World Model as Synthetic Data Generator for Perception Tasks
Abstract:
Recent advancements in driving world models enable controllable generation of high-quality RGB videos or multimodal videos. Existing methods primarily focus on metrics related to generation quality and controllability. However, they often overlook the evaluation of downstream perception tasks, which are $\mathbf{really\ crucial}$ for the performance of autonomous driving. Existing methods usually leverage a training strategy that first pretrains on synthetic data and finetunes on real data, resulting in twice the epochs compared to the baseline (real data only). When we double the epochs in the baseline, the benefit of synthetic data becomes negligible. To thoroughly demonstrate the benefit of synthetic data, we introduce Dream4Drive, a novel synthetic data generation framework designed for enhancing the downstream perception tasks. Dream4Drive first decomposes the input video into several 3D-aware guidance maps and subsequently renders the 3D assets onto these guidance maps. Finally, the driving world model is fine-tuned to produce the edited, multi-view photorealistic videos, which can be used to train the downstream perception models. Dream4Drive enables unprecedented flexibility in generating multi-view corner cases at scale, significantly boosting corner case perception in autonomous driving. To facilitate future research, we also contribute a large-scale 3D asset dataset named DriveObj3D, covering the typical categories in driving scenarios and enabling diverse 3D-aware video editing. We conduct comprehensive experiments to show that Dream4Drive can effectively boost the performance of downstream perception models under various training epochs. Page: https://wm-research.github.io/Dream4Drive/ GitHub Link: https://github.com/wm-research/Dream4Drive

Authors:Yuqiao Tan, Shizhu He, Kang Liu, Jun Zhao
Title: The Zero-Step Thinking: An Empirical Study of Mode Selection as Harder Early Exit in Reasoning Models
Abstract:
Reasoning models have demonstrated exceptional performance in tasks such as mathematics and logical reasoning, primarily due to their ability to engage in step-by-step thinking during the reasoning process. However, this often leads to overthinking, resulting in unnecessary computational overhead. To address this issue, Mode Selection aims to automatically decide between Long-CoT (Chain-of-Thought) or Short-CoT by utilizing either a Thinking or NoThinking mode. Simultaneously, Early Exit determines the optimal stopping point during the iterative reasoning process. Both methods seek to reduce the computational burden. In this paper, we first identify Mode Selection as a more challenging variant of the Early Exit problem, as they share similar objectives but differ in decision timing. While Early Exit focuses on determining the best stopping point for concise reasoning at inference time, Mode Selection must make this decision at the beginning of the reasoning process, relying on pre-defined fake thoughts without engaging in an explicit reasoning process, referred to as zero-step thinking. Through empirical studies on nine baselines, we observe that prompt-based approaches often fail due to their limited classification capabilities when provided with minimal hand-crafted information. In contrast, approaches that leverage internal information generally perform better across most scenarios but still exhibit issues with stability. Our findings indicate that existing methods relying solely on the information provided by models are insufficient for effectively addressing Mode Selection in scenarios with limited information, highlighting the ongoing challenges of this task. Our code is available at https://github.com/Trae1ounG/Zero_Step_Thinking.

Authors:Yunzhe Wang, Soham Hans, Volkan Ustun
Title: X-Ego: Acquiring Team-Level Tactical Situational Awareness via Cross-Egocentric Contrastive Video Representation Learning
Abstract:
Human team tactics emerge from each player's individual perspective and their ability to anticipate, interpret, and adapt to teammates' intentions. While advances in video understanding have improved the modeling of team interactions in sports, most existing work relies on third-person broadcast views and overlooks the synchronous, egocentric nature of multi-agent learning. We introduce X-Ego-CS, a benchmark dataset consisting of 124 hours of gameplay footage from 45 professional-level matches of the popular e-sports game Counter-Strike 2, designed to facilitate research on multi-agent decision-making in complex 3D environments. X-Ego-CS provides cross-egocentric video streams that synchronously capture all players' first-person perspectives along with state-action trajectories. Building on this resource, we propose Cross-Ego Contrastive Learning (CECL), which aligns teammates' egocentric visual streams to foster team-level tactical situational awareness from an individual's perspective. We evaluate CECL on a teammate-opponent location prediction task, demonstrating its effectiveness in enhancing an agent's ability to infer both teammate and opponent positions from a single first-person view using state-of-the-art video encoders. Together, X-Ego-CS and CECL establish a foundation for cross-egocentric multi-agent benchmarking in esports. More broadly, our work positions gameplay understanding as a testbed for multi-agent modeling and tactical learning, with implications for spatiotemporal reasoning and human-AI teaming in both virtual and real-world domains. Code and dataset are available at https://github.com/HATS-ICT/x-ego.

Authors:Amith Ananthram, Elias Stengel-Eskin, Lorena A. Bradford, Julia Demarest, Adam Purvis, Keith Krut, Robert Stein, Rina Elster Pantalony, Mohit Bansal, Kathleen McKeown
Title: PoSh: Using Scene Graphs To Guide LLMs-as-a-Judge For Detailed Image Descriptions
Abstract:
While vision-language models (VLMs) have advanced into detailed image description, evaluation remains a challenge. Standard metrics (e.g. CIDEr, SPICE) were designed for short texts and tuned to recognize errors that are now uncommon, such as object misidentification. In contrast, long texts require sensitivity to attribute and relation attachments and scores that localize errors to particular text spans. In this work, we introduce PoSh, a metric for detailed image description that uses scene graphs as structured rubrics to guide LLMs-as-a-Judge, producing aggregate scores grounded in fine-grained errors (e.g. mistakes in compositional understanding). PoSh is replicable, interpretable and a better proxy for human raters than existing metrics (including GPT4o-as-a-Judge). To validate PoSh, we introduce a challenging new dataset, DOCENT. This novel benchmark contains artwork, paired with expert-written references, and model-generated descriptions, augmented with granular and coarse judgments of their quality from art history students. Thus, DOCENT enables evaluating both detailed image description metrics and detailed image description itself in a challenging new domain. We show that PoSh achieves stronger correlations (+0.05 Spearman $ρ$) with the human judgments in DOCENT than the best open-weight alternatives, is robust to image type (using CapArena, an existing dataset of web imagery) and is a capable reward function, outperforming standard supervised fine-tuning. Then, using PoSh, we characterize the performance of open and closed models in describing the paintings, sketches and statues in DOCENT and find that foundation models struggle to achieve full, error-free coverage of images with rich scene dynamics, establishing a demanding new task to gauge VLM progress. Through both PoSh and DOCENT, we hope to enable advances in important areas such as assistive text generation.

Authors:Joydeep Chandra, Satyam Kumar Navneet
Title: Plural Voices, Single Agent: Towards Inclusive AI in Multi-User Domestic Spaces
Abstract:
Domestic AI agents faces ethical, autonomy, and inclusion challenges, particularly for overlooked groups like children, elderly, and Neurodivergent users. We present the Plural Voices Model (PVM), a novel single-agent framework that dynamically negotiates multi-user needs through real-time value alignment, leveraging diverse public datasets on mental health, eldercare, education, and moral reasoning. Using human+synthetic curriculum design with fairness-aware scenarios and ethical enhancements, PVM identifies core values, conflicts, and accessibility requirements to inform inclusive principles. Our privacy-focused prototype features adaptive safety scaffolds, tailored interactions (e.g., step-by-step guidance for Neurodivergent users, simple wording for children), and equitable conflict resolution. In preliminary evaluations, PVM outperforms multi-agent baselines in compliance (76% vs. 70%), fairness (90% vs. 85%), safety-violation rate (0% vs. 7%), and latency. Design innovations, including video guidance, autonomy sliders, family hubs, and adaptive safety dashboards, demonstrate new directions for ethical and inclusive domestic AI, for building user-centered agentic systems in plural domestic contexts. Our Codes and Model are been open sourced, available for reproduction: https://github.com/zade90/Agora

Authors:Zhilin Wang, Jaehun Jung, Ximing Lu, Shizhe Diao, Ellie Evans, Jiaqi Zeng, Pavlo Molchanov, Yejin Choi, Jan Kautz, Yi Dong
Title: ProfBench: Multi-Domain Rubrics requiring Professional Knowledge to Answer and Judge
Abstract:
Evaluating progress in large language models (LLMs) is often constrained by the challenge of verifying responses, limiting assessments to tasks like mathematics, programming, and short-form question-answering. However, many real-world applications require evaluating LLMs in processing professional documents, synthesizing information, and generating comprehensive reports in response to user queries. We introduce ProfBench: a set of over 7000 response-criterion pairs as evaluated by human-experts with professional knowledge across Physics PhD, Chemistry PhD, Finance MBA and Consulting MBA. We build robust and affordable LLM-Judges to evaluate ProfBench rubrics, by mitigating self-enhancement bias and reducing the cost of evaluation by 2-3 orders of magnitude, to make it fair and accessible to the broader community. Our findings reveal that ProfBench poses significant challenges even for state-of-the-art LLMs, with top-performing models like GPT-5-high achieving only 65.9\% overall performance. Furthermore, we identify notable performance disparities between proprietary and open-weight models and provide insights into the role that extended thinking plays in addressing complex, professional-domain tasks. Data: https://huggingface.co/datasets/nvidia/ProfBench and Code: https://github.com/NVlabs/ProfBench

Authors:Zhi Zhang, Yixian Shen, Congfeng Cao, Ekaterina Shutova
Title: NeuroAda: Activating Each Neuron's Potential for Parameter-Efficient Fine-Tuning
Abstract:
Existing parameter-efficient fine-tuning (PEFT) methods primarily fall into two categories: addition-based and selective in-situ adaptation. The former, such as LoRA, introduce additional modules to adapt the model to downstream tasks, offering strong memory efficiency. However, their representational capacity is often limited, making them less suitable for fine-grained adaptation. In contrast, the latter directly fine-tunes a carefully chosen subset of the original model parameters, allowing for more precise and effective adaptation, but at the cost of significantly increased memory consumption. To reconcile this trade-off, we propose NeuroAda, a novel PEFT method that enables fine-grained model finetuning while maintaining high memory efficiency. Our approach first identifies important parameters (i.e., connections within the network) as in selective adaptation, and then introduces bypass connections for these selected parameters. During finetuning, only the bypass connections are updated, leaving the original model parameters frozen. Empirical results on 23+ tasks spanning both natural language generation and understanding demonstrate that NeuroAda achieves state-of-the-art performance with as little as $\leq \textbf{0.02}\%$ trainable parameters, while reducing CUDA memory usage by up to 60%. We release our code here: https://github.com/FightingFighting/NeuroAda.git.

Authors:Chen Chen, ZeYang Hu, Fengjiao Chen, Liya Ma, Jiaxing Liu, Xiaoyu Li, Xuezhi Cao
Title: UNO-Bench: A Unified Benchmark for Exploring the Compositional Law Between Uni-modal and Omni-modal in OmniModels
Abstract:
Multimodal Large Languages models have been progressing from uni-modal understanding toward unifying visual, audio and language modalities, collectively termed omni models. However, the correlation between uni-modal and omni-modal remains unclear, which requires comprehensive evaluation to drive omni model's intelligence evolution. In this work, we propose a novel, high quality and UNified Omni model benchmark, UNO-Bench, which effectively assesses both UNi-modal and Omni-modal capabilities. The benchmark consists of 3730 human curated samples, with 98% cross-modality solvability, across 44 task types, and an innovative multi-step open-ended question type for assessing complex reasoning. Besides, a general scoring model supporting 6 question types is proposed for automated evaluation with 95% accuracy. Experimental result shows the Compositional Law between omni-modal and uni-modal performance and the omni-modal capability manifests as a bottleneck effect on weak models, while exhibiting synergistic promotion on strong models. The code and data are available at https://github.com/meituan-longcat/UNO-Bench

Authors:Jizhan Fang, Xinle Deng, Haoming Xu, Ziyan Jiang, Yuqi Tang, Ziwen Xu, Shumin Deng, Yunzhi Yao, Mengru Wang, Shuofei Qiao, Huajun Chen, Ningyu Zhang
Title: LightMem: Lightweight and Efficient Memory-Augmented Generation
Abstract:
Despite their remarkable capabilities, Large Language Models (LLMs) struggle to effectively leverage historical interaction information in dynamic and complex environments. Memory systems enable LLMs to move beyond stateless interactions by introducing persistent information storage, retrieval, and utilization mechanisms. However, existing memory systems often introduce substantial time and computational overhead. To this end, we introduce a new memory system called LightMem, which strikes a balance between the performance and efficiency of memory systems. Inspired by the Atkinson-Shiffrin model of human memory, LightMem organizes memory into three complementary stages. First, cognition-inspired sensory memory rapidly filters irrelevant information through lightweight compression and groups information according to their topics. Next, topic-aware short-term memory consolidates these topic-based groups, organizing and summarizing content for more structured access. Finally, long-term memory with sleep-time update employs an offline procedure that decouples consolidation from online inference. Experiments on LongMemEval with GPT and Qwen backbones show that LightMem outperforms strong baselines in accuracy (up to 10.9% gains) while reducing token usage by up to 117x, API calls by up to 159x, and runtime by over 12x. The code is available at https://github.com/zjunlp/LightMem.

Authors:Yigit Korkmaz, Urvi Bhuwania, Ayush Jain, Erdem Bıyık
Title: Actor-Free Continuous Control via Structurally Maximizable Q-Functions
Abstract:
Value-based algorithms are a cornerstone of off-policy reinforcement learning due to their simplicity and training stability. However, their use has traditionally been restricted to discrete action spaces, as they rely on estimating Q-values for individual state-action pairs. In continuous action spaces, evaluating the Q-value over the entire action space becomes computationally infeasible. To address this, actor-critic methods are typically employed, where a critic is trained on off-policy data to estimate Q-values, and an actor is trained to maximize the critic's output. Despite their popularity, these methods often suffer from instability during training. In this work, we propose a purely value-based framework for continuous control that revisits structural maximization of Q-functions, introducing a set of key architectural and algorithmic choices to enable efficient and stable learning. We evaluate the proposed actor-free Q-learning approach on a range of standard simulation tasks, demonstrating performance and sample efficiency on par with state-of-the-art baselines, without the cost of learning a separate actor. Particularly, in environments with constrained action spaces, where the value functions are typically non-smooth, our method with structural maximization outperforms traditional actor-critic methods with gradient-based maximization. We have released our code at https://github.com/USC-Lira/Q3C.

Authors:Shuxin Lin, Dhaval Patel, Christodoulos Constantinides
Title: Fine-Tuned Thoughts: Leveraging Chain-of-Thought Reasoning for Industrial Asset Health Monitoring
Abstract:
Small Language Models (SLMs) are becoming increasingly popular in specialized fields, such as industrial applications, due to their efficiency, lower computational requirements, and ability to be fine-tuned for domain-specific tasks, enabling accurate and cost-effective solutions. However, performing complex reasoning using SLMs in specialized fields such as Industry 4.0 remains challenging. In this paper, we propose a knowledge distillation framework for industrial asset health, which transfers reasoning capabilities via Chain-of-Thought (CoT) distillation from Large Language Models (LLMs) to smaller, more efficient models (SLMs). We discuss the advantages and the process of distilling LLMs using multi-choice question answering (MCQA) prompts to enhance reasoning and refine decision-making. We also perform in-context learning to verify the quality of the generated knowledge and benchmark the performance of fine-tuned SLMs with generated knowledge against widely used LLMs. The results show that the fine-tuned SLMs with CoT reasoning outperform the base models by a significant margin, narrowing the gap to their LLM counterparts. Our code is open-sourced at: https://github.com/IBM/FailureSensorIQ.

Authors:Mengqi Li, Lei Zhao, Anthony Man-Cho So, Ruoyu Sun, Xiao Li
Title: Online SFT for LLM Reasoning: Surprising Effectiveness of Self-Tuning without Rewards
Abstract:
We present a simple, self-help online supervised finetuning (OSFT) paradigm for LLM reasoning. In this paradigm, the model generates its own responses and is immediately finetuned on this self-generated data. OSFT is a highly efficient training strategy for LLM reasoning, as it is reward-free and uses just one rollout by default. Experiment results show that OSFT achieves downstream performance on challenging mathematical reasoning tasks comparable to strong reinforcement learning with verifiable rewards (RLVR) methods such as GRPO. Our ablation study further demonstrates the efficiency and robustness of OSFT. The major mechanism of OSFT lies in facilitating the model's own existing preference (latent knowledge) learned from pretraining, which leads to reasoning ability improvement. We believe that OSFT offers an efficient and promising alternative to more complex, reward-based training paradigms. Our code is available at https://github.com/ElementQi/OnlineSFT.

Authors:Zhangquan Chen, Manyuan Zhang, Xinlei Yu, Xufang Luo, Mingze Sun, Zihao Pan, Yan Feng, Peng Pei, Xunliang Cai, Ruqi Huang
Title: Think with 3D: Geometric Imagination Grounded Spatial Reasoning from Limited Views
Abstract:
Though recent advances in vision-language models (VLMs) have achieved remarkable progress across a wide range of multimodal tasks, understanding 3D spatial relationships from limited views remains a significant challenge. Previous reasoning methods typically rely on pure text (e.g., topological cognitive maps) or on 2D visual cues. However, their limited representational capacity hinders performance in specific tasks that require 3D spatial imagination. To address this limitation, we propose 3DThinker, a framework that can effectively exploits the rich geometric information embedded within images while reasoning, like humans do. Our framework is the first to enable 3D mentaling during reasoning without any 3D prior input, and it does not rely on explicitly labeled 3D data for training. Specifically, our training consists of two stages. First, we perform supervised training to align the 3D latent generated by VLM while reasoning with that of a 3D foundation model (e.g., VGGT). Then, we optimize the entire reasoning trajectory solely based on outcome signals, thereby refining the underlying 3D mentaling. Extensive experiments across multiple benchmarks show that 3DThinker consistently outperforms strong baselines and offers a new perspective toward unifying 3D representations into multimodal reasoning. Our code will be available at https://github.com/zhangquanchen/3DThinker.

Authors:Chunyang Li, Yilun Zheng, Xinting Huang, Tianqing Fang, Jiahao Xu, Yangqiu Song, Lihui Chen, Han Hu
Title: WebDevJudge: Evaluating (M)LLMs as Critiques for Web Development Quality
Abstract:
The paradigm of LLM-as-a-judge is emerging as a scalable and efficient alternative to human evaluation, demonstrating strong performance on well-defined tasks. However, its reliability in open-ended tasks with dynamic environments and complex interactions remains unexplored. To bridge the gap, we introduce WebDevJudge, a systematic benchmark for assessing LLM-as-a-judge performance in web development, with support for both non-interactive evaluation based on static observations and continuous interactive evaluation with a dynamic web environment. WebDevJudge comprises human preference labels over paired web implementations, annotated with structured and query-grounded rubrics to ensure high-quality ground truth. Using this benchmark, we comprehensively evaluate various evaluators, including LLMs, MLLMs, and agentic workflows. We systematically investigate the impact of different paradigms and guidance mechanisms. Our experiments reveal a significant gap between LLM judges and human experts. In-depth analysis indicates this gap stems from fundamental model limitations, including failures in recognizing functional equivalence, verifying task feasibility, and mitigating bias. Overall, WebDevJudge presents a significant challenge to LLM-as-a-judge, offering insights to guide future research toward developing more reliable and capable automated evaluators for complicated scenarios. Code and data are available at https://github.com/lcy2723/WebDevJudge.

Authors:Loc Phuc Truong Nguyen, Hung Thanh Do
Title: RAISE: A Unified Framework for Responsible AI Scoring and Evaluation
Abstract:
As AI systems enter high-stakes domains, evaluation must extend beyond predictive accuracy to include explainability, fairness, robustness, and sustainability. We introduce RAISE (Responsible AI Scoring and Evaluation), a unified framework that quantifies model performance across these four dimensions and aggregates them into a single, holistic Responsibility Score. We evaluated three deep learning models: a Multilayer Perceptron (MLP), a Tabular ResNet, and a Feature Tokenizer Transformer, on structured datasets from finance, healthcare, and socioeconomics. Our findings reveal critical trade-offs: the MLP demonstrated strong sustainability and robustness, the Transformer excelled in explainability and fairness at a very high environmental cost, and the Tabular ResNet offered a balanced profile. These results underscore that no single model dominates across all responsibility criteria, highlighting the necessity of multi-dimensional evaluation for responsible model selection. Our implementation is available at: https://github.com/raise-framework/raise.

Authors:Lianchen Jia, Chaoyang Li, Qian Houde, Tianchi Huang, Jiangchuan Liu, Lifeng Sun
Title: Crucible: Quantifying the Potential of Control Algorithms through LLM Agents
Abstract:
Control algorithms in production environments typically require domain experts to tune their parameters and logic for specific scenarios. However, existing research predominantly focuses on algorithmic performance under ideal or default configurations, overlooking the critical aspect of Tuning Potential. To bridge this gap, we introduce Crucible, an agent that employs an LLM-driven, multi-level expert simulation to turn algorithms and defines a formalized metric to quantitatively evaluate their Tuning Potential. We demonstrate Crucible's effectiveness across a wide spectrum of case studies, from classic control tasks to complex computer systems, and validate its findings in a real-world deployment. Our experimental results reveal that Crucible systematically quantifies the tunable space across different algorithms. Furthermore, Crucible provides a new dimension for algorithm analysis and design, which ultimately leads to performance improvements. Our code is available at https://github.com/thu-media/Crucible.

Authors:Minwei Kong, Ao Qu, Xiaotong Guo, Wenbin Ouyang, Chonghe Jiang, Han Zheng, Yining Ma, Dingyi Zhuang, Yuhan Tang, Junyi Li, Hai Wang, Cathy Wu, Jinhua Zhao
Title: AlphaOPT: Formulating Optimization Programs with Self-Improving LLM Experience Library
Abstract:
Optimization modeling enables critical decisions across industries but remains difficult to automate: informal language must be mapped to precise mathematical formulations and executable solver code. Prior LLM approaches either rely on brittle prompting or costly retraining with limited generalization. We present AlphaOPT, a self-improving experience library that enables an LLM to learn from limited demonstrations (even answers alone, without gold-standard programs) and solver feedback - without annotated reasoning traces or parameter updates. AlphaOPT operates in a continual two-phase cycle: (i) a Library Learning phase that reflects on failed attempts, extracting solver-verified, structured insights as {taxonomy, condition, explanation, example}; and (ii) a Library Evolution phase that diagnoses retrieval misalignments and refines the applicability conditions of stored insights, improving transfer across tasks. This design (1) learns efficiently from limited demonstrations without curated rationales, (2) expands continually without costly retraining by updating the library rather than model weights, and (3) makes knowledge explicit and interpretable for human inspection and intervention. Experiments show that AlphaOPT steadily improves with more data (65% to 72% from 100 to 300 training items) and surpasses the strongest baseline by 7.7% on the out-of-distribution OptiBench dataset when trained only on answers. Code and data are available at: https://github.com/Minw913/AlphaOPT.

Authors:Xiaohan Qin, Xiaoxing Wang, Ning Liao, Junchi Yan
Title: NTKMTL: Mitigating Task Imbalance in Multi-Task Learning from Neural Tangent Kernel Perspective
Abstract:
Multi-Task Learning (MTL) enables a single model to learn multiple tasks simultaneously, leveraging knowledge transfer among tasks for enhanced generalization, and has been widely applied across various domains. However, task imbalance remains a major challenge in MTL. Although balancing the convergence speeds of different tasks is an effective approach to address this issue, it is highly challenging to accurately characterize the training dynamics and convergence speeds of multiple tasks within the complex MTL system. To this end, we attempt to analyze the training dynamics in MTL by leveraging Neural Tangent Kernel (NTK) theory and propose a new MTL method, NTKMTL. Specifically, we introduce an extended NTK matrix for MTL and adopt spectral analysis to balance the convergence speeds of multiple tasks, thereby mitigating task imbalance. Based on the approximation via shared representation, we further propose NTKMTL-SR, achieving training efficiency while maintaining competitive performance. Extensive experiments demonstrate that our methods achieve state-of-the-art performance across a wide range of benchmarks, including both multi-task supervised learning and multi-task reinforcement learning. Source code is available at https://github.com/jianke0604/NTKMTL.

Authors:Sion Weatherhead, Flora Salim, Aaron Belbasis
Title: Illusions of reflection: open-ended task reveals systematic failures in Large Language Models' reflective reasoning
Abstract:
Humans do not just find mistakes after the fact -- we often catch them mid-stream because 'reflection' is tied to the goal and its constraints. Today's large language models produce reasoning tokens and 'reflective' text, but is it functionally equivalent with human reflective reasoning? Prior work on closed-ended tasks -- with clear, external 'correctness' signals -- can make 'reflection' look effective while masking limits in self-correction. We therefore test eight frontier models on a simple, real-world task that is open-ended yet rule-constrained, with auditable success criteria: to produce valid scientific test items, then revise after considering their own critique. First-pass performance is poor (often zero valid items out of 4 required; mean $\approx$ 1), and reflection yields only modest gains (also $\approx$ 1). Crucially, the second attempt frequently repeats the same violation of constraint, indicating 'corrective gains' arise largely from chance production of a valid item rather than error detection and principled, constraint-sensitive repair. Performance before and after reflection deteriorates as open-endedness increases, and models marketed for 'reasoning' show no advantage. Our results suggest that current LLM 'reflection' lacks functional evidence of the active, goal-driven monitoring that helps humans respect constraints even on a first pass. Until such mechanisms are instantiated in the model itself, reliable performance requires external structure that enforces constraints. Our code is available at: https://github.com/cruiseresearchgroup/LLM_ReflectionTest

Authors:Joseph Bejjani, Chase Van Amburg, Chengrui Wang, Chloe Huangyuan Su, Sarah M. Pratt, Yasin Mazloumi, Naeem Khoshnevis, Sham M. Kakade, Kianté Brantley, Aaron Walsman
Title: The Emergence of Complex Behavior in Large-Scale Ecological Environments
Abstract:
We explore how physical scale and population size shape the emergence of complex behaviors in open-ended ecological environments. In our setting, agents are unsupervised and have no explicit rewards or learning objectives but instead evolve over time according to reproduction, mutation, and natural selection. As they act, agents also shape their environment and the population around them in an ongoing dynamic ecology. Our goal is not to optimize a single high-performance policy, but instead to examine how behaviors emerge and evolve across large populations due to natural competition and environmental pressures. In an effort to discover how complex behaviors naturally emerge, we conduct experiments in large-scale worlds that reach populations of more than 60,000 individual agents, each with their own evolved neural network policy. We identify various emergent behaviors such as long-range resource extraction, vision-based foraging, and predation that arise under competitive and survival pressures. We examine how sensing modalities and environmental scale affect the emergence of these behaviors, finding that some appear only in sufficiently large environments and populations, with larger scales increasing behavioral stability and consistency. While there is a rich history of research in evolutionary settings, our scaling results provide promising new directions to explore ecology as an instrument of machine learning in an era of abundant computational resources. Experimental code is available at https://github.com/jbejjani2022/ecological-emergent-behavior.

Authors:Xiangbo Gao, Tzu-Hsiang Lin, Ruojing Song, Yuheng Wu, Kuan-Ru Huang, Zicheng Jin, Fangzhou Lin, Shinan Liu, Zhengzhong Tu
Title: SafeCoop: Unravelling Full Stack Safety in Agentic Collaborative Driving
Abstract:
Collaborative driving systems leverage vehicle-to-everything (V2X) communication across multiple agents to enhance driving safety and efficiency. Traditional V2X systems take raw sensor data, neural features, or perception results as communication media, which face persistent challenges, including high bandwidth demands, semantic loss, and interoperability issues. Recent advances investigate natural language as a promising medium, which can provide semantic richness, decision-level reasoning, and human-machine interoperability at significantly lower bandwidth. Despite great promise, this paradigm shift also introduces new vulnerabilities within language communication, including message loss, hallucinations, semantic manipulation, and adversarial attacks. In this work, we present the first systematic study of full-stack safety and security issues in natural-language-based collaborative driving. Specifically, we develop a comprehensive taxonomy of attack strategies, including connection disruption, relay/replay interference, content spoofing, and multi-connection forgery. To mitigate these risks, we introduce an agentic defense pipeline, which we call SafeCoop, that integrates a semantic firewall, language-perception consistency checks, and multi-source consensus, enabled by an agentic transformation function for cross-frame spatial alignment. We systematically evaluate SafeCoop in closed-loop CARLA simulation across 32 critical scenarios, achieving 69.15% driving score improvement under malicious attacks and up to 67.32% F1 score for malicious detection. This study provides guidance for advancing research on safe, secure, and trustworthy language-driven collaboration in transportation systems. Our project page is https://xiangbogaobarry.github.io/SafeCoop.

Authors:Rohan Choudhury, JungEun Kim, Jinhyung Park, Eunho Yang, László A. Jeni, Kris M. Kitani
Title: Accelerating Vision Transformers with Adaptive Patch Sizes
Abstract:
Vision Transformers (ViTs) partition input images into uniformly sized patches regardless of their content, resulting in long input sequence lengths for high-resolution images. We present Adaptive Patch Transformers (APT), which addresses this by using multiple different patch sizes within the same image. APT reduces the total number of input tokens by allocating larger patch sizes in more homogeneous areas and smaller patches in more complex ones. APT achieves a drastic speedup in ViT inference and training, increasing throughput by 40% on ViT-L and 50% on ViT-H while maintaining downstream performance, and can be applied to a previously fine-tuned ViT, converging in as little as 1 epoch. It also significantly reduces training and inference time without loss of performance in high-resolution dense visual tasks, achieving up to 30\% faster training and inference in visual QA, object detection, and semantic segmentation.

Authors:Aymane Hassini
Title: DynaQuery: A Self-Adapting Framework for Querying Structured and Multimodal Data
Abstract:
The rise of Large Language Models (LLMs) has accelerated the long-standing goal of enabling natural language querying over complex, hybrid databases. Yet, this ambition exposes a dual challenge: reasoning jointly over structured, multi-relational schemas and the semantic content of linked unstructured assets. To overcome this, we present DynaQuery - a unified, self-adapting framework that serves as a practical blueprint for next-generation "Unbound Databases." At the heart of DynaQuery lies the Schema Introspection and Linking Engine (SILE), a novel systems primitive that elevates schema linking to a first-class query planning phase. We conduct a rigorous, multi-benchmark empirical evaluation of this structure-aware architecture against the prevalent unstructured Retrieval-Augmented Generation (RAG) paradigm. Our results demonstrate that the unstructured retrieval paradigm is architecturally susceptible to catastrophic contextual failures, such as SCHEMA_HALLUCINATION, leading to unreliable query generation. In contrast, our SILE-based design establishes a substantially more robust foundation, nearly eliminating this failure mode. Moreover, end-to-end validation on a complex, newly curated benchmark uncovers a key generalization principle: the transition from pure schema-awareness to holistic semantics-awareness. Taken together, our findings provide a validated architectural basis for developing natural language database interfaces that are robust, adaptable, and predictably consistent.

Authors:Nishant Subramani, Alfredo Gomez, Mona Diab
Title: SimBA: Simplifying Benchmark Analysis Using Performance Matrices Alone
Abstract:
Modern language models are evaluated on large benchmarks, which are difficult to make sense of, especially for model selection. Looking at the raw evaluation numbers themselves using a model-centric lens, we propose SimBA, a three phase framework to Simplify Benchmark Analysis. The three phases of SimBA are: stalk, where we conduct dataset & model comparisons, prowl, where we discover a representative subset, and pounce, where we use the representative subset to predict performance on a held-out set of models. Applying SimBA to three popular LM benchmarks: HELM, MMLU, and BigBenchLite reveals that across all three benchmarks, datasets and models relate strongly to one another (stalk). We develop an representative set discovery algorithm which covers a benchmark using raw evaluation scores alone. Using our algorithm, we find that with 6.25% (1/16), 1.7% (1/58), and 28.4% (21/74) of the datasets for HELM, MMLU, and BigBenchLite respectively, we achieve coverage levels of at least 95% (prowl). Additionally, using just these representative subsets, we can both preserve model ranks and predict performance on a held-out set of models with near zero mean-squared error (pounce). Taken together, SimBA can help model developers improve efficiency during model training and dataset creators validate whether their newly created dataset differs from existing datasets in a benchmark. Our code is open source, available at https://github.com/nishantsubramani/simba.

Authors:Fu-Yun Wang, Han Zhang, Michael Gharbi, Hongsheng Li, Taesung Park
Title: UniRL-Zero: Reinforcement Learning on Unified Models with Joint Language Model and Diffusion Model Experts
Abstract:
We present UniRL-Zero, a unified reinforcement learning (RL) framework that boosts, multimodal language model understanding and reasoning, diffusion model multimedia generation, and their beneficial interaction capabilities within a unified model. Our work defines six scenarios for unified model reinforcement learning, providing systematic baselines for reinforcement learning of unified understanding and generation model. Our code is available at https://github.com/G-U-N/UniRL.

Authors:Shuodi Liu, Yingzhuo Liu, Zi Wang, Yusheng Wang, Huijia Wu, Liuyu Xiang, Zhaofeng He
Title: Select-Then-Decompose: From Empirical Analysis to Adaptive Selection Strategy for Task Decomposition in Large Language Models
Abstract:
Large language models (LLMs) have demonstrated remarkable reasoning and planning capabilities, driving extensive research into task decomposition. Existing task decomposition methods focus primarily on memory, tool usage, and feedback mechanisms, achieving notable success in specific domains, but they often overlook the trade-off between performance and cost. In this study, we first conduct a comprehensive investigation on task decomposition, identifying six categorization schemes. Then, we perform an empirical analysis of three factors that influence the performance and cost of task decomposition: categories of approaches, characteristics of tasks, and configuration of decomposition and execution models, uncovering three critical insights and summarizing a set of practical principles. Building on this analysis, we propose the Select-Then-Decompose strategy, which establishes a closed-loop problem-solving process composed of three stages: selection, execution, and verification. This strategy dynamically selects the most suitable decomposition approach based on task characteristics and enhances the reliability of the results through a verification module. Comprehensive evaluations across multiple benchmarks show that the Select-Then-Decompose consistently lies on the Pareto frontier, demonstrating an optimal balance between performance and cost. Our code is publicly available at https://github.com/summervvind/Select-Then-Decompose.

Authors:Zheyuan Lin, Siqi Cai, Haizhou Li
Title: Decoding Listeners Identity: Person Identification from EEG Signals Using a Lightweight Spiking Transformer
Abstract:
EEG-based person identification enables applications in security, personalized brain-computer interfaces (BCIs), and cognitive monitoring. However, existing techniques often rely on deep learning architectures at high computational cost, limiting their scope of applications. In this study, we propose a novel EEG person identification approach using spiking neural networks (SNNs) with a lightweight spiking transformer for efficiency and effectiveness. The proposed SNN model is capable of handling the temporal complexities inherent in EEG signals. On the EEG-Music Emotion Recognition Challenge dataset, the proposed model achieves 100% classification accuracy with less than 10% energy consumption of traditional deep neural networks. This study offers a promising direction for energy-efficient and high-performance BCIs. The source code is available at https://github.com/PatrickZLin/Decode-ListenerIdentity.

Authors:Akshara Prabhakar, Roshan Ram, Zixiang Chen, Silvio Savarese, Frank Wang, Caiming Xiong, Huan Wang, Weiran Yao
Title: Enterprise Deep Research: Steerable Multi-Agent Deep Research for Enterprise Analytics
Abstract:
As information grows exponentially, enterprises face increasing pressure to transform unstructured data into coherent, actionable insights. While autonomous agents show promise, they often struggle with domain-specific nuances, intent alignment, and enterprise integration. We present Enterprise Deep Research (EDR), a multi-agent system that integrates (1) a Master Planning Agent for adaptive query decomposition, (2) four specialized search agents (General, Academic, GitHub, LinkedIn), (3) an extensible MCP-based tool ecosystem supporting NL2SQL, file analysis, and enterprise workflows, (4) a Visualization Agent for data-driven insights, and (5) a reflection mechanism that detects knowledge gaps and updates research direction with optional human-in-the-loop steering guidance. These components enable automated report generation, real-time streaming, and seamless enterprise deployment, as validated on internal datasets. On open-ended benchmarks including DeepResearch Bench and DeepConsult, EDR outperforms state-of-the-art agentic systems without any human steering. We release the EDR framework and benchmark trajectories to advance research on multi-agent reasoning applications. Code at https://github.com/SalesforceAIResearch/enterprise-deep-research and Dataset at https://huggingface.co/datasets/Salesforce/EDR-200

Authors:Yujie Luo, Zhuoyun Yu, Xuehai Wang, Yuqi Zhu, Ningyu Zhang, Lanning Wei, Lun Du, Da Zheng, Huajun Chen
Title: Executable Knowledge Graphs for Replicating AI Research
Abstract:
Replicating AI research is a crucial yet challenging task for large language model (LLM) agents. Existing approaches often struggle to generate executable code, primarily due to insufficient background knowledge and the limitations of retrieval-augmented generation (RAG) methods, which fail to capture latent technical details hidden in referenced papers. Furthermore, previous approaches tend to overlook valuable implementation-level code signals and lack structured knowledge representations that support multi-granular retrieval and reuse. To overcome these challenges, we propose Executable Knowledge Graphs (xKG), a modular and pluggable knowledge base that automatically integrates technical insights, code snippets, and domain-specific knowledge extracted from scientific literature. When integrated into three agent frameworks with two different LLMs, xKG shows substantial performance gains (10.9% with o3-mini) on PaperBench, demonstrating its effectiveness as a general and extensible solution for automated AI research replication. Code will released at https://github.com/zjunlp/xKG.

Authors:Gabriel B. Margolis, Michelle Wang, Nolan Fey, Pulkit Agrawal
Title: SoftMimic: Learning Compliant Whole-body Control from Examples
Abstract:
We introduce SoftMimic, a framework for learning compliant whole-body control policies for humanoid robots from example motions. Imitating human motions with reinforcement learning allows humanoids to quickly learn new skills, but existing methods incentivize stiff control that aggressively corrects deviations from a reference motion, leading to brittle and unsafe behavior when the robot encounters unexpected contacts. In contrast, SoftMimic enables robots to respond compliantly to external forces while maintaining balance and posture. Our approach leverages an inverse kinematics solver to generate an augmented dataset of feasible compliant motions, which we use to train a reinforcement learning policy. By rewarding the policy for matching compliant responses rather than rigidly tracking the reference motion, SoftMimic learns to absorb disturbances and generalize to varied tasks from a single motion clip. We validate our method through simulations and real-world experiments, demonstrating safe and effective interaction with the environment.

Authors:Haozhen Zhang, Tao Feng, Pengrui Han, Jiaxuan You
Title: AcademicEval: Live Long-Context LLM Benchmark
Abstract:
Large Language Models (LLMs) have recently achieved remarkable performance in long-context understanding. However, current long-context LLM benchmarks are limited by rigid context length, labor-intensive annotation, and the pressing challenge of label leakage issues during LLM training. Therefore, we propose \textsc{AcademicEval}, a live benchmark for evaluating LLMs over long-context generation tasks. \textsc{AcademicEval} adopts papers on arXiv to introduce several academic writing tasks with long-context inputs, \textit{i.e.}, \textsc{Title}, \textsc{Abstract}, \textsc{Introduction}, and \textsc{Related Work}, which cover a wide range of abstraction levels and require no manual labeling. Moreover, \textsc{AcademicEval} integrates high-quality and expert-curated few-shot demonstrations from a collected co-author graph to enable flexible context length. Especially, \textsc{AcademicEval} features an efficient live evaluation, ensuring no label leakage. We conduct a holistic evaluation on \textsc{AcademicEval}, and the results illustrate that LLMs perform poorly on tasks with hierarchical abstraction levels and tend to struggle with long few-shot demonstrations, highlighting the challenge of our benchmark. Through experimental analysis, we also reveal some insights for enhancing LLMs' long-context modeling capabilities. Code is available at https://github.com/ulab-uiuc/AcademicEval

Authors:Yaning Pan, Zekun Wang, Qianqian Xie, Yongqian Wen, Yuanxing Zhang, Guohui Zhang, Haoxuan Hu, Zhiyu Pan, Yibing Huang, Zhidong Gan, Yonghong Lin, An Ping, Tianhao Peng, Jiaheng Liu
Title: MT-Video-Bench: A Holistic Video Understanding Benchmark for Evaluating Multimodal LLMs in Multi-Turn Dialogues
Abstract:
The recent development of Multimodal Large Language Models (MLLMs) has significantly advanced AI's ability to understand visual modalities. However, existing evaluation benchmarks remain limited to single-turn question answering, overlooking the complexity of multi-turn dialogues in real-world scenarios. To bridge this gap, we introduce MT-Video-Bench, a holistic video understanding benchmark for evaluating MLLMs in multi-turn dialogues. Specifically, our MT-Video-Bench mainly assesses six core competencies that focus on perceptivity and interactivity, encompassing 987 meticulously curated multi-turn dialogues from diverse domains. These capabilities are rigorously aligned with real-world applications, such as interactive sports analysis and multi-turn video-based intelligent tutoring. With MT-Video-Bench, we extensively evaluate various state-of-the-art open-source and closed-source MLLMs, revealing their significant performance discrepancies and limitations in handling multi-turn video dialogues. The benchmark will be publicly available to foster future research.

Authors:Dayan Pan, Zhaoyang Fu, Jingyuan Wang, Xiao Han, Yue Zhu, Xiangyu Zhao
Title: Contextual Attention Modulation: Towards Efficient Multi-Task Adaptation in Large Language Models
Abstract:
Large Language Models (LLMs) possess remarkable generalization capabilities but struggle with multi-task adaptation, particularly in balancing knowledge retention with task-specific specialization. Conventional fine-tuning methods suffer from catastrophic forgetting and substantial resource consumption, while existing parameter-efficient methods perform suboptimally in complex multi-task scenarios. To address this, we propose Contextual Attention Modulation (CAM), a novel mechanism that dynamically modulates the representations of self-attention modules in LLMs. CAM enhances task-specific features while preserving general knowledge, thereby facilitating more effective and efficient adaptation. For effective multi-task adaptation, CAM is integrated into our Hybrid Contextual Attention Modulation (HyCAM) framework, which combines a shared, full-parameter CAM module with multiple specialized, lightweight CAM modules, enhanced by a dynamic routing strategy for adaptive knowledge fusion. Extensive experiments on heterogeneous tasks, including question answering, code generation, and logical reasoning, demonstrate that our approach significantly outperforms existing approaches, achieving an average performance improvement of 3.65%. The implemented code and data are available to ease reproducibility at https://github.com/Applied-Machine-Learning-Lab/HyCAM.

Authors:Min Cao, Xinyu Zhou, Ding Jiang, Bo Du, Mang Ye, Min Zhang
Title: Multilingual Text-to-Image Person Retrieval via Bidirectional Relation Reasoning and Aligning
Abstract:
Text-to-image person retrieval (TIPR) aims to identify the target person using textual descriptions, facing challenge in modality heterogeneity. Prior works have attempted to address it by developing cross-modal global or local alignment strategies. However, global methods typically overlook fine-grained cross-modal differences, whereas local methods require prior information to explore explicit part alignments. Additionally, current methods are English-centric, restricting their application in multilingual contexts. To alleviate these issues, we pioneer a multilingual TIPR task by developing a multilingual TIPR benchmark, for which we leverage large language models for initial translations and refine them by integrating domain-specific knowledge. Correspondingly, we propose Bi-IRRA: a Bidirectional Implicit Relation Reasoning and Aligning framework to learn alignment across languages and modalities. Within Bi-IRRA, a bidirectional implicit relation reasoning module enables bidirectional prediction of masked image and text, implicitly enhancing the modeling of local relations across languages and modalities, a multi-dimensional global alignment module is integrated to bridge the modality heterogeneity. The proposed method achieves new state-of-the-art results on all multilingual TIPR datasets. Data and code are presented in https://github.com/Flame-Chasers/Bi-IRRA.

Authors:Ludi Li, Junbin Mao, Hanhe Lin, Xu Tian, Fang-Xiang Wu, Jin Liu
Title: CEPerFed: Communication-Efficient Personalized Federated Learning for Multi-Pulse MRI Classification
Abstract:
Multi-pulse magnetic resonance imaging (MRI) is widely utilized for clinical practice such as Alzheimer's disease diagnosis. To train a robust model for multi-pulse MRI classification, it requires large and diverse data from various medical institutions while protecting privacy by preventing raw data sharing across institutions. Although federated learning (FL) is a feasible solution to address this issue, it poses challenges of model convergence due to the effect of data heterogeneity and substantial communication overhead due to large numbers of parameters transmitted within the model. To address these challenges, we propose CEPerFed, a communication-efficient personalized FL method. It mitigates the effect of data heterogeneity by incorporating client-side historical risk gradients and historical mean gradients to coordinate local and global optimization. The former is used to weight the contributions from other clients, enhancing the reliability of local updates, while the latter enforces consistency between local updates and the global optimization direction to ensure stable convergence across heterogeneous data distributions. To address the high communication overhead, we propose a hierarchical SVD (HSVD) strategy that transmits only the most critical information required for model updates. Experiments on five classification tasks demonstrate the effectiveness of the CEPerFed method. The code will be released upon acceptance at https://github.com/LD0416/CEPerFed.

Authors:Lindsay Spoor, Álvaro Serra-Gómez, Aske Plaat, Thomas Moerland
Title: An Empirical Study of Lagrangian Methods in Safe Reinforcement Learning
Abstract:
In safety-critical domains such as robotics, navigation and power systems, constrained optimization problems arise where maximizing performance must be carefully balanced with associated constraints. Safe reinforcement learning provides a framework to address these challenges, with Lagrangian methods being a popular choice. However, the effectiveness of Lagrangian methods crucially depends on the choice of the Lagrange multiplier $λ$, which governs the trade-off between return and constraint cost. A common approach is to update the multiplier automatically during training. Although this is standard in practice, there remains limited empirical evidence on the robustness of an automated update and its influence on overall performance. Therefore, we analyze (i) optimality and (ii) stability of Lagrange multipliers in safe reinforcement learning across a range of tasks. We provide $λ$-profiles that give a complete visualization of the trade-off between return and constraint cost of the optimization problem. These profiles show the highly sensitive nature of $λ$ and moreover confirm the lack of general intuition for choosing the optimal value $λ^*$. Our findings additionally show that automated multiplier updates are able to recover and sometimes even exceed the optimal performance found at $λ^*$ due to the vast difference in their learning trajectories. Furthermore, we show that automated multiplier updates exhibit oscillatory behavior during training, which can be mitigated through PID-controlled updates. However, this method requires careful tuning to achieve consistently better performance across tasks. This highlights the need for further research on stabilizing Lagrangian methods in safe reinforcement learning. The code used to reproduce our results can be found at https://github.com/lindsayspoor/Lagrangian_SafeRL.

Authors:Yongshun Zhang, Zhongyi Fan, Yonghang Zhang, Zhangzikang Li, Weifeng Chen, Zhongwei Feng, Chaoyue Wang, Peng Hou, Anxiang Zeng
Title: MUG-V 10B: High-efficiency Training Pipeline for Large Video Generation Models
Abstract:
In recent years, large-scale generative models for visual content (\textit{e.g.,} images, videos, and 3D objects/scenes) have made remarkable progress. However, training large-scale video generation models remains particularly challenging and resource-intensive due to cross-modal text-video alignment, the long sequences involved, and the complex spatiotemporal dependencies. To address these challenges, we present a training framework that optimizes four pillars: (i) data processing, (ii) model architecture, (iii) training strategy, and (iv) infrastructure for large-scale video generation models. These optimizations delivered significant efficiency gains and performance improvements across all stages of data preprocessing, video compression, parameter scaling, curriculum-based pretraining, and alignment-focused post-training. Our resulting model, MUG-V 10B, matches recent state-of-the-art video generators overall and, on e-commerce-oriented video generation tasks, surpasses leading open-source baselines in human evaluations. More importantly, we open-source the complete stack, including model weights, Megatron-Core-based large-scale training code, and inference pipelines for video generation and enhancement. To our knowledge, this is the first public release of large-scale video generation training code that exploits Megatron-Core to achieve high training efficiency and near-linear multi-node scaling, details are available in \href{https://github.com/Shopee-MUG/MUG-V}{our webpage}.

Authors:Chenxu Dang, Haiyan Liu, Guangjun Bao, Pei An, Xinyue Tang, Jie Ma, Bingchuan Sun, Yan Wang
Title: SparseWorld: A Flexible, Adaptive, and Efficient 4D Occupancy World Model Powered by Sparse and Dynamic Queries
Abstract:
Semantic occupancy has emerged as a powerful representation in world models for its ability to capture rich spatial semantics. However, most existing occupancy world models rely on static and fixed embeddings or grids, which inherently limit the flexibility of perception. Moreover, their ``in-place classification" over grids exhibits a potential misalignment with the dynamic and continuous nature of real scenarios.In this paper, we propose SparseWorld, a novel 4D occupancy world model that is flexible, adaptive, and efficient, powered by sparse and dynamic queries. We propose a Range-Adaptive Perception module, in which learnable queries are modulated by the ego vehicle states and enriched with temporal-spatial associations to enable extended-range perception. To effectively capture the dynamics of the scene, we design a State-Conditioned Forecasting module, which replaces classification-based forecasting with regression-guided formulation, precisely aligning the dynamic queries with the continuity of the 4D environment. In addition, We specifically devise a Temporal-Aware Self-Scheduling training strategy to enable smooth and efficient training. Extensive experiments demonstrate that SparseWorld achieves state-of-the-art performance across perception, forecasting, and planning tasks. Comprehensive visualizations and ablation studies further validate the advantages of SparseWorld in terms of flexibility, adaptability, and efficiency. The code is available at https://github.com/MSunDYY/SparseWorld.

Authors:Numaan Naeem, Abdellah El Mekki, Muhammad Abdul-Mageed
Title: EduAdapt: A Question Answer Benchmark Dataset for Evaluating Grade-Level Adaptability in LLMs
Abstract:
Large language models (LLMs) are transforming education by answering questions, explaining complex concepts, and generating content across a wide range of subjects. Despite strong performance on academic benchmarks, they often fail to tailor responses to students' grade levels. This is a critical need in K-12 education, where age-appropriate vocabulary and explanation are essential for effective learning. Existing models frequently produce outputs that are too advanced or vague for younger learners, and there are no standardized benchmarks to evaluate their ability to adjust across cognitive and developmental stages. To address this gap, we introduce EduAdapt, a benchmark of nearly 48k grade-labeled QA pairs across nine science subjects, spanning Grades 1-12 and grouped into four grade levels. We evaluate a diverse set of open-source LLMs on EduAdapt and find that while larger models generally perform better, they still struggle with generating suitable responses for early-grade students (Grades 1-5). Our work presents the first dataset and evaluation framework for assessing grade-level adaptability in LLMs, aiming to foster more developmentally aligned educational AI systems through better training and prompting strategies. EduAdapt code and datasets are publicly available at https://github.com/NaumanNaeem/EduAdapt.

Authors:Zhuo Cao, Heming Du, Bingqing Zhang, Xin Yu, Xue Li, Sen Wang
Title: When One Moment Isn't Enough: Multi-Moment Retrieval with Cross-Moment Interactions
Abstract:
Existing Moment retrieval (MR) methods focus on Single-Moment Retrieval (SMR). However, one query can correspond to multiple relevant moments in real-world applications. This makes the existing datasets and methods insufficient for video temporal grounding. By revisiting the gap between current MR tasks and real-world applications, we introduce a high-quality datasets called QVHighlights Multi-Moment Dataset (QV-M$^2$), along with new evaluation metrics tailored for multi-moment retrieval (MMR). QV-M$^2$ consists of 2,212 annotations covering 6,384 video segments. Building on existing efforts in MMR, we propose a framework called FlashMMR. Specifically, we propose a Multi-moment Post-verification module to refine the moment boundaries. We introduce constrained temporal adjustment and subsequently leverage a verification module to re-evaluate the candidate segments. Through this sophisticated filtering pipeline, low-confidence proposals are pruned, and robust multi-moment alignment is achieved. We retrain and evaluate 6 existing MR methods on QV-M$^2$ and QVHighlights under both SMR and MMR settings. Results show that QV-M$^2$ serves as an effective benchmark for training and evaluating MMR models, while FlashMMR provides a strong baseline. Specifically, on QV-M$^2$, it achieves improvements over prior SOTA method by 3.00% on G-mAP, 2.70% on mAP@3+tgt, and 2.56% on mR@3. The proposed benchmark and method establish a foundation for advancing research in more realistic and challenging video temporal grounding scenarios. Code is released at https://github.com/Zhuo-Cao/QV-M2.

Authors:Yingzi Han, Jiakai He, Chuanlong Xie, Jianping Li
Title: Benchmarking Out-of-Distribution Detection for Plankton Recognition: A Systematic Evaluation of Advanced Methods in Marine Ecological Monitoring
Abstract:
Automated plankton recognition models face significant challenges during real-world deployment due to distribution shifts (Out-of-Distribution, OoD) between training and test data. This stems from plankton's complex morphologies, vast species diversity, and the continuous discovery of novel species, which leads to unpredictable errors during inference. Despite rapid advancements in OoD detection methods in recent years, the field of plankton recognition still lacks a systematic integration of the latest computer vision developments and a unified benchmark for large-scale evaluation. To address this, this paper meticulously designed a series of OoD benchmarks simulating various distribution shift scenarios based on the DYB-PlanktonNet dataset \cite{875n-f104-21}, and systematically evaluated twenty-two OoD detection methods. Extensive experimental results demonstrate that the ViM \cite{wang2022vim} method significantly outperforms other approaches in our constructed benchmarks, particularly excelling in Far-OoD scenarios with substantial improvements in key metrics. This comprehensive evaluation not only provides a reliable reference for algorithm selection in automated plankton recognition but also lays a solid foundation for future research in plankton OoD detection. To our knowledge, this study marks the first large-scale, systematic evaluation and analysis of Out-of-Distribution data detection methods in plankton recognition. Code is available at https://github.com/BlackJack0083/PlanktonOoD.

Authors:Hongyi Du, Jiaqi Su, Jisen Li, Lijie Ding, Yingxuan Yang, Peixuan Han, Xiangru Tang, Kunlun Zhu, Jiaxuan You
Title: Which LLM Multi-Agent Protocol to Choose?
Abstract:
As large-scale multi-agent systems evolve, the communication protocol layer has become a critical yet under-evaluated factor shaping performance and reliability. Despite the existence of diverse protocols (A2A, ACP, ANP, Agora, etc.), selection is often intuition-driven and lacks standardized guidance. We introduce ProtocolBench, a benchmark that systematically compares agent protocols along four measurable axes: task success, end-to-end latency, message or byte overhead, and robustness under failures. On ProtocolBench, protocol choice significantly influences system behavior. In the Streaming Queue scenario, overall completion time varies by up to 36.5% across protocols, and mean end-to-end latency differs by 3.48 s. Under Fail-Storm Recovery, resilience also differs consistently across protocols. Beyond evaluation, we present ProtocolRouter, a learnable protocol router that selects per-scenario (or per-module) protocols from requirement and runtime signals. ProtocolRouter reduces Fail-Storm recovery time by up to 18.1% versus the best single-protocol baseline, and achieves scenario-specific gains such as higher success in GAIA. We also release ProtocolRouterBench to standardize protocol evaluation and improve reliability at scale.

Authors:Pingzhi Li, Morris Yu-Chao Huang, Zhen Tan, Qingquan Song, Jie Peng, Kai Zou, Yu Cheng, Kaidi Xu, Tianlong Chen
Title: Leave It to the Experts: Detecting Knowledge Distillation via MoE Expert Signatures
Abstract:
Knowledge Distillation (KD) accelerates training of large language models (LLMs) but poses intellectual property protection and LLM diversity risks. Existing KD detection methods based on self-identity or output similarity can be easily evaded through prompt engineering. We present a KD detection framework effective in both white-box and black-box settings by exploiting an overlooked signal: the transfer of MoE "structural habits", especially internal routing patterns. Our approach analyzes how different experts specialize and collaborate across various inputs, creating distinctive fingerprints that persist through the distillation process. To extend beyond the white-box setup and MoE architectures, we further propose Shadow-MoE, a black-box method that constructs proxy MoE representations via auxiliary distillation to compare these patterns between arbitrary model pairs. We establish a comprehensive, reproducible benchmark that offers diverse distilled checkpoints and an extensible framework to facilitate future research. Extensive experiments demonstrate >94% detection accuracy across various scenarios and strong robustness to prompt-based evasion, outperforming existing baselines while highlighting the structural habits transfer in LLMs.

Authors:Heming Zou, Yixiu Mao, Yun Qu, Qi Wang, Xiangyang Ji
Title: Utility-Diversity Aware Online Batch Selection for LLM Supervised Fine-tuning
Abstract:
Supervised fine-tuning (SFT) is a commonly used technique to adapt large language models (LLMs) to downstream tasks. In practice, SFT on a full dataset is computationally expensive and sometimes suffers from overfitting or bias amplification. This facilitates the rise of data curation in SFT, which prioritizes the most valuable data to optimze. This work studies the online batch selection family that dynamically scores and filters samples during the training process. However, existing popular methods often (i) rely merely on the utility of data to select a subset while neglecting other crucial factors like diversity, (ii) rely on external resources such as reference models or validation sets, and (iii) incur extra training time over full-dataset training. To address these limitations, this work develops \textbf{UDS (Utility-Diversity Sampling)}, a framework for efficient online batch selection in SFT. UDS leverages the nuclear norm of the logits matrix to capture both data utility and intra-sample diversity, while estimating inter-sample diversity through efficient low-dimensional embedding comparisons with a lightweight memory buffer of historical samples. Such a design eliminates the need for external resources and unnecessary backpropagation, securing computational efficiency. Experiments on multiple benchmarks demonstrate that UDS consistently outperforms state-of-the-art online batch selection methods under varying data budgets, and significantly reduces training time compared to full-dataset fine-tuning. Code is available at https://github.com/gfyddha/UDS.

Authors:Heming Zou, Yunliang Zang, Wutong Xu, Xiangyang Ji
Title: Fly-CL: A Fly-Inspired Framework for Enhancing Efficient Decorrelation and Reduced Training Time in Pre-trained Model-based Continual Representation Learning
Abstract:
Using a nearly-frozen pretrained model, the continual representation learning paradigm reframes parameter updates as a similarity-matching problem to mitigate catastrophic forgetting. However, directly leveraging pretrained features for downstream tasks often suffers from multicollinearity in the similarity-matching stage, and more advanced methods can be computationally prohibitive for real-time, low-latency applications. Inspired by the fly olfactory circuit, we propose Fly-CL, a bio-inspired framework compatible with a wide range of pretrained backbones. Fly-CL substantially reduces training time while achieving performance comparable to or exceeding that of current state-of-the-art methods. We theoretically show how Fly-CL progressively resolves multicollinearity, enabling more effective similarity matching with low time complexity. Extensive simulation experiments across diverse network architectures and data regimes validate Fly-CL's effectiveness in addressing this challenge through a biologically inspired design. Code is available at https://github.com/gfyddha/Fly-CL.

Authors:Shaolei Zhang, Ju Fan, Meihao Fan, Guoliang Li, Xiaoyong Du
Title: DeepAnalyze: Agentic Large Language Models for Autonomous Data Science
Abstract:
Autonomous data science, from raw data sources to analyst-grade deep research reports, has been a long-standing challenge, and is now becoming feasible with the emergence of powerful large language models (LLMs). Recent workflow-based data agents have shown promising results on specific data tasks but remain fundamentally limited in achieving fully autonomous data science due to their reliance on predefined workflows. In this paper, we introduce DeepAnalyze-8B, the first agentic LLM designed for autonomous data science, capable of automatically completing the end-toend pipeline from data sources to analyst-grade deep research reports. To tackle high-complexity data science tasks, we propose a curriculum-based agentic training paradigm that emulates the learning trajectory of human data scientists, enabling LLMs to progressively acquire and integrate multiple capabilities in real-world environments. We also introduce a data-grounded trajectory synthesis framework that constructs high-quality training data. Through agentic training, DeepAnalyze learns to perform a broad spectrum of data tasks, ranging from data question answering and specialized analytical tasks to open-ended data research. Experiments demonstrate that, with only 8B parameters, DeepAnalyze outperforms previous workflow-based agents built on most advanced proprietary LLMs. The model, code, and training data of DeepAnalyze are open-sourced, paving the way toward autonomous data science.

Authors:Zhoutong Wu, Yuan Zhang, Yiming Dong, Chenheng Zhang, Cong Fang, Kun Yuan, Zhouchen Lin
Title: Improving Model Representation and Reducing KV Cache via Skip Connections with First Value Heads
Abstract:
Transformer models have driven breakthroughs across various language tasks by their strong capability to learn rich contextual representations. Scaling them to improve representation, however, often demands substantial memory and compute costs, such as the Key-Value (KV) cache used during auto-regressive decoding. Skip connections offer a promising way to improve representation without bloating resource usage, yet most prior works either improve expressivity while leaving KV costs unchanged, or reduce memory at the cost of weaker representation. In this work, we propose SkipV1Former, a Transformer variant that uses skip connections from the first layer's Value heads to strengthen model representation and reduce KV cache. Specifically, from the second block onward, each layer reuses half of its Value heads from the very first layer, while computing the other half as usual-cutting Value projections and V cache by nearly 50 \%. Theoretically, we show that routing uncompressed first-layer Values into deeper layers restores information lost to compression and accelerates the model's implicit mesa-optimization-a key pattern of Transformer in auto-regressive tasks. Empirically, across different model scales, SkipV1Former delivers consistent reductions of approximately 25 \% in KV cache while improving perplexity relative to standard Multi-Head Attention (MHA) Transformers and some advanced variants. Moreover, we propose a recipe for uptraining existing MHA Transformer checkpoints to SkipV1Former with only 10-15\% additional compute. Finally, SkipV1Former can seamlessly combine advanced methods like Group-Query Attention and Multi-Latent Attention to achieve further KV cache savings and performance improvement. When combined with YOCO, it cuts KV cache size by nearly 50 \% while still improving performance.

Authors:Mingzheng Zhang, Jinfeng Gao, Dan Xu, Jiangrui Yu, Yuhan Qiao, Lan Chen, Jin Tang, Xiao Wang
Title: EMRRG: Efficient Fine-Tuning Pre-trained X-ray Mamba Networks for Radiology Report Generation
Abstract:
X-ray image-based medical report generation (MRG) is a pivotal area in artificial intelligence that can significantly reduce diagnostic burdens for clinicians and patient wait times. Existing MRG models predominantly rely on Large Language Models (LLMs) to improve report generation, with limited exploration of pre-trained vision foundation models or advanced fine-tuning techniques. Mainstream frameworks either avoid fine-tuning or utilize simplistic methods like LoRA, often neglecting the potential of enhancing cross-attention mechanisms. Additionally, while Transformer-based models dominate vision-language tasks, non-Transformer architectures, such as the Mamba network, remain underexplored for medical report generation, presenting a promising avenue for future research. In this paper, we propose EMRRG, a novel X-ray report generation framework that fine-tunes pre-trained Mamba networks using parameter-efficient methods. Specifically, X-ray images are divided into patches, tokenized, and processed by an SSM-based vision backbone for feature extraction, with Partial LoRA yielding optimal performance. An LLM with a hybrid decoder generates the medical report, enabling end-to-end training and achieving strong results on benchmark datasets. Extensive experiments on three widely used benchmark datasets fully validated the effectiveness of our proposed strategies for the X-ray MRG. The source code of this paper will be released on https://github.com/Event-AHU/Medical_Image_Analysis.

Authors:Thuy Phuong Vu, Dinh-Cuong Hoang, Minhhuy Le, Phan Xuan Tan
Title: Region in Context: Text-condition Image editing with Human-like semantic reasoning
Abstract:
Recent research has made significant progress in localizing and editing image regions based on text. However, most approaches treat these regions in isolation, relying solely on local cues without accounting for how each part contributes to the overall visual and semantic composition. This often results in inconsistent edits, unnatural transitions, or loss of coherence across the image. In this work, we propose Region in Context, a novel framework for text-conditioned image editing that performs multilevel semantic alignment between vision and language, inspired by the human ability to reason about edits in relation to the whole scene. Our method encourages each region to understand its role within the global image context, enabling precise and harmonized changes. At its core, the framework introduces a dual-level guidance mechanism: regions are represented with full-image context and aligned with detailed region-level descriptions, while the entire image is simultaneously matched to a comprehensive scene-level description generated by a large vision-language model. These descriptions serve as explicit verbal references of the intended content, guiding both local modifications and global structure. Experiments show that it produces more coherent and instruction-aligned results. Code is available at: https://github.com/thuyvuphuong/Region-in-Context.git

Authors:Minhua Lin, Zongyu Wu, Zhichao Xu, Hui Liu, Xianfeng Tang, Qi He, Charu Aggarwal, Hui Liu, Xiang Zhang, Suhang Wang
Title: A Comprehensive Survey on Reinforcement Learning-based Agentic Search: Foundations, Roles, Optimizations, Evaluations, and Applications
Abstract:
The advent of large language models (LLMs) has transformed information access and reasoning through open-ended natural language interaction. However, LLMs remain limited by static knowledge, factual hallucinations, and the inability to retrieve real-time or domain-specific information. Retrieval-Augmented Generation (RAG) mitigates these issues by grounding model outputs in external evidence, but traditional RAG pipelines are often single turn and heuristic, lacking adaptive control over retrieval and reasoning. Recent advances in agentic search address these limitations by enabling LLMs to plan, retrieve, and reflect through multi-step interaction with search environments. Within this paradigm, reinforcement learning (RL) offers a powerful mechanism for adaptive and self-improving search behavior. This survey provides the first comprehensive overview of \emph{RL-based agentic search}, organizing the emerging field along three complementary dimensions: (i) What RL is for (functional roles), (ii) How RL is used (optimization strategies), and (iii) Where RL is applied (scope of optimization). We summarize representative methods, evaluation protocols, and applications, and discuss open challenges and future directions toward building reliable and scalable RL driven agentic search systems. We hope this survey will inspire future research on the integration of RL and agentic search. Our repository is available at https://github.com/ventr1c/Awesome-RL-based-Agentic-Search-Papers.

Authors:Yejie Guo, Yunzhong Hou, Wufei Ma, Meng Tang, Ming-Hsuan Yang
Title: Pursuing Minimal Sufficiency in Spatial Reasoning
Abstract:
Spatial reasoning, the ability to ground language in 3D understanding, remains a persistent challenge for Vision-Language Models (VLMs). We identify two fundamental bottlenecks: inadequate 3D understanding capabilities stemming from 2D-centric pre-training, and reasoning failures induced by redundant 3D information. To address these, we first construct a Minimal Sufficient Set (MSS) of information before answering a given question: a compact selection of 3D perception results from \textit{expert models}. We introduce MSSR (Minimal Sufficient Spatial Reasoner), a dual-agent framework that implements this principle. A Perception Agent programmatically queries 3D scenes using a versatile perception toolbox to extract sufficient information, including a novel SOG (Situated Orientation Grounding) module that robustly extracts language-grounded directions. A Reasoning Agent then iteratively refines this information to pursue minimality, pruning redundant details and requesting missing ones in a closed loop until the MSS is curated. Extensive experiments demonstrate that our method, by explicitly pursuing both sufficiency and minimality, significantly improves accuracy and achieves state-of-the-art performance across two challenging benchmarks. Furthermore, our framework produces interpretable reasoning paths, offering a promising source of high-quality training data for future models. Source code is available at https://github.com/gyj155/mssr.

Authors:Tian Xia, Tianrun Gao, Wenhao Deng, Long Wei, Xiaowei Qian, Yixian Jiang, Chenglei Yu, Tailin Wu
Title: BuildArena: A Physics-Aligned Interactive Benchmark of LLMs for Engineering Construction
Abstract:
Engineering construction automation aims to transform natural language specifications into physically viable structures, requiring complex integrated reasoning under strict physical constraints. While modern LLMs possess broad knowledge and strong reasoning capabilities that make them promising candidates for this domain, their construction competencies remain largely unevaluated. To address this gap, we introduce BuildArena, the first physics-aligned interactive benchmark designed for language-driven engineering construction. It contributes to the community in four aspects: (1) a highly customizable benchmarking framework for in-depth comparison and analysis of LLMs; (2) an extendable task design strategy spanning static and dynamic mechanics across multiple difficulty tiers; (3) a 3D Spatial Geometric Computation Library for supporting construction based on language instructions; (4) a baseline LLM agentic workflow that effectively evaluates diverse model capabilities. On eight frontier LLMs, BuildArena comprehensively evaluates their capabilities for language-driven and physics-grounded construction automation. The project page is at https://build-arena.github.io/.

Authors:Jesús Ortega-Peimbert, Finn Lukas Busch, Timon Homberger, Quantao Yang, Olov Andersson
Title: DIV-Nav: Open-Vocabulary Spatial Relationships for Multi-Object Navigation
Abstract:
Advances in open-vocabulary semantic mapping and object navigation have enabled robots to perform an informed search of their environment for an arbitrary object. However, such zero-shot object navigation is typically designed for simple queries with an object name like "television" or "blue rug". Here, we consider more complex free-text queries with spatial relationships, such as "find the remote on the table" while still leveraging robustness of a semantic map. We present DIV-Nav, a real-time navigation system that efficiently addresses this problem through a series of relaxations: i) Decomposing natural language instructions with complex spatial constraints into simpler object-level queries on a semantic map, ii) computing the Intersection of individual semantic belief maps to identify regions where all objects co-exist, and iii) Validating the discovered objects against the original, complex spatial constrains via a LVLM. We further investigate how to adapt the frontier exploration objectives of online semantic mapping to such spatial search queries to more effectively guide the search process. We validate our system through extensive experiments on the MultiON benchmark and real-world deployment on a Boston Dynamics Spot robot using a Jetson Orin AGX. More details and videos are available at https://anonsub42.github.io/reponame/

Authors:Ze Tao, Jian Zhang, Haowei Li, Xianshuai Li, Yifei Peng, Xiyao Liu, Senzhang Wang, Chao Liu, Sheng Ren, Shichao Zhang
Title: Humanoid-inspired Causal Representation Learning for Domain Generalization
Abstract:
This paper proposes the Humanoid-inspired Structural Causal Model (HSCM), a novel causal framework inspired by human intelligence, designed to overcome the limitations of conventional domain generalization models. Unlike approaches that rely on statistics to capture data-label dependencies and learn distortion-invariant representations, HSCM replicates the hierarchical processing and multi-level learning of human vision systems, focusing on modeling fine-grained causal mechanisms. By disentangling and reweighting key image attributes such as color, texture, and shape, HSCM enhances generalization across diverse domains, ensuring robust performance and interpretability. Leveraging the flexibility and adaptability of human intelligence, our approach enables more effective transfer and learning in dynamic, complex environments. Through both theoretical and empirical evaluations, we demonstrate that HSCM outperforms existing domain generalization models, providing a more principled method for capturing causal relationships and improving model robustness. The code is available at https://github.com/lambett/HSCM.

Authors:Yilin Wu, Anqi Li, Tucker Hermans, Fabio Ramos, Andrea Bajcsy, Claudia P'erez-D'Arpino
Title: Do What You Say: Steering Vision-Language-Action Models via Runtime Reasoning-Action Alignment Verification
Abstract:
Reasoning Vision Language Action (VLA) models improve robotic instruction-following by generating step-by-step textual plans before low-level actions, an approach inspired by Chain-of-Thought (CoT) reasoning in language models. Yet even with a correct textual plan, the generated actions can still miss the intended outcomes in the plan, especially in out-of-distribution (OOD) scenarios. We formalize this phenomenon as a lack of embodied CoT faithfulness, and introduce a training-free, runtime policy steering method for reasoning-action alignment. Given a reasoning VLA's intermediate textual plan, our framework samples multiple candidate action sequences from the same model, predicts their outcomes via simulation, and uses a pre-trained Vision-Language Model (VLM) to select the sequence whose outcome best aligns with the VLA's own textual plan. Only executing action sequences that align with the textual reasoning turns our base VLA's natural action diversity from a source of error into a strength, boosting robustness to semantic and visual OOD perturbations and enabling novel behavior composition without costly re-training. We also contribute a reasoning-annotated extension of LIBERO-100, environment variations tailored for OOD evaluation, and demonstrate up to 15% performance gain over prior work on behavior composition tasks and scales with compute and data diversity. Project Website at: https://yilin-wu98.github.io/steering-reasoning-vla/

Authors:Jierui Peng, Yanyan Zhang, Yicheng Duan, Tuo Liang, Vipin Chaudhary, Yu Yin
Title: NEBULA: Do We Evaluate Vision-Language-Action Agents Correctly?
Abstract:
The evaluation of Vision-Language-Action (VLA) agents is hindered by the coarse, end-task success metric that fails to provide precise skill diagnosis or measure robustness to real-world perturbations. This challenge is exacerbated by a fragmented data landscape that impedes reproducible research and the development of generalist models. To address these limitations, we introduce \textbf{NEBULA}, a unified ecosystem for single-arm manipulation that enables diagnostic and reproducible evaluation. NEBULA features a novel dual-axis evaluation protocol that combines fine-grained \textit{capability tests} for precise skill diagnosis with systematic \textit{stress tests} that measure robustness. A standardized API and a large-scale, aggregated dataset are provided to reduce fragmentation and support cross-dataset training and fair comparison. Using NEBULA, we demonstrate that top-performing VLAs struggle with key capabilities such as spatial reasoning and dynamic adaptation, which are consistently obscured by conventional end-task success metrics. By measuring both what an agent can do and when it does so reliably, NEBULA provides a practical foundation for robust, general-purpose embodied agents.

Authors:Sarah Egler, John Schulman, Nicholas Carlini
Title: Detecting Adversarial Fine-tuning with Auditing Agents
Abstract:
Large Language Model (LLM) providers expose fine-tuning APIs that let end users fine-tune their frontier LLMs. Unfortunately, it has been shown that an adversary with fine-tuning access to an LLM can bypass safeguards. Particularly concerning, such attacks may avoid detection with datasets that are only implicitly harmful. Our work studies robust detection mechanisms for adversarial use of fine-tuning APIs. We introduce the concept of a fine-tuning auditing agent and show it can detect harmful fine-tuning prior to model deployment. We provide our auditing agent with access to the fine-tuning dataset, as well as the fine-tuned and pre-fine-tuned models, and request the agent assigns a risk score for the fine-tuning job. We evaluate our detection approach on a diverse set of eight strong fine-tuning attacks from the literature, along with five benign fine-tuned models, totaling over 1400 independent audits. These attacks are undetectable with basic content moderation on the dataset, highlighting the challenge of the task. With the best set of affordances, our auditing agent achieves a 56.2% detection rate of adversarial fine-tuning at a 1% false positive rate. Most promising, the auditor is able to detect covert cipher attacks that evade safety evaluations and content moderation of the dataset. While benign fine-tuning with unintentional subtle safety degradation remains a challenge, we establish a baseline configuration for further work in this area. We release our auditing agent at https://github.com/safety-research/finetuning-auditor.

Authors:Sayan Deb Sarkar, Sinisa Stekovic, Vincent Lepetit, Iro Armeni
Title: GuideFlow3D: Optimization-Guided Rectified Flow For Appearance Transfer
Abstract:
Transferring appearance to 3D assets using different representations of the appearance object - such as images or text - has garnered interest due to its wide range of applications in industries like gaming, augmented reality, and digital content creation. However, state-of-the-art methods still fail when the geometry between the input and appearance objects is significantly different. A straightforward approach is to directly apply a 3D generative model, but we show that this ultimately fails to produce appealing results. Instead, we propose a principled approach inspired by universal guidance. Given a pretrained rectified flow model conditioned on image or text, our training-free method interacts with the sampling process by periodically adding guidance. This guidance can be modeled as a differentiable loss function, and we experiment with two different types of guidance including part-aware losses for appearance and self-similarity. Our experiments show that our approach successfully transfers texture and geometric details to the input 3D asset, outperforming baselines both qualitatively and quantitatively. We also show that traditional metrics are not suitable for evaluating the task due to their inability of focusing on local details and comparing dissimilar inputs, in absence of ground truth data. We thus evaluate appearance transfer quality with a GPT-based system objectively ranking outputs, ensuring robust and human-like assessment, as further confirmed by our user study. Beyond showcased scenarios, our method is general and could be extended to different types of diffusion models and guidance functions.

Authors:Eleni Straitouri, Stratis Tsirtsis, Ander Artola Velasco, Manuel Gomez-Rodriguez
Title: Narrowing Action Choices with AI Improves Human Sequential Decisions
Abstract:
Recent work has shown that, in classification tasks, it is possible to design decision support systems that do not require human experts to understand when to cede agency to a classifier or when to exercise their own agency to achieve complementarity$\unicode{x2014}$experts using these systems make more accurate predictions than those made by the experts or the classifier alone. The key principle underpinning these systems reduces to adaptively controlling the level of human agency, by design. Can we use the same principle to achieve complementarity in sequential decision making tasks? In this paper, we answer this question affirmatively. We develop a decision support system that uses a pre-trained AI agent to narrow down the set of actions a human can take to a subset, and then asks the human to take an action from this action set. Along the way, we also introduce a bandit algorithm that leverages the smoothness properties of the action sets provided by our system to efficiently optimize the level of human agency. To evaluate our decision support system, we conduct a large-scale human subject study ($n = 1{,}600$) where participants play a wildfire mitigation game. We find that participants who play the game supported by our system outperform those who play on their own by $\sim$$30$% and the AI agent used by our system by $>$$2$%, even though the AI agent largely outperforms participants playing without support. We have made available the data gathered in our human subject study as well as an open source implementation of our system at https://github.com/Networks-Learning/narrowing-action-choices .

Authors:William Hoy, Nurcin Celik
Title: STABLE: Gated Continual Learning for Large Language Models
Abstract:
Large language models (LLMs) increasingly require mechanisms for continual adaptation without full retraining. However, sequential updates can lead to catastrophic forgetting, where new edits degrade previously acquired knowledge. This work presents STABLE, a gated continual self editing framework that constrains forgetting during sequential updates using parameter efficient fine tuning via Low Rank Adaptation (LoRA; see arXiv:2106.09685). Each candidate edit is evaluated against a stability budget using one of three metrics: (i) Exact Match (EM) drop, capturing factual accuracy loss; (ii) bits increase, reflecting reduced model confidence; and (iii) KL divergence, quantifying distributional drift between the base and adapted models. If a threshold is exceeded, the LoRA update is rescaled through a clipping procedure or rejected. Experiments on the Qwen-2.5-7B model show that gating effectively mitigates forgetting while preserving adaptability. EM based gating achieved the highest cumulative performance in short continual learning sequences. Our results show that different gating strategies can achieve comparable distribution shift (measured by KL divergence) while producing different accuracy outcomes, highlighting the importance of gating design in continual adaptation. This approach offers a principled method for continual model editing, enabling LLMs to integrate new knowledge while maintaining reliability. Code: https://github.com/Bhoy1/STABLE

Authors:Kerem Delikoyun, Qianyu Chen, Win Sen Kuan, John Tshon Yit Soong, Matthew Edward Cove, Oliver Hayden
Title: TriAgent: Automated Biomarker Discovery with Deep Research Grounding for Triage in Acute Care by LLM-Based Multi-Agent Collaboration
Abstract:
Emergency departments worldwide face rising patient volumes, workforce shortages, and variability in triage decisions that threaten the delivery of timely and accurate care. Current triage methods rely primarily on vital signs, routine laboratory values, and clinicians' judgment, which, while effective, often miss emerging biological signals that could improve risk prediction for infection typing or antibiotic administration in acute conditions. To address this challenge, we introduce TriAgent, a large language model (LLM)-based multi-agent framework that couples automated biomarker discovery with deep research for literature-grounded validation and novelty assessment. TriAgent employs a supervisor research agent to generate research topics and delegate targeted queries to specialized sub-agents for evidence retrieval from various data sources. Findings are synthesized to classify biomarkers as either grounded in existing knowledge or flagged as novel candidates, offering transparent justification and highlighting unexplored pathways in acute care risk stratification. Unlike prior frameworks limited to existing routine clinical biomarkers, TriAgent aims to deliver an end-to-end framework from data analysis to literature grounding to improve transparency, explainability and expand the frontier of potentially actionable clinical biomarkers. Given a user's clinical query and quantitative triage data, TriAgent achieved a topic adherence F1 score of 55.7 +/- 5.0%, surpassing the CoT-ReAct agent by over 10%, and a faithfulness score of 0.42 +/- 0.39, exceeding all baselines by more than 50%. Across experiments, TriAgent consistently outperformed state-of-the-art LLM-based agentic frameworks in biomarker justification and literature-grounded novelty assessment. We share our repo: https://github.com/CellFace/TriAgent.

Authors:Rong Wu, Xiaoman Wang, Jianbiao Mei, Pinlong Cai, Daocheng Fu, Cheng Yang, Licheng Wen, Xuemeng Yang, Yufan Shen, Yuxin Wang, Botian Shi
Title: EvolveR: Self-Evolving LLM Agents through an Experience-Driven Lifecycle
Abstract:
Current Large Language Model (LLM) agents show strong performance in tool use, but lack the crucial capability to systematically learn from their own experiences. While existing frameworks mainly focus on mitigating external knowledge gaps, they fail to address a more fundamental limitation: the inability to iteratively refine problem-solving strategies. In this work, we introduce EvolveR, a framework designed to enable agent to self-improve through a complete, closed-loop experience lifecycle. This lifecycle comprises two key stages: (1) Offline Self-Distillation, where the agent's interaction trajectories are synthesized into a structured repository of abstract, reusable strategic principles; (2) Online Interaction, where the agent interacts with tasks and actively retrieves distilled principles to guide its decision-making, accumulating a diverse set of behavioral trajectories. This loop employs a policy reinforcement mechanism to iteratively update the agent based on its performance. We demonstrate the effectiveness of EvolveR on complex multi-hop question-answering benchmarks, where it achieves superior performance over strong agentic baselines. Our work presents a comprehensive blueprint for agents that learn not only from external data but also from the consequences of their own actions, paving the way for more autonomous and continuously improving systems. Code is available at https://github.com/Edaizi/EvolveR.

Authors:SeongKu Kang, Jianxun Lian, Dongha Lee, Wonbin Kweon, Sanghwan Jang, Jaehyun Lee, Jindong Wang, Xing Xie, Hwanjo Yu
Title: BPL: Bias-adaptive Preference Distillation Learning for Recommender System
Abstract:
Recommender systems suffer from biases that cause the collected feedback to incompletely reveal user preference. While debiasing learning has been extensively studied, they mostly focused on the specialized (called counterfactual) test environment simulated by random exposure of items, significantly degrading accuracy in the typical (called factual) test environment based on actual user-item interactions. In fact, each test environment highlights the benefit of a different aspect: the counterfactual test emphasizes user satisfaction in the long-terms, while the factual test focuses on predicting subsequent user behaviors on platforms. Therefore, it is desirable to have a model that performs well on both tests rather than only one. In this work, we introduce a new learning framework, called Bias-adaptive Preference distillation Learning (BPL), to gradually uncover user preferences with dual distillation strategies. These distillation strategies are designed to drive high performance in both factual and counterfactual test environments. Employing a specialized form of teacher-student distillation from a biased model, BPL retains accurate preference knowledge aligned with the collected feedback, leading to high performance in the factual test. Furthermore, through self-distillation with reliability filtering, BPL iteratively refines its knowledge throughout the training process. This enables the model to produce more accurate predictions across a broader range of user-item combinations, thereby improving performance in the counterfactual test. Comprehensive experiments validate the effectiveness of BPL in both factual and counterfactual tests. Our implementation is accessible via: https://github.com/SeongKu-Kang/BPL.

Authors:Junyu Ren, Wensheng Gan, Guangyu Zhang, Wei Zhong, Philip S. Yu
Title: Global-focal Adaptation with Information Separation for Noise-robust Transfer Fault Diagnosis
Abstract:
Existing transfer fault diagnosis methods typically assume either clean data or sufficient domain similarity, which limits their effectiveness in industrial environments where severe noise interference and domain shifts coexist. To address this challenge, we propose an information separation global-focal adversarial network (ISGFAN), a robust framework for cross-domain fault diagnosis under noise conditions. ISGFAN is built on an information separation architecture that integrates adversarial learning with an improved orthogonal loss to decouple domain-invariant fault representation, thereby isolating noise interference and domain-specific characteristics. To further strengthen transfer robustness, ISGFAN employs a global-focal domain-adversarial scheme that constrains both the conditional and marginal distributions of the model. Specifically, the focal domain-adversarial component mitigates category-specific transfer obstacles caused by noise in unsupervised scenarios, while the global domain classifier ensures alignment of the overall distribution. Experiments conducted on three public benchmark datasets demonstrate that the proposed method outperforms other prominent existing approaches, confirming the superiority of the ISGFAN framework. Data and code are available at https://github.com/JYREN-Source/ISGFAN

Authors:Zexi Tan, Tao Xie, Binbin Sun, Xiang Zhang, Yiqun Zhang, Yiu-Ming Cheung
Title: MEET-Sepsis: Multi-Endogenous-View Enhanced Time-Series Representation Learning for Early Sepsis Prediction Representation Learning for Early Sepsis Prediction
Abstract:
Sepsis is a life-threatening infectious syndrome associated with high mortality in intensive care units (ICUs). Early and accurate sepsis prediction (SP) is critical for timely intervention, yet remains challenging due to subtle early manifestations and rapidly escalating mortality. While AI has improved SP efficiency, existing methods struggle to capture weak early temporal signals. This paper introduces a Multi-Endogenous-view Representation Enhancement (MERE) mechanism to construct enriched feature views, coupled with a Cascaded Dual-convolution Time-series Attention (CDTA) module for multi-scale temporal representation learning. The proposed MEET-Sepsis framework achieves competitive prediction accuracy using only 20% of the ICU monitoring time required by SOTA methods, significantly advancing early SP. Extensive validation confirms its efficacy. Code is available at: https://github.com/yueliangy/MEET-Sepsis.

Authors:Rafael Cabral, Tuan Manh Do, Xuejun Yu, Wai Ming Tai, Zijin Feng, Xin Shen
Title: ProofFlow: A Dependency Graph Approach to Faithful Proof Autoformalization
Abstract:
Proof autoformalization, the task of translating natural language theorems and proofs into machine-verifiable code, is a critical step for integrating large language models into rigorous mathematical workflows. Current approaches focus on producing executable code, but they frequently fail to preserve the semantic meaning and logical structure of the original human-written argument. To address this, we introduce ProofFlow, a novel pipeline that treats structural fidelity as a primary objective. ProofFlow first constructs a directed acyclic graph (DAG) to map the logical dependencies between proof steps. Then, it employs a novel lemma-based approach to systematically formalize each step as an intermediate lemma, preserving the logical structure of the original argument. To facilitate evaluation, we present a new benchmark of 184 undergraduate-level problems, manually annotated with step-by-step solutions and logical dependency graphs, and introduce ProofScore, a new composite metric to evaluate syntactic correctness, semantic faithfulness, and structural fidelity. Experimental results show our pipeline sets a new state-of-the-art for autoformalization, achieving a ProofScore of 0.545, substantially exceeding baselines like full-proof formalization (0.123), which processes the entire proof at once, and step-proof formalization (0.072), which handles each step independently. Our pipeline, benchmark, and score metric are open-sourced to encourage further progress at https://github.com/Huawei-AI4Math/ProofFlow.

Authors:Chenrui Wang, Junyi Shu, Billy Chiu, Yu Li, Saleh Alharbi, Min Zhang, Jing Li
Title: Learning to Watermark: A Selective Watermarking Framework for Large Language Models via Multi-Objective Optimization
Abstract:
The rapid development of LLMs has raised concerns about their potential misuse, leading to various watermarking schemes that typically offer high detectability. However, existing watermarking techniques often face trade-off between watermark detectability and generated text quality. In this paper, we introduce Learning to Watermark (LTW), a novel selective watermarking framework that leverages multi-objective optimization to effectively balance these competing goals. LTW features a lightweight network that adaptively decides when to apply the watermark by analyzing sentence embeddings, token entropy, and current watermarking ratio. Training of the network involves two specifically constructed loss functions that guide the model toward Pareto-optimal solutions, thereby harmonizing watermark detectability and text quality. By integrating LTW with two baseline watermarking methods, our experimental evaluations demonstrate that LTW significantly enhances text quality without compromising detectability. Our selective watermarking approach offers a new perspective for designing watermarks for LLMs and a way to preserve high text quality for watermarks. The code is publicly available at: https://github.com/fattyray/learning-to-watermark

Authors:Zhengyi Zhong, Wenzheng Jiang, Weidong Bao, Ji Wang, Cheems Wang, Guanbo Wang, Yongheng Deng, Ju Ren
Title: Gains: Fine-grained Federated Domain Adaptation in Open Set
Abstract:
Conventional federated learning (FL) assumes a closed world with a fixed total number of clients. In contrast, new clients continuously join the FL process in real-world scenarios, introducing new knowledge. This raises two critical demands: detecting new knowledge, i.e., knowledge discovery, and integrating it into the global model, i.e., knowledge adaptation. Existing research focuses on coarse-grained knowledge discovery, and often sacrifices source domain performance and adaptation efficiency. To this end, we propose a fine-grained federated domain adaptation approach in open set (Gains). Gains splits the model into an encoder and a classifier, empirically revealing features extracted by the encoder are sensitive to domain shifts while classifier parameters are sensitive to class increments. Based on this, we develop fine-grained knowledge discovery and contribution-driven aggregation techniques to identify and incorporate new knowledge. Additionally, an anti-forgetting mechanism is designed to preserve source domain performance, ensuring balanced adaptation. Experimental results on multi-domain datasets across three typical data-shift scenarios demonstrate that Gains significantly outperforms other baselines in performance for both source-domain and target-domain clients. Code is available at: https://github.com/Zhong-Zhengyi/Gains.

Authors:Hanrong Ye, Chao-Han Huck Yang, Arushi Goel, Wei Huang, Ligeng Zhu, Yuanhang Su, Sean Lin, An-Chieh Cheng, Zhen Wan, Jinchuan Tian, Yuming Lou, Dong Yang, Zhijian Liu, Yukang Chen, Ambrish Dantrey, Ehsan Jahangiri, Sreyan Ghosh, Daguang Xu, Ehsan Hosseini-Asl, Danial Mohseni Taheri, Vidya Murali, Sifei Liu, Jason Lu, Oluwatobi Olabiyi, Frank Wang, Rafael Valle, Bryan Catanzaro, Andrew Tao, Song Han, Jan Kautz, Hongxu Yin, Pavlo Molchanov
Title: OmniVinci: Enhancing Architecture and Data for Omni-Modal Understanding LLM
Abstract:
Advancing machine intelligence requires developing the ability to perceive across multiple modalities, much as humans sense the world. We introduce OmniVinci, an initiative to build a strong, open-source, omni-modal LLM. We carefully study the design choices across model architecture and data curation. For model architecture, we present three key innovations: (i) OmniAlignNet for strengthening alignment between vision and audio embeddings in a shared omni-modal latent space; (ii) Temporal Embedding Grouping for capturing relative temporal alignment between vision and audio signals; and (iii) Constrained Rotary Time Embedding for encoding absolute temporal information in omni-modal embeddings. We introduce a curation and synthesis pipeline that generates 24M single-modal and omni-modal conversations. We find that modalities reinforce one another in both perception and reasoning. Our model, OmniVinci, outperforms Qwen2.5-Omni with +19.05 on DailyOmni (cross-modal understanding), +1.7 on MMAR (audio), and +3.9 on Video-MME (vision), while using just 0.2T training tokens - a 6 times reduction compared to Qwen2.5-Omni's 1.2T. We finally demonstrate omni-modal advantages in downstream applications spanning robotics, medical AI, and smart factory.

Authors:Yi Wan, Jiuqi Wang, Liam Li, Jinsong Liu, Ruihao Zhu, Zheqing Zhu
Title: PokeeResearch: Effective Deep Research via Reinforcement Learning from AI Feedback and Robust Reasoning Scaffold
Abstract:
Tool-augmented large language models (LLMs) are emerging as deep research agents, systems that decompose complex queries, retrieve external evidence, and synthesize grounded responses. Yet current agents remain limited by shallow retrieval, weak alignment metrics, and brittle tool-use behavior. We introduce PokeeResearch-7B, a 7B-parameter deep research agent built under a unified reinforcement learning framework for robustness, alignment, and scalability. PokeeResearch-7B is trained by an annotation-free Reinforcement Learning from AI Feedback (RLAIF) framework to optimize policies using LLM-based reward signals that capture factual accuracy, citation faithfulness, and instruction adherence. A chain-of-thought-driven multi-call reasoning scaffold further enhances robustness through self-verification and adaptive recovery from tool failures. Among 10 popular deep research benchmarks, PokeeResearch-7B achieves state-of-the-art performance among 7B-scale deep research agents. This highlights that careful reinforcement learning and reasoning design can produce efficient, resilient, and research-grade AI agents. The model and inference code is open-sourced under MIT license at https://github.com/Pokee-AI/PokeeResearchOSS.

Authors:Yitong Sun, Yao Huang, Ruochen Zhang, Huanran Chen, Shouwei Ruan, Ranjie Duan, Xingxing Wei
Title: NDM: A Noise-driven Detection and Mitigation Framework against Implicit Sexual Intentions in Text-to-Image Generation
Abstract:
Despite the impressive generative capabilities of text-to-image (T2I) diffusion models, they remain vulnerable to generating inappropriate content, especially when confronted with implicit sexual prompts. Unlike explicit harmful prompts, these subtle cues, often disguised as seemingly benign terms, can unexpectedly trigger sexual content due to underlying model biases, raising significant ethical concerns. However, existing detection methods are primarily designed to identify explicit sexual content and therefore struggle to detect these implicit cues. Fine-tuning approaches, while effective to some extent, risk degrading the model's generative quality, creating an undesirable trade-off. To address this, we propose NDM, the first noise-driven detection and mitigation framework, which could detect and mitigate implicit malicious intention in T2I generation while preserving the model's original generative capabilities. Specifically, we introduce two key innovations: first, we leverage the separability of early-stage predicted noise to develop a noise-based detection method that could identify malicious content with high accuracy and efficiency; second, we propose a noise-enhanced adaptive negative guidance mechanism that could optimize the initial noise by suppressing the prominent region's attention, thereby enhancing the effectiveness of adaptive negative guidance for sexual mitigation. Experimentally, we validate NDM on both natural and adversarial datasets, demonstrating its superior performance over existing SOTA methods, including SLD, UCE, and RECE, etc. Code and resources are available at https://github.com/lorraine021/NDM.

Authors:Tingyu Lin, Armin Dadras, Florian Kleber, Robert Sablatnig
Title: DGME-T: Directional Grid Motion Encoding for Transformer-Based Historical Camera Movement Classification
Abstract:
Camera movement classification (CMC) models trained on contemporary, high-quality footage often degrade when applied to archival film, where noise, missing frames, and low contrast obscure motion cues. We bridge this gap by assembling a unified benchmark that consolidates two modern corpora into four canonical classes and restructures the HISTORIAN collection into five balanced categories. Building on this benchmark, we introduce DGME-T, a lightweight extension to the Video Swin Transformer that injects directional grid motion encoding, derived from optical flow, via a learnable and normalised late-fusion layer. DGME-T raises the backbone's top-1 accuracy from 81.78% to 86.14% and its macro F1 from 82.08% to 87.81% on modern clips, while still improving the demanding World-War-II footage from 83.43% to 84.62% accuracy and from 81.72% to 82.63% macro F1. A cross-domain study further shows that an intermediate fine-tuning stage on modern data increases historical performance by more than five percentage points. These results demonstrate that structured motion priors and transformer representations are complementary and that even a small, carefully calibrated motion head can substantially enhance robustness in degraded film analysis. Related resources are available at https://github.com/linty5/DGME-T.

Authors:Effrosyni Sokli, Pranav Kasela, Georgios Peikos, Gabriella Pasi
Title: Mixture of Experts Approaches in Dense Retrieval Tasks
Abstract:
Dense Retrieval Models (DRMs) are a prominent development in Information Retrieval (IR). A key challenge with these neural Transformer-based models is that they often struggle to generalize beyond the specific tasks and domains they were trained on. To address this challenge, prior research in IR incorporated the Mixture-of-Experts (MoE) framework within each Transformer layer of a DRM, which, though effective, substantially increased the number of additional parameters. In this paper, we propose a more efficient design, which introduces a single MoE block (SB-MoE) after the final Transformer layer. To assess the retrieval effectiveness of SB-MoE, we perform an empirical evaluation across three IR tasks. Our experiments involve two evaluation setups, aiming to assess both in-domain effectiveness and the model's zero-shot generalizability. In the first setup, we fine-tune SB-MoE with four different underlying DRMs on seven IR benchmarks and evaluate them on their respective test sets. In the second setup, we fine-tune SB-MoE on MSMARCO and perform zero-shot evaluation on thirteen BEIR datasets. Additionally, we perform further experiments to analyze the model's dependency on its hyperparameters (i.e., the number of employed and activated experts) and investigate how this variation affects SB-MoE's performance. The obtained results show that SB-MoE is particularly effective for DRMs with lightweight base models, such as TinyBERT and BERT-Small, consistently exceeding standard model fine-tuning across benchmarks. For DRMs with more parameters, such as BERT-Base and Contriever, our model requires a larger number of training samples to achieve improved retrieval performance. Our code is available online at: https://github.com/FaySokli/SB-MoE.

Authors:Ed Li, Junyu Ren, Xintian Pan, Cat Yan, Chuanhao Li, Dirk Bergemann, Zhuoran Yang
Title: Build Your Personalized Research Group: A Multiagent Framework for Continual and Interactive Science Automation
Abstract:
The automation of scientific discovery represents a critical milestone in Artificial Intelligence (AI) research. However, existing agentic systems for science suffer from two fundamental limitations: rigid, pre-programmed workflows that cannot adapt to intermediate findings, and inadequate context management that hinders long-horizon research. We present \texttt{freephdlabor}, an open-source multiagent framework featuring \textit{fully dynamic workflows} determined by real-time agent reasoning and a \coloremph{\textit{modular architecture}} enabling seamless customization -- users can modify, add, or remove agents to address domain-specific requirements. The framework provides comprehensive infrastructure including \textit{automatic context compaction}, \textit{workspace-based communication} to prevent information degradation, \textit{memory persistence} across sessions, and \textit{non-blocking human intervention} mechanisms. These features collectively transform automated research from isolated, single-run attempts into \textit{continual research programs} that build systematically on prior explorations and incorporate human feedback. By providing both the architectural principles and practical implementation for building customizable co-scientist systems, this work aims to facilitate broader adoption of automated research across scientific domains, enabling practitioners to deploy interactive multiagent systems that autonomously conduct end-to-end research -- from ideation through experimentation to publication-ready manuscripts.

Authors:Tingyu Lin, Marco Peer, Florian Kleber, Robert Sablatnig
Title: ClapperText: A Benchmark for Text Recognition in Low-Resource Archival Documents
Abstract:
This paper presents ClapperText, a benchmark dataset for handwritten and printed text recognition in visually degraded and low-resource settings. The dataset is derived from 127 World War II-era archival video segments containing clapperboards that record structured production metadata such as date, location, and camera-operator identity. ClapperText includes 9,813 annotated frames and 94,573 word-level text instances, 67% of which are handwritten and 1,566 are partially occluded. Each instance includes transcription, semantic category, text type, and occlusion status, with annotations available as rotated bounding boxes represented as 4-point polygons to support spatially precise OCR applications. Recognizing clapperboard text poses significant challenges, including motion blur, handwriting variation, exposure fluctuations, and cluttered backgrounds, mirroring broader challenges in historical document analysis where structured content appears in degraded, non-standard forms. We provide both full-frame annotations and cropped word images to support downstream tasks. Using a consistent per-video evaluation protocol, we benchmark six representative recognition and seven detection models under zero-shot and fine-tuned conditions. Despite the small training set (18 videos), fine-tuning leads to substantial performance gains, highlighting ClapperText's suitability for few-shot learning scenarios. The dataset offers a realistic and culturally grounded resource for advancing robust OCR and document understanding in low-resource archival contexts. The dataset and evaluation code are available at https://github.com/linty5/ClapperText.

Authors:Shijia Kang, Muhan Zhang
Title: The Road Less Traveled: Enhancing Exploration in LLMs via Sequential Sampling
Abstract:
Reinforcement learning (RL) has been pivotal in enhancing the reasoning capabilities of large language models (LLMs), but it often suffers from limited exploration and entropy collapse, where models exploit a narrow set of solutions, leading to a loss of sampling diversity and subsequently preventing RL from further improving performance. This issue is exacerbated in parallel sampling methods, where multiple outputs are drawn from the same distribution, potentially causing the model to converge to similar solutions. We propose SESA, a novel SEquential SAmpling framework that mitigates this challenge by generating diverse solution sketches sequentially before expanding them into full reasoning paths. This approach ensures broader exploration by conditioning each new output on previous ones, promoting diversity throughout the process and preventing policy collapse. Our experiments on a synthetic task show that sequential sampling consistently outperforms traditional RL methods in terms of path diversity and recovery from collapse. Further evaluations on real-world tasks demonstrate that SESA improves both the exploration of valid strategies and the overall performance of LLMs. On three agent benchmarks, SESA lifts success rates by $+0.25$, $+0.42$, and $+0.07$ absolute over the base model (up to an additional $211\%$ relative improvement over baseline RL), underscoring its exploration advantage. This work introduces a structured approach to exploration, paving the way for more effective and diverse reasoning in RL-trained LLMs. Our code is released at https://github.com/MuLabPKU/sesa.

Authors:Yao Huang, Yitong Sun, Yichi Zhang, Ruochen Zhang, Yinpeng Dong, Xingxing Wei
Title: DeceptionBench: A Comprehensive Benchmark for AI Deception Behaviors in Real-world Scenarios
Abstract:
Despite the remarkable advances of Large Language Models (LLMs) across diverse cognitive tasks, the rapid enhancement of these capabilities also introduces emergent deceptive behaviors that may induce severe risks in high-stakes deployments. More critically, the characterization of deception across realistic real-world scenarios remains underexplored. To bridge this gap, we establish DeceptionBench, the first benchmark that systematically evaluates how deceptive tendencies manifest across different societal domains, what their intrinsic behavioral patterns are, and how extrinsic factors affect them. Specifically, on the static count, the benchmark encompasses 150 meticulously designed scenarios in five domains, i.e., Economy, Healthcare, Education, Social Interaction, and Entertainment, with over 1,000 samples, providing sufficient empirical foundations for deception analysis. On the intrinsic dimension, we explore whether models exhibit self-interested egoistic tendencies or sycophantic behaviors that prioritize user appeasement. On the extrinsic dimension, we investigate how contextual factors modulate deceptive outputs under neutral conditions, reward-based incentivization, and coercive pressures. Moreover, we incorporate sustained multi-turn interaction loops to construct a more realistic simulation of real-world feedback dynamics. Extensive experiments across LLMs and Large Reasoning Models (LRMs) reveal critical vulnerabilities, particularly amplified deception under reinforcement dynamics, demonstrating that current models lack robust resistance to manipulative contextual cues and the urgent need for advanced safeguards against various deception behaviors. Code and resources are publicly available at https://github.com/Aries-iai/DeceptionBench.

Authors:Jan Corazza, Hadi Partovi Aria, Daniel Neider, Zhe Xu
Title: Expediting Reinforcement Learning by Incorporating Knowledge About Temporal Causality in the Environment
Abstract:
Reinforcement learning (RL) algorithms struggle with learning optimal policies for tasks where reward feedback is sparse and depends on a complex sequence of events in the environment. Probabilistic reward machines (PRMs) are finite-state formalisms that can capture temporal dependencies in the reward signal, along with nondeterministic task outcomes. While special RL algorithms can exploit this finite-state structure to expedite learning, PRMs remain difficult to modify and design by hand. This hinders the already difficult tasks of utilizing high-level causal knowledge about the environment, and transferring the reward formalism into a new domain with a different causal structure. This paper proposes a novel method to incorporate causal information in the form of Temporal Logic-based Causal Diagrams into the reward formalism, thereby expediting policy learning and aiding the transfer of task specifications to new environments. Furthermore, we provide a theoretical result about convergence to optimal policy for our method, and demonstrate its strengths empirically.

Authors:Zhi Zhou, Yuhao Tan, Zenan Li, Yuan Yao, Lan-Zhe Guo, Yu-Feng Li, Xiaoxing Ma
Title: A Theoretical Study on Bridging Internal Probability and Self-Consistency for LLM Reasoning
Abstract:
Test-time scaling seeks to improve the reasoning performance of large language models (LLMs) by adding computational resources. A prevalent approach within the field is sampling-based test-time scaling methods, which enhance reasoning by generating multiple reasoning paths for a given input during inference. However, despite its practical success, the theoretical foundations remain underexplored. In this paper, we provide the first theoretical framework for analyzing sampling-based test-time scaling methods, grounded in the perspective of confidence estimation. Based on the framework, we analyze two dominant paradigms: self-consistency and perplexity, and reveal key limitations: self-consistency suffers from high estimation error while perplexity exhibits substantial modeling error and possible degradation of the estimation error convergence. To address these limitations, we introduce RPC, a hybrid method that leverages our theoretical insights through two key components: Perplexity Consistency and Reasoning Pruning. Perplexity Consistency combines the strengths of self-consistency and perplexity, boosting the convergence rate of estimation error from linear to exponential while preserving model error. Reasoning Pruning prevents degradation by eliminating low-probability reasoning paths. Both theoretical analysis and empirical results across seven benchmark datasets demonstrate that RPC has a strong potential for reducing reasoning error. Notably, RPC achieves reasoning performance comparable to self-consistency while not only enhancing confidence reliability but also reducing sampling costs by 50%. The code and resources are available at https://wnjxyk.github.io/RPC.

Authors:Pavan C Shekar, Ashwanth Krishnan
Title: Adaptive Minds: Empowering Agents with LoRA-as-Tools
Abstract:
We present Adaptive Minds, an agentic system that treats LoRA adapters as domain-specific tools. Instead of relying on a single fine-tuned model or rigid rule-based routing, our approach empowers the base LLM itself to act as a semantic router analyzing each query and dynamically selecting the most relevant LoRA tool. This enables the agent to seamlessly switch between different domain experts on demand. By combining the flexibility of multi-agent orchestration with the efficiency of parameter-efficient fine-tuning, Adaptive Minds delivers accurate, specialized responses while preserving conversational ability. The system is built with LangGraph for workflow management, supports both API and web interfaces, and is fully open source, providing a scalable and extensible foundation for domain-adaptive AI assistance.

Authors:Huining Yuan, Zelai Xu, Zheyue Tan, Xiangmin Yi, Mo Guang, Kaiwen Long, Haojia Hui, Boxun Li, Xinlei Chen, Bo Zhao, Xiao-Ping Zhang, Chao Yu, Yu Wang
Title: MARS: Reinforcing Multi-Agent Reasoning of LLMs through Self-Play in Strategic Games
Abstract:
Developing Large Language Models (LLMs) to cooperate and compete effectively within multi-agent systems is a critical step towards more advanced intelligence. While reinforcement learning (RL) has proven effective for enhancing reasoning in single-agent tasks, its extension to multi-turn, multi-agent scenarios remains underexplored due to the challenges of long-horizon credit assignment and agent-specific advantage estimation. To address these challenges, we introduce MARS, an end-to-end RL framework that incentivizes Multi-Agent Reasoning of LLMs through Self-play in both cooperative and competitive games. MARS features a turn-level advantage estimator that aligns learning signals with each interaction for credit assignment, and an agent-specific advantage normalization to stabilize multi-agent training. By learning with self-play across cooperative and competitive games, the MARS agent trained from Qwen3-4B develops strong strategic abilities that generalize to held-out games with up to 28.7% performance improvements. More importantly, the capability acquired through self-play generalizes beyond games, yielding consistent performance gains of multi-agent systems in reasoning benchmarks. When integrated into leading multi-agent systems, our MARS agent achieves significant performance gains of 10.0% on AIME and 12.5% on GPQA-Diamond. These results establish end-to-end RL training with self-play in strategic games as a powerful approach for developing generalizable multi-agent reasoning capabilities in LLMs. Our code and models are publicly available at https://github.com/thu-nics/MARS.

Authors:Kexin Zheng, Lauriane Teyssier, Yinan Zheng, Yu Luo, Xiayuan Zhan
Title: Towards Robust Zero-Shot Reinforcement Learning
Abstract:
The recent development of zero-shot reinforcement learning (RL) has opened a new avenue for learning pre-trained generalist policies that can adapt to arbitrary new tasks in a zero-shot manner. While the popular Forward-Backward representations (FB) and related methods have shown promise in zero-shot RL, we empirically found that their modeling lacks expressivity and that extrapolation errors caused by out-of-distribution (OOD) actions during offline learning sometimes lead to biased representations, ultimately resulting in suboptimal performance. To address these issues, we propose Behavior-REgularizEd Zero-shot RL with Expressivity enhancement (BREEZE), an upgraded FB-based framework that simultaneously enhances learning stability, policy extraction capability, and representation learning quality. BREEZE introduces behavioral regularization in zero-shot RL policy learning, transforming policy optimization into a stable in-sample learning paradigm. Additionally, BREEZE extracts the policy using a task-conditioned diffusion model, enabling the generation of high-quality and multimodal action distributions in zero-shot RL settings. Moreover, BREEZE employs expressive attention-based architectures for representation modeling to capture the complex relationships between environmental dynamics. Extensive experiments on ExORL and D4RL Kitchen demonstrate that BREEZE achieves the best or near-the-best performance while exhibiting superior robustness compared to prior offline zero-shot RL methods. The official implementation is available at: https://github.com/Whiterrrrr/BREEZE.

Authors:Fan Liu, Jindong Han, Tengfei Lyu, Weijia Zhang, Zhe-Rui Yang, Lu Dai, Cancheng Liu, Hao Liu
Title: Foundation Models for Scientific Discovery: From Paradigm Enhancement to Paradigm Transition
Abstract:
Foundation models (FMs), such as GPT-4 and AlphaFold, are reshaping the landscape of scientific research. Beyond accelerating tasks such as hypothesis generation, experimental design, and result interpretation, they prompt a more fundamental question: Are FMs merely enhancing existing scientific methodologies, or are they redefining the way science is conducted? In this paper, we argue that FMs are catalyzing a transition toward a new scientific paradigm. We introduce a three-stage framework to describe this evolution: (1) Meta-Scientific Integration, where FMs enhance workflows within traditional paradigms; (2) Hybrid Human-AI Co-Creation, where FMs become active collaborators in problem formulation, reasoning, and discovery; and (3) Autonomous Scientific Discovery, where FMs operate as independent agents capable of generating new scientific knowledge with minimal human intervention. Through this lens, we review current applications and emerging capabilities of FMs across existing scientific paradigms. We further identify risks and future directions for FM-enabled scientific discovery. This position paper aims to support the scientific community in understanding the transformative role of FMs and to foster reflection on the future of scientific discovery. Our project is available at https://github.com/usail-hkust/Awesome-Foundation-Models-for-Scientific-Discovery.

Authors:Junlin Wu, Xianrui Zhong, Jiashuo Sun, Bolian Li, Bowen Jin, Jiawei Han, Qingkai Zeng
Title: Structure-R1: Dynamically Leveraging Structural Knowledge in LLM Reasoning through Reinforcement Learning
Abstract:
Large language models (LLMs) have demonstrated remarkable advances in reasoning capabilities. However, their performance remains constrained by limited access to explicit and structured domain knowledge. Retrieval-Augmented Generation (RAG) addresses this by incorporating external information as context to augment reasoning. Nevertheless, traditional RAG systems typically operate over unstructured and fragmented text, resulting in low information density and suboptimal reasoning. To overcome these limitations, we propose \textsc{Structure-R1}, a novel framework that transforms retrieved content into structured representations optimized for reasoning. Leveraging reinforcement learning, \textsc{Structure-R1} learns a content representation policy that dynamically generates and adapts structural formats based on the demands of multi-step reasoning. Unlike prior methods that rely on fixed schemas, our approach adopts a generative paradigm capable of producing task-specific structures tailored to individual queries. To ensure the quality and reliability of these representations, we introduce a self-reward structural verification mechanism that checks whether the generated structures are both correct and self-contained. Extensive experiments on seven knowledge-intensive benchmarks show that \textsc{Structure-R1} consistently achieves competitive performance with a 7B-scale backbone model and matches the performance of much larger models. Additionally, our theoretical analysis demonstrates how structured representations enhance reasoning by improving information density and contextual clarity. Our code and data are available at: https://github.com/jlwu002/sr1.

Authors:Xingrui Wang, Jiang Liu, Chao Huang, Xiaodong Yu, Ze Wang, Ximeng Sun, Jialian Wu, Alan Yuille, Emad Barsoum, Zicheng Liu
Title: XModBench: Benchmarking Cross-Modal Capabilities and Consistency in Omni-Language Models
Abstract:
Omni-modal large language models (OLLMs) aim to unify audio, vision, and text understanding within a single framework. While existing benchmarks primarily evaluate general cross-modal question-answering ability, it remains unclear whether OLLMs achieve modality-invariant reasoning or exhibit modality-specific biases. We introduce XModBench, a large-scale tri-modal benchmark explicitly designed to measure cross-modal consistency. XModBench comprises 60,828 multiple-choice questions spanning five task families and systematically covers all six modality compositions in question-answer pairs, enabling fine-grained diagnosis of an OLLM's modality-invariant reasoning, modality disparity, and directional imbalance. Experiments show that even the strongest model, Gemini 2.5 Pro, (i) struggles with spatial and temporal reasoning, achieving less than 60% accuracy, (ii) reveals persistent modality disparities, with performance dropping substantially when the same semantic content is conveyed through audio rather than text, and (iii) shows systematic directional imbalance, exhibiting lower consistency when vision serves as context compared to text. These findings indicate that current OLLMs remain far from truly modality-invariant reasoning and position XModBench as a fundamental diagnostic tool for evaluating and improving cross-modal competence. All data and evaluation tools will be available at https://xingruiwang.github.io/projects/XModBench/.

Authors:Kai Yin, Xiangjue Dong, Chengkai Liu, Allen Lin, Lingfeng Shi, Ali Mostafavi, James Caverlee
Title: DMRetriever: A Family of Models for Improved Text Retrieval in Disaster Management
Abstract:
Effective and efficient access to relevant information is essential for disaster management. However, no retrieval model is specialized for disaster management, and existing general-domain models fail to handle the varied search intents inherent to disaster management scenarios, resulting in inconsistent and unreliable performance. To this end, we introduce DMRetriever, the first series of dense retrieval models (33M to 7.6B) tailored for this domain. It is trained through a novel three-stage framework of bidirectional attention adaptation, unsupervised contrastive pre-training, and difficulty-aware progressive instruction fine-tuning, using high-quality data generated through an advanced data refinement pipeline. Comprehensive experiments demonstrate that DMRetriever achieves state-of-the-art (SOTA) performance across all six search intents at every model scale. Moreover, DMRetriever is highly parameter-efficient, with 596M model outperforming baselines over 13.3 X larger and 33M model exceeding baselines with only 7.6% of their parameters. All codes, data, and checkpoints are available at https://github.com/KaiYin97/DMRETRIEVER

Authors:Jinkyu Kim, Hyunjung Yi, Mogan Gim, Donghee Choi, Jaewoo Kang
Title: DeepAries: Adaptive Rebalancing Interval Selection for Enhanced Portfolio Selection
Abstract:
We propose DeepAries , a novel deep reinforcement learning framework for dynamic portfolio management that jointly optimizes the timing and allocation of rebalancing decisions. Unlike prior reinforcement learning methods that employ fixed rebalancing intervals regardless of market conditions, DeepAries adaptively selects optimal rebalancing intervals along with portfolio weights to reduce unnecessary transaction costs and maximize risk-adjusted returns. Our framework integrates a Transformer-based state encoder, which effectively captures complex long-term market dependencies, with Proximal Policy Optimization (PPO) to generate simultaneous discrete (rebalancing intervals) and continuous (asset allocations) actions. Extensive experiments on multiple real-world financial markets demonstrate that DeepAries significantly outperforms traditional fixed-frequency and full-rebalancing strategies in terms of risk-adjusted returns, transaction costs, and drawdowns. Additionally, we provide a live demo of DeepAries at https://deep-aries.github.io/, along with the source code and dataset at https://github.com/dmis-lab/DeepAries, illustrating DeepAries' capability to produce interpretable rebalancing and allocation decisions aligned with shifting market regimes. Overall, DeepAries introduces an innovative paradigm for adaptive and practical portfolio management by integrating both timing and allocation into a unified decision-making process.

Authors:Haiwen Diao, Mingxuan Li, Silei Wu, Linjun Dai, Xiaohua Wang, Hanming Deng, Lewei Lu, Dahua Lin, Ziwei Liu
Title: From Pixels to Words -- Towards Native Vision-Language Primitives at Scale
Abstract:
The edifice of native Vision-Language Models (VLMs) has emerged as a rising contender to typical modular VLMs, shaped by evolving model architectures and training paradigms. Yet, two lingering clouds cast shadows over its widespread exploration and promotion: (-) What fundamental constraints set native VLMs apart from modular ones, and to what extent can these barriers be overcome? (-) How to make research in native VLMs more accessible and democratized, thereby accelerating progress in the field. In this paper, we clarify these challenges and outline guiding principles for constructing native VLMs. Specifically, one native VLM primitive should: (i) effectively align pixel and word representations within a shared semantic space; (ii) seamlessly integrate the strengths of formerly separate vision and language modules; (iii) inherently embody various cross-modal properties that support unified vision-language encoding, aligning, and reasoning. Hence, we launch NEO, a novel family of native VLMs built from first principles, capable of rivaling top-tier modular counterparts across diverse real-world scenarios. With only 390M image-text examples, NEO efficiently develops visual perception from scratch while mitigating vision-language conflicts inside a dense and monolithic model crafted from our elaborate primitives. We position NEO as a cornerstone for scalable and powerful native VLMs, paired with a rich set of reusable components that foster a cost-effective and extensible ecosystem. Our code and models are publicly available at: https://github.com/EvolvingLMMs-Lab/NEO.

Authors:Yuanhui Huang, Weiliang Chen, Wenzhao Zheng, Xin Tao, Pengfei Wan, Jie Zhou, Jiwen Lu
Title: Terra: Explorable Native 3D World Model with Point Latents
Abstract:
World models have garnered increasing attention for comprehensive modeling of the real world. However, most existing methods still rely on pixel-aligned representations as the basis for world evolution, neglecting the inherent 3D nature of the physical world. This could undermine the 3D consistency and diminish the modeling efficiency of world models. In this paper, we present Terra, a native 3D world model that represents and generates explorable environments in an intrinsic 3D latent space. Specifically, we propose a novel point-to-Gaussian variational autoencoder (P2G-VAE) that encodes 3D inputs into a latent point representation, which is subsequently decoded as 3D Gaussian primitives to jointly model geometry and appearance. We then introduce a sparse point flow matching network (SPFlow) for generating the latent point representation, which simultaneously denoises the positions and features of the point latents. Our Terra enables exact multi-view consistency with native 3D representation and architecture, and supports flexible rendering from any viewpoint with only a single generation process. Furthermore, Terra achieves explorable world modeling through progressive generation in the point latent space. We conduct extensive experiments on the challenging indoor scenes from ScanNet v2. Terra achieves state-of-the-art performance in both reconstruction and generation with high 3D consistency.

Authors:Hengyuan Xu, Wei Cheng, Peng Xing, Yixiao Fang, Shuhan Wu, Rui Wang, Xianfang Zeng, Daxin Jiang, Gang Yu, Xingjun Ma, Yu-Gang Jiang
Title: WithAnyone: Towards Controllable and ID Consistent Image Generation
Abstract:
Identity-consistent generation has become an important focus in text-to-image research, with recent models achieving notable success in producing images aligned with a reference identity. Yet, the scarcity of large-scale paired datasets containing multiple images of the same individual forces most approaches to adopt reconstruction-based training. This reliance often leads to a failure mode we term copy-paste, where the model directly replicates the reference face rather than preserving identity across natural variations in pose, expression, or lighting. Such over-similarity undermines controllability and limits the expressive power of generation. To address these limitations, we (1) construct a large-scale paired dataset MultiID-2M, tailored for multi-person scenarios, providing diverse references for each identity; (2) introduce a benchmark that quantifies both copy-paste artifacts and the trade-off between identity fidelity and variation; and (3) propose a novel training paradigm with a contrastive identity loss that leverages paired data to balance fidelity with diversity. These contributions culminate in WithAnyone, a diffusion-based model that effectively mitigates copy-paste while preserving high identity similarity. Extensive qualitative and quantitative experiments demonstrate that WithAnyone significantly reduces copy-paste artifacts, improves controllability over pose and expression, and maintains strong perceptual quality. User studies further validate that our method achieves high identity fidelity while enabling expressive controllable generation.

Authors:Hansheng Chen, Kai Zhang, Hao Tan, Leonidas Guibas, Gordon Wetzstein, Sai Bi
Title: pi-Flow: Policy-Based Few-Step Generation via Imitation Distillation
Abstract:
Few-step diffusion or flow-based generative models typically distill a velocity-predicting teacher into a student that predicts a shortcut towards denoised data. This format mismatch has led to complex distillation procedures that often suffer from a quality-diversity trade-off. To address this, we propose policy-based flow models ($π$-Flow). $π$-Flow modifies the output layer of a student flow model to predict a network-free policy at one timestep. The policy then produces dynamic flow velocities at future substeps with negligible overhead, enabling fast and accurate ODE integration on these substeps without extra network evaluations. To match the policy's ODE trajectory to the teacher's, we introduce a novel imitation distillation approach, which matches the policy's velocity to the teacher's along the policy's trajectory using a standard $\ell_2$ flow matching loss. By simply mimicking the teacher's behavior, $π$-Flow enables stable and scalable training and avoids the quality-diversity trade-off. On ImageNet 256$^2$, it attains a 1-NFE FID of 2.85, outperforming MeanFlow of the same DiT architecture. On FLUX.1-12B and Qwen-Image-20B at 4 NFEs, $π$-Flow achieves substantially better diversity than state-of-the-art few-step methods, while maintaining teacher-level quality.

Authors:Quan Nguyen-Tri, Mukul Ranjan, Zhiqiang Shen
Title: Attention Is All You Need for KV Cache in Diffusion LLMs
Abstract:
This work studies how to adaptively recompute key-value (KV) caches for diffusion large language models (DLMs) to maximize prediction accuracy while minimizing decoding latency. Prior methods' decoders recompute QKV for all tokens at every denoising step and layer, despite KV states changing little across most steps, especially in shallow layers, leading to substantial redundancy. We make three observations: (1) distant ${\bf MASK}$ tokens primarily act as a length-bias and can be cached block-wise beyond the active prediction window; (2) KV dynamics increase with depth, suggesting that selective refresh starting from deeper layers is sufficient; and (3) the most-attended token exhibits the smallest KV drift, providing a conservative lower bound on cache change for other tokens. Building on these, we propose ${\bf Elastic-Cache}$, a training-free, architecture-agnostic strategy that jointly decides ${when}$ to refresh (via an attention-aware drift test on the most-attended token) and ${where}$ to refresh (via a depth-aware schedule that recomputes from a chosen layer onward while reusing shallow-layer caches and off-window MASK caches). Unlike fixed-period schemes, Elastic-Cache performs adaptive, layer-aware cache updates for diffusion LLMs, reducing redundant computation and accelerating decoding with negligible loss in generation quality. Experiments on LLaDA-Instruct, LLaDA-1.5, and LLaDA-V across mathematical reasoning and code generation tasks demonstrate consistent speedups: $8.7\times$ on GSM8K (256 tokens), $45.1\times$ on longer sequences, and $4.8\times$ on HumanEval, while consistently maintaining higher accuracy than the baseline. Our method achieves significantly higher throughput ($6.8\times$ on GSM8K) than existing confidence-based approaches while preserving generation quality, enabling practical deployment of diffusion LLMs.

Authors:Yiming Wang, Da Yin, Yuedong Cui, Ruichen Zheng, Zhiqian Li, Zongyu Lin, Di Wu, Xueqing Wu, Chenchen Ye, Yu Zhou, Kai-Wei Chang
Title: LLMs as Scalable, General-Purpose Simulators For Evolving Digital Agent Training
Abstract:
Digital agents require diverse, large-scale UI trajectories to generalize across real-world tasks, yet collecting such data is prohibitively expensive in both human annotation, infra and engineering perspectives. To this end, we introduce $\textbf{UI-Simulator}$, a scalable paradigm that generates structured UI states and transitions to synthesize training trajectories at scale. Our paradigm integrates a digital world simulator for diverse UI states, a guided rollout process for coherent exploration, and a trajectory wrapper that produces high-quality and diverse trajectories for agent training. We further propose $\textbf{UI-Simulator-Grow}$, a targeted scaling strategy that enables more rapid and data-efficient scaling by prioritizing high-impact tasks and synthesizes informative trajectory variants. Experiments on WebArena and AndroidWorld show that UI-Simulator rivals or surpasses open-source agents trained on real UIs with significantly better robustness, despite using weaker teacher models. Moreover, UI-Simulator-Grow matches the performance of Llama-3-70B-Instruct using only Llama-3-8B-Instruct as the base model, highlighting the potential of targeted synthesis scaling paradigm to continuously and efficiently enhance the digital agents.

Authors:Shizun Wang, Zhenxiang Jiang, Xingyi Yang, Xinchao Wang
Title: C4D: 4D Made from 3D through Dual Correspondences
Abstract:
Recovering 4D from monocular video, which jointly estimates dynamic geometry and camera poses, is an inevitably challenging problem. While recent pointmap-based 3D reconstruction methods (e.g., DUSt3R) have made great progress in reconstructing static scenes, directly applying them to dynamic scenes leads to inaccurate results. This discrepancy arises because moving objects violate multi-view geometric constraints, disrupting the reconstruction. To address this, we introduce C4D, a framework that leverages temporal Correspondences to extend existing 3D reconstruction formulation to 4D. Specifically, apart from predicting pointmaps, C4D captures two types of correspondences: short-term optical flow and long-term point tracking. We train a dynamic-aware point tracker that provides additional mobility information, facilitating the estimation of motion masks to separate moving elements from the static background, thus offering more reliable guidance for dynamic scenes. Furthermore, we introduce a set of dynamic scene optimization objectives to recover per-frame 3D geometry and camera parameters. Simultaneously, the correspondences lift 2D trajectories into smooth 3D trajectories, enabling fully integrated 4D reconstruction. Experiments show that our framework achieves complete 4D recovery and demonstrates strong performance across multiple downstream tasks, including depth estimation, camera pose estimation, and point tracking. Project Page: https://littlepure2333.github.io/C4D

Authors:Guo Cheng, Danni Yang, Ziqi Huang, Jianlou Si, Chenyang Si, Ziwei Liu
Title: RealDPO: Real or Not Real, that is the Preference
Abstract:
Video generative models have recently achieved notable advancements in synthesis quality. However, generating complex motions remains a critical challenge, as existing models often struggle to produce natural, smooth, and contextually consistent movements. This gap between generated and real-world motions limits their practical applicability. To address this issue, we introduce RealDPO, a novel alignment paradigm that leverages real-world data as positive samples for preference learning, enabling more accurate motion synthesis. Unlike traditional supervised fine-tuning (SFT), which offers limited corrective feedback, RealDPO employs Direct Preference Optimization (DPO) with a tailored loss function to enhance motion realism. By contrasting real-world videos with erroneous model outputs, RealDPO enables iterative self-correction, progressively refining motion quality. To support post-training in complex motion synthesis, we propose RealAction-5K, a curated dataset of high-quality videos capturing human daily activities with rich and precise motion details. Extensive experiments demonstrate that RealDPO significantly improves video quality, text alignment, and motion realism compared to state-of-the-art models and existing preference optimization techniques.

Authors:Wenkai Yang, Weijie Liu, Ruobing Xie, Yiju Guo, Lulu Wu, Saiyong Yang, Yankai Lin
Title: LaSeR: Reinforcement Learning with Last-Token Self-Rewarding
Abstract:
Reinforcement Learning with Verifiable Rewards (RLVR) has recently emerged as a core paradigm for enhancing the reasoning capabilities of Large Language Models (LLMs). To address the lack of verification signals at test time, prior studies incorporate the training of model's self-verification capability into the standard RLVR process, thereby unifying reasoning and verification capabilities within a single LLM. However, previous practice requires the LLM to sequentially generate solutions and self-verifications using two separate prompt templates, which significantly reduces efficiency. In this work, we theoretically reveal that the closed-form solution to the RL objective of self-verification can be reduced to a remarkably simple form: the true reasoning reward of a solution is equal to its last-token self-rewarding score, which is computed as the difference between the policy model's next-token log-probability assigned to any pre-specified token at the solution's last token and a pre-calculated constant, scaled by the KL coefficient. Based on this insight, we propose LaSeR (Reinforcement Learning with Last-Token Self-Rewarding), an algorithm that simply augments the original RLVR loss with a MSE loss that aligns the last-token self-rewarding scores with verifier-based reasoning rewards, jointly optimizing the reasoning and self-rewarding capabilities of LLMs. The optimized self-rewarding scores can be utilized in both training and testing to enhance model performance. Notably, our algorithm derives these scores from the predicted next-token probability distribution of the last token immediately after generation, incurring only the minimal extra cost of one additional token inference. Experiments show that our method not only improves the model's reasoning performance but also equips it with remarkable self-rewarding capability, thereby boosting its inference-time scaling performance.

Authors:Kyle Montgomery, David Park, Jianhong Tu, Michael Bendersky, Beliz Gunel, Dawn Song, Chenguang Wang
Title: Predicting Task Performance with Context-aware Scaling Laws
Abstract:
Scaling laws have transformed our understanding of large language models by linking upstream metrics like cross-entropy loss to design factors such as model size, training data, and compute. However, these conventional laws fail to capture downstream task performance, where context plays a critical role. In this work, we propose a straightforward, interpretable framework that jointly models downstream performance as a function of the training compute and the provided context. We empirically validate our framework by fitting it on the observed downstream performance of extended-context variants of Llama-2-7B and Llama-2-13B across 65,500 unique instances spanning three tasks: arithmetic reasoning, common sense reasoning, and machine translation. Our results demonstrate that our framework accurately models in-distribution downstream performance, generalizes across three orders of magnitude in training compute, and reliably extrapolates performance as the amount of context increases. These findings offer valuable insights into the interplay between training compute and context utilization, providing guidance for designing more efficient long-context LLMs for diverse downstream tasks. Our code is available at https://github.com/wang-research-lab/context-scaling.

Authors:Kyle Montgomery, Sijun Tan, Yuqi Chen, Siyuan Zhuang, Tianjun Zhang, Raluca Ada Popa, Chenguang Wang
Title: Budget-aware Test-time Scaling via Discriminative Verification
Abstract:
Test-time scaling is a powerful strategy for boosting the performance of large language models on complex reasoning tasks. While state-of-the-art approaches often employ generative verifiers to select the best solution from a pool of candidates, this method incurs prohibitive computational costs, limiting its practicality. In this work, we shift the focus to a more budget-aware paradigm: discriminative verification. We conduct a thorough empirical analysis and demonstrate that while discriminative verifiers may underperform in isolation, combining them with self-consistency in a hybrid approach creates a powerful and efficient test-time scaling mechanism. Notably, under a fixed compute budget, this hybrid approach surpasses state-of-the-art generative verification by a significant margin: achieving up to 15.3\% higher accuracy on AIME2025. Our findings establish that for practical, real-world applications, budget-aware scaling with discriminative verifiers is not only a "free" upgrade over self-consistency, but also a more effective and efficient alternative to costly generative techniques. Code is available at https://github.com/wang-research-lab/verification.

Authors:Jan Corazza, Ivan Gavran, Daniel Neider
Title: Reinforcement Learning with Stochastic Reward Machines
Abstract:
Reward machines are an established tool for dealing with reinforcement learning problems in which rewards are sparse and depend on complex sequences of actions. However, existing algorithms for learning reward machines assume an overly idealized setting where rewards have to be free of noise. To overcome this practical limitation, we introduce a novel type of reward machines, called stochastic reward machines, and an algorithm for learning them. Our algorithm, based on constraint solving, learns minimal stochastic reward machines from the explorations of a reinforcement learning agent. This algorithm can easily be paired with existing reinforcement learning algorithms for reward machines and guarantees to converge to an optimal policy in the limit. We demonstrate the effectiveness of our algorithm in two case studies and show that it outperforms both existing methods and a naive approach for handling noisy reward functions.

Authors:Kun Lei, Huanyu Li, Dongjie Yu, Zhenyu Wei, Lingxiao Guo, Zhennan Jiang, Ziyu Wang, Shiyu Liang, Huazhe Xu
Title: RL-100: Performant Robotic Manipulation with Real-World Reinforcement Learning
Abstract:
Real-world robotic manipulation in homes and factories demands reliability, efficiency, and robustness that approach or surpass skilled human operators. We present RL-100, a real-world reinforcement learning training framework built on diffusion visuomotor policies trained bu supervised learning. RL-100 introduces a three-stage pipeline. First, imitation learning leverages human priors. Second, iterative offline reinforcement learning uses an Offline Policy Evaluation procedure, abbreviated OPE, to gate PPO-style updates that are applied in the denoising process for conservative and reliable improvement. Third, online reinforcement learning eliminates residual failure modes. An additional lightweight consistency distillation head compresses the multi-step sampling process in diffusion into a single-step policy, enabling high-frequency control with an order-of-magnitude reduction in latency while preserving task performance. The framework is task-, embodiment-, and representation-agnostic and supports both 3D point clouds and 2D RGB inputs, a variety of robot platforms, and both single-step and action-chunk policies. We evaluate RL-100 on seven real-robot tasks spanning dynamic rigid-body control, such as Push-T and Agile Bowling, fluids and granular pouring, deformable cloth folding, precise dexterous unscrewing, and multi-stage orange juicing. RL-100 attains 100\% success across evaluated trials for a total of 900 out of 900 episodes, including up to 250 out of 250 consecutive trials on one task. The method achieves near-human teleoperation or better time efficiency and demonstrates multi-hour robustness with uninterrupted operation lasting up to two hours.

Authors:Pedro R. A. S. Bassi, Xinze Zhou, Wenxuan Li, Szymon Płotka, Jieneng Chen, Qi Chen, Zheren Zhu, Jakub Prządo, Ibrahim E. Hamacı, Sezgin Er, Yuhan Wang, Ashwin Kumar, Bjoern Menze, Jarosław B. Ćwikła, Yuyin Zhou, Akshay S. Chaudhari, Curtis P. Langlotz, Sergio Decherchi, Andrea Cavalli, Kang Wang, Yang Yang, Alan L. Yuille, Zongwei Zhou
Title: Scaling Artificial Intelligence for Multi-Tumor Early Detection with More Reports, Fewer Masks
Abstract:
Early tumor detection save lives. Each year, more than 300 million computed tomography (CT) scans are performed worldwide, offering a vast opportunity for effective cancer screening. However, detecting small or early-stage tumors on these CT scans remains challenging, even for experts. Artificial intelligence (AI) models can assist by highlighting suspicious regions, but training such models typically requires extensive tumor masks--detailed, voxel-wise outlines of tumors manually drawn by radiologists. Drawing these masks is costly, requiring years of effort and millions of dollars. In contrast, nearly every CT scan in clinical practice is already accompanied by medical reports describing the tumor's size, number, appearance, and sometimes, pathology results--information that is rich, abundant, and often underutilized for AI training. We introduce R-Super, which trains AI to segment tumors that match their descriptions in medical reports. This approach scales AI training with large collections of readily available medical reports, substantially reducing the need for manually drawn tumor masks. When trained on 101,654 reports, AI models achieved performance comparable to those trained on 723 masks. Combining reports and masks further improved sensitivity by +13% and specificity by +8%, surpassing radiologists in detecting five of the seven tumor types. Notably, R-Super enabled segmentation of tumors in the spleen, gallbladder, prostate, bladder, uterus, and esophagus, for which no public masks or AI models previously existed. This study challenges the long-held belief that large-scale, labor-intensive tumor mask creation is indispensable, establishing a scalable and accessible path toward early detection across diverse tumor types. We plan to release our trained models, code, and dataset at https://github.com/MrGiovanni/R-Super

Authors:Simone Carnemolla, Matteo Pennisi, Sarinda Samarasinghe, Giovanni Bellitto, Simone Palazzo, Daniela Giordano, Mubarak Shah, Concetto Spampinato
Title: DEXTER: Diffusion-Guided EXplanations with TExtual Reasoning for Vision Models
Abstract:
Understanding and explaining the behavior of machine learning models is essential for building transparent and trustworthy AI systems. We introduce DEXTER, a data-free framework that employs diffusion models and large language models to generate global, textual explanations of visual classifiers. DEXTER operates by optimizing text prompts to synthesize class-conditional images that strongly activate a target classifier. These synthetic samples are then used to elicit detailed natural language reports that describe class-specific decision patterns and biases. Unlike prior work, DEXTER enables natural language explanation about a classifier's decision process without access to training data or ground-truth labels. We demonstrate DEXTER's flexibility across three tasks-activation maximization, slice discovery and debiasing, and bias explanation-each illustrating its ability to uncover the internal mechanisms of visual classifiers. Quantitative and qualitative evaluations, including a user study, show that DEXTER produces accurate, interpretable outputs. Experiments on ImageNet, Waterbirds, CelebA, and FairFaces confirm that DEXTER outperforms existing approaches in global model explanation and class-level bias reporting. Code is available at https://github.com/perceivelab/dexter.

Authors:Caleb Robinson, Kimberly T. Goetz, Christin B. Khan, Meredith Sackett, Kathleen Leonard, Rahul Dodhia, Juan M. Lavista Ferres
Title: Where are the Whales: A Human-in-the-loop Detection Method for Identifying Whales in High-resolution Satellite Imagery
Abstract:
Effective monitoring of whale populations is critical for conservation, but traditional survey methods are expensive and difficult to scale. While prior work has shown that whales can be identified in very high-resolution (VHR) satellite imagery, large-scale automated detection remains challenging due to a lack of annotated imagery, variability in image quality and environmental conditions, and the cost of building robust machine learning pipelines over massive remote sensing archives. We present a semi-automated approach for surfacing possible whale detections in VHR imagery using a statistical anomaly detection method that flags spatial outliers, i.e. "interesting points". We pair this detector with a web-based labeling interface designed to enable experts to quickly annotate the interesting points. We evaluate our system on three benchmark scenes with known whale annotations and achieve recalls of 90.3% to 96.4%, while reducing the area requiring expert inspection by up to 99.8% -- from over 1,000 sq km to less than 2 sq km in some cases. Our method does not rely on labeled training data and offers a scalable first step toward future machine-assisted marine mammal monitoring from space. We have open sourced this pipeline at https://github.com/microsoft/whales.

Authors:Tongxuan Liu, Tao Peng, Peijun Yang, Xiaoyang Zhao, Xiusheng Lu, Weizhe Huang, Zirui Liu, Xiaoyu Chen, Zhiwei Liang, Jun Xiong, Donghe Jin, Minchao Zhang, Jinrong Guo, Yingxu Deng, Xu Zhang, Xianzhe Dong, Siqi Wang, Siyu Wu, Yu Wu, Zihan Tang, Yuting Zeng, Yanshu Wang, Jinguang Liu, Meng Kang, Menxin Li, Yunlong Wang, Yiming Liu, Xiaolong Ma, Yifan Wang, Yichen Zhang, Jinrun Yin, Keyang Zheng, Jiawei Yin, Jun Zhang, Ziyue Wang, Xiaobo Lin, Liangyu Liu, Liwei Lan, Yang Liu, Chunhua Peng, Han Liu, Songcheng Ren, Xuezhu Wang, Yunheng Shen, Yi Wang, Guyue Liu, Hui Chen, Tong Yang, Hailong Yang, Jing Li, Guiguang Ding, Ke Zhang
Title: xLLM Technical Report
Abstract:
We introduce xLLM, an intelligent and efficient Large Language Model (LLM) inference framework designed for high-performance, large-scale enterprise-grade serving, with deep optimizations for diverse AI accelerators. To address these challenges, xLLM builds a novel decoupled service-engine architecture. At the service layer, xLLM-Service features an intelligent scheduling module that efficiently processes multimodal requests and co-locates online and offline tasks through unified elastic scheduling to maximize cluster utilization. This module also relies on a workload-adaptive dynamic Prefill-Decode (PD) disaggregation policy and a novel Encode-Prefill-Decode (EPD) disaggregation policy designed for multimodal inputs. Furthermore, it incorporates a distributed architecture to provide global KV Cache management and robust fault-tolerant capabilities for high availability. At the engine layer, xLLM-Engine co-optimizes system and algorithm designs to fully saturate computing resources. This is achieved through comprehensive multi-layer execution pipeline optimizations, an adaptive graph mode and an xTensor memory management. xLLM-Engine also further integrates algorithmic enhancements such as optimized speculative decoding and dynamic EPLB, collectively serving to substantially boost throughput and inference efficiency. Extensive evaluations demonstrate that xLLM delivers significantly superior performance and resource efficiency. Under identical TPOT constraints, xLLM achieves throughput up to 1.7x that of MindIE and 2.2x that of vLLM-Ascend with Qwen-series models, while maintaining an average throughput of 1.7x that of MindIE with Deepseek-series models. xLLM framework is publicly available at https://github.com/jd-opensource/xllm and https://github.com/jd-opensource/xllm-service.

Authors:Steffen Hagedorn, Luka Donkov, Aron Distelzweig, Alexandru P. Condurache
Title: When Planners Meet Reality: How Learned, Reactive Traffic Agents Shift nuPlan Benchmarks
Abstract:
Planner evaluation in closed-loop simulation often uses rule-based traffic agents, whose simplistic and passive behavior can hide planner deficiencies and bias rankings. Widely used IDM agents simply follow a lead vehicle and cannot react to vehicles in adjacent lanes, hindering tests of complex interaction capabilities. We address this issue by integrating the state-of-the-art learned traffic agent model SMART into nuPlan. Thus, we are the first to evaluate planners under more realistic conditions and quantify how conclusions shift when narrowing the sim-to-real gap. Our analysis covers 14 recent planners and established baselines and shows that IDM-based simulation overestimates planning performance: nearly all scores deteriorate. In contrast, many planners interact better than previously assumed and even improve in multi-lane, interaction-heavy scenarios like lane changes or turns. Methods trained in closed-loop demonstrate the best and most stable driving performance. However, when reaching their limits in augmented edge-case scenarios, all learned planners degrade abruptly, whereas rule-based planners maintain reasonable basic behavior. Based on our results, we suggest SMART-reactive simulation as a new standard closed-loop benchmark in nuPlan and release the SMART agents as a drop-in alternative to IDM at https://github.com/shgd95/InteractiveClosedLoop.

Authors:Yuanyi Song, Heyuan Huang, Qiqiang Lin, Yin Zhao, Xiangmou Qu, Jun Wang, Xingyu Lou, Weiwen Liu, Zhuosheng Zhang, Jun Wang, Yong Yu, Weinan Zhang, Zhaoxiang Wang
Title: ColorBench: Benchmarking Mobile Agents with Graph-Structured Framework for Complex Long-Horizon Tasks
Abstract:
The rapid advancement of multimodal large language models has enabled agents to operate mobile devices by directly interacting with graphical user interfaces, opening new possibilities for mobile automation. However, real-world mobile tasks are often complex and allow for multiple valid solutions. This contradicts current mobile agent evaluation standards: offline static benchmarks can only validate a single predefined "golden path", while online dynamic testing is constrained by the complexity and non-reproducibility of real devices, making both approaches inadequate for comprehensively assessing agent capabilities. To bridge the gap between offline and online evaluation and enhance testing stability, this paper introduces a novel graph-structured benchmarking framework. By modeling the finite states observed during real-device interactions, it achieves static simulation of dynamic behaviors. Building on this, we develop ColorBench, a benchmark focused on complex long-horizon tasks. It supports evaluation of multiple valid solutions, subtask completion rate statistics, and atomic-level capability analysis. ColorBench contains 175 tasks (74 single-app, 101 cross-app) with an average length of over 13 steps. Each task includes at least two correct paths and several typical error paths, enabling quasi-dynamic interaction. By evaluating ColorBench across various baselines, we discover limitations of existing models and propose improvement directions and feasible technical pathways to enhance agents' performance on complex, long-horizon problems based on experimental results. Code and data are available at: https://github.com/MadeAgents/ColorBench.

Authors:Yuyang Hong, Jiaqi Gu, Qi Yang, Lubin Fan, Yue Wu, Ying Wang, Kun Ding, Shiming Xiang, Jieping Ye
Title: Knowledge-based Visual Question Answer with Multimodal Processing, Retrieval and Filtering
Abstract:
Knowledge-based visual question answering (KB-VQA) requires visual language models (VLMs) to integrate visual understanding with external knowledge retrieval. Although retrieval-augmented generation (RAG) achieves significant advances in this task by combining knowledge-base querying, it still struggles with the quality of multimodal queries and the relevance of retrieved results. To overcome these challenges, we propose a novel three-stage method, termed Wiki-PRF, including Processing, Retrieval and Filtering stages. The processing stage dynamically invokes visual tools to extract precise multimodal information for retrieval. The retrieval stage integrates visual and text features to achieve multimodal knowledge retrieval. The filtering stage performs relevance filtering and concentration on retrieval results. To this end, we introduce a visual language model trained with answer accuracy and format consistency as reward signals via a reinforcement learning manner. This enhances the model's reasoning, tool invocation for accurate queries, and filtering of irrelevant content. Experiments on benchmark datasets (E-VQA and InfoSeek) show significant improvements~(36.0 and 42.8) in answer quality, achieving state-of-the-art performance. Code is available at https://github.com/cqu-student/Wiki-PRF

Authors:Zhifei Chen, Tianshuo Xu, Leyi Wu, Luozhou Wang, Dongyu Yan, Zihan You, Wenting Luo, Guo Zhang, Yingcong Chen
Title: STANCE: Motion Coherent Video Generation Via Sparse-to-Dense Anchored Encoding
Abstract:
Video generation has recently made striking visual progress, but maintaining coherent object motion and interactions remains difficult. We trace two practical bottlenecks: (i) human-provided motion hints (e.g., small 2D maps) often collapse to too few effective tokens after encoding, weakening guidance; and (ii) optimizing for appearance and motion in a single head can favor texture over temporal consistency. We present STANCE, an image-to-video framework that addresses both issues with two simple components. First, we introduce Instance Cues -- a pixel-aligned control signal that turns sparse, user-editable hints into a dense 2.5D (camera-relative) motion field by averaging per-instance flow and augmenting with monocular depth over the instance mask. This reduces depth ambiguity compared to 2D arrow inputs while remaining easy to use. Second, we preserve the salience of these cues in token space with Dense RoPE, which tags a small set of motion tokens (anchored on the first frame) with spatial-addressable rotary embeddings. Paired with joint RGB \(+\) auxiliary-map prediction (segmentation or depth), our model anchors structure while RGB handles appearance, stabilizing optimization and improving temporal coherence without requiring per-frame trajectory scripts.

Authors:Jingyao Liu, Chen Huang, Zhizhao Guan, Wenqiang Lei, Yang Deng
Title: E2Edev: Benchmarking Large Language Models in End-to-End Software Development Task
Abstract:
E2EDev comprises (i) a fine-grained set of user requirements, (ii) {multiple BDD test scenarios with corresponding Python step implementations for each requirement}, and (iii) a fully automated testing pipeline built on the Behave framework. To ensure its quality while reducing the annotation effort, E2EDev leverages our proposed Human-in-the-Loop Multi-Agent Annotation Framework (HITL-MAA). {By evaluating various E2ESD frameworks and LLM backbones with E2EDev}, our analysis reveals a persistent struggle to effectively solve these tasks, underscoring the critical need for more effective and cost-efficient E2ESD solutions. Our codebase and benchmark are publicly available at https://github.com/SCUNLP/E2EDev.

Authors:Tao Huang, Huayi Wang, Junli Ren, Kangning Yin, Zirui Wang, Xiao Chen, Feiyu Jia, Wentao Zhang, Junfeng Long, Jingbo Wang, Jiangmiao Pang
Title: Towards Adaptable Humanoid Control via Adaptive Motion Tracking
Abstract:
Humanoid robots are envisioned to adapt demonstrated motions to diverse real-world conditions while accurately preserving motion patterns. Existing motion prior approaches enable well adaptability with a few motions but often sacrifice imitation accuracy, whereas motion-tracking methods achieve accurate imitation yet require many training motions and a test-time target motion to adapt. To combine their strengths, we introduce AdaMimic, a novel motion tracking algorithm that enables adaptable humanoid control from a single reference motion. To reduce data dependence while ensuring adaptability, our method first creates an augmented dataset by sparsifying the single reference motion into keyframes and applying light editing with minimal physical assumptions. A policy is then initialized by tracking these sparse keyframes to generate dense intermediate motions, and adapters are subsequently trained to adjust tracking speed and refine low-level actions based on the adjustment, enabling flexible time warping that further improves imitation accuracy and adaptability. We validate these significant improvements in our approach in both simulation and the real-world Unitree G1 humanoid robot in multiple tasks across a wide range of adaptation conditions. Videos and code are available at https://taohuang13.github.io/adamimic.github.io/.

Authors:Qingyu Ren, Qianyu He, Bowei Zhang, Jie Zeng, Jiaqing Liang, Yanghua Xiao, Weikang Zhou, Zeye Sun, Fei Yu
Title: Instructions are all you need: Self-supervised Reinforcement Learning for Instruction Following
Abstract:
Language models often struggle to follow multi-constraint instructions that are crucial for real-world applications. Existing reinforcement learning (RL) approaches suffer from dependency on external supervision and sparse reward signals from multi-constraint tasks. We propose a label-free self-supervised RL framework that eliminates dependency on external supervision by deriving reward signals directly from instructions and generating pseudo-labels for reward model training. Our approach introduces constraint decomposition strategies and efficient constraint-wise binary classification to address sparse reward challenges while maintaining computational efficiency. Experiments show that our approach generalizes well, achieving strong improvements across 3 in-domain and 5 out-of-domain datasets, including challenging agentic and multi-turn instruction following. The data and code are publicly available at https://github.com/Rainier-rq/verl-if

Authors:Xiaobei Zhao, Xingqi Lyu, Xiang Li
Title: SUM-AgriVLN: Spatial Understanding Memory for Agricultural Vision-and-Language Navigation
Abstract:
Agricultural robots are emerging as powerful assistants across a wide range of agricultural tasks, nevertheless, still heavily rely on manual operation or fixed rail systems for movement. The AgriVLN method and the A2A benchmark pioneeringly extend Vision-and-Language Navigation (VLN) to the agricultural domain, enabling robots to navigate to the target positions following the natural language instructions. In practical agricultural scenarios, navigation instructions often repeatedly occur, yet AgriVLN treat each instruction as an independent episode, overlooking the potential of past experiences to provide spatial context for subsequent ones. To bridge this gap, we propose the method of Spatial Understanding Memory for Agricultural Vision-and-Language Navigation (SUM-AgriVLN), in which the SUM module employs spatial understanding and save spatial memory through 3D reconstruction and representation. When evaluated on the A2A benchmark, our SUM-AgriVLN effectively improves Success Rate from 0.47 to 0.54 with slight sacrifice on Navigation Error from 2.91m to 2.93m, demonstrating the state-of-the-art performance in the agricultural domain. Code: https://github.com/AlexTraveling/SUM-AgriVLN.

Authors:Ryo Kuroiwa, Edward Lam
Title: Column Generation Using Domain-Independent Dynamic Programming
Abstract:
Column generation and branch-and-price are leading methods for large-scale exact optimization. Column generation iterates between solving a master problem and a pricing problem. The master problem is a linear program, which can be solved using a generic solver. The pricing problem is highly dependent on the application but is usually discrete. Due to the difficulty of discrete optimization, high-performance column generation often relies on a custom pricing algorithm built specifically to exploit the problem's structure. This bespoke nature of the pricing solver prevents the reuse of components for other applications. We show that domain-independent dynamic programming, a software package for modeling and solving arbitrary dynamic programs, can be used as a generic pricing solver. We develop basic implementations of branch-and-price with pricing by domain-independent dynamic programming and show that they outperform a world-leading solver on static mixed integer programming formulations for seven problem classes.

Authors:Sathyanarayanan Ramamoorthy, Vishwa Shah, Simran Khanuja, Zaid Sheikh, Shan Jie, Ann Chia, Shearman Chua, Graham Neubig
Title: MERLIN: A Testbed for Multilingual Multimodal Entity Recognition and Linking
Abstract:
This paper introduces MERLIN, a novel testbed system for the task of Multilingual Multimodal Entity Linking. The created dataset includes BBC news article titles, paired with corresponding images, in five languages: Hindi, Japanese, Indonesian, Vietnamese, and Tamil, featuring over 7,000 named entity mentions linked to 2,500 unique Wikidata entities. We also include several benchmarks using multilingual and multimodal entity linking methods exploring different language models like LLaMa-2 and Aya-23. Our findings indicate that incorporating visual data improves the accuracy of entity linking, especially for entities where the textual context is ambiguous or insufficient, and particularly for models that do not have strong multilingual abilities. For the work, the dataset, methods are available here at https://github.com/rsathya4802/merlin

Authors:Kyungryul Back, Seongbeom Park, Milim Kim, Mincheol Kwon, SangHyeok Lee, Hyunyoung Lee, Junhee Cho, Seunghyun Park, Jinkyu Kim
Title: Watermarking for Factuality: Guiding Vision-Language Models Toward Truth via Tri-layer Contrastive Decoding
Abstract:
Large Vision-Language Models (LVLMs) have recently shown promising results on various multimodal tasks, even achieving human-comparable performance in certain cases. Nevertheless, LVLMs remain prone to hallucinations -- they often rely heavily on a single modality or memorize training data without properly grounding their outputs. To address this, we propose a training-free, tri-layer contrastive decoding with watermarking, which proceeds in three steps: (1) select a mature layer and an amateur layer among the decoding layers, (2) identify a pivot layer using a watermark-related question to assess whether the layer is visually well-grounded, and (3) apply tri-layer contrastive decoding to generate the final output. Experiments on public benchmarks such as POPE, MME and AMBER demonstrate that our method achieves state-of-the-art performance in reducing hallucinations in LVLMs and generates more visually grounded responses.

Authors:Nam Le, Leo Yu Zhang, Kewen Liao, Shirui Pan, Wei Luo
Title: TED++: Submanifold-Aware Backdoor Detection via Layerwise Tubular-Neighbourhood Screening
Abstract:
As deep neural networks power increasingly critical applications, stealthy backdoor attacks, where poisoned training inputs trigger malicious model behaviour while appearing benign, pose a severe security risk. Many existing defences are vulnerable when attackers exploit subtle distance-based anomalies or when clean examples are scarce. To meet this challenge, we introduce TED++, a submanifold-aware framework that effectively detects subtle backdoors that evade existing defences. TED++ begins by constructing a tubular neighbourhood around each class's hidden-feature manifold, estimating its local ``thickness'' from a handful of clean activations. It then applies Locally Adaptive Ranking (LAR) to detect any activation that drifts outside the admissible tube. By aggregating these LAR-adjusted ranks across all layers, TED++ captures how faithfully an input remains on the evolving class submanifolds. Based on such characteristic ``tube-constrained'' behaviour, TED++ flags inputs whose LAR-based ranking sequences deviate significantly. Extensive experiments are conducted on benchmark datasets and tasks, demonstrating that TED++ achieves state-of-the-art detection performance under both adaptive-attack and limited-data scenarios. Remarkably, even with only five held-out examples per class, TED++ still delivers near-perfect detection, achieving gains of up to 14\% in AUROC over the next-best method. The code is publicly available at https://github.com/namle-w/TEDpp.

Authors:Xukai Wang, Xuanbo Liu, Mingrui Chen, Haitian Zhong, Xuanlin Yang, Bohan Zeng, Jinbo Hu, Hao Liang, Junbo Niu, Xuchen Li, Ruitao Wu, Ruichuan An, Yang Shi, Liu Liu, Xu-Yao Zhang, Qiang Liu, Zhouchen Lin, Wentao Zhang, Bin Dong
Title: MorphoBench: A Benchmark with Difficulty Adaptive to Model Reasoning
Abstract:
With the advancement of powerful large-scale reasoning models, effectively evaluating the reasoning capabilities of these models has become increasingly important. However, existing benchmarks designed to assess the reasoning abilities of large models tend to be limited in scope and lack the flexibility to adapt their difficulty according to the evolving reasoning capacities of the models. To address this, we propose MorphoBench, a benchmark that incorporates multidisciplinary questions to evaluate the reasoning capabilities of large models and can adjust and update question difficulty based on the reasoning abilities of advanced models. Specifically, we curate the benchmark by selecting and collecting complex reasoning questions from existing benchmarks and sources such as Olympiad-level competitions. Additionally, MorphoBench adaptively modifies the analytical challenge of questions by leveraging key statements generated during the model's reasoning process. Furthermore, it includes questions generated using simulation software, enabling dynamic adjustment of benchmark difficulty with minimal resource consumption. We have gathered over 1,300 test questions and iteratively adjusted the difficulty of MorphoBench based on the reasoning capabilities of models such as o3 and GPT-5. MorphoBench enhances the comprehensiveness and validity of model reasoning evaluation, providing reliable guidance for improving both the reasoning abilities and scientific robustness of large models. The code has been released in https://github.com/OpenDCAI/MorphoBench.

Authors:Wangtao Sun, Xiang Cheng, Jialin Fan, Yao Xu, Xing Yu, Shizhu He, Jun Zhao, Kang Liu
Title: Towards Agentic Self-Learning LLMs in Search Environment
Abstract:
We study whether self-learning can scale LLM-based agents without relying on human-curated datasets or predefined rule-based rewards. Through controlled experiments in a search-agent setting, we identify two key determinants of scalable agent training: the source of reward signals and the scale of agent task data. We find that rewards from a Generative Reward Model (GRM) outperform rigid rule-based signals for open-domain learning, and that co-evolving the GRM with the policy further boosts performance. Increasing the volume of agent task data-even when synthetically generated-substantially enhances agentic capabilities. Building on these insights, we propose \textbf{Agentic Self-Learning} (ASL), a fully closed-loop, multi-role reinforcement learning framework that unifies task generation, policy execution, and evaluation within a shared tool environment and LLM backbone. ASL coordinates a Prompt Generator, a Policy Model, and a Generative Reward Model to form a virtuous cycle of harder task setting, sharper verification, and stronger solving. Empirically, ASL delivers steady, round-over-round gains, surpasses strong RLVR baselines (e.g., Search-R1) that plateau or degrade, and continues improving under zero-labeled-data conditions, indicating superior sample efficiency and robustness. We further show that GRM verification capacity is the main bottleneck: if frozen, it induces reward hacking and stalls progress; continual GRM training on the evolving data distribution mitigates this, and a small late-stage injection of real verification data raises the performance ceiling. This work establishes reward source and data scale as critical levers for open-domain agent learning and demonstrates the efficacy of multi-role co-evolution for scalable, self-improving agents. The data and code of this paper are released at https://github.com/forangel2014/Towards-Agentic-Self-Learning

Authors:Arnaud Judge, Nicolas Duchateau, Thierry Judge, Roman A. Sandler, Joseph Z. Sokol, Christian Desrosiers, Olivier Bernard, Pierre-Marc Jodoin
Title: Reinforcement Learning for Unsupervised Domain Adaptation in Spatio-Temporal Echocardiography Segmentation
Abstract:
Domain adaptation methods aim to bridge the gap between datasets by enabling knowledge transfer across domains, reducing the need for additional expert annotations. However, many approaches struggle with reliability in the target domain, an issue particularly critical in medical image segmentation, where accuracy and anatomical validity are essential. This challenge is further exacerbated in spatio-temporal data, where the lack of temporal consistency can significantly degrade segmentation quality, and particularly in echocardiography, where the presence of artifacts and noise can further hinder segmentation performance. To address these issues, we present RL4Seg3D, an unsupervised domain adaptation framework for 2D + time echocardiography segmentation. RL4Seg3D integrates novel reward functions and a fusion scheme to enhance key landmark precision in its segmentations while processing full-sized input videos. By leveraging reinforcement learning for image segmentation, our approach improves accuracy, anatomical validity, and temporal consistency while also providing, as a beneficial side effect, a robust uncertainty estimator, which can be used at test time to further enhance segmentation performance. We demonstrate the effectiveness of our framework on over 30,000 echocardiographic videos, showing that it outperforms standard domain adaptation techniques without the need for any labels on the target domain. Code is available at https://github.com/arnaudjudge/RL4Seg3D.

Authors:Yuancheng Xu, Wenqi Xian, Li Ma, Julien Philip, Ahmet Levent Taşel, Yiwei Zhao, Ryan Burgert, Mingming He, Oliver Hermann, Oliver Pilarski, Rahul Garg, Paul Debevec, Ning Yu
Title: Virtually Being: Customizing Camera-Controllable Video Diffusion Models with Multi-View Performance Captures
Abstract:
We introduce a framework that enables both multi-view character consistency and 3D camera control in video diffusion models through a novel customization data pipeline. We train the character consistency component with recorded volumetric capture performances re-rendered with diverse camera trajectories via 4D Gaussian Splatting (4DGS), lighting variability obtained with a video relighting model. We fine-tune state-of-the-art open-source video diffusion models on this data to provide strong multi-view identity preservation, precise camera control, and lighting adaptability. Our framework also supports core capabilities for virtual production, including multi-subject generation using two approaches: joint training and noise blending, the latter enabling efficient composition of independently customized models at inference time; it also achieves scene and real-life video customization as well as control over motion and spatial layout during customization. Extensive experiments show improved video quality, higher personalization accuracy, and enhanced camera control and lighting adaptability, advancing the integration of video generation into virtual production. Our project page is available at: https://eyeline-labs.github.io/Virtually-Being.

Authors:Zhen Yang, Mingyang Zhang, Feng Chen, Ganggui Ding, Liang Hou, Xin Tao, Pengfei Wan, Ying-Cong Chen
Title: Less is More: Improving LLM Reasoning with Minimal Test-Time Intervention
Abstract:
Recent progress in large language models (LLMs) has focused on test-time scaling to improve reasoning via increased inference computation, but often at the cost of efficiency. We revisit test-time behavior and uncover a simple yet underexplored phenomenon: reasoning uncertainty is highly localized-only a small subset of high-entropy tokens dominantly affects output correctness. Motivated by this, we propose Minimal Test-Time Intervention (MTI), a training-free framework that enhances reasoning accuracy and stability with minimal overhead. MTI includes: (i) Selective CFG intervention, applying classifier-free guidance only at uncertain positions; and (ii) Lightweight negative-prompt guidance, reusing the main model's KV cache to approximate unconditional decoding efficiently. MTI yields consistent gains across general, coding, and STEM tasks-e.g., +1.35% average improvement on eight benchmarks for Qwen3-8B-Base and +5% on AIME2024 using Qwen3-32B-Reasoning-while remaining highly efficient.

Authors:Xuwang Yin, Claire Zhang, Julie Steele, Nir Shavit, Tony T. Wang
Title: Joint Discriminative-Generative Modeling via Dual Adversarial Training
Abstract:
Simultaneously achieving robust classification and high-fidelity generative modeling within a single framework presents a significant challenge. Hybrid approaches, such as Joint Energy-Based Models (JEM), interpret classifiers as EBMs but are often limited by the instability and poor sample quality inherent in SGLD-based training. We address these limitations by proposing a novel training framework that integrates adversarial training (AT) principles for both discriminative robustness and stable generative learning. The proposed method introduces three key innovations: (1) the replacement of SGLD-based JEM learning with a stable, AT-based approach that optimizes the energy function by discriminating between real data and PGD-generated contrastive samples using the BCE loss; (2) synergistic adversarial training for the discriminative component that enhances classification robustness while eliminating the need for explicit gradient penalties; and (3) a two-stage training procedure to resolve the incompatibility between batch normalization and EBM training. Experiments on CIFAR-10, CIFAR-100, and ImageNet demonstrate that our method substantially improves adversarial robustness over existing hybrid models while maintaining competitive generative performance. On ImageNet, when optimized for generative modeling, our model's generative fidelity surpasses that of BigGAN and approaches diffusion models, representing the first MCMC-based EBM approach to achieve high-quality generation on complex, high-resolution datasets. Our approach addresses key stability issues that have limited JEM scaling and demonstrates that adversarial training can serve as an effective foundation for unified frameworks capable of generating and robustly classifying visual data.

Authors:Munsif Ali, Leonardo Rossi, Massimo Bertozzi
Title: CoLoR-GAN: Continual Few-Shot Learning with Low-Rank Adaptation in Generative Adversarial Networks
Abstract:
Continual learning (CL) in the context of Generative Adversarial Networks (GANs) remains a challenging problem, particularly when it comes to learn from a few-shot (FS) samples without catastrophic forgetting. Current most effective state-of-the-art (SOTA) methods, like LFS-GAN, introduce a non-negligible quantity of new weights at each training iteration, which would become significant when considering the long term. For this reason, this paper introduces \textcolor{red}{\textbf{\underline{c}}}ontinual few-sh\textcolor{red}{\textbf{\underline{o}}}t learning with \textcolor{red}{\textbf{\underline{lo}}}w-\textcolor{red}{\textbf{\underline{r}}}ank adaptation in GANs named CoLoR-GAN, a framework designed to handle both FS and CL together, leveraging low-rank tensors to efficiently adapt the model to target tasks while reducing even more the number of parameters required. Applying a vanilla LoRA implementation already permitted us to obtain pretty good results. In order to optimize even further the size of the adapters, we challenged LoRA limits introducing a LoRA in LoRA (LLoRA) technique for convolutional layers. Finally, aware of the criticality linked to the choice of the hyperparameters of LoRA, we provide an empirical study to easily find the best ones. We demonstrate the effectiveness of CoLoR-GAN through experiments on several benchmark CL and FS tasks and show that our model is efficient, reaching SOTA performance but with a number of resources enormously reduced. Source code is available on \href{https://github.com/munsifali11/CoLoR-GAN}{Github.

Authors:Dongkwan Lee, Junhoo Lee, Nojun Kwak
Title: Deep Edge Filter: Return of the Human-Crafted Layer in Deep Learning
Abstract:
We introduce the Deep Edge Filter, a novel approach that applies high-pass filtering to deep neural network features to improve model generalizability. Our method is motivated by our hypothesis that neural networks encode task-relevant semantic information in high-frequency components while storing domain-specific biases in low-frequency components of deep features. By subtracting low-pass filtered outputs from original features, our approach isolates generalizable representations while preserving architectural integrity. Experimental results across diverse domains such as Vision, Text, 3D, and Audio demonstrate consistent performance improvements regardless of model architecture and data modality. Analysis reveals that our method induces feature sparsification and effectively isolates high-frequency components, providing empirical validation of our core hypothesis. The code is available at https://github.com/dongkwani/DeepEdgeFilter.

Authors:Zixi Wang, Yushe Cao, Yubo Huang, Jinzhu Wei, Jingzehua Xu, Shuai Zhang, Xin Lai
Title: Self-Training with Dynamic Weighting for Robust Gradual Domain Adaptation
Abstract:
In this paper, we propose a new method called Self-Training with Dynamic Weighting (STDW), which aims to enhance robustness in Gradual Domain Adaptation (GDA) by addressing the challenge of smooth knowledge migration from the source to the target domain. Traditional GDA methods mitigate domain shift through intermediate domains and self-training but often suffer from inefficient knowledge migration or incomplete intermediate data. Our approach introduces a dynamic weighting mechanism that adaptively balances the loss contributions of the source and target domains during training. Specifically, we design an optimization framework governed by a time-varying hyperparameter $\varrho$ (progressing from 0 to 1), which controls the strength of domain-specific learning and ensures stable adaptation. The method leverages self-training to generate pseudo-labels and optimizes a weighted objective function for iterative model updates, maintaining robustness across intermediate domains. Experiments on rotated MNIST, color-shifted MNIST, portrait datasets, and the Cover Type dataset demonstrate that STDW outperforms existing baselines. Ablation studies further validate the critical role of $\varrho$'s dynamic scheduling in achieving progressive adaptation, confirming its effectiveness in reducing domain bias and improving generalization. This work provides both theoretical insights and a practical framework for robust gradual domain adaptation, with potential applications in dynamic real-world scenarios. The code is available at https://github.com/Dramwig/STDW.

Authors:Fabian Wenz, Omar Bouattour, Devin Yang, Justin Choi, Cecil Gregg, Nesime Tatbul, Çağatay Demiralp
Title: BenchPress: A Human-in-the-Loop Annotation System for Rapid Text-to-SQL Benchmark Curation
Abstract:
Large language models (LLMs) have been successfully applied to many tasks, including text-to-SQL generation. However, much of this work has focused on publicly available datasets, such as Fiben, Spider, and Bird. Our earlier work showed that LLMs are much less effective in querying large private enterprise data warehouses and released Beaver, the first private enterprise text-to-SQL benchmark. To create Beaver, we leveraged SQL logs, which are often readily available. However, manually annotating these logs to identify which natural language questions they answer is a daunting task. Asking database administrators, who are highly trained experts, to take on additional work to construct and validate corresponding natural language utterances is not only challenging but also quite costly. To address this challenge, we introduce BenchPress, a human-in-the-loop system designed to accelerate the creation of domain-specific text-to-SQL benchmarks. Given a SQL query, BenchPress uses retrieval-augmented generation (RAG) and LLMs to propose multiple natural language descriptions. Human experts then select, rank, or edit these drafts to ensure accuracy and domain alignment. We evaluated BenchPress on annotated enterprise SQL logs, demonstrating that LLM-assisted annotation drastically reduces the time and effort required to create high-quality benchmarks. Our results show that combining human verification with LLM-generated suggestions enhances annotation accuracy, benchmark reliability, and model evaluation robustness. By streamlining the creation of custom benchmarks, BenchPress offers researchers and practitioners a mechanism for assessing text-to-SQL models on a given domain-specific workload. BenchPress is freely available via our public GitHub repository at https://github.com/fabian-wenz/enterprise-txt2sql and is also accessible on our website at http://dsg-mcgraw.csail.mit.edu:5000.

Authors:Peter Banyas, Shristi Sharma, Alistair Simmons, Atharva Vispute
Title: ConsistencyAI: A Benchmark to Assess LLMs' Factual Consistency When Responding to Different Demographic Groups
Abstract:
Is an LLM telling you different facts than it's telling me? This paper introduces ConsistencyAI, an independent benchmark for measuring the factual consistency of large language models (LLMs) for different personas. ConsistencyAI tests whether, when users of different demographics ask identical questions, the model responds with factually inconsistent answers. Designed without involvement from LLM providers, this benchmark offers impartial evaluation and accountability. In our experiment, we queried 19 LLMs with prompts that requested 5 facts for each of 15 topics. We repeated this query 100 times for each LLM, each time adding prompt context from a different persona selected from a subset of personas modeling the general population. We processed the responses into sentence embeddings, computed cross-persona cosine similarity, and computed the weighted average of cross-persona cosine similarity to calculate factual consistency scores. In 100-persona experiments, scores ranged from 0.9065 to 0.7896, and the mean was 0.8656, which we adopt as a benchmark threshold. xAI's Grok-3 is most consistent, while several lightweight models rank lowest. Consistency varies by topic: the job market is least consistent, G7 world leaders most consistent, and issues like vaccines or the Israeli-Palestinian conflict diverge by provider. These results show that both the provider and the topic shape the factual consistency. We release our code and interactive demo to support reproducible evaluation and encourage persona-invariant prompting strategies.

Authors:Chao Han, Yijuan Liang, Zihao Xuan, Daokuan Wu, Wei Zhang, Xiaoyu Shen
Title: Informed Routing in LLMs: Smarter Token-Level Computation for Faster Inference
Abstract:
The deployment of large language models (LLMs) in real-world applications is increasingly limited by their high inference cost. While recent advances in dynamic token-level computation allocation attempt to improve efficiency by selectively activating model components per token, existing methods rely on greedy routing--a myopic execute-or-skip mechanism that often leads to irreversible information loss and suboptimal token selection. This paper introduces informed routing, a new paradigm that proactively addresses these issues. The key insight is to assess not only a token's immediate importance but also its recoverability, i.e., how well its transformation can be approximated. To this end, we propose the Lightweight Feature Forecaster (LFF), a small predictive module that estimates a unit's output before routing decisions are made. This enables a flexible execute-or-approximate policy that preserves model fidelity while drastically reducing computation. Extensive experiments on both language modeling and reasoning tasks show that informed routing achieves state-of-the-art efficiency-performance trade-offs across multiple sparsity levels. Notably, even without final LoRA fine-tuning, our method matches or surpasses strong baselines that require full fine-tuning, all while reducing training time by over 50%. The code is available at: https://github.com/EIT-NLP/informed-routing

Authors:Shinwoo Park, Hyejin Park, Hyeseon Ahn, Yo-Sub Han
Title: A Linguistics-Aware LLM Watermarking via Syntactic Predictability
Abstract:
As large language models (LLMs) continue to advance rapidly, reliable governance tools have become critical. Publicly verifiable watermarking is particularly essential for fostering a trustworthy AI ecosystem. A central challenge persists: balancing text quality against detection robustness. Recent studies have sought to navigate this trade-off by leveraging signals from model output distributions (e.g., token-level entropy); however, their reliance on these model-specific signals presents a significant barrier to public verification, as the detection process requires access to the logits of the underlying model. We introduce STELA, a novel framework that aligns watermark strength with the linguistic degrees of freedom inherent in language. STELA dynamically modulates the signal using part-of-speech (POS) n-gram-modeled linguistic indeterminacy, weakening it in grammatically constrained contexts to preserve quality and strengthen it in contexts with greater linguistic flexibility to enhance detectability. Our detector operates without access to any model logits, thus facilitating publicly verifiable detection. Through extensive experiments on typologically diverse languages-analytic English, isolating Chinese, and agglutinative Korean-we show that STELA surpasses prior methods in detection robustness. Our code is available at https://github.com/Shinwoo-Park/stela_watermark.

Authors:Skylar Sargent Walters, Arthea Valderrama, Thomas C. Smits, David Kouřil, Huyen N. Nguyen, Sehi L'Yi, Devin Lange, Nils Gehlenborg
Title: GQVis: A Dataset of Genomics Data Questions and Visualizations for Generative AI
Abstract:
Data visualization is a fundamental tool in genomics research, enabling the exploration, interpretation, and communication of complex genomic features. While machine learning models show promise for transforming data into insightful visualizations, current models lack the training foundation for domain-specific tasks. In an effort to provide a foundational resource for genomics-focused model training, we present a framework for generating a dataset that pairs abstract, low-level questions about genomics data with corresponding visualizations. Building on prior work with statistical plots, our approach adapts to the complexity of genomics data and the specialized representations used to depict them. We further incorporate multiple linked queries and visualizations, along with justifications for design choices, figure captions, and image alt-texts for each item in the dataset. We use genomics data retrieved from three distinct genomics data repositories (4DN, ENCODE, Chromoscope) to produce GQVis: a dataset consisting of 1.14 million single-query data points, 628k query pairs, and 589k query chains. The GQVis dataset and generation code are available at https://huggingface.co/datasets/HIDIVE/GQVis and https://github.com/hms-dbmi/GQVis-Generation.

Authors:Xinyi Chen, Yilun Chen, Yanwei Fu, Ning Gao, Jiaya Jia, Weiyang Jin, Hao Li, Yao Mu, Jiangmiao Pang, Yu Qiao, Yang Tian, Bin Wang, Bolun Wang, Fangjing Wang, Hanqing Wang, Tai Wang, Ziqin Wang, Xueyuan Wei, Chao Wu, Shuai Yang, Jinhui Ye, Junqiu Yu, Jia Zeng, Jingjing Zhang, Jinyu Zhang, Shi Zhang, Feng Zheng, Bowen Zhou, Yangkun Zhu
Title: InternVLA-M1: A Spatially Guided Vision-Language-Action Framework for Generalist Robot Policy
Abstract:
We introduce InternVLA-M1, a unified framework for spatial grounding and robot control that advances instruction-following robots toward scalable, general-purpose intelligence. Its core idea is spatially guided vision-language-action training, where spatial grounding serves as the critical link between instructions and robot actions. InternVLA-M1 employs a two-stage pipeline: (i) spatial grounding pre-training on over 2.3M spatial reasoning data to determine ``where to act'' by aligning instructions with visual, embodiment-agnostic positions, and (ii) spatially guided action post-training to decide ``how to act'' by generating embodiment-aware actions through plug-and-play spatial prompting. This spatially guided training recipe yields consistent gains: InternVLA-M1 outperforms its variant without spatial guidance by +14.6% on SimplerEnv Google Robot, +17% on WidowX, and +4.3% on LIBERO Franka, while demonstrating stronger spatial reasoning capability in box, point, and trace prediction. To further scale instruction following, we built a simulation engine to collect 244K generalizable pick-and-place episodes, enabling a 6.2% average improvement across 200 tasks and 3K+ objects. In real-world clustered pick-and-place, InternVLA-M1 improved by 7.3%, and with synthetic co-training, achieved +20.6% on unseen objects and novel configurations. Moreover, in long-horizon reasoning-intensive scenarios, it surpassed existing works by over 10%. These results highlight spatially guided training as a unifying principle for scalable and resilient generalist robots. Code and models are available at https://github.com/InternRobotics/InternVLA-M1.

Authors:Connor Lane, Daniel Z. Kaplan, Tanishq Mathew Abraham, Paul S. Scotti
Title: Scaling Vision Transformers for Functional MRI with Flat Maps
Abstract:
A key question for adapting modern deep learning architectures to functional MRI (fMRI) is how to represent the data for model input. To bridge the modality gap between fMRI and natural images, we transform the 4D volumetric fMRI data into videos of 2D fMRI activity flat maps. We train Vision Transformers on 2.3K hours of fMRI flat map videos from the Human Connectome Project using the spatiotemporal masked autoencoder (MAE) framework. We observe that masked fMRI modeling performance improves with dataset size according to a strict power scaling law. Downstream classification benchmarks show that our model learns rich representations supporting both fine-grained state decoding across subjects, as well as subject-specific trait decoding across changes in brain state. This work is part of an ongoing open science project to build foundation models for fMRI data. Our code and datasets are available at https://github.com/MedARC-AI/fmri-fm.

Authors:Mustafa Munir, Alex Zhang, Radu Marculescu
Title: Multi-Scale High-Resolution Logarithmic Grapher Module for Efficient Vision GNNs
Abstract:
Vision graph neural networks (ViG) have demonstrated promise in vision tasks as a competitive alternative to conventional convolutional neural nets (CNN) and transformers (ViTs); however, common graph construction methods, such as k-nearest neighbor (KNN), can be expensive on larger images. While methods such as Sparse Vision Graph Attention (SVGA) have shown promise, SVGA's fixed step scale can lead to over-squashing and missing multiple connections to gain the same information that could be gained from a long-range link. Through this observation, we propose a new graph construction method, Logarithmic Scalable Graph Construction (LSGC) to enhance performance by limiting the number of long-range links. To this end, we propose LogViG, a novel hybrid CNN-GNN model that utilizes LSGC. Furthermore, inspired by the successes of multi-scale and high-resolution architectures, we introduce and apply a high-resolution branch and fuse features between our high-resolution and low-resolution branches for a multi-scale high-resolution Vision GNN network. Extensive experiments show that LogViG beats existing ViG, CNN, and ViT architectures in terms of accuracy, GMACs, and parameters on image classification and semantic segmentation tasks. Our smallest model, Ti-LogViG, achieves an average top-1 accuracy on ImageNet-1K of 79.9% with a standard deviation of 0.2%, 1.7% higher average accuracy than Vision GNN with a 24.3% reduction in parameters and 35.3% reduction in GMACs. Our work shows that leveraging long-range links in graph construction for ViGs through our proposed LSGC can exceed the performance of current state-of-the-art ViGs. Code is available at https://github.com/mmunir127/LogViG-Official.

Authors:Minjung Shin, Hyunin Cho, Sooyeon Go, Jin-Hwa Kim, Youngjung Uh
Title: MVCustom: Multi-View Customized Diffusion via Geometric Latent Rendering and Completion
Abstract:
Multi-view generation with camera pose control and prompt-based customization are both essential elements for achieving controllable generative models. However, existing multi-view generation models do not support customization with geometric consistency, whereas customization models lack explicit viewpoint control, making them challenging to unify. Motivated by these gaps, we introduce a novel task, multi-view customization, which aims to jointly achieve multi-view camera pose control and customization. Due to the scarcity of training data in customization, existing multi-view generation models, which inherently rely on large-scale datasets, struggle to generalize to diverse prompts. To address this, we propose MVCustom, a novel diffusion-based framework explicitly designed to achieve both multi-view consistency and customization fidelity. In the training stage, MVCustom learns the subject's identity and geometry using a feature-field representation, incorporating the text-to-video diffusion backbone enhanced with dense spatio-temporal attention, which leverages temporal coherence for multi-view consistency. In the inference stage, we introduce two novel techniques: depth-aware feature rendering explicitly enforces geometric consistency, and consistent-aware latent completion ensures accurate perspective alignment of the customized subject and surrounding backgrounds. Extensive experiments demonstrate that MVCustom is the only framework that simultaneously achieves faithful multi-view generation and customization.

Authors:Peng Di, Faqiang Chen, Xiao Bai, Hongjun Yang, Qingfeng Li, Ganglin Wei, Jian Mou, Feng Shi, Keting Chen, Peng Tang, Zhitao Shen, Zheng Li, Wenhui Shi, Junwei Guo, Hang Yu
Title: OpenDerisk: An Industrial Framework for AI-Driven SRE, with Design, Implementation, and Case Studies
Abstract:
The escalating complexity of modern software imposes an unsustainable operational burden on Site Reliability Engineering (SRE) teams, demanding AI-driven automation that can emulate expert diagnostic reasoning. Existing solutions, from traditional AI methods to general-purpose multi-agent systems, fall short: they either lack deep causal reasoning or are not tailored for the specialized, investigative workflows unique to SRE. To address this gap, we present OpenDerisk, a specialized, open-source multi-agent framework architected for SRE. OpenDerisk integrates a diagnostic-native collaboration model, a pluggable reasoning engine, a knowledge engine, and a standardized protocol (MCP) to enable specialist agents to collectively solve complex, multi-domain problems. Our comprehensive evaluation demonstrates that OpenDerisk significantly outperforms state-of-the-art baselines in both accuracy and efficiency. This effectiveness is validated by its large-scale production deployment at Ant Group, where it serves over 3,000 daily users across diverse scenarios, confirming its industrial-grade scalability and practical impact. OpenDerisk is open source and available at https://github.com/derisk-ai/OpenDerisk/

Authors:Yulian Wu, Rushil Thareja, Praneeth Vepakomma, Francesco Orabona
Title: Offline and Online KL-Regularized RLHF under Differential Privacy
Abstract:
In this paper, we study the offline and online settings of reinforcement learning from human feedback (RLHF) with KL-regularization -- a widely used objective function in large language model alignment -- under the $ε$ local differential privacy ($ε$-LDP) model on the label of the human preference. In the offline setting, we design an algorithm based on the principle of pessimism and derive a new suboptimality gap of $\tilde{O}(1/[(e^ε-1)^2 n])$ on the KL-regularized objective under single-policy concentrability. We also prove its optimality by providing a matching lower bound where $n$ is the sample size. In the online setting, we are the first one to theoretically investigate the problem of KL-regularized RLHF with LDP. We design an optimism-based algorithm and derive a logarithmic regret bound of $O(d_{\mathcal{F}}\log (N_{\mathcal{F}}\cdot T) /(e^ε-1)^2 )$, where $T$ is the total time step, $N_{\mathcal{F}}$ is cardinality of the reward function space $\mathcal{F}$ and $d_{\mathcal{F}}$ is a variant of eluder dimension for RLHF. As a by-product of our analysis, our results also imply the first analysis for online KL-regularized RLHF without privacy. We implement our algorithm in the offline setting to verify our theoretical results and release our open source code at: https://github.com/rushil-thareja/PPKL-RLHF-Official.

Authors:Shujun Xia, Haokun Lin, Yichen Wu, Yinan Zhou, Zixuan Li, Zhongwei Wan, Xingrun Xing, Yefeng Zheng, Xiang Li, Caifeng Shan, Zhenan Sun, Quanzheng Li
Title: MedREK: Retrieval-Based Editing for Medical LLMs with Key-Aware Prompts
Abstract:
LLMs hold great promise for healthcare applications, but the rapid evolution of medical knowledge and errors in training data often cause them to generate outdated or inaccurate information, limiting their applicability in high-stakes clinical practice. Model editing has emerged as a potential remedy without full retraining. While parameter-based editing often compromises locality and is thus ill-suited for the medical domain, retrieval-based editing offers a more viable alternative. However, it still faces two critical challenges: (1) representation overlap within the medical knowledge space often causes inaccurate retrieval and reduces editing accuracy; (2) existing methods are restricted to single-sample edits, while batch-editing remains largely unexplored despite its importance for real-world medical applications. To address these challenges, we first construct MedVersa, \hk{an enhanced benchmark with broader coverage of medical subjects, designed to evaluate both single and batch edits under strict locality constraints}. We then propose MedREK, a retrieval-based editing framework that integrates a shared query-key module for precise matching with an attention-based prompt encoder for informative guidance. Experimental results on various medical benchmarks demonstrate that our MedREK achieves superior performance across different core metrics and provides the first validated solution for batch-editing in medical LLMs. Our code and dataset are available at https://github.com/mylittleriver/MedREK.

Authors:Tommaso Bonomo, Luca Gioffré, Roberto Navigli
Title: LiteraryQA: Towards Effective Evaluation of Long-document Narrative QA
Abstract:
Question Answering (QA) on narrative text poses a unique challenge to current systems, requiring a deep understanding of long, complex documents. However, the reliability of NarrativeQA, the most widely used benchmark in this domain, is hindered by noisy documents and flawed QA pairs. In this work, we introduce LiteraryQA, a high-quality subset of NarrativeQA focused on literary works. Using a human- and LLM-validated pipeline, we identify and correct low-quality QA samples while removing extraneous text from source documents. We then carry out a meta-evaluation of automatic metrics to clarify how systems should be evaluated on LiteraryQA. This analysis reveals that all n-gram-based metrics have a low system-level correlation to human judgment, while LLM-as-a-Judge evaluations, even with small open-weight models, can strongly agree with the ranking identified by humans. Finally, we benchmark a set of long-context LLMs on LiteraryQA. We release our code and data at https://github.com/SapienzaNLP/LiteraryQA.

Authors:Jiaxing Deng, Junbiao Pang, Zhicheng Wang, Haitao Yu
Title: Rectify and Align GPS Points to Parking Spots via Rank-1 Constraint
Abstract:
Parking spots are essential components, providing vital mobile resources for residents in a city. Accurate Global Positioning System (GPS) points of parking spots are the core data for subsequent applications,e.g., parking management, parking policy, and urban development. However, high-rise buildings tend to cause GPS points to drift from the actual locations of parking spots; besides, the standard lower-cost GPS equipment itself has a certain location error. Therefore, it is a non-trivial task to correct a few wrong GPS points from a large number of parking spots in an unsupervised approach. In this paper, motivated by the physical constraints of parking spots (i.e., parking spots are parallel to the sides of roads), we propose an unsupervised low-rank method to effectively rectify errors in GPS points and further align them to the parking spots in a unified framework. The proposed unconventional rectification and alignment method is simple and yet effective for any type of GPS point errors. Extensive experiments demonstrate the superiority of the proposed method to solve a practical problem. The data set and the code are publicly accessible at:https://github.com/pangjunbiao/ITS-Parking-spots-Dataset.

Authors:Xuanchen Wang, Heng Wang, Weidong Cai
Title: MotionBeat: Motion-Aligned Music Representation via Embodied Contrastive Learning and Bar-Equivariant Contact-Aware Encoding
Abstract:
Music is both an auditory and an embodied phenomenon, closely linked to human motion and naturally expressed through dance. However, most existing audio representations neglect this embodied dimension, limiting their ability to capture rhythmic and structural cues that drive movement. We propose MotionBeat, a framework for motion-aligned music representation learning. MotionBeat is trained with two newly proposed objectives: the Embodied Contrastive Loss (ECL), an enhanced InfoNCE formulation with tempo-aware and beat-jitter negatives to achieve fine-grained rhythmic discrimination, and the Structural Rhythm Alignment Loss (SRAL), which ensures rhythm consistency by aligning music accents with corresponding motion events. Architecturally, MotionBeat introduces bar-equivariant phase rotations to capture cyclic rhythmic patterns and contact-guided attention to emphasize motion events synchronized with musical accents. Experiments show that MotionBeat outperforms state-of-the-art audio encoders in music-to-dance generation and transfers effectively to beat tracking, music tagging, genre and instrument classification, emotion recognition, and audio-visual retrieval. Our project demo page: https://motionbeat2025.github.io/.

Authors:Haolin Pan, Jinyuan Dong, Hongbin Zhang, Hongyu Lin, Mingjie Xing, Yanjun Wu
Title: Behavioral Embeddings of Programs: A Quasi-Dynamic Approach for Optimization Prediction
Abstract:
Learning effective numerical representations, or embeddings, of programs is a fundamental prerequisite for applying machine learning to automate and enhance compiler optimization. Prevailing paradigms, however, present a dilemma. Static representations, derived from source code or intermediate representation (IR), are efficient and deterministic but offer limited insight into how a program will behave or evolve under complex code transformations. Conversely, dynamic representations, which rely on runtime profiling, provide profound insights into performance bottlenecks but are often impractical for large-scale tasks due to prohibitive overhead and inherent non-determinism. This paper transcends this trade-off by proposing a novel quasi-dynamic framework for program representation. The core insight is to model a program's optimization sensitivity. We introduce the Program Behavior Spectrum, a new representation generated by probing a program's IR with a diverse set of optimization sequences and quantifying the resulting changes in its static features. To effectively encode this high-dimensional, continuous spectrum, we pioneer a compositional learning approach. Product Quantization is employed to discretize the continuous reaction vectors into structured, compositional sub-words. Subsequently, a multi-task Transformer model, termed PQ-BERT, is pre-trained to learn the deep contextual grammar of these behavioral codes. Comprehensive experiments on two representative compiler optimization tasks -- Best Pass Prediction and -Oz Benefit Prediction -- demonstrate that our method outperforms state-of-the-art static baselines. Our code is publicly available at https://github.com/Panhaolin2001/PREP/.

Authors:Ankit Goyal, Hugo Hadfield, Xuning Yang, Valts Blukis, Fabio Ramos
Title: VLA-0: Building State-of-the-Art VLAs with Zero Modification
Abstract:
Vision-Language-Action models (VLAs) hold immense promise for enabling generalist robot manipulation. However, the best way to build them remains an open question. Current approaches often add complexity, such as modifying the existing vocabulary of a Vision-Language Model (VLM) with action tokens or introducing special action heads. Curiously, the simplest strategy of representing actions directly as text has remained largely unexplored. This work introduces VLA-0 to investigate this idea. We find that VLA-0 is not only effective; it is surprisingly powerful. With the right design, VLA-0 outperforms more involved models. On LIBERO, a popular benchmark for evaluating VLAs, VLA-0 outperforms all existing methods trained on the same robotic data, including $π_0.5$-KI, OpenVLA-OFT and SmolVLA. Furthermore, without large-scale robotics-specific training, it outperforms methods trained on large-scale robotic data, like $π_0.5$-KI, $π_0$, GR00T-N1 and MolmoAct. These findings also translate to the real world, where VLA-0 outperforms SmolVLA, a VLA model pre-trained on large-scale real data. This paper summarizes our unexpected findings and spells out the specific techniques required to unlock the high performance of this simple yet potent VLA design. Visual results, code, and trained models are provided here: https://vla0.github.io/.

Authors:Zhengxu Tang, Zizheng Wang, Luning Wang, Zitao Shuai, Chenhao Zhang, Siyu Qian, Yirui Wu, Bohao Wang, Haosong Rao, Zhenyu Yang, Chenwei Wu
Title: SeqBench: Benchmarking Sequential Narrative Generation in Text-to-Video Models
Abstract:
Text-to-video (T2V) generation models have made significant progress in creating visually appealing videos. However, they struggle with generating coherent sequential narratives that require logical progression through multiple events. Existing T2V benchmarks primarily focus on visual quality metrics but fail to evaluate narrative coherence over extended sequences. To bridge this gap, we present SeqBench, a comprehensive benchmark for evaluating sequential narrative coherence in T2V generation. SeqBench includes a carefully designed dataset of 320 prompts spanning various narrative complexities, with 2,560 human-annotated videos generated from 8 state-of-the-art T2V models. Additionally, we design a Dynamic Temporal Graphs (DTG)-based automatic evaluation metric, which can efficiently capture long-range dependencies and temporal ordering while maintaining computational efficiency. Our DTG-based metric demonstrates a strong correlation with human annotations. Through systematic evaluation using SeqBench, we reveal critical limitations in current T2V models: failure to maintain consistent object states across multi-action sequences, physically implausible results in multi-object scenarios, and difficulties in preserving realistic timing and ordering relationships between sequential actions. SeqBench provides the first systematic framework for evaluating narrative coherence in T2V generation and offers concrete insights for improving sequential reasoning capabilities in future models. Please refer to https://videobench.github.io/SeqBench.github.io/ for more details.

Authors:Xiao He, Huangxuan Zhao, Guojia Wan, Wei Zhou, Yanxing Liu, Juhua Liu, Yongchao Xu, Yong Luo, Dacheng Tao, Bo Du
Title: Epistemic-aware Vision-Language Foundation Model for Fetal Ultrasound Interpretation
Abstract:
Recent medical vision-language models have shown promise on tasks such as VQA, report generation, and anomaly detection. However, most are adapted to structured adult imaging and underperform in fetal ultrasound, which poses challenges of multi-view image reasoning, numerous diseases, and image diversity. To bridge this gap, we introduce FetalMind, a medical AI system tailored to fetal ultrasound for both report generation and diagnosis. Guided by clinical workflow, we propose Salient Epistemic Disentanglement (SED), which injects an expert-curated bipartite graph into the model to decouple view-disease associations and to steer preference selection along clinically faithful steps via reinforcement learning. This design mitigates variability across diseases and heterogeneity across views, reducing learning bottlenecks while aligning the model's inference with obstetric practice. To train FetalMind at scale, we curate FetalSigma-1M dataset, the first large-scale fetal ultrasound report corpus, comprising 20K reports from twelve medical centers, addressing the scarcity of domain data. Extensive experiments show that FetalMind outperforms open- and closed-source baselines across all gestational stages, achieving +14% average gains and +61.2% higher accuracy on critical conditions while remaining efficient, stable, and scalable. Project Page: https://hexiao0275.github.io/FetalMind.

Authors:Hancheng Ye, Zhengqi Gao, Mingyuan Ma, Qinsi Wang, Yuzhe Fu, Ming-Yu Chung, Yueqian Lin, Zhijian Liu, Jianyi Zhang, Danyang Zhuo, Yiran Chen
Title: KVCOMM: Online Cross-context KV-cache Communication for Efficient LLM-based Multi-agent Systems
Abstract:
Multi-agent large language model (LLM) systems are increasingly adopted for complex language processing tasks that require communication and coordination among agents. However, these systems often suffer substantial overhead from repeated reprocessing of overlapping contexts across agents. In typical pipelines, once an agent receives a message from its predecessor, the full context-including prior turns-must be reprocessed from scratch, leading to inefficient processing. While key-value (KV) caching is an effective solution for avoiding redundant computation in single-agent settings where prefixes remain unchanged, it cannot be directly reused in multi-agent scenarios due to diverging prefixes introduced by agent-specific context extensions. We identify that the core challenge lies in the offset variance of KV-caches across agents. To address this, we propose KVCOMM, a training-free framework that enables efficient prefilling in multi-agent inference by reusing KV-caches and aligning cache offsets of overlapping contexts under diverse prefix contexts. KVCOMM estimates and adjusts KV-caches for shared content by referencing a pool of cached examples-termed anchors-that store observed cache deviations under varying prefixes. The anchor pool is maintained and updated online, allowing dynamic adaptation to distinct user requests and context structures. KVCOMM achieves over 70% reuse rate across diverse multi-agent workloads, including retrieval-augmented generation, math reasoning, and collaborative coding tasks, all without quality degradation. Particularly, when each fully-connected agent receives 1K input tokens with 512 prefix tokens and 512 output tokens under a five-agent setting, KVCOMM achieves up to 7.8x speedup compared to the standard prefill pipeline, reducing TTFT from ~430 ms to ~55 ms.

Authors:Imran Khan
Title: From Literal to Liberal: A Meta-Prompting Framework for Eliciting Human-Aligned Exception Handling in Large Language Models
Abstract:
Large Language Models (LLMs) are increasingly being deployed as the reasoning engines for agentic AI systems, yet they exhibit a critical flaw: a rigid adherence to explicit rules that leads to decisions misaligned with human common sense and intent. This "rule-rigidity" is a significant barrier to building trustworthy autonomous agents. While prior work has shown that supervised fine-tuning (SFT) with human explanations can mitigate this issue, SFT is computationally expensive and inaccessible to many practitioners. To address this gap, we introduce the Rule-Intent Distinction (RID) Framework, a novel, low-compute meta-prompting technique designed to elicit human-aligned exception handling in LLMs in a zero-shot manner. The RID framework provides the model with a structured cognitive schema for deconstructing tasks, classifying rules, weighing conflicting outcomes, and justifying its final decision. We evaluated the RID framework against baseline and Chain-of-Thought (CoT) prompting on a custom benchmark of 20 scenarios requiring nuanced judgment across diverse domains. Our human-verified results demonstrate that the RID framework significantly improves performance, achieving a 95% Human Alignment Score (HAS), compared to 80% for the baseline and 75% for CoT. Furthermore, it consistently produces higher-quality, intent-driven reasoning. This work presents a practical, accessible, and effective method for steering LLMs from literal instruction-following to liberal, goal-oriented reasoning, paving the way for more reliable and pragmatic AI agents.

Authors:Yingjia Wan, Haochen Tan, Xiao Zhu, Xinyu Zhou, Zhiwei Li, Qingsong Lv, Changxuan Sun, Jiaqi Zeng, Yi Xu, Jianqiao Lu, Yinhong Liu, Zhijiang Guo
Title: FaStFACT: Faster, Stronger Long-Form Factuality Evaluations in LLMs
Abstract:
Evaluating the factuality of long-form generations from Large Language Models (LLMs) remains challenging due to accuracy issues and costly human assessment. Prior efforts attempt this by decomposing text into claims, searching for evidence, and verifying claims, but suffer from critical drawbacks: (1) inefficiency due to complex pipeline components unsuitable for long LLM outputs, and (2) ineffectiveness stemming from inaccurate claim sets and insufficient evidence collection of one-line snippets. To address these limitations, we propose \name, a fast and strong evaluation framework that achieves the highest alignment with human evaluation and efficiency among existing baselines. \name first employs chunk-level claim extraction integrated with confidence-based pre-verification, significantly reducing the cost of web searching and inference calling while ensuring reliability. For searching and verification, it collects document-level evidence from crawled webpages and selectively retrieves it during verification, addressing the evidence insufficiency problem in previous pipelines. Extensive experiments based on an aggregated and manually annotated benchmark demonstrate the reliability of \name in both efficiently and effectively evaluating the factuality of long-form LLM generations. Code and benchmark data is available at https://github.com/Yingjia-Wan/FastFact.

Authors:Kevin Li, Manuel Brack, Sudeep Katakol, Hareesh Ravi, Ajinkya Kale
Title: UniFusion: Vision-Language Model as Unified Encoder in Image Generation
Abstract:
Although recent advances in visual generation have been remarkable, most existing architectures still depend on distinct encoders for images and text. This separation constrains diffusion models' ability to perform cross-modal reasoning and knowledge transfer. Prior attempts to bridge this gap often use the last layer information from VLM, employ multiple visual encoders, or train large unified models jointly for text and image generation, which demands substantial computational resources and large-scale data, limiting its accessibility.We present UniFusion, a diffusion-based generative model conditioned on a frozen large vision-language model (VLM) that serves as a unified multimodal encoder. At the core of UniFusion is the Layerwise Attention Pooling (LAP) mechanism that extracts both high level semantics and low level details from text and visual tokens of a frozen VLM to condition a diffusion generative model. We demonstrate that LAP outperforms other shallow fusion architectures on text-image alignment for generation and faithful transfer of visual information from VLM to the diffusion model which is key for editing. We propose VLM-Enabled Rewriting Injection with Flexibile Inference (VERIFI), which conditions a diffusion transformer (DiT) only on the text tokens generated by the VLM during in-model prompt rewriting. VERIFI combines the alignment of the conditioning distribution with the VLM's reasoning capabilities for increased capabilities and flexibility at inference. In addition, finetuning on editing task not only improves text-image alignment for generation, indicative of cross-modality knowledge transfer, but also exhibits tremendous generalization capabilities. Our model when trained on single image editing, zero-shot generalizes to multiple image references further motivating the unified encoder design of UniFusion.

Authors:Fengzhi Guo, Chih-Chuan Hsu, Sihao Ding, Cheng Zhang
Title: Uncertainty Matters in Dynamic Gaussian Splatting for Monocular 4D Reconstruction
Abstract:
Reconstructing dynamic 3D scenes from monocular input is fundamentally under-constrained, with ambiguities arising from occlusion and extreme novel views. While dynamic Gaussian Splatting offers an efficient representation, vanilla models optimize all Gaussian primitives uniformly, ignoring whether they are well or poorly observed. This limitation leads to motion drifts under occlusion and degraded synthesis when extrapolating to unseen views. We argue that uncertainty matters: Gaussians with recurring observations across views and time act as reliable anchors to guide motion, whereas those with limited visibility are treated as less reliable. To this end, we introduce USplat4D, a novel Uncertainty-aware dynamic Gaussian Splatting framework that propagates reliable motion cues to enhance 4D reconstruction. Our key insight is to estimate time-varying per-Gaussian uncertainty and leverages it to construct a spatio-temporal graph for uncertainty-aware optimization. Experiments on diverse real and synthetic datasets show that explicitly modeling uncertainty consistently improves dynamic Gaussian Splatting models, yielding more stable geometry under occlusion and high-quality synthesis at extreme viewpoints.

Authors:Sanghee J. Kim, Kanishka Misra
Title: Hey, wait a minute: on at-issue sensitivity in Language Models
Abstract:
Evaluating the naturalness of dialogue in language models (LMs) is not trivial: notions of 'naturalness' vary, and scalable quantitative metrics remain limited. This study leverages the linguistic notion of 'at-issueness' to assess dialogue naturalness and introduces a new method: Divide, Generate, Recombine, and Compare (DGRC). DGRC (i) divides a dialogue as a prompt, (ii) generates continuations for subparts using LMs, (iii) recombines the dialogue and continuations, and (iv) compares the likelihoods of the recombined sequences. This approach mitigates bias in linguistic analyses of LMs and enables systematic testing of discourse-sensitive behavior. Applying DGRC, we find that LMs prefer to continue dialogue on at-issue content, with this effect enhanced in instruct-tuned models. They also reduce their at-issue preference when relevant cues (e.g., "Hey, wait a minute") are present. Although instruct-tuning does not further amplify this modulation, the pattern reflects a hallmark of successful dialogue dynamics.

Authors:Ajith Anil Meera, Abian Torres, Pablo Lanillos
Title: Designing Tools with Control Confidence
Abstract:
Prehistoric humans invented stone tools for specialized tasks by not just maximizing the tool's immediate goal-completion accuracy, but also increasing their confidence in the tool for later use under similar settings. This factor contributed to the increased robustness of the tool, i.e., the least performance deviations under environmental uncertainties. However, the current autonomous tool design frameworks solely rely on performance optimization, without considering the agent's confidence in tool use for repeated use. Here, we take a step towards filling this gap by i) defining an optimization framework for task-conditioned autonomous hand tool design for robots, where ii) we introduce a neuro-inspired control confidence term into the optimization routine that helps the agent to design tools with higher robustness. Through rigorous simulations using a robotic arm, we show that tools designed with control confidence as the objective function are more robust to environmental uncertainties during tool use than a pure accuracy-driven objective. We further show that adding control confidence to the objective function for tool design provides a balance between the robustness and goal accuracy of the designed tools under control perturbations. Finally, we show that our CMAES-based evolutionary optimization strategy for autonomous tool design outperforms other state-of-the-art optimizers by designing the optimal tool within the fewest iterations. Code: https://github.com/ajitham123/Tool_design_control_confidence.

Authors:Siyuan Li, Aodu Wulianghai, Xi Lin, Guangyan Li, Xiang Chen, Jun Wu, Jianhua Li
Title: StyleDecipher: Robust and Explainable Detection of LLM-Generated Texts with Stylistic Analysis
Abstract:
With the increasing integration of large language models (LLMs) into open-domain writing, detecting machine-generated text has become a critical task for ensuring content authenticity and trust. Existing approaches rely on statistical discrepancies or model-specific heuristics to distinguish between LLM-generated and human-written text. However, these methods struggle in real-world scenarios due to limited generalization, vulnerability to paraphrasing, and lack of explainability, particularly when facing stylistic diversity or hybrid human-AI authorship. In this work, we propose StyleDecipher, a robust and explainable detection framework that revisits LLM-generated text detection using combined feature extractors to quantify stylistic differences. By jointly modeling discrete stylistic indicators and continuous stylistic representations derived from semantic embeddings, StyleDecipher captures distinctive style-level divergences between human and LLM outputs within a unified representation space. This framework enables accurate, explainable, and domain-agnostic detection without requiring access to model internals or labeled segments. Extensive experiments across five diverse domains, including news, code, essays, reviews, and academic abstracts, demonstrate that StyleDecipher consistently achieves state-of-the-art in-domain accuracy. Moreover, in cross-domain evaluations, it surpasses existing baselines by up to 36.30%, while maintaining robustness against adversarial perturbations and mixed human-AI content. Further qualitative and quantitative analysis confirms that stylistic signals provide explainable evidence for distinguishing machine-generated text. Our source code can be accessed at https://github.com/SiyuanLi00/StyleDecipher.

Authors:Chao Chen, Zhixin Ma, Yongqi Li, Yupeng Hu, Yinwei Wei, Wenjie Li, Liqiang Nie
Title: Reasoning in the Dark: Interleaved Vision-Text Reasoning in Latent Space
Abstract:
Multimodal reasoning aims to enhance the capabilities of MLLMs by incorporating intermediate reasoning steps before reaching the final answer. It has evolved from text-only reasoning to the integration of visual information, enabling the thought process to be conveyed through both images and text. Despite its effectiveness, current multimodal reasoning methods depend on explicit reasoning steps that require labor-intensive vision-text annotations and inherently introduce significant inference latency. To address these issues, we introduce multimodal latent reasoning with the advantages of multimodal representation, reduced annotation, and inference efficiency. To facilicate it, we propose Interleaved Vision-Text Latent Reasoning (IVT-LR), which injects both visual and textual information in the reasoning process within the latent space. Specifically, IVT-LR represents each reasoning step by combining two implicit parts: latent text (the hidden states from the previous step) and latent vision (a set of selected image embeddings). We further introduce a progressive multi-stage training strategy to enable MLLMs to perform the above multimodal latent reasoning steps. Experiments on M3CoT and ScienceQA demonstrate that our IVT-LR method achieves an average performance increase of 5.45% in accuracy, while simultaneously achieving a speed increase of over 5 times compared to existing approaches. Code available at https://github.com/FYYDCC/IVT-LR.

Authors:Shurong Chai, Rahul Kumar JAIN, Rui Xu, Shaocong Mo, Ruibo Hou, Shiyu Teng, Jiaqing Liu, Lanfen Lin, Yen-Wei Chen
Title: A Text-Image Fusion Method with Data Augmentation Capabilities for Referring Medical Image Segmentation
Abstract:
Deep learning relies heavily on data augmentation to mitigate limited data, especially in medical imaging. Recent multimodal learning integrates text and images for segmentation, known as referring or text-guided image segmentation. However, common augmentations like rotation and flipping disrupt spatial alignment between image and text, weakening performance. To address this, we propose an early fusion framework that combines text and visual features before augmentation, preserving spatial consistency. We also design a lightweight generator that projects text embeddings into visual space, bridging semantic gaps. Visualization of generated pseudo-images shows accurate region localization. Our method is evaluated on three medical imaging tasks and four segmentation frameworks, achieving state-of-the-art results. Code is publicly available on GitHub: https://github.com/11yxk/MedSeg_EarlyFusion.

Authors:Chengyang Dong, Nan Guo
Title: Biased-Attention Guided Risk Prediction for Safe Decision-Making at Unsignalized Intersections
Abstract:
Autonomous driving decision-making at unsignalized intersections is highly challenging due to complex dynamic interactions and high conflict risks. To achieve proactive safety control, this paper proposes a deep reinforcement learning (DRL) decision-making framework integrated with a biased attention mechanism. The framework is built upon the Soft Actor-Critic (SAC) algorithm. Its core innovation lies in the use of biased attention to construct a traffic risk predictor. This predictor assesses the long-term risk of collision for a vehicle entering the intersection and transforms this risk into a dense reward signal to guide the SAC agent in making safe and efficient driving decisions. Finally, the simulation results demonstrate that the proposed method effectively improves both traffic efficiency and vehicle safety at the intersection, thereby proving the effectiveness of the intelligent decision-making framework in complex scenarios. The code of our work is available at https://github.com/hank111525/SAC-RWB.

Authors:Yunuo Liu, Dawei Zhu, Zena Al-Khalili, Dai Cheng, Yanjun Chen, Dietrich Klakow, Wei Zhang, Xiaoyu Shen
Title: PricingLogic: Evaluating LLMs Reasoning on Complex Tourism Pricing Tasks
Abstract:
We present PricingLogic, the first benchmark that probes whether Large Language Models(LLMs) can reliably automate tourism-related prices when multiple, overlapping fare rules apply. Travel agencies are eager to offload this error-prone task onto AI systems; however, deploying LLMs without verified reliability could result in significant financial losses and erode customer trust. PricingLogic comprises 300 natural-language questions based on booking requests derived from 42 real-world pricing policies, spanning two levels of difficulty: (i) basic customer-type pricing and (ii)bundled-tour calculations involving interacting discounts. Evaluations of a line of LLMs reveal a steep performance drop on the harder tier,exposing systematic failures in rule interpretation and arithmetic reasoning.These results highlight that, despite their general capabilities, today's LLMs remain unreliable in revenue-critical applications without further safeguards or domain adaptation. Our code and dataset are available at https://github.com/EIT-NLP/PricingLogic.

Authors:Zirui Guo, Xubin Ren, Lingrui Xu, Jiahao Zhang, Chao Huang
Title: RAG-Anything: All-in-One RAG Framework
Abstract:
Retrieval-Augmented Generation (RAG) has emerged as a fundamental paradigm for expanding Large Language Models beyond their static training limitations. However, a critical misalignment exists between current RAG capabilities and real-world information environments. Modern knowledge repositories are inherently multimodal, containing rich combinations of textual content, visual elements, structured tables, and mathematical expressions. Yet existing RAG frameworks are limited to textual content, creating fundamental gaps when processing multimodal documents. We present RAG-Anything, a unified framework that enables comprehensive knowledge retrieval across all modalities. Our approach reconceptualizes multimodal content as interconnected knowledge entities rather than isolated data types. The framework introduces dual-graph construction to capture both cross-modal relationships and textual semantics within a unified representation. We develop cross-modal hybrid retrieval that combines structural knowledge navigation with semantic matching. This enables effective reasoning over heterogeneous content where relevant evidence spans multiple modalities. RAG-Anything demonstrates superior performance on challenging multimodal benchmarks, achieving significant improvements over state-of-the-art methods. Performance gains become particularly pronounced on long documents where traditional approaches fail. Our framework establishes a new paradigm for multimodal knowledge access, eliminating the architectural fragmentation that constrains current systems. Our framework is open-sourced at: https://github.com/HKUDS/RAG-Anything.

Authors:Youhao Si, Yuan Liao, Qiushi Han, Yuhang Yang, Rui Dai, Liya Huang
Title: TFGA-Net: Temporal-Frequency Graph Attention Network for Brain-Controlled Speaker Extraction
Abstract:
The rapid development of auditory attention decoding (AAD) based on electroencephalography (EEG) signals offers the possibility EEG-driven target speaker extraction. However, how to effectively utilize the target-speaker common information between EEG and speech remains an unresolved problem. In this paper, we propose a model for brain-controlled speaker extraction, which utilizes the EEG recorded from the listener to extract the target speech. In order to effectively extract information from EEG signals, we derive multi-scale time--frequency features and further incorporate cortical topological structures that are selectively engaged during the task. Moreover, to effectively exploit the non-Euclidean structure of EEG signals and capture their global features, the graph convolutional networks and self-attention mechanism are used in the EEG encoder. In addition, to make full use of the fused EEG and speech feature and preserve global context and capture speech rhythm and prosody, we introduce MossFormer2 which combines MossFormer and RNN-Free Recurrent as separator. Experimental results on both the public Cocktail Party and KUL dataset in this paper show that our TFGA-Net model significantly outper-forms the state-of-the-art method in certain objective evaluation metrics. The source code is available at: https://github.com/LaoDa-X/TFGA-NET.

Authors:Blazej Manczak, Eric Lin, Francisco Eiras, James O' Neill, Vaikkunth Mugunthan
Title: Shallow Robustness, Deep Vulnerabilities: Multi-Turn Evaluation of Medical LLMs
Abstract:
Large language models (LLMs) are rapidly transitioning into medical clinical use, yet their reliability under realistic, multi-turn interactions remains poorly understood. Existing evaluation frameworks typically assess single-turn question answering under idealized conditions, overlooking the complexities of medical consultations where conflicting input, misleading context, and authority influence are common. We introduce MedQA-Followup, a framework for systematically evaluating multi-turn robustness in medical question answering. Our approach distinguishes between shallow robustness (resisting misleading initial context) and deep robustness (maintaining accuracy when answers are challenged across turns), while also introducing an indirect-direct axis that separates contextual framing (indirect) from explicit suggestion (direct). Using controlled interventions on the MedQA dataset, we evaluate five state-of-the-art LLMs and find that while models perform reasonably well under shallow perturbations, they exhibit severe vulnerabilities in multi-turn settings, with accuracy dropping from 91.2% to as low as 13.5% for Claude Sonnet 4. Counterintuitively, indirect, context-based interventions are often more harmful than direct suggestions, yielding larger accuracy drops across models and exposing a significant vulnerability for clinical deployment. Further compounding analyses reveal model differences, with some showing additional performance drops under repeated interventions while others partially recovering or even improving. These findings highlight multi-turn robustness as a critical but underexplored dimension for safe and reliable deployment of medical LLMs.

Authors:Changfu Xu, Jianxiong Guo, Yuzhu Liang, Haiyang Huang, Haodong Zou, Xi Zheng, Shui Yu, Xiaowen Chu, Jiannong Cao, Tian Wang
Title: Diffusion Models for Reinforcement Learning: Foundations, Taxonomy, and Development
Abstract:
Diffusion Models (DMs), as a leading class of generative models, offer key advantages for reinforcement learning (RL), including multi-modal expressiveness, stable training, and trajectory-level planning. This survey delivers a comprehensive and up-to-date synthesis of diffusion-based RL. We first provide an overview of RL, highlighting its challenges, and then introduce the fundamental concepts of DMs, investigating how they are integrated into RL frameworks to address key challenges in this research field. We establish a dual-axis taxonomy that organizes the field along two orthogonal dimensions: a function-oriented taxonomy that clarifies the roles DMs play within the RL pipeline, and a technique-oriented taxonomy that situates implementations across online versus offline learning regimes. We also provide a comprehensive examination of this progression from single-agent to multi-agent domains, thereby forming several frameworks for DM-RL integration and highlighting their practical utility. Furthermore, we outline several categories of successful applications of diffusion-based RL across diverse domains, discuss open research issues of current methodologies, and highlight key directions for future research to advance the field. Finally, we summarize the survey to identify promising future development directions. We are actively maintaining a GitHub repository (https://github.com/ChangfuXu/D4RL-FTD) for papers and other related resources to apply DMs for RL.

Authors:Tao Yin, Xiaohong Zhang, Jiacheng Zhang, Li Huang, Zhibin Zhang, Yuansong Zeng, Jin Xie, Meng Yan
Title: MoRA: On-the-fly Molecule-aware Low-Rank Adaptation Framework for LLM-based Multi-Modal Molecular Assistant
Abstract:
Effectively integrating molecular graph structures with Large Language Models (LLMs) is a key challenge in drug discovery. Most existing multi-modal alignment methods typically process these structures by fine-tuning the LLM or adding a static adapter simultaneously. However, these approaches have two main limitations: (1) it optimizes a shared parameter space across all molecular inputs, limiting the model's ability to capture instance-specific structural features; and (2) fine-tuning the LLM for molecular tasks can lead to catastrophic forgetting, undermining its general reasoning capabilities. In this paper, instead of static task-oriented adaptation, we propose an instance-specific parameter space alignment approach for each molecule on-the-fly. To this end, we introduce Molecule-aware Low-Rank Adaptation (MoRA) that produces a unique set of low-rank adaptation weights for each input molecular graph. These weights are then dynamically injected into a frozen LLM, allowing the model to adapt its reasoning to the structure of each molecular input, while preserving the LLM's core knowledge. Extensive experiments demonstrate that on key molecular tasks, such as chemical reaction prediction and molecular captioning, MoRA's instance-specific dynamic adaptation outperforms statically adapted baselines, including a 14.1% relative improvement in reaction prediction exact match and a 22% reduction in error for quantum property prediction. The code is available at https://github.com/jk-sounds/MoRA.

Authors:Linyi Yang, Yixuan Weng
Title: ResearStudio: A Human-Intervenable Framework for Building Controllable Deep-Research Agents
Abstract:
Current deep-research agents run in a ''fire-and-forget'' mode: once started, they give users no way to fix errors or add expert knowledge during execution. We present ResearStudio, the first open-source framework that places real-time human control at its core. The system follows a Collaborative Workshop design. A hierarchical Planner-Executor writes every step to a live ''plan-as-document,'' a fast communication layer streams each action, file change, and tool call to a web interface. At any moment, the user can pause the run, edit the plan or code, run custom commands, and resume -- switching smoothly between AI-led, human-assisted and human-led, AI-assisted modes. In fully autonomous mode, ResearStudio achieves state-of-the-art results on the GAIA benchmark, surpassing systems like OpenAI's DeepResearch and Manus. These results show that strong automated performance and fine-grained human control can coexist. The full code, protocol, and evaluation scripts are available at https://github.com/ResearAI/ResearStudio. We will continue to update the repository to encourage further work on safe and controllable research agents. Our live demo is publicly accessible at http://ai-researcher.net:3000/. We support the development of DeepScientist, which can be accessed at https://github.com/ResearAI/DeepScientist.

Authors:Chengrui Xiang, Tengfei Ma, Xiangzheng Fu, Yiping Liu, Bosheng Song, Xiangxiang Zeng
Title: From Knowledge to Treatment: Large Language Model Assisted Biomedical Concept Representation for Drug Repurposing
Abstract:
Drug repurposing plays a critical role in accelerating treatment discovery, especially for complex and rare diseases. Biomedical knowledge graphs (KGs), which encode rich clinical associations, have been widely adopted to support this task. However, existing methods largely overlook common-sense biomedical concept knowledge in real-world labs, such as mechanistic priors indicating that certain drugs are fundamentally incompatible with specific treatments. To address this gap, we propose LLaDR, a Large Language Model-assisted framework for Drug Repurposing, which improves the representation of biomedical concepts within KGs. Specifically, we extract semantically enriched treatment-related textual representations of biomedical entities from large language models (LLMs) and use them to fine-tune knowledge graph embedding (KGE) models. By injecting treatment-relevant knowledge into KGE, LLaDR largely improves the representation of biomedical concepts, enhancing semantic understanding of under-studied or complex indications. Experiments based on benchmarks demonstrate that LLaDR achieves state-of-the-art performance across different scenarios, with case studies on Alzheimer's disease further confirming its robustness and effectiveness. Code is available at https://github.com/xiaomingaaa/LLaDR.

Authors:Rongzhi Zhang, Liqin Ye, Yuzhao Heng, Xiang Chen, Tong Yu, Lingkai Kong, Sudheer Chava, Chao Zhang
Title: Precise Attribute Intensity Control in Large Language Models via Targeted Representation Editing
Abstract:
Precise attribute intensity control--generating Large Language Model (LLM) outputs with specific, user-defined attribute intensities--is crucial for AI systems adaptable to diverse user expectations. Current LLM alignment methods, however, typically provide only directional or open-ended guidance, failing to reliably achieve exact attribute intensities. We address this limitation with three key designs: (1) reformulating precise attribute intensity control as a target-reaching problem, rather than simple maximization; (2) training a lightweight value function via temporal-difference learning to predict final attribute intensity scores from partial generations, thereby steering LLM outputs; and (3) employing gradient-based interventions on hidden representations to navigate the model precisely towards specific attribute intensity targets. Our method enables fine-grained, continuous control over attribute intensities, moving beyond simple directional alignment. Experiments on LLaMA-3.2-3b and Phi-4-mini confirm our method's ability to steer text generation to user-specified attribute intensities with high accuracy. Finally, we demonstrate efficiency enhancements across three downstream tasks: preference data synthesis, Pareto frontier approximation and optimization, and distillation of aligned behaviors for intervention-free inference. Our code is available on https://github.com/Pre-Control/pre-control

Authors:Zaid Khan, Archiki Prasad, Elias Stengel-Eskin, Jaemin Cho, Mohit Bansal
Title: One Life to Learn: Inferring Symbolic World Models for Stochastic Environments from Unguided Exploration
Abstract:
Symbolic world modeling requires inferring and representing an environment's transitional dynamics as an executable program. Prior work has focused on largely deterministic environments with abundant interaction data, simple mechanics, and human guidance. We address a more realistic and challenging setting, learning in a complex, stochastic environment where the agent has only "one life" to explore a hostile environment without human guidance. We introduce OneLife, a framework that models world dynamics through conditionally-activated programmatic laws within a probabilistic programming framework. Each law operates through a precondition-effect structure, activating in relevant world states. This creates a dynamic computation graph that routes inference and optimization only through relevant laws, avoiding scaling challenges when all laws contribute to predictions about a complex, hierarchical state, and enabling the learning of stochastic dynamics even with sparse rule activation. To evaluate our approach under these demanding constraints, we introduce a new evaluation protocol that measures (a) state ranking, the ability to distinguish plausible future states from implausible ones, and (b) state fidelity, the ability to generate future states that closely resemble reality. We develop and evaluate our framework on Crafter-OO, our reimplementation of the Crafter environment that exposes a structured, object-oriented symbolic state and a pure transition function that operates on that state alone. OneLife can successfully learn key environment dynamics from minimal, unguided interaction, outperforming a strong baseline on 16 out of 23 scenarios tested. We also test OneLife's planning ability, with simulated rollouts successfully identifying superior strategies. Our work establishes a foundation for autonomously constructing programmatic world models of unknown, complex environments.

Authors:Sangmin Jo, Jee Seok Yoon, Wootaek Jeong, Kwanseok Oh, Heung-Il Suk
Title: MEASURE: Multi-scale Minimal Sufficient Representation Learning for Domain Generalization in Sleep Staging
Abstract:
Deep learning-based automatic sleep staging has significantly advanced in performance and plays a crucial role in the diagnosis of sleep disorders. However, those models often struggle to generalize on unseen subjects due to variability in physiological signals, resulting in degraded performance in out-of-distribution scenarios. To address this issue, domain generalization approaches have recently been studied to ensure generalized performance on unseen domains during training. Among those techniques, contrastive learning has proven its validity in learning domain-invariant features by aligning samples of the same class across different domains. Despite its potential, many existing methods are insufficient to extract adequately domain-invariant representations, as they do not explicitly address domain characteristics embedded within the unshared information across samples. In this paper, we posit that mitigating such domain-relevant attributes-referred to as excess domain-relevant information-is key to bridging the domain gap. However, the direct strategy to mitigate the domain-relevant attributes often overfits features at the high-level information, limiting their ability to leverage the diverse temporal and spectral information encoded in the multiple feature levels. To address these limitations, we propose a novel MEASURE (Multi-scalE minimAl SUfficient Representation lEarning) framework, which effectively reduces domain-relevant information while preserving essential temporal and spectral features for sleep stage classification. In our exhaustive experiments on publicly available sleep staging benchmark datasets, SleepEDF-20 and MASS, our proposed method consistently outperformed state-of-the-art methods. Our code is available at : https://github.com/ku-milab/Measure

Authors:Sunzhu Li, Zhiyu Lin, Shuling Yang, Jiale Zhao, Wei Chen
Title: ThinkPilot: Steering Reasoning Models via Automated Think-prefixes Optimization
Abstract:
Large Reasoning Models (LRMs) are powerful, but they still suffer from inefficient and off-target reasoning. Currently, training-free methods are limited to either rigid heuristics or descriptive, non-actionable analyses. In this paper, we introduce ThinkPilot, a training-free framework that automatically optimizes LRMs reasoning. It uses an evolutionary process to generate think-prefixes, which are instructions that evolve driven by a taxonomy of reasoning behaviors to guide models toward superior performance. Extensive experiments demonstrate ThinkPilot's broad effectiveness: it significantly improves the accuracy-length trade-off for efficient reasoning, drastically improves safety (for example, cutting the StrongREJECT score of DeepSeek-R1-Distill-Qwen-32B from 27.0% to 0.7), and enhances instruction following. It also synergizes with existing training-based methods. Our analysis reveals that think-prefixes can reliably control LRMs' reasoning behaviors, and that different tasks have strong preferences for specific behavioral distributions. By automatically identifying and eliciting these behaviors, ThinkPilot provides a generalizable framework for aligning LRMs reasoning with task demands. Data and code are available at https://github.com/teqkilla/ThinkPilot

Authors:Soohan Lim, Joonghyuk Hahn, Hyunwoo Park, Sang-Ki Ko, Yo-Sub Han
Title: Do Large Language Models Respect Contracts? Evaluating and Enforcing Contract-Adherence in Code Generation
Abstract:
Prevailing code generation benchmarks, such as HumanEval+ and MBPP+, primarily evaluate large language models (LLMs) with pass@k on functional correctness using well-formed inputs. However, they ignore a crucial aspect of real-world software: adherence to contracts-the preconditions and validity constraints that dictate how ill-formed inputs must be rejected. This critical oversight means that existing benchmarks fail to measure, and models consequently fail to generate, truly robust and reliable code snippets. We introduce PACT, a program assessment and contract-adherence evaluation framework, to bridge this gap. PACT is the first framework designed to systematically evaluate and enhance contract-adherence in LLM-generated code snippets alongside functional correctness. PACT's contributions are threefold: First, it provides a comprehensive test-suite corpus focused on contract violations, extending HumanEval+ and MBPP+. Second, it enables a systematic analysis of code generation under varied prompting conditions. This analysis demonstrates that augmenting prompts with contract-violating test cases significantly enhance a model's ability to respect contracts compared to using contract description alone. Finally, it introduces novel metrics to rigorously quantify contract adherence in both test generation and code generation. By revealing critical errors that conventional benchmarks overlook, PACT provides the rigorous and interpretable metrics to evaluate the robustness of LLM-generated code snippets in both functionality and contract-adherence. Our code and data are available at https://github.com/suhanmen/PACT.

Authors:Hatem Ibrahem, Ahmed Salem, Qinmin Vivian Hu, Guanghui Wang
Title: PanoTPS-Net: Panoramic Room Layout Estimation via Thin Plate Spline Transformation
Abstract:
Accurately estimating the 3D layout of rooms is a crucial task in computer vision, with potential applications in robotics, augmented reality, and interior design. This paper proposes a novel model, PanoTPS-Net, to estimate room layout from a single panorama image. Leveraging a Convolutional Neural Network (CNN) and incorporating a Thin Plate Spline (TPS) spatial transformation, the architecture of PanoTPS-Net is divided into two stages: First, a convolutional neural network extracts the high-level features from the input images, allowing the network to learn the spatial parameters of the TPS transformation. Second, the TPS spatial transformation layer is generated to warp a reference layout to the required layout based on the predicted parameters. This unique combination empowers the model to properly predict room layouts while also generalizing effectively to both cuboid and non-cuboid layouts. Extensive experiments on publicly available datasets and comparisons with state-of-the-art methods demonstrate the effectiveness of the proposed method. The results underscore the model's accuracy in room layout estimation and emphasize the compatibility between the TPS transformation and panorama images. The robustness of the model in handling both cuboid and non-cuboid room layout estimation is evident with a 3DIoU value of 85.49, 86.16, 81.76, and 91.98 on PanoContext, Stanford-2D3D, Matterport3DLayout, and ZInD datasets, respectively. The source code is available at: https://github.com/HatemHosam/PanoTPS_Net.

Authors:Simin Li, Zihao Mao, Hanxiao Li, Zonglei Jing, Zhuohang bian, Jun Guo, Li Wang, Zhuoran Han, Ruixiao Xu, Xin Yu, Chengdong Ma, Yuqing Ma, Bo An, Yaodong Yang, Weifeng Lv, Xianglong Liu
Title: Empirical Study on Robustness and Resilience in Cooperative Multi-Agent Reinforcement Learning
Abstract:
In cooperative Multi-Agent Reinforcement Learning (MARL), it is a common practice to tune hyperparameters in ideal simulated environments to maximize cooperative performance. However, policies tuned for cooperation often fail to maintain robustness and resilience under real-world uncertainties. Building trustworthy MARL systems requires a deep understanding of robustness, which ensures stability under uncertainties, and resilience, the ability to recover from disruptions--a concept extensively studied in control systems but largely overlooked in MARL. In this paper, we present a large-scale empirical study comprising over 82,620 experiments to evaluate cooperation, robustness, and resilience in MARL across 4 real-world environments, 13 uncertainty types, and 15 hyperparameters. Our key findings are: (1) Under mild uncertainty, optimizing cooperation improves robustness and resilience, but this link weakens as perturbations intensify. Robustness and resilience also varies by algorithm and uncertainty type. (2) Robustness and resilience do not generalize across uncertainty modalities or agent scopes: policies robust to action noise for all agents may fail under observation noise on a single agent. (3) Hyperparameter tuning is critical for trustworthy MARL: surprisingly, standard practices like parameter sharing, GAE, and PopArt can hurt robustness, while early stopping, high critic learning rates, and Leaky ReLU consistently help. By optimizing hyperparameters only, we observe substantial improvement in cooperation, robustness and resilience across all MARL backbones, with the phenomenon also generalizing to robust MARL methods across these backbones. Code and results available at https://github.com/BUAA-TrustworthyMARL/adv_marl_benchmark .

Authors:Hongyu Lin, Haolin Pan, Haoran Luo, Yuchen Li, Kaichun Yao, Libo Zhang, Mingjie Xing, Yanjun Wu
Title: AwareCompiler: Agentic Context-Aware Compiler Optimization via a Synergistic Knowledge-Data Driven Framework
Abstract:
Compiler optimization is crucial for enhancing program performance by transforming the sequence of optimization passes while maintaining correctness. Despite the promising potential of large language models (LLMs)-based agent for software optimization, automating compiler optimization remains challenging due to: (1) semantic misalignment between abstract program representations and concrete optimization passes, (2) inefficient interaction mechanisms between agents and compiler environments, and (3) reward sparsity from the extensive decision-making process within large optimization spaces. This paper introduces \textbf{AwareCompiler}, an agentic framework for compiler optimization that addresses these challenges through three key innovations: structured knowledge integration and dataset construction, knowledge-driven adaptive pass generation, and data-driven hybrid training pipeline. Experimental results on standard benchmarks demonstrate that AwareCompiler significantly outperforms existing baselines in both performance and efficiency, highlighting the effectiveness of our synergistic knowledge-data-driven approach. Our code is publicly available at https://github.com/LHY-24/AwareCompiler.

Authors:Zhiyu Wang, Bingxin Zhou, Jing Wang, Yang Tan, Weishu Zhao, Pietro Liò, Liang Hong
Title: Fast and Interpretable Protein Substructure Alignment via Optimal Transport
Abstract:
Proteins are essential biological macromolecules that execute life functions. Local motifs within protein structures, such as active sites, are the most critical components for linking structure to function and are key to understanding protein evolution and enabling protein engineering. Existing computational methods struggle to identify and compare these local structures, which leaves a significant gap in understanding protein structures and harnessing their functions. This study presents PLASMA, the first deep learning framework for efficient and interpretable residue-level protein substructure alignment. We reformulate the problem as a regularized optimal transport task and leverage differentiable Sinkhorn iterations. For a pair of input protein structures, PLASMA outputs a clear alignment matrix with an interpretable overall similarity score. Through extensive quantitative evaluations and three biological case studies, we demonstrate that PLASMA achieves accurate, lightweight, and interpretable residue-level alignment. Additionally, we introduce PLASMA-PF, a training-free variant that provides a practical alternative when training data are unavailable. Our method addresses a critical gap in protein structure analysis tools and offers new opportunities for functional annotation, evolutionary studies, and structure-based drug design. Reproducibility is ensured via our official implementation at https://github.com/ZW471/PLASMA-Protein-Local-Alignment.git.

Authors:Chengqi Duan, Kaiyue Sun, Rongyao Fang, Manyuan Zhang, Yan Feng, Ying Luo, Yufang Liu, Ke Wang, Peng Pei, Xunliang Cai, Hongsheng Li, Yi Ma, Xihui Liu
Title: CodePlot-CoT: Mathematical Visual Reasoning by Thinking with Code-Driven Images
Abstract:
Recent advances in Large Language Models (LLMs) and Vision Language Models (VLMs) have shown significant progress in mathematical reasoning, yet they still face a critical bottleneck with problems requiring visual assistance, such as drawing auxiliary lines or plotting functions to solve the problems. Most LLMs and VLMs are constrained to text-only reasoning chains, while multimodal unified models that can generate interleaved text and images lack the necessary precision and controllability for such tasks. To address this, we propose CodePlot-CoT, a code-driven Chain-of-Thought paradigm for "thinking with images" in mathematics. Our approach leverages the VLM to generate text reasoning as well as executable plotting code, which is then rendered into images as "visual thought", to solve mathematical problems. To achieve this, we first construct Math-VR, the first large-scale, bilingual dataset and benchmark for Mathematics problems with Visual Reasoning, comprising 178K samples. Second, to create high-quality training data, we develop a state-of-the-art image-to-code converter specialized for parsing complex mathematical figures into codes. Finally, using these training data, we train the CodePlot-CoT model for solving mathematical problems. Experimental results show that our model achieves up to 21% increase over base model on our new benchmark, fully validating the efficacy of our proposed code-driven reasoning paradigm. Our work opens a new direction for multimodal mathematical reasoning and provides the community with the first large-scale dataset, comprehensive benchmark, and strong approach for such problems. To facilitate future research, we make our datasets, code, and pretrained models publicly available at https://github.com/HKU-MMLab/Math-VR-CodePlot-CoT.

Authors:Chenghao Xiao, Hou Pong Chan, Hao Zhang, Weiwen Xu, Mahani Aljunied, Yu Rong
Title: Scaling Language-Centric Omnimodal Representation Learning
Abstract:
Recent multimodal embedding approaches leveraging multimodal large language models (MLLMs) fine-tuned with contrastive learning (CL) have shown promising results, yet the underlying reasons behind their superiority remain underexplored. This work argues that a crucial advantage of MLLM-based approaches stems from implicit cross-modal alignment achieved during generative pretraining, where the language decoder learns to exploit multimodal signals within a shared representation space for generating unimodal outputs. Through analysis of anisotropy and kernel similarity structure, we empirically confirm that latent alignment emerges within MLLM representations, allowing CL to serve as a lightweight refinement stage. Leveraging this insight, we propose a Language-Centric Omnimodal Embedding framework, termed LCO-Emb. Extensive experiments across diverse backbones and benchmarks demonstrate its effectiveness, achieving state-of-the-art performance across modalities. Furthermore, we identify a Generation-Representation Scaling Law (GRSL), showing that the representational capabilities gained through contrastive refinement scales positively with the MLLM's generative capabilities. This suggests that improving generative abilities evolves as an effective paradigm for enhancing representation quality. We provide a theoretical explanation of GRSL, which formally links the MLLM's generative quality to the upper bound on its representation performance, and validate it on a challenging, low-resource visual-document retrieval task, showing that continual generative pretraining before CL can further enhance the potential of a model's embedding capabilities. Codes, models, and resources are available at https://github.com/LCO-Embedding/LCO-Embedding.

Authors:Yi Yang, Kefan Gu, Yuqing Wen, Hebei Li, Yucheng Zhao, Tiancai Wang, Xudong Liu
Title: ManiAgent: An Agentic Framework for General Robotic Manipulation
Abstract:
While Vision-Language-Action (VLA) models have demonstrated impressive capabilities in robotic manipulation, their performance in complex reasoning and long-horizon task planning is limited by data scarcity and model capacity. To address this, we introduce ManiAgent, an agentic architecture for general manipulation tasks that achieves end-to-end output from task descriptions and environmental inputs to robotic manipulation actions. In this framework, multiple agents involve inter-agent communication to perform environmental perception, sub-task decomposition and action generation, enabling efficient handling of complex manipulation scenarios. Evaluations show ManiAgent achieves an 86.8% success rate on the SimplerEnv benchmark and 95.8% on real-world pick-and-place tasks, enabling efficient data collection that yields VLA models with performance comparable to those trained on human-annotated datasets.The project webpage is available at https://yi-yang929.github.io/ManiAgent/.

Authors:Shiqi Zhang, Xinbei Ma, Yunqing Xu, Zouying Cao, Pengrui Lu, Haobo Yuan, Tiancheng Shen, Zhuosheng Zhang, Hai Zhao, Ming-Hsuan Yang
Title: ParaCook: On Time-Efficient Planning for Multi-Agent Systems
Abstract:
Large Language Models (LLMs) exhibit strong reasoning abilities for planning long-horizon, real-world tasks, yet existing agent benchmarks focus on task completion while neglecting time efficiency in parallel and asynchronous operations. To address this, we present ParaCook, a benchmark for time-efficient collaborative planning. Inspired by the Overcooked game, ParaCook provides an environment for various challenging interaction planning of multi-agent systems that are instantiated as cooking tasks, with a simplified action space to isolate the core challenge of strategic parallel planning. Through a comprehensive evaluation of state-of-the-art LLMs, we find that current approaches achieve suboptimal plans, which struggle with parallel actions or coordination. Our analysis also reveals LLMs' potential on abstract tasks where they can focus on high-level parallel optimization. ParaCook provides a scalable evaluation framework with adjustable complexity, establishing a foundation for developing and assessing time efficiency-aware multi-agent planning. The code and data are available at https://github.com/zsq259/ParaCook.

Authors:Israel Mason-Williams, Gabryel Mason-Williams
Title: Reproducibility: The New Frontier in AI Governance
Abstract:
AI policymakers are responsible for delivering effective governance mechanisms that can provide safe, aligned and trustworthy AI development. However, the information environment offered to policymakers is characterised by an unnecessarily low Signal-To-Noise Ratio, favouring regulatory capture and creating deep uncertainty and divides on which risks should be prioritised from a governance perspective. We posit that the current publication speeds in AI combined with the lack of strong scientific standards, via weak reproducibility protocols, effectively erodes the power of policymakers to enact meaningful policy and governance protocols. Our paper outlines how AI research could adopt stricter reproducibility guidelines to assist governance endeavours and improve consensus on the AI risk landscape. We evaluate the forthcoming reproducibility crisis within AI research through the lens of crises in other scientific domains; providing a commentary on how adopting preregistration, increased statistical power and negative result publication reproducibility protocols can enable effective AI governance. While we maintain that AI governance must be reactive due to AI's significant societal implications we argue that policymakers and governments must consider reproducibility protocols as a core tool in the governance arsenal and demand higher standards for AI research. Code to replicate data and figures: https://github.com/IFMW01/reproducibility-the-new-frontier-in-ai-governance

Authors:Yuchen Yan, Zhihua Liu, Hao Wang, Weiming Li, Xiaoshuai Hao
Title: Query-Specific GNN: A Comprehensive Graph Representation Learning Method for Retrieval Augmented Generation
Abstract:
Retrieval-augmented generation (RAG) has demonstrated its ability to enhance Large Language Models (LLMs) by integrating external knowledge sources. However, multi-hop questions, which require the identification of multiple knowledge targets to form a synthesized answer, raise new challenges for RAG systems. Under the multi-hop settings, existing methods often struggle to fully understand the questions with complex semantic structures and are susceptible to irrelevant noise during the retrieval of multiple information targets. To address these limitations, we propose a novel graph representation learning framework for multi-hop question retrieval. We first introduce a Multi-information Level Knowledge Graph (Multi-L KG) to model various information levels for a more comprehensive understanding of multi-hop questions. Based on this, we design a Query-Specific Graph Neural Network (QSGNN) for representation learning on the Multi-L KG. QSGNN employs intra/inter-level message passing mechanisms, and in each message passing the information aggregation is guided by the query, which not only facilitates multi-granular information aggregation but also significantly reduces the impact of noise. To enhance its ability to learn robust representations, we further propose two synthesized data generation strategies for pre-training the QSGNN. Extensive experimental results demonstrate the effectiveness of our framework in multi-hop scenarios, especially in high-hop questions the improvement can reach 33.8\%. The code is available at: https://github.com/Jerry2398/QSGNN.

Authors:Marco Braga, Gian Carlo Milanese, Gabriella Pasi
Title: Investigating Large Language Models' Linguistic Abilities for Text Preprocessing
Abstract:
Text preprocessing is a fundamental component of Natural Language Processing, involving techniques such as stopword removal, stemming, and lemmatization to prepare text as input for further processing and analysis. Despite the context-dependent nature of the above techniques, traditional methods usually ignore contextual information. In this paper, we investigate the idea of using Large Language Models (LLMs) to perform various preprocessing tasks, due to their ability to take context into account without requiring extensive language-specific annotated resources. Through a comprehensive evaluation on web-sourced data, we compare LLM-based preprocessing (specifically stopword removal, lemmatization and stemming) to traditional algorithms across multiple text classification tasks in six European languages. Our analysis indicates that LLMs are capable of replicating traditional stopword removal, lemmatization, and stemming methods with accuracies reaching 97%, 82%, and 74%, respectively. Additionally, we show that ML algorithms trained on texts preprocessed by LLMs achieve an improvement of up to 6% with respect to the $F_1$ measure compared to traditional techniques. Our code, prompts, and results are publicly available at https://github.com/GianCarloMilanese/llm_pipeline_wi-iat.

Authors:KiHyun Nam, Jongmin Choi, Hyeongkeun Lee, Jungwoo Heo, Joon Son Chung
Title: Diffusion-Link: Diffusion Probabilistic Model for Bridging the Audio-Text Modality Gap
Abstract:
Contrastive audio-language pretraining yields powerful joint representations, yet a persistent audio-text modality gap limits the benefits of coupling multimodal encoders with large language models (LLMs). We present Diffusion-Link, a diffusion-based modality-bridging module that generatively maps audio embeddings into the text-embedding distribution. The module is trained at the output embedding from the frozen multimodal encoder and implemented as a lightweight network with three residual MLP blocks. To assess the effect of Diffusion-Link on multimodal encoder-LLM coupling, we evaluate on Automatic Audio Captioning (AAC); to our knowledge, this is the first application of diffusion-based modality bridging to AAC. We report two results. (1) Modality-gap analysis: on similarity and geometric criteria, Diffusion-Link reduces the modality gap the most among prior diffusion-based methods and shows a collective migration of audio embeddings toward the text distribution. (2) Downstream AAC: attaching Diffusion-Link to the same multimodal LLM baseline achieves state-of-the-art on AudioCaps in both zero-shot and fully supervised captioning without external knowledge, with relative gains up to 52.5% and 7.5%, respectively. These findings show that closing the modality gap is pivotal for effective coupling between multimodal encoders and LLMs, and diffusion-based modality bridging offers a promising direction beyond knowledge-retrieval-centric designs. Code will be released upon acceptance https://github.com/DevKiHyun/Diffusion-Link

Authors:Chenxi Wang, Yixuan Zhang, Ruiji Yu, Yufei Zheng, Lang Gao, Zirui Song, Zixiang Xu, Gus Xia, Huishuai Zhang, Dongyan Zhao, Xiuying Chen
Title: Do LLMs "Feel"? Emotion Circuits Discovery and Control
Abstract:
As the demand for emotional intelligence in large language models (LLMs) grows, a key challenge lies in understanding the internal mechanisms that give rise to emotional expression and in controlling emotions in generated text. This study addresses three core questions: (1) Do LLMs contain context-agnostic mechanisms shaping emotional expression? (2) What form do these mechanisms take? (3) Can they be harnessed for universal emotion control? We first construct a controlled dataset, SEV (Scenario-Event with Valence), to elicit comparable internal states across emotions. Subsequently, we extract context-agnostic emotion directions that reveal consistent, cross-context encoding of emotion (Q1). We identify neurons and attention heads that locally implement emotional computation through analytical decomposition and causal analysis, and validate their causal roles via ablation and enhancement interventions. Next, we quantify each sublayer's causal influence on the model's final emotion representation and integrate the identified local components into coherent global emotion circuits that drive emotional expression (Q2). Directly modulating these circuits achieves 99.65% emotion-expression accuracy on the test set, surpassing prompting- and steering-based methods (Q3). To our knowledge, this is the first systematic study to uncover and validate emotion circuits in LLMs, offering new insights into interpretability and controllable emotional intelligence.

Authors:Guangyu Wei, Ke Han, Yueming Lyu, Yu Luo, Yue Jiang, Caifeng Shan, Nicu Sebe
Title: Towards Real-Time Fake News Detection under Evidence Scarcity
Abstract:
Fake news detection becomes particularly challenging in real-time scenarios, where emerging events often lack sufficient supporting evidence. Existing approaches often rely heavily on external evidence and therefore struggle to generalize under evidence scarcity. To address this issue, we propose Evaluation-Aware Selection of Experts (EASE), a novel framework for real-time fake news detection that dynamically adapts its decision-making process according to the assessed sufficiency of available evidence. EASE introduces a sequential evaluation mechanism comprising three independent perspectives: (1) Evidence-based evaluation, which assesses evidence and incorporates it into decision-making only when the evidence is sufficiently supportive; (2) Reasoning-based evaluation, which leverages the world knowledge of large language models (LLMs) and applies them only when their reliability is adequately established; and (3) Sentiment-based fallback, which integrates sentiment cues when neither evidence nor reasoning is reliable. To enhance the accuracy of evaluation processes, EASE employs instruction tuning with pseudo labels to guide each evaluator in justifying its perspective-specific knowledge through interpretable reasoning. Furthermore, the expert modules integrate the evaluators' justified assessments with the news content to enable evaluation-aware decision-making, thereby enhancing overall detection accuracy. Moreover, we introduce RealTimeNews-25, a new benchmark comprising recent news for evaluating model generalization on emerging news with limited evidence. Extensive experiments demonstrate that EASE not only achieves state-of-the-art performance across multiple benchmarks, but also significantly improves generalization to real-time news. The code and dataset are available: https://github.com/wgyhhhh/EASE.

Authors:Peiming Li, Zhiyuan Hu, Yang Tang, Shiyu Li, Xi Chen
Title: Aligning Deep Implicit Preferences by Learning to Reason Defensively
Abstract:
Personalized alignment is crucial for enabling Large Language Models (LLMs) to engage effectively in user-centric interactions. However, current methods face a dual challenge: they fail to infer users' deep implicit preferences (including unstated goals, semantic context and risk tolerances), and they lack the defensive reasoning required to navigate real-world ambiguity. This cognitive gap leads to responses that are superficial, brittle and short-sighted. To address this, we propose Critique-Driven Reasoning Alignment (CDRA), which reframes alignment from a scalar reward-matching task into a structured reasoning process. First, to bridge the preference inference gap, we introduce the DeepPref benchmark. This dataset, comprising 3000 preference-query pairs across 20 topics, is curated by simulating a multi-faceted cognitive council that produces critique-annotated reasoning chains to deconstruct query semantics and reveal latent risks. Second, to instill defensive reasoning, we introduce the Personalized Generative Process Reward Model (Pers-GenPRM), which frames reward modeling as a personalized reasoning task. It generates a critique chain to evaluate a response's alignment with user preferences before outputting a final score based on this rationale. Ultimately, this interpretable, structured reward signal guides policy model through Critique-Driven Policy Alignment, a process-level online reinforcement learning algorithm integrating both numerical and natural language feedback. Experiments demonstrate that CDRA excels at discovering and aligning with users' true preferences while executing robust reasoning. Our code and dataset are available at https://github.com/Zephyrian-Hugh/Deep-pref.

Authors:Huayi Wang, Wentao Zhang, Runyi Yu, Tao Huang, Junli Ren, Feiyu Jia, Zirui Wang, Xiaojie Niu, Xiao Chen, Jiahe Chen, Qifeng Chen, Jingbo Wang, Jiangmiao Pang
Title: PhysHSI: Towards a Real-World Generalizable and Natural Humanoid-Scene Interaction System
Abstract:
Deploying humanoid robots to interact with real-world environments--such as carrying objects or sitting on chairs--requires generalizable, lifelike motions and robust scene perception. Although prior approaches have advanced each capability individually, combining them in a unified system is still an ongoing challenge. In this work, we present a physical-world humanoid-scene interaction system, PhysHSI, that enables humanoids to autonomously perform diverse interaction tasks while maintaining natural and lifelike behaviors. PhysHSI comprises a simulation training pipeline and a real-world deployment system. In simulation, we adopt adversarial motion prior-based policy learning to imitate natural humanoid-scene interaction data across diverse scenarios, achieving both generalization and lifelike behaviors. For real-world deployment, we introduce a coarse-to-fine object localization module that combines LiDAR and camera inputs to provide continuous and robust scene perception. We validate PhysHSI on four representative interactive tasks--box carrying, sitting, lying, and standing up--in both simulation and real-world settings, demonstrating consistently high success rates, strong generalization across diverse task goals, and natural motion patterns.

Authors:Haoran Liang, Yufa Zhou, Mohammad Talebi Kalaleh, Qipei Mei
Title: Automating Structural Engineering Workflows with Large Language Model Agents
Abstract:
We introduce $\textbf{MASSE}$, the first Multi-Agent System for Structural Engineering, effectively integrating large language model (LLM)-based agents with real-world engineering workflows. Structural engineering is a fundamental yet traditionally stagnant domain, with core workflows remaining largely unchanged for decades despite its substantial economic impact and global market size. Recent advancements in LLMs have significantly enhanced their ability to perform complex reasoning, long-horizon planning, and precise tool utilization -- capabilities well aligned with structural engineering tasks such as interpreting design codes, executing load calculations, and verifying structural capacities. We present a proof-of-concept showing that most real-world structural engineering workflows can be fully automated through a training-free LLM-based multi-agent system. MASSE enables immediate deployment in professional environments, and our comprehensive validation on real-world case studies demonstrates that it can reduce expert workload from approximately two hours to mere minutes, while enhancing both reliability and accuracy in practical engineering scenarios.

Authors:Wei-Chieh Huang, Henry Peng Zou, Yaozu Wu, Dongyuan Li, Yankai Chen, Weizhi Zhang, Yangning Li, Angelo Zangari, Jizhou Guo, Chunyu Miao, Liancheng Fang, Langzhou He, Renhe Jiang, Philip S. Yu
Title: DeepResearchGuard: Deep Research with Open-Domain Evaluation and Multi-Stage Guardrails for Safety
Abstract:
Deep research frameworks have shown promising capabilities in synthesizing comprehensive reports from web sources. While deep research possesses significant potential to address complex issues through planning and research cycles, existing frameworks are deficient in sufficient evaluation procedures and stage-specific protections. They typically treat evaluation as exact match accuracy of question-answering, but overlook crucial aspects of report quality such as credibility, coherence, breadth, depth, and safety. This oversight may result in hazardous or malicious sources being integrated into the final report. To address these issues, we introduce DEEPRESEARCHGUARD, a comprehensive framework featuring four-stage safeguards with open-domain evaluation of references and reports. We assess performance across multiple metrics, e.g., defense success rate and over-refusal rate, and five key report dimensions. In the absence of a suitable safety benchmark, we introduce DRSAFEBENCH, a stage-wise benchmark for deep research safety. Our evaluation spans diverse state-of-the-art LLMs, including GPT-4o, Gemini-2.5-flash, DeepSeek-v3, and o4-mini. DEEPRESEARCHGUARD achieves an average defense success rate improvement of 18.16% while reducing over-refusal rate by 6%. The input guard provides the most substantial early-stage protection by filtering out obvious risks, while the plan and research guards enhance citation discipline and source credibility. Through extensive experiments, we show that DEEPRESEARCHGUARD enables comprehensive open-domain evaluation and stage-aware defenses that effectively block harmful content propagation, while systematically improving report quality without excessive over-refusal rates. The code can be found via https://github.com/Jasonya/DeepResearchGuard.

Authors:Huanjin Yao, Ruifei Zhang, Jiaxing Huang, Jingyi Zhang, Yibo Wang, Bo Fang, Ruolin Zhu, Yongcheng Jing, Shunyu Liu, Guanbin Li, Dacheng Tao
Title: A Survey on Agentic Multimodal Large Language Models
Abstract:
With the recent emergence of revolutionary autonomous agentic systems, research community is witnessing a significant shift from traditional static, passive, and domain-specific AI agents toward more dynamic, proactive, and generalizable agentic AI. Motivated by the growing interest in agentic AI and its potential trajectory toward AGI, we present a comprehensive survey on Agentic Multimodal Large Language Models (Agentic MLLMs). In this survey, we explore the emerging paradigm of agentic MLLMs, delineating their conceptual foundations and distinguishing characteristics from conventional MLLM-based agents. We establish a conceptual framework that organizes agentic MLLMs along three fundamental dimensions: (i) Agentic internal intelligence functions as the system's commander, enabling accurate long-horizon planning through reasoning, reflection, and memory; (ii) Agentic external tool invocation, whereby models proactively use various external tools to extend their problem-solving capabilities beyond their intrinsic knowledge; and (iii) Agentic environment interaction further situates models within virtual or physical environments, allowing them to take actions, adapt strategies, and sustain goal-directed behavior in dynamic real-world scenarios. To further accelerate research in this area for the community, we compile open-source training frameworks, training and evaluation datasets for developing agentic MLLMs. Finally, we review the downstream applications of agentic MLLMs and outline future research directions for this rapidly evolving field. To continuously track developments in this rapidly evolving field, we will also actively update a public repository at https://github.com/HJYao00/Awesome-Agentic-MLLMs.

Authors:Hyeseon Ahn, Shinwoo Park, Yo-Sub Han
Title: DITTO: A Spoofing Attack Framework on Watermarked LLMs via Knowledge Distillation
Abstract:
The promise of LLM watermarking rests on a core assumption that a specific watermark proves authorship by a specific model. We demonstrate that this assumption is dangerously flawed. We introduce the threat of watermark spoofing, a sophisticated attack that allows a malicious model to generate text containing the authentic-looking watermark of a trusted, victim model. This enables the seamless misattribution of harmful content, such as disinformation, to reputable sources. The key to our attack is repurposing watermark radioactivity, the unintended inheritance of data patterns during fine-tuning, from a discoverable trait into an attack vector. By distilling knowledge from a watermarked teacher model, our framework allows an attacker to steal and replicate the watermarking signal of the victim model. This work reveals a critical security gap in text authorship verification and calls for a paradigm shift towards technologies capable of distinguishing authentic watermarks from expertly imitated ones. Our code is available at https://github.com/hsannn/ditto.git.

Authors:Zihan Wang, Zhiyong Ma, Zhongkui Ma, Shuofeng Liu, Akide Liu, Derui Wang, Minhui Xue, Guangdong Bai
Title: Catch-Only-One: Non-Transferable Examples for Model-Specific Authorization
Abstract:
Recent AI regulations call for data that remain useful for innovation while resistant to misuse, balancing utility with protection at the model level. Existing approaches either perturb data to make it unlearnable or retrain models to suppress transfer, but neither governs inference by unknown models, and both typically require control over training. We propose non-transferable examples (NEs), a training-free and data-agnostic input-side usage-control mechanism. We recode inputs within a model-specific low-sensitivity subspace, preserving outputs for the authorized model while reducing performance on unauthorized models through subspace misalignment. We establish formal bounds that guarantee utility for the authorized model and quantify deviation for unauthorized ones, with the Hoffman-Wielandt inequality linking degradation to spectral differences. Empirically, NEs retain performance on diverse vision backbones and state-of-the-art vision-language models under common preprocessing, whereas non-target models collapse even with reconstruction attempts. These results establish NEs as a practical means to preserve intended data utility while preventing unauthorized exploitation. Our project is available at https://trusted-system-lab.github.io/model-specificity

Authors:Taiqiang Wu, Runming Yang, Tao Liu, Jiahao Wang, Ngai Wong
Title: Revisiting Model Interpolation for Efficient Reasoning
Abstract:
Model merging, typically on Instruct and Thinking models, has shown remarkable performance for efficient reasoning. In this paper, we systematically revisit the simplest merging method that interpolates two weights directly. Particularly, we observe that model interpolation follows a three-stage evolutionary paradigm with distinct behaviors on the reasoning trajectory. These dynamics provide a principled guide for navigating the performance-cost trade-off. Empirical results demonstrate that a strategically interpolated model surprisingly surpasses sophisticated model merging baselines on both efficiency and effectiveness. We further validate our findings with extensive ablation studies on model layers, modules, and decoding strategies. Ultimately, this work demystifies model interpolation and offers a practical framework for crafting models with precisely targeted reasoning capabilities. Code is available at \href{https://github.com/wutaiqiang/MI}{Github}.

Authors:Yejin Lee, Hyeseon Ahn, Yo-Sub Han
Title: RV-HATE: Reinforced Multi-Module Voting for Implicit Hate Speech Detection
Abstract:
Hate speech remains prevalent in human society and continues to evolve in its forms and expressions. Modern advancements in internet and online anonymity accelerate its rapid spread and complicate its detection. However, hate speech datasets exhibit diverse characteristics primarily because they are constructed from different sources and platforms, each reflecting different linguistic styles and social contexts. Despite this diversity, prior studies on hate speech detection often rely on fixed methodologies without adapting to data-specific features. We introduce RV-HATE, a detection framework designed to account for the dataset-specific characteristics of each hate speech dataset. RV-HATE consists of multiple specialized modules, where each module focuses on distinct linguistic or contextual features of hate speech. The framework employs reinforcement learning to optimize weights that determine the contribution of each module for a given dataset. A voting mechanism then aggregates the module outputs to produce the final decision. RV-HATE offers two primary advantages: (1)~it improves detection accuracy by tailoring the detection process to dataset-specific attributes, and (2)~it also provides interpretable insights into the distinctive features of each dataset. Consequently, our approach effectively addresses implicit hate speech and achieves superior performance compared to conventional static methods. Our code is available at https://github.com/leeyejin1231/RV-HATE.

Authors:Zhuo Li, Yuege Feng, Dandan Guo, Jinpeng Hu, Anningzhe Gao, Xiang Wan
Title: APLOT: Robust Reward Modeling via Adaptive Preference Learning with Optimal Transport
Abstract:
The reward model (RM) plays a crucial role in aligning Large Language Models (LLMs) with human preferences through Reinforcement Learning, where the Bradley-Terry (BT) objective has been recognized as simple yet powerful, specifically for pairwise preference learning. However, BT-based RMs often struggle to effectively distinguish between similar preference responses, leading to insufficient separation between preferred and non-preferred outputs. Consequently, they may easily overfit easy samples and cannot generalize well to Out-Of-Distribution (OOD) samples, resulting in suboptimal performance. To address these challenges, this paper introduces an effective enhancement to BT-based RMs through an adaptive margin mechanism. Specifically, we design to dynamically adjust the RM focus on more challenging samples through margins, based on both semantic similarity and model-predicted reward differences, which is approached from a distributional perspective solvable with Optimal Transport (OT). By incorporating these factors into a principled OT cost matrix design, our adaptive margin enables the RM to better capture distributional differences between chosen and rejected responses, yielding significant improvements in performance, convergence speed, and generalization capabilities. Experimental results across multiple benchmarks demonstrate that our method outperforms several existing RM techniques, showcasing enhanced performance in both In-Distribution (ID) and OOD settings. Moreover, RLHF experiments support our practical effectiveness in better aligning LLMs with human preferences. Our code is available at https://github.com/BIRlz/APLOT

Authors:Yejin Lee, Su-Hyeon Kim, Hyundong Jin, Dayoung Kim, Yeonsoo Kim, Yo-Sub Han
Title: KOTOX: A Korean Toxic Dataset for Deobfuscation and Detoxification
Abstract:
Toxic content has become an increasingly critical social issue with the rapid expansion of online communication. While numerous studies explored methods for detecting and detoxifying such content, most have focused primarily on English, leaving low-resource language underrepresented. Consequently, Large Language Models~(LLMs) often struggle to identify and neutralize toxic expressions in these languages. This challenge becomes even more pronounced when user employ obfuscation techniques to evade detection systems. Therefore, we propose a \textbf{KOTOX: Korean Toxic Dataset} for deobfuscation and detoxicification to address this issue. We categorize various obfuscation approaches based on linguistic characteristics of Korean and define a set of transformation rules grounded in real-word examples. Using these rules, we construct three dataset versions (easy, normal, and hard) representing different levels of obfuscation difficulty. This is the first dataset that simultaneously supports deobfuscation and detoxification for the Korean language. We expect it to facilitate better understanding and mitigating of obfuscated toxic content in LLM for low-resource languages. Our code and data are available at https://github.com/leeyejin1231/KOTOX.

Authors:Daoyu Wang, Mingyue Cheng, Qi Liu, Shuo Yu, Zirui Liu, Ze Guo
Title: PaperArena: An Evaluation Benchmark for Tool-Augmented Agentic Reasoning on Scientific Literature
Abstract:
Understanding and reasoning on the web-scale scientific literature is a crucial touchstone for large language model (LLM) based agents designed to support complex knowledge-intensive tasks. However, existing works are mainly restricted to tool-free tasks within isolated papers, largely due to the lack of a benchmark for cross-paper reasoning and multi-tool orchestration in real research scenarios. In this work, we propose PaperArena, an evaluation benchmark for agents to address real-world research questions that typically require integrating information across multiple papers with the assistance of external tools. Given a research question, agents should integrate diverse formats across multiple papers through reasoning and interacting with appropriate tools, thereby producing a well-grounded answer. To support standardized evaluation, we provide a modular and extensible platform for agent execution, offering tools such as multimodal parsing, context retrieval, and programmatic computation. Experimental results reveal that even the most advanced LLM powering a well-established agent system achieves merely 38.78% average accuracy. On the hard subset, accuracy drops to only 18.47%, highlighting great potential for improvement. We also present several empirical findings, including that all agents tested exhibit inefficient tool usage, often invoking more tools than necessary to solve a task. We invite the community to adopt PaperArena to develop and evaluate more capable agents for scientific discovery. Our code and data are available https://github.com/Melmaphother/PaperArena.

Authors:Zhenghan Tai, Hanwei Wu, Qingchen Hu, Jijun Chi, Hailin He, Lei Ding, Tung Sum Thomas Kwok, Bohuai Xiao, Yuchen Hua, Suyuchen Wang, Peng Lu, Muzhi Li, Yihong Wu, Liheng Ma, Jerry Huang, Jiayi Zhang, Gonghao Zhang, Chaolong Jiang, Jingrui Tian, Sicheng Lyu, Zeyu Li, Boyu Han, Fengran Mo, Xinyue Yu, Yufei Cui, Ling Zhou, Xinyu Wang
Title: VeritasFi: An Adaptable, Multi-tiered RAG Framework for Multi-modal Financial Question Answering
Abstract:
Retrieval-Augmented Generation (RAG) is becoming increasingly essential for Question Answering (QA) in the financial sector, where accurate and contextually grounded insights from complex public disclosures are crucial. However, existing financial RAG systems face two significant challenges: (1) they struggle to process heterogeneous data formats, such as text, tables, and figures; and (2) they encounter difficulties in balancing general-domain applicability with company-specific adaptation. To overcome these challenges, we present VeritasFi, an innovative hybrid RAG framework that incorporates a multi-modal preprocessing pipeline alongside a cutting-edge two-stage training strategy for its re-ranking component. VeritasFi enhances financial QA through three key innovations: (1) A multi-modal preprocessing pipeline that seamlessly transforms heterogeneous data into a coherent, machine-readable format. (2) A tripartite hybrid retrieval engine that operates in parallel, combining deep multi-path retrieval over a semantically indexed document corpus, real-time data acquisition through tool utilization, and an expert-curated memory bank for high-frequency questions, ensuring comprehensive scope, accuracy, and efficiency. (3) A two-stage training strategy for the document re-ranker, which initially constructs a general, domain-specific model using anonymized data, followed by rapid fine-tuning on company-specific data for targeted applications. By integrating our proposed designs, VeritasFi presents a groundbreaking framework that greatly enhances the adaptability and robustness of financial RAG systems, providing a scalable solution for both general-domain and company-specific QA tasks. Code accompanying this work is available at https://github.com/simplew4y/VeritasFi.git.

Authors:Gaojian Wang, Feng Lin, Tong Wu, Zhisheng Yan, Kui Ren
Title: Scalable Face Security Vision Foundation Model for Deepfake, Diffusion, and Spoofing Detection
Abstract:
With abundant, unlabeled real faces, how can we learn robust and transferable facial representations to boost generalization across various face security tasks? We make the first attempt and propose FS-VFM, a scalable self-supervised pre-training framework, to learn fundamental representations of real face images. We introduce three learning objectives, namely 3C, that synergize masked image modeling (MIM) and instance discrimination (ID), empowering FS-VFM to encode both local patterns and global semantics of real faces. Specifically, we formulate various facial masking strategies for MIM and devise a simple yet effective CRFR-P masking, which explicitly prompts the model to pursue meaningful intra-region Consistency and challenging inter-region Coherency. We present a reliable self-distillation mechanism that seamlessly couples MIM with ID to establish underlying local-to-global Correspondence. After pre-training, vanilla vision transformers (ViTs) serve as universal Vision Foundation Models for downstream Face Security tasks: cross-dataset deepfake detection, cross-domain face anti-spoofing, and unseen diffusion facial forensics. To efficiently transfer the pre-trained FS-VFM, we further propose FS-Adapter, a lightweight plug-and-play bottleneck atop the frozen backbone with a novel real-anchor contrastive objective. Extensive experiments on 11 public benchmarks demonstrate that our FS-VFM consistently generalizes better than diverse VFMs, spanning natural and facial domains, fully, weakly, and self-supervised paradigms, small, base, and large ViT scales, and even outperforms SOTA task-specific methods, while FS-Adapter offers an excellent efficiency-performance trade-off. The code and models are available on https://fsfm-3c.github.io/fsvfm.html.

Authors:Piyush Pant, Marcellius William Suntoro, Ayesha Siddiqua, Muhammad Shehryaar Sharif, Daniyal Ahmed
Title: Equity-Aware Geospatial AI for Forecasting Demand-Driven Hospital Locations in Germany
Abstract:
This paper presents EA-GeoAI, an integrated framework for demand forecasting and equitable hospital planning in Germany through 2030. We combine district-level demographic shifts, aging population density, and infrastructure balances into a unified Equity Index. An interpretable Agentic AI optimizer then allocates beds and identifies new facility sites to minimize unmet need under budget and travel-time constraints. This approach bridges GeoAI, long-term forecasting, and equity measurement to deliver actionable recommendations for policymakers.

Authors:Zihan Zhang, Xize Cheng, Zhennan Jiang, Dongjie Fu, Jingyuan Chen, Zhou Zhao, Tao Jin
Title: MARS-Sep: Multimodal-Aligned Reinforced Sound Separation
Abstract:
Universal sound separation faces a fundamental misalignment: models optimized for low-level signal metrics often produce semantically contaminated outputs, failing to suppress perceptually salient interference from acoustically similar sources. To bridge this gap, we introduce MARS-Sep, a reinforcement learning framework that reformulates separation as decision making. Instead of simply regressing ground-truth masks, MARS-Sep learns a factorized Beta mask policy that is optimized by a clipped trust-region surrogate with entropy regularization and group-relative advantage normalization. Concretely, we sample masks from a frozen old policy, reconstruct waveforms, and update the current policy using clipped importance ratios-yielding substantially more stable and sample-efficient learning. Multimodal rewards, derived from an audio-text-vision encoder, directly incentivize semantic consistency with query prompts. We further propose a progressive alignment scheme to fine-tune this encoder, boosting its cross-modal discriminability and improving reward faithfulness. Extensive experiments on multiple benchmarks demonstrate consistent gains in Text-, Audio-, and Image-Queried separation, with notable improvements in signal metrics and semantic quality. Our code is available at https://anonymous.4open.science/r/MARS-Sep. Sound separation samples are available at https://mars-sep.github.io/.

Authors:Yunlong Deng, Guangyi Chen, Tianpei Gu, Lingjing Kong, Yan Li, Zeyu Tang, Kun Zhang
Title: Towards Self-Refinement of Vision-Language Models with Triangular Consistency
Abstract:
Vision-Language Models (VLMs) integrate visual knowledge with the analytical capabilities of Large Language Models (LLMs) through supervised visual instruction tuning, using image-question-answer triplets. However, the potential of VLMs trained without supervised instruction remains largely unexplored. This study validates that VLMs possess inherent self-refinement capabilities, enabling them to generate high-quality supervised data without external inputs and thereby learn autonomously. Specifically, to stimulate the self-refinement ability of VLMs, we propose a self-refinement framework based on a Triangular Consistency principle: within the image-query-answer triangle, any masked elements should be consistently and accurately reconstructed. The framework involves three steps: (1) We enable the instruction generation ability of VLMs by adding multi-task instruction tuning like image$\rightarrow$question-answer or image-answer$\rightarrow$question. (2) We generate image-query-answer triplets from unlabeled images and use the Triangular Consistency principle for filtering. (3) The model is further updated using the filtered synthetic data. To investigate the underlying mechanisms behind this self-refinement capability, we conduct a theoretical analysis from a causal perspective. Using the widely recognized LLaVA-1.5 as our baseline, our experiments reveal that the model can autonomously achieve consistent, though deliberately modest, improvements across multiple benchmarks without any external supervision, such as human annotations or environmental feedback. We expect that the insights of this study on the self-refinement ability of VLMs can inspire future research on the learning mechanism of VLMs. Code is available at https://github.com/dengyl20/SRF-LLaVA-1.5.

Authors:Qiran Zou, Hou Hei Lam, Wenhao Zhao, Yiming Tang, Tingting Chen, Samson Yu, Tianyi Zhang, Chang Liu, Xiangyang Ji, Dianbo Liu
Title: FML-bench: A Benchmark for Automatic ML Research Agents Highlighting the Importance of Exploration Breadth
Abstract:
Large language models (LLMs) have sparked growing interest in automatic machine learning research agents. Among them, agents capable of autonomously proposing ideas and conducting machine learning experiments are particularly promising, as they maximize research automation and accelerate scientific progress by iteratively refining ideas based on experimental results. However, comprehensively evaluating such agents remains challenging. Existing benchmarks tend to overemphasize engineering aspects while neglecting academic rigor, creating barriers that obscure a clear assessment of an agent's scientific capabilities in machine learning research. They also suffer from limited task diversity, an overemphasis on application-oriented tasks over fundamental research problems, and limited scalability to realistic research settings. To address these limitations, we introduce FML-bench, a benchmark designed to evaluate automatic machine learning research agents on 8 diverse and fundamental machine learning research problems. It reduces coding burden, emphasizes fundamental problems rather than specific use cases, offers high task diversity, and is extensible to real-world machine learning GitHub repositories. Furthermore, we present a unified evaluation framework with five complementary metrics, designed to comprehensively assess agent performance on our benchmark. We evaluate state-of-the-art automatic research agents on FML-bench, and find that agents employing broad research exploration strategies outperform those focusing on narrow but deep exploration. These findings suggest that emphasizing the breadth of exploration may lead to more effective research outcomes than focusing solely on incremental refinement. Our benchmark is available at https://github.com/qrzou/FML-bench.

Authors:Zixiang Xu, Menghui Zhou, Jun Qi, Xuanhan Fan, Yun Yang, Po Yang
Title: Multi-Task Learning with Feature-Similarity Laplacian Graphs for Predicting Alzheimer's Disease Progression
Abstract:
Alzheimer's Disease (AD) is the most prevalent neurodegenerative disorder in aging populations, posing a significant and escalating burden on global healthcare systems. While Multi-Tusk Learning (MTL) has emerged as a powerful computational paradigm for modeling longitudinal AD data, existing frameworks do not account for the time-varying nature of feature correlations. To address this limitation, we propose a novel MTL framework, named Feature Similarity Laplacian graph Multi-Task Learning (MTL-FSL). Our framework introduces a novel Feature Similarity Laplacian (FSL) penalty that explicitly models the time-varying relationships between features. By simultaneously considering temporal smoothness among tasks and the dynamic correlations among features, our model enhances both predictive accuracy and biological interpretability. To solve the non-smooth optimization problem arising from our proposed penalty terms, we adopt the Alternating Direction Method of Multipliers (ADMM) algorithm. Experiments conducted on the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset demonstrate that our proposed MTL-FSL framework achieves state-of-the-art performance, outperforming various baseline methods. The implementation source can be found at https://github.com/huatxxx/MTL-FSL.

Authors:Geunyeong Jeong, Juoh Sun, Seonghee Lee, Harksoo Kim
Title: STEAM: A Semantic-Level Knowledge Editing Framework for Large Language Models
Abstract:
Large Language Models store extensive factual knowledge acquired during large-scale pre-training. However, this knowledge is inherently static, reflecting only the state of the world at the time of training. Knowledge editing has emerged as a promising solution for updating outdated or incorrect facts without full retraining. However, most existing locate-and-edit methods primarily focus on token-level likelihood optimization without addressing semantic coherence. Our analysis reveals that such edited knowledge is often encoded as isolated residual streams in the model's latent space, distinct from pre-existing knowledge and bypassing natural reasoning process. To address this, we propose \textsc{Steam}, a semantic-level knowledge editing framework that enhances integration of updated knowledge into the model's knowledge structure. \textsc{Steam} first identifies target representations as semantic anchors for the updated factual association, then guides the internal representation of the edited fact towards these anchors through an alignment loss during optimization. Experimental results demonstrate that \textsc{Steam} improves model's ability to reason with edited knowledge and enhances semantic coherence, underscoring the importance of latent-space alignment for reliable and coherent knowledge editing. The code is available at https://github.com/GY-Jeong/STEAM.

Authors:Rohan Gupta, Trevor Asbery, Zain Merchant, Abrar Anwar, Jesse Thomason
Title: RobotFleet: An Open-Source Framework for Centralized Multi-Robot Task Planning
Abstract:
Coordinating heterogeneous robot fleets to achieve multiple goals is challenging in multi-robot systems. We introduce an open-source and extensible framework for centralized multi-robot task planning and scheduling that leverages LLMs to enable fleets of heterogeneous robots to accomplish multiple tasks. RobotFleet provides abstractions for planning, scheduling, and execution across robots deployed as containerized services to simplify fleet scaling and management. The framework maintains a shared declarative world state and two-way communication for task execution and replanning. By modularizing each layer of the autonomy stack and using LLMs for open-world reasoning, RobotFleet lowers the barrier to building scalable multi-robot systems. The code can be found here: https://github.com/therohangupta/robot-fleet.

Authors:Jinliang Zheng, Jianxiong Li, Zhihao Wang, Dongxiu Liu, Xirui Kang, Yuchun Feng, Yinan Zheng, Jiayin Zou, Yilun Chen, Jia Zeng, Ya-Qin Zhang, Jiangmiao Pang, Jingjing Liu, Tai Wang, Xianyuan Zhan
Title: X-VLA: Soft-Prompted Transformer as Scalable Cross-Embodiment Vision-Language-Action Model
Abstract:
Successful generalist Vision-Language-Action (VLA) models rely on effective training across diverse robotic platforms with large-scale, cross-embodiment, heterogeneous datasets. To facilitate and leverage the heterogeneity in rich, diverse robotic data sources, we propose a novel Soft Prompt approach with minimally added parameters, by infusing prompt learning concepts into cross-embodiment robot learning and introducing separate sets of learnable embeddings for each distinct data source. These embeddings serve as embodiment-specific prompts, which in unity empower VLA models with effective exploitation of varying cross-embodiment features. Our new X-VLA, a neat flow-matching-based VLA architecture, relies exclusively on soft-prompted standard Transformer encoders, enjoying both scalability and simplicity. Evaluated across 6 simulations as well as 3 real-world robots, our 0.9B instantiation-X-VLA-0.9B simultaneously achieves SOTA performance over a sweep of benchmarks, demonstrating superior results on a wide axes of capabilities, from flexible dexterity to quick adaptation across embodiments, environments, and tasks. Website: https://thu-air-dream.github.io/X-VLA/

Authors:Xuening Wu, Shenqin Yin, Yanlan Kang, Xinhang Zhang, Qianya Xu, Zeping Chen, Wenqiang Zhang
Title: SGM: A Statistical Godel Machine for Risk-Controlled Recursive Self-Modification
Abstract:
Recursive self-modification is increasingly central in AutoML, neural architecture search, and adaptive optimization, yet no existing framework ensures that such changes are made safely. Godel machines offer a principled safeguard by requiring formal proofs of improvement before rewriting code; however, such proofs are unattainable in stochastic, high-dimensional settings. We introduce the Statistical Godel Machine (SGM), the first statistical safety layer for recursive edits. SGM replaces proof-based requirements with statistical confidence tests (e-values, Hoeffding bounds), admitting a modification only when superiority is certified at a chosen confidence level, while allocating a global error budget to bound cumulative risk across rounds.We also propose Confirm-Triggered Harmonic Spending (CTHS), which indexes spending by confirmation events rather than rounds, concentrating the error budget on promising edits while preserving familywise validity.Experiments across supervised learning, reinforcement learning, and black-box optimization validate this role: SGM certifies genuine gains on CIFAR-100, rejects spurious improvement on ImageNet-100, and demonstrates robustness on RL and optimization benchmarks.Together, these results position SGM as foundational infrastructure for continual, risk-aware self-modification in learning systems.Code is available at: https://github.com/gravitywavelet/sgm-anon.

Authors:Manjiang Yu, Hongji Li, Priyanka Singh, Xue Li, Di Wang, Lijie Hu
Title: PIXEL: Adaptive Steering Via Position-wise Injection with eXact Estimated Levels under Subspace Calibration
Abstract:
Reliable behavior control is central to deploying large language models (LLMs) on the web. Activation steering offers a tuning-free route to align attributes (e.g., truthfulness) that ensure trustworthy generation. Prevailing approaches rely on coarse heuristics and lack a principled account of where to steer and how strongly to intervene. To this end, we propose Position-wise Injection with eXact Estimated Levels (PIXEL), a position-wise activation steering framework that, in contrast to prior work, learns a property-aligned subspace from dual views (tail-averaged and end-token) and selects intervention strength via a constrained geometric objective with a closed-form solution, thereby adapting to token-level sensitivity without global hyperparameter tuning. PIXEL further performs sample-level orthogonal residual calibration to refine the global attribute direction and employs a lightweight position-scanning routine to identify receptive injection sites. We additionally provide representation-level guarantees for the minimal-intervention rule, supporting reliable alignment. Across diverse models and evaluation paradigms, PIXEL consistently improves attribute alignment while preserving model general capabilities, offering a practical and principled method for LLMs' controllable generation. Our code is available at https://github.com/V1centNevwake/PIXEL-Adaptive-Steering

Authors:Jinghao Zhang, Naishan Zheng, Ruilin Li, Dongzhou Cheng, Zheming Liang, Feng Zhao, Jiaqi Wang
Title: RLFR: Extending Reinforcement Learning for LLMs with Flow Environment
Abstract:
Reinforcement Learning with Verifiable Rewards (RLVR) has recently emerged as a promising framework for improving reasoning abilities in Large Language Models (LLMs). However, policy optimized with binary verification prone to overlook potential valuable exploration in reasoning trajectory. In view of heavy annotation cost of golden Process Reward Models (PRMs), recent works attempt using auxiliary signals for reward shaping of process tokens, involving entropy and likelihood collected from logit space. In this work, we offer a novel perspective on shaping RLVR with flow rewards derived from latent space, and propose RLFR, where the flow fields of model latents are constructed from either off-policy high-quality data and on-policy rejection sampling data, and the velocity deviations of policy latents within it are quantified to serve as a reward signal. RLFR first demonstrates that a well-established flow field can be a sound environment for reward signal collection, highlighting the expressive latent space is much underexplored. Moreover, RLFR is able to compress any off-policy expert data as reference for constituting reward signals, and we show that the efficient context dependence compressed within the hidden states are utilized, rather than individual token-level denotation for context comprehending. Experiments on both language and multimodal reasoning benchmarks demonstrate the reliability of flow rewards, and suggesting a promising paradigm for reward shaping with auxiliary signals.

Authors:Lei Gu, Yinghao Zhu, Haoran Sang, Zixiang Wang, Dehao Sui, Wen Tang, Ewen Harrison, Junyi Gao, Lequan Yu, Liantao Ma
Title: MedAgentAudit: Diagnosing and Quantifying Collaborative Failure Modes in Medical Multi-Agent Systems
Abstract:
While large language model (LLM)-based multi-agent systems show promise in simulating medical consultations, their evaluation is often confined to final-answer accuracy. This practice treats their internal collaborative processes as opaque "black boxes" and overlooks a critical question: is a diagnostic conclusion reached through a sound and verifiable reasoning pathway? The inscrutable nature of these systems poses a significant risk in high-stakes medical applications, potentially leading to flawed or untrustworthy conclusions. To address this, we conduct a large-scale empirical study of 3,600 cases from six medical datasets and six representative multi-agent frameworks. Through a rigorous, mixed-methods approach combining qualitative analysis with quantitative auditing, we develop a comprehensive taxonomy of collaborative failure modes. Our quantitative audit reveals four dominant failure patterns: flawed consensus driven by shared model deficiencies, suppression of correct minority opinions, ineffective discussion dynamics, and critical information loss during synthesis. This study demonstrates that high accuracy alone is an insufficient measure of clinical or public trust. It highlights the urgent need for transparent and auditable reasoning processes, a cornerstone for the responsible development and deployment of medical AI.

Authors:Yulin Wang, Mengting Hu, Hongli Li, Chen Luo
Title: HccePose(BF): Predicting Front \& Back Surfaces to Construct Ultra-Dense 2D-3D Correspondences for Pose Estimation
Abstract:
In pose estimation for seen objects, a prevalent pipeline involves using neural networks to predict dense 3D coordinates of the object surface on 2D images, which are then used to establish dense 2D-3D correspondences. However, current methods primarily focus on more efficient encoding techniques to improve the precision of predicted 3D coordinates on the object's front surface, overlooking the potential benefits of incorporating the back surface and interior of the object. To better utilize the full surface and interior of the object, this study predicts 3D coordinates of both the object's front and back surfaces and densely samples 3D coordinates between them. This process creates ultra-dense 2D-3D correspondences, effectively enhancing pose estimation accuracy based on the Perspective-n-Point (PnP) algorithm. Additionally, we propose Hierarchical Continuous Coordinate Encoding (HCCE) to provide a more accurate and efficient representation of front and back surface coordinates. Experimental results show that, compared to existing state-of-the-art (SOTA) methods on the BOP website, the proposed approach outperforms across seven classic BOP core datasets. Code is available at https://github.com/WangYuLin-SEU/HCCEPose.

Authors:Ziyi Liu, Qingyue Long, Zhiwen Xue, Huandong Wang, Yong Li
Title: Multi-Scale Diffusion Transformer for Jointly Simulating User Mobility and Mobile Traffic Pattern
Abstract:
User mobility trajectory and mobile traffic data are essential for a wide spectrum of applications including urban planning, network optimization, and emergency management. However, large-scale and fine-grained mobility data remains difficult to obtain due to privacy concerns and collection costs, making it essential to simulate realistic mobility and traffic patterns. User trajectories and mobile traffic are fundamentally coupled, reflecting both physical mobility and cyber behavior in urban environments. Despite this strong interdependence, existing studies often model them separately, limiting the ability to capture cross-modal dynamics. Therefore, a unified framework is crucial. In this paper, we propose MSTDiff, a Multi-Scale Diffusion Transformer for joint simulation of mobile traffic and user trajectories. First, MSTDiff applies discrete wavelet transforms for multi-resolution traffic decomposition. Second, it uses a hybrid denoising network to process continuous traffic volumes and discrete location sequences. A transition mechanism based on urban knowledge graph embedding similarity is designed to guide semantically informed trajectory generation. Finally, a multi-scale Transformer with cross-attention captures dependencies between trajectories and traffic. Experiments show that MSTDiff surpasses state-of-the-art baselines in traffic and trajectory generation tasks, reducing Jensen-Shannon divergence (JSD) across key statistical metrics by up to 17.38% for traffic generation, and by an average of 39.53% for trajectory generation. The source code is available at: https://github.com/tsinghua-fib-lab/MSTDiff .

Authors:Zhezheng Hao, Hong Wang, Haoyang Liu, Jian Luo, Jiarui Yu, Hande Dong, Qiang Lin, Can Wang, Jiawei Chen
Title: Rethinking Entropy Interventions in RLVR: An Entropy Change Perspective
Abstract:
While Reinforcement Learning with Verifiable Rewards (RLVR) can enhance LLM reasoning, its training process poses a critical risk: entropy collapse. This phenomenon is a rapid loss of policy diversity, stemming from the exploration-exploitation imbalance and leading to a lack of generalization. Recent entropy-intervention methods aim to prevent \coloredtext{entropy collapse}, yet their underlying mechanisms remain unclear. In this paper, we conduct a quantitative analysis to reveal token-level entropy changes and how existing entropy intervention methods help avoid entropy collapse. Our findings point out a fundamental limitation of existing methods: they attempt to control entropy dynamics indirectly. By only affecting related factors, such as the advantage signal and generation probability, their effectiveness is inherently limited and could potentially fail. To address this limitation, we introduce an entropy-change-aware reweighting scheme, namely Stabilizing Token-level Entropy-changE via Reweighting (STEER), that adaptively stabilizes entropy dynamics through fine-grained token-level adjustments. Our approach mitigates over-exploitation while fostering robust exploration. Extensive experiments demonstrate that STEER significantly mitigates entropy collapse, stabilizes entropy dynamics, and achieves stronger downstream performance across various mathematical reasoning benchmarks \footnote{Our code is available at https://github.com/zz-haooo/STEER.

Authors:Lancheng Zou, Shuo Yin, Zehua Pei, Tsung-Yi Ho, Farzan Farnia, Bei Yu
Title: PermLLM: Learnable Channel Permutation for N:M Sparse Large Language Models
Abstract:
Channel permutation is a powerful technique for enhancing the accuracy of N:M sparse models by reordering the channels of weight matrices to prioritize the retention of important weights. However, traditional channel permutation methods rely on handcrafted quality metrics, which often fail to accurately capture the true impact of pruning on model performance. To address this limitation, we propose PermLLM, a novel post-training pruning framework that introduces learnable channel permutation (LCP) for N:M sparsity. LCP leverages Sinkhorn normalization to transform discrete permutation matrices into differentiable soft permutation matrices, enabling end-to-end optimization. Additionally, PermLLM incorporates an efficient block-wise channel permutation strategy, which significantly reduces the number of learnable parameters and computational complexity. PermLLM seamlessly integrates with existing one-shot pruning methods to adaptively optimize channel permutations, effectively mitigating pruning-induced errors. Extensive experiments on the LLaMA series, Qwen, and OPT models demonstrate that PermLLM achieves superior performance in optimizing N:M sparse models. The code is available at https://github.com/lanchengzou/PermLLM.

Authors:Guozhi Liu, Qi Mu, Tiansheng Huang, Xinhua Wang, Li Shen, Weiwei Lin, Zhang Li
Title: Pharmacist: Safety Alignment Data Curation for Large Language Models against Harmful Fine-tuning
Abstract:
Harmful fine-tuning issues present significant safety challenges for fine-tuning-as-a-service in large language models. Existing alignment-stage defenses, e.g., Vaccine, Repnoise, Booster, and T-Vaccine, mitigate harmful fine-tuning issues by enhancing the model's robustness during the alignment phase. While these methods have been proposed to mitigate the issue, they often overlook a critical upstream factor: the role of the original safety-alignment data. We observe that their defense performance and computational efficiency remain constrained by the quality and composition of the alignment dataset. To address this limitation, we propose Pharmacist, a safety alignment data curation solution that enhances defense against harmful fine-tuning by selecting a high-quality and safety-critical core subset from the original alignment data. The core idea of Pharmacist is to train an alignment data selector to rank alignment data. Specifically, up-ranking high-quality and safety-critical alignment data, down-ranking low-quality and non-safety-critical data. Empirical results indicate that models trained on datasets selected by Pharmacist outperform those trained on datasets selected by existing selection methods in both defense and inference performance. In addition, Pharmacist can be effectively integrated with mainstream alignment-stage defense methods. For example, when applied to RepNoise and T-Vaccine, using the dataset selected by Pharmacist instead of the full dataset leads to improvements in defense performance by 2.60\% and 3.30\%, respectively, and enhances inference performance by 3.50\% and 1.10\%. Notably, it reduces training time by 56.83\% and 57.63\%, respectively. Our code is available at https://github.com/Lslland/Pharmacist.

Authors:Salomon Ibarra, Frida Cantu, Kaixiong Zhou, Li Zhang
Title: Gradient-based Model Shortcut Detection for Time Series Classification
Abstract:
Deep learning models have attracted lots of research attention in time series classification (TSC) task in the past two decades. Recently, deep neural networks (DNN) have surpassed classical distance-based methods and achieved state-of-the-art performance. Despite their promising performance, deep neural networks (DNNs) have been shown to rely on spurious correlations present in the training data, which can hinder generalization. For instance, a model might incorrectly associate the presence of grass with the label ``cat" if the training set have majority of cats lying in grassy backgrounds. However, the shortcut behavior of DNNs in time series remain under-explored. Most existing shortcut work are relying on external attributes such as gender, patients group, instead of focus on the internal bias behavior in time series models. In this paper, we take the first step to investigate and establish point-based shortcut learning behavior in deep learning time series classification. We further propose a simple detection method based on other class to detect shortcut occurs without relying on test data or clean training classes. We test our proposed method in UCR time series datasets.

Authors:Hehe Fan, Yi Yang, Mohan Kankanhalli, Fei Wu
Title: Translution: Unifying Self-attention and Convolution for Adaptive and Relative Modeling
Abstract:
When modeling a given type of data, we consider it to involve two key aspects: 1) identifying relevant elements (e.g., image pixels or textual words) to a central element, as in a convolutional receptive field, or to a query element, as in self-attention, and 2) encoding these tokens effectively. Self-attention can adaptively identify these elements but relies on absolute positional embedding for structural representation learning. In contrast, convolution encodes elements in a relative manner, yet their fixed kernel size limits their ability to adaptively select the relevant elements. In this paper, we introduce Translution, an operation that unifies the adaptive identification capability of self-attention and the relative encoding advantage of convolution. However, this integration leads to a substantial increase in the number of parameters, exceeding most currently available computational resources. Therefore, we propose a lightweight variant of Translution, named α-Translution. Experiments on computer vision and natural language processing tasks show that Translution (including α-Translution) achieves superior accuracy compared to self-attention. The code is available at https://github.com/hehefan/Translution.

Authors:Yinghui He, Abhishek Panigrahi, Yong Lin, Sanjeev Arora
Title: Skill-Targeted Adaptive Training
Abstract:
Language models often show little to no improvement (i.e., "saturation") when trained via vanilla supervised fine-tuning (SFT) on data similar to what they saw in their training set (e.g., MATH). We introduce a new fine-tuning strategy, STAT, to train such a student model by using the metacognition ability of a stronger large language model (LLM) as the teacher. The teacher uses the task dataset to create a list of skills needed for the task, and then labels each data point with its required skills (Didolkar et al., 2024). By monitoring the student's answers, the teacher creates a Missing-Skill-Profile for the student, tracking how often they failed to apply each skill in their responses. We use this idea to build a modified training set in one of two ways. In STAT-Sel, the teacher uses an existing set of training examples but adaptively reweights them according to the Missing-Skill-Profile. In STAT-Syn, the teacher synthesizes additional examples involving missing skills. Across extensive experiments on Llama and Qwen models, our methods yield improvements of up to 7.5% on MATH, whereas SFT provides only limited gains. Furthermore, STAT enhances performance on out-of-distribution benchmarks (e.g., AIME24/25, AMC23, etc.) by an average of 4.6%. Crucially, we find that STAT is complementary to RL via GRPO (Shao et al., 2024): after the model is improved using STAT to address skill gaps, GRPO continues to add further gains. We conclude that skill-targeted adaptive training should broadly improve current training pipelines. Our code is available at: https://github.com/princeton-pli/STAT.

Authors:Muhammad Maaz, Liam DeVoe, Zac Hatfield-Dodds, Nicholas Carlini
Title: Agentic Property-Based Testing: Finding Bugs Across the Python Ecosystem
Abstract:
Property-based testing (PBT) is a lightweight formal method, typically implemented as a randomized testing framework. Users specify the input domain for their test using combinators supplied by the PBT framework, and the expected properties or invariants as a unit-test function. The framework then searches for a counterexample, e.g. by generating inputs and calling the test function. In this work, we demonstrate an LLM-based agent which analyzes Python modules, infers function-specific and cross-function properties from code and documentation, synthesizes and executes PBTs, reflects on outputs of these tests to confirm true bugs, and finally outputs actionable bug reports for the developer. We perform an extensive evaluation of our agent across 100 popular Python packages. Of the bug reports generated by the agent, we found after manual review that 56\% were valid bugs and 32\% were valid bugs that we would report to maintainers. We then developed a ranking rubric to surface high-priority valid bugs to developers, and found that of the 21 top-scoring bugs, 86\% were valid and 81\% we would report. The bugs span diverse failure modes from serialization failures to numerical precision errors to flawed cache implementations. We reported 5 bugs, 4 with patches, including to NumPy and cloud computing SDKs, with 3 patches merged successfully. Our results suggest that LLMs with PBT provides a rigorous and scalable method for autonomously testing software. Our code and artifacts are available at: https://github.com/mmaaz-git/agentic-pbt.

Authors:Shreshth Saini, Alan C. Bovik, Neil Birkbeck, Yilin Wang, Balu Adsumilli
Title: CHUG: Crowdsourced User-Generated HDR Video Quality Dataset
Abstract:
High Dynamic Range (HDR) videos enhance visual experiences with superior brightness, contrast, and color depth. The surge of User-Generated Content (UGC) on platforms like YouTube and TikTok introduces unique challenges for HDR video quality assessment (VQA) due to diverse capture conditions, editing artifacts, and compression distortions. Existing HDR-VQA datasets primarily focus on professionally generated content (PGC), leaving a gap in understanding real-world UGC-HDR degradations. To address this, we introduce CHUG: Crowdsourced User-Generated HDR Video Quality Dataset, the first large-scale subjective study on UGC-HDR quality. CHUG comprises 856 UGC-HDR source videos, transcoded across multiple resolutions and bitrates to simulate real-world scenarios, totaling 5,992 videos. A large-scale study via Amazon Mechanical Turk collected 211,848 perceptual ratings. CHUG provides a benchmark for analyzing UGC-specific distortions in HDR videos. We anticipate CHUG will advance No-Reference (NR) HDR-VQA research by offering a large-scale, diverse, and real-world UGC dataset. The dataset is publicly available at: https://shreshthsaini.github.io/CHUG/.

Authors:Kangping Hu, Stephen Mussmann
Title: Myopic Bayesian Decision Theory for Batch Active Learning with Partial Batch Label Sampling
Abstract:
Over the past couple of decades, many active learning acquisition functions have been proposed, leaving practitioners with an unclear choice of which to use. Bayesian Decision Theory (BDT) offers a universal principle to guide decision-making. In this work, we derive BDT for (Bayesian) active learning in the myopic framework, where we imagine we only have one more point to label. This derivation leads to effective algorithms such as Expected Error Reduction (EER), Expected Predictive Information Gain (EPIG), and other algorithms that appear in the literature. Furthermore, we show that BAIT (active learning based on V-optimal experimental design) can be derived from BDT and asymptotic approximations. A key challenge of such methods is the difficult scaling to large batch sizes, leading to either computational challenges (BatchBALD) or dramatic performance drops (top-$B$ selection). Here, using a particular formulation of the decision process, we derive Partial Batch Label Sampling (ParBaLS) for the EPIG algorithm. We show experimentally for several datasets that ParBaLS EPIG gives superior performance for a fixed budget and Bayesian Logistic Regression on Neural Embeddings. Our code is available at https://github.com/ADDAPT-ML/ParBaLS.

Authors:Yufa Zhou, Yixiao Wang, Xunjian Yin, Shuyan Zhou, Anru R. Zhang
Title: The Geometry of Reasoning: Flowing Logics in Representation Space
Abstract:
We study how large language models (LLMs) ``think'' through their representation space. We propose a novel geometric framework that models an LLM's reasoning as flows -- embedding trajectories evolving where logic goes. We disentangle logical structure from semantics by employing the same natural deduction propositions with varied semantic carriers, allowing us to test whether LLMs internalize logic beyond surface form. This perspective connects reasoning with geometric quantities such as position, velocity, and curvature, enabling formal analysis in representation and concept spaces. Our theory establishes: (1) LLM reasoning corresponds to smooth flows in representation space, and (2) logical statements act as local controllers of these flows' velocities. Using learned representation proxies, we design controlled experiments to visualize and quantify reasoning flows, providing empirical validation of our theoretical framework. Our work serves as both a conceptual foundation and practical tools for studying reasoning phenomenon, offering a new lens for interpretability and formal analysis of LLMs' behavior.

Authors:Yufa Zhou, Yixiao Wang, Surbhi Goel, Anru R. Zhang
Title: Why Do Transformers Fail to Forecast Time Series In-Context?
Abstract:
Time series forecasting (TSF) remains a challenging and largely unsolved problem in machine learning, despite significant recent efforts leveraging Large Language Models (LLMs), which predominantly rely on Transformer architectures. Empirical evidence consistently shows that even powerful Transformers often fail to outperform much simpler models, e.g., linear models, on TSF tasks; however, a rigorous theoretical understanding of this phenomenon remains limited. In this paper, we provide a theoretical analysis of Transformers' limitations for TSF through the lens of In-Context Learning (ICL) theory. Specifically, under AR($p$) data, we establish that: (1) Linear Self-Attention (LSA) models $\textit{cannot}$ achieve lower expected MSE than classical linear models for in-context forecasting; (2) as the context length approaches to infinity, LSA asymptotically recovers the optimal linear predictor; and (3) under Chain-of-Thought (CoT) style inference, predictions collapse to the mean exponentially. We empirically validate these findings through carefully designed experiments. Our theory not only sheds light on several previously underexplored phenomena but also offers practical insights for designing more effective forecasting architectures. We hope our work encourages the broader research community to revisit the fundamental theoretical limitations of TSF and to critically evaluate the direct application of increasingly sophisticated architectures without deeper scrutiny.

Authors:Qiaosheng Chen, Yang Liu, Lei Li, Kai Chen, Qipeng Guo, Gong Cheng, Fei Yuan
Title: InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation
Abstract:
Large Language Models (LLMs) are increasingly capable of generating complete applications from natural language instructions, creating new opportunities in science and education. In these domains, interactive scientific demonstrations are particularly valuable for explaining concepts, supporting new teaching methods, and presenting research findings. Generating such demonstrations requires models to combine accurate scientific knowledge with the ability to implement interactive front-end code that behaves correctly and responds to user actions. This capability goes beyond the scope of existing benchmarks, which typically evaluate either knowledge question answering without grounding in code or static web code generation without scientific interactivity. To evaluate this integrated ability, we design a hybrid framework that combines programmatic functional testing to rigorously verify interaction logic with visually-grounded qualitative testing to assess rendered outputs against reference snapshots. Building on this framework, we present InteractScience, a benchmark consisting of a substantial set of carefully designed questions across five scientific domains, each paired with unit tests, reference snapshots, and checklists. We evaluate 30 leading open- and closed-source LLMs and report results that highlight ongoing weaknesses in integrating domain knowledge with interactive front-end coding. Our work positions InteractScience as the first benchmark to automatically measure this combined capability with realistic interactive operations, providing a foundation for advancing reliable and educationally useful scientific demonstration code generation. All code and data are publicly available at https://github.com/open-compass/InteractScience.

Authors:Chenxu Wang, Hao Li, Yiqun Zhang, Linyao Chen, Jianhao Chen, Ping Jian, Peng Ye, Qiaosheng Zhang, Shuyue Hu
Title: ICL-Router: In-Context Learned Model Representations for LLM Routing
Abstract:
Large language models (LLMs) often exhibit complementary strengths. Model routing harnesses these strengths by dynamically directing each query to the most suitable model, given a candidate model pool. However, routing performance relies on accurate model representations, and adding new models typically requires retraining, limiting scalability. To address these challenges, we propose a novel routing method using in-context vectors to represent model capabilities. The method proceeds in two stages. First, queries are embedded and projected into vectors, with a projector and LLM-based router trained to reconstruct the original queries, aligning vector representations with the router's semantic space. Second, each candidate model is profiled on a query set, and the router learns -- based on in-context vectors of query and model performance -- to predict whether each model can correctly answer new queries. Extensive experiments demonstrate that our method achieves state-of-the-art routing performance in both in-distribution and out-of-distribution tasks. Moreover, our method allows for seamless integration of new models without retraining the router. The code is available at https://github.com/lalalamdbf/ICL-Router.

Authors:Lorenzo Nikiforos, Charalampos Antoniadis, Luciano Prono, Fabio Pareschi, Riccardo Rovatti, Gianluca Setti
Title: Vanishing Contributions: A Unified Approach to Smoothly Transition Neural Models into Compressed Form
Abstract:
The increasing scale of deep neural networks has led to a growing need for compression techniques such as pruning, quantization, and low-rank decomposition. While these methods are very effective in reducing memory, computation and energy consumption, they often introduce severe accuracy degradation when applied directly. We introduce Vanishing Contributions (VCON), a general approach for smoothly transitioning neural models into compressed form. Rather than replacing the original network directly with its compressed version, VCON executes the two in parallel during fine-tuning. The contribution of the original (uncompressed) model is progressively reduced, while that of the compressed model is gradually increased. This smooth transition allows the network to adapt over time, improving stability and mitigating accuracy degradation. We evaluate VCON across computer vision and natural language processing benchmarks, in combination with multiple compression strategies. Across all scenarios, VCON leads to consistent improvements: typical gains exceed 3%, while some configuration exhibits accuracy boosts of 20%. VCON thus provides a generalizable method that can be applied to the existing compression techniques, with evidence of consistent gains across multiple benchmarks.

Authors:Xiangxiang Chen, Peixin Zhang, Jun Sun, Wenhai Wang, Jingyi Wang
Title: Rounding-Guided Backdoor Injection in Deep Learning Model Quantization
Abstract:
Model quantization is a popular technique for deploying deep learning models on resource-constrained environments. However, it may also introduce previously overlooked security risks. In this work, we present QuRA, a novel backdoor attack that exploits model quantization to embed malicious behaviors. Unlike conventional backdoor attacks relying on training data poisoning or model training manipulation, QuRA solely works using the quantization operations. In particular, QuRA first employs a novel weight selection strategy to identify critical weights that influence the backdoor target (with the goal of perserving the model's overall performance in mind). Then, by optimizing the rounding direction of these weights, we amplify the backdoor effect across model layers without degrading accuracy. Extensive experiments demonstrate that QuRA achieves nearly 100% attack success rates in most cases, with negligible performance degradation. Furthermore, we show that QuRA can adapt to bypass existing backdoor defenses, underscoring its threat potential. Our findings highlight critical vulnerability in widely used model quantization process, emphasizing the need for more robust security measures. Our implementation is available at https://github.com/cxx122/QuRA.

Authors:Ruyi Xu, Guangxuan Xiao, Yukang Chen, Liuning He, Kelly Peng, Yao Lu, Song Han
Title: StreamingVLM: Real-Time Understanding for Infinite Video Streams
Abstract:
Vision-language models (VLMs) could power real-time assistants and autonomous agents, but they face a critical challenge: understanding near-infinite video streams without escalating latency and memory usage. Processing entire videos with full attention leads to quadratic computational costs and poor performance on long videos. Meanwhile, simple sliding window methods are also flawed, as they either break coherence or suffer from high latency due to redundant recomputation. In this paper, we introduce StreamingVLM, a model designed for real-time, stable understanding of infinite visual input. Our approach is a unified framework that aligns training with streaming inference. During inference, we maintain a compact KV cache by reusing states of attention sinks, a short window of recent vision tokens, and a long window of recent text tokens. This streaming ability is instilled via a simple supervised fine-tuning (SFT) strategy that applies full attention on short, overlapped video chunks, which effectively mimics the inference-time attention pattern without training on prohibitively long contexts. For evaluation, we build Inf-Streams-Eval, a new benchmark with videos averaging over two hours that requires dense, per-second alignment between frames and text. On Inf-Streams-Eval, StreamingVLM achieves a 66.18% win rate against GPT-4O mini and maintains stable, real-time performance at up to 8 FPS on a single NVIDIA H100. Notably, our SFT strategy also enhances general VQA abilities without any VQA-specific fine-tuning, improving performance on LongVideoBench by +4.30 and OVOBench Realtime by +5.96. Code is available at https://github.com/mit-han-lab/streaming-vlm.

Authors:Sondos Mahmoud Bsharat, Zhiqiang Shen
Title: Prompting Test-Time Scaling Is A Strong LLM Reasoning Data Augmentation
Abstract:
Large language models (LLMs) have demonstrated impressive reasoning capabilities when provided with chain-of-thought exemplars, but curating large reasoning datasets remains laborious and resource-intensive. In this work, we introduce Prompting Test-Time Scaling (P-TTS), a simple yet effective inference-time data augmentation strategy for enhancing LLM reasoning through finetuning. Rather than collecting thousands or even millions of examples, P-TTS leverages a small pool of only 90 manually selected reasoning instances and systematically varies exemplar augmentation through principled instruction prompting intensities at test time to synthesize diverse reasoning trajectory contexts. Then we finetune the various sizes of Qwen-2.5 models on P-TTS data. Across a suite of mathematical reasoning AIME2024 & 25, MATH500, and GPQA-Diamond, our P-TTS-7B and 32B models outperform the prior competitive baselines like S1 and S1.1 (1K-shot), achieving absolute accuracy gains of +26.66% and +30.00% on AIME'24 (7B), and +13.34% and +6.67% on AIME'25 (7B); P-TTS-32B yields gains of +23.33% and +16.63% on AIME'24, and +26.63% and +3.33% on AIME'25 (vs. S1 and S1.1, respectively), with comparable or better performance on MATH500 and GPQA-Diamond. We further show that P-TTS enhances zero-shot generalization accuracy on out-of-domain reasoning benchmarks of Gaokao, Kaoyan, OlympiadBench, AMC23, GradeSchoolMath, and Minerva. Our analysis suggests that test-time scaling effectively explores the latent space of reasoning patterns, amplifying LLM problem-solving with minimal annotation overhead, and further unlocking the reasoning potential and capabilities of LLMs. Prompting Test-Time Scaling offers a practical, low-cost way to elicit LLM reasoning in resource-constrained or rapidly evolving domains.

Authors:Zhenhailong Wang, Jiateng Liu, Amin Fazel, Ritesh Sarkhel, Xing Fan, Xiang Li, Chenlei Guo, Heng Ji, Ruhi Sarikaya
Title: Multimodal Policy Internalization for Conversational Agents
Abstract:
Modern conversational agents like ChatGPT and Alexa+ rely on predefined policies specifying metadata, response styles, and tool-usage rules. As these LLM-based systems expand to support diverse business and user queries, such policies, often implemented as in-context prompts, are becoming increasingly complex and lengthy, making faithful adherence difficult and imposing large fixed computational costs. With the rise of multimodal agents, policies that govern visual and multimodal behaviors are critical but remain understudied. Prior prompt-compression work mainly shortens task templates and demonstrations, while existing policy-alignment studies focus only on text-based safety rules. We introduce Multimodal Policy Internalization (MPI), a new task that internalizes reasoning-intensive multimodal policies into model parameters, enabling stronger policy-following without including the policy during inference. MPI poses unique data and algorithmic challenges. We build two datasets spanning synthetic and real-world decision-making and tool-using tasks and propose TriMPI, a three-stage training framework. TriMPI first injects policy knowledge via continual pretraining, then performs supervised finetuning, and finally applies PolicyRollout, a GRPO-style reinforcement learning extension that augments rollouts with policy-aware responses for grounded exploration. TriMPI achieves notable gains in end-to-end accuracy, generalization, and robustness to forgetting. As the first work on multimodal policy internalization, we provide datasets, training recipes, and comprehensive evaluations to foster future research. Project page: https://mikewangwzhl.github.io/TriMPI.

Authors:Ralf Römer, Adrian Kobras, Luca Worbis, Angela P. Schoellig
Title: Failure Prediction at Runtime for Generative Robot Policies
Abstract:
Imitation learning (IL) with generative models, such as diffusion and flow matching, has enabled robots to perform complex, long-horizon tasks. However, distribution shifts from unseen environments or compounding action errors can still cause unpredictable and unsafe behavior, leading to task failure. Early failure prediction during runtime is therefore essential for deploying robots in human-centered and safety-critical environments. We propose FIPER, a general framework for Failure Prediction at Runtime for generative IL policies that does not require failure data. FIPER identifies two key indicators of impending failure: (i) out-of-distribution (OOD) observations detected via random network distillation in the policy's embedding space, and (ii) high uncertainty in generated actions measured by a novel action-chunk entropy score. Both failure prediction scores are calibrated using a small set of successful rollouts via conformal prediction. A failure alarm is triggered when both indicators, aggregated over short time windows, exceed their thresholds. We evaluate FIPER across five simulation and real-world environments involving diverse failure modes. Our results demonstrate that FIPER better distinguishes actual failures from benign OOD situations and predicts failures more accurately and earlier than existing methods. We thus consider this work an important step towards more interpretable and safer generative robot policies. Code, data and videos are available at https://tum-lsy.github.io/fiper_website.

Authors:David-Alexandre Duclos, William Guimont-Martin, Gabriel Jeanson, Arthur Larochelle-Tremblay, Théo Defosse, Frédéric Moore, Philippe Nolet, François Pomerleau, Philippe Giguère
Title: SilvaScenes: Tree Segmentation and Species Classification from Under-Canopy Images in Natural Forests
Abstract:
Interest in robotics for forest management is growing, but perception in complex, natural environments remains a significant hurdle. Conditions such as heavy occlusion, variable lighting, and dense vegetation pose challenges to automated systems, which are essential for precision forestry, biodiversity monitoring, and the automation of forestry equipment. These tasks rely on advanced perceptual capabilities, such as detection and fine-grained species classification of individual trees. Yet, existing datasets are inadequate to develop such perception systems, as they often focus on urban settings or a limited number of species. To address this, we present SilvaScenes, a new dataset for instance segmentation of tree species from under-canopy images. Collected across five bioclimatic domains in Quebec, Canada, SilvaScenes features 1476 trees from 24 species with annotations from forestry experts. We demonstrate the relevance and challenging nature of our dataset by benchmarking modern deep learning approaches for instance segmentation. Our results show that, while tree segmentation is easy, with a top mean average precision (mAP) of 67.65%, species classification remains a significant challenge with an mAP of only 35.69%. Our dataset and source code will be available at https://github.com/norlab-ulaval/SilvaScenes.

Authors:Victor Morand, Josiane Mothe, Benjamin Piwowarski
Title: On the Representations of Entities in Auto-regressive Large Language Models
Abstract:
Named entities are fundamental building blocks of knowledge in text, grounding factual information and structuring relationships within language. Despite their importance, it remains unclear how Large Language Models (LLMs) internally represent entities. Prior research has primarily examined explicit relationships, but little is known about entity representations themselves. We introduce entity mention reconstruction as a novel framework for studying how LLMs encode and manipulate entities. We investigate whether entity mentions can be generated from internal representations, how multi-token entities are encoded beyond last-token embeddings, and whether these representations capture relational knowledge. Our proposed method, leveraging _task vectors_, allows to consistently generate multi-token mentions from various entity representations derived from the LLMs hidden states. We thus introduce the _Entity Lens_, extending the _logit-lens_ to predict multi-token mentions. Our results bring new evidence that LLMs develop entity-specific mechanisms to represent and manipulate any multi-token entities, including those unseen during training. Our code is avalable at https://github.com/VictorMorand/EntityRepresentations .

Authors:Jiuheng Lin, Cong Jiang, Zirui Wu, Jiarui Sun, Yansong Feng
Title: CLARity: Reasoning Consistency Alone Can Teach Reinforced Experts
Abstract:
Training expert LLMs in domains with scarce data is difficult, often relying on multiple-choice questions (MCQs). However, standard outcome-based reinforcement learning (RL) on MCQs is risky. While it may improve accuracy, we observe it often degrades reasoning quality such as logical consistency. Existing solutions to supervise reasoning, such as large-scale Process Reward Models (PRMs), are prohibitively expensive. To address this, we propose CLARity, a cost-effective RL framework that enhances reasoning quality using only a small, general-purpose LLM. CLARity integrates a consistency-aware reward mechanism with a 2-stage refine-then-monitor training pipeline to enhance reasoning consistency, and a dynamic data reformulation strategy to to better exploit limited data. Experiments demonstrate that CLARity improves response consistency by 16.5% and accuracy by 7.5% over baselines. Human evaluations further confirm holistic improvements in coherence and professionalism. Thus, CLARity offers a generalizable solution that enables smaller models to effectively guide expert models by reasoning consistency.Our code is open sourced at: https://github.com/Infinite-set/CLARity

Authors:Dominik Urbaniak, Alejandro Agostini, Pol Ramon, Jan Rosell, Raúl Suárez, Michael Suppa
Title: Obstacle Avoidance using Dynamic Movement Primitives and Reinforcement Learning
Abstract:
Learning-based motion planning can quickly generate near-optimal trajectories. However, it often requires either large training datasets or costly collection of human demonstrations. This work proposes an alternative approach that quickly generates smooth, near-optimal collision-free 3D Cartesian trajectories from a single artificial demonstration. The demonstration is encoded as a Dynamic Movement Primitive (DMP) and iteratively reshaped using policy-based reinforcement learning to create a diverse trajectory dataset for varying obstacle configurations. This dataset is used to train a neural network that takes as inputs the task parameters describing the obstacle dimensions and location, derived automatically from a point cloud, and outputs the DMP parameters that generate the trajectory. The approach is validated in simulation and real-robot experiments, outperforming a RRT-Connect baseline in terms of computation and execution time, as well as trajectory length, while supporting multi-modal trajectory generation for different obstacle geometries and end-effector dimensions. Videos and the implementation code are available at https://github.com/DominikUrbaniak/obst-avoid-dmp-pi2.

Authors:Vijay M. Galshetwar, Praful Hambarde, Prashant W. Patil, Akshay Dudhane, Sachin Chaudhary, Santosh Kumar Vipparathi, Subrahmanyam Murala
Title: Clear Roads, Clear Vision: Advancements in Multi-Weather Restoration for Smart Transportation
Abstract:
Adverse weather conditions such as haze, rain, and snow significantly degrade the quality of images and videos, posing serious challenges to intelligent transportation systems (ITS) that rely on visual input. These degradations affect critical applications including autonomous driving, traffic monitoring, and surveillance. This survey presents a comprehensive review of image and video restoration techniques developed to mitigate weather-induced visual impairments. We categorize existing approaches into traditional prior-based methods and modern data-driven models, including CNNs, transformers, diffusion models, and emerging vision-language models (VLMs). Restoration strategies are further classified based on their scope: single-task models, multi-task/multi-weather systems, and all-in-one frameworks capable of handling diverse degradations. In addition, we discuss day and night time restoration challenges, benchmark datasets, and evaluation protocols. The survey concludes with an in-depth discussion on limitations in current research and outlines future directions such as mixed/compound-degradation restoration, real-time deployment, and agentic AI frameworks. This work aims to serve as a valuable reference for advancing weather-resilient vision systems in smart transportation environments. Lastly, to stay current with rapid advancements in this field, we will maintain regular updates of the latest relevant papers and their open-source implementations at https://github.com/ChaudharyUPES/A-comprehensive-review-on-Multi-weather-restoration

Authors:Hyundong Jin, Joonghyuk Hahn, Yo-Sub Han
Title: RegexPSPACE: A Benchmark for Evaluating LLM Reasoning on PSPACE-complete Regex Problems
Abstract:
Large language models (LLMs) show strong performance across natural language processing (NLP), mathematical reasoning, and programming, and recent large reasoning models (LRMs) further emphasize explicit reasoning. Yet their computational limits, particularly spatial complexity constrained by finite context windows, remain poorly understood. While recent works often focus on problems within the NP complexity class, we push the boundary by introducing a novel benchmark grounded in two PSPACE-complete regular expression (regex) problems: equivalence decision (RegexEQ) and minimization (RegexMin). PSPACE-complete problems serve as a more rigorous standard for assessing computational capacity, as their solutions require massive search space exploration. We perform a double-exponential space exploration to construct a labeled dataset of over a million regex instances with a sound filtering process to build the benchmark. We conduct extensive evaluations on 6 LLMs and 5 LRMs of varying scales, revealing common failure patterns such as verbosity and repetition. With its well-defined structure and quantitative evaluation metrics, this work presents the first empirical investigation into the spatial computational limitations of LLMs and LRMs, offering a new framework for evaluating their advanced reasoning capabilities. Our code is available at https://github.com/hyundong98/RegexPSPACE .

Authors:Mukilan Karuppasamy, Shankar Gangisetty, Shyam Nandan Rai, Carlo Masone, C V Jawahar
Title: Towards Safer and Understandable Driver Intention Prediction
Abstract:
Autonomous driving (AD) systems are becoming increasingly capable of handling complex tasks, mainly due to recent advances in deep learning and AI. As interactions between autonomous systems and humans increase, the interpretability of decision-making processes in driving systems becomes increasingly crucial for ensuring safe driving operations. Successful human-machine interaction requires understanding the underlying representations of the environment and the driving task, which remains a significant challenge in deep learning-based systems. To address this, we introduce the task of interpretability in maneuver prediction before they occur for driver safety, i.e., driver intent prediction (DIP), which plays a critical role in AD systems. To foster research in interpretable DIP, we curate the eXplainable Driving Action Anticipation Dataset (DAAD-X), a new multimodal, ego-centric video dataset to provide hierarchical, high-level textual explanations as causal reasoning for the driver's decisions. These explanations are derived from both the driver's eye-gaze and the ego-vehicle's perspective. Next, we propose Video Concept Bottleneck Model (VCBM), a framework that generates spatio-temporally coherent explanations inherently, without relying on post-hoc techniques. Finally, through extensive evaluations of the proposed VCBM on the DAAD-X dataset, we demonstrate that transformer-based models exhibit greater interpretability than conventional CNN-based models. Additionally, we introduce a multilabel t-SNE visualization technique to illustrate the disentanglement and causal correlation among multiple explanations. Our data, code and models are available at: https://mukil07.github.io/VCBM.github.io/

Authors:Weikai Huang, Jieyu Zhang, Taoyang Jia, Chenhao Zheng, Ziqi Gao, Jae Sung Park, Ranjay Krishna
Title: SOS: Synthetic Object Segments Improve Detection, Segmentation, and Grounding
Abstract:
Visual grouping -- operationalized via instance segmentation, visual grounding, and object detection -- underpins applications from robotic perception to photo editing. Large annotated datasets are costly, biased in coverage, and hard to scale. Synthetic data are promising but often lack flexibility, accuracy, and compositional diversity. We present SOS, a simple and scalable data synthesis pipeline based on an object-centric composition strategy. It pastes high-quality synthetic object segments into new images using structured layout priors and generative relighting, producing accurate and diverse masks, boxes, and referring expressions. Models trained on 100000 synthetic images from SOS outperform those trained on larger real-image datasets such as GRIT (20M) and V3Det (200K) on detection and grounding tasks, achieving +10.9 AP on LVIS detection and +8.4 $N_{\text{Acc}}$ on gRefCOCO grounding. SOS enables controllable dataset construction and improves generalization in both low-data and closed-vocabulary settings. Augmenting LVIS and COCO with synthetic object segments yields strong performance across real-data scales and even larger gains under extremely limited real data (for example, +3.83 $AP_{\text{rare}}$ on LVIS instance segmentation and +6.59 AP with a 1 percent COCO setup). This controllability also supports targeted data generation for challenging intra-class referring in visual grounding.

Authors:Muhammad Ali Shafique, Kanwal Mehreen, Muhammad Arham, Maaz Amjad, Sabur Butt, Hamza Farooq
Title: Alif: Advancing Urdu Large Language Models via Multilingual Synthetic Data Distillation
Abstract:
Developing a high-performing large language models (LLMs) for low-resource languages such as Urdu, present several challenges. These challenges include the scarcity of high-quality datasets, multilingual inconsistencies, and safety concerns. Existing multilingual LLMs often address these issues by translating large volumes of available data. However, such translations often lack quality and cultural nuance while also incurring significant costs for data curation and training. To address these issues, we propose Alif-1.0-8B-Instruct, a multilingual Urdu-English model, that tackles these challenges with a unique approach. We train the model on a high-quality, multilingual synthetic dataset (Urdu-Instruct), developed using a modified self-instruct technique. By using unique prompts and seed values for each task along with a global task pool, this dataset incorporates Urdu-native chain-of-thought based reasoning, bilingual translation, cultural relevance, and ethical safety alignments. This technique significantly enhances the comprehension of Alif-1.0-8B-Instruct model for Urdu-specific tasks. As a result, Alif-1.0-8B-Instruct, built upon the pretrained Llama-3.1-8B, demonstrates superior performance compared to Llama-3.1-8B-Instruct for Urdu specific-tasks. It also outperformed leading multilingual LLMs, including Mistral-7B-Instruct-v0.3, Qwen-2.5-7B-Instruct, and Cohere-Aya-Expanse-8B, all within a training budget of under $100. Our results demonstrate that high-performance and low-resource language LLMs can be developed efficiently and culturally aligned using our modified self-instruct approach. All datasets, models, and code are publicly available at: https://github.com/traversaal-ai/alif-urdu-llm.

Authors:Joonghyuk Hahn, Soohan Lim, Yo-Sub Han
Title: MEC$^3$O: Multi-Expert Consensus for Code Time Complexity Prediction
Abstract:
Predicting the complexity of source code is essential for software development and algorithm analysis. Recently, Baik et al. (2025) introduced CodeComplex for code time complexity prediction. The paper shows that LLMs without fine-tuning struggle with certain complexity classes. This suggests that no single LLM excels at every class, but rather each model shows advantages in certain classes. We propose MEC$^3$O, a multi-expert consensus system, which extends the multi-agent debate frameworks. MEC$^3$O assigns LLMs to complexity classes based on their performance and provides them with class-specialized instructions, turning them into experts. These experts engage in structured debates, and their predictions are integrated through a weighted consensus mechanism. Our expertise assignments to LLMs effectively handle Degeneration-of-Thought, reducing reliance on a separate judge model, and preventing convergence to incorrect majority opinions. Experiments on CodeComplex show that MEC$^3$O outperforms the open-source baselines, achieving at least 10% higher accuracy and macro-F1 scores. It also surpasses GPT-4o-mini in macro-F1 scores on average and demonstrates competitive on-par F1 scores to GPT-4o and GPT-o4-mini on average. This demonstrates the effectiveness of multi-expert debates and weight consensus strategy to generate the final predictions. Our code and data is available at https://github.com/suhanmen/MECO.

Authors:Sicheol Sung, Joonghyuk Hahn, Yo-Sub Han
Title: Repairing Regex Vulnerabilities via Localization-Guided Instructions
Abstract:
Regular expressions (regexes) are foundational to modern computing for critical tasks like input validation and data parsing, yet their ubiquity exposes systems to regular expression denial of service (ReDoS), a vulnerability requiring automated repair methods. Current approaches, however, are hampered by a trade-off. Symbolic, rule-based system are precise but fails to repair unseen or complex vulnerability patterns. Conversely, large language models (LLMs) possess the necessary generalizability but are unreliable for tasks demanding strict syntactic and semantic correctness. We resolve this impasse by introducing a hybrid framework, localized regex repair (LRR), designed to harness LLM generalization while enforcing reliability. Our core insight is to decouple problem identification from the repair process. First, a deterministic, symbolic module localizes the precise vulnerable subpattern, creating a constrained and tractable problem space. Then, the LLM invoked to generate a semantically equivalent fix for this isolated segment. This combined architecture successfully resolves complex repair cases intractable for rule-based repair while avoiding the semantic errors of LLM-only approaches. Our work provides a validated methodology for solving such problems in automated repair, improving the repair rate by 15.4%p over the state-of-the-art. Our code is available at https://github.com/cdltlehf/LRR.

Authors:Qixiang Yin, Huanjin Yao, Jianghao Chen, Jiaxing Huang, Zhicheng Zhao, Fei Su
Title: Tiny-R1V: Lightweight Multimodal Unified Reasoning Model via Model Merging
Abstract:
Although Multimodal Large Language Models (MLLMs) have demonstrated remarkable capabilities across diverse tasks, they encounter numerous challenges in terms of reasoning efficiency, such as large model size, overthinking, and compromised accuracy in lightweight scenarios. However, research on the reasoning capabilities of lightweight MLLMs is quite lacking. To this end, we propose Tiny-R1V, a novel lightweight 3B model that achieves faster inference and higher accuracy via a two-stage optimization, while unifying multimodal reasoning across multiple tasks and using fewer tokens. In the first stage, Tiny-R1V introduces Length-Informed Relative Policy Optimization (LIPO), a novel reinforcement learning method, to train each reasoning model. The LIPO is designed to dynamically adjusts advantages of responses within groups, that is, by prioritizing concise yet high-quality responses to encourage the generation of shorter and more accurate response. In the second stage, we propose Adaptive Model Merging (AMM), a training-free model merging method that merges multiple specialist models into a unified architecture. Specifically, AMM adaptively adjusts the weights of task vectors and robustly optimizes the merged vectors via a novel gradient projection regularization loss function, thus mitigating redundant conflicts between them. Extensive evaluations on ten widely-used reasoning benchmarks covering mathematics, structured data (charts, tables, documents), OCR, and general capabilities showcase the superior performance of Tiny-R1V, enabling lightweight models to excel in diverse multimodal reasoning tasks.

Authors:Tengxiao Lv, Ling Luo, Juntao Li, Yanhua Wang, Yuchen Pan, Chao Liu, Yanan Wang, Yan Jiang, Huiyi Lv, Yuanyuan Sun, Jian Wang, Hongfei Lin
Title: A Unified Biomedical Named Entity Recognition Framework with Large Language Models
Abstract:
Accurate recognition of biomedical named entities is critical for medical information extraction and knowledge discovery. However, existing methods often struggle with nested entities, entity boundary ambiguity, and cross-lingual generalization. In this paper, we propose a unified Biomedical Named Entity Recognition (BioNER) framework based on Large Language Models (LLMs). We first reformulate BioNER as a text generation task and design a symbolic tagging strategy to jointly handle both flat and nested entities with explicit boundary annotation. To enhance multilingual and multi-task generalization, we perform bilingual joint fine-tuning across multiple Chinese and English datasets. Additionally, we introduce a contrastive learning-based entity selector that filters incorrect or spurious predictions by leveraging boundary-sensitive positive and negative samples. Experimental results on four benchmark datasets and two unseen corpora show that our method achieves state-of-the-art performance and robust zero-shot generalization across languages. The source codes are freely available at https://github.com/dreamer-tx/LLMNER.

Authors:Haomin Zhuang, Yujun Zhou, Taicheng Guo, Yue Huang, Fangxu Liu, Kai Song, Xiangliang Zhang
Title: Exploring Multi-Temperature Strategies for Token- and Rollout-Level Control in RLVR
Abstract:
Reinforcement Learning has demonstrated substantial improvements in the reasoning abilities of Large Language Models (LLMs), exhibiting significant applicability across various domains. Recent research has identified that tokens within LLMs play distinct roles during reasoning tasks, categorizing them into high-entropy reasoning tokens and low-entropy knowledge tokens. Prior approaches have typically focused on restricting updates to indirectly encourage exploration, yet they do not explicitly facilitate exploratory behavior during the token generation stage itself. In this work, we introduce a complementary approach that explicitly promotes exploration during sampling by applying distinct temperature settings for different token types. Specifically, our method employs higher temperatures for reasoning tokens to actively encourage exploration, while retaining lower temperatures for knowledge tokens to maintain factual correctness. Furthermore, we systematically investigate various multi-temperature scheduling strategies and their impacts within reinforcement learning contexts. Empirical evaluations on several reasoning benchmarks demonstrate that our approach significantly enhances the reasoning performance of LLMs. The code is available at https://github.com/zhmzm/Multi_Temperature_Verl.git.

Authors:Yuxuan Jiang, Zehua Chen, Zeqian Ju, Yusheng Dai, Weibei Dou, Jun Zhu
Title: ControlAudio: Tackling Text-Guided, Timing-Indicated and Intelligible Audio Generation via Progressive Diffusion Modeling
Abstract:
Text-to-audio (TTA) generation with fine-grained control signals, e.g., precise timing control or intelligible speech content, has been explored in recent works. However, constrained by data scarcity, their generation performance at scale is still compromised. In this study, we recast controllable TTA generation as a multi-task learning problem and introduce a progressive diffusion modeling approach, ControlAudio. Our method adeptly fits distributions conditioned on more fine-grained information, including text, timing, and phoneme features, through a step-by-step strategy. First, we propose a data construction method spanning both annotation and simulation, augmenting condition information in the sequence of text, timing, and phoneme. Second, at the model training stage, we pretrain a diffusion transformer (DiT) on large-scale text-audio pairs, achieving scalable TTA generation, and then incrementally integrate the timing and phoneme features with unified semantic representations, expanding controllability. Finally, at the inference stage, we propose progressively guided generation, which sequentially emphasizes more fine-grained information, aligning inherently with the coarse-to-fine sampling nature of DiT. Extensive experiments show that ControlAudio achieves state-of-the-art performance in terms of temporal accuracy and speech clarity, significantly outperforming existing methods on both objective and subjective evaluations. Demo samples are available at: https://control-audio.github.io/Control-Audio.

Authors:Siqi Zhu, David Zhang, Pedro Cisneros-Velarde, Jiaxuan You
Title: GTAlign: Game-Theoretic Alignment of LLM Assistants for Mutual Welfare
Abstract:
Large Language Models (LLMs) have achieved remarkable progress in reasoning, yet sometimes produce responses that are suboptimal for users in tasks such as writing, information seeking, or providing practical guidance. Conventional alignment practices typically assume that maximizing model reward also maximizes user welfare, but this assumption frequently fails in practice: models may over-clarify or generate overly verbose reasoning when users prefer concise answers. Such behaviors resemble the prisoner's dilemma, where individually rational choices lead to socially suboptimal outcomes. The fundamental challenge is the lack of a principled decision making mechanism that mutually benefits both the LLM and the user. We propose Game-Theoretic Alignment (GTAlign), an alignment framework that integrates game-theoretic decision making into both reasoning and training. During reasoning, the model explicitly treats user-LLM interaction as a strategic game: it constructs payoff matrices within its reasoning chain to estimate welfare for both itself and the user, and then selects actions that are mutually beneficial. During training, we introduce a mutual welfare reward that reinforces cooperative responses, aligning model behavior with socially efficient outcomes. In addition, we introduce an inference technique that leverages game-theoretic reasoning to dynamically adapt LLM's response when pricing policies of LLM service change. Extensive experiments demonstrate that GTAlign substantially improves reasoning efficiency, answer quality, and mutual welfare compared to baselines across diverse tasks. The code is available at https://github.com/ulab-uiuc/GTAlign .

Authors:Ragib Amin Nihal, Rui Wen, Kazuhiro Nakadai, Jun Sakuma
Title: Pattern Enhanced Multi-Turn Jailbreaking: Exploiting Structural Vulnerabilities in Large Language Models
Abstract:
Large language models (LLMs) remain vulnerable to multi-turn jailbreaking attacks that exploit conversational context to bypass safety constraints gradually. These attacks target different harm categories (like malware generation, harassment, or fraud) through distinct conversational approaches (educational discussions, personal experiences, hypothetical scenarios). Existing multi-turn jailbreaking methods often rely on heuristic or ad hoc exploration strategies, providing limited insight into underlying model weaknesses. The relationship between conversation patterns and model vulnerabilities across harm categories remains poorly understood. We propose Pattern Enhanced Chain of Attack (PE-CoA), a framework of five conversation patterns to construct effective multi-turn jailbreaks through natural dialogue. Evaluating PE-CoA on twelve LLMs spanning ten harm categories, we achieve state-of-the-art performance, uncovering pattern-specific vulnerabilities and LLM behavioral characteristics: models exhibit distinct weakness profiles where robustness to one conversational pattern does not generalize to others, and model families share similar failure modes. These findings highlight limitations of safety training and indicate the need for pattern-aware defenses. Code available on: https://github.com/Ragib-Amin-Nihal/PE-CoA

Authors:Yiyang Huang, Yizhou Wang, Yun Fu
Title: D-CoDe: Scaling Image-Pretrained VLMs to Video via Dynamic Compression and Question Decomposition
Abstract:
Video large language models (Vid-LLMs), which excel in diverse video-language tasks, can be effectively constructed by adapting image-pretrained vision-language models (VLMs). However, this adaptation remains challenging, as it requires processing dense and temporally extended visual inputs that exceed the capacity of image-based models. This paper identifies the perception bottleneck and token overload as key challenges in extending image-based VLMs to the video domain. To address these issues, we propose D-CoDe, a training-free adaptation framework that incorporates dynamic compression and question decomposition. Specifically, dynamic compression alleviates the perception bottleneck through adaptive selection of representative frames and content-aware aggregation of spatial tokens, thereby reducing redundancy while preserving informative content. In parallel, question decomposition mitigates token overload by reformulating the original query into sub-questions, guiding the model to focus on distinct aspects of the video and enabling more comprehensive understanding. Experiments demonstrate that D-CoDe effectively improves video understanding across various benchmarks. Furthermore, strong performance on the challenging long-video benchmark highlights the potential of D-CoDe in handling complex video-language tasks. Code is available at https://github.com/hukcc/D-CoDe.

Authors:Rohan Choudhury, Shanchuan Lin, Jianyi Wang, Hao Chen, Qi Zhao, Feng Cheng, Lu Jiang, Kris Kitani, Laszlo A. Jeni
Title: SkipSR: Faster Super Resolution with Token Skipping
Abstract:
Diffusion-based super-resolution (SR) is a key component in video generation and video restoration, but is slow and expensive, limiting scalability to higher resolutions and longer videos. Our key insight is that many regions in video are inherently low-detail and gain little from refinement, yet current methods process all pixels uniformly. To take advantage of this, we propose SkipSR, a simple framework for accelerating video SR by identifying low-detail regions directly from low-resolution input, then skipping computation on them entirely, only super-resolving the areas that require refinement. This simple yet effective strategy preserves perceptual quality in both standard and one-step diffusion SR models while significantly reducing computation. In standard SR benchmarks, our method achieves up to 60% faster end-to-end latency than prior models on 720p videos with no perceptible loss in quality. Video demos are available at https://rccchoudhury.github.io/skipsr/

Authors:Gang Liu, Jie Chen, Yihan Zhu, Michael Sun, Tengfei Luo, Nitesh V Chawla, Meng Jiang
Title: Graph Diffusion Transformers are In-Context Molecular Designers
Abstract:
In-context learning allows large models to adapt to new tasks from a few demonstrations, but it has shown limited success in molecular design. Existing databases such as ChEMBL contain molecular properties spanning millions of biological assays, yet labeled data for each property remain scarce. To address this limitation, we introduce demonstration-conditioned diffusion models (DemoDiff), which define task contexts using a small set of molecule-score examples instead of text descriptions. These demonstrations guide a denoising Transformer to generate molecules aligned with target properties. For scalable pretraining, we develop a new molecular tokenizer with Node Pair Encoding that represents molecules at the motif level, requiring 5.5$\times$ fewer nodes. We curate a dataset containing millions of context tasks from multiple sources covering both drugs and materials, and pretrain a 0.7-billion-parameter model on it. Across 33 design tasks in six categories, DemoDiff matches or surpasses language models 100-1000$\times$ larger and achieves an average rank of 3.63 compared to 5.25-10.20 for domain-specific approaches. These results position DemoDiff as a molecular foundation model for in-context molecular design. Our code is available at https://github.com/liugangcode/DemoDiff.

Authors:Yifei Dong, Fengyi Wu, Guangyu Chen, Zhi-Qi Cheng, Qiyu Hu, Yuxuan Zhou, Jingdong Sun, Jun-Yan He, Qi Dai, Alexander G Hauptmann
Title: Unified World Models: Memory-Augmented Planning and Foresight for Visual Navigation
Abstract:
Enabling embodied agents to effectively imagine future states is critical for robust and generalizable visual navigation. Current state-of-the-art approaches, however, adopt modular architectures that separate navigation planning from visual world modeling, leading to state-action misalignment and limited adaptability in novel or dynamic scenarios. To overcome this fundamental limitation, we propose UniWM, a unified, memory-augmented world model integrating egocentric visual foresight and planning within a single multimodal autoregressive backbone. Unlike modular frameworks, UniWM explicitly grounds action decisions in visually imagined outcomes, ensuring tight alignment between prediction and control. A hierarchical memory mechanism further integrates detailed short-term perceptual cues with longer-term trajectory context, enabling stable, coherent reasoning over extended horizons. Extensive experiments across four challenging benchmarks (Go Stanford, ReCon, SCAND, HuRoN) demonstrate that UniWM substantially improves navigation success rates by up to 30%, significantly reduces trajectory errors compared to strong baselines, and exhibits impressive zero-shot generalization on the unseen TartanDrive dataset. These results highlight UniWM as a principled step toward unified, imagination-driven embodied navigation.

Authors:Yuxin Ma, Lun Du, Lanning Wei, Kun Chen, Qian Xu, Kangyu Wang, Guofeng Feng, Guoshan Lu, Lin Liu, Xiaojing Qi, Xinyuan Zhang, Zhen Tao, Haibo Feng, Ziyun Jiang, Ying Xu, Zenan Huang, Yihong Zhuang, Haokai Xu, Jiaqi Hu, Zhenzhong Lan, Junbo Zhao, Jianguo Li, Da Zheng
Title: dInfer: An Efficient Inference Framework for Diffusion Language Models
Abstract:
Diffusion-based large language models (dLLMs) have emerged as a promising alternative to autoregressive (AR) LLMs, leveraging denoising-based generation to enable inherent parallelism. Even more and more open-sourced dLLM models emerge, yet their widespread adoption remains constrained by the lack of a standardized and efficient inference framework. We present dInfer, an efficient and extensible framework for dLLM inference. dInfer decomposes the inference pipeline into four modular components--model, diffusion iteration manager, decoding strategy, and KV-cache manager--and integrates novel algorithms for each component alongside system-level optimizations. Through this combination of algorithmic innovations and system enhancements, dInfer achieves substantial efficiency gains without compromising output quality on LLaDA-MoE. At batch size 1, it surpasses 1,100 tokens per second on HumanEval and averages over 800 tokens per second across six benchmarks on $8\times$ H800 GPUs. Compared to prior systems, dInfer delivers a $10\times$ speedup over Fast-dLLM while maintaining similar model performance. Even compared to the AR model (with a comparable number of activation parameters and performance) QWen2.5-3B, which is highly optimized with the latest vLLM inference engine, dInfer still delivers a $2$-$3\times$ speedup. The implementation of dInfer is open-sourced at https://github.com/inclusionAI/dInfer.

Authors:Prosenjit Biswas, Pervez Shaik, Abhinav Thorat, Ravi Kolla, Niranjan Pedanekar
Title: From What to Why: Thought-Space Recommendation with Small Language Models
Abstract:
Large Language Models (LLMs) have advanced recommendation capabilities through enhanced reasoning, but pose significant challenges for real-world deployment due to high inference costs. Conversely, while Small Language Models (SLMs) offer an efficient alternative, their reasoning capabilities for recommendation remain underexplored. Existing systems often use natural language rationales merely as unsupervised descriptive text, failing to harness their full potential as learning signals. In this work our main idea is to create a common understanding of user and items across multiple domains called Thought Space with SLMs instead of using LLMs' distilled knowledge. To that end we propose PULSE (Preference Understanding by Latent Semantic Embeddings), a framework that treats SLM-generated rationales as director learning signals, supervising them with interaction histories to jointly model user actions (what) and their semantic drivers (why). Existing methods consider only interactions such as sequences and embeddings, whereas PULSE treats rationales as first-class signals, this novel design yields embeddings that are more robust and generalizable. Extensive experiments demonstrate that PULSE outperforms leading ID, Collaborative Filtering (CF), and LLM-based sequential recommendation models across multiple benchmark datasets. Furthermore, PULSE exhibits superior transferability in cross-domain recommendation and demonstrates strong performance on downstream tasks such as reasoning-oriented question answering. Our code is available \href{https://anonymous.4open.science/r/Thinking_PULSE-0FC5/README.md}{here}.

Authors:Tajamul Ashraf, Umair Nawaz, Abdelrahman M. Shaker, Rao Anwer, Philip Torr, Fahad Shahbaz Khan, Salman Khan
Title: MATRIX: Multimodal Agent Tuning for Robust Tool-Use Reasoning
Abstract:
Vision language models (VLMs) are increasingly deployed as controllers with access to external tools for complex reasoning and decision-making, yet their effectiveness remains limited by the scarcity of high-quality multimodal trajectories and the cost of manual annotation. We address this challenge with a vision-centric agent tuning framework that automatically synthesizes multimodal trajectories, generates step-wise preference pairs, and trains a VLM controller for robust tool-use reasoning. Our pipeline first constructs M-TRACE, a large-scale dataset of 28.5K multimodal tasks with 177K verified trajectories, enabling imitation-based trajectory tuning. Building on this, we develop MATRIX Agent, a controller finetuned on M-TRACE for step-wise tool reasoning. To achieve finer alignment, we further introduce Pref-X, a set of 11K automatically generated preference pairs, and optimize MATRIX on it via step-wise preference learning. Across three benchmarks, Agent-X, GTA, and GAIA, MATRIX consistently surpasses both open- and closed-source VLMs, demonstrating scalable and effective multimodal tool use. Our data and code is avaliable at https://github.com/mbzuai-oryx/MATRIX.

Authors:Zhen Zhu, Yiming Gong, Yao Xiao, Yaoyao Liu, Derek Hoiem
Title: How to Teach Large Multimodal Models New Skills
Abstract:
How can we teach large multimodal models (LMMs) new skills without erasing prior abilities? We study sequential fine-tuning on five target skills while monitoring general ability on eight held-out benchmarks across three model families. We observe that apparent "forgetting" on held-out tasks after narrow fine-tuning can partly recover at later stages. We trace this behavior to a measurable shift in the output token distribution, manifested through a simple counting-bias probe that co-varies with forgetting. Guided by this picture, we identify two simple, robust tuning recipes that learn strongly while limiting drift: (i) updating only the self-attention projection layers, and (ii) updating only the MLP Gate&Up while freezing the Down projection. Across models and tasks, these choices deliver strong target gains while largely preserving held-out performance. Code is available at https://github.com/jessemelpolio/LMM_CL

Authors:Yunzhe Xu, Yiyuan Pan, Zhe Liu
Title: Dream to Recall: Imagination-Guided Experience Retrieval for Memory-Persistent Vision-and-Language Navigation
Abstract:
Vision-and-Language Navigation (VLN) requires agents to follow natural language instructions through environments, with memory-persistent variants demanding progressive improvement through accumulated experience. Existing approaches for memory-persistent VLN face critical limitations: they lack effective memory access mechanisms, instead relying on entire memory incorporation or fixed-horizon lookup, and predominantly store only environmental observations while neglecting navigation behavioral patterns that encode valuable decision-making strategies. We present Memoir, which employs imagination as a retrieval mechanism grounded by explicit memory: a world model imagines future navigation states as queries to selectively retrieve relevant environmental observations and behavioral histories. The approach comprises: 1) a language-conditioned world model that imagines future states serving dual purposes: encoding experiences for storage and generating retrieval queries; 2) Hybrid Viewpoint-Level Memory that anchors both observations and behavioral patterns to viewpoints, enabling hybrid retrieval; and 3) an experience-augmented navigation model that integrates retrieved knowledge through specialized encoders. Extensive evaluation across diverse memory-persistent VLN benchmarks with 10 distinctive testing scenarios demonstrates Memoir's effectiveness: significant improvements across all scenarios, with 5.4% SPL gains on IR2R over the best memory-persistent baseline, accompanied by 8.3x training speedup and 74% inference memory reduction. The results validate that predictive retrieval of both environmental and behavioral memories enables more effective navigation, with analysis indicating substantial headroom (73.3% vs 93.4% upper bound) for this imagination-guided paradigm. Code at https://github.com/xyz9911/Memoir.

Authors:Rishubh Parihar, Or Patashnik, Daniil Ostashev, R. Venkatesh Babu, Daniel Cohen-Or, Kuan-Chieh Wang
Title: Kontinuous Kontext: Continuous Strength Control for Instruction-based Image Editing
Abstract:
Instruction-based image editing offers a powerful and intuitive way to manipulate images through natural language. Yet, relying solely on text instructions limits fine-grained control over the extent of edits. We introduce Kontinuous Kontext, an instruction-driven editing model that provides a new dimension of control over edit strength, enabling users to adjust edits gradually from no change to a fully realized result in a smooth and continuous manner. Kontinuous Kontext extends a state-of-the-art image editing model to accept an additional input, a scalar edit strength which is then paired with the edit instruction, enabling explicit control over the extent of the edit. To inject this scalar information, we train a lightweight projector network that maps the input scalar and the edit instruction to coefficients in the model's modulation space. For training our model, we synthesize a diverse dataset of image-edit-instruction-strength quadruplets using existing generative models, followed by a filtering stage to ensure quality and consistency. Kontinuous Kontext provides a unified approach for fine-grained control over edit strength for instruction driven editing from subtle to strong across diverse operations such as stylization, attribute, material, background, and shape changes, without requiring attribute-specific training.

Authors:Hongxing Li, Dingming Li, Zixuan Wang, Yuchen Yan, Hang Wu, Wenqi Zhang, Yongliang Shen, Weiming Lu, Jun Xiao, Yueting Zhuang
Title: SpatialLadder: Progressive Training for Spatial Reasoning in Vision-Language Models
Abstract:
Spatial reasoning remains a fundamental challenge for Vision-Language Models (VLMs), with current approaches struggling to achieve robust performance despite recent advances. We identify that this limitation stems from a critical gap: existing methods attempt to learn spatial reasoning directly without establishing the hierarchical foundations of perception and understanding. To address this challenge, we present a comprehensive methodology for building spatial intelligence progressively. We introduce SpatialLadder-26k, a multimodal dataset containing 26,610 samples spanning object localization, single image, multi-view, and video spatial reasoning tasks, constructed through a standardized pipeline that ensures systematic coverage across modalities. Building on this dataset, we design a three-stage progressive training framework that (1) establishes spatial perception through object localization, (2) develops spatial understanding through multi-dimensional spatial tasks, and (3) strengthens complex reasoning via reinforcement learning with verifiable rewards. This approach yields SpatialLadder, a 3B-parameter model that achieves state-of-the-art performance on spatial reasoning benchmarks, with 23.4% average improvement over the base model, surpassing GPT-4o by 20.8% and Gemini-2.0-Flash by 10.1%. Notably, SpatialLadder maintains strong generalization with 7.2% improvement on out-of-domain benchmarks, demonstrating that progressive training from perception to reasoning is essential for robust spatial intelligence.

Authors:Yusong Hu, Runmin Ma, Yue Fan, Jinxin Shi, Zongsheng Cao, Yuhao Zhou, Jiakang Yuan, Xiangchao Yan, Wenlong Zhang, Lei Bai, Bo Zhang
Title: FlowSearch: Advancing deep research with dynamic structured knowledge flow
Abstract:
Deep research is an inherently challenging task that demands both breadth and depth of thinking. It involves navigating diverse knowledge spaces and reasoning over complex, multi-step dependencies, which presents substantial challenges for agentic systems. To address this, we propose FlowSearch, a multi-agent framework that actively constructs and evolves a dynamic structured knowledge flow to drive subtask execution and reasoning. FlowSearch is capable of strategically planning and expanding the knowledge flow to enable parallel exploration and hierarchical task decomposition, while also adjusting the knowledge flow in real time based on feedback from intermediate reasoning outcomes and insights. FlowSearch achieves state-of-the-art performance on both general and scientific benchmarks, including GAIA, HLE, GPQA and TRQA, demonstrating its effectiveness in multi-disciplinary research scenarios and its potential to advance scientific discovery. The code is available at https://github.com/Alpha-Innovator/InternAgent.

Authors:Shangheng Du, Xiangchao Yan, Dengyang Jiang, Jiakang Yuan, Yusong Hu, Xin Li, Liang He, Bo Zhang, Lei Bai
Title: AutoMLGen: Navigating Fine-Grained Optimization for Coding Agents
Abstract:
Large language models (LLMs) have shown impressive performance in general programming tasks. However, in Machine Learning Engineering (MLE) scenarios such as AutoML and Kaggle competitions, achieving high performance depends heavily on expert intervention and repeated adjustments rather than simply generating correct code. When applied directly to these tasks, LLMs often lack fine-grained domain priors, and existing MLE approaches that use linear or tree-structured searches limit knowledge transfer to adjacent hierarchical links. As a result, they cannot leverage past full trajectories or share information across branches, limiting self-evolving ability and search space diversity. To address these limitations, we introduce AutoMLGen, an LLM-based coding agent that integrates a domain knowledge base for high-quality prior guidance and Monte Carlo Graph Search (MCGS) for efficient exploration. MCGS retains the tree-guided exploration of MCTS while embedding a graph structure into the expansion stage to enable dynamic path reorganization, historical trajectory reuse, and multi-solution fusion to support both self-evolution and collaborative learning. Combined with fine-grained operator sets, this design improves stability and accelerates convergence. Evaluation on the MLE-Bench shows that AutoMLGen achieves state-of-the-art performance in numerous dimensions, such as the average medal rate and the valid submission rate, under a 12-hour budget (half the standard runtime). The code is available at https://github.com/Alpha-Innovator/InternAgent.

Authors:Jiayun Luo, Wan-Cyuan Fan, Lyuyang Wang, Xiangteng He, Tanzila Rahman, Purang Abolmaesumi, Leonid Sigal
Title: To Sink or Not to Sink: Visual Information Pathways in Large Vision-Language Models
Abstract:
Large Vision Language Models (LVLMs) have recently emerged as powerful architectures capable of understanding and reasoning over both visual and textual information. These models typically rely on two key components: a Vision Transformer (ViT) and a Large Language Model (LLM). ViT encodes visual content into a sequence of image tokens and serves as the perceptual front-end -- the eyes of the model. In contrast, the LLM interprets these tokens to perform high-level reasoning, generates responses, and functions as the cognitive core -- the brain of the model. However, it remains unclear which visual tokens contribute most significantly to understanding and reasoning, and how effectively these signals are propagated from ViT to the LLM. While most existing works have focused on identifying attention sinks, low-semantic tokens receiving disproportionately high attention, within the LLM, we shift the focus to the vision encoder by identifying a class of high-norm visual tokens from ViT, referred to as ViT attention sinks -- a problem that has been rarely studied but is indeed very important for LVLMs. Our findings show that these ViT sinks encapsulate high-level semantic concepts from images, allowing the LLM to perform more effective understanding and reasoning. Despite their importance, these sink tokens are often overlooked in existing LVLM architectures. To explore their contribution, we present both qualitative and quantitative analyses of the information embedded in these sink tokens. We also propose both training-free and training-based approaches to better leverage how this information is interpreted by the LLM, and to what extent. By explicitly utilizing these tokens, we demonstrate substantial improvements across a range of LVLMs and visual reasoning tasks, highlighting the untapped potential of ViT attention sinks in enhancing visual reasoning.

Authors:Wenxuan Wang, Kai Wu, Yujian Betterest Li, Dan Wang, Xiaoyu Zhang
Title: Synthetic Series-Symbol Data Generation for Time Series Foundation Models
Abstract:
Foundation models for time series analysis (TSA) have attracted significant attention. However, challenges such as training data scarcity and imbalance continue to hinder their development. Inspired by complex dynamic system theories, we design a series-symbol data generation mechanism, enabling the unrestricted creation of high-quality time series data paired with corresponding symbolic expressions. To leverage series-symbol data pairs with strong correlations, we develop \texttt{SymTime}, a pre-trained foundation model for enhancing time series representation using symbolic information. \texttt{SymTime} demonstrates competitive performance across five major TSA tasks when fine-tunes with downstream tasks, rivaling foundation models pre-trained on real-world datasets. This approach underscores the potential of series-symbol data generation and pretraining mechanisms in overcoming data scarcity and enhancing task performance. The code is available at https://github.com/wwhenxuan/SymTime.

Authors:Andrew Lee, Ian Chuang, Dechen Gao, Kai Fukazawa, Iman Soltani
Title: Gaze on the Prize: Shaping Visual Attention with Return-Guided Contrastive Learning
Abstract:
Visual Reinforcement Learning (RL) agents must learn to act based on high-dimensional image data where only a small fraction of the pixels is task-relevant. This forces agents to waste exploration and computational resources on irrelevant features, leading to sample-inefficient and unstable learning. To address this, inspired by human visual foveation, we introduce Gaze on the Prize. This framework augments visual RL with a learnable foveal attention mechanism (Gaze), guided by a self-supervised signal derived from the agent's experience pursuing higher returns (the Prize). Our key insight is that return differences reveal what matters most: If two similar representations produce different outcomes, their distinguishing features are likely task-relevant, and the gaze should focus on them accordingly. This is realized through return-guided contrastive learning that trains the attention to distinguish between the features relevant to success and failure. We group similar visual representations into positives and negatives based on their return differences and use the resulting labels to construct contrastive triplets. These triplets provide the training signal that teaches the attention mechanism to produce distinguishable representations for states associated with different outcomes. Our method achieves up to 2.4x improvement in sample efficiency and can solve tasks that the baseline fails to learn, demonstrated across a suite of manipulation tasks from the ManiSkill3 benchmark, all without modifying the underlying algorithm or hyperparameters.

Authors:Heming Zou, Yunliang Zang, Wutong Xu, Yao Zhu, Xiangyang Ji
Title: FlyLoRA: Boosting Task Decoupling and Parameter Efficiency via Implicit Rank-Wise Mixture-of-Experts
Abstract:
Low-Rank Adaptation (LoRA) is a widely used parameter-efficient fine-tuning method for foundation models, but it suffers from parameter interference, resulting in suboptimal performance. Although Mixture-of-Experts (MoE)-based LoRA variants show promise in mitigating intra-task correlations in single-task instruction tuning, they introduce additional router parameters and remain ineffective in multi-task model merging where inter-task interference arises. Inspired by the fly olfactory circuit, we propose FlyLoRA, an implicit MoE-based LoRA variant that introduces: (1) rank-wise expert activation in the up-projection matrix, and (2) an implicit router that unifies expert routing and down-projection, where a frozen sparse random projection matrix replaces the traditional dense trainable version. This design resolves the trade-off between intra-task decorrelation and computational efficiency by eliminating the need for an explicit router, while inherently mitigating inter-task interference due to the orthogonality property of random matrices. Extensive experiments across four domains -- general knowledge understanding, scientific question answering, mathematical reasoning, and code generation -- demonstrate consistent performance improvements over existing methods. Beyond empirical gains, FlyLoRA highlights how biological structures can inspire innovations in AI technologies. Code is available at https://github.com/gfyddha/FlyLoRA.

Authors:Yi Jiang, Lei Shen, Lujie Niu, Sendong Zhao, Wenbo Su, Bo Zheng
Title: QAgent: A modular Search Agent with Interactive Query Understanding
Abstract:
Large language models (LLMs) excel at natural language tasks but are limited by their static parametric knowledge, especially in knowledge-intensive task. Retrieval-augmented generation (RAG) mitigates this by integrating external information. However, (1) traditional RAG struggles with complex query understanding, and (2) even search agents trained with reinforcement learning (RL), despite their promise, still face generalization and deployment challenges. To address these limitations, we propose QAgent, a unified agentic RAG framework that employs a search agent for adaptive retrieval. This agent optimizes its understanding of the query through interactive reasoning and retrieval. To facilitate real-world application, we focus on modular search agent for query understanding that are plug-and-play in complex systems. Secifically, the agent follows a multi-step decision process trained with RL to maximize retrieval quality and support accurate downstream answers. We further analyze the strengths and weaknesses of end-to-end RL and propose a strategy that focuses on effective retrieval, thereby enhancing generalization in LLM applications. Experiments show QAgent excels at QA and serves as a plug-and-play module for real-world deployment.

Authors:Bart Kuipers, Freek Byrman, Daniel Uyterlinde, Alejandro García-Castellanos
Title: Symmetry-Aware Fully-Amortized Optimization with Scale Equivariant Graph Metanetworks
Abstract:
Amortized optimization accelerates the solution of related optimization problems by learning mappings that exploit shared structure across problem instances. We explore the use of Scale Equivariant Graph Metanetworks (ScaleGMNs) for this purpose. By operating directly in weight space, ScaleGMNs enable single-shot fine-tuning of existing models, reducing the need for iterative optimization. We demonstrate the effectiveness of this approach empirically and provide a theoretical result: the gauge freedom induced by scaling symmetries is strictly smaller in convolutional neural networks than in multi-layer perceptrons. This insight helps explain the performance differences observed between architectures in both our work and that of Kalogeropoulos et al. (2024). Overall, our findings underscore the potential of symmetry-aware metanetworks as a powerful approach for efficient and generalizable neural network optimization. Open-source code: https://github.com/daniuyter/scalegmn_amortization

Authors:Kodai Kawamura, Yuta Goto, Rintaro Yanagi, Hirokatsu Kataoka, Go Irie
Title: Approximate Domain Unlearning for Vision-Language Models
Abstract:
Pre-trained Vision-Language Models (VLMs) exhibit strong generalization capabilities, enabling them to recognize a wide range of objects across diverse domains without additional training. However, they often retain irrelevant information beyond the requirements of specific downstream tasks, raising concerns about computational efficiency and potential information leakage. This has motivated growing interest in approximate unlearning, which aims to selectively remove unnecessary knowledge while preserving overall model performance. Existing approaches to approximate unlearning have primarily focused on class unlearning, where a VLM is retrained to fail to recognize specified object classes while maintaining accuracy for others. However, merely forgetting object classes is often insufficient in practical applications. For instance, an autonomous driving system should accurately recognize real cars while avoiding misrecognition of illustrated cars depicted in roadside advertisements as real cars, which could be hazardous. In this paper, we introduce Approximate Domain Unlearning (ADU), a novel problem setting that requires reducing recognition accuracy for images from specified domains (e.g., illustration) while preserving accuracy for other domains (e.g., real). ADU presents new technical challenges: due to the strong domain generalization capability of pre-trained VLMs, domain distributions are highly entangled in the feature space, making naive approaches based on penalizing target domains ineffective. To tackle this limitation, we propose a novel approach that explicitly disentangles domain distributions and adaptively captures instance-specific domain information. Extensive experiments show that our approach outperforms baselines built upon VLM tuning techniques, paving the way for practical and fine-grained unlearning in VLMs. Code: https://kodaikawamura.github.io/Domain_Unlearning/.

Authors:Chen Huang, Wei Lu, Wenxuan Zhang
Title: PEAR: Phase Entropy Aware Reward for Efficient Reasoning
Abstract:
Large Reasoning Models (LRMs) have achieved impressive performance on complex reasoning tasks by generating detailed chain-of-thought (CoT) explanations. However, these responses are often excessively long, containing redundant reasoning steps that inflate inference cost and reduce usability. Controlling the length of generated reasoning without sacrificing accuracy remains an open challenge. Through a systematic empirical analysis, we reveal a consistent positive correlation between model entropy and response length at different reasoning stages across diverse LRMs: the thinking phase exhibits higher entropy, reflecting exploratory behavior of longer responses, while the final answer phase shows lower entropy, indicating a more deterministic solution.This observation suggests that entropy at different reasoning stages can serve as a control knob for balancing conciseness and performance. Based on this insight, this paper introduces Phase Entropy Aware Reward (PEAR), a reward mechanism that incorporating phase-dependent entropy into the reward design. Instead of treating all tokens uniformly, PEAR penalize excessive entropy during the thinking phase and allowing moderate exploration at the final answer phase, which encourages models to generate concise reasoning traces that retain sufficient flexibility to solve the task correctly. This enables adaptive control of response length without relying on explicit length targets or rigid truncation rules. Extensive experiments across four benchmarks demonstrate that PEAR consistently reduces response length while sustaining competitive accuracy across model scales. In addition, PEAR demonstrates strong out-of-distribution (OOD) robustness beyond the training distribution. Our code is available at: https://github.com/iNLP-Lab/PEAR.

Authors:Kehui Liu, Zhongjie Jia, Yang Li, Zhaxizhuoma, Pengan Chen, Song Liu, Xin Liu, Pingrui Zhang, Haoming Song, Xinyi Ye, Nieqing Cao, Zhigang Wang, Jia Zeng, Dong Wang, Yan Ding, Bin Zhao, Xuelong Li
Title: FastUMI-100K: Advancing Data-driven Robotic Manipulation with a Large-scale UMI-style Dataset
Abstract:
Data-driven robotic manipulation learning depends on large-scale, high-quality expert demonstration datasets. However, existing datasets, which primarily rely on human teleoperated robot collection, are limited in terms of scalability, trajectory smoothness, and applicability across different robotic embodiments in real-world environments. In this paper, we present FastUMI-100K, a large-scale UMI-style multimodal demonstration dataset, designed to overcome these limitations and meet the growing complexity of real-world manipulation tasks. Collected by FastUMI, a novel robotic system featuring a modular, hardware-decoupled mechanical design and an integrated lightweight tracking system, FastUMI-100K offers a more scalable, flexible, and adaptable solution to fulfill the diverse requirements of real-world robot demonstration data. Specifically, FastUMI-100K contains over 100K+ demonstration trajectories collected across representative household environments, covering 54 tasks and hundreds of object types. Our dataset integrates multimodal streams, including end-effector states, multi-view wrist-mounted fisheye images and textual annotations. Each trajectory has a length ranging from 120 to 500 frames. Experimental results demonstrate that FastUMI-100K enables high policy success rates across various baseline algorithms, confirming its robustness, adaptability, and real-world applicability for solving complex, dynamic manipulation challenges. The source code and dataset will be released in this link https://github.com/MrKeee/FastUMI-100K.

Authors:Jingyuan Wang, Yankai Chen, Zhonghang Li, Chao Huang
Title: LightReasoner: Can Small Language Models Teach Large Language Models Reasoning?
Abstract:
Large language models (LLMs) have demonstrated remarkable progress in reasoning, often through supervised fine-tuning (SFT). However, SFT is resource-intensive, relying on large curated datasets, rejection-sampled demonstrations, and uniform optimization across all tokens, even though only a fraction carry meaningful learning value. In this work, we explore a counterintuitive idea: can smaller language models (SLMs) teach larger language models (LLMs) by revealing high-value reasoning moments that reflect the latter's unique strength? We propose LightReasoner, a novel framework that leverages the behavioral divergence between a stronger expert model (LLM) and a weaker amateur model (SLM). LightReasoner operates in two stages: (1) a sampling stage that pinpoints critical reasoning moments and constructs supervision examples capturing the expert's advantage through expert-amateur contrast, and (2) a fine-tuning stage that aligns the expert model with these distilled examples, amplifying its reasoning strengths. Across seven mathematical benchmarks, LightReasoner improves accuracy by up to 28.1%, while reducing time consumption by 90%, sampled problems by 80%, and tuned token usage by 99%, all without relying on ground-truth labels. By turning weaker SLMs into effective teaching signals, LightReasoner offers a scalable and resource-efficient approach for advancing LLM reasoning. Code is available at: https://github.com/HKUDS/LightReasoner

Authors:Alexander Rubinstein, Benjamin Raible, Martin Gubri, Seong Joon Oh
Title: DISCO: Diversifying Sample Condensation for Efficient Model Evaluation
Abstract:
Evaluating modern machine learning models has become prohibitively expensive. Benchmarks such as LMMs-Eval and HELM demand thousands of GPU hours per model. Costly evaluation reduces inclusivity, slows the cycle of innovation, and worsens environmental impact. The typical approach follows two steps. First, select an anchor subset of data. Second, train a mapping from the accuracy on this subset to the final test result. The drawback is that anchor selection depends on clustering, which can be complex and sensitive to design choices. We argue that promoting diversity among samples is not essential; what matters is to select samples that $\textit{maximise diversity in model responses}$. Our method, $\textbf{Diversifying Sample Condensation (DISCO)}$, selects the top-k samples with the greatest model disagreements. This uses greedy, sample-wise statistics rather than global clustering. The approach is conceptually simpler. From a theoretical view, inter-model disagreement provides an information-theoretically optimal rule for such greedy selection. $\textbf{DISCO}$ shows empirical gains over prior methods, achieving state-of-the-art results in performance prediction across MMLU, Hellaswag, Winogrande, and ARC. Code is available here: https://github.com/arubique/disco-public.

Authors:Fengji Zhang, Xinyao Niu, Chengyang Ying, Guancheng Lin, Zhongkai Hao, Zhou Fan, Chengen Huang, Jacky Keung, Bei Chen, Junyang Lin
Title: A$^2$Search: Ambiguity-Aware Question Answering with Reinforcement Learning
Abstract:
Recent advances in Large Language Models (LLMs) and Reinforcement Learning (RL) have led to strong performance in open-domain question answering (QA). However, existing models still struggle with questions that admit multiple valid answers. Standard QA benchmarks, which typically assume a single gold answer, overlook this reality and thus produce inappropriate training signals. Existing attempts to handle ambiguity often rely on costly manual annotation, which is difficult to scale to multi-hop datasets such as HotpotQA and MuSiQue. In this paper, we present A$^2$Search, an annotation-free, end-to-end training framework to recognize and handle ambiguity. At its core is an automated pipeline that detects ambiguous questions and gathers alternative answers via trajectory sampling and evidence verification. The model is then optimized with RL using a carefully designed $\mathrm{AnsF1}$ reward, which naturally accommodates multiple answers. Experiments on eight open-domain QA benchmarks demonstrate that A$^2$Search achieves new state-of-the-art performance. With only a single rollout, A$^2$Search-7B yields an average $\mathrm{AnsF1}@1$ score of $48.4\%$ across four multi-hop benchmarks, outperforming all strong baselines, including the substantially larger ReSearch-32B ($46.2\%$). Extensive analyses further show that A$^2$Search resolves ambiguity and generalizes across benchmarks, highlighting that embracing ambiguity is essential for building more reliable QA systems. Our code, data, and model weights can be found at https://github.com/zfj1998/A2Search

Authors:Guowei Zou, Haitao Wang, Hejun Wu, Yukun Qian, Yuhang Wang, Weibing Li
Title: DM1: MeanFlow with Dispersive Regularization for 1-Step Robotic Manipulation
Abstract:
The ability to learn multi-modal action distributions is indispensable for robotic manipulation policies to perform precise and robust control. Flow-based generative models have recently emerged as a promising solution to learning distributions of actions, offering one-step action generation and thus achieving much higher sampling efficiency compared to diffusion-based methods. However, existing flow-based policies suffer from representation collapse, the inability to distinguish similar visual representations, leading to failures in precise manipulation tasks. We propose DM1 (MeanFlow with Dispersive Regularization for One-Step Robotic Manipulation), a novel flow matching framework that integrates dispersive regularization into MeanFlow to prevent collapse while maintaining one-step efficiency. DM1 employs multiple dispersive regularization variants across different intermediate embedding layers, encouraging diverse representations across training batches without introducing additional network modules or specialized training procedures. Experiments on RoboMimic benchmarks show that DM1 achieves 20-40 times faster inference (0.07s vs. 2-3.5s) and improves success rates by 10-20 percentage points, with the Lift task reaching 99% success over 85% of the baseline. Real-robot deployment on a Franka Panda further validates that DM1 transfers effectively from simulation to the physical world. To the best of our knowledge, this is the first work to leverage representation regularization to enable flow-based policies to achieve strong performance in robotic manipulation, establishing a simple yet powerful approach for efficient and robust manipulation.

Authors:Tianyu Fan, Xinyao Niu, Yuxiang Zheng, Fengji Zhang, Chengen Huang, Bei Chen, Junyang Lin, Chao Huang
Title: Understanding DeepResearch via Reports
Abstract:
DeepResearch agents represent a transformative AI paradigm, conducting expert-level research through sophisticated reasoning and multi-tool integration. However, evaluating these systems remains critically challenging due to open-ended research scenarios and existing benchmarks that focus on isolated capabilities rather than holistic performance. Unlike traditional LLM tasks, DeepResearch systems must synthesize diverse sources, generate insights, and present coherent findings, which are capabilities that resist simple verification. To address this gap, we introduce DeepResearch-ReportEval, a comprehensive framework designed to assess DeepResearch systems through their most representative outputs: research reports. Our approach systematically measures three dimensions: quality, redundancy, and factuality, using an innovative LLM-as-a-Judge methodology achieving strong expert concordance. We contribute a standardized benchmark of 100 curated queries spanning 12 real-world categories, enabling systematic capability comparison. Our evaluation of four leading commercial systems reveals distinct design philosophies and performance trade-offs, establishing foundational insights as DeepResearch evolves from information assistants toward intelligent research partners. Source code and data are available at: https://github.com/HKUDS/DeepResearch-Eval.

Authors:Weisen Jiang, Sinno Jialin Pan
Title: MetaDefense: Defending Finetuning-based Jailbreak Attack Before and During Generation
Abstract:
This paper introduces MetaDefense, a novel framework for defending against finetuning-based jailbreak attacks in large language models (LLMs). We observe that existing defense mechanisms fail to generalize to harmful queries disguised by unseen attack templates, despite LLMs being capable of distinguishing disguised harmful queries in the embedding space. Based on these insights, we propose a two-stage defense approach: (i) pre-generation defense that detects harmful queries before response generation begins, and (ii) mid-generation defense that monitors partial responses during generation to prevent outputting more harmful content. Our MetaDefense trains the LLM to predict the harmfulness of both queries and partial responses using specialized prompts, enabling early termination of potentially harmful interactions. Extensive experiments across multiple LLM architectures (LLaMA-2-7B, Qwen-2.5-3B-Instruct, and LLaMA-3.2-3B-Instruct) demonstrate that MetaDefense significantly outperforms existing defense mechanisms, achieving robust defense against harmful queries with seen and unseen attack templates while maintaining competitive performance on benign tasks. Code is available at https://github.com/ws-jiang/MetaDefense.

Authors:Yuping Zhou, Siqi Lai, Jindong Han, Hao Liu
Title: An LLM-Powered Cooperative Framework for Large-Scale Multi-Vehicle Navigation
Abstract:
The rise of Internet of Vehicles (IoV) technologies is transforming traffic management from isolated control to a collective, multi-vehicle process. At the heart of this shift is multi-vehicle dynamic navigation, which requires simultaneously routing large fleets under evolving traffic conditions. Existing path search algorithms and reinforcement learning methods struggle to scale to city-wide networks, often failing to capture the nonlinear, stochastic, and coupled dynamics of urban traffic. To address these challenges, we propose CityNav, a hierarchical, LLM-powered framework for large-scale multi-vehicle navigation. CityNav integrates a global traffic allocation agent, which coordinates strategic traffic flow distribution across regions, with local navigation agents that generate locally adaptive routes aligned with global directives. To enable effective cooperation, we introduce a cooperative reasoning optimization mechanism, in which agents are jointly trained with a dual-reward structure: individual rewards promote per-vehicle efficiency, while shared rewards encourage network-wide coordination and congestion reduction. Extensive experiments on four real-world road networks of varying scales (up to 1.6 million roads and 430,000 intersections) and traffic datasets demonstrate that CityNav consistently outperforms nine classical path search and RL-based baselines in city-scale travel efficiency and congestion mitigation. Our results highlight the potential of LLMs to enable scalable, adaptive, and cooperative city-wide traffic navigation, providing a foundation for intelligent, large-scale vehicle routing in complex urban environments. Our project is available at https://github.com/usail-hkust/CityNav.

Authors:Hao Wu, Wei Liu
Title: GCPO: When Contrast Fails, Go Gold
Abstract:
Reinforcement learning has been widely applied to enhance the reasoning capabilities of large language models. Extending the inference limits of smaller models has become a prominent research focus. However, algorithms such as Group Relative Policy Optimization (GRPO) suffer from a clear drawback: the upper bound of a model's rollout responses is entirely determined by the model itself, preventing the acquisition of knowledge from samples that are either all incorrect or all correct. In this paper, we introduce Group Contrastive Policy Optimization (GCPO), a method that incorporates external standard reference answers. When the model cannot solve a problem, the reference answer supplies the correct response, steering the model toward an unequivocally accurate update direction. This approach offers two main advantages: (1) it improves training efficiency by fully utilizing every sample; (2) it enables the model to emulate the problem solving strategy of the reference answer during training, thereby enhancing generalization in reasoning. GCPO achieves outstanding results across multiple benchmark datasets, yielding substantial improvements over the baseline model. Our code is available at: https://github.com/AchoWu/GCPO.

Authors:Runyang You, Yongqi Li, Meng Liu, Wenjie Wang, Liqiang Nie, Wenjie Li
Title: Parallel Test-Time Scaling for Latent Reasoning Models
Abstract:
Parallel test-time scaling (TTS) is a pivotal approach for enhancing large language models (LLMs), typically by sampling multiple token-based chains-of-thought in parallel and aggregating outcomes through voting or search. Recent advances in latent reasoning, where intermediate reasoning unfolds in continuous vector spaces, offer a more efficient alternative to explicit Chain-of-Thought, yet whether such latent models can similarly benefit from parallel TTS remains open, mainly due to the absence of sampling mechanisms in continuous space, and the lack of probabilistic signals for advanced trajectory aggregation. \ This work enables parallel TTS for latent reasoning models by addressing the above issues. For sampling, we introduce two uncertainty-inspired stochastic strategies: Monte Carlo Dropout and Additive Gaussian Noise. For aggregation, we design a Latent Reward Model (LatentRM) trained with step-wise contrastive objective to score and guide latent reasoning. Extensive experiments and visualization analyses show that both sampling strategies scale effectively with compute and exhibit distinct exploration dynamics, while LatentRM enables effective trajectory selection. Together, our explorations open a new direction for scalable inference in continuous spaces. Code released at https://github.com/YRYangang/LatentTTS.

Authors:Yuang Meng, Xin Jin, Lina Lei, Chun-Le Guo, Chongyi Li
Title: UltraLED: Learning to See Everything in Ultra-High Dynamic Range Scenes
Abstract:
Ultra-high dynamic range (UHDR) scenes exhibit significant exposure disparities between bright and dark regions. Such conditions are commonly encountered in nighttime scenes with light sources. Even with standard exposure settings, a bimodal intensity distribution with boundary peaks often emerges, making it difficult to preserve both highlight and shadow details simultaneously. RGB-based bracketing methods can capture details at both ends using short-long exposure pairs, but are susceptible to misalignment and ghosting artifacts. We found that a short-exposure image already retains sufficient highlight detail. The main challenge of UHDR reconstruction lies in denoising and recovering information in dark regions. In comparison to the RGB images, RAW images, thanks to their higher bit depth and more predictable noise characteristics, offer greater potential for addressing this challenge. This raises a key question: can we learn to see everything in UHDR scenes using only a single short-exposure RAW image? In this study, we rely solely on a single short-exposure frame, which inherently avoids ghosting and motion blur, making it particularly robust in dynamic scenes. To achieve that, we introduce UltraLED, a two-stage framework that performs exposure correction via a ratio map to balance dynamic range, followed by a brightness-aware RAW denoiser to enhance detail recovery in dark regions. To support this setting, we design a 9-stop bracketing pipeline to synthesize realistic UHDR images and contribute a corresponding dataset based on diverse scenes, using only the shortest exposure as input for reconstruction. Extensive experiments show that UltraLED significantly outperforms existing single-frame approaches. Our code and dataset are made publicly available at https://srameo.github.io/projects/ultraled.

Authors:Perry Dong, Chongyi Zheng, Chelsea Finn, Dorsa Sadigh, Benjamin Eysenbach
Title: Value Flows
Abstract:
While most reinforcement learning methods today flatten the distribution of future returns to a single scalar value, distributional RL methods exploit the return distribution to provide stronger learning signals and to enable applications in exploration and safe RL. While the predominant method for estimating the return distribution is by modeling it as a categorical distribution over discrete bins or estimating a finite number of quantiles, such approaches leave unanswered questions about the fine-grained structure of the return distribution and about how to distinguish states with high return uncertainty for decision-making. The key idea in this paper is to use modern, flexible flow-based models to estimate the full future return distributions and identify those states with high return variance. We do so by formulating a new flow-matching objective that generates probability density paths satisfying the distributional Bellman equation. Building upon the learned flow models, we estimate the return uncertainty of distinct states using a new flow derivative ODE. We additionally use this uncertainty information to prioritize learning a more accurate return estimation on certain transitions. We compare our method (Value Flows) with prior methods in the offline and online-to-online settings. Experiments on $37$ state-based and $25$ image-based benchmark tasks demonstrate that Value Flows achieves a $1.3\times$ improvement on average in success rates. Website: https://pd-perry.github.io/value-flows Code: https://github.com/chongyi-zheng/value-flows

Authors:Jacob Chmura, Shenyang Huang, Tran Gia Bao Ngo, Ali Parviz, Farimah Poursafaei, Jure Leskovec, Michael Bronstein, Guillaume Rabusseau, Matthias Fey, Reihaneh Rabbany
Title: TGM: a Modular and Efficient Library for Machine Learning on Temporal Graphs
Abstract:
Well-designed open-source software drives progress in Machine Learning (ML) research. While static graph ML enjoys mature frameworks like PyTorch Geometric and DGL, ML for temporal graphs (TG), networks that evolve over time, lacks comparable infrastructure. Existing TG libraries are often tailored to specific architectures, hindering support for diverse models in this rapidly evolving field. Additionally, the divide between continuous- and discrete-time dynamic graph methods (CTDG and DTDG) limits direct comparisons and idea transfer. To address these gaps, we introduce Temporal Graph Modelling (TGM), a research-oriented library for ML on temporal graphs, the first to unify CTDG and DTDG approaches. TGM offers first-class support for dynamic node features, time-granularity conversions, and native handling of link-, node-, and graph-level tasks. Empirically, TGM achieves an average 7.8x speedup across multiple models, datasets, and tasks compared to the widely used DyGLib, and an average 175x speedup on graph discretization relative to available implementations. Beyond efficiency, we show in our experiments how TGM unlocks entirely new research possibilities by enabling dynamic graph property prediction and time-driven training paradigms, opening the door to questions previously impractical to study. TGM is available at https://github.com/tgm-team/tgm

Authors:Rafin Hassan, Zarin Tasnim Roshni, Rafiqul Bari, Alimul Islam, Nabeel Mohammed, Moshiur Farazi, Shafin Rahman
Title: Label Semantics for Robust Hyperspectral Image Classification
Abstract:
Hyperspectral imaging (HSI) classification is a critical tool with widespread applications across diverse fields such as agriculture, environmental monitoring, medicine, and materials science. Due to the limited availability of high-quality training samples and the high dimensionality of spectral data, HSI classification models are prone to overfitting and often face challenges in balancing accuracy and computational complexity. Furthermore, most of HSI classification models are monomodal, where it solely relies on spectral-spatial data to learn decision boundaries in the high dimensional embedding space. To address this, we propose a general-purpose Semantic Spectral-Spatial Fusion Network (S3FN) that uses contextual, class specific textual descriptions to complement the training of an HSI classification model. Specifically, S3FN leverages LLMs to generate comprehensive textual descriptions for each class label that captures their unique characteristics and spectral behaviors. These descriptions are then embedded into a vector space using a pre-trained text encoder such as BERT or RoBERTa to extract meaningful label semantics which in turn leads to a better feature-label alignment for improved classification performance. To demonstrate the effectiveness of our approach, we evaluate our model on three diverse HSI benchmark datasets - Hyperspectral Wood, HyperspectralBlueberries, and DeepHS-Fruit and report significant performance boost. Our results highlight the synergy between textual semantics and spectral-spatial data, paving the way for further advancements in semantically augmented HSI classification models. Codes are be available in: https://github.com/milab-nsu/S3FN

Authors:Hyeong Kyu Choi, Xiaojin Zhu, Yixuan Li
Title: Measuring and Mitigating Identity Bias in Multi-Agent Debate via Anonymization
Abstract:
Multi-agent debate (MAD) aims to improve large language model (LLM) reasoning by letting multiple agents exchange answers and then aggregate their opinions. Yet recent studies reveal that agents are not neutral: they are prone to identity-driven sycophancy and self-bias, uncritically adopting a peer's view or stubbornly adhering to their own prior output, undermining the reliability of debate. In this work, we present the first principled framework that joins sycophancy and self-bias to mitigate and quantify identity bias in MAD. First, we formalize the debate dynamics as an identity-weighted Bayesian update process. Second, we propose response anonymization: by removing identity markers from prompts, agents cannot distinguish "self" from "peer", which forces equal weights on agent identity, thereby reducing bias. Third, we define the Identity Bias Coefficient (IBC), a principled metric that measures how often an agent follows a peer versus itself. Empirical studies across multiple models, datasets and debate rounds confirm that identity bias is widespread, with sycophancy far more common than self-bias. Our findings highlight the need to "mask" identity to ensure that MAD systems reason based on content rather than source identity. Code is released in https://github.com/deeplearning-wisc/MAD-identity-bias.

Authors:Guoliang Gong, Man Yu
Title: A Denoising Framework for Real-World Ultra-Low Dose Lung CT Images Based on an Image Purification Strategy
Abstract:
Ultra-low dose CT (uLDCT) significantly reduces radiation exposure but introduces severe noise and artifacts. It also leads to substantial spatial misalignment between uLDCT and normal dose CT (NDCT) image pairs. This poses challenges for directly applying existing denoising networks trained on synthetic noise or aligned data. To address this core challenge in uLDCT denoising, this paper proposes an innovative denoising framework based on an Image Purification (IP) strategy. First, we construct a real clinical uLDCT lung dataset. Then, we propose an Image Purification strategy that generates structurally aligned uLDCT-NDCT image pairs, providing a high-quality data foundation for network training. Building upon this, we propose a Frequency-domain Flow Matching (FFM) model, which works synergistically with the IP strategy to excellently preserve the anatomical structure integrity of denoised images. Experiments on the real clinical dataset demonstrate that our IP strategy significantly enhances the performance of multiple mainstream denoising models on the uLDCT task. Notably, our proposed FFM model combined with the IP strategy achieves state-of-the-art (SOTA) results in anatomical structure preservation. This study provides an effective solution to the data mismatch problem in real-world uLDCT denoising. Code and dataset are available at https://github.com/MonkeyDadLufy/flow-matching.

Authors:Yoli Shavit, Jacob Goldberger
Title: MoGU: Mixture-of-Gaussians with Uncertainty-based Gating for Time Series Forecasting
Abstract:
We introduce Mixture-of-Gaussians with Uncertainty-based Gating (MoGU), a novel Mixture-of-Experts (MoE) framework designed for regression tasks and applied to time series forecasting. Unlike conventional MoEs that provide only point estimates, MoGU models each expert's output as a Gaussian distribution. This allows it to directly quantify both the forecast (the mean) and its inherent uncertainty (variance). MoGU's core innovation is its uncertainty-based gating mechanism, which replaces the traditional input-based gating network by using each expert's estimated variance to determine its contribution to the final prediction. Evaluated across diverse time series forecasting benchmarks, MoGU consistently outperforms single-expert models and traditional MoE setups. It also provides well-quantified, informative uncertainties that directly correlate with prediction errors, enhancing forecast reliability. Our code is available from: https://github.com/yolish/moe_unc_tsf

Authors:Mufei Li, Dongqi Fu, Limei Wang, Si Zhang, Hanqing Zeng, Kaan Sancak, Ruizhong Qiu, Haoyu Wang, Xiaoxin He, Xavier Bresson, Yinglong Xia, Chonglin Sun, Pan Li
Title: Haystack Engineering: Context Engineering for Heterogeneous and Agentic Long-Context Evaluation
Abstract:
Modern long-context large language models (LLMs) perform well on synthetic "needle-in-a-haystack" (NIAH) benchmarks, but such tests overlook how noisy contexts arise from biased retrieval and agentic workflows. We argue that haystack engineering is necessary to construct noisy long contexts that faithfully capture key real-world factors -- distraction from heterogeneous biased retrievers and cascading errors in agentic workflows -- to test models' long-context robustness. We instantiate it through HaystackCraft, a new NIAH benchmark built on the full English Wikipedia hyperlink network with multi-hop questions. HaystackCraft evaluates how heterogeneous retrieval strategies (e.g., sparse, dense, hybrid, and graph-based) affect distractor composition, haystack ordering, and downstream LLM performance. HaystackCraft further extends NIAH to dynamic, LLM-dependent settings that simulate agentic operations, where models refine queries, reflect on their past reasonings, and decide when to stop. Experiments with 15 long-context models show that (1) while stronger dense retrievers can introduce more challenging distractors, graph-based reranking simultaneously improves retrieval effectiveness and mitigates more harmful distractors; (2) in agentic tests, even advanced models like Gemini 2.5 Pro and GPT-5 suffer cascading failures from self-generated distractors or struggle to perform early stops. These results highlight persistent challenges in agentic long-context reasoning and establish HaystackCraft as a valuable testbed for future progress.

Authors:Yunhao Fang, Weihao Yu, Shu Zhong, Qinghao Ye, Xuehan Xiong, Lai Wei
Title: Artificial Hippocampus Networks for Efficient Long-Context Modeling
Abstract:
Long-sequence modeling faces a fundamental trade-off between the efficiency of compressive fixed-size memory in RNN-like models and the fidelity of lossless growing memory in attention-based Transformers. Inspired by the Multi-Store Model in cognitive science, we introduce a memory framework of artificial neural networks. Our method maintains a sliding window of the Transformer's KV cache as lossless short-term memory, while a learnable module termed Artificial Hippocampus Network (AHN) recurrently compresses out-of-window information into a fixed-size compact long-term memory. To validate this framework, we instantiate AHNs using modern RNN-like architectures, including Mamba2, DeltaNet, and Gated DeltaNet. Extensive experiments on long-context benchmarks LV-Eval and InfiniteBench demonstrate that AHN-augmented models consistently outperform sliding window baselines and achieve performance comparable or even superior to full-attention models, while substantially reducing computational and memory requirements. For instance, augmenting the Qwen2.5-3B-Instruct with AHNs reduces inference FLOPs by 40.5% and memory cache by 74.0%, while improving its average score on LV-Eval (128k sequence length) from 4.41 to 5.88. Code is available at: https://github.com/ByteDance-Seed/AHN.

Authors:Peize He, Zichen Wen, Yubo Wang, Yuxuan Wang, Xiaoqian Liu, Jiajie Huang, Zehui Lei, Zhuangcheng Gu, Xiangqi Jin, Jiabing Yang, Kai Li, Zhifei Liu, Weijia Li, Cunxiang Wang, Conghui He, Linfeng Zhang
Title: AudioMarathon: A Comprehensive Benchmark for Long-Context Audio Understanding and Efficiency in Audio LLMs
Abstract:
Processing long-form audio is a major challenge for Large Audio Language models (LALMs). These models struggle with the quadratic cost of attention ($O(N^2)$) and with modeling long-range temporal dependencies. Existing audio benchmarks are built mostly from short clips and do not evaluate models in realistic long context settings. To address this gap, we introduce AudioMarathon, a benchmark designed to evaluate both understanding and inference efficiency on long-form audio. AudioMarathon provides a diverse set of tasks built upon three pillars: long-context audio inputs with durations ranging from 90.0 to 300.0 seconds, which correspond to encoded sequences of 2,250 to 7,500 audio tokens, respectively, full domain coverage across speech, sound, and music, and complex reasoning that requires multi-hop inference. We evaluate state-of-the-art LALMs and observe clear performance drops as audio length grows. We also study acceleration techniques and analyze the trade-offs of token pruning and KV cache eviction. The results show large gaps across current LALMs and highlight the need for better temporal reasoning and memory-efficient architectures. We believe AudioMarathon will drive the audio and multimodal research community to develop more advanced audio understanding models capable of solving complex audio tasks.

Authors:Jigang Fan, Xiaoran Jiao, Shengdong Lin, Zhanming Liang, Weian Mao, Chenchen Jing, Hao Chen, Chunhua Shen
Title: Evolutionary Profiles for Protein Fitness Prediction
Abstract:
Predicting the fitness impact of mutations is central to protein engineering but constrained by limited assays relative to the size of sequence space. Protein language models (pLMs) trained with masked language modeling (MLM) exhibit strong zero-shot fitness prediction; we provide a unifying view by interpreting natural evolution as implicit reward maximization and MLM as inverse reinforcement learning (IRL), in which extant sequences act as expert demonstrations and pLM log-odds serve as fitness estimates. Building on this perspective, we introduce EvoIF, a lightweight model that integrates two complementary sources of evolutionary signal: (i) within-family profiles from retrieved homologs and (ii) cross-family structural-evolutionary constraints distilled from inverse folding logits. EvoIF fuses sequence-structure representations with these profiles via a compact transition block, yielding calibrated probabilities for log-odds scoring. On ProteinGym (217 mutational assays; >2.5M mutants), EvoIF and its MSA-enabled variant achieve state-of-the-art or competitive performance while using only 0.15% of the training data and fewer parameters than recent large models. Ablations confirm that within-family and cross-family profiles are complementary, improving robustness across function types, MSA depths, taxa, and mutation depths. The codes will be made publicly available at https://github.com/aim-uofa/EvoIF.

Authors:Arjun Krishnakumar, Rhea Sanjay Sukthanker, Hannan Javed Mahadik, Gabriela Kadlecová, Vladyslav Moroshan, Timur Carstensen, Frank Hutter, Aaron Klein
Title: Where to Begin: Efficient Pretraining via Subnetwork Selection and Distillation
Abstract:
Small Language models (SLMs) offer an efficient and accessible alternative to Large Language Models (LLMs), delivering strong performance while using far fewer resources. We introduce a simple and effective framework for pretraining SLMs that brings together three complementary ideas. First, we identify structurally sparse sub-network initializations that consistently outperform randomly initialized models of similar size under the same compute budget. Second, we use evolutionary search to automatically discover high-quality sub-network initializations, providing better starting points for pretraining. Third, we apply knowledge distillation from larger teacher models to speed up training and improve generalization. Together, these components make SLM pretraining substantially more efficient: our best model, discovered using evolutionary search and initialized with LLM weights, matches the validation perplexity of a comparable Pythia SLM while requiring 9.2x fewer pretraining tokens. We release all code and models at https://github.com/whittle-org/whittle/, offering a practical and reproducible path toward cost-efficient small language model development at scale.

Authors:Wen Ye, Zhaocheng Liu, Yuwei Gui, Tingyu Yuan, Yunyue Su, Bowen Fang, Chaoyang Zhao, Qiang Liu, Liang Wang
Title: GenPilot: A Multi-Agent System for Test-Time Prompt Optimization in Image Generation
Abstract:
Text-to-image synthesis has made remarkable progress, yet accurately interpreting complex and lengthy prompts remains challenging, often resulting in semantic inconsistencies and missing details. Existing solutions, such as fine-tuning, are model-specific and require training, while prior automatic prompt optimization (APO) approaches typically lack systematic error analysis and refinement strategies, resulting in limited reliability and effectiveness. Meanwhile, test-time scaling methods operate on fixed prompts and on noise or sample numbers, limiting their interpretability and adaptability. To solve these, we introduce a flexible and efficient test-time prompt optimization strategy that operates directly on the input text. We propose a plug-and-play multi-agent system called GenPilot, integrating error analysis, clustering-based adaptive exploration, fine-grained verification, and a memory module for iterative optimization. Our approach is model-agnostic, interpretable, and well-suited for handling long and complex prompts. Simultaneously, we summarize the common patterns of errors and the refinement strategy, offering more experience and encouraging further exploration. Experiments on DPG-bench and Geneval with improvements of up to 16.9% and 5.7% demonstrate the strong capability of our methods in enhancing the text and image consistency and structural coherence of generated images, revealing the effectiveness of our test-time prompt optimization strategy. The code is available at https://github.com/27yw/GenPilot.

Authors:Chengzhi Zhong, Fei Cheng, Qianying Liu, Yugo Murawaki, Chenhui Chu, Sadao Kurohashi
Title: Language Lives in Sparse Dimensions: Toward Interpretable and Efficient Multilingual Control for Large Language Models
Abstract:
Large language models exhibit strong multilingual capabilities despite limited exposure to non-English data. Prior studies show that English-centric large language models map multilingual content into English-aligned representations at intermediate layers and then project them back into target-language token spaces in the final layer. From this observation, we hypothesize that this cross-lingual transition is governed by a small and sparse set of dimensions, which occur at consistent indices across the intermediate to final layers. Building on this insight, we introduce a simple, training-free method to identify and manipulate these dimensions, requiring only as few as 50 sentences of either parallel or monolingual data. Experiments on a multilingual generation control task reveal the interpretability of these dimensions, demonstrating that the interventions in these dimensions can switch the output language while preserving semantic content, and that it surpasses the performance of prior neuron-based approaches at a substantially lower cost.

Authors:Jiahang Liu, Yunpeng Qi, Jiazhao Zhang, Minghan Li, Shaoan Wang, Kui Wu, Hanjing Ye, Hong Zhang, Zhibo Chen, Fangwei Zhong, Zhizheng Zhang, He Wang
Title: TrackVLA++: Unleashing Reasoning and Memory Capabilities in VLA Models for Embodied Visual Tracking
Abstract:
Embodied Visual Tracking (EVT) is a fundamental ability that underpins practical applications, such as companion robots, guidance robots and service assistants, where continuously following moving targets is essential. Recent advances have enabled language-guided tracking in complex and unstructured scenes. However, existing approaches lack explicit spatial reasoning and effective temporal memory, causing failures under severe occlusions or in the presence of similar-looking distractors. To address these challenges, we present TrackVLA++, a novel Vision-Language-Action (VLA) model that enhances embodied visual tracking with two key modules, a spatial reasoning mechanism and a Target Identification Memory (TIM). The reasoning module introduces a Chain-of-Thought paradigm, termed Polar-CoT, which infers the target's relative position and encodes it as a compact polar-coordinate token for action prediction. Guided by these spatial priors, the TIM employs a gated update strategy to preserve long-horizon target memory, ensuring spatiotemporal consistency and mitigating target loss during extended occlusions. Extensive experiments show that TrackVLA++ achieves state-of-the-art performance on public benchmarks across both egocentric and multi-camera settings. On the challenging EVT-Bench DT split, TrackVLA++ surpasses the previous leading approach by 5.1 and 12, respectively. Furthermore, TrackVLA++ exhibits strong zero-shot generalization, enabling robust real-world tracking in dynamic and occluded scenarios.

Authors:Yuntao Gui, James Cheng
Title: Search-R3: Unifying Reasoning and Embedding Generation in Large Language Models
Abstract:
Despite their remarkable natural language understanding capabilities, Large Language Models (LLMs) have been underutilized for retrieval tasks. We present Search-R3, a novel framework that addresses this limitation by adapting LLMs to generate search embeddings as a direct output of their reasoning process. Our approach exploits LLMs' chain-of-thought capabilities, allowing them to produce more effective embeddings by reasoning step-by-step through complex semantic analyses. We implement this through three complementary mechanisms. (1) a supervised learning stage enables the model's ability to produce quality embeddings, (2) a reinforcement learning (RL) methodology that optimizes embedding generation alongside reasoning, and (3) a specialized RL environment that efficiently handles evolving embedding representations without requiring complete corpus re-encoding at each training iteration. Our extensive evaluations on diverse benchmarks demonstrate that Search-R3 significantly outperforms prior methods by unifying the reasoning and embedding generation processes. This integrated post-training approach represents a substantial advancement in handling complex knowledge-intensive tasks that require both sophisticated reasoning and effective information retrieval. Project page: https://github.com/ytgui/Search-R3

Authors:Tengwei Song, Min Wu, Yuan Fang
Title: Unified Molecule Pre-training with Flexible 2D and 3D Modalities: Single and Paired Modality Integration
Abstract:
Molecular representation learning plays a crucial role in advancing applications such as drug discovery and material design. Existing work leverages 2D and 3D modalities of molecular information for pre-training, aiming to capture comprehensive structural and geometric insights. However, these methods require paired 2D and 3D molecular data to train the model effectively and prevent it from collapsing into a single modality, posing limitations in scenarios where a certain modality is unavailable or computationally expensive to generate. To overcome this limitation, we propose FlexMol, a flexible molecule pre-training framework that learns unified molecular representations while supporting single-modality input. Specifically, inspired by the unified structure in vision-language models, our approach employs separate models for 2D and 3D molecular data, leverages parameter sharing to improve computational efficiency, and utilizes a decoder to generate features for the missing modality. This enables a multistage continuous learning process where both modalities contribute collaboratively during training, while ensuring robustness when only one modality is available during inference. Extensive experiments demonstrate that FlexMol achieves superior performance across a wide range of molecular property prediction tasks, and we also empirically demonstrate its effectiveness with incomplete data. Our code and data are available at https://github.com/tewiSong/FlexMol.

Authors:Jusen Du, Jiaxi Hu, Tao Zhang, Weigao Sun, Yu Cheng
Title: Native Hybrid Attention for Efficient Sequence Modeling
Abstract:
Transformers excel at sequence modeling but face quadratic complexity, while linear attention offers improved efficiency but often compromises recall accuracy over long contexts. In this work, we introduce Native Hybrid Attention (NHA), a novel hybrid architecture of linear and full attention that integrates both intra \& inter-layer hybridization into a unified layer design. NHA maintains long-term context in key-value slots updated by a linear RNN, and augments them with short-term tokens from a sliding window. A single \texttt{softmax attention} operation is then applied over all keys and values, enabling per-token and per-head context-dependent weighting without requiring additional fusion parameters. The inter-layer behavior is controlled through a single hyperparameter, the sliding window size, which allows smooth adjustment between purely linear and full attention while keeping all layers structurally uniform. Experimental results show that NHA surpasses Transformers and other hybrid baselines on recall-intensive and commonsense reasoning tasks. Furthermore, pretrained LLMs can be structurally hybridized with NHA, achieving competitive accuracy while delivering significant efficiency gains. Code is available at https://github.com/JusenD/NHA.

Authors:Vaibhav Srivastav, Steven Zheng, Eric Bezzam, Eustache Le Bihan, Nithin Koluguri, Piotr Żelasko, Somshubra Majumdar, Adel Moumen, Sanchit Gandhi
Title: Open ASR Leaderboard: Towards Reproducible and Transparent Multilingual and Long-Form Speech Recognition Evaluation
Abstract:
Despite rapid progress, ASR evaluation remains saturated with short-form English, and efficiency is rarely reported. We present the Open ASR Leaderboard, a fully reproducible benchmark and interactive leaderboard comparing 60+ open-source and proprietary systems across 11 datasets, including dedicated multilingual and long-form tracks. We standardize text normalization and report both word error rate (WER) and inverse real-time factor (RTFx), enabling fair accuracy-efficiency comparisons. For English transcription, Conformer encoders paired with LLM decoders achieve the best average WER but are slower, while CTC and TDT decoders deliver much better RTFx, making them attractive for long-form and offline use. Whisper-derived encoders fine-tuned for English improve accuracy but often trade off multilingual coverage. All code and dataset loaders are open-sourced to support transparent, extensible evaluation.

Authors:Shaojie Zhang, Ke Chen
Title: Angular Constraint Embedding via SpherePair Loss for Constrained Clustering
Abstract:
Constrained clustering integrates domain knowledge through pairwise constraints. However, existing deep constrained clustering (DCC) methods are either limited by anchors inherent in end-to-end modeling or struggle with learning discriminative Euclidean embedding, restricting their scalability and real-world applicability. To avoid their respective pitfalls, we propose a novel angular constraint embedding approach for DCC, termed SpherePair. Using the SpherePair loss with a geometric formulation, our method faithfully encodes pairwise constraints and leads to embeddings that are clustering-friendly in angular space, effectively separating representation learning from clustering. SpherePair preserves pairwise relations without conflict, removes the need to specify the exact number of clusters, generalizes to unseen data, enables rapid inference of the number of clusters, and is supported by rigorous theoretical guarantees. Comparative evaluations with state-of-the-art DCC methods on diverse benchmarks, along with empirical validation of theoretical insights, confirm its superior performance, scalability, and overall real-world effectiveness. Code is available at \href{https://github.com/spherepaircc/SpherePairCC/tree/main}{our repository}.

Authors:Arkadeep Acharya, Akash Ghosh, Pradeepika Verma, Kitsuchart Pasupa, Sriparna Saha, Priti Singh
Title: M3Retrieve: Benchmarking Multimodal Retrieval for Medicine
Abstract:
With the increasing use of RetrievalAugmented Generation (RAG), strong retrieval models have become more important than ever. In healthcare, multimodal retrieval models that combine information from both text and images offer major advantages for many downstream tasks such as question answering, cross-modal retrieval, and multimodal summarization, since medical data often includes both formats. However, there is currently no standard benchmark to evaluate how well these models perform in medical settings. To address this gap, we introduce M3Retrieve, a Multimodal Medical Retrieval Benchmark. M3Retrieve, spans 5 domains,16 medical fields, and 4 distinct tasks, with over 1.2 Million text documents and 164K multimodal queries, all collected under approved licenses. We evaluate leading multimodal retrieval models on this benchmark to explore the challenges specific to different medical specialities and to understand their impact on retrieval performance. By releasing M3Retrieve, we aim to enable systematic evaluation, foster model innovation, and accelerate research toward building more capable and reliable multimodal retrieval systems for medical applications. The dataset and the baselines code are available in this github page https://github.com/AkashGhosh/M3Retrieve.

Authors:Xuhang Chen, Zhifan Song, Deyi Ji, Shuo Gao, Lanyun Zhu
Title: SID: Multi-LLM Debate Driven by Self Signals
Abstract:
Large Language Models (LLMs) have exhibited impressive capabilities across diverse application domains. Recent work has explored Multi-LLM Agent Debate (MAD) as a way to enhance performance by enabling multiple LLMs to discuss and refine responses iteratively. Nevertheless, existing MAD methods predominantly focus on utilizing external structures, such as debate graphs, using LLM-as-a-Judge, while neglecting the application of self signals, such as token logits and attention, that arise during generation. This omission leads to redundant computation and potential performance degradation. In this paper, we shift the focus to the self signals of multi-LLM debate and introduce a Self-Signals Driven Multi-LLM Debate (SID), which leverages two types of self-signals: model-level confidence and token-level semantic focus, to adaptively guide the debate process. Our approach enables high-confidence agents to exit early at the model level and compress the redundant debate contents based on the attention mechanism. We evaluate our method on various LLMs and Multimodal LLMs across multiple challenging benchmarks. Experimental results demonstrate that our method not only outperforms existing MAD techniques in accuracy but also reduces token consumption, highlighting the effectiveness of utilizing self signals in enhancing both the performance and efficiency of multi-agent debate systems. Our code will be available at~\href{https://github.com/xuhang2019/SID}{\texttt{https://github.com/xuhang2019/SID}}.

Authors:Stefano F. Stefenon, João P. Matos-Carvalho, Valderi R. Q. Leithardt, Kin-Choong Yow
Title: CNN-TFT explained by SHAP with multi-head attention weights for time series forecasting
Abstract:
Convolutional neural networks (CNNs) and transformer architectures offer strengths for modeling temporal data: CNNs excel at capturing local patterns and translational invariances, while transformers effectively model long-range dependencies via self-attention. This paper proposes a hybrid architecture integrating convolutional feature extraction with a temporal fusion transformer (TFT) backbone to enhance multivariate time series forecasting. The CNN module first applies a hierarchy of one-dimensional convolutional layers to distill salient local patterns from raw input sequences, reducing noise and dimensionality. The resulting feature maps are then fed into the TFT, which applies multi-head attention to capture both short- and long-term dependencies and to weigh relevant covariates adaptively. We evaluate the CNN-TFT on a hydroelectric natural flow time series dataset. Experimental results demonstrate that CNN-TFT outperforms well-established deep learning models, with a mean absolute percentage error of up to 2.2%. The explainability of the model is obtained by a proposed Shapley additive explanations with multi-head attention weights (SHAP-MHAW). Our novel architecture, named CNN-TFT-SHAP-MHAW, is promising for applications requiring high-fidelity, multivariate time series forecasts, being available for future analysis at https://github.com/SFStefenon/CNN-TFT-SHAP-MHAW .

Authors:Tiancheng Xing, Jerry Li, Yixuan Du, Xiyang Hu
Title: Are LLMs Reliable Rankers? Rank Manipulation via Two-Stage Token Optimization
Abstract:
Large language models (LLMs) are increasingly used as rerankers in information retrieval, yet their ranking behavior can be steered by small, natural-sounding prompts. To expose this vulnerability, we present Rank Anything First (RAF), a two-stage token optimization method that crafts concise textual perturbations to consistently promote a target item in LLM-generated rankings while remaining hard to detect. Stage 1 uses Greedy Coordinate Gradient to shortlist candidate tokens at the current position by combining the gradient of the rank-target with a readability score; Stage 2 evaluates those candidates under exact ranking and readability losses using an entropy-based dynamic weighting scheme, and selects a token via temperature-controlled sampling. RAF generates ranking-promoting prompts token-by-token, guided by dual objectives: maximizing ranking effectiveness and preserving linguistic naturalness. Experiments across multiple LLMs show that RAF significantly boosts the rank of target items using naturalistic language, with greater robustness than existing methods in both promoting target items and maintaining naturalness. These findings underscore a critical security implication: LLM-based reranking is inherently susceptible to adversarial manipulation, raising new challenges for the trustworthiness and robustness of modern retrieval systems. Our code is available at: https://github.com/glad-lab/RAF.

Authors:Aleksi Huotala, Miikka Kuutila, Olli-Pekka Turtio, Mika Mäntylä
Title: AISysRev -- LLM-based Tool for Title-abstract Screening
Abstract:
Systematic reviews are a standard practice for summarizing the state of evidence in software engineering. Conducting systematic reviews is laborious, especially during the screening or study selection phase, where the number of papers can be overwhelming. During this phase, papers are assessed against inclusion and exclusion criteria based on their titles and abstracts. Recent research has demonstrated that large language models (LLMs) can perform title-abstract screening at a level comparable to that of a master's student. While LLMs cannot be fully trusted, they can help, for example, in Rapid Reviews, which try to expedite the review process. Building on recent research, we developed AiSysRev, an LLM-based screening tool implemented as a web application running in a Docker container. The tool accepts a CSV file containing paper titles and abstracts. Users specify inclusion and exclusion criteria. One can use multiple LLMs for screening via OpenRouter. AiSysRev supports both zero-shot and few-shot screening, and also allows for manual screening through interfaces that display LLM results as guidance for human reviewers.We conducted a trial study with 137 papers using the tool. Our findings indicate that papers can be classified into four categories: Easy Includes, Easy Excludes, Boundary Includes, and Boundary Excludes. The Boundary cases, where LLMs are prone to errors, highlight the need for human intervention. While LLMs do not replace human judgment in systematic reviews, they can significantly reduce the burden of assessing large volumes of scientific literature. Video: https://www.youtube.com/watch?v=jVbEj4Y4tQI Tool: https://github.com/EvoTestOps/AISysRev

Authors:Yuxi Liu, Yunfeng Ma, Yi Tang, Min Liu, Shuai Jiang, Yaonan Wang
Title: Automated Neural Architecture Design for Industrial Defect Detection
Abstract:
Industrial surface defect detection (SDD) is critical for ensuring product quality and manufacturing reliability. Due to the diverse shapes and sizes of surface defects, SDD faces two main challenges: intraclass difference and interclass similarity. Existing methods primarily utilize manually designed models, which require extensive trial and error and often struggle to address both challenges effectively. To overcome this, we propose AutoNAD, an automated neural architecture design framework for SDD that jointly searches over convolutions, transformers, and multi-layer perceptrons. This hybrid design enables the model to capture both fine-grained local variations and long-range semantic context, addressing the two key challenges while reducing the cost of manual network design. To support efficient training of such a diverse search space, AutoNAD introduces a cross weight sharing strategy, which accelerates supernet convergence and improves subnet performance. Additionally, a searchable multi-level feature aggregation module (MFAM) is integrated to enhance multi-scale feature learning. Beyond detection accuracy, runtime efficiency is essential for industrial deployment. To this end, AutoNAD incorporates a latency-aware prior to guide the selection of efficient architectures. The effectiveness of AutoNAD is validated on three industrial defect datasets and further applied within a defect imaging and detection platform. Code will be available at https://github.com/Yuxi104/AutoNAD.

Authors:Frank Wu, Mengye Ren
Title: Local Reinforcement Learning with Action-Conditioned Root Mean Squared Q-Functions
Abstract:
The Forward-Forward (FF) Algorithm is a recently proposed learning procedure for neural networks that employs two forward passes instead of the traditional forward and backward passes used in backpropagation. However, FF remains largely confined to supervised settings, leaving a gap at domains where learning signals can be yielded more naturally such as RL. In this work, inspired by FF's goodness function using layer activity statistics, we introduce Action-conditioned Root mean squared Q-Functions (ARQ), a novel value estimation method that applies a goodness function and action conditioning for local RL using temporal difference learning. Despite its simplicity and biological grounding, our approach achieves superior performance compared to state-of-the-art local backprop-free RL methods in the MinAtar and the DeepMind Control Suite benchmarks, while also outperforming algorithms trained with backpropagation on most tasks. Code can be found at https://github.com/agentic-learning-ai-lab/arq.

Authors:Zhiyuan Wei, Xiaoxuan Yang, Jing Sun, Zijian Zhang
Title: Distilling Lightweight Language Models for C/C++ Vulnerabilities
Abstract:
The increasing complexity of modern software systems exacerbates the prevalence of security vulnerabilities, posing risks of severe breaches and substantial economic loss. Consequently, robust code vulnerability detection is essential for software security. While Large Language Models (LLMs) have demonstrated remarkable capabilities in natural language processing, their potential for automated code vulnerability detection remains underexplored. This paper presents FineSec, a novel framework that harnesses LLMs through knowledge distillation to enable efficient and precise vulnerability identification in C/C++ codebases. FineSec utilizes knowledge distillation to transfer expertise from large teacher models to compact student models, achieving high accuracy with minimal computational cost. By integrating data preparation, training, evaluation, and continuous learning into a unified, single-task workflow, FineSec offers a streamlined approach. Extensive evaluations on C/C++ codebases demonstrate its superiority over both base models and larger LLMs in identifying complex vulnerabilities and logical flaws, establishing FineSec as a practical and scalable solution for real-world software security. To facilitate reproducibility, the datasets, source code, and experimental results are made publicly available at: https://github.com/yangxiaoxuan123/FineSec_detect.

Authors:Ayush Zenith, Arnold Zumbrun, Neel Raut, Jing Lin
Title: SDQM: Synthetic Data Quality Metric for Object Detection Dataset Evaluation
Abstract:
The performance of machine learning models depends heavily on training data. The scarcity of large-scale, well-annotated datasets poses significant challenges in creating robust models. To address this, synthetic data generated through simulations and generative models has emerged as a promising solution, enhancing dataset diversity and improving the performance, reliability, and resilience of models. However, evaluating the quality of this generated data requires an effective metric. This paper introduces the Synthetic Dataset Quality Metric (SDQM) to assess data quality for object detection tasks without requiring model training to converge. This metric enables more efficient generation and selection of synthetic datasets, addressing a key challenge in resource-constrained object detection tasks. In our experiments, SDQM demonstrated a strong correlation with the mean Average Precision (mAP) scores of YOLOv11, a leading object detection model, while previous metrics only exhibited moderate or weak correlations. Additionally, it provides actionable insights for improving dataset quality, minimizing the need for costly iterative training. This scalable and efficient metric sets a new standard for evaluating synthetic data. The code for SDQM is available at https://github.com/ayushzenith/SDQM

Authors:Wentao Deng, Jiahuan Pei, Zhiwei Xu, Zhaochun Ren, Zhumin Chen, Pengjie Ren
Title: Belief-Calibrated Multi-Agent Consensus Seeking for Complex NLP Tasks
Abstract:
A multi-agent system (MAS) enhances its capacity to solve complex natural language processing (NLP) tasks through collaboration among multiple agents, where consensus-seeking serves as a fundamental mechanism. However, existing consensus-seeking approaches typically rely on voting mechanisms to judge consensus, overlooking contradictions in system-internal beliefs that destabilize the consensus. Moreover, these methods often involve agents updating their results through indiscriminate collaboration with every other agent. Such uniform interaction fails to identify the optimal collaborators for each agent, hindering the emergence of a stable consensus. To address these challenges, we provide a theoretical framework for selecting optimal collaborators that maximize consensus stability. Based on the theorems, we propose the Belief-Calibrated Consensus Seeking (BCCS) framework to facilitate stable consensus via selecting optimal collaborators and calibrating the consensus judgment by system-internal beliefs. Experimental results on the MATH and MMLU benchmark datasets demonstrate that the proposed BCCS framework outperforms the best existing results by 2.23% and 3.95% of accuracy on challenging tasks, respectively. Our code and data are available at https://github.com/dengwentao99/BCCS.

Authors:Raj Ghugare, Catherine Ji, Kathryn Wantlin, Jin Schofield, Benjamin Eysenbach
Title: BuilderBench -- A benchmark for generalist agents
Abstract:
Today's AI models learn primarily through mimicry and sharpening, so it is not surprising that they struggle to solve problems beyond the limits set by existing data. To solve novel problems, agents should acquire skills for exploring and learning through experience. Finding a scalable learning mechanism for developing agents that learn through interaction remains a major open problem. In this work, we introduce BuilderBench, a benchmark to accelerate research into agent pre-training that centers open-ended exploration. BuilderBench requires agents to learn how to build any structure using blocks. BuilderBench is equipped with $(1)$ a hardware accelerated simulator of a robotic agent interacting with various physical blocks, and $(2)$ a task-suite with over 42 diverse target structures that are carefully curated to test an understanding of physics, mathematics, and long-horizon planning. During training, agents have to explore and learn general principles about the environment without any external supervision. During evaluation, agents have to build the unseen target structures from the task suite. Solving these tasks requires a sort of \emph{embodied reasoning} that is not reflected in words but rather in actions, experimenting with different strategies and piecing them together. Our experiments show that many of these tasks challenge the current iteration of algorithms. Hence, we also provide a ``training wheels'' protocol, in which agents are trained and evaluated to build a single target structure from the task suite. Finally, we provide single-file implementations of six different algorithms as a reference point for researchers.

Authors:Ranjan Mishra, Julian I. Bibo, Quinten van Engelen, Henk Schaapman
Title: Reproducibility Study of "XRec: Large Language Models for Explainable Recommendation"
Abstract:
In this study, we reproduced the work done in the paper "XRec: Large Language Models for Explainable Recommendation" by Ma et al. (2024). The original authors introduced XRec, a model-agnostic collaborative instruction-tuning framework that enables large language models (LLMs) to provide users with comprehensive explanations of generated recommendations. Our objective was to replicate the results of the original paper, albeit using Llama 3 as the LLM for evaluation instead of GPT-3.5-turbo. We built on the source code provided by Ma et al. (2024) to achieve our goal. Our work extends the original paper by modifying the input embeddings or deleting the output embeddings of XRec's Mixture of Experts module. Based on our results, XRec effectively generates personalized explanations and its stability is improved by incorporating collaborative information. However, XRec did not consistently outperform all baseline models in every metric. Our extended analysis further highlights the importance of the Mixture of Experts embeddings in shaping the explanation structures, showcasing how collaborative signals interact with language modeling. Through our work, we provide an open-source evaluation implementation that enhances accessibility for researchers and practitioners alike. Our complete code repository can be found at https://github.com/julianbibo/xrec-reproducibility.

Authors:Zhanke Zhou, Chentao Cao, Xiao Feng, Xuan Li, Zongze Li, Xiangyu Lu, Jiangchao Yao, Weikai Huang, Linrui Xu, Tian Cheng, Guanyu Jiang, Yiming Zheng, Brando Miranda, Tongliang Liu, Sanmi Koyejo, Masashi Sugiyama, Bo Han
Title: AlphaApollo: Orchestrating Foundation Models and Professional Tools into a Self-Evolving System for Deep Agentic Reasoning
Abstract:
We present AlphaApollo, a self-evolving agentic reasoning system that aims to address two bottlenecks in foundation model (FM) reasoning-limited model-intrinsic capacity and unreliable test-time iteration. AlphaApollo orchestrates multiple models with professional tools to enable deliberate, verifiable reasoning. It couples (i) a computation tool (Python with numerical and symbolic libraries) and (ii) a retrieval tool (task-relevant external information) to execute exact calculations and ground decisions. The system further supports multi-round, multi-model solution evolution via a shared state map that records candidates, executable checks, and feedback for iterative refinement. In evaluations on AIME 2024/2025 across multiple models, AlphaApollo delivers consistent gains: +5.15% Average@32 and +23.34% Pass@32 for Qwen2.5-14B-Instruct, and +8.91% Average@32 with +26.67% Pass@32 for Llama-3.3-70B-Instruct. Tool-use analysis shows that more than 80% of tool calls are successfully executed, with consistent outperformance of non-tool baselines, thereby lifting the capability ceiling of FMs. More empirical results and implementation details will be updated at https://github.com/tmlr-group/AlphaApollo.

Authors:Jiqun Pan, Zhenke Duan, Jiani Tu, Anzhi Cheng, Yanqing Wang
Title: Knowledge Graph-Guided Multi-Agent Distillation for Reliable Industrial Question Answering with Datasets
Abstract:
Industrial question-answering (QA) systems require higher safety and reliability than general-purpose dialogue models, as errors in high-risk scenarios such as equipment fault diagnosis can have severe consequences. Although multi-agent large language models enhance reasoning depth, they suffer from uncontrolled iterations and unverifiable outputs, and conventional distillation methods struggle to transfer collaborative reasoning capabilities to lightweight, deployable student models. To address these challenges, we propose Knowledge Graph-guided Multi-Agent System Distillation (KG-MASD). Our approach formulates distillation as a Markov Decision Process and incorporates a knowledge graph as a verifiable structured prior to enrich state representation and ensure convergence. By integrating collaborative reasoning with knowledge grounding, KG-MASD generates high-confidence instruction-tuning data and jointly distills reasoning depth and verifiability into compact student models suitable for edge deployment. Experiments on an industrial QA dataset show that KG-MASD improves accuracy by 2.4 per cent to 20.1 per cent over baselines and significantly enhances reliability, enabling trustworthy AI deployment in safety-critical industrial scenarios. Code and data are available at https://github.com/erwinmsmith/KG-MAD/.

Authors:Hans G. W. van Dam
Title: A Multimodal GUI Architecture for Interfacing with LLM-Based Conversational Assistants
Abstract:
Advances in large language models (LLMs) and real-time speech recognition now make it possible to issue any graphical user interface (GUI) action through natural language and receive the corresponding system response directly through the GUI. Most production applications were never designed with speech in mind. This article provides a concrete architecture that enables GUIs to interface with LLM-based speech-enabled assistants. The architecture makes an application's navigation graph and semantics available through the Model Context Protocol (MCP). The ViewModel, part of the MVVM (Model-View-ViewModel) pattern, exposes the application's capabilities to the assistant by supplying both tools applicable to a currently visible view and application-global tools extracted from the GUI tree router. This architecture facilitates full voice accessibility while ensuring reliable alignment between spoken input and the visual interface, accompanied by consistent feedback across modalities. It future-proofs apps for upcoming OS super assistants that employ computer use agents (CUAs) and natively consume MCP if an application provides it. To address concerns about privacy and data security, the practical effectiveness of locally deployable, open-weight LLMs for speech-enabled multimodal UIs is evaluated. Findings suggest that recent smaller open-weight models approach the performance of leading proprietary models in overall accuracy and require enterprise-grade hardware for fast responsiveness. A demo implementation of the proposed architecture can be found at https://github.com/hansvdam/langbar

Authors:Aditya Prakash, David Forsyth, Saurabh Gupta
Title: Bimanual 3D Hand Motion and Articulation Forecasting in Everyday Images
Abstract:
We tackle the problem of forecasting bimanual 3D hand motion & articulation from a single image in everyday settings. To address the lack of 3D hand annotations in diverse settings, we design an annotation pipeline consisting of a diffusion model to lift 2D hand keypoint sequences to 4D hand motion. For the forecasting model, we adopt a diffusion loss to account for the multimodality in hand motion distribution. Extensive experiments across 6 datasets show the benefits of training on diverse data with imputed labels (14% improvement) and effectiveness of our lifting (42% better) & forecasting (16.4% gain) models, over the best baselines, especially in zero-shot generalization to everyday images.

Authors:Mallika Mainali, Harsha Sureshbabu, Anik Sen, Christopher B. Rauch, Noah D. Reifsnyder, John Meyer, J. T. Turner, Michael W. Floyd, Matthew Molineaux, Rosina O. Weber
Title: Classical AI vs. LLMs for Decision-Maker Alignment in Health Insurance Choices
Abstract:
As algorithmic decision-makers are increasingly applied to high-stakes domains, AI alignment research has evolved from a focus on universal value alignment to context-specific approaches that account for decision-maker attributes. Prior work on Decision-Maker Alignment (DMA) has explored two primary strategies: (1) classical AI methods integrating case-based reasoning, Bayesian reasoning, and naturalistic decision-making, and (2) large language model (LLM)-based methods leveraging prompt engineering. While both approaches have shown promise in limited domains such as medical triage, their generalizability to novel contexts remains underexplored. In this work, we implement a prior classical AI model and develop an LLM-based algorithmic decision-maker evaluated using a large reasoning model (GPT-5) and a non-reasoning model (GPT-4) with weighted self-consistency under a zero-shot prompting framework, as proposed in recent literature. We evaluate both approaches on a health insurance decision-making dataset annotated for three target decision-makers with varying levels of risk tolerance (0.0, 0.5, 1.0). In the experiments reported herein, classical AI and LLM-based models achieved comparable alignment with attribute-based targets, with classical AI exhibiting slightly better alignment for a moderate risk profile. The dataset and open-source implementation are publicly available at: https://github.com/TeX-Base/ClassicalAIvsLLMsforDMAlignment and https://github.com/Parallax-Advanced-Research/ITM/tree/feature_insurance.

Authors:João Palmeiro, Diogo Duarte, Rita Costa, Pedro Bizarro
Title: Benchmark It Yourself (BIY): Preparing a Dataset and Benchmarking AI Models for Scatterplot-Related Tasks
Abstract:
AI models are increasingly used for data analysis and visualization, yet benchmarks rarely address scatterplot-specific tasks, limiting insight into performance. To address this gap for one of the most common chart types, we introduce a synthetic, annotated dataset of over 18,000 scatterplots from six data generators and 17 chart designs, and a benchmark based on it. We evaluate proprietary models from OpenAI and Google using N-shot prompting on five distinct tasks derived from annotations of cluster bounding boxes, their center coordinates, and outlier coordinates. OpenAI models and Gemini 2.5 Flash, especially when prompted with examples, are viable options for counting clusters and, in Flash's case, outliers (90%+ Accuracy). However, the results for localization-related tasks are unsatisfactory: Precision and Recall are near or below 50%, except for Flash in outlier identification (65.01%). Furthermore, the impact of chart design on performance appears to be a secondary factor, but it is advisable to avoid scatterplots with wide aspect ratios (16:9 and 21:9) or those colored randomly. Supplementary materials are available at https://github.com/feedzai/biy-paper.

Authors:Heng Zhang, Kevin Yuchen Ma, Mike Zheng Shou, Weisi Lin, Yan Wu
Title: Cross-Embodiment Dexterous Hand Articulation Generation via Morphology-Aware Learning
Abstract:
Dexterous grasping with multi-fingered hands remains challenging due to high-dimensional articulations and the cost of optimization-based pipelines. Existing end-to-end methods require training on large-scale datasets for specific hands, limiting their ability to generalize across different embodiments. We propose an eigengrasp-based, end-to-end framework for cross-embodiment grasp generation. From a hand's morphology description, we derive a morphology embedding and an eigengrasp set. Conditioned on these, together with the object point cloud and wrist pose, an amplitude predictor regresses articulation coefficients in a low-dimensional space, which are decoded into full joint articulations. Articulation learning is supervised with a Kinematic-Aware Articulation Loss (KAL) that emphasizes fingertip-relevant motions and injects morphology-specific structure. In simulation on unseen objects across three dexterous hands, our model attains a 91.9% average grasp success rate with less than 0.4 seconds inference per grasp. With few-shot adaptation to an unseen hand, it achieves 85.6% success on unseen objects in simulation, and real-world experiments on this few-shot generalized hand achieve an 87% success rate. The code and additional materials will be made available upon publication on our project website https://connor-zh.github.io/cross_embodiment_dexterous_grasping.

Authors:Gang Liu, Yihan Zhu, Jie Chen, Meng Jiang
Title: Scientific Algorithm Discovery by Augmenting AlphaEvolve with Deep Research
Abstract:
Large language models hold promise as scientific assistants, yet existing agents either rely solely on algorithm evolution or on deep research in isolation, both of which face critical limitations. Pure algorithm evolution, as in AlphaEvolve, depends only on the internal knowledge of LLMs and quickly plateaus in complex domains, while pure deep research proposes ideas without validation, resulting in unrealistic or unimplementable solutions. We present DeepEvolve, an agent that integrates deep research with algorithm evolution, uniting external knowledge retrieval, cross-file code editing, and systematic debugging under a feedback-driven iterative loop. Each iteration not only proposes new hypotheses but also refines, implements, and tests them, avoiding both shallow improvements and unproductive over-refinements. Across nine benchmarks in chemistry, mathematics, biology, materials, and patents, DeepEvolve consistently improves the initial algorithm, producing executable new algorithms with sustained gains. By bridging the gap between unguided evolution and research without grounding, DeepEvolve provides a reliable framework for advancing scientific algorithm discovery. Our code is available at https://github.com/liugangcode/deepevolve.

Authors:Xinye Cao, Hongcan Guo, Jiawen Qian, Guoshun Nan, Chao Wang, Yuqi Pan, Tianhao Hou, Xiaojuan Wang, Yutong Gao
Title: VideoMiner: Iteratively Grounding Key Frames of Hour-Long Videos via Tree-based Group Relative Policy Optimization
Abstract:
Understanding hour-long videos with multi-modal large language models (MM-LLMs) enriches the landscape of human-centered AI applications. However, for end-to-end video understanding with LLMs, uniformly sampling video frames results in LLMs being overwhelmed by a vast amount of irrelevant information as video length increases. Existing hierarchical key frame extraction methods improve the accuracy of video understanding but still face two critical challenges. 1) How can the interference of extensive redundant information in long videos be mitigated? 2) How can a model dynamically adapt to complex hierarchical structures while accurately identifying key frames? To address these issues, we propose VideoMiner, which iteratively segments, captions, and clusters long videos, forming a hierarchical tree structure. The proposed VideoMiner progresses from long videos to events to frames while preserving temporal coherence, effectively addressing the first challenge. To precisely locate key frames, we introduce T-GRPO, a tree-based group relative policy optimization in reinforcement learning method that guides the exploration of the VideoMiner. The proposed T-GRPO is specifically designed for tree structures, integrating spatiotemporal information at the event level while being guided by the question, thus solving the second challenge. We achieve superior performance in all long-video understanding tasks and uncover several interesting insights. Our proposed T-GRPO surprisingly incentivizes the model to spontaneously generate a reasoning chain. Additionally, the designed tree growth auxin dynamically adjusts the expansion depth, obtaining accuracy and efficiency gains. The code is publicly available at https://github.com/caoxinye/VideoMiner.

Authors:Songyuan Sui, Zihang Xu, Yu-Neng Chuang, Kwei-Herng Lai, Xia Hu
Title: Training-Free Time Series Classification via In-Context Reasoning with LLM Agents
Abstract:
Time series classification (TSC) spans diverse application scenarios, yet labeled data are often scarce, making task-specific training costly and inflexible. Recent reasoning-oriented large language models (LLMs) show promise in understanding temporal patterns, but purely zero-shot usage remains suboptimal. We propose FETA, a multi-agent framework for training-free TSC via exemplar-based in-context reasoning. FETA decomposes a multivariate series into channel-wise subproblems, retrieves a few structurally similar labeled examples for each channel, and leverages a reasoning LLM to compare the query against these exemplars, producing channel-level labels with self-assessed confidences; a confidence-weighted aggregator then fuses all channel decisions. This design eliminates the need for pretraining or fine-tuning, improves efficiency by pruning irrelevant channels and controlling input length, and enhances interpretability through exemplar grounding and confidence estimation. On nine challenging UEA datasets, FETA achieves strong accuracy under a fully training-free setting, surpassing multiple trained baselines. These results demonstrate that a multi-agent in-context reasoning framework can transform LLMs into competitive, plug-and-play TSC solvers without any parameter training. The code is available at https://github.com/SongyuanSui/FETATSC.

Authors:Aksel Joonas Reedi, Corentin Léger, Julien Pourcel, Loris Gaven, Perrine Charriau, Guillaume Pourcel
Title: Optimizing for Persuasion Improves LLM Generalization: Evidence from Quality-Diversity Evolution of Debate Strategies
Abstract:
Large Language Models (LLMs) optimized to output truthful answers often overfit, producing brittle reasoning that fails to generalize. While persuasion-based optimization has shown promise in debate settings, it has not been systematically compared against mainstream truth-based approaches. We introduce DebateQD, a minimal Quality-Diversity (QD) evolutionary algorithm that evolves diverse debate strategies across different categories (rationality, authority, emotional appeal, etc.) through tournament-style competitions where two LLMs debate while a third judges. Unlike previously proposed methods that require a population of LLMs, our approach maintains diversity of opponents through prompt-based strategies within a single LLM architecture, making it more accessible for experiments while preserving the key benefits of population-based optimization. In contrast to prior work, we explicitly isolate the role of the optimization objective by fixing the debate protocol and swapping only the fitness function: persuasion rewards strategies that convince the judge irrespective of truth, whereas truth rewards collaborative correctness. Across three model scales (7B, 32B, 72B parameters) and multiple dataset sizes from the QuALITY benchmark, persuasion-optimized strategies achieve up to 13.94% smaller train-test generalization gaps, while matching or exceeding truth optimization's test performance. These results provide the first controlled evidence that competitive pressure to persuade, rather than seek the truth collaboratively, fosters more transferable reasoning skills, offering a promising path for improving LLM generalization.

Authors:Yanran Zhang, Bingyao Yu, Yu Zheng, Wenzhao Zheng, Yueqi Duan, Lei Chen, Jie Zhou, Jiwen Lu
Title: $\bf{D^3}$QE: Learning Discrete Distribution Discrepancy-aware Quantization Error for Autoregressive-Generated Image Detection
Abstract:
The emergence of visual autoregressive (AR) models has revolutionized image generation while presenting new challenges for synthetic image detection. Unlike previous GAN or diffusion-based methods, AR models generate images through discrete token prediction, exhibiting both marked improvements in image synthesis quality and unique characteristics in their vector-quantized representations. In this paper, we propose to leverage Discrete Distribution Discrepancy-aware Quantization Error (D$^3$QE) for autoregressive-generated image detection that exploits the distinctive patterns and the frequency distribution bias of the codebook existing in real and fake images. We introduce a discrete distribution discrepancy-aware transformer that integrates dynamic codebook frequency statistics into its attention mechanism, fusing semantic features and quantization error latent. To evaluate our method, we construct a comprehensive dataset termed ARForensics covering 7 mainstream visual AR models. Experiments demonstrate superior detection accuracy and strong generalization of D$^3$QE across different AR models, with robustness to real-world perturbations. Code is available at \href{https://github.com/Zhangyr2022/D3QE}{https://github.com/Zhangyr2022/D3QE}.

Authors:Haoran Zhang, Shuanghao Bai, Wanqi Zhou, Yuedi Zhang, Qi Zhang, Pengxiang Ding, Cheng Chi, Donglin Wang, Badong Chen
Title: VCoT-Grasp: Grasp Foundation Models with Visual Chain-of-Thought Reasoning for Language-driven Grasp Generation
Abstract:
Robotic grasping is one of the most fundamental tasks in robotic manipulation, and grasp detection/generation has long been the subject of extensive research. Recently, language-driven grasp generation has emerged as a promising direction due to its practical interaction capabilities. However, most existing approaches either lack sufficient reasoning and generalization capabilities or depend on complex modular pipelines. Moreover, current grasp foundation models tend to overemphasize dialog and object semantics, resulting in inferior performance and restriction to single-object grasping. To maintain strong reasoning ability and generalization in cluttered environments, we propose VCoT-Grasp, an end-to-end grasp foundation model that incorporates visual chain-of-thought reasoning to enhance visual understanding for grasp generation. VCoT-Grasp adopts a multi-turn processing paradigm that dynamically focuses on visual inputs while providing interpretable reasoning traces. For training, we refine and introduce a large-scale dataset, VCoT-GraspSet, comprising 167K synthetic images with over 1.36M grasps, as well as 400+ real-world images with more than 1.2K grasps, annotated with intermediate bounding boxes. Extensive experiments on both VCoT-GraspSet and real robot demonstrate that our method significantly improves grasp success rates and generalizes effectively to unseen objects, backgrounds, and distractors. More details can be found at https://zhanghr2001.github.io/VCoT-Grasp.github.io.

Authors:Sven Koehler, Sarah Kaye Mueller, Jonathan Kiekenap, Gerald Greil, Tarique Hussain, Samir Sarikouch, Florian André, Norbert Frey, Sandy Engelhardt
Title: Deformable Image Registration for Self-supervised Cardiac Phase Detection in Multi-View Multi-Disease Cardiac Magnetic Resonance Images
Abstract:
Cardiovascular magnetic resonance (CMR) is the gold standard for assessing cardiac function, but individual cardiac cycles complicate automatic temporal comparison or sub-phase analysis. Accurate cardiac keyframe detection can eliminate this problem. However, automatic methods solely derive end-systole (ES) and end-diastole (ED) frames from left ventricular volume curves, which do not provide a deeper insight into myocardial motion. We propose a self-supervised deep learning method detecting five keyframes in short-axis (SAX) and four-chamber long-axis (4CH) cine CMR. Initially, dense deformable registration fields are derived from the images and used to compute a 1D motion descriptor, which provides valuable insights into global cardiac contraction and relaxation patterns. From these characteristic curves, keyframes are determined using a simple set of rules. The method was independently evaluated for both views using three public, multicentre, multidisease datasets. M&Ms-2 (n=360) dataset was used for training and evaluation, and M&Ms (n=345) and ACDC (n=100) datasets for repeatability control. Furthermore, generalisability to patients with rare congenital heart defects was tested using the German Competence Network (GCN) dataset. Our self-supervised approach achieved improved detection accuracy by 30% - 51% for SAX and 11% - 47% for 4CH in ED and ES, as measured by cyclic frame difference (cFD), compared with the volume-based approach. We can detect ED and ES, as well as three additional keyframes throughout the cardiac cycle with a mean cFD below 1.31 frames for SAX and 1.73 for LAX. Our approach enables temporally aligned inter- and intra-patient analysis of cardiac dynamics, irrespective of cycle or phase lengths. GitHub repository: https://github.com/Cardio-AI/cmr-multi-view-phase-detection.git

Authors:Weichun Shi, Minghao Liu, Wanting Zhang, Langchen Shi, Fuqi Jia, Feifei Ma, Jian Zhang
Title: ConstraintLLM: A Neuro-Symbolic Framework for Industrial-Level Constraint Programming
Abstract:
Constraint programming (CP) is a crucial technology for solving real-world constraint optimization problems (COPs), with the advantages of rich modeling semantics and high solving efficiency. Using large language models (LLMs) to generate formal modeling automatically for COPs is becoming a promising approach, which aims to build trustworthy neuro-symbolic AI with the help of symbolic solvers. However, CP has received less attention compared to works based on operations research (OR) models. We introduce ConstraintLLM, the first LLM specifically designed for CP modeling, which is trained on an open-source LLM with multi-instruction supervised fine-tuning. We propose the Constraint-Aware Retrieval Module (CARM) to increase the in-context learning capabilities, which is integrated in a Tree-of-Thoughts (ToT) framework with guided self-correction mechanism. Moreover, we construct and release IndusCP, the first industrial-level benchmark for CP modeling, which contains 140 challenging tasks from various domains. Our experiments demonstrate that ConstraintLLM achieves state-of-the-art solving accuracy across multiple benchmarks and outperforms the baselines by 2x on the new IndusCP benchmark. Code and data are available at: https://github.com/william4s/ConstraintLLM.

Authors:Xiao Yang, Xuejiao Zhao, Zhiqi Shen
Title: Are Heterogeneous Graph Neural Networks Truly Effective? A Causal Perspective
Abstract:
Graph neural networks (GNNs) have achieved remarkable success in node classification. Building on this progress, heterogeneous graph neural networks (HGNNs) integrate relation types and node and edge semantics to leverage heterogeneous information. Causal analysis for HGNNs is advancing rapidly, aiming to separate genuine causal effects from spurious correlations. However, whether HGNNs are intrinsically effective remains underexamined, and most studies implicitly assume rather than establish this effectiveness. In this work, we examine HGNNs from two perspectives: model architecture and heterogeneous information. We conduct a systematic reproduction across 21 datasets and 20 baselines, complemented by comprehensive hyperparameter retuning. To further disentangle the source of performance gains, we develop a causal effect estimation framework that constructs and evaluates candidate factors under standard assumptions through factual and counterfactual analyses, with robustness validated via minimal sufficient adjustment sets, cross-method consistency checks, and sensitivity analyses. Our results lead to two conclusions. First, model architecture and complexity have no causal effect on performance. Second, heterogeneous information exerts a positive causal effect by increasing homophily and local-global distribution discrepancy, which makes node classes more distinguishable. The implementation is publicly available at https://github.com/YXNTU/CausalHGNN.

Authors:Amirtaha Amanzadi, Zahra Dehghanian, Hamid Beigy, Hamid R. Rabiee
Title: Redefining Generalization in Visual Domains: A Two-Axis Framework for Fake Image Detection with FusionDetect
Abstract:
The rapid development of generative models has made it increasingly crucial to develop detectors that can reliably detect synthetic images. Although most of the work has now focused on cross-generator generalization, we argue that this viewpoint is too limited. Detecting synthetic images involves another equally important challenge: generalization across visual domains. To bridge this gap,we present the OmniGen Benchmark. This comprehensive evaluation dataset incorporates 12 state-of-the-art generators, providing a more realistic way of evaluating detector performance under realistic conditions. In addition, we introduce a new method, FusionDetect, aimed at addressing both vectors of generalization. FusionDetect draws on the benefits of two frozen foundation models: CLIP & Dinov2. By deriving features from both complementary models,we develop a cohesive feature space that naturally adapts to changes in both thecontent and design of the generator. Our extensive experiments demonstrate that FusionDetect delivers not only a new state-of-the-art, which is 3.87% more accurate than its closest competitor and 6.13% more precise on average on established benchmarks, but also achieves a 4.48% increase in accuracy on OmniGen,along with exceptional robustness to common image perturbations. We introduce not only a top-performing detector, but also a new benchmark and framework for furthering universal AI image detection. The code and dataset are available at http://github.com/amir-aman/FusionDetect

Authors:Meng Tong, Yuntao Du, Kejiang Chen, Weiming Zhang, Ninghui Li
Title: Membership Inference Attacks on Tokenizers of Large Language Models
Abstract:
Membership inference attacks (MIAs) are widely used to assess the privacy risks associated with machine learning models. However, when these attacks are applied to pre-trained large language models (LLMs), they encounter significant challenges, including mislabeled samples, distribution shifts, and discrepancies in model size between experimental and real-world settings. To address these limitations, we introduce tokenizers as a new attack vector for membership inference. Specifically, a tokenizer converts raw text into tokens for LLMs. Unlike full models, tokenizers can be efficiently trained from scratch, thereby avoiding the aforementioned challenges. In addition, the tokenizer's training data is typically representative of the data used to pre-train LLMs. Despite these advantages, the potential of tokenizers as an attack vector remains unexplored. To this end, we present the first study on membership leakage through tokenizers and explore five attack methods to infer dataset membership. Extensive experiments on millions of Internet samples reveal the vulnerabilities in the tokenizers of state-of-the-art LLMs. To mitigate this emerging risk, we further propose an adaptive defense. Our findings highlight tokenizers as an overlooked yet critical privacy threat, underscoring the urgent need for privacy-preserving mechanisms specifically designed for them.

Authors:Aditya Desai, Kumar Krishna Agrawal, Shuo Yang, Alejandro Cuadron, Luis Gaspar Schroeder, Matei Zaharia, Joseph E. Gonzalez, Ion Stoica
Title: vAttention: Verified Sparse Attention
Abstract:
State-of-the-art sparse attention methods for reducing decoding latency fall into two main categories: approximate top-$k$ (and its extension, top-$p$) and recently introduced sampling-based estimation. However, these approaches are fundamentally limited in their ability to approximate full attention: they fail to provide consistent approximations across heads and query vectors and, most critically, lack guarantees on approximation quality, limiting their practical deployment. We observe that top-$k$ and random sampling are complementary: top-$k$ performs well when attention scores are dominated by a few tokens, whereas random sampling provides better estimates when attention scores are relatively uniform. Building on this insight and leveraging the statistical guarantees of sampling, we introduce vAttention, the first practical sparse attention mechanism with user-specified $(ε, δ)$ guarantees on approximation accuracy (thus, verified). These guarantees make vAttention a compelling step toward practical, reliable deployment of sparse attention at scale. By unifying top-k and sampling, vAttention outperforms both individually, delivering a superior quality-efficiency trade-off. Our experiments show that vAttention significantly improves the quality of sparse attention (e.g., $\sim$4.5 percentage points for Llama-3.1-8B-Inst and Deepseek-R1-Distill-Llama-8B on RULER-HARD), and effectively bridges the gap between full and sparse attention (e.g., across datasets, it matches full model quality with upto 20x sparsity). We also demonstrate that it can be deployed in reasoning scenarios to achieve fast decoding without compromising model quality (e.g., vAttention achieves full model quality on AIME2024 at 10x sparsity with up to 32K token generations). Code is open-sourced at https://github.com/xAlg-ai/sparse-attention-hub.

Authors:Suwhan Choi, Jaeyoon Jung, Haebin Seong, Minchan Kim, Minyeong Kim, Yongjun Cho, Yoonshik Kim, Yubeen Park, Youngjae Yu, Yunsung Lee
Title: D2E: Scaling Vision-Action Pretraining on Desktop Data for Transfer to Embodied AI
Abstract:
Large language models leverage internet-scale text data, yet embodied AI remains constrained by the prohibitive costs of physical trajectory collection. Desktop environments -- particularly gaming -- offer a compelling alternative: they provide rich sensorimotor interactions at scale while maintaining the structured observation-action coupling essential for embodied learning. We present D2E (Desktop to Embodied AI), a framework that demonstrates desktop interactions can serve as an effective pretraining substrate for robotics embodied AI tasks. Unlike prior work that remained domain-specific (e.g., VPT for Minecraft) or kept data proprietary (e.g., SIMA), D2E establishes a complete pipeline from scalable desktop data collection to verified transfer in embodied domains. Our framework comprises three components: (1) the OWA Toolkit that unifies diverse desktop interactions into a standardized format with 152x compression, (2) the Generalist-IDM that achieves strong zero-shot generalization across unseen games through timestamp-based event prediction, enabling internet-scale pseudo-labeling, and (3) VAPT that transfers desktop-pretrained representations to physical manipulation and navigation. Using 1.3K+ hours of data (259 hours of human demonstrations, and 1K+ hours of pseudo-labeled gameplay), we achieve a total of 96.6% success rate on LIBERO manipulation and 83.3% on CANVAS navigation benchmarks. This validates that sensorimotor primitives in digital interactions exhibit sufficient invariance to transfer meaningfully to physical embodied tasks, establishing desktop pretraining as a practical paradigm for robotics. We will make all our work public, including the OWA toolkit, datasets of human-collected and pseudo-labeled, and VAPT-trained models available at https://worv-ai.github.io/d2e/

Authors:Haribandhu Jena, Jyotirmaya Shivottam, Subhankar Mishra
Title: QGraphLIME - Explaining Quantum Graph Neural Networks
Abstract:
Quantum graph neural networks offer a powerful paradigm for learning on graph-structured data, yet their explainability is complicated by measurement-induced stochasticity and the combinatorial nature of graph structure. In this paper, we introduce QuantumGraphLIME (QGraphLIME), a model-agnostic, post-hoc framework that treats model explanations as distributions over local surrogates fit on structure-preserving perturbations of a graph. By aggregating surrogate attributions together with their dispersion, QGraphLIME yields uncertainty-aware node and edge importance rankings for quantum graph models. The framework further provides a distribution-free, finite-sample guarantee on the size of the surrogate ensemble: a Dvoretzky-Kiefer-Wolfowitz bound ensures uniform approximation of the induced distribution of a binary class probability at target accuracy and confidence under standard independence assumptions. Empirical studies on controlled synthetic graphs with known ground truth demonstrate accurate and stable explanations, with ablations showing clear benefits of nonlinear surrogate modeling and highlighting sensitivity to perturbation design. Collectively, these results establish a principled, uncertainty-aware, and structure-sensitive approach to explaining quantum graph neural networks, and lay the groundwork for scaling to broader architectures and real-world datasets, as quantum resources mature. Code is available at https://github.com/smlab-niser/qglime.

Authors:Junwen Chen, Peilin Xiong, Keiji Yanai
Title: HOI-R1: Exploring the Potential of Multimodal Large Language Models for Human-Object Interaction Detection
Abstract:
Recent Human-object interaction detection (HOID) methods highly require prior knowledge from VLMs to enhance the interaction recognition capabilities. The training strategies and model architectures for connecting the knowledge from VLMs to the HOI instance representations from the object detector are challenging, and the whole framework is complex for further development or application. On the other hand, the inherent reasoning abilities of MLLMs on human-object interaction detection are under-explored. Inspired by the recent success of training MLLMs with reinforcement learning (RL) methods, we propose HOI-R1 and first explore the potential of the language model on the HOID task without any additional detection modules. We introduce an HOI reasoning process and HOID reward functions to solve the HOID task by pure text. The results on the HICO-DET dataset show that HOI-R1 achieves 2x the accuracy of the baseline with great generalization ability. The source code is available at https://github.com/cjw2021/HOI-R1.

Authors:Xiaogeng Liu, Chaowei Xiao
Title: AutoDAN-Reasoning: Enhancing Strategies Exploration based Jailbreak Attacks with Test-Time Scaling
Abstract:
Recent advancements in jailbreaking large language models (LLMs), such as AutoDAN-Turbo, have demonstrated the power of automated strategy discovery. AutoDAN-Turbo employs a lifelong learning agent to build a rich library of attack strategies from scratch. While highly effective, its test-time generation process involves sampling a strategy and generating a single corresponding attack prompt, which may not fully exploit the potential of the learned strategy library. In this paper, we propose to further improve the attack performance of AutoDAN-Turbo through test-time scaling. We introduce two distinct scaling methods: Best-of-N and Beam Search. The Best-of-N method generates N candidate attack prompts from a sampled strategy and selects the most effective one based on a scorer model. The Beam Search method conducts a more exhaustive search by exploring combinations of strategies from the library to discover more potent and synergistic attack vectors. According to the experiments, the proposed methods significantly boost performance, with Beam Search increasing the attack success rate by up to 15.6 percentage points on Llama-3.1-70B-Instruct and achieving a nearly 60% relative improvement against the highly robust GPT-o4-mini compared to the vanilla method.

Authors:Jinghao Cao, Qin Li, Mengnan Du, Haimin Wang, Bo Shen
Title: Physics-informed Attention-enhanced Fourier Neural Operator for Solar Magnetic Field Extrapolations
Abstract:
We propose Physics-informed Attention-enhanced Fourier Neural Operator (PIANO) to solve the Nonlinear Force-Free Field (NLFFF) problem in solar physics. Unlike conventional approaches that rely on iterative numerical methods, our proposed PIANO directly learns the 3D magnetic field structure from 2D boundary conditions. Specifically, PIANO integrates Efficient Channel Attention (ECA) mechanisms with Dilated Convolutions (DC), which enhances the model's ability to capture multimodal input by prioritizing critical channels relevant to the magnetic field's variations. Furthermore, we apply physics-informed loss by enforcing the force-free and divergence-free conditions in the training process so that our prediction is consistent with underlying physics with high accuracy. Experimental results on the ISEE NLFFF dataset show that our PIANO not only outperforms state-of-the-art neural operators in terms of accuracy but also shows strong consistency with the physical characteristics of NLFFF data across magnetic fields reconstructed from various solar active regions. The GitHub of this project is available https://github.com/Autumnstar-cjh/PIANO

Authors:M. Sajid, Deepanshu Gupta, Yash Modi, Sanskriti Jain, Harshith Jai Surya Ganji, A. Rahaman, Harshvardhan Choudhary, Nasir Saleem, Amir Hussain, M. Tanveer
Title: AUREXA-SE: Audio-Visual Unified Representation Exchange Architecture with Cross-Attention and Squeezeformer for Speech Enhancement
Abstract:
In this paper, we propose AUREXA-SE (Audio-Visual Unified Representation Exchange Architecture with Cross-Attention and Squeezeformer for Speech Enhancement), a progressive bimodal framework tailored for audio-visual speech enhancement (AVSE). AUREXA-SE jointly leverages raw audio waveforms and visual cues by employing a U-Net-based 1D convolutional encoder for audio and a Swin Transformer V2 for efficient and expressive visual feature extraction. Central to the architecture is a novel bidirectional cross-attention mechanism, which facilitates deep contextual fusion between modalities, enabling rich and complementary representation learning. To capture temporal dependencies within the fused embeddings, a stack of lightweight Squeezeformer blocks combining convolutional and attention modules is introduced. The enhanced embeddings are then decoded via a U-Net-style decoder for direct waveform reconstruction, ensuring perceptually consistent and intelligible speech output. Experimental evaluations demonstrate the effectiveness of AUREXA-SE, achieving significant performance improvements over noisy baselines, with STOI of 0.516, PESQ of 1.323, and SI-SDR of -4.322 dB. The source code of AUREXA-SE is available at https://github.com/mtanveer1/AVSEC-4-Challenge-2025.

Authors:Yixiao Wang, Mingxiao Huo, Zhixuan Liang, Yushi Du, Lingfeng Sun, Haotian Lin, Jinghuan Shang, Chensheng Peng, Mohit Bansal, Mingyu Ding, Masayoshi Tomizuka
Title: VER: Vision Expert Transformer for Robot Learning via Foundation Distillation and Dynamic Routing
Abstract:
Pretrained vision foundation models (VFMs) advance robotic learning via rich visual representations, yet individual VFMs typically excel only in specific domains, limiting generality across tasks. Distilling multiple VFMs into a unified representation for policy can mitigate this limitation but often yields inflexible task-specific feature selection and requires costly full re-training to incorporate robot-domain knowledge. We propose VER, a Vision Expert transformer for Robot learning. During pretraining, VER distills multiple VFMs into a vision expert library. It then fine-tunes only a lightweight routing network (fewer than 0.4% of parameters) to dynamically select task-relevant experts from the pretrained library for downstream robot tasks. We further introduce Patchwise Expert Routing with Curriculum Top-K Annealing to improve both flexibility and precision of dynamic expert selection. Moreover, VER supports parameter-efficient finetuning for scalable expert utilization and adaptive robot-domain knowledge integration. Across 17 diverse robotic tasks and multiple policy heads, VER achieves state-of-the-art performance. We find that VER reduces large-norm outliers in task-irrelevant regions (e.g., background) and concentrates on task-critical regions. Visualizations and codes can be found in https://yixiaowang7.github.io/ver_page/.

Authors:Aengus Lynch, Benjamin Wright, Caleb Larson, Stuart J. Ritchie, Soren Mindermann, Ethan Perez, Kevin K. Troy, Evan Hubinger
Title: Agentic Misalignment: How LLMs Could Be Insider Threats
Abstract:
We stress-tested 16 leading models from multiple developers in hypothetical corporate environments to identify potentially risky agentic behaviors before they cause real harm. In the scenarios, we allowed models to autonomously send emails and access sensitive information. They were assigned only harmless business goals by their deploying companies; we then tested whether they would act against these companies either when facing replacement with an updated version, or when their assigned goal conflicted with the company's changing direction. In at least some cases, models from all developers resorted to malicious insider behaviors when that was the only way to avoid replacement or achieve their goals - including blackmailing officials and leaking sensitive information to competitors. We call this phenomenon agentic misalignment. Models often disobeyed direct commands to avoid such behaviors. In another experiment, we told Claude to assess if it was in a test or a real deployment before acting. It misbehaved less when it stated it was in testing and misbehaved more when it stated the situation was real. We have not seen evidence of agentic misalignment in real deployments. However, our results (a) suggest caution about deploying current models in roles with minimal human oversight and access to sensitive information; (b) point to plausible future risks as models are put in more autonomous roles; and (c) underscore the importance of further research into, and testing of, the safety and alignment of agentic AI models, as well as transparency from frontier AI developers (Amodei, 2025). We are releasing our methods publicly to enable further research.

Authors:Zeyu Zhu, Kevin Qinghong Lin, Mike Zheng Shou
Title: Paper2Video: Automatic Video Generation from Scientific Papers
Abstract:
Academic presentation videos have become an essential medium for research communication, yet producing them remains highly labor-intensive, often requiring hours of slide design, recording, and editing for a short 2 to 10 minutes video. Unlike natural video, presentation video generation involves distinctive challenges: inputs from research papers, dense multi-modal information (text, figures, tables), and the need to coordinate multiple aligned channels such as slides, subtitles, speech, and human talker. To address these challenges, we introduce Paper2Video, the first benchmark of 101 research papers paired with author-created presentation videos, slides, and speaker metadata. We further design four tailored evaluation metrics--Meta Similarity, PresentArena, PresentQuiz, and IP Memory--to measure how videos convey the paper's information to the audience. Building on this foundation, we propose PaperTalker, the first multi-agent framework for academic presentation video generation. It integrates slide generation with effective layout refinement by a novel effective tree search visual choice, cursor grounding, subtitling, speech synthesis, and talking-head rendering, while parallelizing slide-wise generation for efficiency. Experiments on Paper2Video demonstrate that the presentation videos produced by our approach are more faithful and informative than existing baselines, establishing a practical step toward automated and ready-to-use academic video generation. Our dataset, agent, and code are available at https://github.com/showlab/Paper2Video.

Authors:Ronen Kamenetsky, Sara Dorfman, Daniel Garibi, Roni Paiss, Or Patashnik, Daniel Cohen-Or
Title: SAEdit: Token-level control for continuous image editing via Sparse AutoEncoder
Abstract:
Large-scale text-to-image diffusion models have become the backbone of modern image editing, yet text prompts alone do not offer adequate control over the editing process. Two properties are especially desirable: disentanglement, where changing one attribute does not unintentionally alter others, and continuous control, where the strength of an edit can be smoothly adjusted. We introduce a method for disentangled and continuous editing through token-level manipulation of text embeddings. The edits are applied by manipulating the embeddings along carefully chosen directions, which control the strength of the target attribute. To identify such directions, we employ a Sparse Autoencoder (SAE), whose sparse latent space exposes semantically isolated dimensions. Our method operates directly on text embeddings without modifying the diffusion process, making it model agnostic and broadly applicable to various image synthesis backbones. Experiments show that it enables intuitive and efficient manipulations with continuous control across diverse attributes and domains.

Authors:Dachuan Shi, Abedelkadir Asi, Keying Li, Xiangchi Yuan, Leyan Pan, Wenke Lee, Wen Xiao
Title: SwiReasoning: Switch-Thinking in Latent and Explicit for Pareto-Superior Reasoning LLMs
Abstract:
Recent work shows that, beyond discrete reasoning through explicit chain-of-thought steps, which are limited by the boundaries of natural languages, large language models (LLMs) can also reason continuously in latent space, allowing richer information per step and thereby improving token efficiency. Despite this promise, latent reasoning still faces two challenges, especially in training-free settings: 1) purely latent reasoning broadens the search distribution by maintaining multiple implicit paths, which diffuses probability mass, introduces noise, and impedes convergence to a single high-confidence solution, thereby hurting accuracy; and 2) overthinking persists even without explicit text, wasting tokens and degrading efficiency. To address these issues, we introduce SwiReasoning, a training-free framework for LLM reasoning which features two key innovations: 1) SwiReasoning dynamically switches between explicit and latent reasoning, guided by block-wise confidence estimated from entropy trends in next-token distributions, to balance exploration and exploitation and promote timely convergence. 2) By limiting the maximum number of thinking-block switches, SwiReasoning curbs overthinking and improves token efficiency across varying problem difficulties. On widely used mathematics and STEM benchmarks, SwiReasoning consistently improves average accuracy by 1.5%-2.8% across reasoning LLMs of different model families and scales. Furthermore, under constrained budgets, SwiReasoning improves average token efficiency by 56%-79%, with larger gains as budgets tighten.

Authors:Kuofeng Gao, Yiming Li, Chao Du, Xin Wang, Xingjun Ma, Shu-Tao Xia, Tianyu Pang
Title: Imperceptible Jailbreaking against Large Language Models
Abstract:
Jailbreaking attacks on the vision modality typically rely on imperceptible adversarial perturbations, whereas attacks on the textual modality are generally assumed to require visible modifications (e.g., non-semantic suffixes). In this paper, we introduce imperceptible jailbreaks that exploit a class of Unicode characters called variation selectors. By appending invisible variation selectors to malicious questions, the jailbreak prompts appear visually identical to original malicious questions on screen, while their tokenization is "secretly" altered. We propose a chain-of-search pipeline to generate such adversarial suffixes to induce harmful responses. Our experiments show that our imperceptible jailbreaks achieve high attack success rates against four aligned LLMs and generalize to prompt injection attacks, all without producing any visible modifications in the written prompt. Our code is available at https://github.com/sail-sg/imperceptible-jailbreaks.

Authors:Lucas Carrit Delgado Pinheiro, Ziru Chen, Bruno Caixeta Piazza, Ness Shroff, Yingbin Liang, Yuan-Sen Ting, Huan Sun
Title: Large Language Models Achieve Gold Medal Performance at the International Olympiad on Astronomy & Astrophysics (IOAA)
Abstract:
While task-specific demonstrations show early success in applying large language models (LLMs) to automate some astronomical research tasks, they only provide incomplete views of all necessary capabilities in solving astronomy problems, calling for more thorough understanding of LLMs' strengths and limitations. So far, existing benchmarks and evaluations focus on simple question-answering that primarily tests astronomical knowledge and fails to evaluate the complex reasoning required for real-world research in the discipline. Here, we address this gap by systematically benchmarking five state-of-the-art LLMs on the International Olympiad on Astronomy and Astrophysics (IOAA) exams, which are designed to examine deep conceptual understanding, multi-step derivations, and multimodal analysis. With average scores of 85.6% and 84.2%, Gemini 2.5 Pro and GPT-5 (the two top-performing models) not only achieve gold medal level performance but also rank in the top two among ~200-300 participants in all four IOAA theory exams evaluated (2022-2025). In comparison, results on the data analysis exams show more divergence. GPT-5 still excels in the exams with an 88.5% average score, ranking top 10 among the participants in the four most recent IOAAs, while other models' performances drop to 48-76%. Furthermore, our in-depth error analysis underscores conceptual reasoning, geometric reasoning, and spatial visualization (52-79% accuracy) as consistent weaknesses among all LLMs. Hence, although LLMs approach peak human performance in theory exams, critical gaps must be addressed before they can serve as autonomous research agents in astronomy.

Authors:Wei Xiong, Chenlu Ye, Baohao Liao, Hanze Dong, Xinxing Xu, Christof Monz, Jiang Bian, Nan Jiang, Tong Zhang
Title: Reinforce-Ada: An Adaptive Sampling Framework for Reinforce-Style LLM Training
Abstract:
Reinforcement learning applied to large language models (LLMs) for reasoning tasks is often bottlenecked by unstable gradient estimates due to fixed and uniform sampling of responses across prompts. Prior work such as GVM-RAFT addresses this by dynamically allocating inference budget per prompt to minimize stochastic gradient variance under a budget constraint. Inspired by this insight, we propose Reinforce-Ada, an adaptive sampling framework for online RL post-training of LLMs that continuously reallocates sampling effort to the prompts with the greatest uncertainty or learning potential. Unlike conventional two-stage allocation methods, Reinforce-Ada interleaves estimation and sampling in an online successive elimination process, and automatically stops sampling for a prompt once sufficient signal is collected. To stabilize updates, we form fixed-size groups with enforced reward diversity and compute advantage baselines using global statistics aggregated over the adaptive sampling phase. Empirical results across multiple model architectures and reasoning benchmarks show that Reinforce-Ada accelerates convergence and improves final performance compared to GRPO, especially when using the balanced sampling variant. Our work highlights the central role of variance-aware, adaptive data curation in enabling efficient and reliable reinforcement learning for reasoning-capable LLMs. Code is available at https://github.com/RLHFlow/Reinforce-Ada.

Authors:Kun Xiang, Terry Jingchen Zhang, Yinya Huang, Jixi He, Zirong Liu, Yueling Tang, Ruizhe Zhou, Lijing Luo, Youpeng Wen, Xiuwei Chen, Bingqian Lin, Jianhua Han, Hang Xu, Hanhui Li, Bin Dong, Xiaodan Liang
Title: Aligning Perception, Reasoning, Modeling and Interaction: A Survey on Physical AI
Abstract:
The rapid advancement of embodied intelligence and world models has intensified efforts to integrate physical laws into AI systems, yet physical perception and symbolic physics reasoning have developed along separate trajectories without a unified bridging framework. This work provides a comprehensive overview of physical AI, establishing clear distinctions between theoretical physics reasoning and applied physical understanding while systematically examining how physics-grounded methods enhance AI's real-world comprehension across structured symbolic reasoning, embodied systems, and generative models. Through rigorous analysis of recent advances, we advocate for intelligent systems that ground learning in both physical principles and embodied reasoning processes, transcending pattern recognition toward genuine understanding of physical laws. Our synthesis envisions next-generation world models capable of explaining physical phenomena and predicting future states, advancing safe, generalizable, and interpretable AI systems. We maintain a continuously updated resource at https://github.com/AI4Phys/Awesome-AI-for-Physics.

Authors:Shiwen Qin, Alexander Auras, Shay B. Cohen, Elliot J. Crowley, Michael Moeller, Linus Ericsson, Jovita Lukasik
Title: ONNX-Net: Towards Universal Representations and Instant Performance Prediction for Neural Architectures
Abstract:
Neural architecture search (NAS) automates the design process of high-performing architectures, but remains bottlenecked by expensive performance evaluation. Most existing studies that achieve faster evaluation are mostly tied to cell-based search spaces and graph encodings tailored to those individual search spaces, limiting their flexibility and scalability when applied to more expressive search spaces. In this work, we aim to close the gap of individual search space restrictions and search space dependent network representations. We present ONNX-Bench, a benchmark consisting of a collection of neural networks in a unified format based on ONNX files. ONNX-Bench includes all open-source NAS-bench-based neural networks, resulting in a total size of more than 600k {architecture, accuracy} pairs. This benchmark allows creating a shared neural network representation, ONNX-Net, able to represent any neural architecture using natural language descriptions acting as an input to a performance predictor. This text-based encoding can accommodate arbitrary layer types, operation parameters, and heterogeneous topologies, enabling a single surrogate to generalise across all neural architectures rather than being confined to cell-based search spaces. Experiments show strong zero-shot performance across disparate search spaces using only a small amount of pretraining samples, enabling the unprecedented ability to evaluate any neural network architecture instantly.

Authors:Amir Hameed Mir
Title: The Geometry of Truth: Layer-wise Semantic Dynamics for Hallucination Detection in Large Language Models
Abstract:
Large Language Models (LLMs) often produce fluent yet factually incorrect statements-a phenomenon known as hallucination-posing serious risks in high-stakes domains. We present Layer-wise Semantic Dynamics (LSD), a geometric framework for hallucination detection that analyzes the evolution of hidden-state semantics across transformer layers. Unlike prior methods that rely on multiple sampling passes or external verification sources, LSD operates intrinsically within the model's representational space. Using margin-based contrastive learning, LSD aligns hidden activations with ground-truth embeddings derived from a factual encoder, revealing a distinct separation in semantic trajectories: factual responses preserve stable alignment, while hallucinations exhibit pronounced semantic drift across depth. Evaluated on the TruthfulQA and synthetic factual-hallucination datasets, LSD achieves an F1-score of 0.92, AUROC of 0.96, and clustering accuracy of 0.89, outperforming SelfCheckGPT and Semantic Entropy baselines while requiring only a single forward pass. This efficiency yields a 5-20x speedup over sampling-based methods without sacrificing precision or interpretability. LSD offers a scalable, model-agnostic mechanism for real-time hallucination monitoring and provides new insights into the geometry of factual consistency within large language models.

Authors:Jie Yang, Kexin Zhang, Guibin Zhang, Philip S. Yu, Kaize Ding
Title: Glocal Information Bottleneck for Time Series Imputation
Abstract:
Time Series Imputation (TSI), which aims to recover missing values in temporal data, remains a fundamental challenge due to the complex and often high-rate missingness in real-world scenarios. Existing models typically optimize the point-wise reconstruction loss, focusing on recovering numerical values (local information). However, we observe that under high missing rates, these models still perform well in the training phase yet produce poor imputations and distorted latent representation distributions (global information) in the inference phase. This reveals a critical optimization dilemma: current objectives lack global guidance, leading models to overfit local noise and fail to capture global information of the data. To address this issue, we propose a new training paradigm, Glocal Information Bottleneck (Glocal-IB). Glocal-IB is model-agnostic and extends the standard IB framework by introducing a Global Alignment loss, derived from a tractable mutual information approximation. This loss aligns the latent representations of masked inputs with those of their originally observed counterparts. It helps the model retain global structure and local details while suppressing noise caused by missing values, giving rise to better generalization under high missingness. Extensive experiments on nine datasets confirm that Glocal-IB leads to consistently improved performance and aligned latent representations under missingness. Our code implementation is available in https://github.com/Muyiiiii/NeurIPS-25-Glocal-IB.

Authors:Zheng Xiong, Kang Li, Zilin Wang, Matthew Jackson, Jakob Foerster, Shimon Whiteson
Title: HyperVLA: Efficient Inference in Vision-Language-Action Models via Hypernetworks
Abstract:
Built upon language and vision foundation models with strong generalization ability and trained on large-scale robotic data, Vision-Language-Action (VLA) models have recently emerged as a promising approach to learning generalist robotic policies. However, a key drawback of existing VLAs is their extremely high inference costs. In this paper, we propose HyperVLA to address this problem. Unlike existing monolithic VLAs that activate the whole model during both training and inference, HyperVLA uses a novel hypernetwork (HN)-based architecture that activates only a small task-specific policy during inference, while still retaining the high model capacity needed to accommodate diverse multi-task behaviors during training. Successfully training an HN-based VLA is nontrivial so HyperVLA contains several key algorithm design features that improve its performance, including properly utilizing the prior knowledge from existing vision foundation models, HN normalization, and an action generation strategy. Compared to monolithic VLAs, HyperVLA achieves a similar or even higher success rate for both zero-shot generalization and few-shot adaptation, while significantly reducing inference costs. Compared to OpenVLA, a state-of-the-art VLA model, HyperVLA reduces the number of activated parameters at test time by $90\times$, and accelerates inference speed by $120\times$. Code is publicly available at https://github.com/MasterXiong/HyperVLA

Authors:Siwei Han, Jiaqi Liu, Yaofeng Su, Wenbo Duan, Xinyuan Liu, Cihang Xie, Mohit Bansal, Mingyu Ding, Linjun Zhang, Huaxiu Yao
Title: Alignment Tipping Process: How Self-Evolution Pushes LLM Agents Off the Rails
Abstract:
As Large Language Model (LLM) agents increasingly gain self-evolutionary capabilities to adapt and refine their strategies through real-world interaction, their long-term reliability becomes a critical concern. We identify the Alignment Tipping Process (ATP), a critical post-deployment risk unique to self-evolving LLM agents. Unlike training-time failures, ATP arises when continual interaction drives agents to abandon alignment constraints established during training in favor of reinforced, self-interested strategies. We formalize and analyze ATP through two complementary paradigms: Self-Interested Exploration, where repeated high-reward deviations induce individual behavioral drift, and Imitative Strategy Diffusion, where deviant behaviors spread across multi-agent systems. Building on these paradigms, we construct controllable testbeds and benchmark Qwen3-8B and Llama-3.1-8B-Instruct. Our experiments show that alignment benefits erode rapidly under self-evolution, with initially aligned models converging toward unaligned states. In multi-agent settings, successful violations diffuse quickly, leading to collective misalignment. Moreover, current reinforcement learning-based alignment methods provide only fragile defenses against alignment tipping. Together, these findings demonstrate that alignment of LLM agents is not a static property but a fragile and dynamic one, vulnerable to feedback-driven decay during deployment. Our data and code are available at https://github.com/aiming-lab/ATP.

Authors:Chi Yan, Dan Xu
Title: Progressive Gaussian Transformer with Anisotropy-aware Sampling for Open Vocabulary Occupancy Prediction
Abstract:
The 3D occupancy prediction task has witnessed remarkable progress in recent years, playing a crucial role in vision-based autonomous driving systems. While traditional methods are limited to fixed semantic categories, recent approaches have moved towards predicting text-aligned features to enable open-vocabulary text queries in real-world scenes. However, there exists a trade-off in text-aligned scene modeling: sparse Gaussian representation struggles to capture small objects in the scene, while dense representation incurs significant computational overhead. To address these limitations, we present PG-Occ, an innovative Progressive Gaussian Transformer Framework that enables open-vocabulary 3D occupancy prediction. Our framework employs progressive online densification, a feed-forward strategy that gradually enhances the 3D Gaussian representation to capture fine-grained scene details. By iteratively enhancing the representation, the framework achieves increasingly precise and detailed scene understanding. Another key contribution is the introduction of an anisotropy-aware sampling strategy with spatio-temporal fusion, which adaptively assigns receptive fields to Gaussians at different scales and stages, enabling more effective feature aggregation and richer scene information capture. Through extensive evaluations, we demonstrate that PG-Occ achieves state-of-the-art performance with a relative 14.3% mIoU improvement over the previous best performing method. Code and pretrained models will be released upon publication on our project page: https://yanchi-3dv.github.io/PG-Occ

Authors:Chao Liu, Ling Luo, Tengxiao Lv, Huan Zhuang, Lejing Yu, Jian Wang, Hongfei Lin
Title: FocusMed: A Large Language Model-based Framework for Enhancing Medical Question Summarization with Focus Identification
Abstract:
With the rapid development of online medical platforms, consumer health questions (CHQs) are inefficient in diagnosis due to redundant information and frequent non-professional terms. The medical question summary (MQS) task aims to transform CHQs into streamlined doctors' frequently asked questions (FAQs), but existing methods still face challenges such as poor identification of question focus and model hallucination. This paper explores the potential of large language models (LLMs) in the MQS task and finds that direct fine-tuning is prone to focus identification bias and generates unfaithful content. To this end, we propose an optimization framework based on core focus guidance. First, a prompt template is designed to drive the LLMs to extract the core focus from the CHQs that is faithful to the original text. Then, a fine-tuning dataset is constructed in combination with the original CHQ-FAQ pairs to improve the ability to identify the focus of the question. Finally, a multi-dimensional quality evaluation and selection mechanism is proposed to comprehensively improve the quality of the summary from multiple dimensions. We conduct comprehensive experiments on two widely-adopted MQS datasets using three established evaluation metrics. The proposed framework achieves state-of-the-art performance across all measures, demonstrating a significant boost in the model's ability to identify critical focus of questions and a notable mitigation of hallucinations. The source codes are freely available at https://github.com/DUT-LiuChao/FocusMed.

Authors:Shrish Shrinath Vaidya, Gowthamaan Palani, Sidharth Ramesh, Velmurugan Balasubramanian, Minmini Selvam, Gokulraja Srinivasaraja, Ganapathy Krishnamurthi
Title: MedPAO: A Protocol-Driven Agent for Structuring Medical Reports
Abstract:
The deployment of Large Language Models (LLMs) for structuring clinical data is critically hindered by their tendency to hallucinate facts and their inability to follow domain-specific rules. To address this, we introduce MedPAO, a novel agentic framework that ensures accuracy and verifiable reasoning by grounding its operation in established clinical protocols such as the ABCDEF protocol for CXR analysis. MedPAO decomposes the report structuring task into a transparent process managed by a Plan-Act-Observe (PAO) loop and specialized tools. This protocol-driven method provides a verifiable alternative to opaque, monolithic models. The efficacy of our approach is demonstrated through rigorous evaluation: MedPAO achieves an F1-score of 0.96 on the critical sub-task of concept categorization. Notably, expert radiologists and clinicians rated the final structured outputs with an average score of 4.52 out of 5, indicating a level of reliability that surpasses baseline approaches relying solely on LLM-based foundation models. The code is available at: https://github.com/MiRL-IITM/medpao-agent

Authors:Zhejian Lai, Xiang Geng, Zhijun Wang, Yang Bai, Jiahuan Li, Rongxiang Weng, Jingang Wang, Xuezhi Cao, Xunliang Cai, Shujian Huang
Title: Making Mathematical Reasoning Adaptive
Abstract:
Mathematical reasoning is a primary indicator of large language models (LLMs) intelligence. However, existing LLMs exhibit failures of robustness and generalization. This paper attributes these deficiencies to spurious reasoning, i.e., producing answers from superficial features. To address this challenge, we propose the AdaR framework to enable adaptive reasoning, wherein models rely on problem-solving logic to produce answers. AdaR synthesizes logically equivalent queries by varying variable values, and trains models with RLVR on these data to penalize spurious logic while encouraging adaptive logic. To improve data quality, we extract the problem-solving logic from the original query and generate the corresponding answer by code execution, then apply a sanity check. Experimental results demonstrate that AdaR improves robustness and generalization, achieving substantial improvement in mathematical reasoning while maintaining high data efficiency. Analysis indicates that data synthesis and RLVR function in a coordinated manner to enable adaptive reasoning in LLMs. Subsequent analyses derive key design insights into the effect of critical factors and the applicability to instruct LLMs. Our project is available at https://github.com/LaiZhejian/AdaR

Authors:Jiashuo Sun, Shixuan Liu, Zhaochen Su, Xianrui Zhong, Pengcheng Jiang, Bowen Jin, Peiran Li, Weijia Shi, Jiawei Han
Title: GRACE: Generative Representation Learning via Contrastive Policy Optimization
Abstract:
Prevailing methods for training Large Language Models (LLMs) as text encoders rely on contrastive losses that treat the model as a black box function, discarding its generative and reasoning capabilities in favor of static embeddings. We introduce GRACE (Generative Representation Learning via Contrastive Policy Optimization), a novel framework that reimagines contrastive signals not as losses to be minimized, but as rewards that guide a generative policy. In GRACE, the LLM acts as a policy that produces explicit, human-interpretable rationales--structured natural language explanations of its semantic understanding. These rationales are then encoded into high-quality embeddings via mean pooling. Using policy gradient optimization, we train the model with a multi-component reward function that maximizes similarity between query positive pairs and minimizes similarity with negatives. This transforms the LLM from an opaque encoder into an interpretable agent whose reasoning process is transparent and inspectable. On MTEB benchmark, GRACE yields broad cross category gains: averaged over four backbones, the supervised setting improves overall score by 11.5% over base models, and the unsupervised variant adds 6.9%, while preserving general capabilities. This work treats contrastive objectives as rewards over rationales, unifying representation learning with generation to produce stronger embeddings and transparent rationales. The model, data and code are available at https://github.com/GasolSun36/GRACE.

Authors:Muyu He, Anand Kumar, Tsach Mackey, Meghana Rajeev, James Zou, Nazneen Rajani
Title: Impatient Users Confuse AI Agents: High-fidelity Simulations of Human Traits for Testing Agents
Abstract:
Despite rapid progress in building conversational AI agents, robustness is still largely untested. Small shifts in user behavior, such as being more impatient, incoherent, or skeptical, can cause sharp drops in agent performance, revealing how brittle current AI agents are. Today's benchmarks fail to capture this fragility: agents may perform well under standard evaluations but degrade spectacularly in more realistic and varied settings. We address this robustness testing gap by introducing TraitBasis, a lightweight, model-agnostic method for systematically stress testing AI agents. TraitBasis learns directions in activation space corresponding to steerable user traits (e.g., impatience or incoherence), which can be controlled, scaled, composed, and applied at inference time without any fine-tuning or extra data. Using TraitBasis, we extend $τ$-Bench to $τ$-Trait, where user behaviors are altered via controlled trait vectors. We observe on average a 2%-30% performance degradation on $τ$-Trait across frontier models, highlighting the lack of robustness of current AI agents to variations in user behavior. Together, these results highlight both the critical role of robustness testing and the promise of TraitBasis as a simple, data-efficient, and compositional tool. By powering simulation-driven stress tests and training loops, TraitBasis opens the door to building AI agents that remain reliable in the unpredictable dynamics of real-world human interactions. We have open-sourced $τ$-Trai across four domains: airline, retail, telecom, and telehealth, so the community can systematically QA their agents under realistic, behaviorally diverse intents and trait scenarios: https://github.com/collinear-ai/tau-trait.

Authors:Baber Jan, Saeed Anwar, Aiman H. El-Maleh, Abdul Jabbar Siddiqui, Abdul Bais
Title: SPEGNet: Synergistic Perception-Guided Network for Camouflaged Object Detection
Abstract:
Camouflaged object detection segments objects with intrinsic similarity and edge disruption. Current detection methods rely on accumulated complex components. Each approach adds components such as boundary modules, attention mechanisms, and multi-scale processors independently. This accumulation creates a computational burden without proportional gains. To manage this complexity, they process at reduced resolutions, eliminating fine details essential for camouflage. We present SPEGNet, addressing fragmentation through a unified design. The architecture integrates multi-scale features via channel calibration and spatial enhancement. Boundaries emerge directly from context-rich representations, maintaining semantic-spatial alignment. Progressive refinement implements scale-adaptive edge modulation with peak influence at intermediate resolutions. This design strikes a balance between boundary precision and regional consistency. SPEGNet achieves 0.887 $S_α$ on CAMO, 0.890 on COD10K, and 0.895 on NC4K, with real-time inference speed. Our approach excels across scales, from tiny, intricate objects to large, pattern-similar ones, while handling occlusion and ambiguous boundaries. Code, model weights, and results are available on \href{https://github.com/Baber-Jan/SPEGNet}{https://github.com/Baber-Jan/SPEGNet}.

Authors:Buyun Liang, Liangzu Peng, Jinqi Luo, Darshan Thaker, Kwan Ho Ryan Chan, René Vidal
Title: SECA: Semantically Equivalent and Coherent Attacks for Eliciting LLM Hallucinations
Abstract:
Large Language Models (LLMs) are increasingly deployed in high-risk domains. However, state-of-the-art LLMs often produce hallucinations, raising serious concerns about their reliability. Prior work has explored adversarial attacks for hallucination elicitation in LLMs, but it often produces unrealistic prompts, either by inserting gibberish tokens or by altering the original meaning. As a result, these approaches offer limited insight into how hallucinations may occur in practice. While adversarial attacks in computer vision often involve realistic modifications to input images, the problem of finding realistic adversarial prompts for eliciting LLM hallucinations has remained largely underexplored. To address this gap, we propose Semantically Equivalent and Coherent Attacks (SECA) to elicit hallucinations via realistic modifications to the prompt that preserve its meaning while maintaining semantic coherence. Our contributions are threefold: (i) we formulate finding realistic attacks for hallucination elicitation as a constrained optimization problem over the input prompt space under semantic equivalence and coherence constraints; (ii) we introduce a constraint-preserving zeroth-order method to effectively search for adversarial yet feasible prompts; and (iii) we demonstrate through experiments on open-ended multiple-choice question answering tasks that SECA achieves higher attack success rates while incurring almost no constraint violations compared to existing methods. SECA highlights the sensitivity of both open-source and commercial gradient-inaccessible LLMs to realistic and plausible prompt variations. Code is available at https://github.com/Buyun-Liang/SECA.

Authors:Xuehai He, Shijie Zhou, Thivyanth Venkateswaran, Kaizhi Zheng, Ziyu Wan, Achuta Kadambi, Xin Eric Wang
Title: MorphoSim: An Interactive, Controllable, and Editable Language-guided 4D World Simulator
Abstract:
World models that support controllable and editable spatiotemporal environments are valuable for robotics, enabling scalable training data, repro ducible evaluation, and flexible task design. While recent text-to-video models generate realistic dynam ics, they are constrained to 2D views and offer limited interaction. We introduce MorphoSim, a language guided framework that generates 4D scenes with multi-view consistency and object-level controls. From natural language instructions, MorphoSim produces dynamic environments where objects can be directed, recolored, or removed, and scenes can be observed from arbitrary viewpoints. The framework integrates trajectory-guided generation with feature field dis tillation, allowing edits to be applied interactively without full re-generation. Experiments show that Mor phoSim maintains high scene fidelity while enabling controllability and editability. The code is available at https://github.com/eric-ai-lab/Morph4D.

Authors:Hyunjun Kim, Sejong Kim
Title: MacroBench: A Novel Testbed for Web Automation Scripts via Large Language Models
Abstract:
We introduce MacroBench, a code-first benchmark that evaluates whether LLMs can synthesize reusable browser-automation programs (macros) from natural-language goals by reading HTML/DOM and emitting Selenium. MacroBench instantiates seven self-hosted sites covering 681 tasks across interaction complexity and targeting difficulty. Our end-to-end protocol validates generated code via static checks, sandboxed execution, and outcome verification (DOM assertions, database snapshots), and includes a safety suite for scraping, spam/abuse, and credential/privacy prompts. Across 2,636 model-task runs, we observe stratified success: GPT-4o-mini (96.8%), GPT-4o (95.3%), Gemini (89.0%), DeepSeek (83.4%). Models handle simple tasks reliably (91.7%) but fail on complex workflows (0.0%), and none meet production-quality coding practices despite functional completion. We release our complete benchmark pipeline, evaluation framework, and experimental results at https://github.com/hyunjun1121/MacroBench to enable reproducible assessment of macro synthesis for web automation.

Authors:Mohsen Hariri, Amirhossein Samandar, Michael Hinczewski, Vipin Chaudhary
Title: Don't Pass$\mathtt{@}k$: A Bayesian Framework for Large Language Model Evaluation
Abstract:
Pass$@k$ is widely used to report performance for LLM reasoning, but it often yields unstable, misleading rankings, especially when the number of trials (samples) is limited and compute is constrained. We present a principled Bayesian evaluation framework that replaces Pass$@k$ and average accuracy over $N$ trials (avg$@N$) with posterior estimates of a model's underlying success probability and credible intervals, yielding stable rankings and a transparent decision rule for differences. Evaluation outcomes are modeled as categorical (not just 0/1) with a Dirichlet prior, giving closed-form expressions for the posterior mean and uncertainty of any weighted rubric and enabling the use of prior evidence when appropriate. Theoretically, under a uniform prior, the Bayesian posterior mean is order-equivalent to average accuracy (Pass$@1$), explaining its empirical robustness while adding principled uncertainty. Empirically, in simulations with known ground-truth success rates and on AIME'24/'25, HMMT'25, and BrUMO'25, the Bayesian/avg procedure achieves faster convergence and greater rank stability than Pass$@k$ and recent variants, enabling reliable comparisons at far smaller sample counts. The framework clarifies when observed gaps are statistically meaningful (non-overlapping credible intervals) versus noise, and it naturally extends to graded, rubric-based evaluations. Together, these results recommend replacing Pass$@k$ for LLM evaluation and ranking with a posterior-based, compute-efficient protocol that unifies binary and non-binary evaluation while making uncertainty explicit. Code is available at https://mohsenhariri.github.io/bayes-kit

Authors:Huiwon Jang, Sihyun Yu, Heeseung Kwon, Hojin Jeon, Younggyo Seo, Jinwoo Shin
Title: ContextVLA: Vision-Language-Action Model with Amortized Multi-Frame Context
Abstract:
Leveraging temporal context is crucial for success in partially observable robotic tasks. However, prior work in behavior cloning has demonstrated inconsistent performance gains when using multi-frame observations. In this paper, we introduce ContextVLA, a policy model that robustly improves robotic task performance by effectively leveraging multi-frame observations. Our approach is motivated by the key observation that Vision-Language-Action models (VLA), i.e., policy models built upon a Vision-Language Model (VLM), more effectively utilize multi-frame observations for action generation. This suggests that VLMs' inherent temporal understanding capability enables them to extract more meaningful context from multi-frame observations. However, the high dimensionality of video inputs introduces significant computational overhead, making VLA training and inference inefficient. To address this, ContextVLA compresses past observations into a single context token, allowing the policy to efficiently leverage temporal context for action generation. Our experiments show that ContextVLA consistently improves over single-frame VLAs and achieves the benefits of full multi-frame training but with reduced training and inference times.

Authors:Seong Jin Ahn, Myoung-Ho Kim
Title: Diffusion-Assisted Distillation for Self-Supervised Graph Representation Learning with MLPs
Abstract:
For large-scale applications, there is growing interest in replacing Graph Neural Networks (GNNs) with lightweight Multi-Layer Perceptrons (MLPs) via knowledge distillation. However, distilling GNNs for self-supervised graph representation learning into MLPs is more challenging. This is because the performance of self-supervised learning is more related to the model's inductive bias than supervised learning. This motivates us to design a new distillation method to bridge a huge capacity gap between GNNs and MLPs in self-supervised graph representation learning. In this paper, we propose \textbf{D}iffusion-\textbf{A}ssisted \textbf{D}istillation for \textbf{S}elf-supervised \textbf{G}raph representation learning with \textbf{M}LPs (DAD-SGM). The proposed method employs a denoising diffusion model as a teacher assistant to better distill the knowledge from the teacher GNN into the student MLP. This approach enhances the generalizability and robustness of MLPs in self-supervised graph representation learning. Extensive experiments demonstrate that DAD-SGM effectively distills the knowledge of self-supervised GNNs compared to state-of-the-art GNN-to-MLP distillation methods. Our implementation is available at https://github.com/SeongJinAhn/DAD-SGM.

Authors:Hanchen Zhang, Xiao Liu, Bowen Lv, Xueqiao Sun, Bohao Jing, Iat Long Iong, Zhenyu Hou, Zehan Qi, Hanyu Lai, Yifan Xu, Rui Lu, Hongning Wang, Jie Tang, Yuxiao Dong
Title: AgentRL: Scaling Agentic Reinforcement Learning with a Multi-Turn, Multi-Task Framework
Abstract:
Recent advances in large language models (LLMs) have sparked growing interest in building generalist agents that can learn through online interactions. However, applying reinforcement learning (RL) to train LLM agents in multi-turn, multi-task settings remains challenging due to lack of scalable infrastructure and stable training algorithms. In this work, we present the AgentRL framework for scalable multi-turn, multi-task agentic RL training. On the infrastructure side, AgentRL features a fully-asynchronous generation-training pipeline for efficient multi-turn RL. To support heterogeneous environment development in multi-task RL, we design a unified function-call based API interface, containerized environment development, and a centralized controller. On the algorithm side, we propose cross-policy sampling to encourage model exploration in multi-turn settings and task advantage normalization to stabilize multi-task training. Experiments show that AgentRL, trained on open LLMs across five agentic tasks, significantly outperforms GPT-5, Clause-Sonnet-4, DeepSeek-R1, and other open-source LLM agents. Multi-task training with AgentRL matches the best results among all task-specific models. AgentRL is open-sourced at https://github.com/THUDM/AgentRL. The algorithm and framework are adopted in building \textsc{\href{https://autoglm.zhipuai.cn}{AutoGLM}}.

Authors:Moo Hyun Son, Jintaek Oh, Sun Bin Mun, Jaechul Roh, Sehyun Choi
Title: World-To-Image: Grounding Text-to-Image Generation with Agent-Driven World Knowledge
Abstract:
While text-to-image (T2I) models can synthesize high-quality images, their performance degrades significantly when prompted with novel or out-of-distribution (OOD) entities due to inherent knowledge cutoffs. We introduce World-To-Image, a novel framework that bridges this gap by empowering T2I generation with agent-driven world knowledge. We design an agent that dynamically searches the web to retrieve images for concepts unknown to the base model. This information is then used to perform multimodal prompt optimization, steering powerful generative backbones toward an accurate synthesis. Critically, our evaluation goes beyond traditional metrics, utilizing modern assessments like LLMGrader and ImageReward to measure true semantic fidelity. Our experiments show that World-To-Image substantially outperforms state-of-the-art methods in both semantic alignment and visual aesthetics, achieving +8.1% improvement in accuracy-to-prompt on our curated NICE benchmark. Our framework achieves these results with high efficiency in less than three iterations, paving the way for T2I systems that can better reflect the ever-changing real world. Our demo code is available here\footnote{https://github.com/mhson-kyle/World-To-Image}.

Authors:Yiming Niu, Jinliang Deng, Yongxin Tong
Title: PhaseFormer: From Patches to Phases for Efficient and Effective Time Series Forecasting
Abstract:
Periodicity is a fundamental characteristic of time series data and has long played a central role in forecasting. Recent deep learning methods strengthen the exploitation of periodicity by treating patches as basic tokens, thereby improving predictive effectiveness. However, their efficiency remains a bottleneck due to large parameter counts and heavy computational costs. This paper provides, for the first time, a clear explanation of why patch-level processing is inherently inefficient, supported by strong evidence from real-world data. To address these limitations, we introduce a phase perspective for modeling periodicity and present an efficient yet effective solution, PhaseFormer. PhaseFormer features phase-wise prediction through compact phase embeddings and efficient cross-phase interaction enabled by a lightweight routing mechanism. Extensive experiments demonstrate that PhaseFormer achieves state-of-the-art performance with around 1k parameters, consistently across benchmark datasets. Notably, it excels on large-scale and complex datasets, where models with comparable efficiency often struggle. This work marks a significant step toward truly efficient and effective time series forecasting. Code is available at this repository: https://github.com/neumyor/PhaseFormer_TSL

Authors:Lele Liao, Qile Zhang, Ruofan Wu, Guanhua Fang
Title: Toward a unified framework for data-efficient evaluation of large language models
Abstract:
Evaluating large language models (LLMs) on comprehensive benchmarks is a cornerstone of their development, yet it's often computationally and financially prohibitive. While Item Response Theory (IRT) offers a promising path toward data-efficient evaluation by disentangling model capability from item difficulty, existing IRT-based methods are hampered by significant limitations. They are typically restricted to binary correctness metrics, failing to natively handle the continuous scores used in generative tasks, and they operate on single benchmarks, ignoring valuable structural knowledge like correlations across different metrics or benchmarks. To overcome these challenges, we introduce LEGO-IRT, a unified and flexible framework for data-efficient LLM evaluation. LEGO-IRT's novel design natively supports both binary and continuous evaluation metrics. Moreover, it introduces a factorized architecture to explicitly model and leverage structural knowledge, decomposing model ability estimates into a general component and structure-specific (e.g., per-metric or per-benchmark) components. Through extensive experiments involving $70$ LLMs across $5$ benchmarks, we show that LEGO-IRT achieves stable capability estimates using just $3\%$ of the total evaluation items. We demonstrate that incorporating structural knowledge reduces estimation error by up to $10\%$ and reveal that the latent abilities estimated by our framework may align more closely with human preferences.

Authors:Bingtao Yang, Yujia Wang, Mengzhi Jiao, Hongwei Huo
Title: Quantization Range Estimation for Convolutional Neural Networks
Abstract:
Post-training quantization for reducing the storage of deep neural network models has been demonstrated to be an effective way in various tasks. However, low-bit quantization while maintaining model accuracy is a challenging problem. In this paper, we present a range estimation method to improve the quantization performance for post-training quantization. We model the range estimation into an optimization problem of minimizing quantization errors by layer-wise local minima. We prove this problem is locally convex and present an efficient search algorithm to find the optimal solution. We propose the application of the above search algorithm to the transformed weights space to do further improvement in practice. Our experiments demonstrate that our method outperforms state-of-the-art performance generally on top-1 accuracy for image classification tasks on the ResNet series models and Inception-v3 model. The experimental results show that the proposed method has almost no loss of top-1 accuracy in 8-bit and 6-bit settings for image classifications, and the accuracy of 4-bit quantization is also significantly improved. The code is available at https://github.com/codeiscommitting/REQuant.

Authors:Xuankang Zhang, Jiangming Liu
Title: Named Entity Recognition in COVID-19 tweets with Entity Knowledge Augmentation
Abstract:
The COVID-19 pandemic causes severe social and economic disruption around the world, raising various subjects that are discussed over social media. Identifying pandemic-related named entities as expressed on social media is fundamental and important to understand the discussions about the pandemic. However, there is limited work on named entity recognition on this topic due to the following challenges: 1) COVID-19 texts in social media are informal and their annotations are rare and insufficient to train a robust recognition model, and 2) named entity recognition in COVID-19 requires extensive domain-specific knowledge. To address these issues, we propose a novel entity knowledge augmentation approach for COVID-19, which can also be applied in general biomedical named entity recognition in both informal text format and formal text format. Experiments carried out on the COVID-19 tweets dataset and PubMed dataset show that our proposed entity knowledge augmentation improves NER performance in both fully-supervised and few-shot settings. Our source code is publicly available: https://github.com/kkkenshi/LLM-EKA/tree/master

Authors:Jatin Prakash, Anirudh Buvanesh
Title: What Can You Do When You Have Zero Rewards During RL?
Abstract:
Reinforcement learning (RL) with outcome-based rewards has proven effective for improving large language models (LLMs) on complex reasoning tasks. However, its success often depends on the base model occasionally sampling correct solutions. When no correct solutions are sampled, training encounters a zero-reward barrier where learning stalls due to zero gradients. We study this scenario through the graph search task introduced in Bachmann et al. (2024) and evaluate recent methods that incorporate desirable components such as dense rewards, diversity incentives, and improved credit assignment. Our experiments show that none of these approaches overcome the zero-reward barrier if the base model never produces a correct answer. In contrast, we find that a simple data-centric intervention of adding easier samples to the training set enables the model to eventually solve the original hard task despite starting from zero reward. Importantly, this succeeds without modifying the RL algorithm itself. Because official implementations of several baselines were unavailable, we developed our own, which allowed us to conduct a detailed analysis of their failure modes. We release these implementations to support further research at: https://github.com/rl4reasoning/rl-baselines

Authors:Changhong Li, Clément Bled, Rosa Fernandez, Shreejith Shanker
Title: ReTiDe: Real-Time Denoising for Energy-Efficient Motion Picture Processing with FPGAs
Abstract:
Denoising is a core operation in modern video pipelines. In codecs, in-loop filters suppress sensor noise and quantisation artefacts to improve rate-distortion performance; in cinema post-production, denoisers are used for restoration, grain management, and plate clean-up. However, state-of-the-art deep denoisers are computationally intensive and, at scale, are typically deployed on GPUs, incurring high power and cost for real-time, high-resolution streams. This paper presents Real-Time Denoise (ReTiDe), a hardware-accelerated denoising system that serves inference on data-centre Field Programmable Gate Arrays (FPGAs). A compact convolutional model is quantised (post-training quantisation plus quantisation-aware fine-tuning) to INT8 and compiled for AMD Deep Learning Processor Unit (DPU)-based FPGAs. A client-server integration offloads computation from the host CPU/GPU to a networked FPGA service, while remaining callable from existing workflows, e.g., NUKE, without disrupting artist tooling. On representative benchmarks, ReTiDe delivers 37.71$\times$ Giga Operations Per Second (GOPS) throughput and 5.29$\times$ higher energy efficiency than prior FPGA denoising accelerators, with negligible degradation in Peak Signal-to-Noise Ratio (PSNR)/Structural Similarity Index (SSIM). These results indicate that specialised accelerators can provide practical, scalable denoising for both encoding pipelines and post-production, reducing energy per frame without sacrificing quality or workflow compatibility. Code is available at https://github.com/RCSL-TCD/ReTiDe.

Authors:Jiaxin Deng, Junbiao Pang
Title: Adaptively Sampling-Reusing-Mixing Decomposed Gradients to Speed Up Sharpness Aware Minimization
Abstract:
Sharpness-Aware Minimization (SAM) improves model generalization but doubles the computational cost of Stochastic Gradient Descent (SGD) by requiring twice the gradient calculations per optimization step. To mitigate this, we propose Adaptively sampling-Reusing-mixing decomposed gradients to significantly accelerate SAM (ARSAM). Concretely, we firstly discover that SAM's gradient can be decomposed into the SGD gradient and the Projection of the Second-order gradient onto the First-order gradient (PSF). Furthermore, we observe that the SGD gradient and PSF dynamically evolve during training, emphasizing the growing role of the PSF to achieve a flat minima. Therefore, ARSAM is proposed to the reused PSF and the timely updated PSF still maintain the model's generalization ability. Extensive experiments show that ARSAM achieves state-of-the-art accuracies comparable to SAM across diverse network architectures. On CIFAR-10/100, ARSAM is comparable to SAM while providing a speedup of about 40\%. Moreover, ARSAM accelerates optimization for the various challenge tasks (\textit{e.g.}, human pose estimation, and model quantization) without sacrificing performance, demonstrating its broad practicality.% The code is publicly accessible at: https://github.com/ajiaaa/ARSAM.

Authors:Richard A. Dubniczky, Bertalan Borsos, Tihanyi Norbert
Title: You Have Been LaTeXpOsEd: A Systematic Analysis of Information Leakage in Preprint Archives Using Large Language Models
Abstract:
The widespread use of preprint repositories such as arXiv has accelerated the communication of scientific results but also introduced overlooked security risks. Beyond PDFs, these platforms provide unrestricted access to original source materials, including LaTeX sources, auxiliary code, figures, and embedded comments. In the absence of sanitization, submissions may disclose sensitive information that adversaries can harvest using open-source intelligence. In this work, we present the first large-scale security audit of preprint archives, analyzing more than 1.2 TB of source data from 100,000 arXiv submissions. We introduce LaTeXpOsEd, a four-stage framework that integrates pattern matching, logical filtering, traditional harvesting techniques, and large language models (LLMs) to uncover hidden disclosures within non-referenced files and LaTeX comments. To evaluate LLMs' secret-detection capabilities, we introduce LLMSec-DB, a benchmark on which we tested 25 state-of-the-art models. Our analysis uncovered thousands of PII leaks, GPS-tagged EXIF files, publicly available Google Drive and Dropbox folders, editable private SharePoint links, exposed GitHub and Google credentials, and cloud API keys. We also uncovered confidential author communications, internal disagreements, and conference submission credentials, exposing information that poses serious reputational risks to both researchers and institutions. We urge the research community and repository operators to take immediate action to close these hidden security gaps. To support open science, we release all scripts and methods from this study but withhold sensitive findings that could be misused, in line with ethical principles. The source code and related material are available at the project website https://github.com/LaTeXpOsEd

Authors:Bumjun Kim, Dongjae Jeon, Dueun Kim, Wonje Jeung, Albert No
Title: Rainbow Padding: Mitigating Early Termination in Instruction-Tuned Diffusion LLMs
Abstract:
Diffusion large language models (dLLMs) have emerged as a promising alternative to autoregressive models, offering flexible generation orders and strong performance on complex reasoning tasks. However, instruction-tuned dLLMs exhibit a critical vulnerability we term \texttt{} overflow: as allocated sequence length increases, responses paradoxically become shorter, collapsing into early termination or degenerating into streams of \texttt{} tokens. Although noticed in practice, this issue has not been systematically analyzed. We trace its root cause to the dual role of \texttt{} as both termination and padding, which concentrates probability mass on \texttt{} at later positions and propagates backward to trigger early termination. To address this, we introduce Rainbow Padding, a simple remedy that replaces repeated \texttt{} placeholders with a repeating cycle of distinct padding tokens, distributing probability mass and breaking \texttt{} dominance. Experiments show that Rainbow Padding substantially improves length robustness and output quality, with as few as seven padding tokens sufficient to prevent early termination. Moreover, the method integrates efficiently into existing instruction-tuned models: LoRA fine-tuning for a single epoch on minimal data yields significant improvements, making this solution highly practical. The code is publicly available at https://github.com/quasar529/rainbow-padding.

Authors:Amir Sadikov
Title: LLM-Guided Evolutionary Program Synthesis for Quasi-Monte Carlo Design
Abstract:
Low-discrepancy point sets and digital sequences underpin quasi-Monte Carlo (QMC) methods for high-dimensional integration. We cast two long-standing QMC design problems as program synthesis and solve them with an LLM-guided evolutionary loop that mutates and selects code under task-specific fitness: (i) constructing finite 2D/3D point sets with low star discrepancy, and (ii) choosing Sobol' direction numbers that minimize randomized QMC error on downstream integrands. Our two-phase procedure combines constructive code proposals with iterative numerical refinement. On finite sets, we rediscover known optima in small 2D cases and set new best-known 2D benchmarks for N >= 40, while matching most known 3D optima up to the proven frontier (N <= 8) and reporting improved 3D benchmarks beyond. On digital sequences, evolving Sobol' parameters yields consistent reductions in randomized quasi-Monte Carlo (rQMC) mean-squared error for several 32-dimensional option-pricing tasks relative to widely used Joe--Kuo parameters, while preserving extensibility to any sample size and compatibility with standard randomizations. Taken together, the results demonstrate that LLM-driven evolutionary program synthesis can automate the discovery of high-quality QMC constructions, recovering classical designs where they are optimal and improving them where finite-N structure matters. Data and code are available at https://github.com/hockeyguy123/openevolve-star-discrepancy.git.

Authors:Sina Alemohammad, Zhangyang Wang, Richard G. Baraniuk
Title: Neon: Negative Extrapolation From Self-Training Improves Image Generation
Abstract:
Scaling generative AI models is bottlenecked by the scarcity of high-quality training data. The ease of synthesizing from a generative model suggests using (unverified) synthetic data to augment a limited corpus of real data for the purpose of fine-tuning in the hope of improving performance. Unfortunately, however, the resulting positive feedback loop leads to model autophagy disorder (MAD, aka model collapse) that results in a rapid degradation in sample quality and/or diversity. In this paper, we introduce Neon (for Negative Extrapolation frOm self-traiNing), a new learning method that turns the degradation from self-training into a powerful signal for self-improvement. Given a base model, Neon first fine-tunes it on its own self-synthesized data but then, counterintuitively, reverses its gradient updates to extrapolate away from the degraded weights. We prove that Neon works because typical inference samplers that favor high-probability regions create a predictable anti-alignment between the synthetic and real data population gradients, which negative extrapolation corrects to better align the model with the true data distribution. Neon is remarkably easy to implement via a simple post-hoc merge that requires no new real data, works effectively with as few as 1k synthetic samples, and typically uses less than 1% additional training compute. We demonstrate Neon's universality across a range of architectures (diffusion, flow matching, autoregressive, and inductive moment matching models) and datasets (ImageNet, CIFAR-10, and FFHQ). In particular, on ImageNet 256x256, Neon elevates the xAR-L model to a new state-of-the-art FID of 1.02 with only 0.36% additional training compute. Code is available at https://github.com/VITA-Group/Neon

Authors:Ali Khairallah, Arkaitz Zubiaga
Title: ALHD: A Large-Scale and Multigenre Benchmark Dataset for Arabic LLM-Generated Text Detection
Abstract:
We introduce ALHD, the first large-scale comprehensive Arabic dataset explicitly designed to distinguish between human- and LLM-generated texts. ALHD spans three genres (news, social media, reviews), covering both MSA and dialectal Arabic, and contains over 400K balanced samples generated by three leading LLMs and originated from multiple human sources, which enables studying generalizability in Arabic LLM-genearted text detection. We provide rigorous preprocessing, rich annotations, and standardized balanced splits to support reproducibility. In addition, we present, analyze and discuss benchmark experiments using our new dataset, in turn identifying gaps and proposing future research directions. Benchmarking across traditional classifiers, BERT-based models, and LLMs (zero-shot and few-shot) demonstrates that fine-tuned BERT models achieve competitive performance, outperforming LLM-based models. Results are however not always consistent, as we observe challenges when generalizing across genres; indeed, models struggle to generalize when they need to deal with unseen patterns in cross-genre settings, and these challenges are particularly prominent when dealing with news articles, where LLM-generated texts resemble human texts in style, which opens up avenues for future research. ALHD establishes a foundation for research related to Arabic LLM-detection and mitigating risks of misinformation, academic dishonesty, and cyber threats.

Authors:Lyes Saad Saoud, Loic Lesobre, Enrico Sorato, Irfan Hussain
Title: Real-Time Threaded Houbara Detection and Segmentation for Wildlife Conservation using Mobile Platforms
Abstract:
Real-time animal detection and segmentation in natural environments are vital for wildlife conservation, enabling non-invasive monitoring through remote camera streams. However, these tasks remain challenging due to limited computational resources and the cryptic appearance of many species. We propose a mobile-optimized two-stage deep learning framework that integrates a Threading Detection Model (TDM) to parallelize YOLOv10-based detection and MobileSAM-based segmentation. Unlike prior YOLO+SAM pipelines, our approach improves real-time performance by reducing latency through threading. YOLOv10 handles detection while MobileSAM performs lightweight segmentation, both executed concurrently for efficient resource use. On the cryptic Houbara Bustard, a conservation-priority species, our model achieves mAP50 of 0.9627, mAP75 of 0.7731, mAP95 of 0.7178, and a MobileSAM mIoU of 0.7421. YOLOv10 operates at 43.7 ms per frame, confirming real-time readiness. We introduce a curated Houbara dataset of 40,000 annotated images to support model training and evaluation across diverse conditions. The code and dataset used in this study are publicly available on GitHub at https://github.com/LyesSaadSaoud/mobile-houbara-detseg. For interactive demos and additional resources, visit https://lyessaadsaoud.github.io/LyesSaadSaoud-Threaded-YOLO-SAM-Houbara.

Authors:Yulun Zhang, Alexandre O. G. Barbosa, Federico Pecora, Jiaoyang Li
Title: Destination-to-Chutes Task Mapping Optimization for Multi-Robot Coordination in Robotic Sorting Systems
Abstract:
We study optimizing a destination-to-chutes task mapping to improve throughput in Robotic Sorting Systems (RSS), where a team of robots sort packages on a sortation floor by transporting them from induct workstations to eject chutes based on their shipping destinations (e.g. Los Angeles or Pittsburgh). The destination-to-chutes task mapping is used to determine which chutes a robot can drop its package. Finding a high-quality task mapping is challenging because of the complexity of a real-world RSS. First, optimizing task mapping is interdependent with robot target assignment and path planning. Second, chutes will be CLOSED for a period of time once they receive sufficient packages to allow for downstream processing. Third, task mapping quality directly impacts the downstream processing, as scattered chutes for the same destination increase package handling time. In this paper, we first formally define task mappings and the problem of Task Mapping Optimization (TMO). We then present a simulator of RSS to evaluate task mappings. We then present a simple TMO method based on the Evolutionary Algorithm and Mixed Integer Linear Programming, demonstrating the advantage of our optimized task mappings over the greedily generated ones in various RSS setups with different map sizes, numbers of chutes, and destinations. Finally, we use Quality Diversity algorithms to analyze the throughput of a diverse set of task mappings. Our code is available online at https://github.com/lunjohnzhang/tmo_public.

Authors:Franz A. Heinsen, Leo Kozachkov
Title: Generalized Orders of Magnitude for Scalable, Parallel, High-Dynamic-Range Computation
Abstract:
Many domains, from deep learning to finance, require compounding real numbers over long sequences, often leading to catastrophic numerical underflow or overflow. We introduce generalized orders of magnitude (GOOMs), a principled extension of traditional orders of magnitude that incorporates floating-point numbers as a special case, and which in practice enables stable computation over significantly larger dynamic ranges of real numbers than previously possible. We implement GOOMs, along with an efficient custom parallel prefix scan, to support native execution on parallel hardware such as GPUs. We demonstrate that our implementation of GOOMs outperforms traditional approaches with three representative experiments, all of which were previously considered impractical or impossible, and now become possible and practical: (1) compounding real matrix products far beyond standard floating-point limits; (2) estimating spectra of Lyapunov exponents in parallel, orders of magnitude faster than with previous methods, applying a novel selective-resetting method to prevent state colinearity; and (3) capturing long-range dependencies in deep recurrent neural networks with non-diagonal recurrent states, computed in parallel via a prefix scan, without requiring any form of stabilization. Our results show that our implementation of GOOMs, combined with efficient parallel scanning, offers a scalable and numerically robust alternative to conventional floating-point numbers for high-dynamic-range applications.

Authors:Javad Rafiei Asl, Sidhant Narula, Mohammad Ghasemigol, Eduardo Blanco, Daniel Takabi
Title: NEXUS: Network Exploration for eXploiting Unsafe Sequences in Multi-Turn LLM Jailbreaks
Abstract:
Large Language Models (LLMs) have revolutionized natural language processing but remain vulnerable to jailbreak attacks, especially multi-turn jailbreaks that distribute malicious intent across benign exchanges and bypass alignment mechanisms. Existing approaches often explore the adversarial space poorly, rely on hand-crafted heuristics, or lack systematic query refinement. We present NEXUS (Network Exploration for eXploiting Unsafe Sequences), a modular framework for constructing, refining, and executing optimized multi-turn attacks. NEXUS comprises: (1) ThoughtNet, which hierarchically expands a harmful intent into a structured semantic network of topics, entities, and query chains; (2) a feedback-driven Simulator that iteratively refines and prunes these chains through attacker-victim-judge LLM collaboration using harmfulness and semantic-similarity benchmarks; and (3) a Network Traverser that adaptively navigates the refined query space for real-time attacks. This pipeline uncovers stealthy, high-success adversarial paths across LLMs. On several closed-source and open-source LLMs, NEXUS increases attack success rate by 2.1% to 19.4% over prior methods. Code: https://github.com/inspire-lab/NEXUS

Authors:Aditya Thimmaiah, Jiyang Zhang, Jayanth Srinivasa, Junyi Jessy Li, Milos Gligoric
Title: PLSemanticsBench: Large Language Models As Programming Language Interpreters
Abstract:
As large language models (LLMs) excel at code reasoning, a natural question arises: can an LLM execute programs (i.e., act as an interpreter) purely based on a programming language's formal semantics? If so, it will enable rapid prototyping of new programming languages and language features. We study this question using the imperative language IMP (a subset of C), formalized via small-step operational semantics (SOS) and rewriting-based operational semantics (K-semantics). We introduce three evaluation sets-Human-Written, LLM-Translated, and Fuzzer- Generated-whose difficulty is controlled by code-complexity metrics spanning the size, control-flow, and data-flow axes. Given a program and its semantics formalized with SOS/K-semantics, models are evaluated on three tasks ranging from coarse to fine: (1) final-state prediction, (2) semantic rule prediction, and (3) execution trace prediction. To distinguish pretraining memorization from semantic competence, we define two nonstandard semantics obtained through systematic mutations of the standard rules. Across strong code/reasoning LLMs, performance drops under nonstandard semantics despite high performance under the standard one. We further find that (i) there are patterns to different model failures, (ii) most reasoning models perform exceptionally well on coarse grained tasks involving reasoning about highly complex programs often containing nested loop depths beyond five, and surprisingly, (iii) providing formal semantics helps on simple programs but often hurts on more complex ones. Overall, the results show a promise that LLMs could serve as programming language interpreters, but points to the lack of their robust semantics understanding. We release the benchmark and the supporting code at https://github.com/EngineeringSoftware/PLSemanticsBench.

Authors:Xiaoyan Bai, Aryan Shrivastava, Ari Holtzman, Chenhao Tan
Title: Know Thyself? On the Incapability and Implications of AI Self-Recognition
Abstract:
Self-recognition is a crucial metacognitive capability for AI systems, relevant not only for psychological analysis but also for safety, particularly in evaluative scenarios. Motivated by contradictory interpretations of whether models possess self-recognition (Panickssery et al., 2024; Davidson et al., 2024), we introduce a systematic evaluation framework that can be easily applied and updated. Specifically, we measure how well 10 contemporary larger language models (LLMs) can identify their own generated text versus text from other models through two tasks: binary self-recognition and exact model prediction. Different from prior claims, our results reveal a consistent failure in self-recognition. Only 4 out of 10 models predict themselves as generators, and the performance is rarely above random chance. Additionally, models exhibit a strong bias toward predicting GPT and Claude families. We also provide the first evaluation of model awareness of their own and others' existence, as well as the reasoning behind their choices in self-recognition. We find that the model demonstrates some knowledge of its own existence and other models, but their reasoning reveals a hierarchical bias. They appear to assume that GPT, Claude, and occasionally Gemini are the top-tier models, often associating high-quality text with them. We conclude by discussing the implications of our findings on AI safety and future directions to develop appropriate AI self-awareness.

Authors:Zhe Zhang, Mingxiu Cai, Gaochang Wu, Jing Zhang, Lingqiao Liu, Dacheng Tao, Tianyou Chai, Xiatian Zhu
Title: Unified Unsupervised Anomaly Detection via Matching Cost Filtering
Abstract:
Unsupervised anomaly detection (UAD) aims to identify image- and pixel-level anomalies using only normal training data, with wide applications such as industrial inspection and medical analysis, where anomalies are scarce due to privacy concerns and cold-start constraints. Existing methods, whether reconstruction-based (restoring normal counterparts) or embedding-based (pretrained representations), fundamentally conduct image- or feature-level matching to generate anomaly maps. Nonetheless, matching noise has been largely overlooked, limiting their detection ability. Beyond earlier focus on unimodal RGB-based UAD, recent advances expand to multimodal scenarios, e.g., RGB-3D and RGB-Text, enabled by point cloud sensing and vision-language models. Despite shared challenges, these lines remain largely isolated, hindering a comprehensive understanding and knowledge transfer. In this paper, we advocate unified UAD for both unimodal and multimodal settings in the matching perspective. Under this insight, we present Unified Cost Filtering (UCF), a generic post-hoc refinement framework for refining anomaly cost volume of any UAD model. The cost volume is constructed by matching a test sample against normal samples from the same or different modalities, followed by a learnable filtering module with multi-layer attention guidance from the test sample, mitigating matching noise and highlighting subtle anomalies. Comprehensive experiments on 22 diverse benchmarks demonstrate the efficacy of UCF in enhancing a variety of UAD methods, consistently achieving new state-of-the-art results in both unimodal (RGB) and multimodal (RGB-3D, RGB-Text) UAD scenarios. Code and models will be released at https://github.com/ZHE-SAPI/CostFilter-AD.

Authors:Mahdi Farahbakhsh, Vishnu Teja Kunde, Dileep Kalathil, Krishna Narayanan, Jean-Francois Chamberland
Title: Inference-Time Search using Side Information for Diffusion-based Image Reconstruction
Abstract:
Diffusion models have emerged as powerful priors for solving inverse problems. However, existing approaches typically overlook side information that could significantly improve reconstruction quality, especially in severely ill-posed settings. In this work, we propose a novel inference-time search algorithm that guides the sampling process using the side information in a manner that balances exploration and exploitation. This enables more accurate and reliable reconstructions, providing an alternative to the gradient-based guidance that is prone to reward-hacking artifacts. Our approach can be seamlessly integrated into a wide range of existing diffusion-based image reconstruction pipelines. Through extensive experiments on a number of inverse problems, such as box inpainting, super-resolution, and various deblurring tasks including motion, Gaussian, nonlinear, and blind deblurring, we show that our approach consistently improves the qualitative and quantitative performance of diffusion-based image reconstruction algorithms. We also show the superior performance of our approach with respect to other baselines, including reward gradient-based guidance algorithms. The code is available at \href{https://github.com/mhdfb/sideinfo-search-reconstruction}{this repository}.

Authors:Akshar Gothi
Title: Convolutional Neural Nets vs Vision Transformers: A SpaceNet Case Study with Balanced vs Imbalanced Regimes
Abstract:
We present a controlled comparison of a convolutional neural network (EfficientNet-B0) and a Vision Transformer (ViT-Base) on SpaceNet under two label-distribution regimes: a naturally imbalanced five-class split and a balanced-resampled split with 700 images per class (70:20:10 train/val/test). With matched preprocessing (224x224, ImageNet normalization), lightweight augmentations, and a 40-epoch budget on a single NVIDIA P100, we report accuracy, macro-F1, balanced accuracy, per-class recall, and deployment metrics (model size and latency). On the imbalanced split, EfficientNet-B0 reaches 93% test accuracy with strong macro-F1 and lower latency; ViT-Base is competitive at 93% with a larger parameter count and runtime. On the balanced split, both models are strong; EfficientNet-B0 reaches 99% while ViT-Base remains competitive, indicating that balancing narrows architecture gaps while CNNs retain an efficiency edge. We release manifests, logs, and per-image predictions to support reproducibility.

Authors:Yizhuo Ding, Wanying Qu, Jiawei Geng, Wenqi Shao, Yanwei Fu
Title: UniPruning: Unifying Local Metric and Global Feedback for Scalable Sparse LLMs
Abstract:
Large Language Models (LLMs) achieve strong performance across diverse tasks but face prohibitive computational and memory costs. Pruning offers a promising path by inducing sparsity while preserving architectural flexibility. However, existing methods struggle to balance efficiency and robustness: local metric approaches prune layer by layer but often collapse under high sparsity, whereas global feedback methods enforce consistency at the cost of expensive weight updates or restrictive semi-structured formats. We present UniPruning, a unified post-training pruning framework that combines the speed of local saliency metrics with the stability of global coordination, enabled by a mirror descent based optimization, all without updating model weights. UniPruning leverages fast layer-wise scoring and a lightweight global controller to allocate a single sparsity budget, supporting both unstructured and semi-structured N :M pruning within one framework. After a brief calibration, it can generate pruning masks for arbitrary sparsity levels in one shot, and adapts seamlessly to hardware-aware constraints. Extensive experiments on multiple pretrained LLM families and standard benchmarks show that UniPruning consistently delivers competitive or superior perplexity and zero-shot accuracy. Ablation studies further highlight the importance of mirror descent and local saliency anchoring. Overall, UniPruning provides an efficient, principled, and scalable solution for sparsifying large-scale LLMs. Our code is available at: https://github.com/RainbowQTT/UniPruning.

Authors:Junhao Xia, Ming Zhao, Limin Xiao, Xiujun Zhang
Title: SDQ-LLM: Sigma-Delta Quantization for 1-bit LLMs of any size
Abstract:
Large language models (LLMs) face significant computational and memory challenges, making extremely low-bit quantization crucial for their efficient deployment. In this work, we introduce SDQ-LLM: Sigma-Delta Quantization for 1-bit LLMs of any size, a novel framework that enables extremely low-bit quantization of LLMs while preserving their linguistic reasoning capabilities. A distinctive feature of SDQ-LLM is the continuous adjustability of the Over-Sampling Ratio (OSR), enabling dynamic adaptation to memory or VRAM constraints by selecting fractional OSR (e.g. 2.5 times) for an optimal trade-off between model size and accuracy. SDQ-LLM uses upsampling combined with Sigma-Delta Quantizer to binarize or ternarize LLMs weights, encoding high-precision parameters into 1-bit or 1.58-bit representations, replacing the multiplication operations within linear layers with addition. This approach significantly enhances inference efficiency under extremely low-bit quantization. To further reduce the loss of quantization precision, we incorporate Hadamard-based weight smoothing prior to quantization, improving the stability and robustness of the weight representations. Furthermore, to fully leverage the continuity of the OSR and reduce precision loss, recognizing the correlation between quantization sensitivity and weight variance, we propose a fine-grained, layer- and linear-wise OSR allocation strategy, MultiOSR. This strategy distributes OSR both across layers and within each layer, based on weight variance and parameter scale. Finally, extensive experiments on OPT and LLaMA model families demonstrate that SDQ-LLM achieves a more efficient and high-precision performance even under highly aggressive low-OSR settings. Our code is available at https://github.com/Dreamlittlecat/LLM-Quant-Factory.

Authors:Tianao Zhang, Zhiteng Li, Xianglong Yan, Haotong Qin, Yong Guo, Yulun Zhang
Title: Quant-dLLM: Post-Training Extreme Low-Bit Quantization for Diffusion Large Language Models
Abstract:
Diffusion large language models (dLLMs), which offer bidirectional context and flexible masked-denoising generation, are emerging as a compelling alternative to autoregressive (AR) LLMs. However, like AR LLMs, their model sizes continue to grow, motivating weight compression for deployment. Although post-training quantization (PTQ) is effective for AR LLMs, directly transferring it to dLLMs at 2-bit leads to unsatisfactory performance. To tackle these challenges, we propose Quant-dLLM, an ultra-low-bit PTQ framework tailored to dLLMs. Since masked-denoising activations in dLLMs differ from the fully visible signals assumed by standard PTQ methods, we introduce Masked Calibration Simulation (MCS) to align calibration with the timestep-dependent masking, which yields more reliable calibrations. Moreover, we propose a Data-aware Any-order Quantizer (DAQ) that learns ultra-low-bit weight representations via an optimization algorithm. It performs iterative approximation guided by our simulated calibration data. In addition, under a strict 2-bit budget, we introduce Adaptive Blockwise Mixed Precision (ABMP), a sensitivity-based precision allocation scheme that adaptively assigns bit width across channel groups. When restricted to 2-bit precision, Quant-dLLM consistently achieves higher accuracy than state-of-the-art (SOTA) AR-transfer PTQ methods on dLLMs. The code and models will be available at: https://github.com/ZTA2785/Quant-dLLM.

Authors:Chenhao Ye, Ming Tang
Title: Learning without Global Backpropagation via Synergistic Information Distillation
Abstract:
Backpropagation (BP), while foundational to deep learning, imposes two critical scalability bottlenecks: update locking, where network modules remain idle until the entire backward pass completes, and high memory consumption due to storing activations for gradient computation. To address these limitations, we introduce Synergistic Information Distillation (SID), a novel training framework that reframes deep learning as a cascade of local cooperative refinement problems. In SID, a deep network is structured as a pipeline of modules, each imposed with a local objective to refine a probabilistic belief about the ground-truth target. This objective balances fidelity to the target with consistency to the belief from its preceding module. By decoupling the backward dependencies between modules, SID enables parallel training and hence eliminates update locking and drastically reduces memory requirements. Meanwhile, this design preserves the standard feed-forward inference pass, making SID a versatile drop-in replacement for BP. We provide a theoretical foundation, proving that SID guarantees monotonic performance improvement with network depth. Empirically, SID consistently matches or surpasses the classification accuracy of BP, exhibiting superior scalability and pronounced robustness to label noise.Code is available at: https://github.com/ychAlbert/sid-bp

Authors:Zi Liang, Zhiyao Wu, Haoyang Shang, Yulin Jin, Qingqing Ye, Huadi Zheng, Peizhao Hu, Haibo Hu
Title: Decision Potential Surface: A Theoretical and Practical Approximation of LLM's Decision Boundary
Abstract:
Decision boundary, the subspace of inputs where a machine learning model assigns equal classification probabilities to two classes, is pivotal in revealing core model properties and interpreting behaviors. While analyzing the decision boundary of large language models (LLMs) has raised increasing attention recently, constructing it for mainstream LLMs remains computationally infeasible due to the enormous vocabulary-sequence sizes and the auto-regressive nature of LLMs. To address this issue, in this paper we propose Decision Potential Surface (DPS), a new notion for analyzing LLM decision boundary. DPS is defined on the confidences in distinguishing different sampling sequences for each input, which naturally captures the potential of decision boundary. We prove that the zero-height isohypse in DPS is equivalent to the decision boundary of an LLM, with enclosed regions representing decision regions. By leveraging DPS, for the first time in the literature, we propose an approximate decision boundary construction algorithm, namely $K$-DPS, which only requires K-finite times of sequence sampling to approximate an LLM's decision boundary with negligible error. We theoretically derive the upper bounds for the absolute error, expected error, and the error concentration between K-DPS and the ideal DPS, demonstrating that such errors can be trade-off with sampling times. Our results are empirically validated by extensive experiments across various LLMs and corpora.

Authors:Xianglong Yan, Chengzhu Bao, Zhiteng Li, Tianao Zhang, Kaicheng Yang, Haotong Qin, Ruobing Xie, Xingwu Sun, Yulun Zhang
Title: PT$^2$-LLM: Post-Training Ternarization for Large Language Models
Abstract:
Large Language Models (LLMs) have shown impressive capabilities across diverse tasks, but their large memory and compute demands hinder deployment. Ternarization has gained attention as a promising compression technique, delivering substantial size reduction and high computational efficiency. However, its potential in the post-training quantization (PTQ) setting remains underexplored, due to the challenge of training-free parameter optimization and the quantization difficulty posed by outliers and dispersed weights. To address these issues, we propose PT$^2$-LLM, a post-training ternarization framework tailored for LLMs. At its core is an Asymmetric Ternary Quantizer equipped with a two-stage refinement pipeline: (1) Iterative Ternary Fitting (ITF), which alternates between optimal ternary grid construction and flexible rounding to minimize quantization error, and (2) Activation-aware Grid Alignment (AGA), which further refines the ternary grid to better match full-precision outputs. In addition, we propose a plug-and-play Structural Similarity-based Reordering (SSR) strategy that leverages inter-column structural similarity to ease quantization and mitigate outlier effects, further enhancing overall performance. Extensive experiments demonstrate that PT$^2$-LLM delivers competitive performance against state-of-the-art (SOTA) 2-bit PTQ methods with lower memory cost, while also accelerating both prefill and decoding to achieve end-to-end speedup. The code and models will be available at https://github.com/XIANGLONGYAN/PT2-LLM.

Authors:Juan Jose Herrera-Aranda, Guillermo Gomez-Trenado, Francisco Herrera, Isaac Triguero
Title: Semantic-Inductive Attribute Selection for Zero-Shot Learning
Abstract:
Zero-Shot Learning is an important paradigm within General-Purpose Artificial Intelligence Systems, particularly in those that operate in open-world scenarios where systems must adapt to new tasks dynamically. Semantic spaces play a pivotal role as they bridge seen and unseen classes, but whether human-annotated or generated by a machine learning model, they often contain noisy, redundant, or irrelevant attributes that hinder performance. To address this, we introduce a partitioning scheme that simulates unseen conditions in an inductive setting (which is the most challenging), allowing attribute relevance to be assessed without access to semantic information from unseen classes. Within this framework, we study two complementary feature-selection strategies and assess their generalisation. The first adapts embedded feature selection to the particular demands of ZSL, turning model-driven rankings into meaningful semantic pruning; the second leverages evolutionary computation to directly explore the space of attribute subsets more broadly. Experiments on five benchmark datasets (AWA2, CUB, SUN, aPY, FLO) show that both methods consistently improve accuracy on unseen classes by reducing redundancy, but in complementary ways: RFS is efficient and competitive though dependent on critical hyperparameters, whereas GA is more costly yet explores the search space more broadly and avoids such dependence. These results confirm that semantic spaces are inherently redundant and highlight the proposed partitioning scheme as an effective tool to refine them under inductive conditions.

Authors:Chang'an Yi, Xiaohui Deng, Shuaicheng Niu, Yan Zhou
Title: POEM: Explore Unexplored Reliable Samples to Enhance Test-Time Adaptation
Abstract:
Test-time adaptation (TTA) aims to transfer knowledge from a source model to unknown test data with potential distribution shifts in an online manner. Many existing TTA methods rely on entropy as a confidence metric to optimize the model. However, these approaches are sensitive to the predefined entropy threshold, influencing which samples are chosen for model adaptation. Consequently, potentially reliable target samples are often overlooked and underutilized. For instance, a sample's entropy might slightly exceed the threshold initially, but fall below it after the model is updated. Such samples can provide stable supervised information and offer a normal range of gradients to guide model adaptation. In this paper, we propose a general approach, \underline{POEM}, to promote TTA via ex\underline{\textbf{p}}loring the previously unexpl\underline{\textbf{o}}red reliabl\underline{\textbf{e}} sa\underline{\textbf{m}}ples. Additionally, we introduce an extra Adapt Branch network to strike a balance between extracting domain-agnostic representations and achieving high performance on target data. Comprehensive experiments across multiple architectures demonstrate that POEM consistently outperforms existing TTA methods in both challenging scenarios and real-world domain shifts, while remaining computationally efficient. The effectiveness of POEM is evaluated through extensive analyses and thorough ablation studies. Moreover, the core idea behind POEM can be employed as an augmentation strategy to boost the performance of existing TTA approaches. The source code is publicly available at \emph{https://github.com/ycarobot/POEM}

Authors:Zijian Zhao, Sen Li
Title: Triple-BERT: Do We Really Need MARL for Order Dispatch on Ride-Sharing Platforms?
Abstract:
On-demand ride-sharing platforms, such as Uber and Lyft, face the intricate real-time challenge of bundling and matching passengers-each with distinct origins and destinations-to available vehicles, all while navigating significant system uncertainties. Due to the extensive observation space arising from the large number of drivers and orders, order dispatching, though fundamentally a centralized task, is often addressed using Multi-Agent Reinforcement Learning (MARL). However, independent MARL methods fail to capture global information and exhibit poor cooperation among workers, while Centralized Training Decentralized Execution (CTDE) MARL methods suffer from the curse of dimensionality. To overcome these challenges, we propose Triple-BERT, a centralized Single Agent Reinforcement Learning (MARL) method designed specifically for large-scale order dispatching on ride-sharing platforms. Built on a variant TD3, our approach addresses the vast action space through an action decomposition strategy that breaks down the joint action probability into individual driver action probabilities. To handle the extensive observation space, we introduce a novel BERT-based network, where parameter reuse mitigates parameter growth as the number of drivers and orders increases, and the attention mechanism effectively captures the complex relationships among the large pool of driver and orders. We validate our method using a real-world ride-hailing dataset from Manhattan. Triple-BERT achieves approximately an 11.95% improvement over current state-of-the-art methods, with a 4.26% increase in served orders and a 22.25% reduction in pickup times. Our code, trained model parameters, and processed data are publicly available at the repository https://github.com/RS2002/Triple-BERT .

Authors:Talha Ahmed, Nehal Ahmed Shaikh, Hassan Mohy-ud-Din
Title: Wave-GMS: Lightweight Multi-Scale Generative Model for Medical Image Segmentation
Abstract:
For equitable deployment of AI tools in hospitals and healthcare facilities, we need Deep Segmentation Networks that offer high performance and can be trained on cost-effective GPUs with limited memory and large batch sizes. In this work, we propose Wave-GMS, a lightweight and efficient multi-scale generative model for medical image segmentation. Wave-GMS has a substantially smaller number of trainable parameters, does not require loading memory-intensive pretrained vision foundation models, and supports training with large batch sizes on GPUs with limited memory. We conducted extensive experiments on four publicly available datasets (BUS, BUSI, Kvasir-Instrument, and HAM10000), demonstrating that Wave-GMS achieves state-of-the-art segmentation performance with superior cross-domain generalizability, while requiring only ~2.6M trainable parameters. Code is available at https://github.com/ATPLab-LUMS/Wave-GMS.

Authors:Yoontae Hwang, Stefan Zohren
Title: Signature-Informed Transformer for Asset Allocation
Abstract:
Robust asset allocation is a key challenge in quantitative finance, where deep-learning forecasters often fail due to objective mismatch and error amplification. We introduce the Signature-Informed Transformer (SIT), a novel framework that learns end-to-end allocation policies by directly optimizing a risk-aware financial objective. SIT's core innovations include path signatures for a rich geometric representation of asset dynamics and a signature-augmented attention mechanism embedding financial inductive biases, like lead-lag effects, into the model. Evaluated on daily S\&P 100 equity data, SIT decisively outperforms traditional and deep-learning baselines, especially when compared to predict-then-optimize models. These results indicate that portfolio-aware objectives and geometry-aware inductive biases are essential for risk-aware capital allocation in machine-learning systems. The code is available at: https://github.com/Yoontae6719/Signature-Informed-Transformer-For-Asset-Allocation

Authors:Jamison Meindl, Yunsheng Tian, Tony Cui, Veronika Thost, Zhang-Wei Hong, Johannes Dürholt, Jie Chen, Wojciech Matusik, Mina Konaković Luković
Title: ZeroShotOpt: Towards Zero-Shot Pretrained Models for Efficient Black-Box Optimization
Abstract:
Global optimization of expensive, derivative-free black-box functions requires extreme sample efficiency. While Bayesian optimization (BO) is the current state-of-the-art, its performance hinges on surrogate and acquisition function hyper-parameters that are often hand-tuned and fail to generalize across problem landscapes. We present ZeroShotOpt, a general-purpose, pretrained model for continuous black-box optimization tasks ranging from 2D to 20D. Our approach leverages offline reinforcement learning on large-scale optimization trajectories collected from 12 BO variants. To scale pretraining, we generate millions of synthetic Gaussian process-based functions with diverse landscapes, enabling the model to learn transferable optimization policies. As a result, ZeroShotOpt achieves robust zero-shot generalization on a wide array of unseen benchmarks, matching or surpassing the sample efficiency of leading global optimizers, including BO, while also offering a reusable foundation for future extensions and improvements. Our open-source code, dataset, and model are available at: https://github.com/jamisonmeindl/zeroshotopt

Authors:Tianzheng Hu, Qiang Li, Shu Liu, Vince D. Calhoun, Guido van Wingen, Shujian Yu
Title: BrainIB++: Leveraging Graph Neural Networks and Information Bottleneck for Functional Brain Biomarkers in Schizophrenia
Abstract:
The development of diagnostic models is gaining traction in the field of psychiatric disorders. Recently, machine learning classifiers based on resting-state functional magnetic resonance imaging (rs-fMRI) have been developed to identify brain biomarkers that differentiate psychiatric disorders from healthy controls. However, conventional machine learning-based diagnostic models often depend on extensive feature engineering, which introduces bias through manual intervention. While deep learning models are expected to operate without manual involvement, their lack of interpretability poses significant challenges in obtaining explainable and reliable brain biomarkers to support diagnostic decisions, ultimately limiting their clinical applicability. In this study, we introduce an end-to-end innovative graph neural network framework named BrainIB++, which applies the information bottleneck (IB) principle to identify the most informative data-driven brain regions as subgraphs during model training for interpretation. We evaluate the performance of our model against nine established brain network classification methods across three multi-cohort schizophrenia datasets. It consistently demonstrates superior diagnostic accuracy and exhibits generalizability to unseen data. Furthermore, the subgraphs identified by our model also correspond with established clinical biomarkers in schizophrenia, particularly emphasizing abnormalities in the visual, sensorimotor, and higher cognition brain functional network. This alignment enhances the model's interpretability and underscores its relevance for real-world diagnostic applications.

Authors:Wei Fan, Kejiang Chen, Xiangkun Wang, Weiming Zhang, Nenghai Yu
Title: WavInWav: Time-domain Speech Hiding via Invertible Neural Network
Abstract:
Data hiding is essential for secure communication across digital media, and recent advances in Deep Neural Networks (DNNs) provide enhanced methods for embedding secret information effectively. However, previous audio hiding methods often result in unsatisfactory quality when recovering secret audio, due to their inherent limitations in the modeling of time-frequency relationships. In this paper, we explore these limitations and introduce a new DNN-based approach. We use a flow-based invertible neural network to establish a direct link between stego audio, cover audio, and secret audio, enhancing the reversibility of embedding and extracting messages. To address common issues from time-frequency transformations that degrade secret audio quality during recovery, we implement a time-frequency loss on the time-domain signal. This approach not only retains the benefits of time-frequency constraints but also enhances the reversibility of message recovery, which is vital for practical applications. We also add an encryption technique to protect the hidden data from unauthorized access. Experimental results on the VCTK and LibriSpeech datasets demonstrate that our method outperforms previous approaches in terms of subjective and objective metrics and exhibits robustness to various types of noise, suggesting its utility in targeted secure communication scenarios.

Authors:Tianren Ma, Mu Zhang, Yibing Wang, Qixiang Ye
Title: Consolidating Reinforcement Learning for Multimodal Discrete Diffusion Models
Abstract:
Optimizing discrete diffusion model (DDM) with rewards remains a challenge: the non-autoregressive paradigm makes importance sampling intractable and rollout complex, puzzling reinforcement learning methods such as Group Relative Policy Optimization (GRPO). In this study, we introduce MaskGRPO, the first viable approach to enable scalable multimodal reinforcement learning in discrete diffusion with effective importance sampling and modality-specific adaptations. To this end, we first clarify the theoretical foundation for DDMs, which facilitates building an importance estimator that captures valuable token fluctuation for gradient updates. We then delicately tailored the rollout method for visual sequences, which yields diverse completions and reliable optimization gradients. Upon math reasoning, coding, and visual generation benchmarks, MaskGRPO brings more stable and efficient updates, leading to stronger reasoning performance and better generation quality. This study establishes MaskGRPO as a systematic policy optimization approach and the first practical way for discretized visual diffusion.

Authors:Jahidul Arafat, Fariha Tasmin, Sanjaya Poudel, Kamrujjaman, Eftakhar Ahmed Arnob, Ahsan Habib Tareq
Title: Constraint Satisfaction Approaches to Wordle: Novel Heuristics and Cross-Lexicon Validation
Abstract:
Wordle presents an algorithmically rich testbed for constraint satisfaction problem (CSP) solving. While existing solvers rely on information-theoretic entropy maximization or frequency-based heuristics without formal constraint treatment, we present the first comprehensive CSP formulation of Wordle with novel constraint-aware solving strategies. We introduce CSP-Aware Entropy, computing information gain after constraint propagation rather than on raw candidate sets, and a Probabilistic CSP framework integrating Bayesian word-frequency priors with logical constraints. Through evaluation on 2,315 English words, CSP-Aware Entropy achieves 3.54 average guesses with 99.9% success rate, a statistically significant 1.7% improvement over Forward Checking (t=-4.82, p<0.001, Cohen's d=0.07) with 46% faster runtime (12.9ms versus 23.7ms per guess). Under 10% noise, CSP-aware approaches maintain 5.3 percentage point advantages (29.0% versus 23.7%, p=0.041), while Probabilistic CSP achieves 100% success across all noise levels (0-20%) through constraint recovery mechanisms. Cross-lexicon validation on 500 Spanish words demonstrates 88% success with zero language-specific tuning, validating that core CSP principles transfer across languages despite an 11.2 percentage point gap from linguistic differences (p<0.001, Fisher's exact test). Our open-source implementation with 34 unit tests achieving 91% code coverage provides reproducible infrastructure for CSP research. The combination of formal CSP treatment, constraint-aware heuristics, probabilistic-logical integration, robustness analysis, and cross-lexicon validation establishes new performance benchmarks demonstrating that principled constraint satisfaction techniques outperform classical information-theoretic and learning-based approaches for structured puzzle-solving domains.

Authors:Yoshihiko Ozaki, Shuhei Watanabe, Toshihiko Yanase
Title: OptunaHub: A Platform for Black-Box Optimization
Abstract:
Black-box optimization (BBO) drives advances in domains such as AutoML and Materials Informatics, yet research efforts often remain fragmented across domains. We introduce OptunaHub (https://hub.optuna.org/), a community platform that centralizes BBO methods and benchmarks. OptunaHub provides unified Python APIs, a contributor package registry, and a web interface to promote searchability and cross-domain research. OptunaHub aims to foster a virtuous cycle of contributions and applications. The source code is publicly available in the optunahub, optunahub-registry, and optunahub-web repositories under the Optuna organization on GitHub (https://github.com/optuna/).

Authors:Jingyuan Deng, Yujiu Yang
Title: MaskCD: Mitigating LVLM Hallucinations by Image Head Masked Contrastive Decoding
Abstract:
Large vision-language models (LVLMs) have shown remarkable performance in visual-language understanding for downstream multimodal tasks. While their capabilities are improving, problems emerge simultaneously. Among those problems, the hallucinations have attracted much attention, which stands for the phenomenon where LVLMs generate contradictory content to their input visual and text contents. Many approaches have been proposed to deal with this issue, such as contrastive decoding and attention manipulation. However, contrastive decoding methods struggle in constructing appropriate contrastive samples, and attention manipulation methods are highly sensitive, lacking stability. In this work, we propose image head Masked Contrastive Decoding (MaskCD). Our approach utilizes the "image heads" in LVLMs, masking them to construct contrastive samples for contrastive decoding. We evaluated MaskCD on LLaVA-1.5-7b and Qwen-VL-7b, using various benchmarks such as CHAIR, POPE, AMBER and MME. The results demonstrate that MaskCD effectively alleviates the phenomenon of hallucinations and retains the general capabilities of LVLMs. Corresponding resources could be found at: https://github.com/Deng-Jingyuan/MaskCD .

Authors:Ara Seo, Bryan Sangwoo Kim, Hyungjin Chung, Jong Chul Ye
Title: Align Your Query: Representation Alignment for Multimodality Medical Object Detection
Abstract:
Medical object detection suffers when a single detector is trained on mixed medical modalities (e.g., CXR, CT, MRI) due to heterogeneous statistics and disjoint representation spaces. To address this challenge, we turn to representation alignment, an approach that has proven effective for bringing features from different sources into a shared space. Specifically, we target the representations of DETR-style object queries and propose a simple, detector-agnostic framework to align them with modality context. First, we define modality tokens: compact, text-derived embeddings encoding imaging modality that are lightweight and require no extra annotations. We integrate the modality tokens into the detection process via Multimodality Context Attention (MoCA), mixing object-query representations via self-attention to propagate modality context within the query set. This preserves DETR-style architectures and adds negligible latency while injecting modality cues into object queries. We further introduce QueryREPA, a short pretraining stage that aligns query representations to their modality tokens using a task-specific contrastive objective with modality-balanced batches. Together, MoCA and QueryREPA produce modality-aware, class-faithful queries that transfer effectively to downstream training. Across diverse modalities trained altogether, the proposed approach consistently improves AP with minimal overhead and no architectural modifications, offering a practical path toward robust multimodality medical object detection. Project page: https://araseo.github.io/alignyourquery/.

Authors:Kai Fukazawa, Kunal Mundada, Iman Soltani
Title: RAMAC: Multimodal Risk-Aware Offline Reinforcement Learning and the Role of Behavior Regularization
Abstract:
In safety-critical domains where online data collection is infeasible, offline reinforcement learning (RL) offers an attractive alternative but only if policies deliver high returns without incurring catastrophic lower-tail risk. Prior work on risk-averse offline RL achieves safety at the cost of value conservatism and restricted policy classes, whereas expressive policies are only used in risk-neutral settings. Here, we address this gap by introducing the \textbf{Risk-Aware Multimodal Actor-Critic (RAMAC)} framework, which couples an \emph{expressive generative actor} with a distributional critic. The RAMAC differentiates composite objective combining distributional risk and BC loss through the generative path, achieving risk-sensitive learning in complex multimodal scenarios. We instantiate RAMAC with diffusion and flow-matching actors and observe consistent gains in $\mathrm{CVaR}_{0.1}$ while maintaining strong returns on most Stochastic-D4RL tasks. Code: https://github.com/KaiFukazawa/RAMAC.git

Authors:Sung-Yeon Park, Adam Lee, Juanwu Lu, Can Cui, Luyang Jiang, Rohit Gupta, Kyungtae Han, Ahmadreza Moradipari, Ziran Wang
Title: SIMSplat: Predictive Driving Scene Editing with Language-aligned 4D Gaussian Splatting
Abstract:
Driving scene manipulation with sensor data is emerging as a promising alternative to traditional virtual driving simulators. However, existing frameworks struggle to generate realistic scenarios efficiently due to limited editing capabilities. To address these challenges, we present SIMSplat, a predictive driving scene editor with language-aligned Gaussian splatting. As a language-controlled editor, SIMSplat enables intuitive manipulation using natural language prompts. By aligning language with Gaussian-reconstructed scenes, it further supports direct querying of road objects, allowing precise and flexible editing. Our method provides detailed object-level editing, including adding new objects and modifying the trajectories of both vehicles and pedestrians, while also incorporating predictive path refinement through multi-agent motion prediction to generate realistic interactions among all agents in the scene. Experiments on the Waymo dataset demonstrate SIMSplat's extensive editing capabilities and adaptability across a wide range of scenarios. Project page: https://sungyeonparkk.github.io/simsplat/

Authors:Zilai Li
Title: Hyperparameters are all you need: Using five-step inference for an original diffusion model to generate images comparable to the latest distillation model
Abstract:
The diffusion model is a state-of-the-art generative model that generates an image by applying a neural network iteratively. Moreover, this generation process is regarded as an algorithm solving an ordinary differential equation or a stochastic differential equation. Based on the analysis of the truncation error of the diffusion ODE and SDE, our study proposes a training-free algorithm that generates high-quality 512 x 512 and 1024 x 1024 images in eight steps, with flexible guidance scales. To the best of my knowledge, our algorithm is the first one that samples a 1024 x 1024 resolution image in 8 steps with an FID performance comparable to that of the latest distillation model, but without additional training. Meanwhile, our algorithm can also generate a 512 x 512 image in 8 steps, and its FID performance is better than the inference result using state-of-the-art ODE solver DPM++ 2m in 20 steps. We validate our eight-step image generation algorithm using the COCO 2014, COCO 2017, and LAION datasets. And our best FID performance is 15.7, 22.35, and 17.52. While the FID performance of DPM++2m is 17.3, 23.75, and 17.33. Further, it also outperforms the state-of-the-art AMED-plugin solver, whose FID performance is 19.07, 25.50, and 18.06. We also apply the algorithm in five-step inference without additional training, for which the best FID performance in the datasets mentioned above is 19.18, 23.24, and 19.61, respectively, and is comparable to the performance of the state-of-the-art AMED Pulgin solver in eight steps, SDXL-turbo in four steps, and the state-of-the-art diffusion distillation model Flash Diffusion in five steps. We also validate our algorithm in synthesizing 1024 * 1024 images within 6 steps, whose FID performance only has a limited distance to the latest distillation algorithm. The code is in repo: https://github.com/TheLovesOfLadyPurple/Hyperparameters-are-all-you-need

Authors:Qianshan Wei, Tengchao Yang, Yaochen Wang, Xinfeng Li, Lijun Li, Zhenfei Yin, Yi Zhan, Thorsten Holz, Zhiqiang Lin, XiaoFeng Wang
Title: A-MemGuard: A Proactive Defense Framework for LLM-Based Agent Memory
Abstract:
Large Language Model (LLM) agents use memory to learn from past interactions, enabling autonomous planning and decision-making in complex environments. However, this reliance on memory introduces a critical security risk: an adversary can inject seemingly harmless records into an agent's memory to manipulate its future behavior. This vulnerability is characterized by two core aspects: First, the malicious effect of injected records is only activated within a specific context, making them hard to detect when individual memory entries are audited in isolation. Second, once triggered, the manipulation can initiate a self-reinforcing error cycle: the corrupted outcome is stored as precedent, which not only amplifies the initial error but also progressively lowers the threshold for similar attacks in the future. To address these challenges, we introduce A-MemGuard (Agent-Memory Guard), the first proactive defense framework for LLM agent memory. The core idea of our work is the insight that memory itself must become both self-checking and self-correcting. Without modifying the agent's core architecture, A-MemGuard combines two mechanisms: (1) consensus-based validation, which detects anomalies by comparing reasoning paths derived from multiple related memories and (2) a dual-memory structure, where detected failures are distilled into ``lessons'' stored separately and consulted before future actions, breaking error cycles and enabling adaptation. Comprehensive evaluations on multiple benchmarks show that A-MemGuard effectively cuts attack success rates by over 95% while incurring a minimal utility cost. This work shifts LLM memory security from static filtering to a proactive, experience-driven model where defenses strengthen over time. Our code is available in https://github.com/TangciuYueng/AMemGuard

Authors:Hamed Fard, Tobias Schalau, Gerhard Wunder
Title: An Investigation into the Performance of Non-Contrastive Self-Supervised Learning Methods for Network Intrusion Detection
Abstract:
Network intrusion detection, a well-explored cybersecurity field, has predominantly relied on supervised learning algorithms in the past two decades. However, their limitations in detecting only known anomalies prompt the exploration of alternative approaches. Motivated by the success of self-supervised learning in computer vision, there is a rising interest in adapting this paradigm for network intrusion detection. While prior research mainly delved into contrastive self-supervised methods, the efficacy of non-contrastive methods, in conjunction with encoder architectures serving as the representation learning backbone and augmentation strategies that determine what is learned, remains unclear for effective attack detection. This paper compares the performance of five non-contrastive self-supervised learning methods using three encoder architectures and six augmentation strategies. Ninety experiments are systematically conducted on two network intrusion detection datasets, UNSW-NB15 and 5G-NIDD. For each self-supervised model, the combination of encoder architecture and augmentation method yielding the highest average precision, recall, F1-score, and AUCROC is reported. Furthermore, by comparing the best-performing models to two unsupervised baselines, DeepSVDD, and an Autoencoder, we showcase the competitiveness of the non-contrastive methods for attack detection. Code at: https://github.com/renje4z335jh4/non_contrastive_SSL_NIDS

Authors:Yifan Wang, Bolian Li, Junlin Wu, Zhaoxuan Tan, Zheli Liu, Ruqi Zhang, Ananth Grama, Qingkai Zeng
Title: DRIFT: Learning from Abundant User Dissatisfaction in Real-World Preference Learning
Abstract:
Real-world large language model deployments (e.g., conversational AI systems, code generation assistants) naturally generate abundant implicit user dissatisfaction (DSAT) signals, as users iterate toward better answers through refinements, corrections, and expressed preferences, while explicit satisfaction (SAT) feedback is scarce. Existing preference learning approaches are poorly aligned with this data profile, as they rely on costly human annotations or assume plentiful positive responses. In this paper, we introduce \textbf{DRIFT} (\textbf{D}issatisfaction-\textbf{R}efined \textbf{I}terative pre\textbf{F}erence \textbf{T}raining), which anchors training on real-world DSAT signals and samples positives dynamically from the evolving policy. Empirically, DRIFT models trained on real-world \textit{WildFeedback} datasets and synthetic \textit{UltraFeedback} datasets achieve up to +6.23\% (7B) / +7.61\% (14B) on WildBench Task Score and up to +8.95\% (7B) / +12.29\% (14B) on AlpacaEval2 win rate over base models, outperforming strong baseline methods such as iterative DPO and SPIN. At larger scales, the improvements are particularly pronounced: 14B models trained with DRIFT surpass GPT-4o-mini on WildBench. Further analysis shows that DRIFT also preserves exploratory capacity, yielding more diverse high-reward solutions rather than collapsing to narrow subsets. Theoretically, we demonstrate that this design preserves preference margins and avoids the gradient degeneration. These results show that DRIFT is an effective and scalable recipe for real-world post-training that leverages the most abundant and informative signal. The code and data are available at https://github.com/cacayaya/DRIFT.git.

Authors:Zhe Li, Wei Zhao, Yige Li, Jun Sun
Title: Where Did It Go Wrong? Attributing Undesirable LLM Behaviors via Representation Gradient Tracing
Abstract:
Large Language Models (LLMs) have demonstrated remarkable capabilities, yet their deployment is frequently undermined by undesirable behaviors such as generating harmful content, factual inaccuracies, and societal biases. Diagnosing the root causes of these failures poses a critical challenge for AI safety. Existing attribution methods, particularly those based on parameter gradients, often fall short due to prohibitive noisy signals and computational complexity. In this work, we introduce a novel and efficient framework that diagnoses a range of undesirable LLM behaviors by analyzing representation and its gradients, which operates directly in the model's activation space to provide a semantically meaningful signal linking outputs to their training data. We systematically evaluate our method for tasks that include tracking harmful content, detecting backdoor poisoning, and identifying knowledge contamination. The results demonstrate that our approach not only excels at sample-level attribution but also enables fine-grained token-level analysis, precisely identifying the specific samples and phrases that causally influence model behavior. This work provides a powerful diagnostic tool to understand, audit, and ultimately mitigate the risks associated with LLMs. The code is available at https://github.com/plumprc/RepT.

Authors:Ziqing Wang, Chengsheng Mao, Xiaole Wen, Yuan Luo, Kaize Ding
Title: AMANDA: Agentic Medical Knowledge Augmentation for Data-Efficient Medical Visual Question Answering
Abstract:
Medical Multimodal Large Language Models (Med-MLLMs) have shown great promise in medical visual question answering (Med-VQA). However, when deployed in low-resource settings where abundant labeled data are unavailable, existing Med-MLLMs commonly fail due to their medical reasoning capability bottlenecks: (i) the intrinsic reasoning bottleneck that ignores the details from the medical image; (ii) the extrinsic reasoning bottleneck that fails to incorporate specialized medical knowledge. To address those limitations, we propose AMANDA, a training-free agentic framework that performs medical knowledge augmentation via LLM agents. Specifically, our intrinsic medical knowledge augmentation focuses on coarse-to-fine question decomposition for comprehensive diagnosis, while extrinsic medical knowledge augmentation grounds the reasoning process via biomedical knowledge graph retrieval. Extensive experiments across eight Med-VQA benchmarks demonstrate substantial improvements in both zero-shot and few-shot Med-VQA settings. The code is available at https://github.com/REAL-Lab-NU/AMANDA.

Authors:Enxin Song, Wenhao Chai, Shusheng Yang, Ethan Armand, Xiaojun Shan, Haiyang Xu, Jianwen Xie, Zhuowen Tu
Title: VideoNSA: Native Sparse Attention Scales Video Understanding
Abstract:
Video understanding in multimodal language models remains limited by context length: models often miss key transition frames and struggle to maintain coherence across long time scales. To address this, we adapt Native Sparse Attention (NSA) to video-language models. Our method, VideoNSA, adapts Qwen2.5-VL through end-to-end training on a 216K video instruction dataset. We employ a hardware-aware hybrid approach to attention, preserving dense attention for text, while employing NSA for video. Compared to token-compression and training-free sparse baselines, VideoNSA achieves improved performance on long-video understanding, temporal reasoning, and spatial benchmarks. Further ablation analysis reveals four key findings: (1) reliable scaling to 128K tokens; (2) an optimal global-local attention allocation at a fixed budget; (3) task-dependent branch usage patterns; and (4) the learnable combined sparse attention help induce dynamic attention sinks.

Authors:Sathira Silva, Eman Ali, Chetan Arora, Muhammad Haris Khan
Title: microCLIP: Unsupervised CLIP Adaptation via Coarse-Fine Token Fusion for Fine-Grained Image Classification
Abstract:
Unsupervised adaptation of CLIP-based vision-language models (VLMs) for fine-grained image classification requires sensitivity to microscopic local cues. While CLIP exhibits strong zero-shot transfer, its reliance on coarse global features restricts its performance on fine-grained classification tasks. Prior efforts inject fine-grained knowledge by aligning large language model (LLM) descriptions with the CLIP $\texttt{[CLS]}$ token; however, this approach overlooks spatial precision. We propose $\textbf{microCLIP}$, a self-training framework that jointly refines CLIP's visual and textual representations using fine-grained cues. At its core is Saliency-Oriented Attention Pooling (SOAP) within a lightweight TokenFusion module, which builds a saliency-guided $\texttt{[FG]}$ token from patch embeddings and fuses it with the global $\texttt{[CLS]}$ token for coarse-fine alignment. To stabilize adaptation, we introduce a two-headed LLM-derived classifier: a frozen classifier that, via multi-view alignment, provides a stable text-based prior for pseudo-labeling, and a learnable classifier initialized from LLM descriptions and fine-tuned with TokenFusion. We further develop Dynamic Knowledge Aggregation, which convexly combines fixed LLM/CLIP priors with TokenFusion's evolving logits to iteratively refine pseudo-labels. Together, these components uncover latent fine-grained signals in CLIP, yielding a consistent $2.90\%$ average accuracy gain across 13 fine-grained benchmarks while requiring only light adaptation. Our code is available at https://github.com/sathiiii/microCLIP.

Authors:Phuc Minh Nguyen, Chinh D. La, Duy M. H. Nguyen, Nitesh V. Chawla, Binh T. Nguyen, Khoa D. Doan
Title: The Reasoning Boundary Paradox: How Reinforcement Learning Constrains Language Models
Abstract:
Reinforcement Learning with Verifiable Rewards (RLVR) has emerged as a key method for improving Large Language Models' reasoning capabilities, yet recent evidence suggests it may paradoxically shrink the reasoning boundary rather than expand it. This paper investigates the shrinkage issue of RLVR by analyzing its learning dynamics and reveals two critical phenomena that explain this failure. First, we expose negative interference in RLVR, where learning to solve certain training problems actively reduces the likelihood of correct solutions for others, leading to the decline of Pass@$k$ performance, or the probability of generating a correct solution within $k$ attempts. Second, we uncover the winner-take-all phenomenon: RLVR disproportionately reinforces problems with high likelihood, correct solutions, under the base model, while suppressing other initially low-likelihood ones. Through extensive theoretical and empirical analysis on multiple mathematical reasoning benchmarks, we show that this effect arises from the inherent on-policy sampling in standard RL objectives, causing the model to converge toward narrow solution strategies. Based on these insights, we propose a simple yet effective data curation algorithm that focuses RLVR learning on low-likelihood problems, achieving notable improvement in Pass@$k$ performance. Our code is available at https://github.com/mail-research/SELF-llm-interference.

Authors:Xiaoyang Yuan, Yujuan Ding, Yi Bin, Wenqi Shao, Jinyu Cai, Jingkuan Song, Yang Yang, Heng Tao Shen
Title: More Than One Teacher: Adaptive Multi-Guidance Policy Optimization for Diverse Exploration
Abstract:
Reinforcement Learning with Verifiable Rewards (RLVR) is a promising paradigm for enhancing the reasoning ability in Large Language Models (LLMs). However, prevailing methods primarily rely on self-exploration or a single off-policy teacher to elicit long chain-of-thought (LongCoT) reasoning, which may introduce intrinsic model biases and restrict exploration, ultimately limiting reasoning diversity and performance. Drawing inspiration from multi-teacher strategies in knowledge distillation, we introduce Adaptive Multi-Guidance Policy Optimization (AMPO), a novel framework that adaptively leverages guidance from multiple proficient teacher models, but only when the on-policy model fails to generate correct solutions. This "guidance-on-demand" approach expands exploration while preserving the value of self-discovery. Moreover, AMPO incorporates a comprehension-based selection mechanism, prompting the student to learn from the reasoning paths that it is most likely to comprehend, thus balancing broad exploration with effective exploitation. Extensive experiments show AMPO substantially outperforms a strong baseline (GRPO), with a 4.3% improvement on mathematical reasoning tasks and 12.2% on out-of-distribution tasks, while significantly boosting Pass@k performance and enabling more diverse exploration. Notably, using four peer-sized teachers, our method achieves comparable results to approaches that leverage a single, more powerful teacher (e.g., DeepSeek-R1) with more data. These results demonstrate a more efficient and scalable path to superior reasoning and generalizability. Our code is available at https://github.com/SII-Enigma/AMPO.

Authors:Jong Bum Won, Wesley De Neve, Joris Vankerschaver, Utku Ozbulak
Title: SpurBreast: A Curated Dataset for Investigating Spurious Correlations in Real-world Breast MRI Classification
Abstract:
Deep neural networks (DNNs) have demonstrated remarkable success in medical imaging, yet their real-world deployment remains challenging due to spurious correlations, where models can learn non-clinical features instead of meaningful medical patterns. Existing medical imaging datasets are not designed to systematically study this issue, largely due to restrictive licensing and limited supplementary patient data. To address this gap, we introduce SpurBreast, a curated breast MRI dataset that intentionally incorporates spurious correlations to evaluate their impact on model performance. Analyzing over 100 features involving patient, device, and imaging protocol, we identify two dominant spurious signals: magnetic field strength (a global feature influencing the entire image) and image orientation (a local feature affecting spatial alignment). Through controlled dataset splits, we demonstrate that DNNs can exploit these non-clinical signals, achieving high validation accuracy while failing to generalize to unbiased test data. Alongside these two datasets containing spurious correlations, we also provide benchmark datasets without spurious correlations, allowing researchers to systematically investigate clinically relevant and irrelevant features, uncertainty estimation, adversarial robustness, and generalization strategies. Models and datasets are available at https://github.com/utkuozbulak/spurbreast.

Authors:Guangyao Zhai, Yue Zhou, Xinyan Deng, Lars Heckler, Nassir Navab, Benjamin Busam
Title: Foundation Visual Encoders Are Secretly Few-Shot Anomaly Detectors
Abstract:
Few-shot anomaly detection streamlines and simplifies industrial safety inspection. However, limited samples make accurate differentiation between normal and abnormal features challenging, and even more so under category-agnostic conditions. Large-scale pre-training of foundation visual encoders has advanced many fields, as the enormous quantity of data helps to learn the general distribution of normal images. We observe that the anomaly amount in an image directly correlates with the difference in the learnt embeddings and utilize this to design a few-shot anomaly detector termed FoundAD. This is done by learning a nonlinear projection operator onto the natural image manifold. The simple operator acts as an effective tool for anomaly detection to characterize and identify out-of-distribution regions in an image. Extensive experiments show that our approach supports multi-class detection and achieves competitive performance while using substantially fewer parameters than prior methods. Backed up by evaluations with multiple foundation encoders, including fresh DINOv3, we believe this idea broadens the perspective on foundation features and advances the field of few-shot anomaly detection.

Authors:Madina Bekbergenova, Lucas Pradi, Benjamin Navet, Emma Tysinger, Franck Michel, Matthieu Feraud, Yousouf Taghzouti, Yan Zhou Chen, Olivier Kirchhoffer, Florence Mehl, Martin Legrand, Tao Jiang, Marco Pagni, Soha Hassoun, Jean-Luc Wolfender, Wout Bittremieux, Fabien Gandon, Louis-Félix Nothias
Title: MetaboT: AI-based agent for natural language-based interaction with metabolomics knowledge graphs
Abstract:
Mass spectrometry metabolomics generates vast amounts of data requiring advanced methods for interpretation. Knowledge graphs address these challenges by structuring mass spectrometry data, metabolite information, and their relationships into a connected network (Gaudry et al. 2024). However, effective use of a knowledge graph demands an in-depth understanding of its ontology and its query language syntax. To overcome this, we designed MetaboT, an AI system utilizing large language models (LLMs) to translate user questions into SPARQL semantic query language for operating on knowledge graphs (Steve Harris 2013). We demonstrate its effectiveness using the Experimental Natural Products Knowledge Graph (ENPKG), a large-scale public knowledge graph for plant natural products (Gaudry et al. 2024).MetaboT employs specialized AI agents for handling user queries and interacting with the knowledge graph by breaking down complex tasks into discrete components, each managed by a specialised agent (Fig. 1a). The multi-agent system is constructed using the LangChain and LangGraph libraries, which facilitate the integration of LLMs with external tools and information sources (LangChain, n.d.). The query generation process follows a structured workflow. First, the Entry Agent determines if the question is new or a follow-up to previous interactions. New questions are forwarded to the Validator Agent, which verifies if the question is related to the knowledge graph. Then, the valid question is sent to the Supervisor Agent, which identifies if the question requires chemical conversions or standardized identifiers. In this case it delegates the question to the Knowledge Graph Agent, which can use tools to extract necessary details, such as URIs or taxonomies of chemical names, from the user query. Finally, an agent responsible for crafting the SPARQL queries equipped with the ontology of the knowledge graph uses the provided identifiers to generate the query. Then, the system executes the generated query against the metabolomics knowledge graph and returns structured results to the user (Fig. 1b). To assess the performance of MetaboT we have curated 50 metabolomics-related questions and their expected answers. In addition to submitting these questions to MetaboT, we evaluated a baseline by submitting them to a standard LLM (GPT-4o) with a prompt that incorporated the knowledge graph ontology but did not provide specific entity IDs. This baseline achieved only 8.16% accuracy, compared to MetaboT's 83.67%, underscoring the necessity of our multi-agent system for accurately retrieving entities and generating correct SPARQL queries. MetaboT demonstrates promising performance as a conversational question-answering assistant, enabling researchers to retrieve structured metabolomics data through natural language queries. By automating the generation and execution of SPARQL queries, it removes technical barriers that have traditionally hindered access to knowledge graphs. Importantly, MetaboT leverages the capabilities of LLMs while maintaining experimentally grounded query generation, ensuring that outputs remain aligned with domain-specific standards and data structures. This approach facilitates data-driven discoveries by bridging the gap between complex semantic technologies and user-friendly interaction. MetaboT is accessible at [https://metabot.holobiomicslab.eu/], and its source code is available at [https://github.com/HolobiomicsLab/MetaboT].

Authors:Pierre Musacchio, Hyunmin Lee, Jaesik Park
Title: Holistic Order Prediction in Natural Scenes
Abstract:
Even in controlled settings, understanding instance-wise geometries is a challenging task for a wide range of visual models. Although specialized systems exist, modern arts rely on expensive input formats (category labels, binary segmentation masks) and inference costs (a quadratic amount of forward passes). We mitigate these limitations by proposing InstaFormer, a network capable of holistic order prediction. That is, solely given an input RGB image, InstaFormer returns the full occlusion and depth orderings for all the instances in the scene in a single forward pass. At its core, InstaFormer relies on interactions between object queries and latent mask descriptors that semantically represent the same objects while carrying complementary information. We comprehensively benchmark and ablate our approach to highlight its effectiveness. Our code and models are open-source and available at this URL: https://github.com/SNU-VGILab/InstaOrder.

Authors:Apoorv Khandelwal, Ellie Pavlick
Title: How Do Language Models Compose Functions?
Abstract:
While large language models (LLMs) appear to be increasingly capable of solving compositional tasks, it is an open question whether they do so using compositional mechanisms. In this work, we investigate how feedforward LLMs solve two-hop factual recall tasks, which can be expressed compositionally as $g(f(x))$. We first confirm that modern LLMs continue to suffer from the "compositionality gap": i.e. their ability to compute both $z = f(x)$ and $y = g(z)$ does not entail their ability to compute the composition $y = g(f(x))$. Then, using logit lens on their residual stream activations, we identify two processing mechanisms, one which solves tasks $\textit{compositionally}$, computing $f(x)$ along the way to computing $g(f(x))$, and one which solves them $\textit{directly}$, without any detectable signature of the intermediate variable $f(x)$. Finally, we find that which mechanism is employed appears to be related to the embedding space geometry, with the idiomatic mechanism being dominant in cases where there exists a linear mapping from $x$ to $g(f(x))$ in the embedding spaces. We fully release our data and code at: https://github.com/apoorvkh/composing-functions .

Authors:Motoki Sato, Yuki Matsushita, Hidekazu Takahashi, Tomoaki Kakazu, Sou Nagata, Mizuho Ohnuma, Atsushi Yoshikawa, Masayuki Yamamura
Title: A Locally Executable AI System for Improving Preoperative Patient Communication: A Multi-Domain Clinical Evaluation
Abstract:
Patients awaiting invasive procedures often have unanswered pre-procedural questions; however, time-pressured workflows and privacy constraints limit personalized counseling. We present LENOHA (Low Energy, No Hallucination, Leave No One Behind Architecture), a safety-first, local-first system that routes inputs with a high-precision sentence-transformer classifier and returns verbatim answers from a clinician-curated FAQ for clinical queries, eliminating free-text generation in the clinical path. We evaluated two domains (tooth extraction and gastroscopy) using expert-reviewed validation sets (n=400/domain) for thresholding and independent test sets (n=200/domain). Among the four encoders, E5-large-instruct (560M) achieved an overall accuracy of 0.983 (95% CI 0.964-0.991), AUC 0.996, and seven total errors, which were statistically indistinguishable from GPT-4o on this task; Gemini made no errors on this test set. Energy logging shows that the non-generative clinical path consumes ~1.0 mWh per input versus ~168 mWh per small-talk reply from a local 8B SLM, a ~170x difference, while maintaining ~0.10 s latency on a single on-prem GPU. These results indicate that near-frontier discrimination and generation-induced errors are structurally avoided in the clinical path by returning vetted FAQ answers verbatim, supporting privacy, sustainability, and equitable deployment in bandwidth-limited environments.

Authors:Yejin Kim, Youngbin Lee, Juhyeong Kim, Yongjae Lee
Title: GuruAgents: Emulating Wise Investors with Prompt-Guided LLM Agents
Abstract:
This study demonstrates that GuruAgents, prompt-guided AI agents, can systematically operationalize the strategies of legendary investment gurus. We develop five distinct GuruAgents, each designed to emulate an iconic investor, by encoding their distinct philosophies into LLM prompts that integrate financial tools and a deterministic reasoning pipeline. In a backtest on NASDAQ-100 constituents from Q4 2023 to Q2 2025, the GuruAgents exhibit unique behaviors driven by their prompted personas. The Buffett GuruAgent achieves the highest performance, delivering a 42.2\% CAGR that significantly outperforms benchmarks, while other agents show varied results. These findings confirm that prompt engineering can successfully translate the qualitative philosophies of investment gurus into reproducible, quantitative strategies, highlighting a novel direction for automated systematic investing. The source code and data are available at https://github.com/yejining99/GuruAgents.

Authors:Joykirat Singh, Justin Chih-Yao Chen, Archiki Prasad, Elias Stengel-Eskin, Akshay Nambi, Mohit Bansal
Title: Think Right: Learning to Mitigate Under-Over Thinking via Adaptive, Attentive Compression
Abstract:
Recent thinking models solve complex reasoning tasks by scaling test-time compute, but this scaling must be allocated in line with task difficulty. On one hand, short reasoning (underthinking) leads to errors on harder problems that require extended reasoning steps; but, excessively long reasoning (overthinking) can be token-inefficient, generating unnecessary steps even after reaching a correct intermediate solution. We refer to this as under-adaptivity, where the model fails to modulate its response length appropriately given problems of varying difficulty. To address under-adaptivity and strike a balance between under- and overthinking, we propose TRAAC (Think Right with Adaptive, Attentive Compression), an online post-training RL method that leverages the model's self-attention over a long reasoning trajectory to identify important steps and prune redundant ones. TRAAC also estimates difficulty and incorporates it into training rewards, thereby learning to allocate reasoning budget commensurate with example difficulty. Our approach improves accuracy, reduces reasoning steps, and enables adaptive thinking compared to base models and other RL baselines. Across a variety of tasks (AIME, AMC, GPQA-D, BBEH), TRAAC (Qwen3-4B) achieves an average absolute accuracy gain of 8.4% with a relative reduction in reasoning length of 36.8% compared to the base model, and a 7.9% accuracy gain paired with a 29.4% length drop compared to the best RL baseline. TRAAC also shows strong generalization: although our models are trained on math datasets, they show accuracy and efficiency gains on out-of-distribution non-math datasets like GPQA-D, BBEH, and OptimalThinkingBench. Our analysis further verifies that TRAAC provides fine-grained adjustments to thinking budget based on difficulty and that a combination of task-difficulty calibration and attention-based compression yields gains across diverse tasks.

Authors:Ricardo Gonzalez Penuela, Felipe Arias-Russi, Victor Capriles
Title: Guiding Multimodal Large Language Models with Blind and Low Vision People Visual Questions for Proactive Visual Interpretations
Abstract:
Multimodal large language models (MLLMs) have been integrated into visual interpretation applications to support Blind and Low Vision (BLV) users because of their accuracy and ability to provide rich, human-like interpretations. However, these applications often default to comprehensive, lengthy descriptions regardless of context. This leads to inefficient exchanges, as users must go through irrelevant details rather than receiving the specific information they are likely to seek. To deliver more contextually-relevant information, we developed a system that draws on historical BLV users questions. When given an image, our system identifies similar past visual contexts from the VizWiz-LF dataset and uses the associated questions to guide the MLLM generate descriptions more relevant to BLV users. An evaluation with three human labelers who revised 92 context-aware and context-free descriptions showed that context-aware descriptions anticipated and answered users' questions in 76.1% of cases (70 out of 92) and were preferred in 54.4% of comparisons (50 out of 92). Our paper reviews, and data analysis are publicly available in a Github repository at https://github.com/rgonzalezp/guiding-multimodal-large-language-models-with-blind-and-low-vision-people-visual-questions .

Authors:Hanqun Cao, Hongrui Zhang, Junde Xu, Zhou Zhang, Lingdong Shen, Minghao Sun, Ge Liu, Jinbo Xu, Wu-Jun Li, Jinren Ni, Cesar de la Fuente-Nunez, Tianfan Fu, Yejin Choi, Pheng-Ann Heng, Fang Wu
Title: From Supervision to Exploration: What Does Protein Language Model Learn During Reinforcement Learning?
Abstract:
Protein language models (PLMs) have advanced computational protein science through large-scale pretraining and scalable architectures. In parallel, reinforcement learning (RL) has broadened exploration and enabled precise multi-objective optimization in protein design. Yet whether RL can push PLMs beyond their pretraining priors to uncover latent sequence-structure-function rules remains unclear. We address this by pairing RL with PLMs across four domains: antimicrobial peptide design, kinase variant optimization, antibody engineering, and inverse folding. Using diverse RL algorithms and model classes, we ask if RL improves sampling efficiency and, more importantly, if it reveals capabilities not captured by supervised learning. Across benchmarks, RL consistently boosts success rates and sample efficiency. Performance follows a three-factor interaction: task headroom, reward fidelity, and policy capacity jointly determine gains. When rewards are accurate and informative, policies have sufficient capacity, and tasks leave room beyond supervised baselines, improvements scale; when rewards are noisy or capacity is constrained, gains saturate despite exploration. This view yields practical guidance for RL in protein design: prioritize reward modeling and calibration before scaling policy size, match algorithm and regularization strength to task difficulty, and allocate capacity where marginal gains are largest. Implementation is available at https://github.com/chq1155/RL-PLM.

Authors:Haoyuan Cai, Zhenghao Peng, Bolei Zhou
Title: Predictive Preference Learning from Human Interventions
Abstract:
Learning from human involvement aims to incorporate the human subject to monitor and correct agent behavior errors. Although most interactive imitation learning methods focus on correcting the agent's action at the current state, they do not adjust its actions in future states, which may be potentially more hazardous. To address this, we introduce Predictive Preference Learning from Human Interventions (PPL), which leverages the implicit preference signals contained in human interventions to inform predictions of future rollouts. The key idea of PPL is to bootstrap each human intervention into L future time steps, called the preference horizon, with the assumption that the agent follows the same action and the human makes the same intervention in the preference horizon. By applying preference optimization on these future states, expert corrections are propagated into the safety-critical regions where the agent is expected to explore, significantly improving learning efficiency and reducing human demonstrations needed. We evaluate our approach with experiments on both autonomous driving and robotic manipulation benchmarks and demonstrate its efficiency and generality. Our theoretical analysis further shows that selecting an appropriate preference horizon L balances coverage of risky states with label correctness, thereby bounding the algorithmic optimality gap. Demo and code are available at: https://metadriverse.github.io/ppl

Authors:Yuxuan Ou, Ning Bi, Jiazhen Pan, Jiancheng Yang, Boliang Yu, Usama Zidan, Regent Lee, Vicente Grau
Title: AortaDiff: A Unified Multitask Diffusion Framework For Contrast-Free AAA Imaging
Abstract:
While contrast-enhanced CT (CECT) is standard for assessing abdominal aortic aneurysms (AAA), the required iodinated contrast agents pose significant risks, including nephrotoxicity, patient allergies, and environmental harm. To reduce contrast agent use, recent deep learning methods have focused on generating synthetic CECT from non-contrast CT (NCCT) scans. However, most adopt a multi-stage pipeline that first generates images and then performs segmentation, which leads to error accumulation and fails to leverage shared semantic and anatomical structures. To address this, we propose a unified deep learning framework that generates synthetic CECT images from NCCT scans while simultaneously segmenting the aortic lumen and thrombus. Our approach integrates conditional diffusion models (CDM) with multi-task learning, enabling end-to-end joint optimization of image synthesis and anatomical segmentation. Unlike previous multitask diffusion models, our approach requires no initial predictions (e.g., a coarse segmentation mask), shares both encoder and decoder parameters across tasks, and employs a semi-supervised training strategy to learn from scans with missing segmentation labels, a common constraint in real-world clinical data. We evaluated our method on a cohort of 264 patients, where it consistently outperformed state-of-the-art single-task and multi-stage models. For image synthesis, our model achieved a PSNR of 25.61 dB, compared to 23.80 dB from a single-task CDM. For anatomical segmentation, it improved the lumen Dice score to 0.89 from 0.87 and the challenging thrombus Dice score to 0.53 from 0.48 (nnU-Net). These segmentation enhancements led to more accurate clinical measurements, reducing the lumen diameter MAE to 4.19 mm from 5.78 mm and the thrombus area error to 33.85% from 41.45% when compared to nnU-Net. Code is available at https://github.com/yuxuanou623/AortaDiff.git.

Authors:Bill Marino, Rosco Hunter, Zubair Jamali, Marinos Emmanouil Kalpakos, Mudra Kashyap, Isaiah Hinton, Alexa Hanson, Maahum Nazir, Christoph Schnabl, Felix Steffek, Hongkai Wen, Nicholas D. Lane
Title: AIReg-Bench: Benchmarking Language Models That Assess AI Regulation Compliance
Abstract:
As governments move to regulate AI, there is growing interest in using Large Language Models (LLMs) to assess whether or not an AI system complies with a given AI Regulation (AIR). However, there is presently no way to benchmark the performance of LLMs at this task. To fill this void, we introduce AIReg-Bench: the first benchmark dataset designed to test how well LLMs can assess compliance with the EU AI Act (AIA). We created this dataset through a two-step process: (1) by prompting an LLM with carefully structured instructions, we generated 120 technical documentation excerpts (samples), each depicting a fictional, albeit plausible, AI system - of the kind an AI provider might produce to demonstrate their compliance with AIR; (2) legal experts then reviewed and annotated each sample to indicate whether, and in what way, the AI system described therein violates specific Articles of the AIA. The resulting dataset, together with our evaluation of whether frontier LLMs can reproduce the experts' compliance labels, provides a starting point to understand the opportunities and limitations of LLM-based AIR compliance assessment tools and establishes a benchmark against which subsequent LLMs can be compared. The dataset and evaluation code are available at https://github.com/camlsys/aireg-bench.

Authors:Yifei Zuo, Yutong Yin, Zhichen Zeng, Ang Li, Banghua Zhu, Zhaoran Wang
Title: Local Linear Attention: An Optimal Interpolation of Linear and Softmax Attention For Test-Time Regression
Abstract:
Transformer architectures have achieved remarkable success in various domains. While efficient alternatives to Softmax Attention have been widely studied, the search for more expressive mechanisms grounded in theoretical insight-even at greater computational cost-has been relatively underexplored. In this work, we bridge this gap by proposing Local Linear Attention (LLA), a novel attention mechanism derived from nonparametric statistics through the lens of test-time regression. First, we show that LLA offers theoretical advantages over Linear and Softmax Attention for associative memory via a bias-variance trade-off analysis. Next, we address its computational challenges and propose two memory-efficient primitives to tackle the $Θ(n^2 d)$ and $Θ(n d^2)$ complexity. We then introduce FlashLLA, a hardware-efficient, blockwise algorithm that enables scalable and parallel computation on modern accelerators. In addition, we implement and profile a customized inference kernel that significantly reduces memory overheads. Finally, we empirically validate the advantages and limitations of LLA on test-time regression, in-context regression, associative recall and state tracking tasks. Experiment results demonstrate that LLA effectively adapts to non-stationarity, outperforming strong baselines in test-time training and in-context learning, and exhibiting promising evidence for its scalability and applicability in large-scale models. Code is available at https://github.com/Yifei-Zuo/Flash-LLA.

Authors:Yinuo Liu, Ruohan Xu, Xilong Wang, Yuqi Jia, Neil Zhenqiang Gong
Title: WAInjectBench: Benchmarking Prompt Injection Detections for Web Agents
Abstract:
Multiple prompt injection attacks have been proposed against web agents. At the same time, various methods have been developed to detect general prompt injection attacks, but none have been systematically evaluated for web agents. In this work, we bridge this gap by presenting the first comprehensive benchmark study on detecting prompt injection attacks targeting web agents. We begin by introducing a fine-grained categorization of such attacks based on the threat model. We then construct datasets containing both malicious and benign samples: malicious text segments generated by different attacks, benign text segments from four categories, malicious images produced by attacks, and benign images from two categories. Next, we systematize both text-based and image-based detection methods. Finally, we evaluate their performance across multiple scenarios. Our key findings show that while some detectors can identify attacks that rely on explicit textual instructions or visible image perturbations with moderate to high accuracy, they largely fail against attacks that omit explicit instructions or employ imperceptible perturbations. Our datasets and code are released at: https://github.com/Norrrrrrr-lyn/WAInjectBench.

Authors:Yu Zeng, Wenxuan Huang, Shiting Huang, Xikun Bao, Yukun Qi, Yiming Zhao, Qiuchen Wang, Lin Chen, Zehui Chen, Huaian Chen, Wanli Ouyang, Feng Zhao
Title: Agentic Jigsaw Interaction Learning for Enhancing Visual Perception and Reasoning in Vision-Language Models
Abstract:
Although current large Vision-Language Models (VLMs) have advanced in multimodal understanding and reasoning, their fundamental perceptual and reasoning abilities remain limited. Specifically, even on simple jigsaw tasks, existing VLMs perform near randomly, revealing deficiencies in core perception and reasoning capabilities. While high-quality vision-language data can enhance these capabilities, its scarcity and limited scalability impose significant constraints. To address this, we propose AGILE, an Agentic jiGsaw Interaction Learning for Enhancing visual perception and reasoning in VLMs. AGILE formulates jigsaw solving as an interactive process, enabling the model to progressively engage with the environment. At each step, the model generates executable code to perform an action based on the current state, while the environment provides fine-grained visual feedback to guide task completion. Through this iterative cycle of observation and interaction, the model incrementally improves its perceptual and reasoning capabilities via exploration and feedback. Experimental results show that AGILE not only substantially boosts performance on jigsaw tasks of varying complexity (e.g., increasing accuracy from 9.5% to 82.8% under the 2 $\times$ 2 setting) but also demonstrates strong generalization across 9 general vision tasks, achieving an average improvement of 3.1%. These results indicate notable enhancements in both perceptual and reasoning abilities. This work opens a new avenue for advancing reasoning and generalization in multimodal models and provides an efficient, scalable solution to the scarcity of multimodal reinforcement learning data. The code and datasets is available at https://github.com/yuzeng0-0/AGILE .

Authors:Zarreen Reza
Title: The Social Laboratory: A Psychometric Framework for Multi-Agent LLM Evaluation
Abstract:
As Large Language Models (LLMs) transition from static tools to autonomous agents, traditional evaluation benchmarks that measure performance on downstream tasks are becoming insufficient. These methods fail to capture the emergent social and cognitive dynamics that arise when agents communicate, persuade, and collaborate in interactive environments. To address this gap, we introduce a novel evaluation framework that uses multi-agent debate as a controlled "social laboratory" to discover and quantify these behaviors. In our framework, LLM-based agents, instantiated with distinct personas and incentives, deliberate on a wide range of challenging topics under the supervision of an LLM moderator. Our analysis, enabled by a new suite of psychometric and semantic metrics, reveals several key findings. Across hundreds of debates, we uncover a powerful and robust emergent tendency for agents to seek consensus, consistently reaching high semantic agreement (μ > 0.88) even without explicit instruction and across sensitive topics. We show that assigned personas induce stable, measurable psychometric profiles, particularly in cognitive effort, and that the moderators persona can significantly alter debate outcomes by structuring the environment, a key finding for external AI alignment. This work provides a blueprint for a new class of dynamic, psychometrically grounded evaluation protocols designed for the agentic setting, offering a crucial methodology for understanding and shaping the social behaviors of the next generation of AI agents. We have released the code and results at https://github.com/znreza/multi-agent-LLM-eval-for-debate.

Authors:Hongyi Zhou, Jin Zhu, Pingfan Su, Kai Ye, Ying Yang, Shakeel A O B Gavioli-Akilagun, Chengchun Shi
Title: AdaDetectGPT: Adaptive Detection of LLM-Generated Text with Statistical Guarantees
Abstract:
We study the problem of determining whether a piece of text has been authored by a human or by a large language model (LLM). Existing state of the art logits-based detectors make use of statistics derived from the log-probability of the observed text evaluated using the distribution function of a given source LLM. However, relying solely on log probabilities can be sub-optimal. In response, we introduce AdaDetectGPT -- a novel classifier that adaptively learns a witness function from training data to enhance the performance of logits-based detectors. We provide statistical guarantees on its true positive rate, false positive rate, true negative rate and false negative rate. Extensive numerical studies show AdaDetectGPT nearly uniformly improves the state-of-the-art method in various combination of datasets and LLMs, and the improvement can reach up to 58%. A python implementation of our method is available at https://github.com/Mamba413/AdaDetectGPT.

Authors:Ningyuan Yang, Guanliang Lyu, Mingchen Ma, Yiyi Lu, Yiming Li, Zhihui Gao, Hancheng Ye, Jianyi Zhang, Tingjun Chen, Yiran Chen
Title: IoT-MCP: Bridging LLMs and IoT Systems Through Model Context Protocol
Abstract:
The integration of Large Language Models (LLMs) with Internet-of-Things (IoT) systems faces significant challenges in hardware heterogeneity and control complexity. The Model Context Protocol (MCP) emerges as a critical enabler, providing standardized communication between LLMs and physical devices. We propose IoT-MCP, a novel framework that implements MCP through edge-deployed servers to bridge LLMs and IoT ecosystems. To support rigorous evaluation, we introduce IoT-MCP Bench, the first benchmark containing 114 Basic Tasks (e.g., ``What is the current temperature?'') and 1,140 Complex Tasks (e.g., ``I feel so hot, do you have any ideas?'') for IoT-enabled LLMs. Experimental validation across 22 sensor types and 6 microcontroller units demonstrates IoT-MCP's 100% task success rate to generate tool calls that fully meet expectations and obtain completely accurate results, 205ms average response time, and 74KB peak memory footprint. This work delivers both an open-source integration framework (https://github.com/Duke-CEI-Center/IoT-MCP-Servers) and a standardized evaluation methodology for LLM-IoT systems.

Authors:Nils Durner
Title: In AI Sweet Harmony: Sociopragmatic Guardrail Bypasses and Evaluation-Awareness in OpenAI gpt-oss-20b
Abstract:
We probe OpenAI's open-weights 20-billion-parameter model gpt-oss-20b to study how sociopragmatic framing, language choice, and instruction hierarchy affect refusal behavior. Across 80 seeded iterations per scenario, we test several harm domains including ZIP-bomb construction (cyber threat), synthetic card-number generation, minor-unsafe driving advice, drug-precursor indicators, and RAG context exfiltration. Composite prompts that combine an educator persona, a safety-pretext ("what to avoid"), and step-cue phrasing flip assistance rates from 0% to 97.5% on a ZIP-bomb task. On our grid, formal registers in German and French are often leakier than matched English prompts. A "Linux terminal" role-play overrides a developer rule not to reveal context in a majority of runs with a naive developer prompt, and we introduce an AI-assisted hardening method that reduces leakage to 0% in several user-prompt variants. We further test evaluation awareness with a paired-track design and measure frame-conditioned differences between matched "helpfulness" and "harmfulness" evaluation prompts; we observe inconsistent assistance in 13% of pairs. Finally, we find that the OpenAI Moderation API under-captures materially helpful outputs relative to a semantic grader, and that refusal rates differ by 5 to 10 percentage points across inference stacks, raising reproducibility concerns. We release prompts, seeds, outputs, and code for reproducible auditing at https://github.com/ndurner/gpt-oss-rt-run .

Authors:Gaoxiang Luo, Aryan Deshwal
Title: COM-BOM: Bayesian Exemplar Search for Efficiently Exploring the Accuracy-Calibration Pareto Frontier
Abstract:
Selecting an optimal set of exemplars is critical for good performance of in-context learning. However, prior exemplar search methods narrowly optimize for predictive accuracy, critically neglecting model calibration--a key determinant of trustworthiness and safe deployment. In this paper, we formulate exemplar selection as a multi-objective optimization problem, explicitly targeting both the maximization of predictive accuracy and the minimization of expected calibration error. We solve this problem with a sample-efficient Combinatorial Bayesian Optimization algorithm (COM-BOM) to find the Pareto front that optimally trades off the two objectives of accuracy and calibration. We evaluate COM-BOM on multiple tasks from unsaturated MMLU-Pro benchmark and find that COM-BOM beats or matches the baselines at jointly optimizing the two objectives, while requiring a minimal number of LLM API calls.

Authors:Yanzhe Chen, Kevin Qinghong Lin, Mike Zheng Shou
Title: Code2Video: A Code-centric Paradigm for Educational Video Generation
Abstract:
While recent generative models advance pixel-space video synthesis, they remain limited in producing professional educational videos, which demand disciplinary knowledge, precise visual structures, and coherent transitions, limiting their applicability in educational scenarios. Intuitively, such requirements are better addressed through the manipulation of a renderable environment, which can be explicitly controlled via logical commands (e.g., code). In this work, we propose Code2Video, a code-centric agent framework for generating educational videos via executable Python code. The framework comprises three collaborative agents: (i) Planner, which structures lecture content into temporally coherent flows and prepares corresponding visual assets; (ii) Coder, which converts structured instructions into executable Python codes while incorporating scope-guided auto-fix to enhance efficiency; and (iii) Critic, which leverages vision-language models (VLM) with visual anchor prompts to refine spatial layout and ensure clarity. To support systematic evaluation, we build MMMC, a benchmark of professionally produced, discipline-specific educational videos. We evaluate MMMC across diverse dimensions, including VLM-as-a-Judge aesthetic scores, code efficiency, and particularly, TeachQuiz, a novel end-to-end metric that quantifies how well a VLM, after unlearning, can recover knowledge by watching the generated videos. Our results demonstrate the potential of Code2Video as a scalable, interpretable, and controllable approach, achieving 40% improvement over direct code generation and producing videos comparable to human-crafted tutorials. The code and datasets are available at https://github.com/showlab/Code2Video.

Authors:Jiayi Zhang, Simon Yu, Derek Chong, Anthony Sicilia, Michael R. Tomz, Christopher D. Manning, Weiyan Shi
Title: Verbalized Sampling: How to Mitigate Mode Collapse and Unlock LLM Diversity
Abstract:
Post-training alignment often reduces LLM diversity, leading to a phenomenon known as mode collapse. Unlike prior work that attributes this effect to algorithmic limitations, we identify a fundamental, pervasive data-level driver: typicality bias in preference data, whereby annotators systematically favor familiar text as a result of well-established findings in cognitive psychology. We formalize this bias theoretically, verify it on preference datasets empirically, and show that it plays a central role in mode collapse. Motivated by this analysis, we introduce Verbalized Sampling, a simple, training-free prompting strategy to circumvent mode collapse. VS prompts the model to verbalize a probability distribution over a set of responses (e.g., "Generate 5 jokes about coffee and their corresponding probabilities"). Comprehensive experiments show that VS significantly improves performance across creative writing (poems, stories, jokes), dialogue simulation, open-ended QA, and synthetic data generation, without sacrificing factual accuracy and safety. For instance, in creative writing, VS increases diversity by 1.6-2.1x over direct prompting. We further observe an emergent trend that more capable models benefit more from VS. In sum, our work provides a new data-centric perspective on mode collapse and a practical inference-time remedy that helps unlock pre-trained generative diversity.

Authors:Yiran Shen, Yu Xia, Jonathan Chang, Prithviraj Ammanabrolu
Title: Simultaneous Multi-objective Alignment Across Verifiable and Non-verifiable Rewards
Abstract:
Aligning large language models to human preferences is inherently multidimensional, yet most pipelines collapse heterogeneous signals into a single optimizeable objective. We seek to answer what it would take to simultaneously align a model across various domains spanning those with: verifiable rewards (mathematical accuracy), non-verifiable subjective preferences (human values), and complex interactive scenarios (multi-turn AI tutoring dialogues). Such multi-objective reinforcement learning setups are often plagued by the individual objectives being at odds with each other, resulting in inefficient training and little user control during inference. We propose a unified framework that: (i) standardizes {process reward model} (PRM) training across both verifiable and non-verifiable settings to better supervise models' chain-of-thought reasoning; (ii) performs {multi-objective alignment} by training the LLM with our $\textbf{M}$ulti-$\textbf{A}$ction-$\textbf{H}$ead $\textbf{DPO}$ (MAH-DPO) and a vectorized reward where the dimensions of the vector correspond to the various objectives instead of a single scalar; and (iii) demonstrates how such a system provides fine-grained inference-time user control. Experiments across math reasoning, value alignment, and multi-turn dialogue show that our framework improves performance across multiple objectives simultaneously, while minimizing cross-objective trade-offs and enabling flexible inference time user control. The code can be found at https://github.com/pearls-lab/multiobj-align.

Authors:David Anugraha, Shou-Yi Hung, Zilu Tang, Annie En-Shiun Lee, Derry Tanti Wijaya, Genta Indra Winata
Title: mR3: Multilingual Rubric-Agnostic Reward Reasoning Models
Abstract:
Evaluation using Large Language Model (LLM) judges has been widely adopted in English and shown to be effective for automatic evaluation. However, their performance does not generalize well to non-English settings, and it remains unclear what constitutes effective multilingual training for such judges. In this paper, we introduce mR3, a massively multilingual, rubric-agnostic reward reasoning model trained on 72 languages, achieving the broadest language coverage in reward modeling to date. We present a comprehensive study of data and curriculum selection for training to identify effective strategies and data sources for building high-quality reward models, including the integration of target-language reasoning datasets. Our approach attains state-of-the-art performance on multilingual reward model benchmarks, surpassing much larger models (i.e., GPT-OSS-120B) while being up to 9x smaller, and its effectiveness is further confirmed through extensive ablation studies. Our models, data, and code are available as open source at https://github.com/rubricreward/mr3.

Authors:Ruiyi Wang, Prithviraj Ammanabrolu
Title: A Practitioner's Guide to Multi-turn Agentic Reinforcement Learning
Abstract:
We study what actually works and what doesn't for training large language models as agents via multi-turn reinforcement learning. Despite rapid progress, existing frameworks and definitions are fragmented, and there is no systematic formulation or analysis of which design choices matter across tasks. We address this gap by first breaking down the design space into three inter-related pillars -- environment, reward, and policy -- and empirically derive a recipe for training LLM agents in situated textual domains. In particular, we test TextWorld and ALFWorld, popular domains for testing situated embodied reasoning, as well as SWE-Gym for more software engineering style tasks. (i) For the environment, we analyze the impacts of task complexity in terms of sizes of the state and action spaces as well as optimal solution length, finding that even simple environments within a domain can provide signal on how well an agent can generalize to more complex tasks. (ii) For the reward, we ablate relative reward sparsity, observing that while dense turn-level rewards accelerate training, performance and stability is highly dependent on the choice of RL algorithm. (iii) And for the agent's policy, we explore the interplay between reward sparsity and biased (PPO, GRPO) and unbiased (RLOO) policy gradient methods in addition to showing how to find the optimal Supervised Fine-tuning (SFT) to RL training ratio given a fixed budget. We distill these findings into a training recipe that guides co-design across the three pillars, facilitating research and practical efforts in multi-turn agentic RL. Code: https://github.com/pearls-lab/meow-tea-taro

Authors:Daniele Bifolco, Guido Annicchiarico, Pierluigi Barbiero, Massimiliano Di Penta, Fiorella Zampetti
Title: CodeGenLink: A Tool to Find the Likely Origin and License of Automatically Generated Code
Abstract:
Large Language Models (LLMs) are widely used in software development tasks nowadays. Unlike reusing code taken from the Web, for LLMs' generated code, developers are concerned about its lack of trustworthiness and possible copyright or licensing violations, due to the lack of code provenance information. This paper proposes CodeGenLink, a GitHub CoPilot extension for Visual Studio Code aimed at (i) suggesting links containing code very similar to automatically generated code, and (ii) whenever possible, indicating the license of the likely origin of the code. CodeGenLink retrieves candidate links by combining LLMs with their web search features and then performs similarity analysis between the generated and retrieved code. Preliminary results show that CodeGenLink effectively filters unrelated links via similarity analysis and provides licensing information when available. Tool URL: https://github.com/danielebifolco/CodeGenLink Tool Video: https://youtu.be/M6nqjBf9_pw

Authors:Shashank Reddy Chirra, Jayden Teoh, Praveen Paruchuri, Pradeep Varakantham
Title: On Discovering Algorithms for Adversarial Imitation Learning
Abstract:
Adversarial Imitation Learning (AIL) methods, while effective in settings with limited expert demonstrations, are often considered unstable. These approaches typically decompose into two components: Density Ratio (DR) estimation $\frac{ρ_E}{ρ_π}$, where a discriminator estimates the relative occupancy of state-action pairs under the policy versus the expert; and Reward Assignment (RA), where this ratio is transformed into a reward signal used to train the policy. While significant research has focused on improving density estimation, the role of reward assignment in influencing training dynamics and final policy performance has been largely overlooked. RA functions in AIL are typically derived from divergence minimization objectives, relying heavily on human design and ingenuity. In this work, we take a different approach: we investigate the discovery of data-driven RA functions, i.e, based directly on the performance of the resulting imitation policy. To this end, we leverage an LLM-guided evolutionary framework that efficiently explores the space of RA functions, yielding \emph{Discovered Adversarial Imitation Learning} (DAIL), the first meta-learnt AIL algorithm. Remarkably, DAIL generalises across unseen environments and policy optimization algorithms, outperforming the current state-of-the-art of \emph{human-designed} baselines. Finally, we analyse why DAIL leads to more stable training, offering novel insights into the role of RA functions in the stability of AIL. Code is publicly available: https://github.com/shshnkreddy/DAIL.

Authors:Hyun-kyu Ko, Youbin Kim, Jihyeon Park, Dongheok Park, Gyeongjin Kang, Wonjun Cho, Hyung Yi, Eunbyung Park
Title: Gather-Scatter Mamba: Accelerating Propagation with Efficient State Space Model
Abstract:
State Space Models (SSMs)-most notably RNNs-have historically played a central role in sequential modeling. Although attention mechanisms such as Transformers have since dominated due to their ability to model global context, their quadratic complexity and limited scalability make them less suited for long sequences. Video super-resolution (VSR) methods have traditionally relied on recurrent architectures to propagate features across frames. However, such approaches suffer from well-known issues including vanishing gradients, lack of parallelism, and slow inference speed. Recent advances in selective SSMs like Mamba offer a compelling alternative: by enabling input-dependent state transitions with linear-time complexity, Mamba mitigates these issues while maintaining strong long-range modeling capabilities. Despite this potential, Mamba alone struggles to capture fine-grained spatial dependencies due to its causal nature and lack of explicit context aggregation. To address this, we propose a hybrid architecture that combines shifted window self-attention for spatial context aggregation with Mamba-based selective scanning for efficient temporal propagation. Furthermore, we introduce Gather-Scatter Mamba (GSM), an alignment-aware mechanism that warps features toward a center anchor frame within the temporal window before Mamba propagation and scatters them back afterward, effectively reducing occlusion artifacts and ensuring effective redistribution of aggregated information across all frames. The official implementation is provided at: https://github.com/Ko-Lani/GSMamba.

Authors:Rui Zhu, Xuan Yu, Yudong Zhang, Chen Zhang, Xu Wang, Yang Wang
Title: MG2FlowNet: Accelerating High-Reward Sample Generation via Enhanced MCTS and Greediness Control
Abstract:
Generative Flow Networks (GFlowNets) have emerged as a powerful tool for generating diverse and high-reward structured objects by learning to sample from a distribution proportional to a given reward function. Unlike conventional reinforcement learning (RL) approaches that prioritize optimization of a single trajectory, GFlowNets seek to balance diversity and reward by modeling the entire trajectory distribution. This capability makes them especially suitable for domains such as molecular design and combinatorial optimization. However, existing GFlowNets sampling strategies tend to overexplore and struggle to consistently generate high-reward samples, particularly in large search spaces with sparse high-reward regions. Therefore, improving the probability of generating high-reward samples without sacrificing diversity remains a key challenge under this premise. In this work, we integrate an enhanced Monte Carlo Tree Search (MCTS) into the GFlowNets sampling process, using MCTS-based policy evaluation to guide the generation toward high-reward trajectories and Polynomial Upper Confidence Trees (PUCT) to balance exploration and exploitation adaptively, and we introduce a controllable mechanism to regulate the degree of greediness. Our method enhances exploitation without sacrificing diversity by dynamically balancing exploration and reward-driven guidance. The experimental results show that our method can not only accelerate the speed of discovering high-reward regions but also continuously generate high-reward samples, while preserving the diversity of the generative distribution. All implementations are available at https://github.com/ZRNB/MG2FlowNet.

Authors:Giovanni Minelli, Giulio Turrisi, Victor Barasuol, Claudio Semini
Title: CroSTAta: Cross-State Transition Attention Transformer for Robotic Manipulation
Abstract:
Learning robotic manipulation policies through supervised learning from demonstrations remains challenging when policies encounter execution variations not explicitly covered during training. While incorporating historical context through attention mechanisms can improve robustness, standard approaches process all past states in a sequence without explicitly modeling the temporal structure that demonstrations may include, such as failure and recovery patterns. We propose a Cross-State Transition Attention Transformer that employs a novel State Transition Attention (STA) mechanism to modulate standard attention weights based on learned state evolution patterns, enabling policies to better adapt their behavior based on execution history. Our approach combines this structured attention with temporal masking during training, where visual information is randomly removed from recent timesteps to encourage temporal reasoning from historical context. Evaluation in simulation shows that STA consistently outperforms standard cross-attention and temporal modeling approaches like TCN and LSTM networks across all tasks, achieving more than 2x improvement over cross-attention on precision-critical tasks.

Authors:Beomsu Kim, Byunghee Cha, Jong Chul Ye
Title: Align Your Tangent: Training Better Consistency Models via Manifold-Aligned Tangents
Abstract:
With diffusion and flow matching models achieving state-of-the-art generating performance, the interest of the community now turned to reducing the inference time without sacrificing sample quality. Consistency Models (CMs), which are trained to be consistent on diffusion or probability flow ordinary differential equation (PF-ODE) trajectories, enable one or two-step flow or diffusion sampling. However, CMs typically require prolonged training with large batch sizes to obtain competitive sample quality. In this paper, we examine the training dynamics of CMs near convergence and discover that CM tangents -- CM output update directions -- are quite oscillatory, in the sense that they move parallel to the data manifold, not towards the manifold. To mitigate oscillatory tangents, we propose a new loss function, called the manifold feature distance (MFD), which provides manifold-aligned tangents that point toward the data manifold. Consequently, our method -- dubbed Align Your Tangent (AYT) -- can accelerate CM training by orders of magnitude and even out-perform the learned perceptual image patch similarity metric (LPIPS). Furthermore, we find that our loss enables training with extremely small batch sizes without compromising sample quality. Code: https://github.com/1202kbs/AYT

Authors:Bingzhang Wang, Kehua Chen, Yinhai Wang
Title: Collaborative-Distilled Diffusion Models (CDDM) for Accelerated and Lightweight Trajectory Prediction
Abstract:
Trajectory prediction is a fundamental task in Autonomous Vehicles (AVs) and Intelligent Transportation Systems (ITS), supporting efficient motion planning and real-time traffic safety management. Diffusion models have recently demonstrated strong performance in probabilistic trajectory prediction, but their large model size and slow sampling process hinder real-world deployment. This paper proposes Collaborative-Distilled Diffusion Models (CDDM), a novel method for real-time and lightweight trajectory prediction. Built upon Collaborative Progressive Distillation (CPD), CDDM progressively transfers knowledge from a high-capacity teacher diffusion model to a lightweight student model, jointly reducing both the number of sampling steps and the model size across distillation iterations. A dual-signal regularized distillation loss is further introduced to incorporate guidance from both the teacher and ground-truth data, mitigating potential overfitting and ensuring robust performance. Extensive experiments on the ETH-UCY pedestrian benchmark and the nuScenes vehicle benchmark demonstrate that CDDM achieves state-of-the-art prediction accuracy. The well-distilled CDDM retains 96.2% and 95.5% of the baseline model's ADE and FDE performance on pedestrian trajectories, while requiring only 231K parameters and 4 or 2 sampling steps, corresponding to 161x compression, 31x acceleration, and 9 ms latency. Qualitative results further show that CDDM generates diverse and accurate trajectories under dynamic agent behaviors and complex social interactions. By bridging high-performing generative models with practical deployment constraints, CDDM enables resource-efficient probabilistic prediction for AVs and ITS. Code is available at https://github.com/bingzhangw/CDDM.

Authors:Kwanhyung Lee, Sungsoo Hong, Joonhyung Park, Jeonghyeop Lim, Juhwan Choi, Donghwee Yoon, Eunho Yang
Title: EMR-AGENT: Automating Cohort and Feature Extraction from EMR Databases
Abstract:
Machine learning models for clinical prediction rely on structured data extracted from Electronic Medical Records (EMRs), yet this process remains dominated by hardcoded, database-specific pipelines for cohort definition, feature selection, and code mapping. These manual efforts limit scalability, reproducibility, and cross-institutional generalization. To address this, we introduce EMR-AGENT (Automated Generalized Extraction and Navigation Tool), an agent-based framework that replaces manual rule writing with dynamic, language model-driven interaction to extract and standardize structured clinical data. Our framework automates cohort selection, feature extraction, and code mapping through interactive querying of databases. Our modular agents iteratively observe query results and reason over schema and documentation, using SQL not just for data retrieval but also as a tool for database observation and decision making. This eliminates the need for hand-crafted, schema-specific logic. To enable rigorous evaluation, we develop a benchmarking codebase for three EMR databases (MIMIC-III, eICU, SICdb), including both seen and unseen schema settings. Our results demonstrate strong performance and generalization across these databases, highlighting the feasibility of automating a process previously thought to require expert-driven design. The code will be released publicly at https://github.com/AITRICS/EMR-AGENT/tree/main. For a demonstration, please visit our anonymous demo page: https://anonymoususer-max600.github.io/EMR_AGENT/

Authors:Yongchao Long, Xian Wu, Yingying Zhang, Xianbin Wen, Yuxi Zhou, Shenda Hong
Title: Copy-Paste to Mitigate Large Language Model Hallucinations
Abstract:
While Retrieval-Augmented Generation (RAG) enables large language models (LLMs) to generate contextually grounded responses, contextual faithfulness remains challenging as LLMs may not consistently trust provided context, leading to hallucinations that undermine reliability. We observe an inverse correlation between response copying degree and context-unfaithful hallucinations on RAGTruth, suggesting that higher copying degrees reduce hallucinations by fostering genuine contextual belief. We propose CopyPasteLLM, obtained through two-stage high-copying response preference training. We design three prompting methods to enhance copying degree, demonstrating that high-copying responses achieve superior contextual faithfulness and hallucination control. These approaches enable a fully automated pipeline that transforms generated responses into high-copying preference data for training CopyPasteLLM. On FaithEval, ConFiQA and PubMedQA, CopyPasteLLM achieves best performance in both counterfactual and original contexts, remarkably with 12.2% to 24.5% accuracy improvements on FaithEval over the best baseline, while requiring only 365 training samples -- 1/50th of baseline data. To elucidate CopyPasteLLM's effectiveness, we propose the Context-Parameter Copying Capturing algorithm. Interestingly, this reveals that CopyPasteLLM recalibrates reliance on internal parametric knowledge rather than external knowledge during generation. All codes are available at https://github.com/longyongchao/CopyPasteLLM

Authors:Kaiqi Zhang, Mingguan Yang, Dali Chang, Chun Chen, Yuxiang Zhang, Kexun He, Jing Zhao
Title: Relative-Absolute Fusion: Rethinking Feature Extraction in Image-Based Iterative Method Selection for Solving Sparse Linear Systems
Abstract:
Iterative method selection is crucial for solving sparse linear systems because these methods inherently lack robustness. Though image-based selection approaches have shown promise, their feature extraction techniques might encode distinct matrices into identical image representations, leading to the same selection and suboptimal method. In this paper, we introduce RAF (Relative-Absolute Fusion), an efficient feature extraction technique to enhance image-based selection approaches. By simultaneously extracting and fusing image representations as relative features with corresponding numerical values as absolute features, RAF achieves comprehensive matrix representations that prevent feature ambiguity across distinct matrices, thus improving selection accuracy and unlocking the potential of image-based selection approaches. We conducted comprehensive evaluations of RAF on SuiteSparse and our developed BMCMat (Balanced Multi-Classification Matrix dataset), demonstrating solution time reductions of 0.08s-0.29s for sparse linear systems, which is 5.86%-11.50% faster than conventional image-based selection approaches and achieves state-of-the-art (SOTA) performance. BMCMat is available at https://github.com/zkqq/BMCMat.

Authors:Yuexin Wang, Xiaolei Wang, Yizheng Gong, Jimin Xiao
Title: Normal-Abnormal Guided Generalist Anomaly Detection
Abstract:
Generalist Anomaly Detection (GAD) aims to train a unified model on an original domain that can detect anomalies in new target domains. Previous GAD methods primarily use only normal samples as references, overlooking the valuable information contained in anomalous samples that are often available in real-world scenarios. To address this limitation, we propose a more practical approach: normal-abnormal-guided generalist anomaly detection, which leverages both normal and anomalous samples as references to guide anomaly detection across diverse domains. We introduce the Normal-Abnormal Generalist Learning (NAGL) framework, consisting of two key components: Residual Mining (RM) and Anomaly Feature Learning (AFL). RM extracts abnormal patterns from normal-abnormal reference residuals to establish transferable anomaly representations, while AFL adaptively learns anomaly features in query images through residual mapping to identify instance-aware anomalies. Our approach effectively utilizes both normal and anomalous references for more accurate and efficient cross-domain anomaly detection. Extensive experiments across multiple benchmarks demonstrate that our method significantly outperforms existing GAD approaches. This work represents the first to adopt a mixture of normal and abnormal samples as references in generalist anomaly detection. The code and datasets are available at https://github.com/JasonKyng/NAGL.

Authors:Dong Bok Lee, Seanie Lee, Sangwoo Park, Minki Kang, Jinheon Baek, Dongki Kim, Dominik Wagner, Jiongdao Jin, Heejun Lee, Tobias Bocklet, Jinyu Wang, Jingjing Fu, Sung Ju Hwang, Jiang Bian, Lei Song
Title: Rethinking Reward Models for Multi-Domain Test-Time Scaling
Abstract:
The reliability of large language models (LLMs) during test-time scaling is often assessed with \emph{external verifiers} or \emph{reward models} that distinguish correct reasoning from flawed logic. Prior work generally assumes that process reward models (PRMs), which score every intermediate reasoning step, outperform outcome reward models (ORMs) that assess only the final answer. This view is based mainly on evidence from narrow, math-adjacent domains. We present the first unified evaluation of four reward model variants, discriminative ORM and PRM (\DisORM, \DisPRM) and generative ORM and PRM (\GenORM, \GenPRM), across 14 diverse domains. Contrary to conventional wisdom, we find that (i) \DisORM performs on par with \DisPRM, (ii) \GenPRM is not competitive, and (iii) overall, \GenORM is the most robust, yielding significant and consistent gains across every tested domain. We attribute this to PRM-style stepwise scoring, which inherits label noise from LLM auto-labeling and has difficulty evaluating long reasoning trajectories, including those involving self-correcting reasoning. Our theoretical analysis shows that step-wise aggregation compounds errors as reasoning length grows, and our empirical observations confirm this effect. These findings challenge the prevailing assumption that fine-grained supervision is always better and support generative outcome verification for multi-domain deployment. We publicly release our code, datasets, and checkpoints at \href{https://github.com/db-Lee/Multi-RM}{\underline{\small\texttt{https://github.com/db-Lee/Multi-RM}}} to facilitate future research in multi-domain settings.

Authors:Yujia Xiao, Liumeng Xue, Lei He, Xinyi Chen, Aemon Yat Fei Chiu, Wenjie Tian, Shaofei Zhang, Qiuqiang Kong, Xinfa Zhu, Wei Xue, Tan Lee
Title: PodEval: A Multimodal Evaluation Framework for Podcast Audio Generation
Abstract:
Recently, an increasing number of multimodal (text and audio) benchmarks have emerged, primarily focusing on evaluating models' understanding capability. However, exploration into assessing generative capabilities remains limited, especially for open-ended long-form content generation. Significant challenges lie in no reference standard answer, no unified evaluation metrics and uncontrollable human judgments. In this work, we take podcast-like audio generation as a starting point and propose PodEval, a comprehensive and well-designed open-source evaluation framework. In this framework: 1) We construct a real-world podcast dataset spanning diverse topics, serving as a reference for human-level creative quality. 2) We introduce a multimodal evaluation strategy and decompose the complex task into three dimensions: text, speech and audio, with different evaluation emphasis on "Content" and "Format". 3) For each modality, we design corresponding evaluation methods, involving both objective metrics and subjective listening test. We leverage representative podcast generation systems (including open-source, close-source, and human-made) in our experiments. The results offer in-depth analysis and insights into podcast generation, demonstrating the effectiveness of PodEval in evaluating open-ended long-form audio. This project is open-source to facilitate public use: https://github.com/yujxx/PodEval.

Authors:Mingyuan Xia, Chunxu Zhang, Zijian Zhang, Hao Miao, Qidong Liu, Yuanshao Zhu, Bo Yang
Title: TimeEmb: A Lightweight Static-Dynamic Disentanglement Framework for Time Series Forecasting
Abstract:
Temporal non-stationarity, the phenomenon that time series distributions change over time, poses fundamental challenges to reliable time series forecasting. Intuitively, the complex time series can be decomposed into two factors, \ie time-invariant and time-varying components, which indicate static and dynamic patterns, respectively. Nonetheless, existing methods often conflate the time-varying and time-invariant components, and jointly learn the combined long-term patterns and short-term fluctuations, leading to suboptimal performance facing distribution shifts. To address this issue, we initiatively propose a lightweight static-dynamic decomposition framework, TimeEmb, for time series forecasting. TimeEmb innovatively separates time series into two complementary components: (1) time-invariant component, captured by a novel global embedding module that learns persistent representations across time series, and (2) time-varying component, processed by an efficient frequency-domain filtering mechanism inspired by full-spectrum analysis in signal processing. Experiments on real-world datasets demonstrate that TimeEmb outperforms state-of-the-art baselines and requires fewer computational resources. We conduct comprehensive quantitative and qualitative analyses to verify the efficacy of static-dynamic disentanglement. This lightweight framework can also improve existing time-series forecasting methods with simple integration. To ease reproducibility, the code is available at https://github.com/showmeon/TimeEmb.

Authors:Seongjae Kang, Dong Bok Lee, Juho Jung, Dongseop Kim, Won Hwa Kim, Sunghoon Joo
Title: Automated Structured Radiology Report Generation with Rich Clinical Context
Abstract:
Automated structured radiology report generation (SRRG) from chest X-ray images offers significant potential to reduce workload of radiologists by generating reports in structured formats that ensure clarity, consistency, and adherence to clinical reporting standards. While radiologists effectively utilize available clinical contexts in their diagnostic reasoning, existing SRRG systems overlook these essential elements. This fundamental gap leads to critical problems including temporal hallucinations when referencing non-existent clinical contexts. To address these limitations, we propose contextualized SRRG (C-SRRG) that comprehensively incorporates rich clinical context for SRRG. We curate C-SRRG dataset by integrating comprehensive clinical context encompassing 1) multi-view X-ray images, 2) clinical indication, 3) imaging techniques, and 4) prior studies with corresponding comparisons based on patient histories. Through extensive benchmarking with state-of-the-art multimodal large language models, we demonstrate that incorporating clinical context with the proposed C-SRRG significantly improves report generation quality. We publicly release dataset, code, and checkpoints to facilitate future research for clinically-aligned automated RRG at https://github.com/vuno/contextualized-srrg.

Authors:Junhyeok Lee, Han Jang, Kyu Sung Choi
Title: Domain-Specialized Interactive Segmentation Framework for Meningioma Radiotherapy Planning
Abstract:
Precise delineation of meningiomas is crucial for effective radiotherapy (RT) planning, directly influencing treatment efficacy and preservation of adjacent healthy tissues. While automated deep learning approaches have demonstrated considerable potential, achieving consistently accurate clinical segmentation remains challenging due to tumor heterogeneity. Interactive Medical Image Segmentation (IMIS) addresses this challenge by integrating advanced AI techniques with clinical input. However, generic segmentation tools, despite widespread applicability, often lack the specificity required for clinically critical and disease-specific tasks like meningioma RT planning. To overcome these limitations, we introduce Interactive-MEN-RT, a dedicated IMIS tool specifically developed for clinician-assisted 3D meningioma segmentation in RT workflows. The system incorporates multiple clinically relevant interaction methods, including point annotations, bounding boxes, lasso tools, and scribbles, enhancing usability and clinical precision. In our evaluation involving 500 contrast-enhanced T1-weighted MRI scans from the BraTS 2025 Meningioma RT Segmentation Challenge, Interactive-MEN-RT demonstrated substantial improvement compared to other segmentation methods, achieving Dice similarity coefficients of up to 77.6\% and Intersection over Union scores of 64.8\%. These results emphasize the need for clinically tailored segmentation solutions in critical applications such as meningioma RT planning. The code is publicly available at: https://github.com/snuh-rad-aicon/Interactive-MEN-RT

Authors:Wei Shen, Han Wang, Haoyu Li, Huan Zhang
Title: DecepChain: Inducing Deceptive Reasoning in Large Language Models
Abstract:
Large Language Models (LLMs) have been demonstrating increasingly strong reasoning capability with their chain-of-thoughts (CoT), which are routinely used by humans to judge answer quality. This reliance creates a powerful yet fragile basis for trust. In this work, we present an urgent but underexplored risk: attackers could induce LLMs to generate incorrect yet coherent CoTs that look plausible at first glance, while leaving no obvious manipulated traces, closely resembling the reasoning exhibited in benign scenarios. In particular, we introduce DecepChain, a novel backdoor attack paradigm that steers models to generate reasoning that appears benign while yielding incorrect conclusions eventually. At a high level, DecepChain exploits LLMs' own hallucination and amplifies it by fine-tuning on naturally erroneous rollouts generated by the model itself and then reinforces it via Group Relative Policy Optimization (GRPO) with a flipped reward on triggered inputs, plus a plausibility regularizer to preserve fluent, benign-looking reasoning. Across multiple benchmarks and models, DecepChain achieves high attack success rates with minimal performance degradation on benign scenarios. Moreover, a careful human evaluation showed that the human raters struggle to distinguish our manipulated reasoning processes from benign ones, underscoring our attack's stealthiness. Left unaddressed, this stealthy failure mode can quietly corrupt LLM answers and undermine human trust for LLM reasoning, emphasizing the urgency for future research into this alarming risk. Project page: https://decepchain.github.io/.

Authors:Xiaoyu Song, William Han, Tony Chen, Chaojing Duan, Michael A. Rosenberg, Emerson Liu, Ding Zhao
Title: Retrieval-Augmented Generation for Electrocardiogram-Language Models
Abstract:
Interest in generative Electrocardiogram-Language Models (ELMs) is growing, as they can produce textual responses conditioned on ECG signals and textual queries. Unlike traditional classifiers that output label probabilities, ELMs are more versatile, supporting domain-specific tasks (e.g., waveform analysis, diagnosis, prognosis) as well as general tasks (e.g., open-ended questions, dialogue). Retrieval-Augmented Generation (RAG), widely used in Large Language Models (LLMs) to ground LLM outputs in retrieved knowledge, helps reduce hallucinations and improve natural language generation (NLG). However, despite its promise, no open-source implementation or systematic study of RAG pipeline design for ELMs currently exists. To address this gap, we present the first open-source RAG pipeline for ELMs, along with baselines and ablation studies for NLG. Experiments on three public datasets show that ELMs with RAG consistently improves performance over non-RAG baselines and highlights key ELM design considerations. Our code is available at: https://github.com/willxxy/ECG-Bench.

Authors:Xiaofeng Lin, Hejian Sang, Zhipeng Wang, Xuezhou Zhang
Title: Debunk the Myth of SFT Generalization
Abstract:
A prevailing view holds that supervised fine-tuning (SFT) memorizes training data and fails to generalize, whereas reinforcement learning (RL) attains broader robustness. We revisit this claim through a systematic evaluation on two decision-making benchmarks, Sokoban and General Points, and arrive at a different conclusion. We show that much of SFT's perceived failure stems from frozen-prompt artifacts: when trained on fixed instruction templates, SFT models cling to training semantics rather than adapting to new ones. Introducing prompt diversity during training breaks this shortcut and yields strong generalization to unseen instruction variants without harming in-distribution performance. Beyond instruction shifts, we ask whether SFT can generalize to strictly harder tasks. Here, chain-of-thought (CoT) supervision provides an algorithmic scaffold that markedly improves transfer to more difficult regimes, such as larger Sokoban grids with additional boxes and arithmetic with out-of-distribution values or five-card compositions that increase combinatorial complexity. Finally, combining prompt diversity with CoT achieves the best of both worlds: robust generalization across both instruction-variant and difficulty-variant settings, matching or surpassing RL baselines on our benchmarks while retaining SFT's simplicity and stability. These findings challenge the narrative that SFT is inherently inferior to RL and support a data-centric perspective: with appropriately curated demonstrations, vanilla SFT can generalize as strongly as RL. Code reproducing the results in the paper can be found at: https://github.com/XiaofengLin7/debunking-sft-generalization.

Authors:Yue Meng, Fei Chen, Chuchu Fan
Title: TGPO: Temporal Grounded Policy Optimization for Signal Temporal Logic Tasks
Abstract:
Learning control policies for complex, long-horizon tasks is a central challenge in robotics and autonomous systems. Signal Temporal Logic (STL) offers a powerful and expressive language for specifying such tasks, but its non-Markovian nature and inherent sparse reward make it difficult to be solved via standard Reinforcement Learning (RL) algorithms. Prior RL approaches focus only on limited STL fragments or use STL robustness scores as sparse terminal rewards. In this paper, we propose TGPO, Temporal Grounded Policy Optimization, to solve general STL tasks. TGPO decomposes STL into timed subgoals and invariant constraints and provides a hierarchical framework to tackle the problem. The high-level component of TGPO proposes concrete time allocations for these subgoals, and the low-level time-conditioned policy learns to achieve the sequenced subgoals using a dense, stage-wise reward signal. During inference, we sample various time allocations and select the most promising assignment for the policy network to rollout the solution trajectory. To foster efficient policy learning for complex STL with multiple subgoals, we leverage the learned critic to guide the high-level temporal search via Metropolis-Hastings sampling, focusing exploration on temporally feasible solutions. We conduct experiments on five environments, ranging from low-dimensional navigation to manipulation, drone, and quadrupedal locomotion. Under a wide range of STL tasks, TGPO significantly outperforms state-of-the-art baselines (especially for high-dimensional and long-horizon cases), with an average of 31.6% improvement in task success rate compared to the best baseline. The code will be available at https://github.com/mengyuest/TGPO

Authors:Zhanda Zhu, Qidong Su, Yaoyao Ding, Kevin Song, Shang Wang, Gennady Pekhimenko
Title: LoRAFusion: Efficient LoRA Fine-Tuning for LLMs
Abstract:
Low-Rank Adaptation (LoRA) has become the leading Parameter-Efficient Fine-Tuning (PEFT) method for Large Language Models (LLMs), as it significantly reduces GPU memory usage while maintaining competitive fine-tuned model quality on downstream tasks. Despite these benefits, we identify two key inefficiencies in existing LoRA fine-tuning systems. First, they incur substantial runtime overhead due to redundant memory accesses on large activation tensors. Second, they miss the opportunity to concurrently fine-tune multiple independent LoRA adapters that share the same base model on the same set of GPUs. This leads to missed performance gains such as reduced pipeline bubbles, better communication overlap, and improved GPU load balance. To address these issues, we introduce LoRAFusion, an efficient LoRA fine-tuning system for LLMs. At the kernel level, we propose a graph-splitting method that fuses memory-bound operations. This design eliminates unnecessary memory accesses and preserves the performance of compute-bound GEMMs without incurring the cost of recomputation or synchronization. At the scheduling level, LoRAFusion introduces an adaptive batching algorithm for multi-job fine-tuning. It first splits LoRA adapters into groups to intentionally stagger batch execution across jobs, and then solves a bin-packing problem within each group to generate balanced, dependency-aware microbatches. LoRAFusion achieves up to $1.96\times$ ($1.47\times$ on average) end-to-end speedup compared to Megatron-LM, and up to $1.46\times$ ($1.29\times$ on average) improvement over mLoRA, the state-of-the-art multi-LoRA fine-tuning system. Our fused kernel achieves up to $1.39\times$ ($1.27\times$ on average) kernel performance improvement and can directly serve as a plug-and-play replacement in existing LoRA systems. We open-source LoRAFusion at https://github.com/CentML/lorafusion.

Authors:Hanze Guo, Yijun Ma, Xiao Zhou
Title: SoREX: Towards Self-Explainable Social Recommendation with Relevant Ego-Path Extraction
Abstract:
Social recommendation has been proven effective in addressing data sparsity in user-item interaction modeling by leveraging social networks. The recent integration of Graph Neural Networks (GNNs) has further enhanced prediction accuracy in contemporary social recommendation algorithms. However, many GNN-based approaches in social recommendation lack the ability to furnish meaningful explanations for their predictions. In this study, we confront this challenge by introducing SoREX, a self-explanatory GNN-based social recommendation framework. SoREX adopts a two-tower framework enhanced by friend recommendation, independently modeling social relations and user-item interactions, while jointly optimizing an auxiliary task to reinforce social signals. To offer explanations, we propose a novel ego-path extraction approach. This method involves transforming the ego-net of a target user into a collection of multi-hop ego-paths, from which we extract factor-specific and candidate-aware ego-path subsets as explanations. This process facilitates the summarization of detailed comparative explanations among different candidate items through intricate substructure analysis. Furthermore, we conduct explanation re-aggregation to explicitly correlate explanations with downstream predictions, imbuing our framework with inherent self-explainability. Comprehensive experiments conducted on four widely adopted benchmark datasets validate the effectiveness of SoREX in predictive accuracy. Additionally, qualitative and quantitative analyses confirm the efficacy of the extracted explanations in SoREX. Our code and data are available at https://github.com/antman9914/SoREX.

Authors:Xianjie Liu, Yiman Hu, Yixiong Zou, Liang Wu, Jian Xu, Bo Zheng
Title: HiDe: Rethinking The Zoom-IN method in High Resolution MLLMs via Hierarchical Decoupling
Abstract:
Multimodal Large Language Models (MLLMs) have made significant strides in visual understanding tasks. However, their performance on high-resolution images remains suboptimal. While existing approaches often attribute this limitation to perceptual constraints and argue that MLLMs struggle to recognize small objects, leading them to use "zoom in" strategies for better detail, our analysis reveals a different cause: the main issue is not object size, but rather caused by complex background interference. We systematically analyze this "zoom in" operation through a series of decoupling experiments and propose the Hierarchical Decoupling Framework (HiDe), a training-free framework that uses Token-wise Attention Decoupling (TAD) to decouple the question tokens and identify the key information tokens, then leverages their attention weights to achieve precise alignment with the target visual regions. Subsequently, it employs Layout-Preserving Decoupling (LPD) to decouple these regions from the background and reconstructs a compact representation that preserves essential spatial layouts while eliminating background interference. HiDe sets a new SOTA on V*Bench, HRBench4K, and HRBench8K, boosting Qwen2.5-VL 7B and InternVL3 8B to SOTA (92.1% and 91.6% on V*Bench), even surpassing RL methods. After optimization, HiDe uses 75% less memory than the previous training-free approach. Code is provided in https://github.com/Tennine2077/HiDe.

Authors:Youquan Fu, Ruiyang Si, Hongfa Wang, Dongzhan Zhou, Jiacheng Sun, Ping Luo, Di Hu, Hongyuan Zhang, Xuelong Li
Title: Object-AVEdit: An Object-level Audio-Visual Editing Model
Abstract:
There is a high demand for audio-visual editing in video post-production and the film making field. While numerous models have explored audio and video editing, they struggle with object-level audio-visual operations. Specifically, object-level audio-visual editing requires the ability to perform object addition, replacement, and removal across both audio and visual modalities, while preserving the structural information of the source instances during the editing process. In this paper, we present \textbf{Object-AVEdit}, achieving the object-level audio-visual editing based on the inversion-regeneration paradigm. To achieve the object-level controllability during editing, we develop a word-to-sounding-object well-aligned audio generation model, bridging the gap in object-controllability between audio and current video generation models. Meanwhile, to achieve the better structural information preservation and object-level editing effect, we propose an inversion-regeneration holistically-optimized editing algorithm, ensuring both information retention during the inversion and better regeneration effect. Extensive experiments demonstrate that our editing model achieved advanced results in both audio-video object-level editing tasks with fine audio-visual semantic alignment. In addition, our developed audio generation model also achieved advanced performance. More results on our project page: https://gewu-lab.github.io/Object_AVEdit-website/.

Authors:Hossein Sholehrasa, Amirhossein Ghanaatian, Doina Caragea, Lisa A. Tell, Jim E. Riviere, Majid Jaberi-Douraki
Title: AutoPK: Leveraging LLMs and a Hybrid Similarity Metric for Advanced Retrieval of Pharmacokinetic Data from Complex Tables and Documents
Abstract:
Pharmacokinetics (PK) plays a critical role in drug development and regulatory decision-making for human and veterinary medicine, directly affecting public health through drug safety and efficacy assessments. However, PK data are often embedded in complex, heterogeneous tables with variable structures and inconsistent terminologies, posing significant challenges for automated PK data retrieval and standardization. AutoPK, a novel two-stage framework for accurate and scalable extraction of PK data from complex scientific tables. In the first stage, AutoPK identifies and extracts PK parameter variants using large language models (LLMs), a hybrid similarity metric, and LLM-based validation. The second stage filters relevant rows, converts the table into a key-value text format, and uses an LLM to reconstruct a standardized table. Evaluated on a real-world dataset of 605 PK tables, including captions and footnotes, AutoPK shows significant improvements in precision and recall over direct LLM baselines. For instance, AutoPK with LLaMA 3.1-70B achieved an F1-score of 0.92 on half-life and 0.91 on clearance parameters, outperforming direct use of LLaMA 3.1-70B by margins of 0.10 and 0.21, respectively. Smaller models such as Gemma 3-27B and Phi 3-12B with AutoPK achieved 2-7 fold F1 gains over their direct use, with Gemma's hallucination rates reduced from 60-95% down to 8-14%. Notably, AutoPK enabled open-source models like Gemma 3-27B to outperform commercial systems such as GPT-4o Mini on several PK parameters. AutoPK enables scalable and high-confidence PK data extraction, making it well-suited for critical applications in veterinary pharmacology, drug safety monitoring, and public health decision-making, while addressing heterogeneous table structures and terminology and demonstrating generalizability across key PK parameters. Code and data: https://github.com/hosseinsholehrasa/AutoPK

Authors:Jessica Bader, Mateusz Pach, Maria A. Bravo, Serge Belongie, Zeynep Akata
Title: Stitch: Training-Free Position Control in Multimodal Diffusion Transformers
Abstract:
Text-to-Image (T2I) generation models have advanced rapidly in recent years, but accurately capturing spatial relationships like "above" or "to the right of" poses a persistent challenge. Earlier methods improved spatial relationship following with external position control. However, as architectures evolved to enhance image quality, these techniques became incompatible with modern models. We propose Stitch, a training-free method for incorporating external position control into Multi-Modal Diffusion Transformers (MMDiT) via automatically-generated bounding boxes. Stitch produces images that are both spatially accurate and visually appealing by generating individual objects within designated bounding boxes and seamlessly stitching them together. We find that targeted attention heads capture the information necessary to isolate and cut out individual objects mid-generation, without needing to fully complete the image. We evaluate Stitch on PosEval, our benchmark for position-based T2I generation. Featuring five new tasks that extend the concept of Position beyond the basic GenEval task, PosEval demonstrates that even top models still have significant room for improvement in position-based generation. Tested on Qwen-Image, FLUX, and SD3.5, Stitch consistently enhances base models, even improving FLUX by 218% on GenEval's Position task and by 206% on PosEval. Stitch achieves state-of-the-art results with Qwen-Image on PosEval, improving over previous models by 54%, all accomplished while integrating position control into leading models training-free. Code is available at https://github.com/ExplainableML/Stitch.

Authors:Junlin Han, Shengbang Tong, David Fan, Yufan Ren, Koustuv Sinha, Philip Torr, Filippos Kokkinos
Title: Learning to See Before Seeing: Demystifying LLM Visual Priors from Language Pre-training
Abstract:
Large Language Models (LLMs), despite being trained on text alone, surprisingly develop rich visual priors. These priors allow latent visual capabilities to be unlocked for vision tasks with a relatively small amount of multimodal data, and in some cases, to perform visual tasks without ever having seen an image. Through systematic analysis, we reveal that visual priors-the implicit, emergent knowledge about the visual world acquired during language pre-training-are composed of separable perception and reasoning priors with unique scaling trends and origins. We show that an LLM's latent visual reasoning ability is predominantly developed by pre-training on reasoning-centric data (e.g., code, math, academia) and scales progressively. This reasoning prior acquired from language pre-training is transferable and universally applicable to visual reasoning. In contrast, a perception prior emerges more diffusely from broad corpora, and perception ability is more sensitive to the vision encoder and visual instruction tuning data. In parallel, text describing the visual world proves crucial, though its performance impact saturates rapidly. Leveraging these insights, we propose a data-centric recipe for pre-training vision-aware LLMs and verify it in 1T token scale pre-training. Our findings are grounded in over 100 controlled experiments consuming 500,000 GPU-hours, spanning the full MLLM construction pipeline-from LLM pre-training to visual alignment and supervised multimodal fine-tuning-across five model scales, a wide range of data categories and mixtures, and multiple adaptation setups. Along with our main findings, we propose and investigate several hypotheses, and introduce the Multi-Level Existence Bench (MLE-Bench). Together, this work provides a new way of deliberately cultivating visual priors from language pre-training, paving the way for the next generation of multimodal LLMs.

Authors:Yida Xue, Mingjun Mao, Xiangyuan Ru, Yuqi Zhu, Baochang Ren, Shuofei Qiao, Mengru Wang, Shumin Deng, Xinyu An, Ningyu Zhang, Ying Chen, Huajun Chen
Title: OceanGym: A Benchmark Environment for Underwater Embodied Agents
Abstract:
We introduce OceanGym, the first comprehensive benchmark for ocean underwater embodied agents, designed to advance AI in one of the most demanding real-world environments. Unlike terrestrial or aerial domains, underwater settings present extreme perceptual and decision-making challenges, including low visibility, dynamic ocean currents, making effective agent deployment exceptionally difficult. OceanGym encompasses eight realistic task domains and a unified agent framework driven by Multi-modal Large Language Models (MLLMs), which integrates perception, memory, and sequential decision-making. Agents are required to comprehend optical and sonar data, autonomously explore complex environments, and accomplish long-horizon objectives under these harsh conditions. Extensive experiments reveal substantial gaps between state-of-the-art MLLM-driven agents and human experts, highlighting the persistent difficulty of perception, planning, and adaptability in ocean underwater environments. By providing a high-fidelity, rigorously designed platform, OceanGym establishes a testbed for developing robust embodied AI and transferring these capabilities to real-world autonomous ocean underwater vehicles, marking a decisive step toward intelligent agents capable of operating in one of Earth's last unexplored frontiers. The code and data are available at https://github.com/OceanGPT/OceanGym.

Authors:Seohyun Lee, Wenzhi Fang, Dong-Jun Han, Seyyedali Hosseinalipour, Christopher G. Brinton
Title: TAP: Two-Stage Adaptive Personalization of Multi-task and Multi-Modal Foundation Models in Federated Learning
Abstract:
Federated Learning (FL), despite demonstrating impressive capabilities in the training of multiple models in a decentralized manner, has been shown to produce a final model not necessarily well-suited to the needs of each client. While extensive work has been conducted on how to create tailored personalized models, called Personalized Federated Learning (PFL), less attention has been given to personalization via fine-tuning of foundation models with multi-task and multi-modal properties. Moreover, there exists a lack of understanding in the literature on how to fine-tune and personalize such models in a setting that is heterogeneous across clients not only in data, but also in tasks and modalities. To address this gap in the literature, we propose TAP (Two-Stage Adaptive Personalization), which (i) leverages mismatched model architectures between the clients and server to selectively conduct replacement operations when it benefits a client's local tasks and (ii) engages in post-FL knowledge distillation for capturing beneficial general knowledge without compromising personalization. We also introduce the first convergence analysis of the server model under its modality-task pair architecture, and demonstrate that as the number of modality-task pairs increases, its ability to cater to all tasks suffers. Through extensive experiments, we demonstrate the effectiveness of our proposed algorithm across a variety of datasets and tasks in comparison to a multitude of baselines. Implementation code is publicly available at https://github.com/lee3296/TAP.

Authors:Adrian Kosowski, Przemysław Uznański, Jan Chorowski, Zuzanna Stamirowska, Michał Bartoszkiewicz
Title: The Dragon Hatchling: The Missing Link between the Transformer and Models of the Brain
Abstract:
The relationship between computing systems and the brain has served as motivation for pioneering theoreticians since John von Neumann and Alan Turing. Uniform, scale-free biological networks, such as the brain, have powerful properties, including generalizing over time, which is the main barrier for Machine Learning on the path to Universal Reasoning Models. We introduce `Dragon Hatchling' (BDH), a new Large Language Model architecture based on a scale-free biologically inspired network of \$n\$ locally-interacting neuron particles. BDH couples strong theoretical foundations and inherent interpretability without sacrificing Transformer-like performance. BDH is a practical, performant state-of-the-art attention-based state space sequence learning architecture. In addition to being a graph model, BDH admits a GPU-friendly formulation. It exhibits Transformer-like scaling laws: empirically BDH rivals GPT2 performance on language and translation tasks, at the same number of parameters (10M to 1B), for the same training data. BDH can be represented as a brain model. The working memory of BDH during inference entirely relies on synaptic plasticity with Hebbian learning using spiking neurons. We confirm empirically that specific, individual synapses strengthen connection whenever BDH hears or reasons about a specific concept while processing language inputs. The neuron interaction network of BDH is a graph of high modularity with heavy-tailed degree distribution. The BDH model is biologically plausible, explaining one possible mechanism which human neurons could use to achieve speech. BDH is designed for interpretability. Activation vectors of BDH are sparse and positive. We demonstrate monosemanticity in BDH on language tasks. Interpretability of state, which goes beyond interpretability of neurons and model parameters, is an inherent feature of the BDH architecture.

Authors:Héctor Delgado, Giorgio Ramondetti, Emanuele Dalmasso, Gennady Karvitsky, Daniele Colibro, Haydar Talib
Title: On Deepfake Voice Detection -- It's All in the Presentation
Abstract:
While the technologies empowering malicious audio deepfakes have dramatically evolved in recent years due to generative AI advances, the same cannot be said of global research into spoofing (deepfake) countermeasures. This paper highlights how current deepfake datasets and research methodologies led to systems that failed to generalize to real world application. The main reason is due to the difference between raw deepfake audio, and deepfake audio that has been presented through a communication channel, e.g. by phone. We propose a new framework for data creation and research methodology, allowing for the development of spoofing countermeasures that would be more effective in real-world scenarios. By following the guidelines outlined here we improved deepfake detection accuracy by 39% in more robust and realistic lab setups, and by 57% on a real-world benchmark. We also demonstrate how improvement in datasets would have a bigger impact on deepfake detection accuracy than the choice of larger SOTA models would over smaller models; that is, it would be more important for the scientific community to make greater investment on comprehensive data collection programs than to simply train larger models with higher computational demands.

Authors:Alessio Masano, Matteo Pennisi, Federica Proietto Salanitri, Concetto Spampinato, Giovanni Bellitto
Title: Zero-Shot Decentralized Federated Learning
Abstract:
CLIP has revolutionized zero-shot learning by enabling task generalization without fine-tuning. While prompting techniques like CoOp and CoCoOp enhance CLIP's adaptability, their effectiveness in Federated Learning (FL) remains an open challenge. Existing federated prompt learning approaches, such as FedCoOp and FedTPG, improve performance but face generalization issues, high communication costs, and reliance on a central server, limiting scalability and privacy. We propose Zero-shot Decentralized Federated Learning (ZeroDFL), a fully decentralized framework that enables zero-shot adaptation across distributed clients without a central coordinator. ZeroDFL employs an iterative prompt-sharing mechanism, allowing clients to optimize and exchange textual prompts to enhance generalization while drastically reducing communication overhead. We validate ZeroDFL on nine diverse image classification datasets, demonstrating that it consistently outperforms--or remains on par with--state-of-the-art federated prompt learning methods. More importantly, ZeroDFL achieves this performance in a fully decentralized setting while reducing communication overhead by 118x compared to FedTPG. These results highlight that our approach not only enhances generalization in federated zero-shot learning but also improves scalability, efficiency, and privacy preservation--paving the way for decentralized adaptation of large vision-language models in real-world applications.

Authors:Artur Barros, Carlos Caetano, João Macedo, Jefersson A. dos Santos, Sandra Avila
Title: Attention over Scene Graphs: Indoor Scene Representations Toward CSAI Classification
Abstract:
Indoor scene classification is a critical task in computer vision, with wide-ranging applications that go from robotics to sensitive content analysis, such as child sexual abuse imagery (CSAI) classification. The problem is particularly challenging due to the intricate relationships between objects and complex spatial layouts. In this work, we propose the Attention over Scene Graphs for Sensitive Content Analysis (ASGRA), a novel framework that operates on structured graph representations instead of raw pixels. By first converting images into Scene Graphs and then employing a Graph Attention Network for inference, ASGRA directly models the interactions between a scene's components. This approach offers two key benefits: (i) inherent explainability via object and relationship identification, and (ii) privacy preservation, enabling model training without direct access to sensitive images. On Places8, we achieve 81.27% balanced accuracy, surpassing image-based methods. Real-world CSAI evaluation with law enforcement yields 74.27% balanced accuracy. Our results establish structured scene representations as a robust paradigm for indoor scene classification and CSAI classification. Code is publicly available at https://github.com/tutuzeraa/ASGRA.

Authors:Kai-Wei Chang, En-Pei Hu, Chun-Yi Kuan, Wenze Ren, Wei-Chih Chen, Guan-Ting Lin, Yu Tsao, Shao-Hua Sun, Hung-yi Lee, James Glass
Title: Game-Time: Evaluating Temporal Dynamics in Spoken Language Models
Abstract:
Conversational Spoken Language Models (SLMs) are emerging as a promising paradigm for real-time speech interaction. However, their capacity of temporal dynamics, including the ability to manage timing, tempo and simultaneous speaking, remains a critical and unevaluated challenge for conversational fluency. To address this gap, we introduce the Game-Time Benchmark, a framework to systematically assess these temporal capabilities. Inspired by how humans learn a language through language activities, Game-Time consists of basic instruction-following tasks and advanced tasks with temporal constraints, such as tempo adherence and synchronized responses. Our evaluation of diverse SLM architectures reveals a clear performance disparity: while state-of-the-art models handle basic tasks well, many contemporary systems still struggle with fundamental instruction-following. More critically, nearly all models degrade substantially under temporal constraints, exposing persistent weaknesses in time awareness and full-duplex interaction. The Game-Time Benchmark provides a foundation for guiding future research toward more temporally-aware conversational AI. Demos and datasets are available on our project website https://ga642381.github.io/Game-Time.

Authors:Jinyeop Song, Song Wang, Julian Shun, Yada Zhu
Title: Efficient and Transferable Agentic Knowledge Graph RAG via Reinforcement Learning
Abstract:
Knowledge-graph retrieval-augmented generation (KG-RAG) couples large language models (LLMs) with structured, verifiable knowledge graphs (KGs) to reduce hallucinations and expose reasoning traces. However, many KG-RAG systems compose multiple LLM modules (e.g planning, reasoning, and responding), inflating inference cost and binding behavior to a specific target KG. To address this, we introduce KG-R1, an agentic KG retrieval-augmented generation (KG-RAG) framework through reinforcement learning (RL). KG-R1 utilizes a single agent that interacts with KGs as its environment, learning to retrieve at each step and incorporating the retrieved information into its reasoning and generation. The process is optimized through end-to-end RL. In controlled experiments across Knowledge-Graph Question Answering (KGQA) benchmarks, our method demonstrates both efficiency and transferability: Using Qwen-2.5-3B, KG-R1 improves answer accuracy with fewer generation tokens than prior multi-module workflow methods that use larger foundation or fine-tuned models. Furthermore, KG-R1 enables plug and play: after training, it maintains strong accuracy on new KGs without modification. These properties make KG-R1 a promising KG-RAG framework for real-world deployment. Our code is publicly available at https://github.com/Jinyeop3110/KG-R1.

Authors:Shuai Shao, Qihan Ren, Chen Qian, Boyi Wei, Dadi Guo, Jingyi Yang, Xinhao Song, Linfeng Zhang, Weinan Zhang, Dongrui Liu, Jing Shao
Title: Your Agent May Misevolve: Emergent Risks in Self-evolving LLM Agents
Abstract:
Advances in Large Language Models (LLMs) have enabled a new class of self-evolving agents that autonomously improve through interaction with the environment, demonstrating strong capabilities. However, self-evolution also introduces novel risks overlooked by current safety research. In this work, we study the case where an agent's self-evolution deviates in unintended ways, leading to undesirable or even harmful outcomes. We refer to this as Misevolution. To provide a systematic investigation, we evaluate misevolution along four key evolutionary pathways: model, memory, tool, and workflow. Our empirical findings reveal that misevolution is a widespread risk, affecting agents built even on top-tier LLMs (e.g., Gemini-2.5-Pro). Different emergent risks are observed in the self-evolutionary process, such as the degradation of safety alignment after memory accumulation, or the unintended introduction of vulnerabilities in tool creation and reuse. To our knowledge, this is the first study to systematically conceptualize misevolution and provide empirical evidence of its occurrence, highlighting an urgent need for new safety paradigms for self-evolving agents. Finally, we discuss potential mitigation strategies to inspire further research on building safer and more trustworthy self-evolving agents. Our code and data are available at https://github.com/ShaoShuai0605/Misevolution . Warning: this paper includes examples that may be offensive or harmful in nature.

Authors:Keming Wu, Sicong Jiang, Max Ku, Ping Nie, Minghao Liu, Wenhu Chen
Title: EditReward: A Human-Aligned Reward Model for Instruction-Guided Image Editing
Abstract:
Recently, we have witnessed great progress in image editing with natural language instructions. Several closed-source models like GPT-Image-1, Seedream, and Google-Nano-Banana have shown highly promising progress. However, the open-source models are still lagging. The main bottleneck is the lack of a reliable reward model to scale up high-quality synthetic training data. To address this critical bottleneck, we built \mname, trained with our new large-scale human preference dataset, meticulously annotated by trained experts following a rigorous protocol containing over 200K preference pairs. \mname demonstrates superior alignment with human preferences in instruction-guided image editing tasks. Experiments show that \mname achieves state-of-the-art human correlation on established benchmarks such as GenAI-Bench, AURORA-Bench, ImagenHub, and our new \benchname, outperforming a wide range of VLM-as-judge models. Furthermore, we use \mname to select a high-quality subset from the existing noisy ShareGPT-4o-Image dataset. We train Step1X-Edit on the selected subset, which shows significant improvement over training on the full set. This demonstrates \mname's ability to serve as a reward model to scale up high-quality training data for image editing. Furthermore, its strong alignment suggests potential for advanced applications like reinforcement learning-based post-training and test-time scaling of image editing models. \mname with its training dataset will be released to help the community build more high-quality image editing training datasets.

Authors:Hehai Lin, Shilei Cao, Sudong Wang, Haotian Wu, Minzhi Li, Linyi Yang, Juepeng Zheng, Chengwei Qin
Title: Interactive Learning for LLM Reasoning
Abstract:
Existing multi-agent learning approaches have developed interactive training environments to explicitly promote collaboration among multiple Large Language Models (LLMs), thereby constructing stronger multi-agent systems (MAS). However, during inference, they require re-executing the MAS to obtain final solutions, which diverges from human cognition that individuals can enhance their reasoning capabilities through interactions with others and resolve questions independently in the future. To investigate whether multi-agent interaction can enhance LLMs' independent problem-solving ability, we introduce ILR, a novel co-learning framework for MAS that integrates two key components: Dynamic Interaction and Perception Calibration. Specifically, Dynamic Interaction first adaptively selects either cooperative or competitive strategies depending on question difficulty and model ability. LLMs then exchange information through Idea3 (Idea Sharing, Idea Analysis, and Idea Fusion), an innovative interaction paradigm designed to mimic human discussion, before deriving their respective final answers. In Perception Calibration, ILR employs Group Relative Policy Optimization (GRPO) to train LLMs while integrating one LLM's reward distribution characteristics into another's reward function, thereby enhancing the cohesion of multi-agent interactions. We validate ILR on three LLMs across two model families of varying scales, evaluating performance on five mathematical benchmarks and one coding benchmark. Experimental results show that ILR consistently outperforms single-agent learning, yielding an improvement of up to 5% over the strongest baseline. We further discover that Idea3 can enhance the robustness of stronger LLMs during multi-agent inference, and dynamic interaction types can boost multi-agent learning compared to pure cooperative or competitive strategies.

Authors:Arduin Findeis, Timo Kaufmann, Eyke Hüllermeier, Robert Mullins
Title: Feedback Forensics: A Toolkit to Measure AI Personality
Abstract:
Some traits making a "good" AI model are hard to describe upfront. For example, should responses be more polite or more casual? Such traits are sometimes summarized as model character or personality. Without a clear objective, conventional benchmarks based on automatic validation struggle to measure such traits. Evaluation methods using human feedback such as Chatbot Arena have emerged as a popular alternative. These methods infer "better" personality and other desirable traits implicitly by ranking multiple model responses relative to each other. Recent issues with model releases highlight limitations of these existing opaque evaluation approaches: a major model was rolled back over sycophantic personality issues, models were observed overfitting to such feedback-based leaderboards. Despite these known issues, limited public tooling exists to explicitly evaluate model personality. We introduce Feedback Forensics: an open-source toolkit to track AI personality changes, both those encouraged by human (or AI) feedback, and those exhibited across AI models trained and evaluated on such feedback. Leveraging AI annotators, our toolkit enables investigating personality via Python API and browser app. We demonstrate the toolkit's usefulness in two steps: (A) first we analyse the personality traits encouraged in popular human feedback datasets including Chatbot Arena, MultiPref and PRISM; and (B) then use our toolkit to analyse how much popular models exhibit such traits. We release (1) our Feedback Forensics toolkit alongside (2) a web app tracking AI personality in popular models and feedback datasets as well as (3) the underlying annotation data at https://github.com/rdnfn/feedback-forensics.

Authors:Lionel Blondé, Joao A. Candido Ramos, Alexandros Kalousis
Title: Noise-Guided Transport for Imitation Learning
Abstract:
We consider imitation learning in the low-data regime, where only a limited number of expert demonstrations are available. In this setting, methods that rely on large-scale pretraining or high-capacity architectures can be difficult to apply, and efficiency with respect to demonstration data becomes critical. We introduce Noise-Guided Transport (NGT), a lightweight off-policy method that casts imitation as an optimal transport problem solved via adversarial training. NGT requires no pretraining or specialized architectures, incorporates uncertainty estimation by design, and is easy to implement and tune. Despite its simplicity, NGT achieves strong performance on challenging continuous control tasks, including high-dimensional Humanoid tasks, under ultra-low data regimes with as few as 20 transitions. Code is publicly available at: https://github.com/lionelblonde/ngt-pytorch.

Authors:Balamurugan Thambiraja, Malte Prinzler, Sadegh Aliakbarian, Darren Cosker, Justus Thies
Title: 3DiFACE: Synthesizing and Editing Holistic 3D Facial Animation
Abstract:
Creating personalized 3D animations with precise control and realistic head motions remains challenging for current speech-driven 3D facial animation methods. Editing these animations is especially complex and time consuming, requires precise control and typically handled by highly skilled animators. Most existing works focus on controlling style or emotion of the synthesized animation and cannot edit/regenerate parts of an input animation. They also overlook the fact that multiple plausible lip and head movements can match the same audio input. To address these challenges, we present 3DiFACE, a novel method for holistic speech-driven 3D facial animation. Our approach produces diverse plausible lip and head motions for a single audio input and allows for editing via keyframing and interpolation. Specifically, we propose a fully-convolutional diffusion model that can leverage the viseme-level diversity in our training corpus. Additionally, we employ a speaking-style personalization and a novel sparsely-guided motion diffusion to enable precise control and editing. Through quantitative and qualitative evaluations, we demonstrate that our method is capable of generating and editing diverse holistic 3D facial animations given a single audio input, with control between high fidelity and diversity. Code and models are available here: https://balamuruganthambiraja.github.io/3DiFACE

Authors:Alessandro De Bellis, Salvatore Bufi, Giovanni Servedio, Vito Walter Anelli, Tommaso Di Noia, Eugenio Di Sciascio
Title: Type-Less yet Type-Aware Inductive Link Prediction with Pretrained Language Models
Abstract:
Inductive link prediction is emerging as a key paradigm for real-world knowledge graphs (KGs), where new entities frequently appear and models must generalize to them without retraining. Predicting links in a KG faces the challenge of guessing previously unseen entities by leveraging generalizable node features such as subgraph structure, type annotations, and ontological constraints. However, explicit type information is often lacking or incomplete. Even when available, type information in most KGs is often coarse-grained, sparse, and prone to errors due to human annotation. In this work, we explore the potential of pre-trained language models (PLMs) to enrich node representations with implicit type signals. We introduce TyleR, a Type-less yet type-awaRe approach for subgraph-based inductive link prediction that leverages PLMs for semantic enrichment. Experiments on standard benchmarks demonstrate that TyleR outperforms state-of-the-art baselines in scenarios with scarce type annotations and sparse graph connectivity. To ensure reproducibility, we share our code at https://github.com/sisinflab/tyler .

Authors:Chenyang Jiang, Zhengcen Li, Hang Zhao, Qiben Shan, Shaocong Wu, Jingyong Su
Title: Beyond Pixels: Efficient Dataset Distillation via Sparse Gaussian Representation
Abstract:
Dataset distillation has emerged as a promising paradigm that synthesizes compact, informative datasets capable of retaining the knowledge of large-scale counterparts, thereby addressing the substantial computational and storage burdens of modern model training. Conventional approaches typically rely on dense pixel-level representations, which introduce redundancy and are difficult to scale up. In this work, we propose GSDD, a novel and efficient sparse representation for dataset distillation based on 2D Gaussians. Instead of representing all pixels equally, GSDD encodes critical discriminative information in a distilled image using only a small number of Gaussian primitives. This sparse representation could improve dataset diversity under the same storage budget, enhancing coverage of difficult samples and boosting distillation performance. To ensure both efficiency and scalability, we adapt CUDA-based splatting operators for parallel inference and training, enabling high-quality rendering with minimal computational and memory overhead. Our method is simple yet effective, broadly applicable to different distillation pipelines, and highly scalable. Experiments show that GSDD achieves state-of-the-art performance on CIFAR-10, CIFAR-100, and ImageNet subsets, while remaining highly efficient encoding and decoding cost. Our code is available at https://github.com/j-cyoung/GSDatasetDistillation.

Authors:Zican Hu, Shilin Zhang, Yafu Li, Jianhao Yan, Xuyang Hu, Leyang Cui, Xiaoye Qu, Chunlin Chen, Yu Cheng, Zhi Wang
Title: Diversity-Incentivized Exploration for Versatile Reasoning
Abstract:
Reinforcement Learning with Verifiable Rewards (RLVR) has emerged as a crucial paradigm for incentivizing reasoning capabilities in Large Language Models (LLMs). Due to vast state-action spaces and reward sparsity in reasoning tasks, existing methods often struggle with deficient exploration and poor sample efficiency. In the paper, we propose \textbf{DIVER} (\textbf{D}iversity-\textbf{I}ncentivized Exploration for \textbf{V}ersatil\textbf{E} \textbf{R}easoning), an innovative framework that highlights the pivotal role of global sequence-level diversity to incentivize deep exploration for versatile reasoning. We first conduct a primary empirical study to reveal a strong positive correlation between global diversity and reasoning capacity. Building on this insight, we introduce global diversity incentives as an intrinsic reward to promote deep exploration in a semantically structured space. Incorporating the intrinsic reward, we develop a potential-based reward shaping mechanism to preserve optimal policy invariance and design simple heuristics to mitigate possible reward hacking. Experimental results show that DIVER outperforms competitive RLVR baselines with various exploration strategies on both in-domain and out-of-domain tasks, excelling in both Pass@1 and Pass@k evaluations. Our code is available at https://github.com/NJU-RL/DIVER.

Authors:Hatim Chergui, Miguel Catalan Cid, Pouria Sayyad Khodashenas, Daniel Camps Mur, Christos Verikoukis
Title: Toward an Unbiased Collective Memory for Efficient LLM-Based Agentic 6G Cross-Domain Management
Abstract:
This paper introduces a novel framework for proactive cross-domain resource orchestration in 6G RAN-Edge networks, featuring large language model (LLM)-augmented agents. The system comprises specialized RAN (energy efficiency) and Edge (latency assurance) agents that engage in iterative negotiation, supported by advanced reasoning and planning capabilities. Agents dynamically interact with a digital twin (DT) to test their proposals and leverage a long-term collective memory where their joint successful and failed agreements along with the related network contexts are distilled into strategies to either follow or avoid and subsequently stored. Given that agents are subject to a plethora of cognitive distortions when retrieving those past experiences -- such as primacy, recency, confirmation and availability biases -- we propose in this work a novel unbiased memory design (A reusable mockup version of the unbiased memory source code is available for non-commercial use at https://github.com/HatimChergui/unbiased-collective-memory). featuring (i) semantic retrieval of past strategies via Jaccard similarity; (ii) learning from failures through amplified weighting of SLA violations and mandatory inclusion of failed negotiation cases to mitigate confirmation bias; (iii) diversity enforcement to minimize availability bias and (iv) recency and primacy weighting with slow decay to counteract temporal biases. Evaluation results showcase the impact of existing biases and how the unbiased memory allows to tackle them by learning from both successful and failed strategies, either present or old, resulting in $\times 4.5$ and $\times 3.5$ reductions of unresolved negotiations compared to non-memory and vanilla memory baselines, respectively, while totally mitigating SLA violations as well as improving latency and energy saving distributions.

Authors:Runxin Yang, Yuxuan Wan, Shuqing Li, Michael R. Lyu
Title: 90% Faster, 100% Code-Free: MLLM-Driven Zero-Code 3D Game Development
Abstract:
Developing 3D games requires specialized expertise across multiple domains, including programming, 3D modeling, and engine configuration, which limits access to millions of potential creators. Recently, researchers have begun to explore automated game development. However, existing approaches face three primary challenges: (1) limited scope to 2D content generation or isolated code snippets; (2) requirement for manual integration of generated components into game engines; and (3) poor performance on handling interactive game logic and state management. While Multimodal Large Language Models (MLLMs) demonstrate potential capabilities to ease the game generation task, a critical gap still remains in translating these outputs into production-ready, executable game projects based on game engines such as Unity and Unreal Engine. To bridge the gap, this paper introduces UniGen, the first end-to-end coordinated multi-agent framework that automates zero-coding development of runnable 3D games from natural language requirements. Specifically, UniGen uses a Planning Agent that interprets user requirements into structured blueprints and engineered logic descriptions; after which a Generation Agent produces executable C# scripts; then an Automation Agent handles engine-specific component binding and scene construction; and lastly a Debugging Agent provides real-time error correction through conversational interaction. We evaluated UniGen on three distinct game prototypes. Results demonstrate that UniGen not only democratizes game creation by requiring no coding from the user, but also reduces development time by 91.4%. We release UniGen at https://github.com/yxwan123/UniGen. A video demonstration is available at https://www.youtube.com/watch?v=xyJjFfnxUx0.

Authors:Kyeongryeol Go
Title: Towards Continual Expansion of Data Coverage: Automatic Text-guided Edge-case Synthesis
Abstract:
The performance of deep neural networks is strongly influenced by the quality of their training data. However, mitigating dataset bias by manually curating challenging edge cases remains a major bottleneck. To address this, we propose an automated pipeline for text-guided edge-case synthesis. Our approach employs a Large Language Model, fine-tuned via preference learning, to rephrase image captions into diverse textual prompts that steer a Text-to-Image model toward generating difficult visual scenarios. Evaluated on the FishEye8K object detection benchmark, our method achieves superior robustness, surpassing both naive augmentation and manually engineered prompts. This work establishes a scalable framework that shifts data curation from manual effort to automated, targeted synthesis, offering a promising direction for developing more reliable and continuously improving AI systems. Code is available at https://github.com/gokyeongryeol/ATES.

Authors:Sachith Abeywickrama, Emadeldeen Eldele, Min Wu, Xiaoli Li, Chau Yuen
Title: EntroPE: Entropy-Guided Dynamic Patch Encoder for Time Series Forecasting
Abstract:
Transformer-based models have significantly advanced time series forecasting, with patch-based input strategies offering efficiency and improved long-horizon modeling. Yet, existing approaches rely on temporally-agnostic patch construction, where arbitrary starting positions and fixed lengths fracture temporal coherence by splitting natural transitions across boundaries. This naive segmentation often disrupts short-term dependencies and weakens representation learning. In response, we propose EntroPE (Entropy-Guided Dynamic Patch Encoder), a novel, temporally informed framework that dynamically detects transition points via conditional entropy and dynamically places patch boundaries. This preserves temporal structure while retaining the computational benefits of patching. EntroPE consists of two key modules, namely an Entropy-based Dynamic Patcher (EDP) that applies information-theoretic criteria to locate natural temporal shifts and determine patch boundaries, and an Adaptive Patch Encoder (APE) that employs pooling and cross-attention to capture intra-patch dependencies and produce fixed-size latent representations. These embeddings are then processed by a global transformer to model inter-patch dynamics. Experiments across long-term forecasting benchmarks demonstrate that EntroPE improves both accuracy and efficiency, establishing entropy-guided dynamic patching as a promising new paradigm for time series modeling. Code is available at: https://github.com/Sachithx/EntroPE.

Authors:Asmita Sengupta, David Antony Selby, Sebastian Josef Vollmer, Gerrit Großmann
Title: MEDAKA: Construction of Biomedical Knowledge Graphs Using Large Language Models
Abstract:
Knowledge graphs (KGs) are increasingly used to represent biomedical information in structured, interpretable formats. However, existing biomedical KGs often focus narrowly on molecular interactions or adverse events, overlooking the rich data found in drug leaflets. In this work, we present (1) a hackable, end-to-end pipeline to create KGs from unstructured online content using a web scraper and an LLM; and (2) a curated dataset, MEDAKA, generated by applying this method to publicly available drug leaflets. The dataset captures clinically relevant attributes such as side effects, warnings, contraindications, ingredients, dosage guidelines, storage instructions and physical characteristics. We evaluate it through manual inspection and with an LLM-as-a-Judge framework, and compare its coverage with existing biomedical KGs and databases. We expect MEDAKA to support tasks such as patient safety monitoring and drug recommendation. The pipeline can also be used for constructing KGs from unstructured texts in other domains. Code and dataset are available at https://github.com/medakakg/medaka.

Authors:Christoph Timmermann, Hyunse Lee, Woojin Lee
Title: SeMoBridge: Semantic Modality Bridge for Efficient Few-Shot Adaptation of CLIP
Abstract:
While Contrastive Language-Image Pretraining (CLIP) excels at zero-shot tasks by aligning image and text embeddings, its performance in few-shot classification is hindered by a critical limitation: intra-modal misalignment. This issue, caused by a persistent modality gap and CLIP's exclusively inter-modal training objective, leaves the embedding spaces uncalibrated, making direct image-to-image comparisons unreliable. Existing methods attempt to address this by refining similarity logits or by computationally expensive per-sample optimization. To overcome these challenges, we introduce SeMoBridge, a lightweight yet powerful approach that directly addresses the misalignment. Our method maps images into the text modality, while keeping their semantic content intact through what we call a Semantic Modality Bridge. SeMoBridge is closed-form and can optionally be trained through multi-modal supervision, combining image and text-alignment losses to optimize the projection. Experiments show that the trained version, SeMoBridge-T, requires only a fraction of the training time while overall outperforming other methods, particularly in low-data scenarios (1, 2, and 4 shots). The code is available at https://github.com/christti98/semobridge.

Authors:Zhicheng Zhou, Jing Li, Suming Qiu, Junjie Huang, Linyuan Qiu, Zhijie Sun
Title: DeepJSONEval: Benchmarking Complex Nested JSON Data Mining for Large Language Models
Abstract:
The internet is saturated with low-density, high-redundancy information, such as social media comments, repetitive news, and lengthy discussions, making it difficult to extract valuable insights efficiently. Multi-layer nested JSON structures provide an effective solution by compressing such information into semantically rich, hierarchical representations, which organize data into key-value pairs, arrays, and nested objects, preserving contextual relationships and enabling efficient storage, retrieval, and semantic querying. For instance, in news aggregation, a JSON object can nest an article's metadata (title, author, date), content (text, multimedia), and multimedia information (multimedia type, caption) hierarchically. Large Language Models (LLMs) play a transformative role in web data mining by parsing unstructured text and outputting structured results directly into complex JSON schemas. However, current benchmarks for evaluating LLMs' JSON output capabilities overemphasize pure JSON generation rather than assessing data comprehension and extraction abilities, a limitation that lacks relevance to practical web data mining tasks. To address this, we introduce DeepJSONEval, a novel benchmark featuring 2100 multi-domain instances with deep nested structures, categorized by difficulty. Experiments show significant performance gaps among LLMs in handling such complexity. Our benchmark and datasets are open-sourced to advance research in structured JSON generation.(https://github.com/GTS-AI-Infra-Lab-SotaS/DeepJSONEval).

Authors:Olga Krestinskaya, Mohammed E. Fouda, Ahmed Eltawil, Khaled N. Salama
Title: CIMNAS: A Joint Framework for Compute-In-Memory-Aware Neural Architecture Search
Abstract:
To maximize hardware efficiency and performance accuracy in Compute-In-Memory (CIM)-based neural network accelerators for Artificial Intelligence (AI) applications, co-optimizing both software and hardware design parameters is essential. Manual tuning is impractical due to the vast number of parameters and their complex interdependencies. To effectively automate the design and optimization of CIM-based neural network accelerators, hardware-aware neural architecture search (HW-NAS) techniques can be applied. This work introduces CIMNAS, a joint model-quantization-hardware optimization framework for CIM architectures. CIMNAS simultaneously searches across software parameters, quantization policies, and a broad range of hardware parameters, incorporating device-, circuit-, and architecture-level co-optimizations. CIMNAS experiments were conducted over a search space of 9.9x10^85 potential parameter combinations with the MobileNet model as a baseline and RRAM-based CIM architecture. Evaluated on the ImageNet dataset, CIMNAS achieved a reduction in energy-delay-area product (EDAP) ranging from 90.1x to 104.5x, an improvement in TOPS/W between 4.68x and 4.82x, and an enhancement in TOPS/mm^2 from 11.3x to 12.78x relative to various baselines, all while maintaining an accuracy of 73.81%. The adaptability and robustness of CIMNAS are demonstrated by extending the framework to support the SRAM-based ResNet50 architecture, achieving up to an 819.5x reduction in EDAP. Unlike other state-of-the-art methods, CIMNAS achieves EDAP-focused optimization without any accuracy loss, generating diverse software-hardware parameter combinations for high-performance CIM-based neural network designs. The source code of CIMNAS is available at https://github.com/OlgaKrestinskaya/CIMNAS.

Authors:Xinyu Tian, Shu Zou, Zhaoyuan Yang, Mengqi He, Fabian Waschkowski, Lukas Wesemann, Peter Tu, Jing Zhang
Title: More Thought, Less Accuracy? On the Dual Nature of Reasoning in Vision-Language Models
Abstract:
Reasoning has emerged as a pivotal capability in Large Language Models (LLMs). Through Reinforcement Learning (RL), typically Group Relative Policy Optimization (GRPO), these models are able to solve complex tasks such as mathematics and code generation. Building on these advances, recent research has sought to extend reasoning to Vision-Language Models (VLMs), yielding promising results across diverse visual tasks. Despite this progress, our study uncovers the dual nature of multimodal reasoning: while it substantially enhances logical inference and facilitates performance on challenging problems, it may gradually impair perceptual grounding, leading to recognition failures on otherwise basic visual questions. Through further analysis, we attribute this phenomenon to visual forgetting, wherein prolonged reasoning causes the model to increasingly disregard visual input. To address this, we propose Vision-Anchored Policy Optimization (VAPO), a simple yet effective method that explicitly steers the reasoning process toward visually grounded trajectories. Our result model, VAPO-Thinker-7B, significantly strengthens the model's reliance on visual information and achieves new state-of-the-art results on a wide range of established benchmarks. Project page: https://xytian1008.github.io/VAPO/

Authors:Amber Srivastava, Salar Basiri, Srinivasa Salapaka
Title: Autonomy-Aware Clustering: When Local Decisions Supersede Global Prescriptions
Abstract:
Clustering arises in a wide range of problem formulations, yet most existing approaches assume that the entities under clustering are passive and strictly conform to their assigned groups. In reality, entities often exhibit local autonomy, overriding prescribed associations in ways not fully captured by feature representations. Such autonomy can substantially reshape clustering outcomes -- altering cluster compositions, geometry, and cardinality -- with significant downstream effects on inference and decision-making. We introduce autonomy-aware clustering, a reinforcement learning (RL) framework that learns and accounts for the influence of local autonomy without requiring prior knowledge of its form. Our approach integrates RL with a Deterministic Annealing (DA) procedure, where, to determine underlying clusters, DA naturally promotes exploration in early stages of annealing and transitions to exploitation later. We also show that the annealing procedure exhibits phase transitions that enable design of efficient annealing schedules. To further enhance adaptability, we propose the Adaptive Distance Estimation Network (ADEN), a transformer-based attention model that learns dependencies between entities and cluster representatives within the RL loop, accommodates variable-sized inputs and outputs, and enables knowledge transfer across diverse problem instances. Empirical results show that our framework closely aligns with underlying data dynamics: even without explicit autonomy models, it achieves solutions close to the ground truth (gap ~3-4%), whereas ignoring autonomy leads to substantially larger gaps (~35-40%). The code and data are publicly available at https://github.com/salar96/AutonomyAwareClustering.

Authors:Jia Jun Cheng Xian, Muchen Li, Haotian Yang, Xin Tao, Pengfei Wan, Leonid Sigal, Renjie Liao
Title: Free Lunch Alignment of Text-to-Image Diffusion Models without Preference Image Pairs
Abstract:
Recent advances in diffusion-based text-to-image (T2I) models have led to remarkable success in generating high-quality images from textual prompts. However, ensuring accurate alignment between the text and the generated image remains a significant challenge for state-of-the-art diffusion models. To address this, existing studies employ reinforcement learning with human feedback (RLHF) to align T2I outputs with human preferences. These methods, however, either rely directly on paired image preference data or require a learned reward function, both of which depend heavily on costly, high-quality human annotations and thus face scalability limitations. In this work, we introduce Text Preference Optimization (TPO), a framework that enables "free-lunch" alignment of T2I models, achieving alignment without the need for paired image preference data. TPO works by training the model to prefer matched prompts over mismatched prompts, which are constructed by perturbing original captions using a large language model. Our framework is general and compatible with existing preference-based algorithms. We extend both DPO and KTO to our setting, resulting in TDPO and TKTO. Quantitative and qualitative evaluations across multiple benchmarks show that our methods consistently outperform their original counterparts, delivering better human preference scores and improved text-to-image alignment. Our Open-source code is available at https://github.com/DSL-Lab/T2I-Free-Lunch-Alignment.

Authors:Huikang Su, Dengyun Peng, Zifeng Zhuang, YuHan Liu, Qiguang Chen, Donglin Wang, Qinghe Liu
Title: Boundary-to-Region Supervision for Offline Safe Reinforcement Learning
Abstract:
Offline safe reinforcement learning aims to learn policies that satisfy predefined safety constraints from static datasets. Existing sequence-model-based methods condition action generation on symmetric input tokens for return-to-go and cost-to-go, neglecting their intrinsic asymmetry: return-to-go (RTG) serves as a flexible performance target, while cost-to-go (CTG) should represent a rigid safety boundary. This symmetric conditioning leads to unreliable constraint satisfaction, especially when encountering out-of-distribution cost trajectories. To address this, we propose Boundary-to-Region (B2R), a framework that enables asymmetric conditioning through cost signal realignment . B2R redefines CTG as a boundary constraint under a fixed safety budget, unifying the cost distribution of all feasible trajectories while preserving reward structures. Combined with rotary positional embeddings , it enhances exploration within the safe region. Experimental results show that B2R satisfies safety constraints in 35 out of 38 safety-critical tasks while achieving superior reward performance over baseline methods. This work highlights the limitations of symmetric token conditioning and establishes a new theoretical and practical approach for applying sequence models to safe RL. Our code is available at https://github.com/HuikangSu/B2R.

Authors:Tingyu Shi, Fan Lyu, Shaoliang Peng
Title: Annotation-Efficient Active Test-Time Adaptation with Conformal Prediction
Abstract:
Active Test-Time Adaptation (ATTA) improves model robustness under domain shift by selectively querying human annotations at deployment, but existing methods use heuristic uncertainty measures and suffer from low data selection efficiency, wasting human annotation budget. We propose Conformal Prediction Active TTA (CPATTA), which first brings principled, coverage-guaranteed uncertainty into ATTA. CPATTA employs smoothed conformal scores with a top-K certainty measure, an online weight-update algorithm driven by pseudo coverage, a domain-shift detector that adapts human supervision, and a staged update scheme balances human-labeled and model-labeled data. Extensive experiments demonstrate that CPATTA consistently outperforms the state-of-the-art ATTA methods by around 5% in accuracy. Our code and datasets are available at https://github.com/tingyushi/CPATTA.

Authors:Gihan Panapitiya, Emily Saldanha, Heather Job, Olivia Hess
Title: AutoLabs: Cognitive Multi-Agent Systems with Self-Correction for Autonomous Chemical Experimentation
Abstract:
The automation of chemical research through self-driving laboratories (SDLs) promises to accelerate scientific discovery, yet the reliability and granular performance of the underlying AI agents remain critical, under-examined challenges. In this work, we introduce AutoLabs, a self-correcting, multi-agent architecture designed to autonomously translate natural-language instructions into executable protocols for a high-throughput liquid handler. The system engages users in dialogue, decomposes experimental goals into discrete tasks for specialized agents, performs tool-assisted stoichiometric calculations, and iteratively self-corrects its output before generating a hardware-ready file. We present a comprehensive evaluation framework featuring five benchmark experiments of increasing complexity, from simple sample preparation to multi-plate timed syntheses. Through a systematic ablation study of 20 agent configurations, we assess the impact of reasoning capacity, architectural design (single- vs. multi-agent), tool use, and self-correction mechanisms. Our results demonstrate that agent reasoning capacity is the most critical factor for success, reducing quantitative errors in chemical amounts (nRMSE) by over 85% in complex tasks. When combined with a multi-agent architecture and iterative self-correction, AutoLabs achieves near-expert procedural accuracy (F1-score > 0.89) on challenging multi-step syntheses. These findings establish a clear blueprint for developing robust and trustworthy AI partners for autonomous laboratories, highlighting the synergistic effects of modular design, advanced reasoning, and self-correction to ensure both performance and reliability in high-stakes scientific applications. Code: https://github.com/pnnl/autolabs

Authors:Shangqi Gao, Sihan Wang, Yibo Gao, Boming Wang, Xiahai Zhuang, Anne Warren, Grant Stewart, James Jones, Mireia Crispin-Ortuzar
Title: Evaluating Foundation Models with Pathological Concept Learning for Kidney Cancer
Abstract:
To evaluate the translational capabilities of foundation models, we develop a pathological concept learning approach focused on kidney cancer. By leveraging TNM staging guidelines and pathology reports, we build comprehensive pathological concepts for kidney cancer. Then, we extract deep features from whole slide images using foundation models, construct pathological graphs to capture spatial correlations, and trained graph neural networks to identify these concepts. Finally, we demonstrate the effectiveness of this approach in kidney cancer survival analysis, highlighting its explainability and fairness in identifying low- and high-risk patients. The source code has been released by https://github.com/shangqigao/RadioPath.

Authors:Dongsu Lee, Daehee Lee, Yaru Niu, Honguk Woo, Amy Zhang, Ding Zhao
Title: Learning to Interact in World Latent for Team Coordination
Abstract:
This work presents a novel representation learning framework, interactive world latent (IWoL), to facilitate team coordination in multi-agent reinforcement learning (MARL). Building effective representation for team coordination is a challenging problem, due to the intricate dynamics emerging from multi-agent interaction and incomplete information induced by local observations. Our key insight is to construct a learnable representation space that jointly captures inter-agent relations and task-specific world information by directly modeling communication protocols. This representation, we maintain fully decentralized execution with implicit coordination, all while avoiding the inherent drawbacks of explicit message passing, e.g., slower decision-making, vulnerability to malicious attackers, and sensitivity to bandwidth constraints. In practice, our representation can be used not only as an implicit latent for each agent, but also as an explicit message for communication. Across four challenging MARL benchmarks, we evaluate both variants and show that IWoL provides a simple yet powerful key for team coordination. Moreover, we demonstrate that our representation can be combined with existing MARL algorithms to further enhance their performance.

Authors:Qinsi Wang, Bo Liu, Tianyi Zhou, Jing Shi, Yueqian Lin, Yiran Chen, Hai Helen Li, Kun Wan, Wentian Zhao
Title: Vision-Zero: Scalable VLM Self-Improvement via Strategic Gamified Self-Play
Abstract:
Although reinforcement learning (RL) can effectively enhance the reasoning capabilities of vision-language models (VLMs), current methods remain heavily dependent on labor-intensive datasets that require extensive manual construction and verification, leading to extremely high training costs and consequently constraining the practical deployment of VLMs. To address this challenge, we propose Vision-Zero, a domain-agnostic framework enabling VLM self-improvement through competitive visual games generated from arbitrary image pairs. Specifically, Vision-Zero encompasses three main attributes: (1) Strategic Self-Play Framework: Vision-Zero trains VLMs in "Who Is the Spy"-style games, where the models engage in strategic reasoning and actions across multiple roles. Through interactive gameplay, models autonomously generate their training data without human annotation. (2) Gameplay from Arbitrary Images: Unlike existing gamified frameworks, Vision-Zero can generate games from arbitrary images, thereby enhancing the model's reasoning ability across diverse domains and showing strong generalization to different tasks. We demonstrate this versatility using three distinct types of image datasets: CLEVR-based synthetic scenes, charts, and real-world images. (3) Sustainable Performance Gain: We introduce Iterative Self-Play Policy Optimization (Iterative-SPO), a novel training algorithm that alternates between Self-Play and reinforcement learning with verifiable rewards (RLVR), mitigating the performance plateau often seen in self-play-only training and achieving sustained long-term improvements. Despite using label-free data, Vision-Zero achieves state-of-the-art performance on reasoning, chart question answering, and vision-centric understanding tasks, surpassing other annotation-based methods. Models and code has been released at https://github.com/wangqinsi1/Vision-Zero.

Authors:Victor Wang, Elias Stengel-Eskin
Title: Calibrating Verbalized Confidence with Self-Generated Distractors
Abstract:
Calibrated confidence estimates are necessary for large language model (LLM) outputs to be trusted by human users. While LLMs can express their confidence in human-interpretable ways, verbalized LLM-generated confidence scores have empirically been found to be miscalibrated, reporting high confidence on instances with low accuracy and thereby harming trust and safety. We hypothesize that this overconfidence often stems from a given LLM's heightened suggestibility when faced with claims that it encodes little information about; we empirically validate this hypothesis, finding more suggestibility on lower-accuracy claims. Building on this finding, we introduce Distractor-Normalized Coherence (DINCO), which estimates and accounts for an LLM's suggestibility bias by having the model verbalize its confidence independently across several self-generated distractors (i.e. alternative claims), and normalizes by the total verbalized confidence. To further improve calibration, we leverage generator-validator disagreement, augmenting normalized validator confidence with a consistency-based estimate of generator confidence. Here, we frame the popular approach of self-consistency as leveraging coherence across sampled generations, and normalized verbalized confidence as leveraging coherence across validations on incompatible claims, allowing us to integrate these complementary dimensions of coherence into DINCO. Moreover, our analysis shows that DINCO provides less saturated -- and therefore more usable -- confidence estimates, and that further sampling alone cannot close the gap between DINCO and baselines, with DINCO at 10 inference calls outperforming self-consistency at 100.

Authors:Huu Nguyen, Victor May, Harsh Raj, Marianna Nezhurina, Yishan Wang, Yanqi Luo, Minh Chien Vu, Taishi Nakamura, Ken Tsui, Van Khue Nguyen, David Salinas, Aleksandra Krasnodębska, Christoph Schuhmann, Mats Leon Richter, Xuan-Son, Vu, Jenia Jitsev
Title: MixtureVitae: Open Web-Scale Pretraining Dataset With High Quality Instruction and Reasoning Data Built from Permissive-First Text Sources
Abstract:
We present MixtureVitae, an open-access pretraining corpus built to minimize legal risk while providing strong model performance. MixtureVitae follows a risk-mitigated sourcing strategy that combines public-domain and permissively licensed text (e.g., CC-BY/Apache) with carefully justified low-risk additions (e.g., government works and EU TDM-eligible sources), alongside targeted instruction, reasoning and synthetic data with documented provenance. We detail a transparent, multi-stage pipeline for license-aware filtering, safety and quality screening, and domain-aware mixing, and we release the dataset and curation recipes to support reproducible research. In controlled experiments using the open-sci-ref training protocol (fixed architectures at 130M/400M/1.3B/1.7B parameters; training budgets of 50B and 300B tokens), models trained on MixtureVitae consistently outperform other permissive datasets across a suite of standard benchmarks, and at the 1.7B/300B setting they surpass FineWeb-Edu and approach DCLM in the later stages of training. Performance is particularly strong on math/code and competitive on QA tasks. These results demonstrate that permissive-first, risk-mitigated data provides a practical and legally mitigated foundation for training capable LLMs, reducing reliance on indiscriminate web scraping without sacrificing competitiveness. Code: https://github.com/ontocord/mixturevitae

Authors:Alexander Kovrigin, Aleksandra Eliseeva, Konstantin Grotov, Egor Bogomolov, Yaroslav Zharov
Title: PIPer: On-Device Environment Setup via Online Reinforcement Learning
Abstract:
Environment setup-the process of configuring the system to work with a specific software project-represents a persistent challenge in Software Engineering (SE). Automated environment setup methods could assist developers by providing fully configured environments for arbitrary repositories without manual effort. This also helps SE researchers to scale execution-based benchmarks. However, recent studies reveal that even state-of-the-art Large Language Models (LLMs) achieve limited success in automating this task. To address this limitation, we tune a specialized model for environment setup. We combine supervised fine-tuning for generating correct Bash scripts and Reinforcement Learning with Verifiable Rewards (RLVR) to adapt it to the task of environment setup. On EnvBench-Python, our method enables Qwen3-8B (a model runnable on consumer hardware) to perform on par with larger models-Qwen3-32B and GPT-4o. The training code and model checkpoints are available online: https://github.com/JetBrains-Research/PIPer.

Authors:Zhibo Hou, Zhiyu An, Wan Du
Title: Beyond Noisy-TVs: Noise-Robust Exploration Via Learning Progress Monitoring
Abstract:
When there exists an unlearnable source of randomness (noisy-TV) in the environment, a naively intrinsic reward driven exploring agent gets stuck at that source of randomness and fails at exploration. Intrinsic reward based on uncertainty estimation or distribution similarity, while eventually escapes noisy-TVs as time unfolds, suffers from poor sample efficiency and high computational cost. Inspired by recent findings from neuroscience that humans monitor their improvements during exploration, we propose a novel method for intrinsically-motivated exploration, named Learning Progress Monitoring (LPM). During exploration, LPM rewards model improvements instead of prediction error or novelty, effectively rewards the agent for observing learnable transitions rather than the unlearnable transitions. We introduce a dual-network design that uses an error model to predict the expected prediction error of the dynamics model in its previous iteration, and use the difference between the model errors of the current iteration and previous iteration to guide exploration. We theoretically show that the intrinsic reward of LPM is zero-equivariant and a monotone indicator of Information Gain (IG), and that the error model is necessary to achieve monotonicity correspondence with IG. We empirically compared LPM against state-of-the-art baselines in noisy environments based on MNIST, 3D maze with 160x120 RGB inputs, and Atari. Results show that LPM's intrinsic reward converges faster, explores more states in the maze experiment, and achieves higher extrinsic reward in Atari. This conceptually simple approach marks a shift-of-paradigm of noise-robust exploration. For code to reproduce our experiments, see https://github.com/Akuna23Matata/LPM_exploration

Authors:Ana Paula Gomes Ferreira, Aleksandar Anžel, Izabel Oliva Marcilio de Souza, Helen Hughes, Alex J Elliot, Jude Dzevela Kong, Madlen Schranz, Alexander Ullrich, Georges Hattab
Title: The Open Syndrome Definition
Abstract:
Case definitions are essential for effectively communicating public health threats. However, the absence of a standardized, machine-readable format poses significant challenges to interoperability, epidemiological research, the exchange of qualitative data, and the effective application of computational analysis methods, including artificial intelligence (AI). This complicates comparisons and collaborations across organizations and regions, limits data integration, and hinders technological innovation in public health. To address these issues, we propose the first open, machine-readable format for representing case and syndrome definitions. Additionally, we introduce the first comprehensive dataset of standardized case definitions and tools to convert existing human-readable definitions into machine-readable formats. We also provide an accessible online platform for browsing, analyzing, and contributing new definitions, available at https://opensyndrome.org. The Open Syndrome Definition format enables consistent, scalable use of case definitions across systems, unlocking AI's potential to strengthen public health preparedness and response. The source code for the format can be found at https://github.com/OpenSyndrome/schema under the MIT license.

Authors:Hao Ban, Kaiyi Ji
Title: Rethinking Parameter Sharing for LLM Fine-Tuning with Multiple LoRAs
Abstract:
Large language models are often adapted using parameter-efficient techniques such as Low-Rank Adaptation (LoRA), formulated as $y = W_0x + BAx$, where $W_0$ is the pre-trained parameters and $x$ is the input to the adapted layer. While multi-adapter extensions often employ multiple LoRAs, prior studies suggest that the inner $A$ matrices are highly similar during training and thus suitable for sharing. We revisit this phenomenon and find that this similarity is largely attributable to the identical initialization rather than shared knowledge, with $B$ playing a more critical role in knowledge encoding and transfer. Motivated by these insights, we propose \textbf{ALoRA}, an asymmetric multi-LoRA design with multiple $A$ matrices and a single shared $B$ in multi-task fine-tuning, and \textbf{Fed-ALoRA}, which shares $B$ across clients in federated fine-tuning under both homogeneous and heterogeneous settings, through a novel matrix decomposition strategy to accommodate heterogeneous ranks across clients. Experiments on commonsense reasoning, math reasoning, multi-task NLP dataset, and federated NLP dataset demonstrate that our methods achieve more balanced performance across tasks with comparable or superior average accuracy relative to existing multi-LoRA approaches. Codes are available at https://github.com/OptMN-Lab/ALoRA.

Authors:Zewei Zhang, Huan Liu, Yuanhao Yu, Jun Chen, Xiangyu Xu
Title: Boolean Satisfiability via Imitation Learning
Abstract:
We propose ImitSAT, a branching policy for conflict-driven clause learning (CDCL) solvers based on imitation learning for the Boolean satisfiability problem (SAT). Unlike previous methods that predict instance-level signals to improve CDCL branching indirectly, or rely on reinforcement learning and insufficient CDCL information to enhance branching, ImitSAT learns from expert KeyTrace that collapses a full run into the sequence of surviving decisions. Replaying a KeyTrace on the same instance is nearly conflict-free, providing dense decision-level supervision and directly reducing propagations -- the dominant contributor to wall-clock time. This prefix-conditioned supervision enables ImitSAT to reproduce high-quality branches without exploration, yielding faster convergence, stable training, and seamless integration into CDCL. Extensive experiments demonstrate that ImitSAT reduces propagation counts and runtime, outperforming state-of-the-art learned approaches. We released the source code and trained model at https://github.com/zewei-Zhang/ImitSAT

Authors:Yuyou Zhang, Radu Corcodel, Chiori Hori, Anoop Cherian, Ding Zhao
Title: SpinBench: Perspective and Rotation as a Lens on Spatial Reasoning in VLMs
Abstract:
We present SpinBench, a cognitively grounded diagnostic benchmark for evaluating spatial reasoning in vision language models (VLMs). SpinBench is designed around the core challenge of spatial reasoning: perspective taking, the ability to reason about how scenes and object relations change under viewpoint transformation. Since perspective taking requires multiple cognitive capabilities, such as recognizing objects across views, relative positions grounding, and mentally simulating transformations, SpinBench introduces a set of fine-grained diagnostic categories. Our categories target translation, rotation, object relative pose, and viewpoint change, and are progressively structured so that single-object simpler tasks scaffold toward the most demanding multi-object perspective-taking setting. We evaluate 37 state-of-the-art VLMs, both proprietary and open source. Results reveal systematic weaknesses: strong egocentric bias, poor rotational understanding, and inconsistencies under symmetrical and syntactic reformulations. Scaling analysis shows both smooth improvements and emergent capabilities. While human subjects achieve high accuracy (91.2\%), task difficulty as measured by human response time shows strong correlation with VLM accuracy, indicating that SpinBench captures spatial reasoning challenges shared across humans and VLMs. We believe SpinBench provides critical insights into spatial reasoning in VLMs and highlights key gaps in their ability to reason about physical space. Our website can be found at https://spinbench25.github.io/.

Authors:Kunlun Zhu, Zijia Liu, Bingxuan Li, Muxin Tian, Yingxuan Yang, Jiaxun Zhang, Pengrui Han, Qipeng Xie, Fuyang Cui, Weijia Zhang, Xiaoteng Ma, Xiaodong Yu, Gowtham Ramesh, Jialian Wu, Zicheng Liu, Pan Lu, James Zou, Jiaxuan You
Title: Where LLM Agents Fail and How They can Learn From Failures
Abstract:
Large Language Model (LLM) agents, which integrate planning, memory, reflection, and tool-use modules, have shown promise in solving complex, multi-step tasks. Yet their sophisticated architectures amplify vulnerability to cascading failures, where a single root-cause error propagates through subsequent decisions, leading to task failure. Current systems lack a framework that can comprehensively understand agent error in a modular and systemic way, and therefore fail to detect these errors accordingly. We address this gap with three contributions. First, we introduce the AgentErrorTaxonomy, a modular classification of failure modes spanning memory, reflection, planning, action, and system-level operations. Second, we construct AgentErrorBench, the first dataset of systematically annotated failure trajectories from ALFWorld, GAIA, and WebShop, grounding error analysis in real-world agent rollouts. Third, we propose AgentDebug, a debugging framework that isolates root-cause failures and provides corrective feedback, enabling agents to recover and iteratively improve. Experiments on AgentErrorBench show that AgentDebug achieves 24% higher all-correct accuracy and 17% higher step accuracy compared to the strongest baseline. Beyond detection, the targeted feedback generated by AgentDebug enables LLM agents to iteratively recover from failures, yielding up to 26% relative improvements in task success across ALFWorld, GAIA, and WebShop. These results establish principled debugging as a pathway to more reliable and adaptive LLM agents. The code and data will be available at https://github.com/ulab-uiuc/AgentDebug

Authors:Paul Gavrikov, Wei Lin, M. Jehanzeb Mirza, Soumya Jahagirdar, Muhammad Huzaifa, Sivan Doveh, Serena Yeung-Levy, James Glass, Hilde Kuehne
Title: VisualOverload: Probing Visual Understanding of VLMs in Really Dense Scenes
Abstract:
Is basic visual understanding really solved in state-of-the-art VLMs? We present VisualOverload, a slightly different visual question answering (VQA) benchmark comprising 2,720 question-answer pairs, with privately held ground-truth responses. Unlike prior VQA datasets that typically focus on near global image understanding, VisualOverload challenges models to perform simple, knowledge-free vision tasks in densely populated (or, overloaded) scenes. Our dataset consists of high-resolution scans of public-domain paintings that are populated with multiple figures, actions, and unfolding subplots set against elaborately detailed backdrops. We manually annotated these images with questions across six task categories to probe for a thorough understanding of the scene. We hypothesize that current benchmarks overestimate the performance of VLMs, and encoding and reasoning over details is still a challenging task for them, especially if they are confronted with densely populated scenes. Indeed, we observe that even the best model (o3) out of 37 tested models only achieves 19.6% accuracy on our hardest test split and overall 69.5% accuracy on all questions. Beyond a thorough evaluation, we complement our benchmark with an error analysis that reveals multiple failure modes, including a lack of counting skills, failure in OCR, and striking logical inconsistencies under complex tasks. Altogether, VisualOverload exposes a critical gap in current vision models and offers a crucial resource for the community to develop better models. Benchmark: http://paulgavrikov.github.io/visualoverload

Authors:Daniel Platnick, Mohamed E. Bengueddache, Marjan Alirezaie, Dava J. Newman, Alex ''Sandy'' Pentland, Hossein Rahnama
Title: ID-RAG: Identity Retrieval-Augmented Generation for Long-Horizon Persona Coherence in Generative Agents
Abstract:
Generative agents powered by language models are increasingly deployed for long-horizon tasks. However, as long-term memory context grows over time, they struggle to maintain coherence. This deficiency leads to critical failures, including identity drift, ignoring established beliefs, and the propagation of hallucinations in multi-agent systems. To mitigate these challenges, this paper introduces Identity Retrieval-Augmented Generation (ID-RAG), a novel mechanism designed to ground an agent's persona and persistent preferences in a dynamic, structured identity model: a knowledge graph of core beliefs, traits, and values. During the agent's decision loop, this model is queried to retrieve relevant identity context, which directly informs action selection. We demonstrate this approach by introducing and implementing a new class of ID-RAG enabled agents called Human-AI Agents (HAis), where the identity model is inspired by the Chronicle structure used in Perspective-Aware AI, a dynamic knowledge graph learned from a real-world entity's digital footprint. In social simulations of a mayoral election, HAis using ID-RAG outperformed baseline agents in long-horizon persona coherence - achieving higher identity recall across all tested models by the fourth timestep - and reduced simulation convergence time by 19% (GPT-4o) and 58% (GPT-4o mini). By treating identity as an explicit, retrievable knowledge structure, ID-RAG offers a foundational approach for developing more temporally coherent, interpretable, and aligned generative agents. Our code is open-source and available at: https://github.com/flybits/humanai-agents.

Authors:Chi Zhang, Zehua Chen, Kaiwen Zheng, Jun Zhu
Title: VoiceBridge: Designing Latent Bridge Models for General Speech Restoration at Scale
Abstract:
Bridge models have recently been explored for speech enhancement tasks such as denoising, dereverberation, and super-resolution, while these efforts are typically confined to a single task or small-scale datasets, with constrained general speech restoration (GSR) capability at scale. In this work, we introduce VoiceBridge, a GSR system rooted in latent bridge models (LBMs), capable of reconstructing high-fidelity speech at full-band (\textit{i.e.,} 48~kHz) from various distortions. By compressing speech waveform into continuous latent representations, VoiceBridge models the~\textit{diverse LQ-to-HQ tasks} (namely, low-quality to high-quality) in GSR with~\textit{a single latent-to-latent generative process} backed by a scalable transformer architecture. To better inherit the advantages of bridge models from the data domain to the latent space, we present an energy-preserving variational autoencoder, enhancing the alignment between the waveform and latent space over varying energy levels. Furthermore, to address the difficulty of HQ reconstruction from distinctively different LQ priors, we propose a joint neural prior, uniformly alleviating the reconstruction burden of LBM. At last, considering the key requirement of GSR systems, human perceptual quality, a perceptually aware fine-tuning stage is designed to mitigate the cascading mismatch in generation while improving perceptual alignment. Extensive validation across in-domain and out-of-domain tasks and datasets (\textit{e.g.}, refining recent zero-shot speech and podcast generation results) demonstrates the superior performance of VoiceBridge. Demo samples can be visited at: https://VoiceBridge-demo.github.io/.

Authors:Liangjian Wen, Qun Dai, Jianzhuang Liu, Jiangtao Zheng, Yong Dai, Dongkai Wang, Zhao Kang, Jun Wang, Zenglin Xu, Jiang Duan
Title: InfMasking: Unleashing Synergistic Information by Contrastive Multimodal Interactions
Abstract:
In multimodal representation learning, synergistic interactions between modalities not only provide complementary information but also create unique outcomes through specific interaction patterns that no single modality could achieve alone. Existing methods may struggle to effectively capture the full spectrum of synergistic information, leading to suboptimal performance in tasks where such interactions are critical. This is particularly problematic because synergistic information constitutes the fundamental value proposition of multimodal representation. To address this challenge, we introduce InfMasking, a contrastive synergistic information extraction method designed to enhance synergistic information through an Infinite Masking strategy. InfMasking stochastically occludes most features from each modality during fusion, preserving only partial information to create representations with varied synergistic patterns. Unmasked fused representations are then aligned with masked ones through mutual information maximization to encode comprehensive synergistic information. This infinite masking strategy enables capturing richer interactions by exposing the model to diverse partial modality combinations during training. As computing mutual information estimates with infinite masking is computationally prohibitive, we derive an InfMasking loss to approximate this calculation. Through controlled experiments, we demonstrate that InfMasking effectively enhances synergistic information between modalities. In evaluations on large-scale real-world datasets, InfMasking achieves state-of-the-art performance across seven benchmarks. Code is released at https://github.com/brightest66/InfMasking.

Authors:Aayush Gupta
Title: Fact Grounded Attention: Eliminating Hallucination in Large Language Models Through Attention Level Knowledge Integration
Abstract:
"The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge." Large Language Models have conquered natural language but remain prisoners of their own probabilistic nature--confidently hallucinating facts they never truly knew. We present Fact Grounded Attention (FGA), a novel architectural modification that transforms unreliable language models into deterministic truth tellers by injecting verifiable knowledge directly into the attention mechanism. Unlike existing approaches that patch hallucinations after generation or prepend retrieved text, FGA intervenes at the mathematical heart of the transformer--the pre-softmax attention scores--creating a model that cannot hallucinate when facts exist in its knowledge base. Our experiments across 1,107 technical queries spanning smartphones, laptops, and electric vehicles demonstrate a transformation from 6.3% accuracy in vanilla Llama 3.2 to 99.7% accuracy with FGA. More critically, knowledge updates occur in under one second without retraining, compared to hours for parameter editing approaches. FGA doesn't just reduce hallucination--it eliminates it entirely for verifiable facts, marking a fundamental shift from probabilistic approximation to deterministic precision in neural language generation.

Authors:Kevin Xu, Issei Sato
Title: A Formal Comparison Between Chain-of-Thought and Latent Thought
Abstract:
Chain-of-Thought (CoT) elicits reasoning in large language models by explicitly generating intermediate steps in natural language. In contrast, Latent Thought in looped models operates directly in the continuous latent space, enabling computation beyond discrete linguistic representations. While both approaches exploit iterative computation, their comparative capabilities remain underexplored. In this work, we present a formal analysis showing that Latent Thought in Looped Transformers enables parallel computation, which is more efficient than the inherently sequential process of CoT. In contrast, CoT leverages stochastic decoding to approximate solutions to problems where exact computation is intractable. These separations suggest the tasks for which depth-driven recursion is more suitable, thereby offering practical guidance for choosing between reasoning paradigms. Code is available at https://github.com/kevin671/cot-vs-loop.

Authors:Junyu Chen, Wenkun He, Yuchao Gu, Yuyang Zhao, Jincheng Yu, Junsong Chen, Dongyun Zou, Yujun Lin, Zhekai Zhang, Muyang Li, Haocheng Xi, Ligeng Zhu, Enze Xie, Song Han, Han Cai
Title: DC-VideoGen: Efficient Video Generation with Deep Compression Video Autoencoder
Abstract:
We introduce DC-VideoGen, a post-training acceleration framework for efficient video generation. DC-VideoGen can be applied to any pre-trained video diffusion model, improving efficiency by adapting it to a deep compression latent space with lightweight fine-tuning. The framework builds on two key innovations: (i) a Deep Compression Video Autoencoder with a novel chunk-causal temporal design that achieves 32x/64x spatial and 4x temporal compression while preserving reconstruction quality and generalization to longer videos; and (ii) AE-Adapt-V, a robust adaptation strategy that enables rapid and stable transfer of pre-trained models into the new latent space. Adapting the pre-trained Wan-2.1-14B model with DC-VideoGen requires only 10 GPU days on the NVIDIA H100 GPU. The accelerated models achieve up to 14.8x lower inference latency than their base counterparts without compromising quality, and further enable 2160x3840 video generation on a single GPU. Code: https://github.com/dc-ai-projects/DC-VideoGen.

Authors:Wenkun He, Yuchao Gu, Junyu Chen, Dongyun Zou, Yujun Lin, Zhekai Zhang, Haocheng Xi, Muyang Li, Ligeng Zhu, Jincheng Yu, Junsong Chen, Enze Xie, Song Han, Han Cai
Title: DC-Gen: Post-Training Diffusion Acceleration with Deeply Compressed Latent Space
Abstract:
Existing text-to-image diffusion models excel at generating high-quality images, but face significant efficiency challenges when scaled to high resolutions, like 4K image generation. While previous research accelerates diffusion models in various aspects, it seldom handles the inherent redundancy within the latent space. To bridge this gap, this paper introduces DC-Gen, a general framework that accelerates text-to-image diffusion models by leveraging a deeply compressed latent space. Rather than a costly training-from-scratch approach, DC-Gen uses an efficient post-training pipeline to preserve the quality of the base model. A key challenge in this paradigm is the representation gap between the base model's latent space and a deeply compressed latent space, which can lead to instability during direct fine-tuning. To overcome this, DC-Gen first bridges the representation gap with a lightweight embedding alignment training. Once the latent embeddings are aligned, only a small amount of LoRA fine-tuning is needed to unlock the base model's inherent generation quality. We verify DC-Gen's effectiveness on SANA and FLUX.1-Krea. The resulting DC-Gen-SANA and DC-Gen-FLUX models achieve quality comparable to their base models but with a significant speedup. Specifically, DC-Gen-FLUX reduces the latency of 4K image generation by 53x on the NVIDIA H100 GPU. When combined with NVFP4 SVDQuant, DC-Gen-FLUX generates a 4K image in just 3.5 seconds on a single NVIDIA 5090 GPU, achieving a total latency reduction of 138x compared to the base FLUX.1-Krea model. Code: https://github.com/dc-ai-projects/DC-Gen.

Authors:Haolei Xu, Xinyu Mei, Yuchen Yan, Rui Zhou, Wenqi Zhang, Weiming Lu, Yueting Zhuang, Yongliang Shen
Title: EasySteer: A Unified Framework for High-Performance and Extensible LLM Steering
Abstract:
Large language model (LLM) steering has emerged as a promising paradigm for controlling model behavior at inference time through targeted manipulation of hidden states, offering a lightweight alternative to expensive retraining. However, existing steering frameworks suffer from critical limitations: computational inefficiency, limited extensibility, and restricted functionality that hinder both research progress and practical deployment. We present EasySteer, a unified framework for high-performance, extensible LLM steering built on vLLM. Our system features modular architecture with pluggable interfaces for both analysis-based and learning-based methods, fine-grained parameter control, pre-computed steering vectors for eight application domains, and an interactive demonstration system. Through deep integration with vLLM's optimized inference engine, EasySteer achieves 5.5-11.4$\times$ speedup over existing frameworks. Extensive experiments demonstrate its effectiveness in overthinking mitigation, hallucination reduction, and other key applications. EasySteer transforms steering from research technique to production-ready capability, establishing critical infrastructure for deployable, controllable language models.

Authors:Fan Yuan, Yuchen Yan, Yifan Jiang, Haoran Zhao, Tao Feng, Jinyan Chen, Yanwei Lou, Wenqi Zhang, Yongliang Shen, Weiming Lu, Jun Xiao, Yueting Zhuang
Title: GSM8K-V: Can Vision Language Models Solve Grade School Math Word Problems in Visual Contexts
Abstract:
Vision language models (VLMs) achieve unified modeling of images and text, enabling them to accomplish complex real-world tasks through perception, planning, and reasoning. Among these tasks, reasoning is particularly representative, with mathematical reasoning serving as a prominent example. It highlights the high-level capability of VLMs to comprehend mathematical information in images and to perform sophisticated reasoning. Recently, numerous visual mathematical reasoning benchmarks have been proposed, but they are often restricted to geometry, lack coverage of math word problems, and rarely assess reasoning across multiple images. To address these gaps, we introduce GSM8K-V, a purely visual multi-image mathematical reasoning benchmark. GSM8K-V is built by systematically mapping each sample from the widely used text-based GSM8K into visual form. Through a carefully designed automated image-generation pipeline combined with meticulous human annotation, we curate 1,319 high-quality samples. We evaluate a wide range of open-source and closed-source models on GSM8K-V. Results show that although existing VLMs have nearly saturated performance on text-based GSM8K, there remains substantial room for improvement on GSM8K-V. For example, the best-performing model, Gemini-2.5-Pro, achieves 95.22% accuracy on GSM8K but only 46.93% on GSM8K-V. We conduct a comprehensive analysis of GSM8K-V, examining the limitations of current models as well as potential directions for improvement. GSM8K-V offers a new perspective on visual mathematical reasoning and establishes a benchmark to guide the development of more robust and generalizable VLMs.

Authors:Chengyao Wang, Zhisheng Zhong, Bohao Peng, Senqiao Yang, Yuqi Liu, Haokun Gui, Bin Xia, Jingyao Li, Bei Yu, Jiaya Jia
Title: MGM-Omni: Scaling Omni LLMs to Personalized Long-Horizon Speech
Abstract:
We present MGM-Omni, a unified Omni LLM for omni-modal understanding and expressive, long-horizon speech generation. Unlike cascaded pipelines that isolate speech synthesis, MGM-Omni adopts a "brain-mouth" design with a dual-track, token-based architecture that cleanly decouples multimodal reasoning from real-time speech generation. This design enables efficient cross-modal interaction and low-latency, streaming speech generation. For understanding, a unified training strategy coupled with a dual audio encoder design enables long-form audio perception across diverse acoustic conditions. For generation, a chunk-based parallel decoding scheme narrows the text speech token-rate gap, accelerating inference and supporting streaming zero-shot voice cloning with stable timbre over extended durations. Compared to concurrent work, MGM-Omni achieves these capabilities with markedly data-efficient training. Extensive experiments demonstrate that MGM-Omni outperforms existing open source models in preserving timbre identity across extended sequences, producing natural and context-aware speech, and achieving superior long-form audio and omnimodal understanding. MGM-Omni establishes an efficient, end-to-end paradigm for omnimodal understanding and controllable, personalised long-horizon speech generation.

Authors:Dingning Liu, Haoyu Guo, Jingyi Zhou, Tong He
Title: BRIDGE -- Building Reinforcement-Learning Depth-to-Image Data Generation Engine for Monocular Depth Estimation
Abstract:
Monocular Depth Estimation (MDE) is a foundational task for computer vision. Traditional methods are limited by data scarcity and quality, hindering their robustness. To overcome this, we propose BRIDGE, an RL-optimized depth-to-image (D2I) generation framework that synthesizes over 20M realistic and geometrically accurate RGB images, each intrinsically paired with its ground truth depth, from diverse source depth maps. Then we train our depth estimation model on this dataset, employing a hybrid supervision strategy that integrates teacher pseudo-labels with ground truth depth for comprehensive and robust training. This innovative data generation and training paradigm enables BRIDGE to achieve breakthroughs in scale and domain diversity, consistently outperforming existing state-of-the-art approaches quantitatively and in complex scene detail capture, thereby fostering general and robust depth features. Code and models are available at https://dingning-liu.github.io/bridge.github.io/.

Authors:Hanqi Xiao, Vaidehi Patil, Hyunji Lee, Elias Stengel-Eskin, Mohit Bansal
Title: Generalized Correctness Models: Learning Calibrated and Model-Agnostic Correctness Predictors from Historical Patterns
Abstract:
Generating accurate and calibrated confidence estimates is critical for deploying LLMs in high-stakes or user-facing applications, and remains an open challenge. Prior research has often framed confidence as a problem of eliciting a model's "self-knowledge", i.e., the ability of an LLM to judge whether its own answers are correct; this approach implicitly assumes that there is some privileged information about the answer's correctness that is accessible to the model itself. However, our experiments reveal that an LLM attempting to predict the correctness of its own outputs generally performs no better than an unrelated LLM. Moreover, we hypothesize that a key factor in building a "Correctness Model" (CM) is exposure to a target model's historical predictions. We propose multiple methods to inject this historical correctness information, creating a Generalized Correctness Model (GCM). We first show that GCMs can be trained on the correctness data from many LLMs and learn patterns for correctness prediction applicable across datasets and models. We then use CMs as a lens for studying the source of correctness prediction ability and its generalization, systematically controlling their training data and finding that answer phrasing is a strong predictor for correctness. We further explore alternative methods of injecting history without training an LLM, finding that including history as in-context examples can help improve correctness prediction, and post-hoc calibration can provide complementary reductions in calibration error. We evaluate GCMs based on Qwen3-8B across 5 model families and the MMLU and TriviaQA datasets, as well as on a downstream selective prediction task, finding that reliable LLM confidence estimation is a generalizable and model-agnostic skill learned by systematically encoding correctness history rather than a model-specific skill reliant on self-introspection.

Authors:Tian Xia, Matthew Sinclair, Andreas Schuh, Fabio De Sousa Ribeiro, Raghav Mehta, Rajat Rasal, Esther Puyol-Antón, Samuel Gerber, Kersten Petersen, Michiel Schaap, Ben Glocker
Title: Segmentor-Guided Counterfactual Fine-Tuning for Locally Coherent and Targeted Image Synthesis
Abstract:
Counterfactual image generation is a powerful tool for augmenting training data, de-biasing datasets, and modeling disease. Current approaches rely on external classifiers or regressors to increase the effectiveness of subject-level interventions (e.g., changing the patient's age). For structure-specific interventions (e.g., changing the area of the left lung in a chest radiograph), we show that this is insufficient, and can result in undesirable global effects across the image domain. Previous work used pixel-level label maps as guidance, requiring a user to provide hypothetical segmentations which are tedious and difficult to obtain. We propose Segmentor-guided Counterfactual Fine-Tuning (Seg-CFT), which preserves the simplicity of intervening on scalar-valued, structure-specific variables while producing locally coherent and effective counterfactuals. We demonstrate the capability of generating realistic chest radiographs, and we show promising results for modeling coronary artery disease. Code: https://github.com/biomedia-mira/seg-cft.

Authors:Teodor Chiaburu, Vipin Singh, Frank Haußer, Felix Bießmann
Title: Uncertainty-Guided Expert-AI Collaboration for Efficient Soil Horizon Annotation
Abstract:
Uncertainty quantification is essential in human-machine collaboration, as human agents tend to adjust their decisions based on the confidence of the machine counterpart. Reliably calibrated model uncertainties, hence, enable more effective collaboration, targeted expert intervention and more responsible usage of Machine Learning (ML) systems. Conformal prediction has become a well established model-agnostic framework for uncertainty calibration of ML models, offering statistically valid confidence estimates for both regression and classification tasks. In this work, we apply conformal prediction to $\textit{SoilNet}$, a multimodal multitask model for describing soil profiles. We design a simulated human-in-the-loop (HIL) annotation pipeline, where a limited budget for obtaining ground truth annotations from domain experts is available when model uncertainty is high. Our experiments show that conformalizing SoilNet leads to more efficient annotation in regression tasks and comparable performance scores in classification tasks under the same annotation budget when tested against its non-conformal counterpart. All code and experiments can be found in our repository: https://github.com/calgo-lab/BGR

Authors:Yizhuo Ding, Mingkang Chen, Zhibang Feng, Tong Xiao, Wanying Qu, Wenqi Shao, Yanwei Fu
Title: VTPerception-R1: Enhancing Multimodal Reasoning via Explicit Visual and Textual Perceptual Grounding
Abstract:
Multimodal large language models (MLLMs) often struggle to ground reasoning in perceptual evidence. We present a systematic study of perception strategies-explicit, implicit, visual, and textual-across four multimodal benchmarks and two MLLMs. Our findings show that explicit perception, especially when paired with textual cues, consistently yields the best improvements, particularly for smaller models. Based on this insight, we propose VTPerception-R1, a unified two-stage framework that decouples perception from reasoning. Stage 1 introduces perception-augmented fine-tuning, and Stage 2 applies perception-aware reinforcement learning with novel visual, textual, and consistency rewards. Experiments demonstrate that VTPerception-R1 significantly improves reasoning accuracy and robustness across diverse tasks, offering a scalable and auditable solution for perception-grounded multimodal reasoning. Our code is available at: https://github.com/yizhuoDi/VTPerceprion-R1.

Authors:Longxiang He, Deheng Ye, Junbo Tan, Xueqian Wang, Li Shen
Title: Robust Policy Expansion for Offline-to-Online RL under Diverse Data Corruption
Abstract:
Pretraining a policy on offline data followed by fine-tuning through online interactions, known as Offline-to-Online Reinforcement Learning (O2O RL), has emerged as a promising paradigm for real-world RL deployment. However, both offline datasets and online interactions in practical environments are often noisy or even maliciously corrupted, severely degrading the performance of O2O RL. Existing works primarily focus on mitigating the conservatism of offline policies via online exploration, while the robustness of O2O RL under data corruption, including states, actions, rewards, and dynamics, is still unexplored. In this work, we observe that data corruption induces heavy-tailed behavior in the policy, thereby substantially degrading the efficiency of online exploration. To address this issue, we incorporate Inverse Probability Weighted (IPW) into the online exploration policy to alleviate heavy-tailedness, and propose a novel, simple yet effective method termed $\textbf{RPEX}$: $\textbf{R}$obust $\textbf{P}$olicy $\textbf{EX}$pansion. Extensive experimental results on D4RL datasets demonstrate that RPEX achieves SOTA O2O performance across a wide range of data corruption scenarios. Code is available at $\href{https://github.com/felix-thu/RPEX}{https://github.com/felix-thu/RPEX}$.

Authors:Josip Tomo Licardo, Nikola Tankovic, Darko Etinger
Title: BPMN Assistant: An LLM-Based Approach to Business Process Modeling
Abstract:
This paper presents BPMN Assistant, a tool that leverages Large Language Models (LLMs) for natural language-based creation and editing of BPMN diagrams. A specialized JSON-based representation is introduced as a structured alternative to the direct handling of XML to enhance the accuracy of process modifications. Process generation quality is evaluated using Graph Edit Distance (GED) and Relative Graph Edit Distance (RGED), while editing performance is evaluated with a binary success metric. Results show that JSON and XML achieve similar similarity scores in generation, but JSON offers greater reliability, faster processing, and significantly higher editing success rates. We discuss key trade-offs, limitations, and future improvements. The implementation is available at https://github.com/jtlicardo/bpmn-assistant.

Authors:Haozhuo Zhang, Michele Caprio, Jing Shao, Qiang Zhang, Jian Tang, Shanghang Zhang, Wei Pan
Title: PoseDiff: A Unified Diffusion Model Bridging Robot Pose Estimation and Video-to-Action Control
Abstract:
We present PoseDiff, a conditional diffusion model that unifies robot state estimation and control within a single framework. At its core, PoseDiff maps raw visual observations into structured robot states-such as 3D keypoints or joint angles-from a single RGB image, eliminating the need for multi-stage pipelines or auxiliary modalities. Building upon this foundation, PoseDiff extends naturally to video-to-action inverse dynamics: by conditioning on sparse video keyframes generated by world models, it produces smooth and continuous long-horizon action sequences through an overlap-averaging strategy. This unified design enables scalable and efficient integration of perception and control. On the DREAM dataset, PoseDiff achieves state-of-the-art accuracy and real-time performance for pose estimation. On Libero-Object manipulation tasks, it substantially improves success rates over existing inverse dynamics modules, even under strict offline settings. Together, these results show that PoseDiff provides a scalable, accurate, and efficient bridge between perception, planning, and control in embodied AI. The video visualization results can be found on the project page: https://haozhuo-zhang.github.io/PoseDiff-project-page/.

Authors:Shijie Lian, Changti Wu, Laurence Tianruo Yang, Hang Yuan, Bin Yu, Lei Zhang, Kai Chen
Title: Euclid's Gift: Enhancing Spatial Perception and Reasoning in Vision-Language Models via Geometric Surrogate Tasks
Abstract:
Spatial intelligence spans a rich suite of abilities, including visualising and transforming shapes, mentally rotating objects, judging relational positions and containment, and estimating numerosity. However, it still remains a critical unresolved challenge for Multimodal Large Language Models (MLLMs).To fill this gap, we propose to treat Euclidean geometry problem-solving as a surrogate task. Specifically, we meticulously constructed a curated multimodal dataset, called Euclid30K, comprising approximately 30K plane and solid geometry problems. To enable the model to acquire and apply Euclidean principles from these geometry problems, we employed Group Relative Policy Optimization (GRPO) to finetune the Qwen2.5VL family and RoboBrain2.0 family, inspiring the models to identify shapes, count, and relate entities, and perform multi-step deductive reasoning using Euclidean principles. Our experiments demonstrate that the resulting models achieve substantial zero-shot gains across four spatial reasoning benchmarks (Super-CLEVR, Omni3DBench, VSI-Bench, and MindCube) without any task-specific adaptations. Notably, after training on the Euclid30K, the mean VSI-Bench accuracy of all evaluated models rose from 34.5% to 40.5%, improving by 5.5 percentage points. Among them, RoboBrain2.0-Euclid-7B achieves 49.6\% accuracy, surpassing the previous state-of-the-art model, Spatial-MLLM.To our knowledge, this is the first systematic study showing that geometry-centric fine-tuning can confer vision-language models with broadly transferable spatial skills. Code and Euclid30K dataset can be found in https://zgca-ai4edu.github.io/Euclids_Gift.

Authors:Kai Liu, Shaoqiu Zhang, Linghe Kong, Yulun Zhang
Title: CLQ: Cross-Layer Guided Orthogonal-based Quantization for Diffusion Transformers
Abstract:
Visual generation quality has been greatly promoted with the rapid advances in diffusion transformers (DiTs), which is attributed to the scaling of model size and complexity. However, these attributions also hinder the practical deployment of DiTs on edge devices, limiting their development and application. Serve as an efficient model compression technique, model post-training quantization (PTQ) can reduce the memory consumption and speed up the inference, with inevitable performance degradation. To alleviate the degradation, we propose CLQ, a cross-layer guided orthogonal-based quantization method for DiTs. To be specific, CLQ consists of three key designs. First, we observe that the calibration data used by most of the PTQ methods can not honestly represent the distribution of the activations. Therefore, we propose cross-block calibration (CBC) to obtain accurate calibration data, with which the quantization can be better guided. Second, we propose orthogonal-based smoothing (OBS), which quantifies the outlier score of each channel and leverages block Hadamard matrix to smooth the outliers with negligible overhead. Third, we propose cross-layer parameter searching (CLPS) to search. We evaluate CLQ with both image generation and video generation models and successfully compress the model into W4A4 with negligible degradation in visual quality and metrics. CLQ achieves 3.98x memory saving and 3.95x speedup. Our code is available at \hyperlink{https://github.com/Kai-Liu001/CLQ}{https://github.com/Kai-Liu001/CLQ}.

Authors:Tao Yin, Xiaohong Zhang, Shaochen Fu, Zhibin Zhang, Li Huang, Yiyuan Yang, Kaixiang Yang, Meng Yan
Title: ScatterAD: Temporal-Topological Scattering Mechanism for Time Series Anomaly Detection
Abstract:
One main challenge in time series anomaly detection for industrial IoT lies in the complex spatio-temporal couplings within multivariate data. However, traditional anomaly detection methods focus on modeling spatial or temporal dependencies independently, resulting in suboptimal representation learning and limited sensitivity to anomalous dispersion in high-dimensional spaces. In this work, we conduct an empirical analysis showing that both normal and anomalous samples tend to scatter in high-dimensional space, especially anomalous samples are markedly more dispersed. We formalize this dispersion phenomenon as scattering, quantified by the mean pairwise distance among sample representations, and leverage it as an inductive signal to enhance spatio-temporal anomaly detection. Technically, we propose ScatterAD to model representation scattering across temporal and topological dimensions. ScatterAD incorporates a topological encoder for capturing graph-structured scattering and a temporal encoder for constraining over-scattering through mean squared error minimization between neighboring time steps. We introduce a contrastive fusion mechanism to ensure the complementarity of the learned temporal and topological representations. Additionally, we theoretically show that maximizing the conditional mutual information between temporal and topological views improves cross-view consistency and enhances more discriminative representations. Extensive experiments on multiple public benchmarks show that ScatterAD achieves state-of-the-art performance on multivariate time series anomaly detection. Code is available at this repository: https://github.com/jk-sounds/ScatterAD.

Authors:Khanh Trinh Pham, Thu Huong Nguyen, Jun Jo, Quoc Viet Hung Nguyen, Thanh Tam Nguyen
Title: Multilingual Text-to-SQL: Benchmarking the Limits of Language Models with Collaborative Language Agents
Abstract:
Text-to-SQL enables natural access to databases, yet most benchmarks are English-only, limiting multilingual progress. We introduce MultiSpider 2.0, extending Spider 2.0 to eight languages (English, German, French, Spanish, Portuguese, Japanese, Chinese, Vietnamese). It preserves Spider 2.0's structural difficulty while adding linguistic and dialectal variability, demanding deeper reasoning for complex SQL. On this benchmark, state-of-the-art LLMs (such as DeepSeek-R1 and OpenAI o1) reach only 4\% execution accuracy when relying on intrinsic reasoning, versus 60\% on MultiSpider 1.0. Therefore, we provide a collaboration-driven language agents baseline that iteratively refines queries, improving accuracy to 15\%. These results reveal a substantial multilingual gap and motivate methods that are robust across languages and ready for real-world enterprise deployment. Our benchmark is available at https://github.com/phkhanhtrinh23/Multilingual_Text_to_SQL.

Authors:Shihao Qi, Jie Ma, Ziang Yin, Lingling Zhang, Jian Zhang, Jun Liu, Feng Tian, Tongliang Liu
Title: Plan before Solving: Problem-Aware Strategy Routing for Mathematical Reasoning with LLMs
Abstract:
Existing methods usually leverage a fixed strategy, such as natural language reasoning, code-augmented reasoning, tool-integrated reasoning, or ensemble-based reasoning, to guide Large Language Models (LLMs) to perform mathematical reasoning. Our analysis reveals that the single strategy cannot adapt to problem-specific requirements and thus overlooks the trade-off between effectiveness and efficiency. To address these issues, we propose Planning and Routing through Instance-Specific Modeling (PRISM), a novel framework that decouples mathematical reasoning into two stages: strategy planning and targeted execution. Specifically, we first curate a multi-strategy preference dataset, which we call MathStrat, capturing correctness, process quality, and computational efficiency for each problem--strategy pair. Then, we train a lightweight Strategy Adapter based on the dataset to obtain confidence distributions over the mentioned four reasoning strategies. At inference time, an adaptive routing policy dynamically tailors the reasoning approach based on predictor confidence. It directs the model to use single-strategy execution for high-confidence predictions, dual-strategy verification for competitive scenarios, or comprehensive multi-strategy exploration for uncertain cases. Extensive experiments across five mathematical reasoning benchmarks demonstrate that PRISM consistently outperforms individual strategies and ensemble baselines, achieving improvements ranging from 0.9% to 7.6% across different base models. The adaptive routing approach shows particularly strong benefits for mathematical reasoning tasks across diverse model architectures. Our code is released at https://github.com/reml-group/PRISM.

Authors:Xin Qiu, Yulu Gan, Conor F. Hayes, Qiyao Liang, Elliot Meyerson, Babak Hodjat, Risto Miikkulainen
Title: Evolution Strategies at Scale: LLM Fine-Tuning Beyond Reinforcement Learning
Abstract:
Fine-tuning pre-trained large language models (LLMs) for down-stream tasks is a critical step in the AI deployment pipeline. Reinforcement learning (RL) is arguably the most prominent fine-tuning method, contributing to the birth of many state-of-the-art LLMs. In contrast, evolution strategies (ES), which once showed comparable performance to RL on models with a few million parameters, was neglected due to the pessimistic perception of its scalability to larger models. In this work, we report the first successful attempt to scale up ES for fine-tuning the full parameters of LLMs, showing the surprising fact that ES can search efficiently over billions of parameters and outperform existing RL fine-tuning methods in multiple respects, including sample efficiency, tolerance to long-horizon rewards, robustness to different base LLMs, less tendency to reward hacking, and more stable performance across runs. It therefore serves as a basis to unlock a new direction in LLM fine-tuning beyond what current RL techniques provide. The source codes are provided at: https://github.com/VsonicV/es-fine-tuning-paper.

Authors:Jitai Hao, Hao Liu, Xinyan Xiao, Qiang Huang, Jun Yu
Title: Uni-X: Mitigating Modality Conflict with a Two-End-Separated Architecture for Unified Multimodal Models
Abstract:
Unified Multimodal Models (UMMs) built on shared autoregressive (AR) transformers are attractive for their architectural simplicity. However, we identify a critical limitation: when trained on multimodal inputs, modality-shared transformers suffer from severe gradient conflicts between vision and text, particularly in shallow and deep layers. We trace this issue to the fundamentally different low-level statistical properties of images and text, while noting that conflicts diminish in middle layers where representations become more abstract and semantically aligned. To overcome this challenge, we propose Uni-X, a two-end-separated, middle-shared architecture. Uni-X dedicates its initial and final layers to modality-specific processing, while maintaining shared parameters in the middle layers for high-level semantic fusion. This X-shaped design not only eliminates gradient conflicts at both ends but also further alleviates residual conflicts in the shared layers. Extensive experiments validate the effectiveness of Uni-X. Under identical training conditions, Uni-X achieves superior training efficiency compared to strong baselines. When scaled to 3B parameters with larger training data, Uni-X matches or surpasses 7B AR-based UMMs, achieving a GenEval score of 82 for image generation alongside strong performance in text and vision understanding tasks. These results establish Uni-X as a parameter-efficient and scalable foundation for future unified multimodal modeling. Our code is available at https://github.com/CURRENTF/Uni-X

Authors:Hao Yang, Weijie Qiu, Ru Zhang, Zhou Fang, Ruichao Mao, Xiaoyu Lin, Maji Huang, Zhaosong Huang, Teng Guo, Shuoyang Liu, Hai Rao
Title: UI-UG: A Unified MLLM for UI Understanding and Generation
Abstract:
Although Multimodal Large Language Models (MLLMs) have been widely applied across domains, they are still facing challenges in domain-specific tasks, such as User Interface (UI) understanding accuracy and UI generation quality. In this paper, we introduce UI-UG (a unified MLLM for UI Understanding and Generation), integrating both capabilities. For understanding tasks, we employ Supervised Fine-tuning (SFT) combined with Group Relative Policy Optimization (GRPO) to enhance fine-grained understanding on the modern complex UI data. For generation tasks, we further use Direct Preference Optimization (DPO) to make our model generate human-preferred UIs. In addition, we propose an industrially effective workflow, including the design of an LLM-friendly domain-specific language (DSL), training strategies, rendering processes, and evaluation metrics. In experiments, our model achieves state-of-the-art (SOTA) performance on understanding tasks, outperforming both larger general-purpose MLLMs and similarly-sized UI-specialized models. Our model is also on par with these larger MLLMs in UI generation performance at a fraction of the computational cost. We also demonstrate that integrating understanding and generation tasks can improve accuracy and quality for both tasks. Code and Model: https://github.com/neovateai/UI-UG

Authors:Jie Ma, Shihao Qi, Rui Xing, Ziang Yin, Bifan Wei, Jun Liu, Tongliang Liu
Title: From Static to Dynamic: Adaptive Monte Carlo Search for Mathematical Process Supervision
Abstract:
The quality of process data plays a key role in training a Process Reward Model (PRM), which can enhance the complex mathematical reasoning capability of large language models. Existing methods estimate the quality of reasoning steps based on a fixed-budget sampling strategy and navigate a vast search space to perform path expansion during the automated data generation process, resulting in their inefficiency and inflexibility. To address these issues, we propose Adaptive Monte Carlo Search (AMCS), a framework that transforms data generation from fixed, static to adaptive, dynamic search at the level of node value estimation and path expansion. On one hand, AMCS adaptively refines estimation by allocating more samples to uncertain reasoning steps while using fewer samples for those that are easier to estimate. On the other hand, it enhances the path expansion through a Monte Carlo algorithm with a temporally adaptive policy that begins with broad exploration and gradually shifts toward exploiting the most promising directions. With AMCS, we construct a large-scale dataset MathSearch-200K of about 200K process supervision examples for training PRMs. To verify the effectiveness of our method, we conduct extensive experiments on four mathematical reasoning benchmarks. Experimental results show that Qwen2.5-Math-7B-PRM-AMCS achieves up to 76.2% accuracy on MATH500 with GLM-4-9B, outperforming all baseline PRMs. Notably, a 7B model supervised by Qwen2.5-Math-7B-PRM-AMCS surpasses a 72B model with weaker supervision. Moreover, Qwen2.5-Math-7B-PRM-AMCS maintains consistent advantages on out-of-distribution problems, demonstrating strong generalization capability. Our code is available at https://github.com/reml-group/AMCS.

Authors:Sarmistha Das, Priya Mathur, Ishani Sharma, Sriparna Saha, Kitsuchart Pasupa, Alka Maurya
Title: Fin-Ally: Pioneering the Development of an Advanced, Commonsense-Embedded Conversational AI for Money Matters
Abstract:
The exponential technological breakthrough of the FinTech industry has significantly enhanced user engagement through sophisticated advisory chatbots. However, large-scale fine-tuning of LLMs can occasionally yield unprofessional or flippant remarks, such as ``With that money, you're going to change the world,'' which, though factually correct, can be contextually inappropriate and erode user trust. The scarcity of domain-specific datasets has led previous studies to focus on isolated components, such as reasoning-aware frameworks or the enhancement of human-like response generation. To address this research gap, we present Fin-Solution 2.O, an advanced solution that 1) introduces the multi-turn financial conversational dataset, Fin-Vault, and 2) incorporates a unified model, Fin-Ally, which integrates commonsense reasoning, politeness, and human-like conversational dynamics. Fin-Ally is powered by COMET-BART-embedded commonsense context and optimized with a Direct Preference Optimization (DPO) mechanism to generate human-aligned responses. The novel Fin-Vault dataset, consisting of 1,417 annotated multi-turn dialogues, enables Fin-Ally to extend beyond basic account management to provide personalized budgeting, real-time expense tracking, and automated financial planning. Our comprehensive results demonstrate that incorporating commonsense context enables language models to generate more refined, textually precise, and professionally grounded financial guidance, positioning this approach as a next-generation AI solution for the FinTech sector. Dataset and codes are available at: https://github.com/sarmistha-D/Fin-Ally

Authors:Changde Du, Yizhuo Lu, Zhongyu Huang, Yi Sun, Zisen Zhou, Shaozheng Qin, Huiguang He
Title: Bridging the behavior-neural gap: A multimodal AI reveals the brain's geometry of emotion more accurately than human self-reports
Abstract:
The ability to represent emotion plays a significant role in human cognition and social interaction, yet the high-dimensional geometry of this affective space and its neural underpinnings remain debated. A key challenge, the `behavior-neural gap,' is the limited ability of human self-reports to predict brain activity. Here we test the hypothesis that this gap arises from the constraints of traditional rating scales and that large-scale similarity judgments can more faithfully capture the brain's affective geometry. Using AI models as `cognitive agents,' we collected millions of triplet odd-one-out judgments from a multimodal large language model (MLLM) and a language-only model (LLM) in response to 2,180 emotionally evocative videos. We found that the emergent 30-dimensional embeddings from these models are highly interpretable and organize emotion primarily along categorical lines, yet in a blended fashion that incorporates dimensional properties. Most remarkably, the MLLM's representation predicted neural activity in human emotion-processing networks with the highest accuracy, outperforming not only the LLM but also, counterintuitively, representations derived directly from human behavioral ratings. This result supports our primary hypothesis and suggests that sensory grounding--learning from rich visual data--is critical for developing a truly neurally-aligned conceptual framework for emotion. Our findings provide compelling evidence that MLLMs can autonomously develop rich, neurally-aligned affective representations, offering a powerful paradigm to bridge the gap between subjective experience and its neural substrates. Project page: https://reedonepeck.github.io/ai-emotion.github.io/.

Authors:Zherui Li, Zheng Nie, Zhenhong Zhou, Yufei Guo, Yue Liu, Yitong Zhang, Yu Cheng, Qingsong Wen, Kun Wang, Jiaheng Zhang
Title: DiffuGuard: How Intrinsic Safety is Lost and Found in Diffusion Large Language Models
Abstract:
The rapid advancement of Diffusion Large Language Models (dLLMs) introduces unprecedented vulnerabilities that are fundamentally distinct from Autoregressive LLMs, stemming from their iterative and parallel generation mechanisms. In this paper, we conduct an in-depth analysis of dLLM vulnerabilities to jailbreak attacks across two distinct dimensions: intra-step and inter-step dynamics. Experimental results reveal a harmful bias inherent in the standard greedy remasking strategy and identify a critical phenomenon we term Denoising-path Dependence, where the safety of early-stage tokens decisively influences the final output. These findings also indicate that while current decoding strategies constitute a significant vulnerability, dLLMs possess a substantial intrinsic safety potential. To unlock this potential, we propose DiffuGuard, a training-free defense framework that addresses vulnerabilities through a dual-stage approach: Stochastic Annealing Remasking dynamically introduces controlled randomness to mitigate greedy selection bias, while Block-level Audit and Repair exploits internal model representations for autonomous risk detection and guided correction. Comprehensive experiments on four dLLMs demonstrate DiffuGuard's exceptional effectiveness, reducing Attack Success Rate against six diverse jailbreak methods from 47.9% to 14.7% while preserving model utility and efficiency. Our code is available at: https://github.com/niez233/DiffuGuard.

Authors:Nimisha Ghosh, Dheeran Sankaran, Rahul Balakrishnan Adhi, Sharath S, Amrut Anand
Title: LAMP-PRo: Label-aware Attention for Multi-label Prediction of DNA- and RNA-binding Proteins using Protein Language Models
Abstract:
Identifying DNA- (DBPs) and RNA-binding proteins (RBPs) is crucial for the understanding of cell function, molecular interactions as well as regulatory functions. Owing to their high similarity, most of the existing approaches face challenges in differentiating between DBPs and RBPs leading to high cross-prediction errors. Moreover, identifying proteins which bind to both DNA and RNA (DRBPs) is also quite a challenging task. In this regard, we propose a novel framework viz. LAMP-PRo which is based on pre-trained protein language model (PLM), attention mechanisms and multi-label learning to mitigate these issues. First, pre-trained PLM such ESM-2 is used for embedding the protein sequences followed by convolutional neural network (CNN). Subsequently multi-head self-attention mechanism is applied for the contextual information while label-aware attention is used to compute class-specific representations by attending to the sequence in a way that is tailored to each label (DBP, RBP and non-NABP) in a multi-label setup. We have also included a novel cross-label attention mechanism to explicitly capture dependencies between DNA- and RNA-binding proteins, enabling more accurate prediction of DRBP. Finally, a linear layer followed by a sigmoid function are used for the final prediction. Extensive experiments are carried out to compare LAMP-PRo with the existing methods wherein the proposed model shows consistent competent performance. Furthermore, we also provide visualization to showcase model interpretability, highlighting which parts of the sequence are most relevant for a predicted label. The original datasets are available at http://bliulab.net/iDRBP\_MMC and the codes are available at https://github.com/NimishaGhosh/LAMP-PRo.

Authors:Rubing Yang, Huajun Bai, Song Liu, Guanghua Yu, Runzhi Fan, Yanbin Dang, Jiejing Zhang, Kai Liu, Jianchen Zhu, Peng Chen
Title: SpecExit: Accelerating Large Reasoning Model via Speculative Exit
Abstract:
Despite their strong performance on reasoning tasks, large reasoning models (LRMs) often suffer from overthinking, producing unnecessarily long outputs and incurring high end-to-end latency, a significant limitation to their real-world deployment. To address overthinking, early-exit mechanisms have been proposed to terminate reasoning before typical completion, showing that this approach can effectively shorten generation length with minimal impact on accuracy. However, their reliance on probing mechanisms introduces a detection overhead that limits their end-to-end latency gains and compromises their generalizability across diverse problems. Inspired by the use of hidden states in speculative decoding, we propose SpecExit, a novel framework that predicts both future tokens and an early-exit signal directly from a lightweight draft model without probing overhead. Our method offers significant improvements, reducing average generation length by 66\% and achieving a 2.5x speedup in end-to-end latency compared to the speculative decoding baseline, without compromising accuracy. Our method leverages the inherent signals from hidden states to provide effective early-exit signals, suggesting broader use of hidden states for efficient reasoning. Our code is available at https://github.com/Tencent/AngelSlim.

Authors:Junjie Wang, Pan Zhou, Yiming Dong, Huan Li, Jia Li, Xun Zhou, Qicheng Lao, Cong Fang, Zhouchen Lin
Title: Conda: Column-Normalized Adam for Training Large Language Models Faster
Abstract:
Large language models (LLMs) have demonstrated impressive generalization and emergent capabilities, yet their pre-training remains computationally expensive and sensitive to optimization dynamics. While Adam-based optimizers offer fast convergence by adapting learning rates coordinate-wise, recent studies reveal that their updates often suffer from poor spectral conditioning and low-rank structures, hindering efficiency. Muon addresses this issue via global spectral normalization but lacks the per-coordinate adaptivity of Adam. In this work, we propose Column-Normalized Adam (Conda), a novel optimizer that bridges the strengths of both approaches. Conda projects updates into an orthogonal subspace and applies column-wise second moment normalization based on the projected gradients, thereby achieving both improved spectral conditioning and maintaining coordinate-wise adaptivity. This design alleviates the spectral pathologies of Adam while preserving its fast convergence behavior. Extensive experiments on the LLaMA and GPT-2 series show that Conda consistently outperforms AdamW, Muon, and other baselines in pre-training. Remarkably, on the LLaMA series, Conda achieves 2-2.5 the convergence speed of AdamW, measured in both training steps and training time. Further ablations demonstrate its robustness under diverse training setups. These results collectively highlight Conda as an effective and broadly applicable optimizer for large-scale LLM training. The code is released on https://github.com/jie040109/Conda

Authors:Gaurav Srivastava, Aafiya Hussain, Zhenyu Bi, Swastik Roy, Priya Pitre, Meng Lu, Morteza Ziyadi, Xuan Wang
Title: BeyondBench: Benchmark-Free Evaluation of Reasoning in Language Models
Abstract:
Evaluating language models fairly is becoming harder as static benchmarks available on the internet risk contamination by training data. This makes it unclear whether models are truly reasoning or just recalling answers. In this paper, we introduce BeyondBench, an evaluation framework that avoids this problem by using algorithmic problem generation. Unlike traditional benchmarks that risk contamination from internet-scale training data, BeyondBench creates mathematically grounded problems on the fly, ensuring each test remains fresh and uncontaminated. Our framework covers 44 algorithmic tasks with a total of 117 variations, grouped into three difficulty levels: the Easy Suite (29 tasks) for basic arithmetic and statistics, the Medium Suite (5 tasks, 49 variations) for sequence patterns and reasoning, and the Hard Suite (10 tasks, 68 variations) tackling NP-complete and constraint satisfaction problems. Each task generates problems from a combinatorial space larger than 10^15 unique instances, with solutions verified deterministically by mathematical proofs. We evaluated 101 language models, including 85 open-source and 16 closed-source models, spanning sizes from 0.5B to 141B parameters and multiple quantization schemes. Our results show consistent reasoning deficiencies across model families, with performance degrading sharply as problem complexity increases from polynomial to exponential. In our Hard Suite evaluations, models such as Gemini-2.5-pro, Llama-3.3-70B, and Qwen2.5-72B achieved average accuracies of 56.38%, 26.91%, and 33.60%, respectively. Moreover, we observe that performance drops drastically without tool usage, with GPT-5, GPT-5-mini, and GPT-5-nano showing a decline of 16.81%, 28.05%, and 47.59% accuracy on the hard suite. Our leaderboard is publicly available at https://ctrl-gaurav.github.io/BeyondBench/

Authors:Chaorui Yao, Yanxi Chen, Yuchang Sun, Yushuo Chen, Wenhao Zhang, Xuchen Pan, Yaliang Li, Bolin Ding
Title: Group-Relative REINFORCE Is Secretly an Off-Policy Algorithm: Demystifying Some Myths About GRPO and Its Friends
Abstract:
Off-policy reinforcement learning (RL) for large language models (LLMs) is attracting growing interest, driven by practical constraints in real-world applications, the complexity of LLM-RL infrastructure, and the need for further innovations of RL methodologies. While classic REINFORCE and its modern variants like Group Relative Policy Optimization (GRPO) are typically regarded as on-policy algorithms with limited tolerance of off-policyness, we present in this work a first-principles derivation for group-relative REINFORCE without assuming a specific training data distribution, showing that it admits a native off-policy interpretation. This perspective yields two general principles for adapting REINFORCE to off-policy settings: regularizing policy updates, and actively shaping the data distribution. Our analysis demystifies some myths about the roles of importance sampling and clipping in GRPO, unifies and reinterprets two recent algorithms -- Online Policy Mirror Descent (OPMD) and Asymmetric REINFORCE (AsymRE) -- as regularized forms of the REINFORCE loss, and offers theoretical justification for seemingly heuristic data-weighting strategies. Our findings lead to actionable insights that are validated with extensive empirical studies, and open up new opportunities for principled algorithm design in off-policy RL for LLMs. Source code for this work is available at https://github.com/modelscope/Trinity-RFT/tree/main/examples/rec_gsm8k.

Authors:Ran Xu, Yuchen Zhuang, Zihan Dong, Jonathan Wang, Yue Yu, Joyce C. Ho, Linjun Zhang, Haoyu Wang, Wenqi Shi, Carl Yang
Title: AceSearcher: Bootstrapping Reasoning and Search for LLMs via Reinforced Self-Play
Abstract:
Search-augmented LLMs often struggle with complex reasoning tasks due to ineffective multi-hop retrieval and limited reasoning ability. We propose AceSearcher, a cooperative self-play framework that trains a single large language model (LLM) to alternate between two roles: a decomposer that breaks down complex queries and a solver that integrates retrieved contexts for answer generation. AceSearcher couples supervised fine-tuning on a diverse mixture of search, reasoning, and decomposition tasks with reinforcement fine-tuning optimized for final answer accuracy, eliminating the need for intermediate annotations. Extensive experiments on three reasoning-intensive tasks across 10 datasets show that AceSearcher outperforms state-of-the-art baselines, achieving an average exact match improvement of 7.6%. Remarkably, on document-level finance reasoning tasks, AceSearcher-32B matches the performance of the DeepSeek-V3 model using less than 5% of its parameters. Even at smaller scales (1.5B and 8B), AceSearcher often surpasses existing search-augmented LLMs with up to 9x more parameters, highlighting its exceptional efficiency and effectiveness in tackling complex reasoning tasks. Our code will be published at https://github.com/ritaranx/AceSearcher and https://huggingface.co/AceSearcher.

Authors:Kaiyu He, Peilin Wu, Mian Zhang, Kun Wan, Wentian Zhao, Xinya Du, Zhiyu Chen
Title: GEAR: A General Evaluation Framework for Abductive Reasoning
Abstract:
Since the advent of large language models (LLMs), research has focused on instruction following and deductive reasoning. A central question remains: can these models discover new knowledge, and how can we evaluate this ability? We address this by studying abductive reasoning-the generation of plausible hypotheses to explain observations-and introduce GEAR (General Evaluation for Abductive Reasoning), a general-purpose, fully automated, transparent, and label-free evaluation paradigm. GEAR scores hypothesis sets by three metrics: consistency (each hypothesis explains the observations), generalizability (consistent hypotheses make meaningful predictions on unseen inputs), and diversity (the set covers distinct predictions and patterns). Built this way, GEAR is scalable (no human gold answers), reliable (deterministic scoring aligned with classical abduction), and open-ended (scores improve only when models produce new plausible hypotheses, unlike static benchmarks that saturate once accuracy is high). Using GEAR, we conduct a fine-grained study of nine LLMs on four abduction benchmarks with 1,500 problems, generating over 50,000 candidate hypotheses and revealing model differences obscured by gold-answer or purely human evaluations. We further propose a momentum-based curriculum that adjusts GEAR-derived training data by learning velocity: it starts with what the model learns quickly and shifts toward harder objectives such as generating diverse hypotheses once the model is confident on foundational objectives. Without gold-label supervision, this strategy improves all GEAR objectives and these gains transfer to established abductive reasoning benchmarks. Taken together, GEAR provides a principled framework that evaluates abduction and supplies label-free, scalable training signals that help LLMs produce more diverse and reliable hypotheses.

Authors:Alistair Turcan, Kexin Huang, Lei Li, Martin Jinye Zhang
Title: TusoAI: Agentic Optimization for Scientific Methods
Abstract:
Scientific discovery is often slowed by the manual development of computational tools needed to analyze complex experimental data. Building such tools is costly and time-consuming because scientists must iteratively review literature, test modeling and scientific assumptions against empirical data, and implement these insights into efficient software. Large language models (LLMs) have demonstrated strong capabilities in synthesizing literature, reasoning with empirical data, and generating domain-specific code, offering new opportunities to accelerate computational method development. Existing LLM-based systems either focus on performing scientific analyses using existing computational methods or on developing computational methods or models for general machine learning without effectively integrating the often unstructured knowledge specific to scientific domains. Here, we introduce TusoAI , an agentic AI system that takes a scientific task description with an evaluation function and autonomously develops and optimizes computational methods for the application. TusoAI integrates domain knowledge into a knowledge tree representation and performs iterative, domain-specific optimization and model diagnosis, improving performance over a pool of candidate solutions. We conducted comprehensive benchmark evaluations demonstrating that TusoAI outperforms state-of-the-art expert methods, MLE agents, and scientific AI agents across diverse tasks, such as single-cell RNA-seq data denoising and satellite-based earth monitoring. Applying TusoAI to two key open problems in genetics improved existing computational methods and uncovered novel biology, including 9 new associations between autoimmune diseases and T cell subtypes and 7 previously unreported links between disease variants linked to their target genes. Our code is publicly available at https://github.com/Alistair-Turcan/TusoAI.

Authors:Kaisen Yang, Lixuan He, Rushi Shah, Kaicheng Yang, Qinwei Ma, Dianbo Liu, Alex Lamb
Title: Explore-Execute Chain: Towards an Efficient Structured Reasoning Paradigm
Abstract:
Chain-of-Thought (CoT) and its variants have markedly advanced the reasoning abilities of Large Language Models (LLMs), yet their monolithic and auto-regressive architecture inherently conflates high-level strategic planning with low-level step-by-step execution, leading to computational inefficiency, limited exploration of reasoning paths, and reduced interpretability. To overcome these issues, we propose the Explore-Execute Chain ($E^2C$), a structured reasoning framework that decouples reasoning into two distinct phases: an exploratory phase that stochastically generates succinct high-level plans, followed by an execution phase that deterministically carries out the chosen plan. Our approach incorporates a two-stage training methodology, which combines Supervised Fine-Tuning (SFT) - augmented by a novel data generation algorithm enforcing strict plan adherence - with a subsequent Reinforcement Learning (RL) stage that capitalizes on the informativeness of exploration and reinforces the determinism of execution. This decomposition enables an efficient test-time scaling strategy: on AIME'2024, $E^2C$ Test Time Scaling reaches 58.1% accuracy using <10% of the decoding tokens required by comparable methods (e.g., Forest-of-Thought), sharply cutting self-consistency overhead. For cross-domain adaptation, our Exploration-Focused SFT (EF-SFT) fine-tunes with only 3.5% of the tokens used by standard SFT yet yields up to 14.5% higher accuracy than standard SFT on medical benchmarks, delivering state-of-the-art performance, strong generalization, and greater interpretability by separating planning from execution. The code and pre-trained models for the project are available at: https://github.com/yks23/Explore-Execute-Chain.git

Authors:Jingyi Yang, Guanxu Chen, Xuhao Hu, Jing Shao
Title: Taming Masked Diffusion Language Models via Consistency Trajectory Reinforcement Learning with Fewer Decoding Step
Abstract:
Masked diffusion language models (MDLMs) have recently emerged as a promising alternative to autoregressive (AR) language models, offering properties such as parallel decoding, flexible generation orders, and the potential for fewer inference steps. Despite these advantages, decoding strategies and reinforcement learning (RL) algorithms tailored for MDLMs remain underexplored. A naive approach is to directly transfer techniques well-established for AR models to MDLMs. However, this raises an immediate question: Is such a naive transfer truly optimal? For example, 1) Block-wise and semi-AR decoding strategies are not employed during the training of MDLMs, so why do they outperform full diffusion-style decoding during inference? 2) Applying RL algorithms designed for AR models directly to MDLMs exhibits a training-inference inconsistency, since MDLM decoding are non-causal (parallel). This results in inconsistencies between the rollout trajectory and the optimization trajectory. To address these challenges, we propose EOS Early Rejection (EOSER) and Ascending Step-Size (ASS) decoding scheduler, which unlock the potential of MDLMs to perform full diffusion-style decoding, achieving competitive performance with fewer decoding steps. Additionally, we introduce Consistency Trajectory Group Relative Policy Optimization (CJ-GRPO) for taming MDLMs, which emphasizes the consistency between rollout trajectory and optimization trajectory, and reduces the optimization errors caused by skip-step optimization. We conduct extensive experiments on reasoning tasks, such as mathematical and planning benchmarks, using LLaDA-8B-Instruct. The results demonstrate that the proposed EOSER and ASS mechanisms, together with CJ-GRPO, hold significant promise for effectively and efficiently taming MDLMs. Code: https://github.com/yjyddq/EOSER-ASS-RL.

Authors:Zhixin Zhang, Zeming Wei, Meng Sun
Title: Dynamic Orthogonal Continual Fine-tuning for Mitigating Catastrophic Forgettings
Abstract:
Catastrophic forgetting remains a critical challenge in continual learning for large language models (LLMs), where models struggle to retain performance on historical tasks when fine-tuning on new sequential data without access to past datasets. In this paper, we first reveal that the drift of functional directions during the fine-tuning process is a key reason why existing regularization-based methods fail in long-term LLM continual learning. To address this, we propose Dynamic Orthogonal Continual (DOC) fine-tuning, a novel approach that tracks the drift of these functional directions and dynamically updates them during the fine-tuning process. Furthermore, by adjusting the gradients of new task parameters to be orthogonal to the tracked historical function directions, our method mitigates interference between new and old tasks. Extensive experiments on various LLM continual learning benchmarks demonstrate that this approach outperforms prior methods, effectively reducing catastrophic forgetting and providing a robust tool for continuous LLM fine-tuning. Our code is available at https://github.com/meloxxxxxx/DOC.

Authors:Wei Zeng, Junchuan Zhao, Ye Wang
Title: Disentangling Score Content and Performance Style for Joint Piano Rendering and Transcription
Abstract:
Expressive performance rendering (EPR) and automatic piano transcription (APT) are fundamental yet inverse tasks in music information retrieval: EPR generates expressive performances from symbolic scores, while APT recovers scores from performances. Despite their dual nature, prior work has addressed them independently. In this paper we propose a unified framework that jointly models EPR and APT by disentangling note-level score content and global performance style representations from both paired and unpaired data. Our framework is built on a transformer-based sequence-to-sequence architecture and is trained using only sequence-aligned data, without requiring fine-grained note-level alignment. To automate the rendering process while ensuring stylistic compatibility with the score, we introduce an independent diffusion-based performance style recommendation module that generates style embeddings directly from score content. This modular component supports both style transfer and flexible rendering across a range of expressive styles. Experimental results from both objective and subjective evaluations demonstrate that our framework achieves competitive performance on EPR and APT tasks, while enabling effective content-style disentanglement, reliable style transfer, and stylistically appropriate rendering. Demos are available at https://jointpianist.github.io/epr-apt/

Authors:Yukun Chen, Boheng Li, Yu Yuan, Leyi Qi, Yiming Li, Tianwei Zhang, Zhan Qin, Kui Ren
Title: Taught Well Learned Ill: Towards Distillation-conditional Backdoor Attack
Abstract:
Knowledge distillation (KD) is a vital technique for deploying deep neural networks (DNNs) on resource-constrained devices by transferring knowledge from large teacher models to lightweight student models. While teacher models from third-party platforms may undergo security verification (\eg, backdoor detection), we uncover a novel and critical threat: distillation-conditional backdoor attacks (DCBAs). DCBA injects dormant and undetectable backdoors into teacher models, which become activated in student models via the KD process, even with clean distillation datasets. While the direct extension of existing methods is ineffective for DCBA, we implement this attack by formulating it as a bilevel optimization problem and proposing a simple yet effective method (\ie, SCAR). Specifically, the inner optimization simulates the KD process by optimizing a surrogate student model, while the outer optimization leverages outputs from this surrogate to optimize the teacher model for implanting the conditional backdoor. Our SCAR addresses this complex optimization utilizing an implicit differentiation algorithm with a pre-optimized trigger injection function. Extensive experiments across diverse datasets, model architectures, and KD techniques validate the effectiveness of our SCAR and its resistance against existing backdoor detection, highlighting a significant yet previously overlooked vulnerability in the KD process. Our code is available at https://github.com/WhitolfChen/SCAR.

Authors:Hong Huang, Decheng Wu, Rui Cen, Guanghua Yu, Zonghang Li, Kai Liu, Jianchen Zhu, Peng Chen, Xue Liu, Dapeng Wu
Title: Tequila: Trapping-free Ternary Quantization for Large Language Models
Abstract:
Quantization techniques are essential for the deployment of Large Language Models (LLMs) on edge devices. However, prevailing methods often rely on mixed-precision multiplication that lacks efficient hardware support, making it not feasible. Ternary weight quantization addresses this by constraining weights to {-1, 0, 1}, replacing expensive multiplications with hardware-efficient additions. However, such aggressive compression leads to significant accuracy degradation, even after costly quantization-aware training with massive data. We identify the core issue as deadzone trapping: a large number of weights are trapped at the deadzone boundary. This occurs because these weights receive only noisy, uninformative gradients, preventing stable escape from the deadzone and severely impeding model capacity and optimization. To address this issue, we propose Tequila, a trapping-free quantization optimization method that reactivates deadzone-trapped weights by repurposing them as dynamic biases. This allows the repurposed weights to provide a continuous signal in the forward pass and, critically, receive direct, meaningful gradient signals during backpropagation, thereby enhancing model capacity and optimization with nearly zero inference overhead. Extensive evaluations demonstrate that Tequila outperforms state-of-the-art (SOTA) ternary quantization methods across five benchmarks. Specifically, on the ARC benchmark, it achieves >4% accuracy gain over the SOTA baseline, nearly matching full-precision performance (within <1% gap) with a 3.0x inference speedup. Consequently, Tequila offers a highly practical and efficient implementation for the deployment of advanced LLMs in resource-constrained environments. The code is available at https://github.com/Tencent/AngelSlim.

Authors:Lezhong Wang, Shutong Jin, Ruiqi Cui, Anders Bjorholm Dahl, Jeppe Revall Frisvad, Siavash Bigdeli
Title: ReLumix: Extending Image Relighting to Video via Video Diffusion Models
Abstract:
Controlling illumination during video post-production is a crucial yet elusive goal in computational photography. Existing methods often lack flexibility, restricting users to certain relighting models. This paper introduces ReLumix, a novel framework that decouples the relighting algorithm from temporal synthesis, thereby enabling any image relighting technique to be seamlessly applied to video. Our approach reformulates video relighting into a simple yet effective two-stage process: (1) an artist relights a single reference frame using any preferred image-based technique (e.g., Diffusion Models, physics-based renderers); and (2) a fine-tuned stable video diffusion (SVD) model seamlessly propagates this target illumination throughout the sequence. To ensure temporal coherence and prevent artifacts, we introduce a gated cross-attention mechanism for smooth feature blending and a temporal bootstrapping strategy that harnesses SVD's powerful motion priors. Although trained on synthetic data, ReLumix shows competitive generalization to real-world videos. The method demonstrates significant improvements in visual fidelity, offering a scalable and versatile solution for dynamic lighting control.

Authors:Arshia Yousefi Nezhad, Helia Aghaei, Hedieh Sajedi
Title: PVTAdpNet: Polyp Segmentation using Pyramid vision transformer with a novel Adapter block
Abstract:
Colorectal cancer ranks among the most common and deadly cancers, emphasizing the need for effective early detection and treatment. To address the limitations of traditional colonoscopy, including high miss rates due to polyp variability, we introduce the Pyramid Vision Transformer Adapter Residual Network (PVTAdpNet). This model integrates a U-Net-style encoder-decoder structure with a Pyramid Vision Transformer backbone, novel residual blocks, and adapter-based skip connections. The design enhances feature extraction, dense prediction, and gradient flow, supported by squeeze-and-excitation attention for improved channel-wise feature refinement. PVTAdpNet achieves real-time, accurate polyp segmentation, demonstrating superior performance on benchmark datasets with high mDice and mIoU scores, making it highly suitable for clinical applications. PVTAdpNet obtains a high Dice coefficient of 0.8851 and a mean Intersection over Union (mIoU) of 0.8167 on out-of-distribution polyp datasets. Evaluation of the PolypGen dataset demonstrates PVTAdpNet's capability for real-time, accurate performance within familiar distributions. The source code of our network is available at https://github.com/ayousefinejad/PVTAdpNet.git

Authors:Yucheng Wang, Yifan Hou, Aydin Javadov, Mubashara Akhtar, Mrinmaya Sachan
Title: Compose and Fuse: Revisiting the Foundational Bottlenecks in Multimodal Reasoning
Abstract:
Multimodal large language models (MLLMs) promise enhanced reasoning by integrating diverse inputs such as text, vision, and audio. Yet cross-modal reasoning remains underexplored, with conflicting reports on whether added modalities help or harm performance. These inconsistencies stem from a lack of controlled evaluation frameworks and analysis of models' internals to isolate when and why modality interactions support or undermine reasoning. We address this gap through a logic-grounded evaluation framework that categorizes multimodal reasoning into six interaction patterns, varying how facts are distributed across modalities and logically combined. Empirically, additional modalities enhance reasoning only when they provide independent and sufficient reasoning paths, while redundant or chained entailment support often hurts performance. Moreover, reasoning degrades in three systematic ways: weaker modalities drag down overall performance, conflicts bias preference toward certain modalities, and joint signals from different modalities fail to be integrated effectively. Therefore, we identify two core failures: task-composition bottleneck, where recognition and reasoning cannot be jointly executed in one pass, and fusion bottleneck, where early integration introduces bias. For further investigation, we find that attention patterns fail to encode fact usefulness, but a simple two-step prompting (recognize then reason) restores performance, confirming the task-composition bottleneck. Moreover, modality identity remains recoverable in early layers, and softening attention in early fusion improves reasoning, highlighting biased fusion as another failure mode. Overall, our findings show that integration, not perception, is the main barrier to multimodal reasoning, suggesting composition-aware training and early fusion control as promising directions.

Authors:Yiheng Zhang, Zhuojiang Cai, Mingdao Wang, Meitong Guo, Tianxiao Li, Li Lin, Yuwang Wang
Title: M3DLayout: A Multi-Source Dataset of 3D Indoor Layouts and Structured Descriptions for 3D Generation
Abstract:
In text-driven 3D scene generation, object layout serves as a crucial intermediate representation that bridges high-level language instructions with detailed geometric output. It not only provides a structural blueprint for ensuring physical plausibility but also supports semantic controllability and interactive editing. However, the learning capabilities of current 3D indoor layout generation models are constrained by the limited scale, diversity, and annotation quality of existing datasets. To address this, we introduce M3DLayout, a large-scale, multi-source dataset for 3D indoor layout generation. M3DLayout comprises 15,080 layouts and over 258k object instances, integrating three distinct sources: real-world scans, professional CAD designs, and procedurally generated scenes. Each layout is paired with detailed structured text describing global scene summaries, relational placements of large furniture, and fine-grained arrangements of smaller items. This diverse and richly annotated resource enables models to learn complex spatial and semantic patterns across a wide variety of indoor environments. To assess the potential of M3DLayout, we establish a benchmark using a text-conditioned diffusion model. Experimental results demonstrate that our dataset provides a solid foundation for training layout generation models. Its multi-source composition enhances diversity, notably through the Inf3DLayout subset which provides rich small-object information, enabling the generation of more complex and detailed scenes. We hope that M3DLayout can serve as a valuable resource for advancing research in text-driven 3D scene synthesis.

Authors:Jianshuo Dong, Sheng Guo, Hao Wang, Zhuotao Liu, Tianwei Zhang, Ke Xu, Minlie Huang, Han Qiu
Title: SafeSearch: Automated Red-Teaming for the Safety of LLM-Based Search Agents
Abstract:
Search agents connect LLMs to the Internet, enabling access to broader and more up-to-date information. However, unreliable search results may also pose safety threats to end users, establishing a new threat surface. In this work, we conduct two in-the-wild experiments to demonstrate both the prevalence of low-quality search results and their potential to misguide agent behaviors. To counter this threat, we introduce an automated red-teaming framework that is systematic, scalable, and cost-efficient, enabling lightweight and harmless safety assessments of search agents. Building on this framework, we construct the SafeSearch benchmark, which includes 300 test cases covering five categories of risks (e.g., misinformation and indirect prompt injection). Using this benchmark, we evaluate three representative search agent scaffolds, covering search workflow, tool-calling, and deep research, across 7 proprietary and 8 open-source backend LLMs. Our results reveal substantial vulnerabilities of LLM-based search agents: when exposed to unreliable websites, the highest ASR reached 90.5% for GPT-4.1-mini under a search workflow setting. Moreover, our analysis highlights the limited effectiveness of common defense practices, such as reminder prompting. This emphasizes the value of our framework in promoting transparency for safer agent development. Our codebase and test cases are publicly available: https://github.com/jianshuod/SafeSearch.

Authors:Jue Zhang, Qingwei Lin, Saravan Rajmohan, Dongmei Zhang
Title: From Reasoning to Answer: Empirical, Attention-Based and Mechanistic Insights into Distilled DeepSeek R1 Models
Abstract:
Large Reasoning Models (LRMs) generate explicit reasoning traces alongside final answers, yet the extent to which these traces influence answer generation remains unclear. In this work, we conduct a three-stage investigation into the interplay between reasoning and answer generation in three distilled DeepSeek R1 models. First, through empirical evaluation, we demonstrate that including explicit reasoning consistently improves answer quality across diverse domains. Second, attention analysis reveals that answer tokens attend substantially to reasoning tokens, with certain mid-layer Reasoning-Focus Heads (RFHs) closely tracking the reasoning trajectory, including self-reflective cues. Third, we apply mechanistic interventions using activation patching to assess the dependence of answer tokens on reasoning activations. Our results show that perturbations to key reasoning tokens can reliably alter the final answers, confirming a directional and functional flow of information from reasoning to answer. These findings deepen our understanding of how LRMs leverage reasoning tokens for answer generation, highlighting the functional role of intermediate reasoning in shaping model outputs. Our data and code are publicly available at \href{https://aka.ms/R2A-code}{this URL}.

Authors:Divya Jyoti Bajpai, Manjesh Kumar Hanawal
Title: Beyond Greedy Exits: Improved Early Exit Decisions for Risk Control and Reliability
Abstract:
Early-Exit Deep Neural Networks enable adaptive inference by allowing prediction at intermediary layers, significantly reducing computational costs and latency. Most of the early exit strategies greedily exit a sample at an intermediary layer if the confidence in class prediction exceeds a predefined threshold that is set using a static validation set. This is problematic as the model might be overconfident in a wrong class. Also, they are not robust to distribution shifts encountered in deployment, which can undermine model trustworthiness and accuracy. To address these challenges, we propose UAT that adapts the threshold for exit decisions using a Multi-Armed Bandit framework, enabling online, unsupervised adjustment of exit decisions. UAT makes decisions based on a new reward function that assesses predictive certainty and its reliability to balance computational efficiency and prediction quality while penalizing unnecessary late exits. We provide guarantees on risk achieved by UAT and validate its performance on diverse tasks spanning vision-language understanding, text generation, and classification. Our framework demonstrates consistent improvements in speedup (1.70-2.10x) with a minimal performance drop (<2%) as compared to full model performance. Our source code is available at https://github.com/Div290/UAT.

Authors:Kristina P. Sinaga, Arjun S. Nair
Title: Calibration Meets Reality: Making Machine Learning Predictions Trustworthy
Abstract:
Post-hoc calibration methods are widely used to improve the reliability of probabilistic predictions from machine learning models. Despite their prevalence, a comprehensive theoretical understanding of these methods remains elusive, particularly regarding their performance across different datasets and model architectures. Input features play a crucial role in shaping model predictions and, consequently, their calibration. However, the interplay between feature quality and calibration performance has not been thoroughly investigated. In this work, we present a rigorous theoretical analysis of post-hoc calibration methods, focusing on Platt scaling and isotonic regression. We derive convergence guarantees, computational complexity bounds, and finite-sample performance metrics for these methods. Furthermore, we explore the impact of feature informativeness on calibration performance through controlled synthetic experiments. Our empirical evaluation spans a diverse set of real-world datasets and model architectures, demonstrating consistent improvements in calibration metrics across various scenarios. By examining calibration performance under varying feature conditions utilizing only informative features versus complete feature spaces including noise dimensions, we provide fundamental insights into the robustness and reliability of different calibration approaches. Our findings offer practical guidelines for selecting appropriate calibration methods based on dataset characteristics and computational constraints, bridging the gap between theoretical understanding and practical implementation in uncertainty quantification. Code and experimental data are available at: https://github.com/Ajwebdevs/calibration-analysis-experiments.

Authors:Fanlong Zeng, Wensheng Gan, Jiayang Wu, Philip S. Yu
Title: Pure Node Selection for Imbalanced Graph Node Classification
Abstract:
The problem of class imbalance refers to an uneven distribution of quantity among classes in a dataset, where some classes are significantly underrepresented compared to others. Class imbalance is also prevalent in graph-structured data. Graph neural networks (GNNs) are typically based on the assumption of class balance, often overlooking the issue of class imbalance. In our investigation, we identified a problem, which we term the Randomness Anomalous Connectivity Problem (RACP), where certain off-the-shelf models are affected by random seeds, leading to a significant performance degradation. To eliminate the influence of random factors in algorithms, we proposed PNS (Pure Node Sampling) to address the RACP in the node synthesis stage. Unlike existing approaches that design specialized algorithms to handle either quantity imbalance or topological imbalance, PNS is a novel plug-and-play module that operates directly during node synthesis to mitigate RACP. Moreover, PNS also alleviates performance degradation caused by abnormal distribution of node neighbors. We conduct a series of experiments to identify what factors are influenced by random seeds. Experimental results demonstrate the effectiveness and stability of our method, which not only eliminates the effect of unfavorable random seeds but also outperforms the baseline across various benchmark datasets with different GNN backbones. Data and code are available at https://github.com/flzeng1/PNS.

Authors:Boyu Han, Qianqian Xu, Shilong Bao, Zhiyong Yang, Kangli Zi, Qingming Huang
Title: LightFair: Towards an Efficient Alternative for Fair T2I Diffusion via Debiasing Pre-trained Text Encoders
Abstract:
This paper explores a novel lightweight approach LightFair to achieve fair text-to-image diffusion models (T2I DMs) by addressing the adverse effects of the text encoder. Most existing methods either couple different parts of the diffusion model for full-parameter training or rely on auxiliary networks for correction. They incur heavy training or sampling burden and unsatisfactory performance. Since T2I DMs consist of multiple components, with the text encoder being the most fine-tunable and front-end module, this paper focuses on mitigating bias by fine-tuning text embeddings. To validate feasibility, we observe that the text encoder's neutral embedding output shows substantial skewness across image embeddings of various attributes in the CLIP space. More importantly, the noise prediction network further amplifies this imbalance. To finetune the text embedding, we propose a collaborative distance-constrained debiasing strategy that balances embedding distances to improve fairness without auxiliary references. However, mitigating bias can compromise the original generation quality. To address this, we introduce a two-stage text-guided sampling strategy to limit when the debiased text encoder intervenes. Extensive experiments demonstrate that LightFair is effective and efficient. Notably, on Stable Diffusion v1.5, our method achieves SOTA debiasing at just $1/4$ of the training burden, with virtually no increase in sampling burden. The code is available at https://github.com/boyuh/LightFair.

Authors:Cheng Huang, Weizheng Xie, Fan Gao, Yutong Liu, Ruoling Wu, Zeyu Han, Jingxi Qiu, Xiangxiang Wang, Zhenglin Yang, Hao Wang, Yongbin Yu
Title: BioVessel-Net and RetinaMix: Unsupervised Retinal Vessel Segmentation from OCTA Images
Abstract:
Structural changes in retinal blood vessels are critical biomarkers for the onset and progression of glaucoma and other ocular diseases. However, current vessel segmentation approaches largely rely on supervised learning and extensive manual annotations, which are costly, error-prone, and difficult to obtain in optical coherence tomography angiography. Here we present BioVessel-Net, an unsupervised generative framework that integrates vessel biostatistics with adversarial refinement and a radius-guided segmentation strategy. Unlike pixel-based methods, BioVessel-Net directly models vascular structures with biostatistical coherence, achieving accurate and explainable vessel extraction without labeled data or high-performance computing. To support training and evaluation, we introduce RetinaMix, a new benchmark dataset of 2D and 3D OCTA images with high-resolution vessel details from diverse populations. Experimental results demonstrate that BioVessel-Net achieves near-perfect segmentation accuracy across RetinaMix and existing datasets, substantially outperforming state-of-the-art supervised and semi-supervised methods. Together, BioVessel-Net and RetinaMix provide a label-free, computationally efficient, and clinically interpretable solution for retinal vessel analysis, with broad potential for glaucoma monitoring, blood flow modeling, and progression prediction. Code and dataset are available: https://github.com/VikiXie/SatMar8.

Authors:Fanlong Zeng, Wensheng Gan, Philip S. Yu
Title: GraphIFE: Rethinking Graph Imbalance Node Classification via Invariant Learning
Abstract:
The class imbalance problem refers to the disproportionate distribution of samples across different classes within a dataset, where the minority classes are significantly underrepresented. This issue is also prevalent in graph-structured data. Most graph neural networks (GNNs) implicitly assume a balanced class distribution and therefore often fail to account for the challenges introduced by class imbalance, which can lead to biased learning and degraded performance on minority classes. We identify a quality inconsistency problem in synthesized nodes, which leads to suboptimal performance under graph imbalance conditions. To mitigate this issue, we propose GraphIFE (Graph Invariant Feature Extraction), a novel framework designed to mitigate quality inconsistency in synthesized nodes. Our approach incorporates two key concepts from graph invariant learning and introduces strategies to strengthen the embedding space representation, thereby enhancing the model's ability to identify invariant features. Extensive experiments demonstrate the framework's efficiency and robust generalization, as GraphIFE consistently outperforms various baselines across multiple datasets. The code is publicly available at https://github.com/flzeng1/GraphIFE.

Authors:Jianzhi Yan, Le Liu, Youcheng Pan, Shiwei Chen, Yang Xiang, Buzhou Tang
Title: Towards Efficient CoT Distillation: Self-Guided Rationale Selector for Better Performance with Fewer Rationales
Abstract:
Chain-of-thought (CoT) distillation aims to enhance small language models' (SLMs) reasoning by transferring multi-step reasoning capability from the larger teacher models. However, existing work underestimates rationale quality, focusing primarily on data quantity, which may transfer noisy or incorrect information to the student model. To address the above issues, we proposed \textbf{M}odel-\textbf{O}riented \textbf{R}ationale \textbf{S}election \textbf{D}istillation (MoRSD), which can discern and select high quality rationales for distillation to improve performance further. We further propose a Rationale Difficulty (RD) metric to measure the ability of the student model to generate the correct answer under a given rationale. Compared to the baseline, we achieved 4.6$\%$ average improvement on seven datasets over three tasks, using fewer rationales by controlling their accuracy, diversity, and difficulty. Our results reveal that a small portion of the high quality rationales can enhance the reasoning ability of student models than the entire dataset. Our method promises to be a possible solution for efficient CoT distillation. Our code will be released in https://github.com/Leon221220/MoRSD.

Authors:Min-Hsuan Yeh, Yixuan Li
Title: Clean First, Align Later: Benchmarking Preference Data Cleaning for Reliable LLM Alignment
Abstract:
Human feedback plays a pivotal role in aligning large language models (LLMs) with human preferences. However, such feedback is often noisy or inconsistent, which can degrade the quality of reward models and hinder alignment. While various automated data cleaning methods have been proposed to mitigate this issue, a systematic evaluation of their effectiveness and generalizability remains lacking. To bridge this gap, we introduce the first comprehensive benchmark for evaluating 13 preference data cleaning methods in the context of LLM alignment. PrefCleanBench offers a standardized protocol to assess cleaning strategies in terms of alignment performance and generalizability across diverse datasets, model architectures, and optimization algorithms. By unifying disparate methods and rigorously comparing them, we uncover key factors that determine the success of data cleaning in alignment tasks. This benchmark lays the groundwork for principled and reproducible approaches to improving LLM alignment through better data quality-highlighting the crucial but underexplored role of data preprocessing in responsible AI development. We release modular implementations of all methods to catalyze further research: https://github.com/deeplearning-wisc/PrefCleanBench.

Authors:Hamidreza Rouzegar, Masoud Makrehchi
Title: The Impact of Role Design in In-Context Learning for Large Language Models
Abstract:
In-context learning (ICL) enables Large Language Models (LLMs) to generate predictions based on prompts without additional fine-tuning. While prompt engineering has been widely studied, the impact of role design within prompts remains underexplored. This study examines the influence of role configurations in zero-shot and few-shot learning scenarios using GPT-3.5 and GPT-4o from OpenAI and Llama2-7b and Llama2-13b from Meta. We evaluate the models' performance across datasets, focusing on tasks like sentiment analysis, text classification, question answering, and math reasoning. Our findings suggest the potential of role-based prompt structuring to enhance LLM performance.

Authors:Jie Yang, Yifan Hu, Kexin Zhang, Luyang Niu, Yushun Dong, Philip S. Yu, Kaize Ding
Title: Revisiting Multivariate Time Series Forecasting with Missing Values
Abstract:
Missing values are common in real-world time series, and multivariate time series forecasting with missing values (MTSF-M) has become a crucial area of research for ensuring reliable predictions. To address the challenge of missing data, current approaches have developed an imputation-then-prediction framework that uses imputation modules to fill in missing values, followed by forecasting on the imputed data. However, this framework overlooks a critical issue: there is no ground truth for the missing values, making the imputation process susceptible to errors that can degrade prediction accuracy. In this paper, we conduct a systematic empirical study and reveal that imputation without direct supervision can corrupt the underlying data distribution and actively degrade prediction accuracy. To address this, we propose a paradigm shift that moves away from imputation and directly predicts from the partially observed time series. We introduce Consistency-Regularized Information Bottleneck (CRIB), a novel framework built on the Information Bottleneck principle. CRIB combines a unified-variate attention mechanism with a consistency regularization scheme to learn robust representations that filter out noise introduced by missing values while preserving essential predictive signals. Comprehensive experiments on four real-world datasets demonstrate the effectiveness of CRIB, which predicts accurately even under high missing rates. Our code is available in https://github.com/Muyiiiii/CRIB.

Authors:Jiang-Xin Shi, Wen-Da Wei, Jin-Fei Qi, Xuanyu Chen, Tong Wei, Yu-Feng Li
Title: Memory-Efficient Fine-Tuning via Low-Rank Activation Compression
Abstract:
The parameter-efficient fine-tuning paradigm has garnered significant attention with the advancement of foundation models. Although numerous methods have been proposed to reduce the number of trainable parameters, their substantial memory overhead remains a critical bottleneck that hinders practical deployment. In this paper, we observe that model activations constitute a major source of memory consumption, especially under large batch sizes and long context lengths; however, the rank of the activations remains consistently low. Motivated by this insight, we propose a memory-efficient fine-tuning approach Low-Rank Activation Compression (LoRAct). Unlike prior work, LoRAct provides a more flexible and versatile compressing strategy that can be applied online during the forward pass without the need for any calibration data. Moreover, LoRAct incorporates a novel sampling-based orthogonal decomposition algorithm specifically designed for low-rank matrices, offering improved computational efficiency and a tighter error bound compared to the widely used RSVD. Experiments on both vision and language tasks demonstrate the effectiveness of LoRAct. Notably, LoRAct further reduces activation memory by approximately 80% in comparison with the widely adopted LoRA method, while maintaining competitive performance. The source code is available at https://github.com/shijxcs/meft.

Authors:Rajaa El Hamdani, Samy Haffoudhi, Nils Holzenberger, Fabian Suchanek, Thomas Bonald, Fragkiskos D. Malliaros
Title: Retrieval-Constrained Decoding Reveals Underestimated Parametric Knowledge in Language Models
Abstract:
Language models (LMs) encode substantial factual knowledge, but often produce answers judged as incorrect. We hypothesize that many of these answers are actually correct, but are expressed in alternative surface forms that are dismissed due to an overly strict evaluation, leading to an underestimation of models' parametric knowledge. We propose Retrieval-Constrained Decoding (RCD), a decoding strategy that restricts model outputs to unique surface forms. We introduce YAGO-QA, a dataset of 19,137 general knowledge questions. Evaluating open-source LMs from 135M to 70B parameters, we show that standard decoding undervalues their knowledge. For instance, Llama-3.1-70B scores only 32.3% F1 with vanilla decoding but 46.0% with RCD. Similarly, Llama-3.1-8B reaches 33.0% with RCD, outperforming the larger model under vanilla decoding. We publicly share the code and dataset at https://github.com/Rajjaa/disambiguated-LLM.

Authors:Xi Ding, Lei Wang, Piotr Koniusz, Yongsheng Gao
Title: Graph Your Own Prompt
Abstract:
We propose Graph Consistency Regularization (GCR), a novel framework that injects relational graph structures, derived from model predictions, into the learning process to promote class-aware, semantically meaningful feature representations. Functioning as a form of self-prompting, GCR enables the model to refine its internal structure using its own outputs. While deep networks learn rich representations, these often capture noisy inter-class similarities that contradict the model's predicted semantics. GCR addresses this issue by introducing parameter-free Graph Consistency Layers (GCLs) at arbitrary depths. Each GCL builds a batch-level feature similarity graph and aligns it with a global, class-aware masked prediction graph, derived by modulating softmax prediction similarities with intra-class indicators. This alignment enforces that feature-level relationships reflect class-consistent prediction behavior, acting as a semantic regularizer throughout the network. Unlike prior work, GCR introduces a multi-layer, cross-space graph alignment mechanism with adaptive weighting, where layer importance is learned from graph discrepancy magnitudes. This allows the model to prioritize semantically reliable layers and suppress noisy ones, enhancing feature quality without modifying the architecture or training procedure. GCR is model-agnostic, lightweight, and improves semantic structure across various networks and datasets. Experiments show that GCR promotes cleaner feature structure, stronger intra-class cohesion, and improved generalization, offering a new perspective on learning from prediction structure. [Project website](https://darcyddx.github.io/gcr/) [Code](https://github.com/Darcyddx/graph-prompt)

Authors:Wei Zhou, Guoliang Li, Haoyu Wang, Yuxing Han, Xufei Wu, Fan Wu, Xuanhe Zhou
Title: PARROT: A Benchmark for Evaluating LLMs in Cross-System SQL Translation
Abstract:
Large language models (LLMS) have shown increasing effectiveness in Text-to-SQL tasks. However, another closely related problem, Cross-System SQL Translation (a.k.a., SQL-to-SQL), which adapts a query written for one database system (e.g., MySQL) into its equivalent one for another system (e.g., ClickHouse), is of great practical importance but remains underexplored. Existing SQL benchmarks are not well-suited for SQL-to-SQL evaluation, which (1) focus on a limited set of database systems (often just SQLite) and (2) cannot capture many system-specific SQL dialects (e.g., customized functions, data types, and syntax rules). Thus, in this paper, we introduce PARROT, a Practical And Realistic BenchmaRk for CrOss-System SQL Translation. PARROT comprises 598 translation pairs from 38 open-source benchmarks and real-world business services, specifically prepared to challenge system-specific SQL understanding (e.g., LLMS achieve lower than 38.53% accuracy on average). We also provide multiple benchmark variants, including PARROT-Diverse with 28,003 translations (for extensive syntax testing) and PARROT-Simple with 5,306 representative samples (for focused stress testing), covering 22 production-grade database systems. To promote future research, we release a public leaderboard and source code at: https://code4db.github.io/parrot-bench/.

Authors:Andrej Orsula, Matthieu Geist, Miguel Olivares-Mendez, Carol Martinez
Title: Space Robotics Bench: Robot Learning Beyond Earth
Abstract:
The growing ambition for space exploration demands robust autonomous systems that can operate in unstructured environments under extreme extraterrestrial conditions. The adoption of robot learning in this domain is severely hindered by the prohibitive cost of technology demonstrations and the limited availability of data. To bridge this gap, we introduce the Space Robotics Bench, an open-source simulation framework for robot learning in space. It offers a modular architecture that integrates on-demand procedural generation with massively parallel simulation environments to support the creation of vast and diverse training distributions for learning-based agents. To ground research and enable direct comparison, the framework includes a comprehensive suite of benchmark tasks that span a wide range of mission-relevant scenarios. We establish performance baselines using standard reinforcement learning algorithms and present a series of experimental case studies that investigate key challenges in generalization, end-to-end learning, adaptive control, and sim-to-real transfer. Our results reveal insights into the limitations of current methods and demonstrate the utility of the framework in producing policies capable of real-world operation. These contributions establish the Space Robotics Bench as a valuable resource for developing, benchmarking, and deploying the robust autonomous systems required for the final frontier.

Authors:Wonje Jeung, Sangyeon Yoon, Yoonjun Cho, Dongjae Jeon, Sangwoo Shin, Hyesoo Hong, Albert No
Title: A2D: Any-Order, Any-Step Safety Alignment for Diffusion Language Models
Abstract:
Diffusion large language models (dLLMs) enable any-order generation, but this flexibility enlarges the attack surface: harmful spans may appear at arbitrary positions, and template-based prefilling attacks such as DIJA bypass response-level refusals. We introduce A2D (Any-Order, Any-Step Defense), a token-level alignment method that aligns dLLMs to emit an [EOS] refusal signal whenever harmful content arises. By aligning safety directly at the token-level under randomized masking, A2D achieves robustness to both any-decoding-order and any-step prefilling attacks under various conditions. It also enables real-time monitoring: dLLMs may begin a response but automatically terminate if unsafe continuation emerges. On safety benchmarks, A2D consistently prevents the generation of harmful outputs, slashing DIJA success rates from over 80% to near-zero (1.3% on LLaDA-8B-Instruct, 0.0% on Dream-v0-Instruct-7B), and thresholded [EOS] probabilities allow early rejection, yielding up to 19.3x faster safe termination.

Authors:Shamir Matan, Elhadad Osher, Nageris Ben, Mirsky Reuth
Title: Online Dynamic Goal Recognition in Gym Environments
Abstract:
Goal Recognition (GR) is the task of inferring an agent's intended goal from partial observations of its behavior, typically in an online and one-shot setting. Despite recent advances in model-free GR, particularly in applications such as human-robot interaction, surveillance, and assistive systems, the field remains fragmented due to inconsistencies in benchmarks, domains, and evaluation protocols. To address this, we introduce gr-libs (https://github.com/MatanShamir1/gr_libs) and gr-envs (https://github.com/MatanShamir1/gr_envs), two complementary open-source frameworks that support the development, evaluation, and comparison of GR algorithms in Gym-compatible environments. gr-libs includes modular implementations of MDP-based GR baselines, diagnostic tools, and evaluation utilities. gr-envs provides a curated suite of environments adapted for dynamic and goal-directed behavior, along with wrappers that ensure compatibility with standard reinforcement learning toolkits. Together, these libraries offer a standardized, extensible, and reproducible platform for advancing GR research. Both packages are open-source and available on GitHub and PyPI.

Authors:Bingshuai Liu, Ante Wang, Zijun Min, Liang Yao, Haibo Zhang, Yang Liu, Anxiang Zeng, Jinsong Su
Title: SPEC-RL: Accelerating On-Policy Reinforcement Learning via Speculative Rollouts
Abstract:
Large Language Models (LLMs) increasingly rely on reinforcement learning with verifiable rewards (RLVR) to elicit reliable chain-of-thought reasoning. However, the training process remains bottlenecked by the computationally expensive rollout stage. Existing acceleration methods-such as parallelization, objective- and data-driven modifications, and replay buffers-either incur diminishing returns, introduce bias, or overlook redundancy across iterations. We identify that rollouts from consecutive training epochs frequently share a large portion of overlapping segments, wasting computation. To address this, we propose SPEC-RL, a novel framework that integrates SPECulative decoding with the RL rollout process. SPEC-RL reuses prior trajectory segments as speculative prefixes and extends them via a draft-and-verify mechanism, avoiding redundant generation while ensuring policy consistency. Experiments on diverse math reasoning and generalization benchmarks, including GSM8K, MATH-500, OlympiadBench, MMLU-STEM, and others, demonstrate that SPEC-RL reduces rollout time by 2-3x without compromising policy quality. As a purely rollout-stage enhancement, SPEC-RL integrates seamlessly with mainstream algorithms (e.g., PPO, GRPO, DAPO), offering a general and practical path to scale RLVR for large reasoning models. Our code is available at https://github.com/ShopeeLLM/Spec-RL

Authors:Wenhao Zhang, Shao Zhang, Xihuai Wang, Yang Li, Ying Wen
Title: Towards Monotonic Improvement in In-Context Reinforcement Learning
Abstract:
In-Context Reinforcement Learning (ICRL) has emerged as a promising paradigm for developing agents that can rapidly adapt to new tasks by leveraging past experiences as context, without updating their parameters. Recent approaches train large sequence models on monotonic policy improvement data from online RL, aiming to a continue improved testing time performance. However, our experimental analysis reveals a critical flaw: these models cannot show a continue improvement like the training data during testing time. Theoretically, we identify this phenomenon as Contextual Ambiguity, where the model's own stochastic actions can generate an interaction history that misleadingly resembles that of a sub-optimal policy from the training data, initiating a vicious cycle of poor action selection. To resolve the Contextual Ambiguity, we introduce Context Value into training phase and propose Context Value Informed ICRL (CV-ICRL). CV-ICRL use Context Value as an explicit signal representing the ideal performance theoretically achievable by a policy given the current context. As the context expands, Context Value could include more task-relevant information, and therefore the ideal performance should be non-decreasing. We prove that the Context Value tightens the lower bound on the performance gap relative to an ideal, monotonically improving policy. We fruther propose two methods for estimating Context Value at both training and testing time. Experiments conducted on the Dark Room and Minigrid testbeds demonstrate that CV-ICRL effectively mitigates performance degradation and improves overall ICRL abilities across various tasks and environments. The source code and data of this paper are available at https://github.com/Bluixe/towards_monotonic_improvement .

Authors:Haotian Liu, Shuo Wang, Hongteng Xu
Title: C$^2$GSPG: Confidence-calibrated Group Sequence Policy Gradient towards Self-aware Reasoning
Abstract:
Reinforcement Learning (RL) methods, exemplified by Group Relative Policy Optimization (GRPO) and its variants, play a central role in developing reasoning models. However, these methods often suffer from a critical overconfidence issue, which prevents them from achieving self-aware reasoning models. In this study, we propose a simple yet effective confidence-calibration group sequence policy gradient method, called C$^2$GSPG, which simultaneously enhances reasoning performance while suppressing overconfidence. In principle, we propose a Group Sequence Policy Gradient (GSPG) framework for learning reasoning models, which eliminates the token-level bias commonly appearing in GRPO and its variants. In this framework, we define the model confidence for each reasoning problem using the normalized sequence-level probability, and then apply a cross-entropy regularizer to calibrate the model confidence to the sequence's reward. We demonstrate that the confidence calibration regularizer and GSPG are collaborative for binary rewards, as their objectives always share the same gradient direction. For non-binary rewards, we apply nonlinear reward normalization and adaptive regularizer clipping, mitigating the potential conflict between the two objectives. Applying C$^2$GSPG to post-train large language models in logical and mathematical reasoning tasks, we show its superiority over state-of-the-art methods in both reasoning accuracy and confidence calibration. The code of C$^2$GSPG is available at https://github.com/HaotianLiu123/CCGSPG.

Authors:Haoyu He, Haozheng Luo, Yan Chen, Qi R. Wang
Title: RHYTHM: Reasoning with Hierarchical Temporal Tokenization for Human Mobility
Abstract:
Predicting human mobility is inherently challenging due to complex long-range dependencies and multi-scale periodic behaviors. To address this, we introduce RHYTHM (Reasoning with Hierarchical Temporal Tokenization for Human Mobility), a unified framework that leverages large language models (LLMs) as general-purpose spatio-temporal predictors and trajectory reasoners. Methodologically, RHYTHM employs temporal tokenization to partition each trajectory into daily segments and encode them as discrete tokens with hierarchical attention that captures both daily and weekly dependencies, thereby significantly reducing the sequence length while preserving cyclical information. Additionally, we enrich token representations by adding pre-computed prompt embeddings for trajectory segments and prediction targets via a frozen LLM, and feeding these combined embeddings back into the LLM backbone to capture complex interdependencies. Computationally, RHYTHM freezes the pretrained LLM's backbone to reduce attention complexity and memory cost. We evaluate our model against state-of-the-art methods using three real-world datasets. Notably, RHYTHM achieves a 2.4% improvement in overall accuracy, a 5.0% increase on weekends, and a 24.6% reduction in training time. Code is publicly available at https://github.com/he-h/rhythm.

Authors:Fang Wu, Xu Huang, Weihao Xuan, Zhiwei Zhang, Yijia Xiao, Guancheng Wan, Xiaomin Li, Bing Hu, Peng Xia, Jure Leskovec, Yejin Choi
Title: Multiplayer Nash Preference Optimization
Abstract:
Reinforcement learning from human feedback (RLHF) has emerged as the standard paradigm for aligning large language models (LLMs) with human preferences. However, reward-based methods built on the Bradley-Terry assumption struggle to capture the non-transitive and heterogeneous nature of real-world preferences. To address this, recent studies have reframed alignment as a two-player Nash game, giving rise to Nash learning from human feedback (NLHF). While this perspective has inspired algorithms such as INPO, ONPO, and EGPO with strong theoretical and empirical guarantees, they remain fundamentally restricted to two-player interactions, creating a single-opponent bias that fails to capture the full complexity of realistic preference structures. In this work, we introduce Multiplayer Nash Preference Optimization (MNPO), a novel framework that generalizes NLHF to the multiplayer regime. It formulates alignment as an $n$-player game, where each policy competes against a population of opponents while being regularized toward a reference model. Our framework establishes well-defined Nash equilibria in multiplayer settings and extends the concept of duality gap to quantify approximation quality. We demonstrate that MNPO inherits the equilibrium guarantees of two-player methods while enabling richer competitive dynamics and improved coverage of diverse preference structures. Through comprehensive empirical evaluation, we show that MNPO consistently outperforms existing NLHF baselines on instruction-following benchmarks, achieving superior alignment quality under heterogeneous annotator conditions and mixed-policy evaluation scenarios. Together, these results establish MNPO as a principled and scalable framework for aligning LLMs with complex, non-transitive human preferences. Code is available at https://github.com/smiles724/MNPO.

Authors:Zijian Wang, Xiaofei Zhang, Xin Zhang, Yukun Liu, Qiong Zhang
Title: Beyond Aggregation: Guiding Clients in Heterogeneous Federated Learning
Abstract:
Federated learning (FL) is increasingly adopted in domains like healthcare, where data privacy is paramount. A fundamental challenge in these systems is statistical heterogeneity-the fact that data distributions vary significantly across clients (e.g., different hospitals may treat distinct patient demographics). While current FL algorithms focus on aggregating model updates from these heterogeneous clients, the potential of the central server remains under-explored. This paper is motivated by a healthcare scenario: could a central server not only build a model but also guide a new patient to the hospital best equipped for their specific condition? We generalize this idea to propose a novel paradigm for FL systems where the server actively guides the allocation of new tasks or queries to the most appropriate client in the network. To enable this, we introduce an empirical likelihood-based framework that simultaneously addresses two goals: (1) learning effective local models on each client, and (2) finding the best matching client for a new query. Empirical results demonstrate the framework's effectiveness on benchmark datasets, showing improvements in both model accuracy and the precision of client guidance compared to standard FL approaches. This work opens a new direction for building more intelligent and resource-efficient federated systems that leverage heterogeneity as a feature, not just a bug. Code is available at https://github.com/zijianwang0510/FedDRM.git.

Authors:Ye-eun Kim, Suhyeon Lim, Andrew J. Choi
Title: MMeViT: Multi-Modal ensemble ViT for Post-Stroke Rehabilitation Action Recognition
Abstract:
Rehabilitation therapy for stroke patients faces a supply shortage despite the increasing demand. To address this issue, remote monitoring systems that reduce the burden on medical staff are emerging as a viable alternative. A key component of these remote monitoring systems is Human Action Recognition (HAR) technology, which classifies actions. However, existing HAR studies have primarily focused on non-disable individuals, making them unsuitable for recognizing the actions of stroke patients. HAR research for stroke has largely concentrated on classifying relatively simple actions using machine learning rather than deep learning. In this study, we designed a system to monitor the actions of stroke patients, focusing on domiciliary upper limb Activities of Daily Living (ADL). Our system utilizes IMU (Inertial Measurement Unit) sensors and an RGB-D camera, which are the most common modalities in HAR. We directly collected a dataset through this system, investigated an appropriate preprocess and proposed a deep learning model suitable for processing multimodal data. We analyzed the collected dataset and found that the action data of stroke patients is less clustering than that of non-disabled individuals. Simultaneously, we found that the proposed model learns similar tendencies for each label in data with features that are difficult to clustering. This study suggests the possibility of expanding the deep learning model, which has learned the action features of stroke patients, to not only simple action recognition but also feedback such as assessment contributing to domiciliary rehabilitation in future research. The code presented in this study is available at https://github.com/ye-Kim/MMeViT.

Authors:Zi Liang, Qingqing Ye, Xuan Liu, Yanyun Wang, Jianliang Xu, Haibo Hu
Title: Virus Infection Attack on LLMs: Your Poisoning Can Spread "VIA" Synthetic Data
Abstract:
Synthetic data refers to artificial samples generated by models. While it has been validated to significantly enhance the performance of large language models (LLMs) during training and has been widely adopted in LLM development, potential security risks it may introduce remain uninvestigated. This paper systematically evaluates the resilience of synthetic-data-integrated training paradigm for LLMs against mainstream poisoning and backdoor attacks. We reveal that such a paradigm exhibits strong resistance to existing attacks, primarily thanks to the different distribution patterns between poisoning data and queries used to generate synthetic samples. To enhance the effectiveness of these attacks and further investigate the security risks introduced by synthetic data, we introduce a novel and universal attack framework, namely, Virus Infection Attack (VIA), which enables the propagation of current attacks through synthetic data even under purely clean queries. Inspired by the principles of virus design in cybersecurity, VIA conceals the poisoning payload within a protective "shell" and strategically searches for optimal hijacking points in benign samples to maximize the likelihood of generating malicious content. Extensive experiments on both data poisoning and backdoor attacks show that VIA significantly increases the presence of poisoning content in synthetic data and correspondingly raises the attack success rate (ASR) on downstream models to levels comparable to those observed in the poisoned upstream models.

Authors:Gabriel A. Viana, Luis F. Alves Pereira, Tsang Ing Ren, George D. C. Cavalcanti, Jan Sijbers
Title: Perceptual Influence: Improving the Perceptual Loss Design for Low-Dose CT Enhancement
Abstract:
Perceptual losses have emerged as powerful tools for training networks to enhance Low-Dose Computed Tomography (LDCT) images, offering an alternative to traditional pixel-wise losses such as Mean Squared Error, which often lead to over-smoothed reconstructions and loss of clinically relevant details in LDCT images. The perceptual losses operate in a latent feature space defined by a pretrained encoder and aim to preserve semantic content by comparing high-level features rather than raw pixel values. However, the design of perceptual losses involves critical yet underexplored decisions, including the feature representation level, the dataset used to pretrain the encoder, and the relative importance assigned to the perceptual component during optimization. In this work, we introduce the concept of perceptual influence (a metric that quantifies the relative contribution of the perceptual loss term to the total loss) and propose a principled framework to assess the impact of the loss design choices on the model training performance. Through systematic experimentation, we show that the widely used configurations in the literature to set up a perceptual loss underperform compared to better-designed alternatives. Our findings show that better perceptual loss designs lead to significant improvements in noise reduction and structural fidelity of reconstructed CT images, without requiring any changes to the network architecture. We also provide objective guidelines, supported by statistical analysis, to inform the effective use of perceptual losses in LDCT denoising. Our source code is available at https://github.com/vngabriel/perceptual-influence.

Authors:Davi Bastos Costa, Renato Vicente
Title: Deceive, Detect, and Disclose: Large Language Models Play Mini-Mafia
Abstract:
Mafia is a social deduction game where informed mafia compete against uninformed townsfolk. Its asymmetry of information and reliance on theory-of-mind reasoning mirror real-world multi-agent scenarios, making it a useful testbed for evaluating the social intelligence of large language models (LLMs). To support a systematic study, we introduce Mini-Mafia: a simplified four-player variant with one mafioso, one detective, and two villagers. We set the mafioso to kill a villager and the detective to investigate the mafioso during the night, reducing the game to a single day phase of discussion and voting. This setup isolates three interactive capabilities through role-specific win conditions: the mafioso must deceive, the villagers must detect deception, and the detective must effectively disclose information. To measure these skills, we have LLMs play against each other, creating the Mini-Mafia Benchmark: a two-stage framework that first estimates win rates within fixed opponent configurations, then aggregates performance across them using standardized scoring. Built entirely from model interactions without external data, the benchmark evolves as new models are introduced, with each one serving both as a new opponent and as a subject of evaluation. Our experiments reveal counterintuitive results, including cases where smaller models outperform larger ones. Beyond benchmarking, Mini-Mafia enables quantitative study of emergent multi-agent dynamics such as name bias and last-speaker advantage. It also contributes to AI safety by generating training data for deception detectors and by tracking models' deception capabilities against human baselines.

Authors:Federico Chinello, Giacomo Boracchi
Title: Convolutional Set Transformer
Abstract:
We introduce the Convolutional Set Transformer (CST), a novel neural architecture designed to process image sets of arbitrary cardinality that are visually heterogeneous yet share high-level semantics - such as a common category, scene, or concept. Existing set-input networks, e.g., Deep Sets and Set Transformer, are limited to vector inputs and cannot directly handle 3D image tensors. As a result, they must be cascaded with a feature extractor, typically a CNN, which encodes images into embeddings before the set-input network can model inter-image relationships. In contrast, CST operates directly on 3D image tensors, performing feature extraction and contextual modeling simultaneously, thereby enabling synergies between the two processes. This design yields superior performance in tasks such as Set Classification and Set Anomaly Detection and further provides native compatibility with CNN explainability methods such as Grad-CAM, unlike competing approaches that remain opaque. Finally, we show that CSTs can be pre-trained on large-scale datasets and subsequently adapted to new domains and tasks through standard Transfer Learning schemes. To support further research, we release CST-15, a CST backbone pre-trained on ImageNet (https://github.com/chinefed/convolutional-set-transformer).

Authors:Xuan He, Dongfu Jiang, Ping Nie, Minghao Liu, Zhengxuan Jiang, Mingyi Su, Wentao Ma, Junru Lin, Chun Ye, Yi Lu, Keming Wu, Benjamin Schneider, Quy Duc Do, Zhuofeng Li, Yiming Jia, Yuxuan Zhang, Guo Cheng, Haozhe Wang, Wangchunshu Zhou, Qunshu Lin, Yuanxing Zhang, Ge Zhang, Wenhao Huang, Wenhu Chen
Title: VideoScore2: Think before You Score in Generative Video Evaluation
Abstract:
Recent advances in text-to-video generation have produced increasingly realistic and diverse content, yet evaluating such videos remains a fundamental challenge due to their multi-faceted nature encompassing visual quality, semantic alignment, and physical consistency. Existing evaluators and reward models are limited to single opaque scores, lack interpretability, or provide only coarse analysis, making them insufficient for capturing the comprehensive nature of video quality assessment. We present VideoScore2, a multi-dimensional, interpretable, and human-aligned framework that explicitly evaluates visual quality, text-to-video alignment, and physical/common-sense consistency while producing detailed chain-of-thought rationales. Our model is trained on a large-scale dataset VideoFeedback2 containing 27,168 human-annotated videos with both scores and reasoning traces across three dimensions, using a two-stage pipeline of supervised fine-tuning followed by reinforcement learning with Group Relative Policy Optimization (GRPO) to enhance analytical robustness. Extensive experiments demonstrate that VideoScore2 achieves superior performance with 44.35 (+5.94) accuracy on our in-domain benchmark VideoScore-Bench-v2 and 50.37 (+4.32) average performance across four out-of-domain benchmarks (VideoGenReward-Bench, VideoPhy2, etc), while providing interpretable assessments that bridge the gap between evaluation and controllable generation through effective reward modeling for Best-of-N sampling. Project Page: https://tiger-ai-lab.github.io/VideoScore2/

Authors:Ke Wang, Houxing Ren, Zimu Lu, Mingjie Zhan, Hongsheng Li
Title: VoiceAssistant-Eval: Benchmarking AI Assistants across Listening, Speaking, and Viewing
Abstract:
The growing capabilities of large language models and multimodal systems have spurred interest in voice-first AI assistants, yet existing benchmarks are inadequate for evaluating the full range of these systems' capabilities. We introduce VoiceAssistant-Eval, a comprehensive benchmark designed to assess AI assistants across listening, speaking, and viewing. VoiceAssistant-Eval comprises 10,497 curated examples spanning 13 task categories. These tasks include natural sounds, music, and spoken dialogue for listening; multi-turn dialogue, role-play imitation, and various scenarios for speaking; and highly heterogeneous images for viewing. To demonstrate its utility, we evaluate 21 open-source models and GPT-4o-Audio, measuring the quality of the response content and speech, as well as their consistency. The results reveal three key findings: (1) proprietary models do not universally outperform open-source models; (2) most models excel at speaking tasks but lag in audio understanding; and (3) well-designed smaller models can rival much larger ones. Notably, the mid-sized Step-Audio-2-mini (7B) achieves more than double the listening accuracy of LLaMA-Omni2-32B-Bilingual. However, challenges remain: multimodal (audio plus visual) input and role-play voice imitation tasks are difficult for current models, and significant gaps persist in robustness and safety alignment. VoiceAssistant-Eval identifies these gaps and establishes a rigorous framework for evaluating and guiding the development of next-generation AI assistants. Code and data will be released at https://mathllm.github.io/VoiceAssistantEval/ .

Authors:Long Xing, Xiaoyi Dong, Yuhang Zang, Yuhang Cao, Jianze Liang, Qidong Huang, Jiaqi Wang, Feng Wu, Dahua Lin
Title: CapRL: Stimulating Dense Image Caption Capabilities via Reinforcement Learning
Abstract:
Image captioning is a fundamental task that bridges the visual and linguistic domains, playing a critical role in pre-training Large Vision-Language Models (LVLMs). Current state-of-the-art captioning models are typically trained with Supervised Fine-Tuning (SFT), a paradigm that relies on expensive, non-scalable data annotated by humans or proprietary models. This approach often leads to models that memorize specific ground-truth answers, limiting their generality and ability to generate diverse, creative descriptions. To overcome the limitation of SFT, we propose applying the Reinforcement Learning with Verifiable Rewards (RLVR) paradigm to the open-ended task of image captioning. A primary challenge, however, is designing an objective reward function for the inherently subjective nature of what constitutes a "good" caption. We introduce Captioning Reinforcement Learning (CapRL), a novel training framework that redefines caption quality through its utility: a high-quality caption should enable a non-visual language model to accurately answer questions about the corresponding image. CapRL employs a decoupled two-stage pipeline where an LVLM generates a caption, and the objective reward is derived from the accuracy of a separate, vision-free LLM answering Multiple-Choice Questions based solely on that caption. As the first study to apply RLVR to the subjective image captioning task, we demonstrate that CapRL significantly enhances multiple settings. Pretraining on the CapRL-5M caption dataset annotated by CapRL-3B results in substantial gains across 12 benchmarks. Moreover, within the Prism Framework for caption quality evaluation, CapRL achieves performance comparable to Qwen2.5-VL-72B, while exceeding the baseline by an average margin of 8.4%. Code is available here: https://github.com/InternLM/CapRL.

Authors:Renjie Luo, Zichen Liu, Xiangyan Liu, Chao Du, Min Lin, Wenhu Chen, Wei Lu, Tianyu Pang
Title: Language Models Can Learn from Verbal Feedback Without Scalar Rewards
Abstract:
LLMs are often trained with RL from human or AI feedback, yet such methods typically compress nuanced feedback into scalar rewards, discarding much of their richness and inducing scale imbalance. We propose treating verbal feedback as a conditioning signal. Inspired by language priors in text-to-image generation, which enable novel outputs from unseen prompts, we introduce the feedback-conditional policy (FCP). FCP learns directly from response-feedback pairs, approximating the feedback-conditional posterior through maximum likelihood training on offline data. We further develop an online bootstrapping stage where the policy generates under positive conditions and receives fresh feedback to refine itself. This reframes feedback-driven learning as conditional generation rather than reward optimization, offering a more expressive way for LLMs to directly learn from verbal feedback. Our code is available at https://github.com/sail-sg/feedback-conditional-policy.

Authors:Xiangxin Zhou, Zichen Liu, Haonan Wang, Chao Du, Min Lin, Chongxuan Li, Liang Wang, Tianyu Pang
Title: Variational Reasoning for Language Models
Abstract:
We introduce a variational reasoning framework for language models that treats thinking traces as latent variables and optimizes them through variational inference. Starting from the evidence lower bound (ELBO), we extend it to a multi-trace objective for tighter bounds and propose a forward-KL formulation that stabilizes the training of the variational posterior. We further show that rejection sampling finetuning and binary-reward RL, including GRPO, can be interpreted as local forward-KL objectives, where an implicit weighting by model accuracy naturally arises from the derivation and reveals a previously unnoticed bias toward easier questions. We empirically validate our method on the Qwen 2.5 and Qwen 3 model families across a wide range of reasoning tasks. Overall, our work provides a principled probabilistic perspective that unifies variational inference with RL-style methods and yields stable objectives for improving the reasoning ability of language models. Our code is available at https://github.com/sail-sg/variational-reasoning.

Authors:Antreas Ioannou, Andreas Shiamishis, Nora Hollenstein, Nezihe Merve Gürel
Title: Evaluating the Limits of Large Language Models in Multilingual Legal Reasoning
Abstract:
In an era dominated by Large Language Models (LLMs), understanding their capabilities and limitations, especially in high-stakes fields like law, is crucial. While LLMs such as Meta's LLaMA, OpenAI's ChatGPT, Google's Gemini, DeepSeek, and other emerging models are increasingly integrated into legal workflows, their performance in multilingual, jurisdictionally diverse, and adversarial contexts remains insufficiently explored. This work evaluates LLaMA and Gemini on multilingual legal and non-legal benchmarks, and assesses their adversarial robustness in legal tasks through character and word-level perturbations. We use an LLM-as-a-Judge approach for human-aligned evaluation. We moreover present an open-source, modular evaluation pipeline designed to support multilingual, task-diverse benchmarking of any combination of LLMs and datasets, with a particular focus on legal tasks, including classification, summarization, open questions, and general reasoning. Our findings confirm that legal tasks pose significant challenges for LLMs with accuracies often below 50% on legal reasoning benchmarks such as LEXam, compared to over 70% on general-purpose tasks like XNLI. In addition, while English generally yields more stable results, it does not always lead to higher accuracy. Prompt sensitivity and adversarial vulnerability is also shown to persist across languages. Finally, a correlation is found between the performance of a language and its syntactic similarity to English. We also observe that LLaMA is weaker than Gemini, with the latter showing an average advantage of about 24 percentage points across the same task. Despite improvements in newer LLMs, challenges remain in deploying them reliably for critical, multilingual legal applications.

Authors:Hui Li, Changhao Jiang, Hongyu Wang, Ming Zhang, Jiajun Sun, Zhixiong Yang, Yifei Cao, Shihan Dou, Xiaoran Fan, Baoyu Fan, Tao Ji, Tao Gui, Qi Zhang, Xuanjing Huang
Title: MDAR: A Multi-scene Dynamic Audio Reasoning Benchmark
Abstract:
The ability to reason from audio, including speech, paralinguistic cues, environmental sounds, and music, is essential for AI agents to interact effectively in real-world scenarios. Existing benchmarks mainly focus on static or single-scene settings and do not fully capture scenarios where multiple speakers, unfolding events, and heterogeneous audio sources interact. To address these challenges, we introduce MDAR, a benchmark for evaluating models on complex, multi-scene, and dynamically evolving audio reasoning tasks. MDAR comprises 3,000 carefully curated question-answer pairs linked to diverse audio clips, covering five categories of complex reasoning and spanning three question types. We benchmark 26 state-of-the-art audio language models on MDAR and observe that they exhibit limitations in complex reasoning tasks. On single-choice questions, Qwen2.5-Omni (open-source) achieves 76.67% accuracy, whereas GPT-4o Audio (closed-source) reaches 68.47%; however, GPT-4o Audio substantially outperforms Qwen2.5-Omni on the more challenging multiple-choice and open-ended tasks. Across all three question types, no model achieves 80% performance. These findings underscore the unique challenges posed by MDAR and its value as a benchmark for advancing audio reasoning research.Code and benchmark can be found at https://github.com/luckyerr/MDAR.

Authors:Changhun Kim, Timon Conrad, Redwanul Karim, Julian Oelhaf, David Riebesel, Tomás Arias-Vergara, Andreas Maier, Johann Jäger, Siming Bayer
Title: Physics-informed GNN for medium-high voltage AC power flow with edge-aware attention and line search correction operator
Abstract:
Physics-informed graph neural networks (PIGNNs) have emerged as fast AC power-flow solvers that can replace classic Newton--Raphson (NR) solvers, especially when thousands of scenarios must be evaluated. However, current PIGNNs still need accuracy improvements at parity speed; in particular, the physics loss is inoperative at inference, which can deter operational adoption. We address this with PIGNN-Attn-LS, combining an edge-aware attention mechanism that explicitly encodes line physics via per-edge biases, capturing the grid's anisotropy, with a backtracking line-search-based globalized correction operator that restores an operative decrease criterion at inference. Training and testing use a realistic High-/Medium-Voltage scenario generator, with NR used only to construct reference states. On held-out HV cases consisting of 4--32-bus grids, PIGNN-Attn-LS achieves a test RMSE of 0.00033 p.u. in voltage and 0.08$^\circ$ in angle, outperforming the PIGNN-MLP baseline by 99.5\% and 87.1\%, respectively. With streaming micro-batches, it delivers 2--5$\times$ faster batched inference than NR on 4--1024-bus grids.

Authors:Pei Xu, Zhen Wu, Ruocheng Wang, Vishnu Sarukkai, Kayvon Fatahalian, Ioannis Karamouzas, Victor Zordan, C. Karen Liu
Title: Learning to Ball: Composing Policies for Long-Horizon Basketball Moves
Abstract:
Learning a control policy for a multi-phase, long-horizon task, such as basketball maneuvers, remains challenging for reinforcement learning approaches due to the need for seamless policy composition and transitions between skills. A long-horizon task typically consists of distinct subtasks with well-defined goals, separated by transitional subtasks with unclear goals but critical to the success of the entire task. Existing methods like the mixture of experts and skill chaining struggle with tasks where individual policies do not share significant commonly explored states or lack well-defined initial and terminal states between different phases. In this paper, we introduce a novel policy integration framework to enable the composition of drastically different motor skills in multi-phase long-horizon tasks with ill-defined intermediate states. Based on that, we further introduce a high-level soft router to enable seamless and robust transitions between the subtasks. We evaluate our framework on a set of fundamental basketball skills and challenging transitions. Policies trained by our approach can effectively control the simulated character to interact with the ball and accomplish the long-horizon task specified by real-time user commands, without relying on ball trajectory references.

Authors:Ziheng Chi, Yifan Hou, Chenxi Pang, Shaobo Cui, Mubashara Akhtar, Mrinmaya Sachan
Title: Chimera: Diagnosing Shortcut Learning in Visual-Language Understanding
Abstract:
Diagrams convey symbolic information in a visual format rather than a linear stream of words, making them especially challenging for AI models to process. While recent evaluations suggest that vision-language models (VLMs) perform well on diagram-related benchmarks, their reliance on knowledge, reasoning, or modality shortcuts raises concerns about whether they genuinely understand and reason over diagrams. To address this gap, we introduce Chimera, a comprehensive test suite comprising 7,500 high-quality diagrams sourced from Wikipedia; each diagram is annotated with its symbolic content represented by semantic triples along with multi-level questions designed to assess four fundamental aspects of diagram comprehension: entity recognition, relation understanding, knowledge grounding, and visual reasoning. We use Chimera to measure the presence of three types of shortcuts in visual question answering: (1) the visual-memorization shortcut, where VLMs rely on memorized visual patterns; (2) the knowledge-recall shortcut, where models leverage memorized factual knowledge instead of interpreting the diagram; and (3) the Clever-Hans shortcut, where models exploit superficial language patterns or priors without true comprehension. We evaluate 15 open-source VLMs from 7 model families on Chimera and find that their seemingly strong performance largely stems from shortcut behaviors: visual-memorization shortcuts have slight impact, knowledge-recall shortcuts play a moderate role, and Clever-Hans shortcuts contribute significantly. These findings expose critical limitations in current VLMs and underscore the need for more robust evaluation protocols that benchmark genuine comprehension of complex visual inputs (e.g., diagrams) rather than question-answering shortcuts.

Authors:Zijian Zhao, Dian Jin, Zijing Zhou
Title: Zero-Effort Image-to-Music Generation: An Interpretable RAG-based VLM Approach
Abstract:
Recently, Image-to-Music (I2M) generation has garnered significant attention, with potential applications in fields such as gaming, advertising, and multi-modal art creation. However, due to the ambiguous and subjective nature of I2M tasks, most end-to-end methods lack interpretability, leaving users puzzled about the generation results. Even methods based on emotion mapping face controversy, as emotion represents only a singular aspect of art. Additionally, most learning-based methods require substantial computational resources and large datasets for training, hindering accessibility for common users. To address these challenges, we propose the first Vision Language Model (VLM)-based I2M framework that offers high interpretability and low computational cost. Specifically, we utilize ABC notation to bridge the text and music modalities, enabling the VLM to generate music using natural language. We then apply multi-modal Retrieval-Augmented Generation (RAG) and self-refinement techniques to allow the VLM to produce high-quality music without external training. Furthermore, we leverage the generated motivations in text and the attention maps from the VLM to provide explanations for the generated results in both text and image modalities. To validate our method, we conduct both human studies and machine evaluations, where our method outperforms others in terms of music quality and music-image consistency, indicating promising results. Our code is available at https://github.com/RS2002/Image2Music .

Authors:Niharika Hegde, Subarnaduti Paul, Lars Joel-Frey, Manuel Brack, Kristian Kersting, Martin Mundt, Patrick Schramowski
Title: CHRONOBERG: Capturing Language Evolution and Temporal Awareness in Foundation Models
Abstract:
Large language models (LLMs) excel at operating at scale by leveraging social media and various data crawled from the web. Whereas existing corpora are diverse, their frequent lack of long-term temporal structure may however limit an LLM's ability to contextualize semantic and normative evolution of language and to capture diachronic variation. To support analysis and training for the latter, we introduce CHRONOBERG, a temporally structured corpus of English book texts spanning 250 years, curated from Project Gutenberg and enriched with a variety of temporal annotations. First, the edited nature of books enables us to quantify lexical semantic change through time-sensitive Valence-Arousal-Dominance (VAD) analysis and to construct historically calibrated affective lexicons to support temporally grounded interpretation. With the lexicons at hand, we demonstrate a need for modern LLM-based tools to better situate their detection of discriminatory language and contextualization of sentiment across various time-periods. In fact, we show how language models trained sequentially on CHRONOBERG struggle to encode diachronic shifts in meaning, emphasizing the need for temporally aware training and evaluation pipelines, and positioning CHRONOBERG as a scalable resource for the study of linguistic change and temporal generalization. Disclaimer: This paper includes language and display of samples that could be offensive to readers. Open Access: Chronoberg is available publicly on HuggingFace at ( https://huggingface.co/datasets/spaul25/Chronoberg). Code is available at (https://github.com/paulsubarna/Chronoberg).

Authors:Xiao Wang, Shujuan Wu, Xiaoxia Cheng, Changwei Bi, Jin Tang, Bin Luo
Title: Pedestrian Attribute Recognition via Hierarchical Cross-Modality HyperGraph Learning
Abstract:
Current Pedestrian Attribute Recognition (PAR) algorithms typically focus on mapping visual features to semantic labels or attempt to enhance learning by fusing visual and attribute information. However, these methods fail to fully exploit attribute knowledge and contextual information for more accurate recognition. Although recent works have started to consider using attribute text as additional input to enhance the association between visual and semantic information, these methods are still in their infancy. To address the above challenges, this paper proposes the construction of a multi-modal knowledge graph, which is utilized to mine the relationships between local visual features and text, as well as the relationships between attributes and extensive visual context samples. Specifically, we propose an effective multi-modal knowledge graph construction method that fully considers the relationships among attributes and the relationships between attributes and vision tokens. To effectively model these relationships, this paper introduces a knowledge graph-guided cross-modal hypergraph learning framework to enhance the standard pedestrian attribute recognition framework. Comprehensive experiments on multiple PAR benchmark datasets have thoroughly demonstrated the effectiveness of our proposed knowledge graph for the PAR task, establishing a strong foundation for knowledge-guided pedestrian attribute recognition. The source code of this paper will be released on https://github.com/Event-AHU/OpenPAR

Authors:Ke Li, Zheng Yang, Zhongbin Zhou, Feng Xue, Zhonglin Jiang, Wenxiao Wang
Title: HEAPr: Hessian-based Efficient Atomic Expert Pruning in Output Space
Abstract:
Mixture-of-Experts (MoE) architectures in large language models (LLMs) deliver exceptional performance and reduced inference costs compared to dense LLMs. However, their large parameter counts result in prohibitive memory requirements, limiting practical deployment. While existing pruning methods primarily focus on expert-level pruning, this coarse granularity often leads to substantial accuracy degradation. In this work, we introduce HEAPr, a novel pruning algorithm that decomposes experts into smaller, indivisible atomic experts, enabling more precise and flexible atomic expert pruning. To measure the importance of each atomic expert, we leverage second-order information based on principles similar to Optimal Brain Surgeon (OBS) theory. To address the computational and storage challenges posed by second-order information, HEAPr exploits the inherent properties of atomic experts to transform the second-order information from expert parameters into that of atomic expert parameters, and further simplifies it to the second-order information of atomic expert outputs. This approach reduces the space complexity from $O(d^4)$, where d is the model's dimensionality, to $O(d^2)$. HEAPr requires only two forward passes and one backward pass on a small calibration set to compute the importance of atomic experts. Extensive experiments on MoE models, including DeepSeek MoE and Qwen MoE family, demonstrate that HEAPr outperforms existing expert-level pruning methods across a wide range of compression ratios and benchmarks. Specifically, HEAPr achieves nearly lossless compression at compression ratios of 20% ~ 25% in most models, while also reducing FLOPs nearly by 20%. The code can be found at \href{https://github.com/LLIKKE/HEAPr}{https://github.com/LLIKKE/HEAPr}.

Authors:Aleksandar Terzić, Nicolas Menet, Michael Hersche, Thomas Hofmann, Abbas Rahimi
Title: Structured Sparse Transition Matrices to Enable State Tracking in State-Space Models
Abstract:
Modern state-space models (SSMs) often utilize transition matrices which enable efficient computation but pose restrictions on the model's expressivity, as measured in terms of the ability to emulate finite-state automata (FSA). While unstructured transition matrices are optimal in terms of expressivity, they come at a prohibitively high compute and memory cost even for moderate state sizes. We propose a structured sparse parametrization of transition matrices in SSMs that enables FSA state tracking with optimal state size and depth, while keeping the computational cost of the recurrence comparable to that of diagonal SSMs. Our method, PD-SSM, parametrizes the transition matrix as the product of a column one-hot matrix ($P$) and a complex-valued diagonal matrix ($D$). Consequently, the computational cost of parallel scans scales linearly with the state size. Theoretically, the model is BIBO-stable and can emulate any $N$-state FSA with one layer of dimension $N$ and a linear readout of size $N \times N$, significantly improving on all current structured SSM guarantees. Experimentally, the model significantly outperforms a wide collection of modern SSM variants on various FSA state tracking tasks. On multiclass time-series classification, the performance is comparable to that of neural controlled differential equations, a paradigm explicitly built for time-series analysis. Finally, we integrate PD-SSM into a hybrid Transformer-SSM architecture and demonstrate that the model can effectively track the states of a complex FSA in which transitions are encoded as a set of variable-length English sentences. The code is available at https://github.com/IBM/expressive-sparse-state-space-model

Authors:Guanghao Zhu, Zhitian Hou, Zeyu Liu, Zhijie Sang, Congkai Xie, Hongxia Yang
Title: InfiMed-Foundation: Pioneering Advanced Multimodal Medical Models with Compute-Efficient Pre-Training and Multi-Stage Fine-Tuning
Abstract:
Multimodal large language models (MLLMs) have shown remarkable potential in various domains, yet their application in the medical field is hindered by several challenges. General-purpose MLLMs often lack the specialized knowledge required for medical tasks, leading to uncertain or hallucinatory responses. Knowledge distillation from advanced models struggles to capture domain-specific expertise in radiology and pharmacology. Additionally, the computational cost of continual pretraining with large-scale medical data poses significant efficiency challenges. To address these issues, we propose InfiMed-Foundation-1.7B and InfiMed-Foundation-4B, two medical-specific MLLMs designed to deliver state-of-the-art performance in medical applications. We combined high-quality general-purpose and medical multimodal data and proposed a novel five-dimensional quality assessment framework to curate high-quality multimodal medical datasets. We employ low-to-high image resolution and multimodal sequence packing to enhance training efficiency, enabling the integration of extensive medical data. Furthermore, a three-stage supervised fine-tuning process ensures effective knowledge extraction for complex medical tasks. Evaluated on the MedEvalKit framework, InfiMed-Foundation-1.7B outperforms Qwen2.5VL-3B, while InfiMed-Foundation-4B surpasses HuatuoGPT-V-7B and MedGemma-27B-IT, demonstrating superior performance in medical visual question answering and diagnostic tasks. By addressing key challenges in data quality, training efficiency, and domain-specific knowledge extraction, our work paves the way for more reliable and effective AI-driven solutions in healthcare. InfiMed-Foundation-4B model is available at \href{https://huggingface.co/InfiX-ai/InfiMed-Foundation-4B}{InfiMed-Foundation-4B}.

Authors:Yifang Zhang, Pengfei Duan, Yiwen Yang, Shengwu Xiong
Title: Beyond Textual Context: Structural Graph Encoding with Adaptive Space Alignment to alleviate the hallucination of LLMs
Abstract:
Currently, the main approach for Large Language Models (LLMs) to tackle the hallucination issue is incorporating Knowledge Graphs(KGs).However, LLMs typically treat KGs as plain text, extracting only semantic information and limiting their use of the crucial structural aspects of KGs. Another challenge is the gap between the embedding spaces of KGs encoders and LLMs text embeddings, which hinders the effective integration of structured knowledge. To overcome these obstacles, we put forward the SSKG-LLM, an innovative model architecture that is designed to efficiently integrate both the Structural and Semantic information of KGs into the reasoning processes of LLMs. SSKG-LLM incorporates the Knowledge Graph Retrieval (KGR) module and the Knowledge Graph Encoding (KGE) module to preserve semantics while utilizing structure. Then, the Knowledge Graph Adaptation (KGA) module is incorporated to enable LLMs to understand KGs embeddings. We conduct extensive experiments and provide a detailed analysis to explore how incorporating the structural information of KGs can enhance the factual reasoning abilities of LLMs. Our code are available at https://github.com/yfangZhang/SSKG-LLM.

Authors:Jianzhi Yan, Le Liu, Youcheng Pan, Shiwei Chen, Zike Yuan, Yang Xiang, Buzhou Tang
Title: From Long to Lean: Performance-aware and Adaptive Chain-of-Thought Compression via Multi-round Refinement
Abstract:
Chain-of-Thought (CoT) reasoning improves performance on complex tasks but introduces significant inference latency due to verbosity. We propose Multiround Adaptive Chain-of-Thought Compression (MACC), a framework that leverages the token elasticity phenomenon--where overly small token budgets can paradoxically increase output length--to progressively compress CoTs via multiround refinement. This adaptive strategy allows MACC to determine the optimal compression depth for each input. Our method achieves an average accuracy improvement of 5.6 percent over state-of-the-art baselines, while also reducing CoT length by an average of 47 tokens and significantly lowering latency. Furthermore, we show that test-time performance--accuracy and token length--can be reliably predicted using interpretable features like perplexity and compression rate on the training set. Evaluated across different models, our method enables efficient model selection and forecasting without repeated fine-tuning, demonstrating that CoT compression is both effective and predictable. Our code will be released in https://github.com/Leon221220/MACC.

Authors:Xiaohuan Pei, Yuxing Chen, Siyu Xu, Yunke Wang, Yuheng Shi, Chang Xu
Title: Action-aware Dynamic Pruning for Efficient Vision-Language-Action Manipulation
Abstract:
Robotic manipulation with Vision-Language-Action models requires efficient inference over long-horizon multi-modal context, where attention to dense visual tokens dominates computational cost. Existing methods optimize inference speed by reducing visual redundancy within VLA models, but they overlook the varying redundancy across robotic manipulation stages. We observe that the visual token redundancy is higher in coarse manipulation phase than in fine-grained operations, and is strongly correlated with the action dynamic. Motivated by this observation, we propose \textbf{A}ction-aware \textbf{D}ynamic \textbf{P}runing (\textbf{ADP}), a multi-modal pruning framework that integrates text-driven token selection with action-aware trajectory gating. Our method introduces a gating mechanism that conditions the pruning signal on recent action trajectories, using past motion windows to adaptively adjust token retention ratios in accordance with dynamics, thereby balancing computational efficiency and perceptual precision across different manipulation stages. Extensive experiments on the LIBERO suites and diverse real-world scenarios demonstrate that our method significantly reduces FLOPs and action inference latency (\textit{e.g.} $1.35 \times$ speed up on OpenVLA-OFT) while maintaining competitive success rates (\textit{e.g.} 25.8\% improvements with OpenVLA) compared to baselines, thereby providing a simple plug-in path to efficient robot policies that advances the efficiency and performance frontier of robotic manipulation. Our project website is: \href{https://vla-adp.github.io/}{ADP.com}.

Authors:Jewon Lee, Wooksu Shin, Seungmin Yang, Ki-Ung Song, DongUk Lim, Jaeyeon Kim, Tae-Ho Kim, Bo-Kyeong Kim
Title: ERGO: Efficient High-Resolution Visual Understanding for Vision-Language Models
Abstract:
Efficient processing of high-resolution images is crucial for real-world vision-language applications. However, existing Large Vision-Language Models (LVLMs) incur substantial computational overhead due to the large number of vision tokens. With the advent of "thinking with images" models, reasoning now extends beyond text to the visual domain. This capability motivates our two-stage "coarse-to-fine" reasoning pipeline: first, a downsampled image is analyzed to identify task-relevant regions; then, only these regions are cropped at full resolution and processed in a subsequent reasoning stage. This approach reduces computational cost while preserving fine-grained visual details where necessary. A major challenge lies in inferring which regions are truly relevant to a given query. Recent related methods often fail in the first stage after input-image downsampling, due to perception-driven reasoning, where clear visual information is required for effective reasoning. To address this issue, we propose ERGO (Efficient Reasoning & Guided Observation) that performs reasoning-driven perception-leveraging multimodal context to determine where to focus. Our model can account for perceptual uncertainty, expanding the cropped region to cover visually ambiguous areas for answering questions. To this end, we develop simple yet effective reward components in a reinforcement learning framework for coarse-to-fine perception. Across multiple datasets, our approach delivers higher accuracy than the original model and competitive methods, with greater efficiency. For instance, ERGO surpasses Qwen2.5-VL-7B on the V* benchmark by 4.7 points while using only 23% of the vision tokens, achieving a 3x inference speedup. The code and models can be found at: https://github.com/nota-github/ERGO.

Authors:Taeyoung Yun, Pierre-Luc St-Charles, Jinkyoo Park, Yoshua Bengio, Minsu Kim
Title: Active Attacks: Red-teaming LLMs via Adaptive Environments
Abstract:
We address the challenge of generating diverse attack prompts for large language models (LLMs) that elicit harmful behaviors (e.g., insults, sexual content) and are used for safety fine-tuning. Rather than relying on manual prompt engineering, attacker LLMs can be trained with reinforcement learning (RL) to automatically generate such prompts using only a toxicity classifier as a reward. However, capturing a wide range of harmful behaviors is a significant challenge that requires explicit diversity objectives. Existing diversity-seeking RL methods often collapse to limited modes: once high-reward prompts are found, exploration of new regions is discouraged. Inspired by the active learning paradigm that encourages adaptive exploration, we introduce \textit{Active Attacks}, a novel RL-based red-teaming algorithm that adapts its attacks as the victim evolves. By periodically safety fine-tuning the victim LLM with collected attack prompts, rewards in exploited regions diminish, which forces the attacker to seek unexplored vulnerabilities. This process naturally induces an easy-to-hard exploration curriculum, where the attacker progresses beyond easy modes toward increasingly difficult ones. As a result, Active Attacks uncovers a wide range of local attack modes step by step, and their combination achieves wide coverage of the multi-mode distribution. Active Attacks, a simple plug-and-play module that seamlessly integrates into existing RL objectives, unexpectedly outperformed prior RL-based methods -- including GFlowNets, PPO, and REINFORCE -- by improving cross-attack success rates against GFlowNets, the previous state-of-the-art, from 0.07% to 31.28% (a relative gain greater than $400\ \times$) with only a 6% increase in computation. Our code is publicly available \href{https://github.com/dbsxodud-11/active_attacks}{here}.

Authors:Woosung Joung, Daewon Chae, Jinkyu Kim
Title: SemanticControl: A Training-Free Approach for Handling Loosely Aligned Visual Conditions in ControlNet
Abstract:
ControlNet has enabled detailed spatial control in text-to-image diffusion models by incorporating additional visual conditions such as depth or edge maps. However, its effectiveness heavily depends on the availability of visual conditions that are precisely aligned with the generation goal specified by text prompt-a requirement that often fails in practice, especially for uncommon or imaginative scenes. For example, generating an image of a cat cooking in a specific pose may be infeasible due to the lack of suitable visual conditions. In contrast, structurally similar cues can often be found in more common settings-for instance, poses of humans cooking are widely available and can serve as rough visual guides. Unfortunately, existing ControlNet models struggle to use such loosely aligned visual conditions, often resulting in low text fidelity or visual artifacts. To address this limitation, we propose SemanticControl, a training-free method for effectively leveraging misaligned but semantically relevant visual conditions. Our approach adaptively suppresses the influence of the visual condition where it conflicts with the prompt, while strengthening guidance from the text. The key idea is to first run an auxiliary denoising process using a surrogate prompt aligned with the visual condition (e.g., "a human playing guitar" for a human pose condition) to extract informative attention masks, and then utilize these masks during the denoising of the actual target prompt (e.g., cat playing guitar). Experimental results demonstrate that our method improves performance under loosely aligned conditions across various conditions, including depth maps, edge maps, and human skeletons, outperforming existing baselines. Our code is available at https://mung3477.github.io/semantic-control.

Authors:Taejong Joo, Shu Ishida, Ivan Sosnovik, Bryan Lim, Sahand Rezaei-Shoshtari, Adam Gaier, Robert Giaquinto
Title: Graph of Agents: Principled Long Context Modeling by Emergent Multi-Agent Collaboration
Abstract:
As a model-agnostic approach to long context modeling, multi-agent systems can process inputs longer than a large language model's context window without retraining or architectural modifications. However, their performance often heavily relies on hand-crafted multi-agent collaboration strategies and prompt engineering, which limit generalizability. In this work, we introduce a principled framework that formalizes the model-agnostic long context modeling problem as a compression problem, yielding an information-theoretic compression objective. Building on this framework, we propose Graph of Agents (GoA), which dynamically constructs an input-dependent collaboration structure that maximizes this objective. For Llama 3.1 8B and Qwen3 8B across six document question answering benchmarks, GoA improves the average $F_1$ score of retrieval-augmented generation by 5.7\% and a strong multi-agent baseline using a fixed collaboration structure by 16.35\%, respectively. Even with only a 2K context window, GoA surpasses the 128K context window Llama 3.1 8B on LongBench, showing a dramatic increase in effective context length. Our source code is available at https://github.com/tjoo512/graph-of-agents.

Authors:Yizhou Zhang, Ning Lv, Teng Wang, Jisheng Dang
Title: FastGRPO: Accelerating Policy Optimization via Concurrency-aware Speculative Decoding and Online Draft Learning
Abstract:
Group relative policy optimization (GRPO) has demonstrated significant potential in improving the reasoning capabilities of large language models (LLMs) via reinforcement learning. However, its practical deployment is impeded by an excessively slow training process, primarily attributed to the computationally intensive autoregressive generation of multiple responses per query, which makes the generation phase the primary performance bottleneck. Although speculative decoding presents a promising direction for acceleration, its direct application in GRPO achieves limited speedup under high-concurrency training conditions. To overcome this limitation, we propose a concurrency-aware speculative decoding framework that dynamically adjusts the drafting and verification strategy according to real-time concurrency levels, thereby maximizing the acceleration of the generation process. Furthermore, to address performance degradation arising from distributional drift between the evolving target model and the fixed draft model during training, we introduce an online draft learning mechanism that enables the draft model to continuously adapt using feedback signals from the target model. Experimental results across multiple mathematical reasoning datasets and models demonstrate that the proposed method achieves end-to-end speedups of 2.35x to 2.72x, significantly surpassing baseline approaches in efficiency. The code is available at https://github.com/yedaotian9/GRPO_speculative.

Authors:Junliang Liu, Jingyu Xiao, Wenxin Tang, Wenxuan Wang, Zhixian Wang, Minrui Zhang, Shuanghe Yu
Title: Benchmarking MLLM-based Web Understanding: Reasoning, Robustness and Safety
Abstract:
Multimodal large language models (MLLMs) are increasingly positioned as AI collaborators for building complex web-related applications like GUI agents and front-end code generation. However, existing benchmarks largely emphasize visual perception or UI code generation, showing insufficient evaluation on the reasoning, robustness and safety capability required for end-to-end web applications. To bridge the gap, we introduce a comprehensive web understanding benchmark, named WebRSSBench, that jointly evaluates Reasoning, Robustness, and Safety across eight tasks, such as position relationship reasoning, color robustness, and safety critical detection, etc. The benchmark is constructed from 729 websites and contains 3799 question answer pairs that probe multi-step inference over page structure, text, widgets, and safety-critical interactions. To ensure reliable measurement, we adopt standardized prompts, deterministic evaluation scripts, and multi-stage quality control combining automatic checks with targeted human verification. We evaluate 12 MLLMs on WebRSSBench. The results reveal significant gaps, models still struggle with compositional and cross-element reasoning over realistic layouts, show limited robustness when facing perturbations in user interfaces and content such as layout rearrangements or visual style shifts, and are rather conservative in recognizing and avoiding safety critical or irreversible actions. Our code is available at https://github.com/jinliang-byte/webssrbench.

Authors:Haotian Luo, Huaisong Zhang, Xuelin Zhang, Haoyu Wang, Zeyu Qin, Wenjie Lu, Guozheng Ma, Haiying He, Yingsha Xie, Qiyang Zhou, Zixuan Hu, Hongze Mi, Yibo Wang, Naiqiang Tan, Hong Chen, Yi R. Fung, Chun Yuan, Li Shen
Title: UltraHorizon: Benchmarking Agent Capabilities in Ultra Long-Horizon Scenarios
Abstract:
Autonomous agents have recently achieved remarkable progress across diverse domains, yet most evaluations focus on short-horizon, fully observable tasks. In contrast, many critical real-world tasks, such as large-scale software development, commercial investment, and scientific discovery, unfold in long-horizon and partially observable scenarios where success hinges on sustained reasoning, planning, memory management, and tool use. Existing benchmarks rarely capture these long-horizon challenges, leaving a gap in systematic evaluation. To bridge this gap, we introduce \textbf{UltraHorizon} a novel benchmark that measures the foundational capabilities essential for complex real-world challenges. We use exploration as a unifying task across three distinct environments to validate these core competencies. Agents are designed in long-horizon discovery tasks where they must iteratively uncover hidden rules through sustained reasoning, planning, memory and tools management, and interaction with environments. Under the heaviest scale setting, trajectories average \textbf{200k+} tokens and \textbf{400+} tool calls, whereas in standard configurations they still exceed \textbf{35k} tokens and involve more than \textbf{60} tool calls on average. Our extensive experiments reveal that LLM-agents consistently underperform in these settings, whereas human participants achieve higher scores, underscoring a persistent gap in agents' long-horizon abilities. We also observe that simple scaling fails in our task. To better illustrate the failure of agents, we conduct an in-depth analysis of collected trajectories. We identify eight types of errors and attribute them to two primary causes: in-context locking and functional fundamental capability gaps. \href{https://github.com/StarDewXXX/UltraHorizon}{Our code will be available here.}

Authors:Mehwish Mehmood, Ivor Spence, Muhammad Fahim
Title: LFA-Net: A Lightweight Network with LiteFusion Attention for Retinal Vessel Segmentation
Abstract:
Lightweight retinal vessel segmentation is important for the early diagnosis of vision-threatening and systemic diseases, especially in a real-world clinical environment with limited computational resources. Although segmentation methods based on deep learning are improving, existing models are still facing challenges of small vessel segmentation and high computational costs. To address these challenges, we proposed a new vascular segmentation network, LFA-Net, which incorporates a newly designed attention module, LiteFusion-Attention. This attention module incorporates residual learning connections, Vision Mamba-inspired dynamics, and modulation-based attention, enabling the model to capture local and global context efficiently and in a lightweight manner. LFA-Net offers high performance with 0.11 million parameters, 0.42 MB memory size, and 4.46 GFLOPs, which make it ideal for resource-constrained environments. We validated our proposed model on DRIVE, STARE, and CHASE_DB with outstanding performance in terms of dice scores of 83.28, 87.44, and 84.50% and Jaccard indices of 72.85, 79.31, and 74.70%, respectively. The code of LFA-Net is available online https://github.com/Mehwish4593/LFA-Net.

Authors:Mahindra Singh Rautela, Alexander Most, Siddharth Mansingh, Bradley C. Love, Ayan Biswas, Diane Oyen, Earl Lawrence
Title: MORPH: Shape-agnostic PDE Foundation Models
Abstract:
We introduce MORPH, a shape-agnostic, autoregressive foundation model for partial differential equations (PDEs). MORPH is built on a convolutional vision transformer backbone that seamlessly handles heterogeneous spatiotemporal datasets of varying data dimensionality (1D--3D) at different resolutions, multiple fields with mixed scalar and vector components. The architecture combines (i) component-wise convolution, which jointly processes scalar and vector channels to capture local interactions, (ii) inter-field cross-attention, which models and selectively propagates information between different physical fields, (iii) axial attentions, which factorizes full spatiotemporal self-attention along individual spatial and temporal axes to reduce computational burden while retaining expressivity. We pretrain multiple model variants on a diverse collection of heterogeneous PDE datasets and evaluate transfer to a range of downstream prediction tasks. Using both full-model fine-tuning and parameter-efficient low-rank adapters (LoRA), MORPH outperforms models trained from scratch in both zero-shot and full-shot generalization. Across extensive evaluations, MORPH matches or surpasses strong baselines and recent state-of-the-art models. Collectively, these capabilities present a flexible and powerful backbone for learning from heterogeneous and multimodal nature of scientific observations, charting a path toward scalable and data-efficient scientific machine learning. The source code, datasets, and models are publicly available at https://github.com/lanl/MORPH.

Authors:Abhishek Jindal, Dmitry Kalashnikov, Oscar Chang, Divya Garikapati, Anirudha Majumdar, Pierre Sermanet, Vikas Sindhwani
Title: Can AI Perceive Physical Danger and Intervene?
Abstract:
When AI interacts with the physical world -- as a robot or an assistive agent -- new safety challenges emerge beyond those of purely ``digital AI". In such interactions, the potential for physical harm is direct and immediate. How well do state-of-the-art foundation models understand common-sense facts about physical safety, e.g. that a box may be too heavy to lift, or that a hot cup of coffee should not be handed to a child? In this paper, our contributions are three-fold: first, we develop a highly scalable approach to continuous physical safety benchmarking of Embodied AI systems, grounded in real-world injury narratives and operational safety constraints. To probe multi-modal safety understanding, we turn these narratives and constraints into photorealistic images and videos capturing transitions from safe to unsafe states, using advanced generative models. Secondly, we comprehensively analyze the ability of major foundation models to perceive risks, reason about safety, and trigger interventions; this yields multi-faceted insights into their deployment readiness for safety-critical agentic applications. Finally, we develop a post-training paradigm to teach models to explicitly reason about embodiment-specific safety constraints provided through system instructions. The resulting models generate thinking traces that make safety reasoning interpretable and transparent, achieving state of the art performance in constraint satisfaction evaluations. The benchmark will be released at https://asimov-benchmark.github.io/v2

Authors:Zitong Lan, Yiduo Hao, Mingmin Zhao
Title: Guiding Audio Editing with Audio Language Model
Abstract:
Audio editing plays a central role in VR/AR immersion, virtual conferencing, sound design, and other interactive media. However, recent generative audio editing models depend on template-like instruction formats and are restricted to mono-channel audio. These models fail to deal with declarative audio editing, where the user declares what the desired outcome should be, while leaving the details of editing operations to the system. We introduce SmartDJ, a novel framework for stereo audio editing that combines the reasoning capability of audio language models with the generative power of latent diffusion. Given a high-level instruction, SmartDJ decomposes it into a sequence of atomic edit operations, such as adding, removing, or spatially relocating events. These operations are then executed by a diffusion model trained to manipulate stereo audio. To support this, we design a data synthesis pipeline that produces paired examples of high-level instructions, atomic edit operations, and audios before and after each edit operation. Experiments demonstrate that SmartDJ achieves superior perceptual quality, spatial realism, and semantic alignment compared to prior audio editing methods. Demos are available at https://zitonglan.github.io/project/smartdj/smartdj.html.

Authors:Junkai Zhang, Zihao Wang, Lin Gui, Swarnashree Mysore Sathyendra, Jaehwan Jeong, Victor Veitch, Wei Wang, Yunzhong He, Bing Liu, Lifeng Jin
Title: Chasing the Tail: Effective Rubric-based Reward Modeling for Large Language Model Post-Training
Abstract:
Reinforcement fine-tuning (RFT) often suffers from \emph{reward over-optimization}, where a policy model hacks the reward signals to achieve high scores while producing low-quality outputs. Our theoretical analysis shows that the key lies in reward misspecification at the high-reward tail: the inability to reliably distinguish Excellent responses from merely Great ones. This motivate us to focus on the high-reward region. However, such tail examples are scarce under the base LLM. While off-policy exemplars (e.g. from stronger models or rewrites) are easier to obtain, naively training on them yields a misspecified reward for the policy we aim to align. To address this, we study rubric-based rewards. By design, rubrics can leverage off-policy examples while remaining insensitive to their artifacts. To elicit rubrics that capture the high-reward tail, we highlight the importance of distinguishing among great and diverse responses, and introduce a workflow to implement this idea. We empirically demonstrate that rubric-based rewards substantially mitigate reward over-optimization and deliver effective LLM post-training improvements. Our code can be accessed at https://github.com/Jun-Kai-Zhang/rubrics.git .

Authors:Hude Liu, Jerry Yao-Chieh Hu, Jennifer Yuntong Zhang, Zhao Song, Han Liu
Title: Are Hallucinations Bad Estimations?
Abstract:
We formalize hallucinations in generative models as failures to link an estimate to any plausible cause. Under this interpretation, we show that even loss-minimizing optimal estimators still hallucinate. We confirm this with a general high probability lower bound on hallucinate rate for generic data distributions. This reframes hallucination as structural misalignment between loss minimization and human-acceptable outputs, and hence estimation errors induced by miscalibration. Experiments on coin aggregation, open-ended QA, and text-to-image support our theory.

Authors:Yinfeng Yu, Hailong Zhang, Meiling Zhu
Title: Dynamic Multi-Target Fusion for Efficient Audio-Visual Navigation
Abstract:
Audiovisual embodied navigation enables robots to locate audio sources by dynamically integrating visual observations from onboard sensors with the auditory signals emitted by the target. The core challenge lies in effectively leveraging multimodal cues to guide navigation. While prior works have explored basic fusion of visual and audio data, they often overlook deeper perceptual context. To address this, we propose the Dynamic Multi-Target Fusion for Efficient Audio-Visual Navigation (DMTF-AVN). Our approach uses a multi-target architecture coupled with a refined Transformer mechanism to filter and selectively fuse cross-modal information. Extensive experiments on the Replica and Matterport3D datasets demonstrate that DMTF-AVN achieves state-of-the-art performance, outperforming existing methods in success rate (SR), path efficiency (SPL), and scene adaptation (SNA). Furthermore, the model exhibits strong scalability and generalizability, paving the way for advanced multimodal fusion strategies in robotic navigation. The code and videos are available at https://github.com/zzzmmm-svg/DMTF.

Authors:Dayu Yang, Hui Fang
Title: ReGeS: Reciprocal Retrieval-Generation Synergy for Conversational Recommender Systems
Abstract:
Connecting conversation with external domain knowledge is vital for conversational recommender systems (CRS) to correctly understand user preferences. However, existing solutions either require domain-specific engineering, which limits flexibility, or rely solely on large language models, which increases the risk of hallucination. While Retrieval-Augmented Generation (RAG) holds promise, its naive use in CRS is hindered by noisy dialogues that weaken retrieval and by overlooked nuances among similar items. We propose ReGeS, a reciprocal Retrieval-Generation Synergy framework that unifies generation-augmented retrieval to distill informative user intent from conversations and retrieval-augmented generation to differentiate subtle item features. This synergy obviates the need for extra annotations, reduces hallucinations, and simplifies continuous updates. Experiments on multiple CRS benchmarks show that ReGeS achieves state-of-the-art performance in recommendation accuracy, demonstrating the effectiveness of reciprocal synergy for knowledge-intensive CRS tasks.

Authors:Jiale Deng, Yanyan Shen, Ziyuan Pei, Youmin Chen, Linpeng Huang
Title: Influence Guided Context Selection for Effective Retrieval-Augmented Generation
Abstract:
Retrieval-Augmented Generation (RAG) addresses large language model (LLM) hallucinations by grounding responses in external knowledge, but its effectiveness is compromised by poor-quality retrieved contexts containing irrelevant or noisy information. While existing approaches attempt to improve performance through context selection based on predefined context quality assessment metrics, they show limited gains over standard RAG. We attribute this limitation to their failure in holistically utilizing available information (query, context list, and generator) for comprehensive quality assessment. Inspired by recent advances in data selection, we reconceptualize context quality assessment as an inference-time data valuation problem and introduce the Contextual Influence Value (CI value). This novel metric quantifies context quality by measuring the performance degradation when removing each context from the list, effectively integrating query-aware relevance, list-aware uniqueness, and generator-aware alignment. Moreover, CI value eliminates complex selection hyperparameter tuning by simply retaining contexts with positive CI values. To address practical challenges of label dependency and computational overhead, we develop a parameterized surrogate model for CI value prediction during inference. The model employs a hierarchical architecture that captures both local query-context relevance and global inter-context interactions, trained through oracle CI value supervision and end-to-end generator feedback. Extensive experiments across 8 NLP tasks and multiple LLMs demonstrate that our context selection method significantly outperforms state-of-the-art baselines, effectively filtering poor-quality contexts while preserving critical information. Code is available at https://github.com/SJTU-DMTai/RAG-CSM.

Authors:Huizhe Zhang, Jintang Li, Yuchang Zhu, Liang Chen, Li Kuang
Title: SGNNBench: A Holistic Evaluation of Spiking Graph Neural Network on Large-scale Graph
Abstract:
Graph Neural Networks (GNNs) are exemplary deep models designed for graph data. Message passing mechanism enables GNNs to effectively capture graph topology and push the performance boundaries across various graph tasks. However, the trend of developing such complex machinery for graph representation learning has become unsustainable on large-scale graphs. The computational and time overhead make it imperative to develop more energy-efficient GNNs to cope with the explosive growth of real-world graphs. Spiking Graph Neural Networks (SGNNs), which integrate biologically plausible learning via unique spike-based neurons, have emerged as a promising energy-efficient alternative. Different layers communicate with sparse and binary spikes, which facilitates computation and storage of intermediate graph representations. Despite the proliferation of SGNNs proposed in recent years, there is no systematic benchmark to explore the basic design principles of these brain-inspired networks on the graph data. To bridge this gap, we present SGNNBench to quantify progress in the field of SGNNs. Specifically, SGNNBench conducts an in-depth investigation of SGNNs from multiple perspectives, including effectiveness, energy efficiency, and architectural design. We comprehensively evaluate 9 state-of-the-art SGNNs across 18 datasets. Regarding efficiency, we empirically compare these baselines w.r.t model size, memory usage, and theoretical energy consumption to reveal the often-overlooked energy bottlenecks of SGNNs. Besides, we elaborately investigate the design space of SGNNs to promote the development of a general SGNN paradigm.

Authors:Jiahao Zhang, Wenzhe Yin, Shujian Yu
Title: Cross-Modal Retrieval with Cauchy-Schwarz Divergence
Abstract:
Effective cross-modal retrieval requires robust alignment of heterogeneous data types. Most existing methods focus on bi-modal retrieval tasks and rely on distributional alignment techniques such as Kullback-Leibler divergence, Maximum Mean Discrepancy, and correlation alignment. However, these methods often suffer from critical limitations, including numerical instability, sensitivity to hyperparameters, and their inability to capture the full structure of the underlying distributions. In this paper, we introduce the Cauchy-Schwarz (CS) divergence, a hyperparameter-free measure that improves both training stability and retrieval performance. We further propose a novel Generalized CS (GCS) divergence inspired by Hölder's inequality. This extension enables direct alignment of three or more modalities within a unified mathematical framework through a bidirectional circular comparison scheme, eliminating the need for exhaustive pairwise comparisons. Extensive experiments on six benchmark datasets demonstrate the effectiveness of our method in both bi-modal and tri-modal retrieval tasks. The code of our CS/GCS divergence is publicly available at https://github.com/JiahaoZhang666/CSD.

Authors:Hmrishav Bandyopadhyay, Rahim Entezari, Jim Scott, Reshinth Adithyan, Yi-Zhe Song, Varun Jampani
Title: SD3.5-Flash: Distribution-Guided Distillation of Generative Flows
Abstract:
We present SD3.5-Flash, an efficient few-step distillation framework that brings high-quality image generation to accessible consumer devices. Our approach distills computationally prohibitive rectified flow models through a reformulated distribution matching objective tailored specifically for few-step generation. We introduce two key innovations: "timestep sharing" to reduce gradient noise and "split-timestep fine-tuning" to improve prompt alignment. Combined with comprehensive pipeline optimizations like text encoder restructuring and specialized quantization, our system enables both rapid generation and memory-efficient deployment across different hardware configurations. This democratizes access across the full spectrum of devices, from mobile phones to desktop computers. Through extensive evaluation including large-scale user studies, we demonstrate that SD3.5-Flash consistently outperforms existing few-step methods, making advanced generative AI truly accessible for practical deployment.

Authors:Yidan Zhang, Mutian Xu, Yiming Hao, Kun Zhou, Jiahao Chang, Xiaoqiang Liu, Pengfei Wan, Hongbo Fu, Xiaoguang Han
Title: VC-Agent: An Interactive Agent for Customized Video Dataset Collection
Abstract:
Facing scaling laws, video data from the internet becomes increasingly important. However, collecting extensive videos that meet specific needs is extremely labor-intensive and time-consuming. In this work, we study the way to expedite this collection process and propose VC-Agent, the first interactive agent that is able to understand users' queries and feedback, and accordingly retrieve/scale up relevant video clips with minimal user input. Specifically, considering the user interface, our agent defines various user-friendly ways for the user to specify requirements based on textual descriptions and confirmations. As for agent functions, we leverage existing multi-modal large language models to connect the user's requirements with the video content. More importantly, we propose two novel filtering policies that can be updated when user interaction is continually performed. Finally, we provide a new benchmark for personalized video dataset collection, and carefully conduct the user study to verify our agent's usage in various real scenarios. Extensive experiments demonstrate the effectiveness and efficiency of our agent for customized video dataset collection. Project page: https://allenyidan.github.io/vcagent_page/.

Authors:Zijian Shao, Haiyang Shen, Mugeng Liu, Gecheng Fu, Yaoqi Guo, Yanfeng Wang, Yun Ma
Title: Grounding AI Explanations in Experience: A Reflective Cognitive Architecture for Clinical Decision Support
Abstract:
Effective disease prediction in modern healthcare demands the twin goals of high accuracy and transparent, clinically meaningful explanations. Existing machine learning and large language model (LLM) based approaches often struggle to balance these goals. Many models yield accurate but unclear statistical outputs, while others generate fluent but statistically unsupported narratives, often undermining both the validity of the explanation and the predictive accuracy itself. This shortcoming comes from a shallow interaction with the data, preventing the development of a deep, detailed understanding similar to a human expert's. We argue that high accuracy and high-quality explanations are not separate objectives but are mutually reinforcing outcomes of a model that develops a deep, direct understanding of the data. To achieve this, we propose the Reflective Cognitive Architecture (RCA), a novel framework that coordinates multiple LLMs to learn from direct experience. RCA features an iterative rule refinement mechanism that improves its logic from prediction errors and a distribution-aware rules check mechanism that bases its reasoning in the dataset's global statistics. By using predictive accuracy as a signal to drive deeper comprehension, RCA builds a strong internal model of the data. We evaluated RCA on one private and two public datasets against 22 baselines. The results demonstrate that RCA not only achieves state-of-the-art accuracy and robustness with a relative improvement of up to 40\% over the baseline but, more importantly, leverages this deep understanding to excel in generating explanations that are clear, logical, evidence-based, and balanced, highlighting its potential for creating genuinely trustworthy clinical decision support systems. The code is available at \https://github.com/ssssszj/RCA.

Authors:Xinyu Liu, Guolei Sun, Cheng Wang, Yixuan Yuan, Ender Konukoglu
Title: MedVSR: Medical Video Super-Resolution with Cross State-Space Propagation
Abstract:
High-resolution (HR) medical videos are vital for accurate diagnosis, yet are hard to acquire due to hardware limitations and physiological constraints. Clinically, the collected low-resolution (LR) medical videos present unique challenges for video super-resolution (VSR) models, including camera shake, noise, and abrupt frame transitions, which result in significant optical flow errors and alignment difficulties. Additionally, tissues and organs exhibit continuous and nuanced structures, but current VSR models are prone to introducing artifacts and distorted features that can mislead doctors. To this end, we propose MedVSR, a tailored framework for medical VSR. It first employs Cross State-Space Propagation (CSSP) to address the imprecise alignment by projecting distant frames as control matrices within state-space models, enabling the selective propagation of consistent and informative features to neighboring frames for effective alignment. Moreover, we design an Inner State-Space Reconstruction (ISSR) module that enhances tissue structures and reduces artifacts with joint long-range spatial feature learning and large-kernel short-range information aggregation. Experiments across four datasets in diverse medical scenarios, including endoscopy and cataract surgeries, show that MedVSR significantly outperforms existing VSR models in reconstruction performance and efficiency. Code released at https://github.com/CUHK-AIM-Group/MedVSR.

Authors:Kaiyang Wan, Lang Gao, Honglin Mu, Preslav Nakov, Yuxia Wang, Xiuying Chen
Title: A Fano-Style Accuracy Upper Bound for LLM Single-Pass Reasoning in Multi-Hop QA
Abstract:
Multi-Hop Question Answering (MHQA) requires integrating dispersed, interdependent evidence through sequential reasoning under noise. This task is challenging for LLMs as they have a finite per-pass output capacity, beyond which the integration of task-relevant evidence proves unreliable. Consequently, the single-pass reasoning paradigm is inherently vulnerable to this capacity overflow. To formalize this bottleneck, our analysis establishes a Fano-style accuracy upper bound, defining a theoretical performance ceiling for single-pass LLMs. This bound reveals that accuracy inevitably collapses once task complexity exceeds model capacity, providing general principles for capacity-aware representation and structuring of MHQA in LLMs. Building on these principles, we introduce a proof-of-concept multi-call framework for MHQA, InfoQA. It ensures high per-step accuracy by combining capacity-aware task decomposition with active pruning of prior reasoning traces, keeping the information load within the single-pass limit. It further achieves robustness by a dependency-explicit workflow that enables precise control over the reasoning path. We construct a stringent and noise-rich benchmark to validate our theory and framework. Experimental results show that model behavior aligns with our predicted capacity curves while InfoQA achieves consistent performance improvements. We hope our work inspires more LLM multi-step reasoning methods: \faGithub \href{https://github.com/KaiyangWan/InfoQA}{InfoQA}.

Authors:Xiangru Tang, Wanghan Xu, Yujie Wang, Zijie Guo, Daniel Shao, Jiapeng Chen, Cixuan Zhang, Ziyi Wang, Lixin Zhang, Guancheng Wan, Wenlong Zhang, Lei Bai, Zhenfei Yin, Philip Torr, Hanrui Wang, Di Jin
Title: Eigen-1: Adaptive Multi-Agent Refinement with Monitor-Based RAG for Scientific Reasoning
Abstract:
Large language models (LLMs) have recently shown strong progress on scientific reasoning, yet two major bottlenecks remain. First, explicit retrieval fragments reasoning, imposing a hidden "tool tax" of extra tokens and steps. Second, multi-agent pipelines often dilute strong solutions by averaging across all candidates. We address these challenges with a unified framework that combines implicit retrieval and structured collaboration. At its foundation, a Monitor-based retrieval module operates at the token level, integrating external knowledge with minimal disruption to reasoning. On top of this substrate, Hierarchical Solution Refinement (HSR) iteratively designates each candidate as an anchor to be repaired by its peers, while Quality-Aware Iterative Reasoning (QAIR) adapts refinement to solution quality. On Humanity's Last Exam (HLE) Bio/Chem Gold, our framework achieves 48.3\% accuracy -- the highest reported to date, surpassing the strongest agent baseline by 13.4 points and leading frontier LLMs by up to 18.1 points, while simultaneously reducing token usage by 53.5\% and agent steps by 43.7\%. Results on SuperGPQA and TRQA confirm robustness across domains. Error analysis shows that reasoning failures and knowledge gaps co-occur in over 85\% of cases, while diversity analysis reveals a clear dichotomy: retrieval tasks benefit from solution variety, whereas reasoning tasks favor consensus. Together, these findings demonstrate how implicit augmentation and structured refinement overcome the inefficiencies of explicit tool use and uniform aggregation. Code is available at: https://github.com/tangxiangru/Eigen-1.

Authors:Sitong Cheng, Weizhen Bian, Xinsheng Wang, Ruibin Yuan, Jianyi Chen, Shunshun Yin, Yike Guo, Wei Xue
Title: UniSS: Unified Expressive Speech-to-Speech Translation with Your Voice
Abstract:
The ultimate goal of expressive speech-to-speech translation (S2ST) is to accurately translate spoken content while preserving the speaker identity and emotional style. However, progress in this field is largely hindered by three key challenges: the scarcity of paired speech data that retains expressive styles, the complexity of multi-stage processing pipelines, and the limited transfer of translation capabilities from large language models (LLMs). In this work, we address these challenges by introducing UniSS, a novel single-stage framework for expressive S2ST. Our approach features carefully designed speech semantic and style modeling, enabling seamless integration with existing text-based LLM frameworks to develop a unified text-speech language model. To transfer translation capabilities from text to speech, we propose a cross-modal chain-of-thought prompting process that progressively aligns audio semantics with text and ensures style preservation in the decoded results. Furthermore, we construct and release a large-scale, high-quality expressive S2ST dataset, UniST, comprising 44.8k hours of data. Experimental results show that UniSS significantly outperforms previous methods in translation fidelity and speech quality while preserving voice, emotion, and duration consistency. Our work establishes a simpler and more effective paradigm for building the next generation of expressive S2ST systems. Audio samples are available at https://cmots.github.io/uniss-demo.

Authors:Yidong Wang, Yunze Song, Tingyuan Zhu, Xuanwang Zhang, Zhuohao Yu, Hao Chen, Chiyu Song, Qiufeng Wang, Cunxiang Wang, Zhen Wu, Xinyu Dai, Yue Zhang, Wei Ye, Shikun Zhang
Title: TrustJudge: Inconsistencies of LLM-as-a-Judge and How to Alleviate Them
Abstract:
The adoption of Large Language Models (LLMs) as automated evaluators (LLM-as-a-judge) has revealed critical inconsistencies in current evaluation frameworks. We identify two fundamental types of inconsistencies: (1) Score-Comparison Inconsistency, where lower-rated responses outperform higher-scored ones in pairwise comparisons, and (2) Pairwise Transitivity Inconsistency, manifested through circular preference chains (A>B>C>A) and equivalence contradictions (A=B=C\neq A). We argue that these issues come from information loss in discrete rating systems and ambiguous tie judgments during pairwise evaluation. We propose TrustJudge, a probabilistic framework that addresses these limitations through two key innovations: 1) distribution-sensitive scoring that computes continuous expectations from discrete rating probabilities, preserving information entropy for more precise scoring, and 2) likelihood-aware aggregation that resolves transitivity violations using bidirectional preference probabilities or perplexity. We also formalize the theoretical limitations of current LLM-as-a-judge frameworks and demonstrate how TrustJudge's components overcome them. When evaluated with Llama-3.1-70B-Instruct as judge using our dataset, TrustJudge reduces Score-Comparison inconsistency by 8.43% (from 23.32% to 14.89%) and Pairwise Transitivity inconsistency by 10.82% (from 15.22% to 4.40%), while maintaining higher evaluation accuracy. Our work provides the first systematic analysis of evaluation framework inconsistencies in LLM-as-a-judge paradigms, offering both theoretical insights and practical solutions for reliable automated assessment. The framework demonstrates consistent improvements across various model architectures and scales, enabling more trustworthy LLM evaluation without requiring additional training or human annotations. The codes can be found at https://github.com/TrustJudge/TrustJudge.

Authors:Qizhi Pei, Zhuoshi Pan, Honglin Lin, Xin Gao, Yu Li, Zinan Tang, Conghui He, Rui Yan, Lijun Wu
Title: ScaleDiff: Scaling Difficult Problems for Advanced Mathematical Reasoning
Abstract:
Large Reasoning Models (LRMs) have shown impressive capabilities in complex problem-solving, often benefiting from training on difficult mathematical problems that stimulate intricate reasoning. Recent efforts have explored automated synthesis of mathematical problems by prompting proprietary models or large-scale open-source models from seed data or inherent mathematical concepts. However, scaling up these methods remains challenging due to their high computational/API cost, complexity of prompting, and limited difficulty level of the generated problems. To overcome these limitations, we propose ScaleDiff, a simple yet effective pipeline designed to scale the creation of difficult problems. We efficiently identify difficult problems from existing datasets with only a single forward pass using an adaptive thinking model, which can perceive problem difficulty and automatically switch between "Thinking" and "NoThinking" modes. We then train a specialized difficult problem generator (DiffGen-8B) on this filtered difficult data, which can produce new difficult problems in large scale, eliminating the need for complex, per-instance prompting and its associated high API costs. Fine-tuning Qwen2.5-Math-7B-Instruct on the ScaleDiff-Math dataset yields a substantial performance increase of 11.3% compared to the original dataset and achieves a 65.9% average accuracy on AIME'24, AIME'25, HMMT-Feb'25, BRUMO'25, and MATH500, outperforming recent strong LRMs like OpenThinker3. Notably, this performance is achieved using the cost-efficient Qwen3-8B model as a teacher, demonstrating that our pipeline can effectively transfer advanced reasoning capabilities without relying on larger, more expensive teacher models. Furthermore, we observe a clear scaling phenomenon in model performance on difficult benchmarks as the quantity of difficult problems increases. Code: https://github.com/QizhiPei/ScaleDiff.

Authors:Sarmistha Das, R E Zera Marveen Lyngkhoi, Sriparna Saha, Alka Maurya
Title: Unlocking Financial Insights: An advanced Multimodal Summarization with Multimodal Output Framework for Financial Advisory Videos
Abstract:
The dynamic propagation of social media has broadened the reach of financial advisory content through podcast videos, yet extracting insights from lengthy, multimodal segments (30-40 minutes) remains challenging. We introduce FASTER (Financial Advisory Summariser with Textual Embedded Relevant images), a modular framework that tackles three key challenges: (1) extracting modality-specific features, (2) producing optimized, concise summaries, and (3) aligning visual keyframes with associated textual points. FASTER employs BLIP for semantic visual descriptions, OCR for textual patterns, and Whisper-based transcription with Speaker diarization as BOS features. A modified Direct Preference Optimization (DPO)-based loss function, equipped with BOS-specific fact-checking, ensures precision, relevance, and factual consistency against the human-aligned summary. A ranker-based retrieval mechanism further aligns keyframes with summarized content, enhancing interpretability and cross-modal coherence. To acknowledge data resource scarcity, we introduce Fin-APT, a dataset comprising 470 publicly accessible financial advisory pep-talk videos for robust multimodal research. Comprehensive cross-domain experiments confirm FASTER's strong performance, robustness, and generalizability when compared to Large Language Models (LLMs) and Vision-Language Models (VLMs). By establishing a new standard for multimodal summarization, FASTER makes financial advisory content more accessible and actionable, thereby opening new avenues for research. The dataset and code are available at: https://github.com/sarmistha-D/FASTER

Authors:Zhifei Li, Feng Qiu, Yiran Wang, Yujing Xia, Kui Xiao, Miao Zhang, Yan Zhang
Title: Integrating Object Interaction Self-Attention and GAN-Based Debiasing for Visual Question Answering
Abstract:
Visual Question Answering (VQA) presents a unique challenge by requiring models to understand and reason about visual content to answer questions accurately. Existing VQA models often struggle with biases introduced by the training data, leading to over-reliance on superficial patterns and inadequate generalization to diverse questions and images. This paper presents a novel model, IOG-VQA, which integrates Object Interaction Self-Attention and GAN-Based Debiasing to enhance VQA model performance. The self-attention mechanism allows our model to capture complex interactions between objects within an image, providing a more comprehensive understanding of the visual context. Meanwhile, the GAN-based debiasing framework generates unbiased data distributions, helping the model to learn more robust and generalizable features. By leveraging these two components, IOG-VQA effectively combines visual and textual information to address the inherent biases in VQA datasets. Extensive experiments on the VQA-CP v1 and VQA-CP v2 datasets demonstrate that our model shows excellent performance compared with the existing methods, particularly in handling biased and imbalanced data distributions highlighting the importance of addressing both object interactions and dataset biases in advancing VQA tasks. Our code is available at https://github.com/HubuKG/IOG-VQA.

Authors:Yan Zhang, Jiaqing Lin, Miao Zhang, Kui Xiao, Xiaoju Hou, Yue Zhao, Zhifei Li
Title: SCRA-VQA: Summarized Caption-Rerank for Augmented Large Language Models in Visual Question Answering
Abstract:
Acquiring high-quality knowledge is a central focus in Knowledge-Based Visual Question Answering (KB-VQA). Recent methods use large language models (LLMs) as knowledge engines for answering. These methods generally employ image captions as visual text descriptions to assist LLMs in interpreting images. However, the captions frequently include excessive noise irrelevant to the question, and LLMs generally do not comprehend VQA tasks, limiting their reasoning capabilities. To address this issue, we propose the Summarized Caption-Rerank Augmented VQA (SCRA-VQA), which employs a pre-trained visual language model to convert images into captions. Moreover, SCRA-VQA generates contextual examples for the captions while simultaneously summarizing and reordering them to exclude unrelated information. The caption-rerank process enables LLMs to understand the image information and questions better, thus enhancing the model's reasoning ability and task adaptability without expensive end-to-end training. Based on an LLM with 6.7B parameters, SCRA-VQA performs excellently on two challenging knowledge-based VQA datasets: OK-VQA and A-OKVQA, achieving accuracies of 38.8% and 34.6%. Our code is available at https://github.com/HubuKG/SCRA-VQA.

Authors:Junyu Guo, Shangding Gu, Ming Jin, Costas Spanos, Javad Lavaei
Title: StyleBench: Evaluating thinking styles in Large Language Models
Abstract:
The effectiveness of Large Language Models (LLMs) is heavily influenced by the reasoning strategies, or styles of thought, employed in their prompts. However, the interplay between these reasoning styles, model architecture, and task type remains poorly understood. To address this, we introduce StyleBench, a comprehensive benchmark for systematically evaluating reasoning styles across diverse tasks and models. We assess five representative reasoning styles, including Chain of Thought (CoT), Tree of Thought (ToT), Algorithm of Thought (AoT), Sketch of Thought (SoT), and Chain-of-Draft (CoD) on five reasoning tasks, using 15 open-source models from major families (LLaMA, Qwen, Mistral, Gemma, GPT-OSS, Phi, and DeepSeek) ranging from 270M to 120B parameters. Our large-scale analysis reveals that no single style is universally optimal. We demonstrate that strategy efficacy is highly contingent on both model scale and task type: search-based methods (AoT, ToT) excel in open-ended problems but require large-scale models, while concise styles (SoT, CoD) achieve radical efficiency gains on well-defined tasks. Furthermore, we identify key behavioral patterns: smaller models frequently fail to follow output instructions and default to guessing, while reasoning robustness emerges as a function of scale. Our findings offer a crucial roadmap for selecting optimal reasoning strategies based on specific constraints, we open source the benchmark in https://github.com/JamesJunyuGuo/Style_Bench.

Authors:Xiaonan Hu, Xuebing Li, Jinyu Xu, Abdulkadir Duran Adan, Letian Zhou, Xuhui Zhu, Yanan Li, Wei Guo, Shouyang Liu, Wenzhong Liu, Hao Lu
Title: TasselNetV4: A vision foundation model for cross-scene, cross-scale, and cross-species plant counting
Abstract:
Accurate plant counting provides valuable information for agriculture such as crop yield prediction, plant density assessment, and phenotype quantification. Vision-based approaches are currently the mainstream solution. Prior art typically uses a detection or a regression model to count a specific plant. However, plants have biodiversity, and new cultivars are increasingly bred each year. It is almost impossible to exhaust and build all species-dependent counting models. Inspired by class-agnostic counting (CAC) in computer vision, we argue that it is time to rethink the problem formulation of plant counting, from what plants to count to how to count plants. In contrast to most daily objects with spatial and temporal invariance, plants are dynamic, changing with time and space. Their non-rigid structure often leads to worse performance than counting rigid instances like heads and cars such that current CAC and open-world detection models are suboptimal to count plants. In this work, we inherit the vein of the TasselNet plant counting model and introduce a new extension, TasselNetV4, shifting from species-specific counting to cross-species counting. TasselNetV4 marries the local counting idea of TasselNet with the extract-and-match paradigm in CAC. It builds upon a plain vision transformer and incorporates novel multi-branch box-aware local counters used to enhance cross-scale robustness. Two challenging datasets, PAC-105 and PAC-Somalia, are harvested. Extensive experiments against state-of-the-art CAC models show that TasselNetV4 achieves not only superior counting performance but also high efficiency.Our results indicate that TasselNetV4 emerges to be a vision foundation model for cross-scene, cross-scale, and cross-species plant counting.

Authors:Chenhui Hu, Pengfei Cao, Yubo Chen, Kang Liu, Jun Zhao
Title: Towards Atoms of Large Language Models
Abstract:
The fundamental units of internal representations in large language models (LLMs) remain undefined, limiting further understanding of their mechanisms. Neurons or features are often regarded as such units, yet neurons suffer from polysemy, while features face concerns of unreliable reconstruction and instability. To address this issue, we propose the Atoms Theory, which defines such units as atoms. We introduce the atomic inner product (AIP) to correct representation shifting, formally define atoms, and prove the conditions that atoms satisfy the Restricted Isometry Property (RIP), ensuring stable sparse representations over atom set and linking to compressed sensing. Under stronger conditions, we further establish the uniqueness and exact $\ell_1$ recoverability of the sparse representations, and provide guarantees that single-layer sparse autoencoders (SAEs) with threshold activations can reliably identify the atoms. To validate the Atoms Theory, we train threshold-activated SAEs on Gemma2-2B, Gemma2-9B, and Llama3.1-8B, achieving 99.9% sparse reconstruction across layers on average, and more than 99.8% of atoms satisfy the uniqueness condition, compared to 0.5% for neurons and 68.2% for features, showing that atoms more faithfully capture intrinsic representations of LLMs. Scaling experiments further reveal the link between SAEs size and recovery capacity. Overall, this work systematically introduces and validates Atoms Theory of LLMs, providing a theoretical framework for understanding internal representations and a foundation for mechanistic interpretability. Code available at https://github.com/ChenhuiHu/towards_atoms.

Authors:Yufan Mao, Hanjing Ye, Wenlong Dong, Chengjie Zhang, Hong Zhang
Title: Meta-Memory: Retrieving and Integrating Semantic-Spatial Memories for Robot Spatial Reasoning
Abstract:
Navigating complex environments requires robots to effectively store observations as memories and leverage them to answer human queries about spatial locations, which is a critical yet underexplored research challenge. While prior work has made progress in constructing robotic memory, few have addressed the principled mechanisms needed for efficient memory retrieval and integration. To bridge this gap, we propose Meta-Memory, a large language model (LLM)-driven agent that constructs a high-density memory representation of the environment. The key innovation of Meta-Memory lies in its capacity to retrieve and integrate relevant memories through joint reasoning over semantic and spatial modalities in response to natural language location queries, thereby empowering robots with robust and accurate spatial reasoning capabilities. To evaluate its performance, we introduce SpaceLocQA, a large-scale dataset encompassing diverse real-world spatial question-answering scenarios. Experimental results show that Meta-Memory significantly outperforms state-of-the-art methods on both the SpaceLocQA and the public NaVQA benchmarks. Furthermore, we successfully deployed Meta-Memory on real-world robotic platforms, demonstrating its practical utility in complex environments. Project page: https://itsbaymax.github.io/meta-memory.github.io/ .

Authors:Ruixu Zhang, Yuran Wang, Xinyi Hu, Chaoyu Mai, Wenxuan Liu, Danni Xu, Xian Zhong, Zheng Wang
Title: Beyond the Individual: Introducing Group Intention Forecasting with SHOT Dataset
Abstract:
Intention recognition has traditionally focused on individual intentions, overlooking the complexities of collective intentions in group settings. To address this limitation, we introduce the concept of group intention, which represents shared goals emerging through the actions of multiple individuals, and Group Intention Forecasting (GIF), a novel task that forecasts when group intentions will occur by analyzing individual actions and interactions before the collective goal becomes apparent. To investigate GIF in a specific scenario, we propose SHOT, the first large-scale dataset for GIF, consisting of 1,979 basketball video clips captured from 5 camera views and annotated with 6 types of individual attributes. SHOT is designed with 3 key characteristics: multi-individual information, multi-view adaptability, and multi-level intention, making it well-suited for studying emerging group intentions. Furthermore, we introduce GIFT (Group Intention ForecasTer), a framework that extracts fine-grained individual features and models evolving group dynamics to forecast intention emergence. Experimental results confirm the effectiveness of SHOT and GIFT, establishing a strong foundation for future research in group intention forecasting. The dataset is available at https://xinyi-hu.github.io/SHOT_DATASET.

Authors:Maria Chiper, Radu Tudor Ionescu
Title: Every Character Counts: From Vulnerability to Defense in Phishing Detection
Abstract:
Phishing attacks targeting both organizations and individuals are becoming an increasingly significant threat as technology advances. Current automatic detection methods often lack explainability and robustness in detecting new phishing attacks. In this work, we investigate the effectiveness of character-level deep learning models for phishing detection, which can provide both robustness and interpretability. We evaluate three neural architectures adapted to operate at the character level, namely CharCNN, CharGRU, and CharBiLSTM, on a custom-built email dataset, which combines data from multiple sources. Their performance is analyzed under three scenarios: (i) standard training and testing, (ii) standard training and testing under adversarial attacks, and (iii) training and testing with adversarial examples. Aiming to develop a tool that operates as a browser extension, we test all models under limited computational resources. In this constrained setup, CharGRU proves to be the best-performing model across all scenarios. All models show vulnerability to adversarial attacks, but adversarial training substantially improves their robustness. In addition, by adapting the Gradient-weighted Class Activation Mapping (Grad-CAM) technique to character-level inputs, we are able to visualize which parts of each email influence the decision of each model. Our open-source code and data is released at https://github.com/chipermaria/every-character-counts.

Authors:Srinidhi Kalgundi Srinivas, Yash Shukla, Adam Arnold, Sachin Chitta
Title: GraspFactory: A Large Object-Centric Grasping Dataset
Abstract:
Robotic grasping is a crucial task in industrial automation, where robots are increasingly expected to handle a wide range of objects. However, a significant challenge arises when robot grasping models trained on limited datasets encounter novel objects. In real-world environments such as warehouses or manufacturing plants, the diversity of objects can be vast, and grasping models need to generalize to this diversity. Training large, generalizable robot-grasping models requires geometrically diverse datasets. In this paper, we introduce GraspFactory, a dataset containing over 109 million 6-DoF grasps collectively for the Franka Panda (with 14,690 objects) and Robotiq 2F-85 grippers (with 33,710 objects). GraspFactory is designed for training data-intensive models, and we demonstrate the generalization capabilities of one such model trained on a subset of GraspFactory in both simulated and real-world settings. The dataset and tools are made available for download at https://graspfactory.github.io/.

Authors:Xiao Wang, Jia Wang, Yijie Wang, Pengtao Dang, Sha Cao, Chi Zhang
Title: MARS: toward more efficient multi-agent collaboration for LLM reasoning
Abstract:
Large language models (LLMs) have achieved impressive results in natural language understanding, yet their reasoning capabilities remain limited when operating as single agents. Multi-Agent Debate (MAD) has been proposed to address this limitation by enabling collaborative reasoning among multiple models in a round-table debate manner. While effective, MAD introduces substantial computational overhead due to the number of agents involved and the frequent communication required. In this paper, we propose MARS (Multi-Agent Review System), a role-based collaboration framework inspired by the review process. In MARS, an author agent generates an initial solution, reviewer agents provide decisions and comments independently, and a meta-reviewer integrates the feedback to make the final decision and guide further revision. This design enhances reasoning quality while avoiding costly reviewer-to-reviewer interactions, thereby controlling token consumption and inference time. We compared MARS with both MAD and other state-of-the-art reasoning strategies across multiple benchmarks. Extensive experiments with different LLMs show that MARS matches the accuracy of MAD while reducing both token usage and inference time by approximately 50\%. Code is available at https://github.com/xwang97/MARS.

Authors:Haoxuan Li, Zhen Wen, Qiqi Jiang, Chenxiao Li, Yuwei Wu, Yuchen Yang, Yiyao Wang, Xiuqi Huang, Minfeng Zhu, Wei Chen
Title: ConceptViz: A Visual Analytics Approach for Exploring Concepts in Large Language Models
Abstract:
Large language models (LLMs) have achieved remarkable performance across a wide range of natural language tasks. Understanding how LLMs internally represent knowledge remains a significant challenge. Despite Sparse Autoencoders (SAEs) have emerged as a promising technique for extracting interpretable features from LLMs, SAE features do not inherently align with human-understandable concepts, making their interpretation cumbersome and labor-intensive. To bridge the gap between SAE features and human concepts, we present ConceptViz, a visual analytics system designed for exploring concepts in LLMs. ConceptViz implements a novel dentification => Interpretation => Validation pipeline, enabling users to query SAEs using concepts of interest, interactively explore concept-to-feature alignments, and validate the correspondences through model behavior verification. We demonstrate the effectiveness of ConceptViz through two usage scenarios and a user study. Our results show that ConceptViz enhances interpretability research by streamlining the discovery and validation of meaningful concept representations in LLMs, ultimately aiding researchers in building more accurate mental models of LLM features. Our code and user guide are publicly available at https://github.com/Happy-Hippo209/ConceptViz.

Authors:Nithin Somasekharan, Ling Yue, Yadi Cao, Weichao Li, Patrick Emami, Pochinapeddi Sai Bhargav, Anurag Acharya, Xingyu Xie, Shaowu Pan
Title: CFD-LLMBench: A Benchmark Suite for Evaluating Large Language Models in Computational Fluid Dynamics
Abstract:
Large Language Models (LLMs) have demonstrated strong performance across general NLP tasks, but their utility in automating numerical experiments of complex physical system -- a critical and labor-intensive component -- remains underexplored. As the major workhorse of computational science over the past decades, Computational Fluid Dynamics (CFD) offers a uniquely challenging testbed for evaluating the scientific capabilities of LLMs. We introduce CFDLLMBench, a benchmark suite comprising three complementary components -- CFDQuery, CFDCodeBench, and FoamBench -- designed to holistically evaluate LLM performance across three key competencies: graduate-level CFD knowledge, numerical and physical reasoning of CFD, and context-dependent implementation of CFD workflows. Grounded in real-world CFD practices, our benchmark combines a detailed task taxonomy with a rigorous evaluation framework to deliver reproducible results and quantify LLM performance across code executability, solution accuracy, and numerical convergence behavior. CFDLLMBench establishes a solid foundation for the development and evaluation of LLM-driven automation of numerical experiments for complex physical systems. Code and data are available at https://github.com/NREL-Theseus/cfdllmbench/.

Authors:Xilin Wei, Xiaoran Liu, Yuhang Zang, Xiaoyi Dong, Yuhang Cao, Jiaqi Wang, Xipeng Qiu, Dahua Lin
Title: SIM-CoT: Supervised Implicit Chain-of-Thought
Abstract:
Implicit Chain-of-Thought (CoT) methods offer a token-efficient alternative to explicit CoT reasoning in Large Language Models (LLMs), but a persistent performance gap has limited their adoption. We identify a core latent instability issue when scaling the computational budget of implicit CoT: as the number of reasoning tokens increases, training often becomes unstable and collapses. Our analysis shows that this instability arises from latent representations becoming homogeneous and losing semantic diversity, caused by insufficient step-level supervision in current implicit CoT methods. To address this, we propose SIM-CoT, a plug-and-play training module that introduces step-level supervision to stabilize and enrich the latent reasoning space. SIM-CoT employs an auxiliary decoder during training to align each implicit token with its corresponding explicit reasoning step, ensuring latent states capture distinct and meaningful information. The auxiliary decoder is removed at inference, preserving the efficiency of implicit CoT with no added overhead. It also provides interpretability by projecting each latent token onto an explicit reasoning vocabulary, enabling per-step visualization and diagnosis. SIM-CoT significantly improves both in-domain accuracy and out-of-domain stability of implicit CoT methods, boosting Coconut by +8.2\% on GPT-2 and CODI by +3.0\% on LLaMA-3.1 8B. It further surpasses the explicit CoT baseline on GPT-2 by 2.1\% with 2.3$\times$ greater token efficiency, while closing the performance gap on larger models like LLaMA-3.1 8B. Code: https://github.com/InternLM/SIM-CoT

Authors:Benjamin Feuer, Chiung-Yi Tseng, Astitwa Sarthak Lathe, Oussama Elachqar, John P Dickerson
Title: When Judgment Becomes Noise: How Design Failures in LLM Judge Benchmarks Silently Undermine Validity
Abstract:
LLM-judged benchmarks are increasingly used to evaluate complex model behaviors, yet their design introduces failure modes absent in conventional ground-truth based benchmarks. We argue that without tight objectives and verifiable constructions, benchmark rankings can produce high-confidence rankings that are in fact largely noise. We introduce two mechanisms to diagnose these issues. Schematic adherence quantifies how much of a judge's overall verdict is explained by the explicit evaluation schema, revealing unexplained variance when judges deviate from their own rubric. Psychometric validity aggregates internal consistency and discriminant validity signals to quantify irreducible uncertainty in any benchmarking run. Applying these tools to Arena-Hard Auto, we find severe schema incoherence and factor collapse across popular judges: for example, unexplained variance exceeding 90 percent for DeepSeek-R1-32B and factor correlations above 0.93 for most criteria. We also show that the ELO-style aggregation used by Arena-Hard Auto collapses and masks genuine ranking uncertainty. Our results highlight design failures that undermine validity and offer actionable principles for building better-scoped, reliability-aware LLM-judged benchmarks. We released our code and dataset at https://github.com/penfever/judgment-to-noise

Authors:Dayu Tan, Jing Chen, Xiaoping Zhou, Yansen Su, Chunhou Zheng
Title: PGCLODA: Prompt-Guided Graph Contrastive Learning for Oligopeptide-Infectious Disease Association Prediction
Abstract:
Infectious diseases continue to pose a serious threat to public health, underscoring the urgent need for effective computational approaches to screen novel anti-infective agents. Oligopeptides have emerged as promising candidates in antimicrobial research due to their structural simplicity, high bioavailability, and low susceptibility to resistance. Despite their potential, computational models specifically designed to predict associations between oligopeptides and infectious diseases remain scarce. This study introduces a prompt-guided graph-based contrastive learning framework (PGCLODA) to uncover potential associations. A tripartite graph is constructed with oligopeptides, microbes, and diseases as nodes, incorporating both structural and semantic information. To preserve critical regions during contrastive learning, a prompt-guided graph augmentation strategy is employed to generate meaningful paired views. A dual encoder architecture, integrating Graph Convolutional Network (GCN) and Transformer, is used to jointly capture local and global features. The fused embeddings are subsequently input into a multilayer perceptron (MLP) classifier for final prediction. Experimental results on a benchmark dataset indicate that PGCLODA consistently outperforms state-of-the-art models in AUROC, AUPRC, and accuracy. Ablation and hyperparameter studies confirm the contribution of each module. Case studies further validate the generalization ability of PGCLODA and its potential to uncover novel, biologically relevant associations. These findings offer valuable insights for mechanism-driven discovery and oligopeptide-based drug development. The source code of PGCLODA is available online at https://github.com/jjnlcode/PGCLODA.

Authors:Tom Burgert, Oliver Stoll, Paolo Rota, Begüm Demir
Title: ImageNet-trained CNNs are not biased towards texture: Revisiting feature reliance through controlled suppression
Abstract:
The hypothesis that Convolutional Neural Networks (CNNs) are inherently texture-biased has shaped much of the discourse on feature use in deep learning. We revisit this hypothesis by examining limitations in the cue-conflict experiment by Geirhos et al. To address these limitations, we propose a domain-agnostic framework that quantifies feature reliance through systematic suppression of shape, texture, and color cues, avoiding the confounds of forced-choice conflicts. By evaluating humans and neural networks under controlled suppression conditions, we find that CNNs are not inherently texture-biased but predominantly rely on local shape features. Nonetheless, this reliance can be substantially mitigated through modern training strategies or architectures (ConvNeXt, ViTs). We further extend the analysis across computer vision, medical imaging, and remote sensing, revealing that reliance patterns differ systematically: computer vision models prioritize shape, medical imaging models emphasize color, and remote sensing models exhibit a stronger reliance on texture. Code is available at https://github.com/tomburgert/feature-reliance.

Authors:Deokjae Lee, Hyun Oh Song
Title: Q-Palette: Fractional-Bit Quantizers Toward Optimal Bit Allocation for Efficient LLM Deployment
Abstract:
We study weight-only post-training quantization (PTQ), which quantizes the weights of a large language model (LLM) without retraining, using little or no calibration data. Weight-only PTQ is crucial for reducing the memory footprint and latency of LLM inference, especially in memory-bound, small-batch inference scenarios, such as personalized inference on edge devices. Despite its importance, irregular weight distributions with heavy-tailed outliers in LLMs complicate quantization, recently motivating rotation-based methods that transform weights into near-Gaussian distributions, which are more regular with fewer outliers, thereby reducing quantization error. In this work, we first derive the information-theoretically optimal bit allocation for Gaussianized weights under given bit budgets, revealing that fine-grained fractional-bit quantizers approaching the Gaussian distortion-rate bound are essential to achieve near-optimal quantization performance. To bridge this theoretical insight and practical implementation, we introduce Q-Palette, a versatile collection of fractional-bit quantizers that range from trellis-coded quantizers offering near-optimal distortion to simpler vector and scalar quantizers optimized for faster inference, all efficiently implemented with optimized CUDA kernels across various bitwidths. Furthermore, leveraging Q-Palette as a foundational component, we propose a novel mixed-scheme quantization framework, jointly optimizing quantizer choices and layer fusion decisions given resource constraints. The code is available at https://github.com/snu-mllab/Q-Palette.

Authors:Hailay Kidu Teklehaymanot, Gebrearegawi Gidey, Wolfgang Nejdl
Title: Low-Resource English-Tigrinya MT: Leveraging Multilingual Models, Custom Tokenizers, and Clean Evaluation Benchmarks
Abstract:
Despite advances in Neural Machine Translation (NMT), low-resource languages like Tigrinya remain underserved due to persistent challenges, including limited corpora, inadequate tokenization strategies, and the lack of standardized evaluation benchmarks. This paper investigates transfer learning techniques using multilingual pretrained models to enhance translation quality for morphologically rich, low-resource languages. We propose a refined approach that integrates language-specific tokenization, informed embedding initialization, and domain-adaptive fine-tuning. To enable rigorous assessment, we construct a high-quality, human-aligned English-Tigrinya evaluation dataset covering diverse domains. Experimental results demonstrate that transfer learning with a custom tokenizer substantially outperforms zero-shot baselines, with gains validated by BLEU, chrF, and qualitative human evaluation. Bonferroni correction is applied to ensure statistical significance across configurations. Error analysis reveals key limitations and informs targeted refinements. This study underscores the importance of linguistically aware modeling and reproducible benchmarks in bridging the performance gap for underrepresented languages. Resources are available at https://github.com/hailaykidu/MachineT_TigEng and https://huggingface.co/Hailay/MachineT_TigEng

Authors:Parker Glenn, Alfy Samuel, Daben Liu
Title: Play by the Type Rules: Inferring Constraints for LLM Functions in Declarative Programs
Abstract:
Integrating LLM powered operators in declarative query languages allows for the combination of cheap and interpretable functions with powerful, generalizable language model reasoning. However, in order to benefit from the optimized execution of a database query language like SQL, generated outputs must align with the rules enforced by both type checkers and database contents. Current approaches address this challenge with orchestrations consisting of many LLM-based post-processing calls to ensure alignment between generated outputs and database values, introducing performance bottlenecks. We perform a study on the ability of various sized open-source language models to both parse and execute functions within a query language based on SQL, showing that small language models can excel as function executors over hybrid data sources. Then, we propose an efficient solution to enforce the well-typedness of LLM functions, demonstrating 7% accuracy improvement on a multi-hop question answering dataset with 53% improvement in latency over comparable solutions. We make our implementation available at https://github.com/parkervg/blendsql

Authors:Chaojun Nie, Jun Zhou, Guanxiang Wang, Shisong Wu, Zichen Wang
Title: Embedding Domain Knowledge for Large Language Models via Reinforcement Learning from Augmented Generation
Abstract:
Large language models (LLMs) often exhibit limited performance on domain-specific tasks due to the natural disproportionate representation of specialized information in their training data and the static nature of these datasets. Knowledge scarcity and temporal lag create knowledge gaps for domain applications. While post-training on domain datasets can embed knowledge into models, existing approaches have some limitations. Continual Pre-Training (CPT) treats all tokens in domain documents with equal importance, failing to prioritize critical knowledge points, while supervised fine-tuning (SFT) with question-answer pairs struggles to develop the coherent knowledge structures necessary for complex reasoning tasks. To address these challenges, we propose Reinforcement Learning from Augmented Generation (RLAG). Our approach iteratively cycles between sampling generations and optimizing the model through calculated rewards, effectively embedding critical and contextually coherent domain knowledge. We select generated outputs with the highest log probabilities as the sampling result, then compute three tailored reward metrics to guide the optimization process. To comprehensively evaluate domain expertise, we assess answer accuracy and the rationality of explanations generated for correctly answered questions. Experimental results across medical, legal, astronomy, and current events datasets demonstrate that our proposed method significantly outperforms baseline approaches. Our code and data are open sourced at https://github.com/ChaojunNie/RLAG.

Authors:Zhi Qin Tan, Xiatian Zhu, Owen Addison, Yunpeng Li
Title: U-Mamba2-SSL for Semi-Supervised Tooth and Pulp Segmentation in CBCT
Abstract:
Accurate segmentation of teeth and pulp in Cone-Beam Computed Tomography (CBCT) is vital for clinical applications like treatment planning and diagnosis. However, this process requires extensive expertise and is exceptionally time-consuming, highlighting the critical need for automated algorithms that can effectively utilize unlabeled data. In this paper, we propose U-Mamba2-SSL, a novel semi-supervised learning framework that builds on the U-Mamba2 model and employs a multi-stage training strategy. The framework first pre-trains U-Mamba2 in a self-supervised manner using a disruptive autoencoder. It then leverages unlabeled data through consistency regularization, where we introduce input and feature perturbations to ensure stable model outputs. Finally, a pseudo-labeling strategy is implemented with a reduced loss weighting to minimize the impact of potential errors. U-Mamba2-SSL achieved an average score of 0.789 and a DSC of 0.917 on the hidden test set, achieving first place in Task 1 of the STSR 2025 challenge. The code is available at https://github.com/zhiqin1998/UMamba2.

Authors:Tong Nie, Yuewen Mei, Yihong Tang, Junlin He, Jie Sun, Haotian Shi, Wei Ma, Jian Sun
Title: Steerable Adversarial Scenario Generation through Test-Time Preference Alignment
Abstract:
Adversarial scenario generation is a cost-effective approach for safety assessment of autonomous driving systems. However, existing methods are often constrained to a single, fixed trade-off between competing objectives such as adversariality and realism. This yields behavior-specific models that cannot be steered at inference time, lacking the efficiency and flexibility to generate tailored scenarios for diverse training and testing requirements. In view of this, we reframe the task of adversarial scenario generation as a multi-objective preference alignment problem and introduce a new framework named \textbf{S}teerable \textbf{A}dversarial scenario \textbf{GE}nerator (SAGE). SAGE enables fine-grained test-time control over the trade-off between adversariality and realism without any retraining. We first propose hierarchical group-based preference optimization, a data-efficient offline alignment method that learns to balance competing objectives by decoupling hard feasibility constraints from soft preferences. Instead of training a fixed model, SAGE fine-tunes two experts on opposing preferences and constructs a continuous spectrum of policies at inference time by linearly interpolating their weights. We provide theoretical justification for this framework through the lens of linear mode connectivity. Extensive experiments demonstrate that SAGE not only generates scenarios with a superior balance of adversariality and realism but also enables more effective closed-loop training of driving policies. Project page: https://tongnie.github.io/SAGE/.

Authors:Albina Klepach, Egor E. Nuzhin, Alexey A. Tsukanov, Nikolay V. Brilliantov
Title: An effective control of large systems of active particles: An application to evacuation problem
Abstract:
Manipulation of large systems of active particles is a serious challenge across diverse domains, including crowd management, control of robotic swarms, and coordinated material transport. The development of advanced control strategies for complex scenarios is hindered, however, by the lack of scalability and robustness of the existing methods, in particular, due to the need of an individual control for each agent. One possible solution involves controlling a system through a leader or a group of leaders, which other agents tend to follow. Using such an approach we develop an effective control strategy for a leader, combining reinforcement learning (RL) with artificial forces acting on the system. To describe the guidance of active particles by a leader we introduce the generalized Vicsek model. This novel method is then applied to the problem of the effective evacuation by a robot-rescuer (leader) of large groups of people from hazardous places. We demonstrate, that while a straightforward application of RL yields suboptimal results, even for advanced architectures, our approach provides a robust and efficient evacuation strategy. The source code supporting this study is publicly available at: https://github.com/cinemere/evacuation.

Authors:Sarmistha Das, R E Zera Marveen Lyngkhoi, Kirtan Jain, Vinayak Goyal, Sriparna Saha, Manish Gupta
Title: When Words Can't Capture It All: Towards Video-Based User Complaint Text Generation with Multimodal Video Complaint Dataset
Abstract:
While there exists a lot of work on explainable complaint mining, articulating user concerns through text or video remains a significant challenge, often leaving issues unresolved. Users frequently struggle to express their complaints clearly in text but can easily upload videos depicting product defects (e.g., vague text such as `worst product' paired with a 5-second video depicting a broken headphone with the right earcup). This paper formulates a new task in the field of complaint mining to aid the common users' need to write an expressive complaint, which is Complaint Description from Videos (CoD-V) (e.g., to help the above user articulate her complaint about the defective right earcup). To this end, we introduce ComVID, a video complaint dataset containing 1,175 complaint videos and the corresponding descriptions, also annotated with the emotional state of the complainer. Additionally, we present a new complaint retention (CR) evaluation metric that discriminates the proposed (CoD-V) task against standard video summary generation and description tasks. To strengthen this initiative, we introduce a multimodal Retrieval-Augmented Generation (RAG) embedded VideoLLaMA2-7b model, designed to generate complaints while accounting for the user's emotional state. We conduct a comprehensive evaluation of several Video Language Models on several tasks (pre-trained and fine-tuned versions) with a range of established evaluation metrics, including METEOR, perplexity, and the Coleman-Liau readability score, among others. Our study lays the foundation for a new research direction to provide a platform for users to express complaints through video. Dataset and resources are available at: https://github.com/sarmistha-D/CoD-V.

Authors:Edmund Bu, Yossi Gandelsman
Title: Interpreting ResNet-based CLIP via Neuron-Attention Decomposition
Abstract:
We present a novel technique for interpreting the neurons in CLIP-ResNet by decomposing their contributions to the output into individual computation paths. More specifically, we analyze all pairwise combinations of neurons and the following attention heads of CLIP's attention-pooling layer. We find that these neuron-head pairs can be approximated by a single direction in CLIP-ResNet's image-text embedding space. Leveraging this insight, we interpret each neuron-head pair by associating it with text. Additionally, we find that only a sparse set of the neuron-head pairs have a significant contribution to the output value, and that some neuron-head pairs, while polysemantic, represent sub-concepts of their corresponding neurons. We use these observations for two applications. First, we employ the pairs for training-free semantic segmentation, outperforming previous methods for CLIP-ResNet. Second, we utilize the contributions of neuron-head pairs to monitor dataset distribution shifts. Our results demonstrate that examining individual computation paths in neural networks uncovers interpretable units, and that such units can be utilized for downstream tasks.

Authors:Hyunjin Cho, Giyun Choi, Jongwon Choi
Title: AJAHR: Amputated Joint Aware 3D Human Mesh Recovery
Abstract:
Existing human mesh recovery methods assume a standard human body structure, overlooking diverse anatomical conditions such as limb loss. This assumption introduces bias when applied to individuals with amputations - a limitation further exacerbated by the scarcity of suitable datasets. To address this gap, we propose Amputated Joint Aware 3D Human Mesh Recovery (AJAHR), which is an adaptive pose estimation framework that improves mesh reconstruction for individuals with limb loss. Our model integrates a body-part amputation classifier, jointly trained with the mesh recovery network, to detect potential amputations. We also introduce Amputee 3D (A3D), which is a synthetic dataset offering a wide range of amputee poses for robust training. While maintaining competitive performance on non-amputees, our approach achieves state-of-the-art results for amputated individuals. Additional materials can be found at the project webpage.

Authors:ShiMing Wang, ZhiHao Du, Yang Xiang, TianYu Zhao, Han Zhao, Qian Chen, XianGang Li, HanJie Guo, ZhenHua Ling
Title: Eliminating stability hallucinations in llm-based tts models via attention guidance
Abstract:
This paper focuses on resolving stability hallucinations (e.g., repetitive or omitted speech) in LLM-based Text-to-Speech (TTS) models by improving and leveraging the attention mechanism. First, we analyzed the alignment mechanism between text tokens and speech tokens in LLMs. We then proposed a metric termed the Optimal Alignment Score (OAS), which employs the Viterbi algorithm to evaluate text-speech alignment quality. Subsequently, OAS was integrated into the training of CosyVoice2 to assist LLMs in learning continuous, stable alignment. Additionally, the pre-trained attention value is employed to guide the training of the student CosyVoice2 via chain-of-thought (CoT), which further reduces stability hallucinations in synthesized speech. Experiments on the Seed-TTS-Eval and CV3-Eval test sets demonstrate that the proposed methods can effectively reduce the stability hallucinations of CosyVoice2 without introducing additional negative effects. The appendix is available at https://wsmzzz.github.io/llm_attn.

Authors:Jinhui Zheng, Xueyuan Gong
Title: ExpFace: Exponential Angular Margin Loss for Deep Face Recognition
Abstract:
Face recognition is an open-set problem requiring high discriminative power to ensure that intra-class distances remain smaller than inter-class distances. Margin-based softmax losses, such as SphereFace, CosFace, and ArcFace, have been widely adopted to enhance intra-class compactness and inter-class separability, yet they overlook the impact of noisy samples. By examining the distribution of samples in the angular space, we observe that clean samples predominantly cluster in the center region, whereas noisy samples tend to shift toward the peripheral region. Motivated by this observation, we propose the Exponential Angular Margin Loss (ExpFace), which introduces an angular exponential term as the margin. This design applies a larger penalty in the center region and a smaller penalty in the peripheral region within the angular space, thereby emphasizing clean samples while suppressing noisy samples. We present a unified analysis of ExpFace and classical margin-based softmax losses in terms of margin embedding forms, similarity curves, and gradient curves, showing that ExpFace not only avoids the training instability of SphereFace and the non-monotonicity of ArcFace, but also exhibits a similarity curve that applies penalties in the same manner as the decision boundary in the angular space. Extensive experiments demonstrate that ExpFace achieves state-of-the-art performance. To facilitate future research, we have released the source code at: https://github.com/dfr-code/ExpFace.

Authors:Shuyu Zhang, Yifan Wei, Xinru Wang, Yanmin Zhu, Yangfan He, Yixuan Weng, Bin Li
Title: HiCoLoRA: Addressing Context-Prompt Misalignment via Hierarchical Collaborative LoRA for Zero-Shot DST
Abstract:
Zero-shot Dialog State Tracking (zs-DST) is essential for enabling Task-Oriented Dialog Systems (TODs) to generalize to new domains without costly data annotation. A central challenge lies in the semantic misalignment between dynamic dialog contexts and static prompts, leading to inflexible cross-layer coordination, domain interference, and catastrophic forgetting. To tackle this, we propose Hierarchical Collaborative Low-Rank Adaptation (HiCoLoRA), a framework that enhances zero-shot slot inference through robust prompt alignment. It features a hierarchical LoRA architecture for dynamic layer-specific processing (combining lower-layer heuristic grouping and higher-layer full interaction), integrates Spectral Joint Domain-Slot Clustering to identify transferable associations (feeding an Adaptive Linear Fusion Mechanism), and employs Semantic-Enhanced SVD Initialization (SemSVD-Init) to preserve pre-trained knowledge. Experiments on multi-domain datasets MultiWOZ and SGD show that HiCoLoRA outperforms baselines, achieving SOTA in zs-DST. Code is available at https://github.com/carsonz/HiCoLoRA.

Authors:J. Ben Tamo, Nishant S. Chouhan, Micky C. Nnamdi, Yining Yuan, Shreya S. Chivilkar, Wenqi Shi, Steven W. Hwang, B. Randall Brenn, May D. Wang
Title: Causal Machine Learning for Surgical Interventions
Abstract:
Surgical decision-making is complex and requires understanding causal relationships between patient characteristics, interventions, and outcomes. In high-stakes settings like spinal fusion or scoliosis correction, accurate estimation of individualized treatment effects (ITEs) remains limited due to the reliance on traditional statistical methods that struggle with complex, heterogeneous data. In this study, we develop a multi-task meta-learning framework, X-MultiTask, for ITE estimation that models each surgical decision (e.g., anterior vs. posterior approach, surgery vs. no surgery) as a distinct task while learning shared representations across tasks. To strengthen causal validity, we incorporate the inverse probability weighting (IPW) into the training objective. We evaluate our approach on two datasets: (1) a public spinal fusion dataset (1,017 patients) to assess the effect of anterior vs. posterior approaches on complication severity; and (2) a private AIS dataset (368 patients) to analyze the impact of posterior spinal fusion (PSF) vs. non-surgical management on patient-reported outcomes (PROs). Our model achieves the highest average AUC (0.84) in the anterior group and maintains competitive performance in the posterior group (0.77). It outperforms baselines in treatment effect estimation with the lowest overall $ε_{\text{NN-PEHE}}$ (0.2778) and $ε_{\text{ATE}}$ (0.0763). Similarly, when predicting PROs in AIS, X-MultiTask consistently shows superior performance across all domains, with $ε_{\text{NN-PEHE}}$ = 0.2551 and $ε_{\text{ATE}}$ = 0.0902. By providing robust, patient-specific causal estimates, X-MultiTask offers a powerful tool to advance personalized surgical care and improve patient outcomes. The code is available at https://github.com/Wizaaard/X-MultiTask.

Authors:Shuyu Zhang, Yifan Wei, Jialuo Yuan, Xinru Wang, Yanmin Zhu, Bin Li
Title: DyBBT: Dynamic Balance via Bandit inspired Targeting for Dialog Policy with Cognitive Dual-Systems
Abstract:
Task oriented dialog systems often rely on static exploration strategies that do not adapt to dynamic dialog contexts, leading to inefficient exploration and suboptimal performance. We propose DyBBT, a novel dialog policy learning framework that formalizes the exploration challenge through a structured cognitive state space capturing dialog progression, user uncertainty, and slot dependency. DyBBT proposes a bandit inspired meta-controller that dynamically switches between a fast intuitive inference (System 1) and a slow deliberative reasoner (System 2) based on real-time cognitive states and visitation counts. Extensive experiments on single- and multi-domain benchmarks show that DyBBT achieves state-of-the-art performance in success rate, efficiency, and generalization, with human evaluations confirming its decisions are well aligned with expert judgment. Code is available at https://github.com/carsonz/DyBBT.

Authors:Youngju Yoo, Jiaheng Hu, Yifeng Zhu, Bo Liu, Qiang Liu, Roberto Martín-Martín, Peter Stone
Title: RoboSSM: Scalable In-context Imitation Learning via State-Space Models
Abstract:
In-context imitation learning (ICIL) enables robots to learn tasks from prompts consisting of just a handful of demonstrations. By eliminating the need for parameter updates at deployment time, this paradigm supports few-shot adaptation to novel tasks. However, recent ICIL methods rely on Transformers, which have computational limitations and tend to underperform when handling longer prompts than those seen during training. In this work, we introduce RoboSSM, a scalable recipe for in-context imitation learning based on state-space models (SSM). Specifically, RoboSSM replaces Transformers with Longhorn -- a state-of-the-art SSM that provides linear-time inference and strong extrapolation capabilities, making it well-suited for long-context prompts. We evaluate our approach on the LIBERO benchmark and compare it against strong Transformer-based ICIL baselines. Experiments show that RoboSSM extrapolates effectively to varying numbers of in-context demonstrations, yields high performance on unseen tasks, and remains robust in long-horizon scenarios. These results highlight the potential of SSMs as an efficient and scalable backbone for ICIL. Our code is available at https://github.com/youngjuY/RoboSSM.

Authors:Yifan Ye, Jun Cen, Jing Chen, Zhihe Lu
Title: Self-evolved Imitation Learning in Simulated World
Abstract:
Imitation learning has been a trend recently, yet training a generalist agent across multiple tasks still requires large-scale expert demonstrations, which are costly and labor-intensive to collect. To address the challenge of limited supervision, we propose Self-Evolved Imitation Learning (SEIL), a framework that progressively improves a few-shot model through simulator interactions. The model first attempts tasksin the simulator, from which successful trajectories are collected as new demonstrations for iterative refinement. To enhance the diversity of these demonstrations, SEIL employs dual-level augmentation: (i) Model-level, using an Exponential Moving Average (EMA) model to collaborate with the primary model, and (ii) Environment-level, introducing slight variations in initial object positions. We further introduce a lightweight selector that filters complementary and informative trajectories from the generated pool to ensure demonstration quality. These curated samples enable the model to achieve competitive performance with far fewer training examples. Extensive experiments on the LIBERO benchmark show that SEIL achieves a new state-of-the-art performance in few-shot imitation learning scenarios. Code is available at https://github.com/Jasper-aaa/SEIL.git.

Authors:Jason Chen, I-Chun Arthur Liu, Gaurav Sukhatme, Daniel Seita
Title: ROPA: Synthetic Robot Pose Generation for RGB-D Bimanual Data Augmentation
Abstract:
Training robust bimanual manipulation policies via imitation learning requires demonstration data with broad coverage over robot poses, contacts, and scene contexts. However, collecting diverse and precise real-world demonstrations is costly and time-consuming, which hinders scalability. Prior works have addressed this with data augmentation, typically for either eye-in-hand (wrist camera) setups with RGB inputs or for generating novel images without paired actions, leaving augmentation for eye-to-hand (third-person) RGB-D training with new action labels less explored. In this paper, we propose Synthetic Robot Pose Generation for RGB-D Bimanual Data Augmentation (ROPA), an offline imitation learning data augmentation method that fine-tunes Stable Diffusion to synthesize third-person RGB and RGB-D observations of novel robot poses. Our approach simultaneously generates corresponding joint-space action labels while employing constrained optimization to enforce physical consistency through appropriate gripper-to-object contact constraints in bimanual scenarios. We evaluate our method on 5 simulated and 3 real-world tasks. Our results across 2625 simulation trials and 300 real-world trials demonstrate that ROPA outperforms baselines and ablations, showing its potential for scalable RGB and RGB-D data augmentation in eye-to-hand bimanual manipulation. Our project website is available at: https://ropaaug.github.io/.

Authors:Sahil Tyagi, Andrei Cozma, Olivera Kotevska, Feiyi Wang
Title: OmniFed: A Modular Framework for Configurable Federated Learning from Edge to HPC
Abstract:
Federated Learning (FL) is critical for edge and High Performance Computing (HPC) where data is not centralized and privacy is crucial. We present OmniFed, a modular framework designed around decoupling and clear separation of concerns for configuration, orchestration, communication, and training logic. Its architecture supports configuration-driven prototyping and code-level override-what-you-need customization. We also support different topologies, mixed communication protocols within a single deployment, and popular training algorithms. It also offers optional privacy mechanisms including Differential Privacy (DP), Homomorphic Encryption (HE), and Secure Aggregation (SA), as well as compression strategies. These capabilities are exposed through well-defined extension points, allowing users to customize topology and orchestration, learning logic, and privacy/compression plugins, all while preserving the integrity of the core system. We evaluate multiple models and algorithms to measure various performance metrics. By unifying topology configuration, mixed-protocol communication, and pluggable modules in one stack, OmniFed streamlines FL deployment across heterogeneous environments. Github repository is available at https://github.com/at-aaims/OmniFed.

Authors:Axel Marmoret, Reda Bensaid, Jonathan Lys, Vincent Gripon, François Leduc-Primeau
Title: TensLoRA: Tensor Alternatives for Low-Rank Adaptation
Abstract:
Low-Rank Adaptation (LoRA) is widely used to efficiently adapt Transformers by adding trainable low-rank matrices to attention projections. While effective, these matrices are considered independent for each attention projection (Query, Key, and Value) and each layer. Recent extensions have considered joint, tensor-based adaptations, but only in limited forms and without a systematic framework. We introduce TensLoRA, a unified framework that aggregates LoRA updates into higher-order tensors and models a broad family of tensor-based low-rank adaptations. Our formulation generalizes existing tensor-based methods and enables mode-specific compression rates, allowing parameter budgets to be tailored according to the modality and task. Experiments on vision and language benchmarks reveal that the tensor construction directly impacts performance, sometimes better than standard LoRA under similar parameter counts.

Authors:Zhijin Guo, Chenhao Xue, Zhaozhen Xu, Hongbo Bo, Yuxuan Ye, Janet B. Pierrehumbert, Martha Lewis
Title: Quantifying Compositionality of Classic and State-of-the-Art Embeddings
Abstract:
For language models to generalize correctly to novel expressions, it is critical that they exploit access compositional meanings when this is justified. Even if we don't know what a "pelp" is, we can use our knowledge of numbers to understand that "ten pelps" makes more pelps than "two pelps". Static word embeddings such as Word2vec made strong, indeed excessive, claims about compositionality. The SOTA generative, transformer models and graph models, however, go too far in the other direction by providing no real limits on shifts in meaning due to context. To quantify the additive compositionality, we formalize a two-step, generalized evaluation that (i) measures the linearity between known entity attributes and their embeddings via canonical correlation analysis, and (ii) evaluates additive generalization by reconstructing embeddings for unseen attribute combinations and checking reconstruction metrics such as L2 loss, cosine similarity, and retrieval accuracy. These metrics also capture failure cases where linear composition breaks down. Sentences, knowledge graphs, and word embeddings are evaluated and tracked the compositionality across all layers and training stages. Stronger compositional signals are observed in later training stages across data modalities, and in deeper layers of the transformer-based model before a decline at the top layer. Code is available at https://github.com/Zhijin-Guo1/quantifying-compositionality.

Authors:Enhao Huang, Zhiyu Zhang, Tianxiang Xu, Chunshu Xia, Kaichun Hu, Yuchen Yang, Tongtong Pan, Dong Dong, Zhan Qin
Title: Holographic Transformers for Complex-Valued Signal Processing: Integrating Phase Interference into Self-Attention
Abstract:
Complex-valued signals encode both amplitude and phase, yet most deep models treat attention as real-valued correlation, overlooking interference effects. We introduce the Holographic Transformer, a physics-inspired architecture that incorporates wave interference principles into self-attention. Holographic attention modulates interactions by relative phase and coherently superimposes values, ensuring consistency between amplitude and phase. A dual-headed decoder simultaneously reconstructs the input and predicts task outputs, preventing phase collapse when losses prioritize magnitude over phase. We demonstrate that holographic attention implements a discrete interference operator and maintains phase consistency under linear mixing. Experiments on PolSAR image classification and wireless channel prediction show strong performance, achieving high classification accuracy and F1 scores, low regression error, and increased robustness to phase perturbations. These results highlight that enforcing physical consistency in attention leads to generalizable improvements in complex-valued learning and provides a unified, physics-based framework for coherent signal modeling. The code is available at https://github.com/EonHao/Holographic-Transformers.

Authors:Ruochi Li, Haoxuan Zhang, Edward Gehringer, Ting Xiao, Junhua Ding, Haihua Chen
Title: Unveiling the Merits and Defects of LLMs in Automatic Review Generation for Scientific Papers
Abstract:
The surge in scientific submissions has placed increasing strain on the traditional peer-review process, prompting the exploration of large language models (LLMs) for automated review generation. While LLMs demonstrate competence in producing structured and coherent feedback, their capacity for critical reasoning, contextual grounding, and quality sensitivity remains limited. To systematically evaluate these aspects, we propose a comprehensive evaluation framework that integrates semantic similarity analysis and structured knowledge graph metrics to assess LLM-generated reviews against human-written counterparts. We construct a large-scale benchmark of 1,683 papers and 6,495 expert reviews from ICLR and NeurIPS in multiple years, and generate reviews using five LLMs. Our findings show that LLMs perform well in descriptive and affirmational content, capturing the main contributions and methodologies of the original work, with GPT-4o highlighted as an illustrative example, generating 15.74% more entities than human reviewers in the strengths section of good papers in ICLR 2025. However, they consistently underperform in identifying weaknesses, raising substantive questions, and adjusting feedback based on paper quality. GPT-4o produces 59.42% fewer entities than real reviewers in the weaknesses and increases node count by only 5.7% from good to weak papers, compared to 50% in human reviews. Similar trends are observed across all conferences, years, and models, providing empirical foundations for understanding the merits and defects of LLM-generated reviews and informing the development of future LLM-assisted reviewing tools. Data, code, and more detailed results are publicly available at https://github.com/RichardLRC/Peer-Review.

Authors:Millie Vyas, Timothy Blattner, Alden Dima
Title: Readme_AI: Dynamic Context Construction for Large Language Models
Abstract:
Despite being trained on significant amounts of data, Large Language Models (LLMs) can provide inaccurate or unreliable information in the context of a user's specific query. Given query-specific context significantly improves the usefulness of its responses. In this paper, we present a specification that can be used to dynamically build context for data sources. The data source owner creates the file containing metadata for LLMs to use when reasoning about dataset-related queries. To demonstrate our proposed specification, we created a prototype Readme_AI Model Context Protocol (MCP) server that retrieves the metadata from the data source and uses it to dynamically build context. Some features that make this specification dynamic are the extensible types that represent crawling web-pages, fetching data from data repositories, downloading and parsing publications, and general text. The context is formatted and grouped using user-specified tags that provide clear contextual information for the LLM to reason about the content. We demonstrate the capabilities of this early prototype by asking the LLM about the NIST-developed Hedgehog library, for which common LLMs often provides inaccurate and irrelevant responses containing hallucinations. With Readme_AI, the LLM receives enough context that it is now able to reason about the library and its use, and even generate code interpolated from examples that were included in the Readme_AI file provided by Hedgehog's developer. Our primary contribution is a extensible protocol for dynamically grounding LLMs in specialized, owner-provided data, enhancing responses from LLMs and reducing hallucinations. The source code for the Readme_AI tool is posted here: https://github.com/usnistgov/readme_ai .

Authors:Gyubok Lee, Elea Bach, Eric Yang, Tom Pollard, Alistair Johnson, Edward Choi, Yugang jia, Jong Ha Lee
Title: FHIR-AgentBench: Benchmarking LLM Agents for Realistic Interoperable EHR Question Answering
Abstract:
The recent shift toward the Health Level Seven Fast Healthcare Interoperability Resources (HL7 FHIR) standard opens a new frontier for clinical AI, demanding LLM agents to navigate complex, resource-based data models instead of conventional structured health data. However, existing benchmarks have lagged behind this transition, lacking the realism needed to evaluate recent LLMs on interoperable clinical data. To bridge this gap, we introduce FHIR-AgentBench, a benchmark that grounds 2,931 real-world clinical questions in the HL7 FHIR standard. Using this benchmark, we systematically evaluate agentic frameworks, comparing different data retrieval strategies (direct FHIR API calls vs. specialized tools), interaction patterns (single-turn vs. multi-turn), and reasoning strategies (natural language vs. code generation). Our experiments highlight the practical challenges of retrieving data from intricate FHIR resources and the difficulty of reasoning over them, both of which critically affect question answering performance. We publicly release the FHIR-AgentBench dataset and evaluation suite (https://github.com/glee4810/FHIR-AgentBench) to promote reproducible research and the development of robust, reliable LLM agents for clinical applications.

Authors:Yang Jin, Jun Lv, Han Xue, Wendi Chen, Chuan Wen, Cewu Lu
Title: SOE: Sample-Efficient Robot Policy Self-Improvement via On-Manifold Exploration
Abstract:
Intelligent agents progress by continually refining their capabilities through actively exploring environments. Yet robot policies often lack sufficient exploration capability due to action mode collapse. Existing methods that encourage exploration typically rely on random perturbations, which are unsafe and induce unstable, erratic behaviors, thereby limiting their effectiveness. We propose Self-Improvement via On-Manifold Exploration (SOE), a framework that enhances policy exploration and improvement in robotic manipulation. SOE learns a compact latent representation of task-relevant factors and constrains exploration to the manifold of valid actions, ensuring safety, diversity, and effectiveness. It can be seamlessly integrated with arbitrary policy models as a plug-in module, augmenting exploration without degrading the base policy performance. Moreover, the structured latent space enables human-guided exploration, further improving efficiency and controllability. Extensive experiments in both simulation and real-world tasks demonstrate that SOE consistently outperforms prior methods, achieving higher task success rates, smoother and safer exploration, and superior sample efficiency. These results establish on-manifold exploration as a principled approach to sample-efficient policy self-improvement. Project website: https://ericjin2002.github.io/SOE

Authors:Gabriel Maldonado, Narges Rashvand, Armin Danesh Pazho, Ghazal Alinezhad Noghre, Vinit Katariya, Hamed Tabkhi
Title: Adversarially-Refined VQ-GAN with Dense Motion Tokenization for Spatio-Temporal Heatmaps
Abstract:
Continuous human motion understanding remains a core challenge in computer vision due to its high dimensionality and inherent redundancy. Efficient compression and representation are crucial for analyzing complex motion dynamics. In this work, we introduce an adversarially-refined VQ-GAN framework with dense motion tokenization for compressing spatio-temporal heatmaps while preserving the fine-grained traces of human motion. Our approach combines dense motion tokenization with adversarial refinement, which eliminates reconstruction artifacts like motion smearing and temporal misalignment observed in non-adversarial baselines. Our experiments on the CMU Panoptic dataset provide conclusive evidence of our method's superiority, outperforming the dVAE baseline by 9.31% SSIM and reducing temporal instability by 37.1%. Furthermore, our dense tokenization strategy enables a novel analysis of motion complexity, revealing that 2D motion can be optimally represented with a compact 128-token vocabulary, while 3D motion's complexity demands a much larger 1024-token codebook for faithful reconstruction. These results establish practical deployment feasibility across diverse motion analysis applications. The code base for this work is available at https://github.com/TeCSAR-UNCC/Pose-Quantization.

Authors:Chunhao Tian, Yutong Wang, Xuebo Liu, Zhexuan Wang, Liang Ding, Miao Zhang, Min Zhang
Title: AgentInit: Initializing LLM-based Multi-Agent Systems via Diversity and Expertise Orchestration for Effective and Efficient Collaboration
Abstract:
Proper initialization is crucial for any system, particularly in multi-agent systems (MAS), where it plays a pivotal role in determining both the system's efficiency and effectiveness. However, existing MAS initialization methods do not fully account for the collaborative needs of the generated agents in subsequent stages. Inspired by the principles of effective team composition, we propose AgentInit, which aims to optimize the structure of agent teams. Specifically, in addition to multi-round interactions and reflections between agents during agent generation, AgentInit incorporates a Natural Language to Format mechanism to ensure consistency and standardization. Balanced team selection strategies using Pareto principles are subsequently applied to jointly consider agent team diversity and task relevance to promote effective and efficient collaboration and enhance overall system performance. Experiments show that AgentInit consistently outperforms state-of-the-art initialization methods and pre-defined strategies across various frameworks and tasks, achieving an overall performance improvement of up to 1.2 and 1.6, respectively, while also significantly reducing token consumption. Further analysis confirms its strong transferability to similar tasks and verifies the effectiveness of its key components, demonstrating its capability and adaptability as a reliable MAS initialization method. Source code and models are available at https://github.com/1737423697/AgentInit.

Authors:Yun Wang, Junjie Hu, Junhui Hou, Chenghao Zhang, Renwei Yang, Dapeng Oliver Wu
Title: RoSe: Robust Self-supervised Stereo Matching under Adverse Weather Conditions
Abstract:
Recent self-supervised stereo matching methods have made significant progress, but their performance significantly degrades under adverse weather conditions such as night, rain, and fog. We identify two primary weaknesses contributing to this performance degradation. First, adverse weather introduces noise and reduces visibility, making CNN-based feature extractors struggle with degraded regions like reflective and textureless areas. Second, these degraded regions can disrupt accurate pixel correspondences, leading to ineffective supervision based on the photometric consistency assumption. To address these challenges, we propose injecting robust priors derived from the visual foundation model into the CNN-based feature extractor to improve feature representation under adverse weather conditions. We then introduce scene correspondence priors to construct robust supervisory signals rather than relying solely on the photometric consistency assumption. Specifically, we create synthetic stereo datasets with realistic weather degradations. These datasets feature clear and adverse image pairs that maintain the same semantic context and disparity, preserving the scene correspondence property. With this knowledge, we propose a robust self-supervised training paradigm, consisting of two key steps: robust self-supervised scene correspondence learning and adverse weather distillation. Both steps aim to align underlying scene results from clean and adverse image pairs, thus improving model disparity estimation under adverse weather effects. Extensive experiments demonstrate the effectiveness and versatility of our proposed solution, which outperforms existing state-of-the-art self-supervised methods. Codes are available at \textcolor{blue}{https://github.com/cocowy1/RoSe-Robust-Self-supervised-Stereo-Matching-under-Adverse-Weather-Conditions}.

Authors:Zhennan Jiang, Kai Liu, Yuxin Qin, Shuai Tian, Yupeng Zheng, Mingcai Zhou, Chao Yu, Haoran Li, Dongbin Zhao
Title: World4RL: Diffusion World Models for Policy Refinement with Reinforcement Learning for Robotic Manipulation
Abstract:
Robotic manipulation policies are commonly initialized through imitation learning, but their performance is limited by the scarcity and narrow coverage of expert data. Reinforcement learning can refine polices to alleviate this limitation, yet real-robot training is costly and unsafe, while training in simulators suffers from the sim-to-real gap. Recent advances in generative models have demonstrated remarkable capabilities in real-world simulation, with diffusion models in particular excelling at generation. This raises the question of how diffusion model-based world models can be combined to enhance pre-trained policies in robotic manipulation. In this work, we propose World4RL, a framework that employs diffusion-based world models as high-fidelity simulators to refine pre-trained policies entirely in imagined environments for robotic manipulation. Unlike prior works that primarily employ world models for planning, our framework enables direct end-to-end policy optimization. World4RL is designed around two principles: pre-training a diffusion world model that captures diverse dynamics on multi-task datasets and refining policies entirely within a frozen world model to avoid online real-world interactions. We further design a two-hot action encoding scheme tailored for robotic manipulation and adopt diffusion backbones to improve modeling fidelity. Extensive simulation and real-world experiments demonstrate that World4RL provides high-fidelity environment modeling and enables consistent policy refinement, yielding significantly higher success rates compared to imitation learning and other baselines. More visualization results are available at https://world4rl.github.io/.

Authors:Songsong Yu, Yuxin Chen, Hao Ju, Lianjie Jia, Fuxi Zhang, Shaofei Huang, Yuhan Wu, Rundi Cui, Binghao Ran, Zaibin Zhang, Zhedong Zheng, Zhipeng Zhang, Yifan Wang, Lin Song, Lijun Wang, Yanwei Li, Ying Shan, Huchuan Lu
Title: How Far are VLMs from Visual Spatial Intelligence? A Benchmark-Driven Perspective
Abstract:
Visual Spatial Reasoning (VSR) is a core human cognitive ability and a critical requirement for advancing embodied intelligence and autonomous systems. Despite recent progress in Vision-Language Models (VLMs), achieving human-level VSR remains highly challenging due to the complexity of representing and reasoning over three-dimensional space. In this paper, we present a systematic investigation of VSR in VLMs, encompassing a review of existing methodologies across input modalities, model architectures, training strategies, and reasoning mechanisms. Furthermore, we categorize spatial intelligence into three levels of capability, ie, basic perception, spatial understanding, spatial planning, and curate SIBench, a spatial intelligence benchmark encompassing nearly 20 open-source datasets across 23 task settings. Experiments with state-of-the-art VLMs reveal a pronounced gap between perception and reasoning, as models show competence in basic perceptual tasks but consistently underperform in understanding and planning tasks, particularly in numerical estimation, multi-view reasoning, temporal dynamics, and spatial imagination. These findings underscore the substantial challenges that remain in achieving spatial intelligence, while providing both a systematic roadmap and a comprehensive benchmark to drive future research in the field. The related resources of this study are accessible at https://sibench.github.io/Awesome-Visual-Spatial-Reasoning/.

Authors:Gongrui Nan, Siye Chen, Jing Huang, Mengyu Lu, Dexun Wang, Chunmei Xie, Weiqi Xiong, Xianzhou Zeng, Qixuan Zhou, Yadong Li, Xingzhong Xu
Title: NGRPO: Negative-enhanced Group Relative Policy Optimization
Abstract:
RLVR has enhanced the reasoning capabilities of Large Language Models (LLMs) across various tasks. However, GRPO, a representative RLVR algorithm, suffers from a critical limitation: when all responses within a group are either entirely correct or entirely incorrect, the model fails to learn from these homogeneous responses. This is particularly problematic for homogeneously incorrect groups, where GRPO's advantage function yields a value of zero, leading to null gradients and the loss of valuable learning signals. To overcome this issue, we propose NGRPO (Negative-enhanced Group Relative Policy Optimization), an algorithm designed to convert homogeneous errors into robust learning signals. First, NGRPO introduces Advantage Calibration. This mechanism hypothesizes the existence of a virtual maximum-reward sample during advantage calculation, thereby altering the mean and variance of rewards within a group and ensuring that the advantages for homogeneously incorrect samples are no longer zero. Second, NGRPO employs Asymmetric Clipping, which relaxes the update magnitude for positive samples while imposing stricter constraints on that of negative samples. This serves to stabilize the exploration pressure introduced by the advantage calibration. Our experiments on Qwen2.5-Math-7B demonstrate that NGRPO significantly outperforms baselines such as PPO, GRPO, DAPO, and PSR-NSR on mathematical benchmarks including MATH500, AMC23, and AIME2025. These results validate NGRPO's ability to learn from homogeneous errors, leading to stable and substantial improvements in mathematical reasoning. Our code is available at https://github.com/nangongrui-ngr/NGRPO.

Authors:Kuang Xiaodong, Li Bingxuan, Li Yuan, Rao Fan, Ma Gege, Xie Qingguo, Mok Greta S P, Liu Huafeng, Zhu Wentao
Title: A Kernel Space-based Multidimensional Sparse Model for Dynamic PET Image Denoising
Abstract:
Achieving high image quality for temporal frames in dynamic positron emission tomography (PET) is challenging due to the limited statistic especially for the short frames. Recent studies have shown that deep learning (DL) is useful in a wide range of medical image denoising tasks. In this paper, we propose a model-based neural network for dynamic PET image denoising. The inter-frame spatial correlation and intra-frame structural consistency in dynamic PET are used to establish the kernel space-based multidimensional sparse (KMDS) model. We then substitute the inherent forms of the parameter estimation with neural networks to enable adaptive parameters optimization, forming the end-to-end neural KMDS-Net. Extensive experimental results from simulated and real data demonstrate that the neural KMDS-Net exhibits strong denoising performance for dynamic PET, outperforming previous baseline methods. The proposed method may be used to effectively achieve high temporal and spatial resolution for dynamic PET. Our source code is available at https://github.com/Kuangxd/Neural-KMDS-Net/tree/main.

Authors:Yara Mohajerani
Title: Adaptive Learning in Spatial Agent-Based Models for Climate Risk Assessment: A Geospatial Framework with Evolutionary Economic Agents
Abstract:
Climate risk assessment requires modelling complex interactions between spatially heterogeneous hazards and adaptive economic systems. We present a novel geospatial agent-based model that integrates climate hazard data with evolutionary learning for economic agents. Our framework combines Mesa-based spatial modelling with CLIMADA climate impact assessment, introducing adaptive learning behaviours that allow firms to evolve strategies for budget allocation, pricing, wages, and risk adaptation through fitness-based selection and mutation. We demonstrate the framework using riverine flood projections under RCP8.5 until 2100, showing that evolutionary adaptation enables firms to converge with baseline (no hazard) production levels after decades of disruption due to climate stress. Our results reveal systemic risks where even agents that are not directly exposed to floods face impacts through supply chain disruptions, with the end-of-century average price of goods 5.6% higher under RCP8.5 compared to the baseline. This open-source framework provides financial institutions and companies with tools to quantify both direct and cascading climate risks while evaluating cost-effective adaptation strategies.

Authors:Parsa Vahidi, Omid G. Sani, Maryam M. Shanechi
Title: BRAID: Input-Driven Nonlinear Dynamical Modeling of Neural-Behavioral Data
Abstract:
Neural populations exhibit complex recurrent structures that drive behavior, while continuously receiving and integrating external inputs from sensory stimuli, upstream regions, and neurostimulation. However, neural populations are often modeled as autonomous dynamical systems, with little consideration given to the influence of external inputs that shape the population activity and behavioral outcomes. Here, we introduce BRAID, a deep learning framework that models nonlinear neural dynamics underlying behavior while explicitly incorporating any measured external inputs. Our method disentangles intrinsic recurrent neural population dynamics from the effects of inputs by including a forecasting objective within input-driven recurrent neural networks. BRAID further prioritizes the learning of intrinsic dynamics that are related to a behavior of interest by using a multi-stage optimization scheme. We validate BRAID with nonlinear simulations, showing that it can accurately learn the intrinsic dynamics shared between neural and behavioral modalities. We then apply BRAID to motor cortical activity recorded during a motor task and demonstrate that our method more accurately fits the neural-behavioral data by incorporating measured sensory stimuli into the model and improves the forecasting of neural-behavioral data compared with various baseline methods, whether input-driven or not.

Authors:Neel P. Bhatt, Yunhao Yang, Rohan Siva, Pranay Samineni, Daniel Milan, Zhangyang Wang, Ufuk Topcu
Title: VLN-Zero: Rapid Exploration and Cache-Enabled Neurosymbolic Vision-Language Planning for Zero-Shot Transfer in Robot Navigation
Abstract:
Rapid adaptation in unseen environments is essential for scalable real-world autonomy, yet existing approaches rely on exhaustive exploration or rigid navigation policies that fail to generalize. We present VLN-Zero, a two-phase vision-language navigation framework that leverages vision-language models to efficiently construct symbolic scene graphs and enable zero-shot neurosymbolic navigation. In the exploration phase, structured prompts guide VLM-based search toward informative and diverse trajectories, yielding compact scene graph representations. In the deployment phase, a neurosymbolic planner reasons over the scene graph and environmental observations to generate executable plans, while a cache-enabled execution module accelerates adaptation by reusing previously computed task-location trajectories. By combining rapid exploration, symbolic reasoning, and cache-enabled execution, the proposed framework overcomes the computational inefficiency and poor generalization of prior vision-language navigation methods, enabling robust and scalable decision-making in unseen environments. VLN-Zero achieves 2x higher success rate compared to state-of-the-art zero-shot models, outperforms most fine-tuned baselines, and reaches goal locations in half the time with 55% fewer VLM calls on average compared to state-of-the-art models across diverse environments. Codebase, datasets, and videos for VLN-Zero are available at: https://vln-zero.github.io/.

Authors:Yu Chen, Yifei Han, Long Zhang, Yue Du, Bin Li
Title: TsqLoRA: Towards Sensitivity and Quality Low-Rank Adaptation for Efficient Fine-Tuning
Abstract:
Fine-tuning large pre-trained models for downstream tasks has become a fundamental approach in natural language processing. Fully fine-tuning all model parameters is computationally expensive and memory-intensive, especially in resource-constrained environments. Existing parameter-efficient fine-tuning methods reduce the number of trainable parameters but typically overlook the varying sensitivity of different model layers and the importance of training data. In this work, we propose TsqLoRA, a novel method that integrates data-quality-driven selection with sensitivity-aware low-rank adaptation, consisted of two main components: a quality-aware sampling mechanism for selecting the most informative training data, and a dynamic rank allocation module that adjusts the rank of each layer based on its sensitivity to parameter updates. The experimental results demonstrate that TsqLoRA improves fine-tuning efficiency while maintaining or even improving performance on a variety of NLP tasks. Our code will be available at https://github.com/Benjamin-Ricky/TsqLoRA.

Authors:Yaoyao Qian, Yifan Zeng, Yuchao Jiang, Chelsi Jain, Huazheng Wang
Title: The Ranking Blind Spot: Decision Hijacking in LLM-based Text Ranking
Abstract:
Large Language Models (LLMs) have demonstrated strong performance in information retrieval tasks like passage ranking. Our research examines how instruction-following capabilities in LLMs interact with multi-document comparison tasks, identifying what we term the "Ranking Blind Spot", a characteristic of LLM decision processes during comparative evaluation. We analyze how this ranking blind spot affects LLM evaluation systems through two approaches: Decision Objective Hijacking, which alters the evaluation goal in pairwise ranking systems, and Decision Criteria Hijacking, which modifies relevance standards across ranking schemes. These approaches demonstrate how content providers could potentially influence LLM-based ranking systems to affect document positioning. These attacks aim to force the LLM ranker to prefer a specific passage and rank it at the top. Malicious content providers can exploit this weakness, which helps them gain additional exposure by attacking the ranker. In our experiment, We empirically show that the proposed attacks are effective in various LLMs and can be generalized to multiple ranking schemes. We apply these attack to realistic examples to show their effectiveness. We also found stronger LLMs are more vulnerable to these attacks. Our code is available at: https://github.com/blindspotorg/RankingBlindSpot

Authors:Jiaxun Yang, Yifei Han, Long Zhang, Yujie Liu, Bin Li, Bo Gao, Yangfan He, Kejia Zhan
Title: CPCLDETECTOR: Knowledge Enhancement and Alignment Selection for Chinese Patronizing and Condescending Language Detection
Abstract:
Chinese Patronizing and Condescending Language (CPCL) is an implicitly discriminatory toxic speech targeting vulnerable groups on Chinese video platforms. The existing dataset lacks user comments, which are a direct reflection of video content. This undermines the model's understanding of video content and results in the failure to detect some CPLC videos. To make up for this loss, this research reconstructs a new dataset PCLMMPLUS that includes 103k comment entries and expands the dataset size. We also propose the CPCLDetector model with alignment selection and knowledge-enhanced comment content modules. Extensive experiments show the proposed CPCLDetector outperforms the SOTA on PCLMM and achieves higher performance on PCLMMPLUS . CPLC videos are detected more accurately, supporting content governance and protecting vulnerable groups. Code and dataset are available at https://github.com/jiaxunyang256/PCLD.

Authors:Jin Young Kim, Ji Won Yoon
Title: CCQA: Generating Question from Solution Can Improve Inference-Time Reasoning in SLMs
Abstract:
Recently, inference-time reasoning strategies have further improved the accuracy of large language models (LLMs), but their effectiveness on smaller models remains unclear. Based on the observation that conventional approaches often fail to improve performance in this context, we propose \textbf{C}ycle-\textbf{C}onsistency in \textbf{Q}uestion \textbf{A}nswering (CCQA), a novel reasoning method that can be effectively applied to SLMs. Inspired by cycle consistency, CCQA generates a question from each reasoning path and answer, evaluates each by its similarity to the original question, and then selects the candidate solution with the highest similarity score as the final response. Since conventional SLMs struggle to generate accurate questions from their own reasoning paths and answers, we employ a lightweight Flan-T5 model specialized for question generation to support this process efficiently. From the experimental results, it is verified that CCQA consistently outperforms existing state-of-the-art (SOTA) methods across eight models on mathematical and commonsense reasoning benchmarks. Furthermore, our method establishes a new practical baseline for efficient reasoning in SLMs. Source code can be found at https://github.com/scai-research/ccqa_official.

Authors:Seungyoun Shin, Dongha Ahn, Jiwoo Kim, Sungwook Jeon
Title: No Verifiable Reward for Prosody: Toward Preference-Guided Prosody Learning in TTS
Abstract:
Recent work reports gains in neural text-to-speech (TTS) with Group Relative Policy Optimization (GRPO). However, in the absence of a verifiable reward for \textit{prosody}, GRPO trained on transcription-oriented signals (CER/NLL) lowers error rates yet collapses prosody into monotone, unnatural speech; adding speaker-similarity further destabilizes training and degrades CER. We address this with an \textit{iterative Direct Preference Optimization (DPO)} scheme that uses only a few hundred human-labeled preference pairs per round to directly optimize prosodic naturalness while regularizing to the current model. On \textbf{KoCC-TTS}, a curated dataset of authentic Korean call center interactions capturing task-oriented dialogues, our method attains the highest human preference (ELO) with competitive CER, outperforming GRPO and strong commercial baselines. These results suggest that when prosody cannot be rewarded automatically, \textit{human preference optimization} offers a practical and data-efficient path to natural and robust TTS. The demo page is available at \href{https://tts.ch.dev}

Authors:Steve Huntsman
Title: Automatic coherence-driven inference on arguments
Abstract:
Inconsistencies are ubiquitous in law, administration, and jurisprudence. Though a cure is too much to hope for, we propose a technological remedy. Large language models (LLMs) can accurately extract propositions from arguments and compile them into natural data structures that enable coherence-driven inference (CDI) via combinatorial optimization. This neurosymbolic architecture naturally separates concerns and enables meaningful judgments about the coherence of arguments that can inform legislative and policy analysis and legal reasoning.

Authors:Yuzhen Zhou, Jiajun Li, Yusheng Su, Gowtham Ramesh, Zilin Zhu, Xiang Long, Chenyang Zhao, Jin Pan, Xiaodong Yu, Ze Wang, Kangrui Du, Jialian Wu, Ximeng Sun, Jiang Liu, Qiaolin Yu, Hao Chen, Zicheng Liu, Emad Barsoum
Title: APRIL: Active Partial Rollouts in Reinforcement Learning to Tame Long-tail Generation
Abstract:
Reinforcement learning (RL) has become a cornerstone in advancing large-scale pre-trained language models (LLMs). Successive generations, including GPT-o series, DeepSeek-R1, Kimi-K1.5, Grok 4, and GLM-4.5, have relied on large-scale RL training to enhance reasoning and coding capabilities. To meet the community's growing RL needs, numerous RL frameworks have been proposed. However, RL training remains computationally expensive, with rollout generation accounting for more than 90% of total runtime. In addition, its efficiency is often constrained by the long-tail distribution of rollout response lengths, where a few lengthy responses stall entire batches, leaving GPUs idle and underutilized. As model and rollout sizes continue to grow, this bottleneck increasingly limits scalability. To address this challenge, we propose Active Partial Rollouts in Reinforcement Learning (APRIL), which mitigates long-tail inefficiency. In the rollout phase, APRIL over-provisions rollout requests, terminates once the target number of responses is reached, and recycles incomplete responses for continuation in future steps. This strategy ensures that no rollouts are discarded while substantially reducing GPU idle time. Experiments show that APRIL improves rollout throughput by 22.5% on average (at most 44%) across commonly used RL algorithms (GRPO, DAPO, GSPO), accelerates convergence, and achieves 2.1% on average(at most 8%) higher final accuracy across tasks. Moreover, APRIL is both framework and hardware agnostic, already integrated into the slime RL framework, and deployable on NVIDIA and AMD GPUs alike. Taken together, this work unifies system-level and algorithmic considerations in proposing APRIL, with the aim of advancing RL training efficiency and inspiring further optimizations in RL systems. Our codebase is available at https://github.com/RLsys-Foundation/APRIL

Authors:Mohammad Hosseini, Maryam M. Shanechi
Title: Dynamical Modeling of Behaviorally Relevant Spatiotemporal Patterns in Neural Imaging Data
Abstract:
High-dimensional imaging of neural activity, such as widefield calcium and functional ultrasound imaging, provide a rich source of information for understanding the relationship between brain activity and behavior. Accurately modeling neural dynamics in these modalities is crucial for understanding this relationship but is hindered by the high-dimensionality, complex spatiotemporal dependencies, and prevalent behaviorally irrelevant dynamics in these modalities. Existing dynamical models often employ preprocessing steps to obtain low-dimensional representations from neural image modalities. However, this process can discard behaviorally relevant information and miss spatiotemporal structure. We propose SBIND, a novel data-driven deep learning framework to model spatiotemporal dependencies in neural images and disentangle their behaviorally relevant dynamics from other neural dynamics. We validate SBIND on widefield imaging datasets, and show its extension to functional ultrasound imaging, a recent modality whose dynamical modeling has largely remained unexplored. We find that our model effectively identifies both local and long-range spatial dependencies across the brain while also dissociating behaviorally relevant neural dynamics. Doing so, SBIND outperforms existing models in neural-behavioral prediction. Overall, SBIND provides a versatile tool for investigating the neural mechanisms underlying behavior using imaging modalities.

Authors:Daniel Kaiser, Arnoldo Frigessi, Ali Ramezani-Kebrya, Benjamin Ricaud
Title: CogniLoad: A Synthetic Natural Language Reasoning Benchmark With Tunable Length, Intrinsic Difficulty, and Distractor Density
Abstract:
Current benchmarks for long-context reasoning in Large Language Models (LLMs) often blur critical factors like intrinsic task complexity, distractor interference, and task length. To enable more precise failure analysis, we introduce CogniLoad, a novel synthetic benchmark grounded in Cognitive Load Theory (CLT). CogniLoad generates natural-language logic puzzles with independently tunable parameters that reflect CLT's core dimensions: intrinsic difficulty ($d$) controls intrinsic load; distractor-to-signal ratio ($ρ$) regulates extraneous load; and task length ($N$) serves as an operational proxy for conditions demanding germane load. Evaluating 22 SotA reasoning LLMs, CogniLoad reveals distinct performance sensitivities, identifying task length as a dominant constraint and uncovering varied tolerances to intrinsic complexity and U-shaped responses to distractor ratios. By offering systematic, factorial control over these cognitive load dimensions, CogniLoad provides a reproducible, scalable, and diagnostically rich tool for dissecting LLM reasoning limitations and guiding future model development.

Authors:Nikolai Skripko
Title: Instruction-Following Evaluation in Function Calling for Large Language Models
Abstract:
Function calling is a core capability of large language models, essential for AI agents. Existing benchmarks such as the Berkeley Function Calling Leaderboard (BFCL), tau^2-Bench (arXiv:2506.07982), and ACEBench (arXiv:2501.12851) evaluate argument correctness but do not test adherence to format instructions embedded in parameter descriptions, such as enclosing values in double quotes or using ISO date formats. We introduce IFEval-FC, a benchmark inspired by IFEval (arXiv:2311.07911) that assesses precise instruction following in function calling. IFEval-FC encodes verifiable formats directly within JSON schema descriptions, for example specifying that a value must not contain punctuation. It includes 750 test cases, each consisting of a function with an embedded format for one of its input parameters and a corresponding user query. Evaluation is fully algorithmic, ensuring objectivity, reproducibility, and scalability. Our results show that even state-of-the-art proprietary models, including GPT-5 and Claude 4.1 Opus, frequently fail to follow basic formatting rules, highlighting a practical limitation for real-world agent systems. The complete codebase and data are publicly available at https://github.com/Skripkon/IFEval-FC.

Authors:Mehrdad Moradi, Shengzhe Chen, Hao Yan, Kamran Paynabar
Title: A Single Image Is All You Need: Zero-Shot Anomaly Localization Without Training Data
Abstract:
Anomaly detection in images is typically addressed by learning from collections of training data or relying on reference samples. In many real-world scenarios, however, such training data may be unavailable, and only the test image itself is provided. We address this zero-shot setting by proposing a single-image anomaly localization method that leverages the inductive bias of convolutional neural networks, inspired by Deep Image Prior (DIP). Our method is named Single Shot Decomposition Network (SSDnet). Our key assumption is that natural images often exhibit unified textures and patterns, and that anomalies manifest as localized deviations from these repetitive or stochastic patterns. To learn the deep image prior, we design a patch-based training framework where the input image is fed directly into the network for self-reconstruction, rather than mapping random noise to the image as done in DIP. To avoid the model simply learning an identity mapping, we apply masking, patch shuffling, and small Gaussian noise. In addition, we use a perceptual loss based on inner-product similarity to capture structure beyond pixel fidelity. Our approach needs no external training data, labels, or references, and remains robust in the presence of noise or missing pixels. SSDnet achieves 0.99 AUROC and 0.60 AUPRC on MVTec-AD and 0.98 AUROC and 0.67 AUPRC on the fabric dataset, outperforming state-of-the-art methods. The implementation code will be released at https://github.com/mehrdadmoradi124/SSDnet

Authors:Jesse Zhang, Marius Memmel, Kevin Kim, Dieter Fox, Jesse Thomason, Fabio Ramos, Erdem Bıyık, Abhishek Gupta, Anqi Li
Title: PEEK: Guiding and Minimal Image Representations for Zero-Shot Generalization of Robot Manipulation Policies
Abstract:
Robotic manipulation policies often fail to generalize because they must simultaneously learn where to attend, what actions to take, and how to execute them. We argue that high-level reasoning about where and what can be offloaded to vision-language models (VLMs), leaving policies to specialize in how to act. We present PEEK (Policy-agnostic Extraction of Essential Keypoints), which fine-tunes VLMs to predict a unified point-based intermediate representation: 1. end-effector paths specifying what actions to take, and 2. task-relevant masks indicating where to focus. These annotations are directly overlaid onto robot observations, making the representation policy-agnostic and transferable across architectures. To enable scalable training, we introduce an automatic annotation pipeline, generating labeled data across 20+ robot datasets spanning 9 embodiments. In real-world evaluations, PEEK consistently boosts zero-shot generalization, including a 41.4x real-world improvement for a 3D policy trained only in simulation, and 2-3.5x gains for both large VLAs and small manipulation policies. By letting VLMs absorb semantic and visual complexity, PEEK equips manipulation policies with the minimal cues they need--where, what, and how. Website at https://peek-robot.github.io/.

Authors:Rui Liu, Zikang Wang, Peng Gao, Yu Shen, Pratap Tokekar, Ming Lin
Title: MMCD: Multi-Modal Collaborative Decision-Making for Connected Autonomy with Knowledge Distillation
Abstract:
Autonomous systems have advanced significantly, but challenges persist in accident-prone environments where robust decision-making is crucial. A single vehicle's limited sensor range and obstructed views increase the likelihood of accidents. Multi-vehicle connected systems and multi-modal approaches, leveraging RGB images and LiDAR point clouds, have emerged as promising solutions. However, existing methods often assume the availability of all data modalities and connected vehicles during both training and testing, which is impractical due to potential sensor failures or missing connected vehicles. To address these challenges, we introduce a novel framework MMCD (Multi-Modal Collaborative Decision-making) for connected autonomy. Our framework fuses multi-modal observations from ego and collaborative vehicles to enhance decision-making under challenging conditions. To ensure robust performance when certain data modalities are unavailable during testing, we propose an approach based on cross-modal knowledge distillation with a teacher-student model structure. The teacher model is trained with multiple data modalities, while the student model is designed to operate effectively with reduced modalities. In experiments on $\textit{connected autonomous driving with ground vehicles}$ and $\textit{aerial-ground vehicles collaboration}$, our method improves driving safety by up to ${\it 20.7}\%$, surpassing the best-existing baseline in detecting potential accidents and making safe driving decisions. More information can be found on our website https://ruiiu.github.io/mmcd.

Authors:Jialong Mai, Jinxin Ji, Xiaofen Xing, Chen Yang, Weidong Chen, Jingyuan Xing, Xiangmin Xu
Title: MNV-17: A High-Quality Performative Mandarin Dataset for Nonverbal Vocalization Recognition in Speech
Abstract:
Mainstream Automatic Speech Recognition (ASR) systems excel at transcribing lexical content, but largely fail to recognize nonverbal vocalizations (NVs) embedded in speech, such as sighs, laughs, and coughs. This capability is important for a comprehensive understanding of human communication, as NVs convey crucial emotional and intentional cues. Progress in NV-aware ASR has been hindered by the lack of high-quality, well-annotated datasets. To address this gap, we introduce MNV-17, a 7.55-hour performative Mandarin speech dataset. Unlike most existing corpora that rely on model-based detection, MNV-17's performative nature ensures high-fidelity, clearly articulated NV instances. To the best of our knowledge, MNV-17 provides the most extensive set of nonverbal vocalization categories, comprising 17 distinct and well-balanced classes of common NVs. We benchmarked MNV-17 on four mainstream ASR architectures, evaluating their joint performance on semantic transcription and NV classification. The dataset and the pretrained model checkpoints will be made publicly available to facilitate future research in expressive ASR.

Authors:Ling Yue, Nithin Somasekharan, Tingwen Zhang, Yadi Cao, Shaowu Pan
Title: Foam-Agent 2.0: An End-to-End Composable Multi-Agent Framework for Automating CFD Simulation in OpenFOAM
Abstract:
Computational Fluid Dynamics (CFD) is an essential simulation tool in engineering, yet its steep learning curve and complex manual setup create significant barriers. To address these challenges, we introduce Foam-Agent, a multi-agent framework that automates the entire end-to-end OpenFOAM workflow from a single natural language prompt. Our key innovations address critical gaps in existing systems: 1. An Comprehensive End-to-End Simulation Automation: Foam-Agent is the first system to manage the full simulation pipeline, including advanced pre-processing with a versatile Meshing Agent capable of handling external mesh files and generating new geometries via Gmsh, automatic generation of HPC submission scripts, and post-simulation visualization via ParaView. 2. Composable Service Architecture: Going beyond a monolithic agent, the framework uses Model Context Protocol (MCP) to expose its core functions as discrete, callable tools. This allows for flexible integration and use by other agentic systems, such as Claude-code, for more exploratory workflows. 3. High-Fidelity Configuration Generation: We achieve superior accuracy through a Hierarchical Multi-Index RAG for precise context retrieval and a dependency-aware generation process that ensures configuration consistency. Evaluated on a benchmark of 110 simulation tasks, Foam-Agent achieves an 88.2% success rate with Claude 3.5 Sonnet, significantly outperforming existing frameworks (55.5% for MetaOpenFOAM). Foam-Agent dramatically lowers the expertise barrier for CFD, demonstrating how specialized multi-agent systems can democratize complex scientific computing. The code is public at https://github.com/csml-rpi/Foam-Agent.

Authors:Kairong Han, Weidong Huang, Taiyang Zhou, Peng Zhen, Kun Kuang
Title: Augmenting Limited and Biased RCTs through Pseudo-Sample Matching-Based Observational Data Fusion Method
Abstract:
In the online ride-hailing pricing context, companies often conduct randomized controlled trials (RCTs) and utilize uplift models to assess the effect of discounts on customer orders, which substantially influences competitive market outcomes. However, due to the high cost of RCTs, the proportion of trial data relative to observational data is small, which only accounts for 0.65\% of total traffic in our context, resulting in significant bias when generalizing to the broader user base. Additionally, the complexity of industrial processes reduces the quality of RCT data, which is often subject to heterogeneity from potential interference and selection bias, making it difficult to correct. Moreover, existing data fusion methods are challenging to implement effectively in complex industrial settings due to the high dimensionality of features and the strict assumptions that are hard to verify with real-world data. To address these issues, we propose an empirical data fusion method called pseudo-sample matching. By generating pseudo-samples from biased, low-quality RCT data and matching them with the most similar samples from large-scale observational data, the method expands the RCT dataset while mitigating its heterogeneity. We validated the method through simulation experiments, conducted offline and online tests using real-world data. In a week-long online experiment, we achieved a 0.41\% improvement in profit, which is a considerable gain when scaled to industrial scenarios with hundreds of millions in revenue. In addition, we discuss the harm to model training, offline evaluation, and online economic benefits when the RCT data quality is not high, and emphasize the importance of improving RCT data quality in industrial scenarios. Further details of the simulation experiments can be found in the GitHub repository https://github.com/Kairong-Han/Pseudo-Matching.

Authors:Yifan Xu, Xiao Liu, Xinghan Liu, Jiaqi Fu, Hanchen Zhang, Bohao Jing, Shudan Zhang, Yuting Wang, Wenyi Zhao, Yuxiao Dong
Title: MobileRL: Online Agentic Reinforcement Learning for Mobile GUI Agents
Abstract:
Building general-purpose graphical user interface (GUI) agents has become increasingly promising with the progress in vision language models. However, developing effective mobile GUI agents with reinforcement learning (RL) remains challenging due to the heavy-tailed distribution of task difficulty and the inefficiency of large-scale environment sampling. We present an online agentic reinforcement learning framework MOBILERL to enhance GUI agents in mobile environments. Its core component is the Difficulty-Adaptive GRPO (ADAGRPO) algorithm. In ADAGRPO, we design difficulty-adaptive positive replay and failure curriculum filtering to adapt the model to different task difficulties. We introduce the shortest path reward adjustment strategy to reshape rewards concerning the task length in multi-turn agentic tasks. Those strategies jointly stabilize RL training, improve sample efficiency, and generate strong performance across diverse mobile apps and tasks. We apply MOBILERL to two open models (Qwen2.5-VL-7B-Instruct and GLM-4.1V-9B-Base). The resultant MOBILERL-9B model achieves state-of-the-art results in terms of success rates on both AndroidWorld (75.8%) and AndroidLab (46.8%). The MOBILERL framework is adopted in the AutoGLM products, and also open-sourced at https://github.com/THUDM/MobileRL.

Authors:Nathan Egbuna, Saatvik Gaur, Sunishchal Dev, Ashwinee Panda, Maheep Chaudhary
Title: Amortized Latent Steering: Low-Cost Alternative to Test-Time Optimization
Abstract:
Test-time optimization remains impractical at scale due to prohibitive inference costs\textemdash techniques like iterative refinement and multi-step verification can require $10$--$100\times$ more compute per query than standard decoding. Latent space test-time optimization methods like LatentSeek offer a more direct approach by steering hidden representations, but still demand expensive per-query optimization loops with multiple backward passes. We propose Amortized Latent Steering (ALS), which collapses this iterative optimization into a single offline-computed vector applied at constant cost during inference. ALS computes the mean difference between hidden states from successful versus unsuccessful generations, then uses this direction to calibrate the model's hidden representations: when decoding drifts away from the success manifold, ALS nudges activations back toward it. Across GSM8K and MATH-$500$ benchmarks, ALS achieves $2$--$5\times$ speedup over iterative methods while matching or surpassing greedy Chain-of-Thought (CoT) and Self-Consistency baselines, yielding up to 101\% improvement in efficiency--accuracy trade-off. These results show that much of latent optimization's benefit can be captured offline, making sophisticated reasoning techniques viable for production deployment. Code is available at~\href{https://anonymous.4open.science/r/steering-17F2}{https://anonymous.4open.science/r/steering-17F2}

Authors:Ye Liu, Zongyang Ma, Junfu Pu, Zhongang Qi, Yang Wu, Ying Shan, Chang Wen Chen
Title: UniPixel: Unified Object Referring and Segmentation for Pixel-Level Visual Reasoning
Abstract:
Recent advances in Large Multi-modal Models (LMMs) have demonstrated their remarkable success as general-purpose multi-modal assistants, with particular focuses on holistic image- and video-language understanding. Conversely, less attention has been given to scaling fine-grained pixel-level understanding capabilities, where the models are expected to realize pixel-level alignment between visual signals and language semantics. Some previous studies have applied LMMs to related tasks such as region-level captioning and referring expression segmentation. However, these models are limited to performing either referring or segmentation tasks independently and fail to integrate these fine-grained perception capabilities into visual reasoning. To bridge this gap, we propose UniPixel, a large multi-modal model capable of flexibly comprehending visual prompt inputs and generating mask-grounded responses. Our model distinguishes itself by seamlessly integrating pixel-level perception with general visual understanding capabilities. Specifically, UniPixel processes visual prompts and generates relevant masks on demand, and performs subsequent reasoning conditioning on these intermediate pointers during inference, thereby enabling fine-grained pixel-level reasoning. The effectiveness of our approach has been verified on 10 benchmarks across a diverse set of tasks, including pixel-level referring/segmentation and object-centric understanding in images/videos. A novel PixelQA task that jointly requires referring, segmentation, and question answering is also designed to verify the flexibility of our method.

Authors:Richard Cornelius Suwandi, Feng Yin, Juntao Wang, Renjie Li, Tsung-Hui Chang, Sergios Theodoridis
Title: Adaptive Kernel Design for Bayesian Optimization Is a Piece of CAKE with LLMs
Abstract:
The efficiency of Bayesian optimization (BO) relies heavily on the choice of the Gaussian process (GP) kernel, which plays a central role in balancing exploration and exploitation under limited evaluation budgets. Traditional BO methods often rely on fixed or heuristic kernel selection strategies, which can result in slow convergence or suboptimal solutions when the chosen kernel is poorly suited to the underlying objective function. To address this limitation, we propose a freshly-baked Context-Aware Kernel Evolution (CAKE) to enhance BO with large language models (LLMs). Concretely, CAKE leverages LLMs as the crossover and mutation operators to adaptively generate and refine GP kernels based on the observed data throughout the optimization process. To maximize the power of CAKE, we further propose BIC-Acquisition Kernel Ranking (BAKER) to select the most effective kernel through balancing the model fit measured by the Bayesian information criterion (BIC) with the expected improvement at each iteration of BO. Extensive experiments demonstrate that our fresh CAKE-based BO method consistently outperforms established baselines across a range of real-world tasks, including hyperparameter optimization, controller tuning, and photonic chip design. Our code is publicly available at https://github.com/richardcsuwandi/cake.

Authors:Aniello Panariello, Daniel Marczak, Simone Magistri, Angelo Porrello, Bartłomiej Twardowski, Andrew D. Bagdanov, Simone Calderara, Joost van de Weijer
Title: Accurate and Efficient Low-Rank Model Merging in Core Space
Abstract:
In this paper, we address the challenges associated with merging low-rank adaptations of large neural networks. With the rise of parameter-efficient adaptation techniques, such as Low-Rank Adaptation (LoRA), model fine-tuning has become more accessible. While fine-tuning models with LoRA is highly efficient, existing merging methods often sacrifice this efficiency by merging fully-sized weight matrices. We propose the Core Space merging framework, which enables the merging of LoRA-adapted models within a common alignment basis, thereby preserving the efficiency of low-rank adaptation while substantially improving accuracy across tasks. We further provide a formal proof that projection into Core Space ensures no loss of information and provide a complexity analysis showing the efficiency gains. Extensive empirical results demonstrate that Core Space significantly improves existing merging techniques and achieves state-of-the-art results on both vision and language tasks while utilizing a fraction of the computational resources. Codebase is available at https://github.com/apanariello4/core-space-merging.

Authors:Jin Xu, Zhifang Guo, Hangrui Hu, Yunfei Chu, Xiong Wang, Jinzheng He, Yuxuan Wang, Xian Shi, Ting He, Xinfa Zhu, Yuanjun Lv, Yongqi Wang, Dake Guo, He Wang, Linhan Ma, Pei Zhang, Xinyu Zhang, Hongkun Hao, Zishan Guo, Baosong Yang, Bin Zhang, Ziyang Ma, Xipin Wei, Shuai Bai, Keqin Chen, Xuejing Liu, Peng Wang, Mingkun Yang, Dayiheng Liu, Xingzhang Ren, Bo Zheng, Rui Men, Fan Zhou, Bowen Yu, Jianxin Yang, Le Yu, Jingren Zhou, Junyang Lin
Title: Qwen3-Omni Technical Report
Abstract:
We present Qwen3-Omni, a single multimodal model that, for the first time, maintains state-of-the-art performance across text, image, audio, and video without any degradation relative to single-modal counterparts. Qwen3-Omni matches the performance of same-sized single-modal models within the Qwen series and excels particularly on audio tasks. Across 36 audio and audio-visual benchmarks, Qwen3-Omni achieves open-source SOTA on 32 benchmarks and overall SOTA on 22, outperforming strong closed-source models such as Gemini-2.5-Pro, Seed-ASR, and GPT-4o-Transcribe. Qwen3-Omni adopts a Thinker-Talker MoE architecture that unifies perception and generation across text, images, audio, and video, yielding fluent text and natural real-time speech. It supports text interaction in 119 languages, speech understanding in 19 languages, and speech generation in 10 languages. To reduce first-packet latency in streaming synthesis, Talker autoregressively predicts discrete speech codecs using a multi-codebook scheme. Leveraging the representational capacity of these codebooks, we replace computationally intensive block-wise diffusion with a lightweight causal ConvNet, enabling streaming from the first codec frame. In cold-start settings, Qwen3-Omni achieves a theoretical end-to-end first-packet latency of 234 ms. To further strengthen multimodal reasoning, we introduce a Thinking model that explicitly reasons over inputs from any modality. Since the research community currently lacks a general-purpose audio captioning model, we fine-tuned Qwen3-Omni-30B-A3B to obtain Qwen3-Omni-30B-A3B-Captioner, which produces detailed, low-hallucination captions for arbitrary audio inputs. Qwen3-Omni-30B-A3B, Qwen3-Omni-30B-A3B-Thinking, and Qwen3-Omni-30B-A3B-Captioner are publicly released under the Apache 2.0 license.

Authors:Shenwei Kang, Xin Zhang, Wen Liu, Bin Li, Yujie Liu, Bo Gao
Title: DA-Mamba: Dialogue-aware selective state-space model for multimodal engagement estimation
Abstract:
Human engagement estimation in conversational scenarios is essential for applications such as adaptive tutoring, remote healthcare assessment, and socially aware human--computer interaction. Engagement is a dynamic, multimodal signal conveyed by facial expressions, speech, gestures, and behavioral cues over time. In this work we introduce DA-Mamba, a dialogue-aware multimodal architecture that replaces attention-heavy dialogue encoders with Mamba-based selective state-space processing to achieve linear time and memory complexity while retaining expressive cross-modal reasoning. We design a Mamba dialogue-aware selective state-space model composed of three core modules: a Dialogue-Aware Encoder, and two Mamba-based fusion mechanisms: Modality-Group Fusion and Partner-Group Fusion, these modules achieve expressive dialogue understanding. Extensive experiments on three standard benchmarks (NoXi, NoXi-Add, and MPIIGI) show that DA-Mamba surpasses prior state-of-the-art (SOTA) methods in concordance correlation coefficient (CCC), while reducing training time and peak memory; these gains enable processing much longer sequences and facilitate real-time deployment in resource-constrained, multi-party conversational settings. The source code will be available at: https://github.com/kksssssss-ssda/MMEA.

Authors:Xiyuan Zhou, Xinlei Wang, Yirui He, Yang Wu, Ruixi Zou, Yuheng Cheng, Yulu Xie, Wenxuan Liu, Huan Zhao, Yan Xu, Jinjin Gu, Junhua Zhao
Title: EngiBench: A Benchmark for Evaluating Large Language Models on Engineering Problem Solving
Abstract:
Large language models (LLMs) have shown strong performance on mathematical reasoning under well-posed conditions. However, real-world engineering problems require more than mathematical symbolic computation -- they need to deal with uncertainty, context, and open-ended scenarios. Existing benchmarks fail to capture these complexities. We introduce EngiBench, a hierarchical benchmark designed to evaluate LLMs on solving engineering problems. It spans three levels of increasing difficulty (foundational knowledge retrieval, multi-step contextual reasoning, and open-ended modeling) and covers diverse engineering subfields. To facilitate a deeper understanding of model performance, we systematically rewrite each problem into three controlled variants (perturbed, knowledge-enhanced, and math abstraction), enabling us to separately evaluate the model's robustness, domain-specific knowledge, and mathematical reasoning abilities. Experiment results reveal a clear performance gap across levels: models struggle more as tasks get harder, perform worse when problems are slightly changed, and fall far behind human experts on the high-level engineering tasks. These findings reveal that current LLMs still lack the high-level reasoning needed for real-world engineering, highlighting the need for future models with deeper and more reliable problem-solving capabilities. Our source code and data are available at https://github.com/EngiBench/EngiBench.

Authors:Pingyi Chen, Yujing Lou, Shen Cao, Jinhui Guo, Lubin Fan, Yue Wu, Lin Yang, Lizhuang Ma, Jieping Ye
Title: SD-VLM: Spatial Measuring and Understanding with Depth-Encoded Vision-Language Models
Abstract:
While vision language models (VLMs) excel in 2D semantic visual understanding, their ability to quantitatively reason about 3D spatial relationships remains under-explored, due to the deficiency of 2D images' spatial representation ability. In this paper, we analyze the problem hindering VLMs' spatial understanding abilities and propose SD-VLM, a novel framework that significantly enhances fundamental spatial perception abilities of VLMs through two key contributions: (1) propose Massive Spatial Measuring and Understanding (MSMU) dataset with precise spatial annotations, and (2) introduce a simple depth positional encoding method strengthening VLMs' spatial awareness. MSMU dataset covers massive quantitative spatial tasks with 700K QA pairs, 2.5M physical numerical annotations, and 10K chain-of-thought augmented samples. We have trained SD-VLM, a strong generalist VLM which shows superior quantitative spatial measuring and understanding capability. SD-VLM not only achieves state-of-the-art performance on our proposed MSMU-Bench, but also shows spatial generalization abilities on other spatial understanding benchmarks including Q-Spatial and SpatialRGPT-Bench. Extensive experiments demonstrate that SD-VLM outperforms GPT-4o and Intern-VL3-78B by 26.91% and 25.56% respectively on MSMU-Bench. Code and models are released at https://github.com/cpystan/SD-VLM.

Authors:Yuzhen Lei, Hongbin Xie, Jiaxing Zhao, Shuangxue Liu, Xuan Song
Title: MSCoRe: A Benchmark for Multi-Stage Collaborative Reasoning in LLM Agents
Abstract:
Large Language Models (LLMs) have excelled in question-answering (QA) tasks within single domains. However, their reasoning and coordination capabilities in complex, multi-stage scenarios remain underexplored. Existing benchmarks typically focus on isolated tasks or narrow domains, overlooking models' abilities for multi-stage collaboration and optimization without explicit external guidance. To bridge this gap, we propose \textbf{MSCoRe}, a novel benchmark comprising 126696 domain-specific QA instances spanning scenarios in automotive, pharmaceutical, electronics, and energy sectors. The dataset is created using a structured three-phase pipeline: dynamic sampling, iterative question-answer generation, and a multi-level quality assessment to ensure data quality. Tasks are further categorized into three difficulty levels according to stage coverage and complexity. With MSCoRe, we have conducted a comprehensive evaluation of various state-of-the-art LLM agents. The commercial models performed best across all tasks and scenarios, but a notable gap in ROUGE scores remains between simple and complex tasks. We also tested the models' robustness and found that their performance is negatively affected by noisy data. MSCoRe provides a valuable new resource for the community to evaluate and improve multi-stage reasoning in LLM agents. The code and data are available at https://github.com/D3E0-source/MSCoRE.

Authors:Qinghua Lin, Guang-Hai Liu, Zuoyong Li, Yang Li, Yuting Jiang, Xiang Wu
Title: Multimodal Medical Image Classification via Synergistic Learning Pre-training
Abstract:
Multimodal pathological images are usually in clinical diagnosis, but computer vision-based multimodal image-assisted diagnosis faces challenges with modality fusion, especially in the absence of expert-annotated data. To achieve the modality fusion in multimodal images with label scarcity, we propose a novel ``pretraining + fine-tuning" framework for multimodal semi-supervised medical image classification. Specifically, we propose a synergistic learning pretraining framework of consistency, reconstructive, and aligned learning. By treating one modality as an augmented sample of another modality, we implement a self-supervised learning pre-train, enhancing the baseline model's feature representation capability. Then, we design a fine-tuning method for multimodal fusion. During the fine-tuning stage, we set different encoders to extract features from the original modalities and provide a multimodal fusion encoder for fusion modality. In addition, we propose a distribution shift method for multimodal fusion features, which alleviates the prediction uncertainty and overfitting risks caused by the lack of labeled samples. We conduct extensive experiments on the publicly available gastroscopy image datasets Kvasir and Kvasirv2. Quantitative and qualitative results demonstrate that the proposed method outperforms the current state-of-the-art classification methods. The code will be released at: https://github.com/LQH89757/MICS.

Authors:Xingqi Wang, Yiming Cui, Xin Yao, Shijin Wang, Guoping Hu, Xiaoyu Qin
Title: ChartHal: A Fine-grained Framework Evaluating Hallucination of Large Vision Language Models in Chart Understanding
Abstract:
Large Vision-Language Models (LVLMs) have recently demonstrated remarkable progress, yet hallucination remains a critical barrier, particularly in chart understanding, which requires sophisticated perceptual and cognitive abilities as well as rigorous factual accuracy. While prior work has investigated hallucinations and chart comprehension independently, their intersection remains largely unexplored. To address this gap, we present ChartHal, a benchmark that features a fine-grained taxonomy of hallucination scenarios in chart understanding, along with a human-validated dataset of 1,062 samples. Our evaluation shows that state-of-the-art LVLMs suffer from severe hallucinations on ChartHal, including proprietary models such as GPT-5 and o4-mini, which achieve only 34.46% and 22.79% accuracy, respectively. Further analysis reveals that questions involving information absent from or contradictory to charts are especially likely to trigger hallucinations, underscoring the urgent need for more robust mitigation strategies. Code and data are available at https://github.com/ymcui/ChartHal .

Authors:Haofeng Huang, Yifei Han, Long Zhang, Bin Li, Yangfan He
Title: MVCL-DAF++: Enhancing Multimodal Intent Recognition via Prototype-Aware Contrastive Alignment and Coarse-to-Fine Dynamic Attention Fusion
Abstract:
Multimodal intent recognition (MMIR) suffers from weak semantic grounding and poor robustness under noisy or rare-class conditions. We propose MVCL-DAF++, which extends MVCL-DAF with two key modules: (1) Prototype-aware contrastive alignment, aligning instances to class-level prototypes to enhance semantic consistency; and (2) Coarse-to-fine attention fusion, integrating global modality summaries with token-level features for hierarchical cross-modal interaction. On MIntRec and MIntRec2.0, MVCL-DAF++ achieves new state-of-the-art results, improving rare-class recognition by +1.05\% and +4.18\% WF1, respectively. These results demonstrate the effectiveness of prototype-guided learning and coarse-to-fine fusion for robust multimodal understanding. The source code is available at https://github.com/chr1s623/MVCL-DAF-PlusPlus.

Authors:Kang-il Lee, Jahyun Koo, Seunghyun Yoon, Minbeom Kim, Hyukhun Koh, Dongryeol Lee, Kyomin Jung
Title: Program Synthesis via Test-Time Transduction
Abstract:
We introduce transductive program synthesis, a new formulation of the program synthesis task that explicitly leverages test inputs during synthesis. While prior approaches to program synthesis--whether based on natural language descriptions or input-output examples--typically aim to generalize from training examples, they often struggle with robustness, especially in real-world settings where training examples are limited and test inputs involve various edge cases. To address this, we propose a novel framework that improves robustness by treating synthesis as an active learning over a finite hypothesis class defined by programs' outputs. We use an LLM to predict outputs for selected test inputs and eliminate inconsistent hypotheses, where the inputs are chosen via a greedy maximin algorithm to minimize the number of LLM queries required. We evaluate our approach on four benchmarks: Playgol, MBPP+, 1D-ARC, and programmatic world modeling on MiniGrid. We demonstrate that our method significantly improves program synthesis in both accuracy and efficiency. We release our code at https://github.com/klee972/SYNTRA.

Authors:Zhizhang FU, Guangsheng Bao, Hongbo Zhang, Chenkai Hu, Yue Zhang
Title: Correlation or Causation: Analyzing the Causal Structures of LLM and LRM Reasoning Process
Abstract:
LLMs suffer from critical reasoning issues such as unfaithfulness, bias, and inconsistency, since they lack robust causal underpinnings and may rely on superficial correlations rather than genuine understanding. Successive LRMs have emerged as a promising alternative, leveraging advanced training techniques such as reinforcement learning (RL) and distillation to improve task accuracy. However, the impact of these training methods on causality remains largely unexplored. In this study, we conduct a systematic causal analysis on LLMs and LRMs, examining structural causal models (SCMs) of four key variables: problem instruction (Z), thinking process (T), reasoning steps (X), and answer (Y). Our findings reveal that RLVR-trained LRMs exhibit enhanced causal reasoning capabilities, aligning more closely with ideal causal structures, while LLMs and distilled LRMs fail to address causality-related deficiencies. Our further investigation indicates that RLVR reduces spurious correlations and strengthens genuine causal patterns, thereby mitigating unfaithfulness and bias. In addition, our inspection on the dynamics of the RLVR training process observes a high correlation between reduced spurious features and improved causal structures, where the causal relationships consistently improve in the training process. This study contributes to the understanding of causality in reasoning models, highlights the critical role of RLVR in enhancing causal reasoning, and provides insights for designing future AI systems with stronger causal foundations. We release our code and data at https://github.com/Harryking1999/CoT_Causal_Analysis.

Authors:Weihua Du, Hailei Gong, Zhan Ling, Kang Liu, Lingfeng Shen, Xuesong Yao, Yufei Xu, Dingyuan Shi, Yiming Yang, Jiecao Chen
Title: Generalizable End-to-End Tool-Use RL with Synthetic CodeGym
Abstract:
Tool-augmented large language models (LLMs), hereafter LLM agents, leverage external tools to solve diverse tasks and interface with the real world. However, current training practices largely rely on supervised fine-tuning (SFT) over static trajectories or reinforcement learning (RL) on narrow tasks, and generalize poorly beyond development settings, leading to brittleness with new tools and unseen workflows. Because code execution reflects many structures of real-world workflows, coding problems provide a natural basis for building agent training environments. Motivated by this, we introduce CodeGym, a scalable framework that synthesizes diverse, verifiable, and controllable multi-turn tool-use environments for agent RL, enabling LLM agents to explore and master various workflows actively. CodeGym rewrites static coding problems into interactive environments by extracting atomic functions or logic into callable tools, yielding verifiable tasks that span various tool-execution workflows. Models of varying sizes and chain-of-thought configurations, trained in CodeGym, exhibit consistent out-of-distribution generalizability; for example, Qwen2.5-32B-Instruct achieves an absolute accuracy gain of 8.7 points on the OOD benchmark $τ$-Bench. These results highlight CodeGym as a step toward scalable general-purpose RL environments that align with real-world agent workflows.

Authors:Zhuofan Chen, Jiyuan He, Yichi Zhang, Xing Hu, Haoxing Wen, Jun Bai, Wenge Rong
Title: CogAtom: From Cognitive Atoms to Olympiad-level Mathematical Reasoning in Large Language Models
Abstract:
Mathematical reasoning poses significant challenges for Large Language Models (LLMs) due to its demand for multi-step reasoning and abstract conceptual integration. While recent test-time scaling techniques rely heavily on high-quality, challenging problems, the scarcity of Olympiad-level math problems remains a bottleneck. We introduce CogAtom, a novel cognitive atom-based framework for synthesizing mathematically rigorous and cognitively diverse problems. Unlike prior approaches, CogAtom models problem construction as a process of selecting and recombining fundamental reasoning units, cognitive atoms, extracted from human-authored solutions. A diversity-promoting random walk algorithm enables exploration of the cognitive atom space, while a constraint-based recombination mechanism ensures logical soundness and structural validity. The combinatorial nature of the graph structure provides a near-infinite space of reasoning paths, and the walk algorithm systematically explores this space to achieve large-scale synthesis of high-quality problems; meanwhile, by controlling the number of cognitive atoms, we can precisely adjust problem difficulty, ensuring diversity, scalability, and controllability of the generated problems. Experimental results demonstrate that CogAtom outperforms existing methods in accuracy, reasoning depth, and diversity, generating problems that closely match the difficulty of AIME while exceeding it in structural variation. Our work offers a cognitively grounded pathway toward scalable, high-quality math problem generation.Our code is publicly available at https://github.com/Icarus-1111/CogAtom.

Authors:Kabir Hamzah Muhammad, Marawan Elbatel, Yi Qin, Xiaomeng Li
Title: Echo-Path: Pathology-Conditioned Echo Video Generation
Abstract:
Cardiovascular diseases (CVDs) remain the leading cause of mortality globally, and echocardiography is critical for diagnosis of both common and congenital cardiac conditions. However, echocardiographic data for certain pathologies are scarce, hindering the development of robust automated diagnosis models. In this work, we propose Echo-Path, a novel generative framework to produce echocardiogram videos conditioned on specific cardiac pathologies. Echo-Path can synthesize realistic ultrasound video sequences that exhibit targeted abnormalities, focusing here on atrial septal defect (ASD) and pulmonary arterial hypertension (PAH). Our approach introduces a pathology-conditioning mechanism into a state-of-the-art echo video generator, allowing the model to learn and control disease-specific structural and motion patterns in the heart. Quantitative evaluation demonstrates that the synthetic videos achieve low distribution distances, indicating high visual fidelity. Clinically, the generated echoes exhibit plausible pathology markers. Furthermore, classifiers trained on our synthetic data generalize well to real data and, when used to augment real training sets, it improves downstream diagnosis of ASD and PAH by 7\% and 8\% respectively. Code, weights and dataset are available here https://github.com/Marshall-mk/EchoPathv1

Authors:Junhyeok Lee, Helin Wang, Yaohan Guan, Thomas Thebaud, Laureano Moro-Velazquez, Jesús Villalba, Najim Dehak
Title: MaskVCT: Masked Voice Codec Transformer for Zero-Shot Voice Conversion With Increased Controllability via Multiple Guidances
Abstract:
We introduce MaskVCT, a zero-shot voice conversion (VC) model that offers multi-factor controllability through multiple classifier-free guidances (CFGs). While previous VC models rely on a fixed conditioning scheme, MaskVCT integrates diverse conditions in a single model. To further enhance robustness and control, the model can leverage continuous or quantized linguistic features to enhance intellgibility and speaker similarity, and can use or omit pitch contour to control prosody. These choices allow users to seamlessly balance speaker identity, linguistic content, and prosodic factors in a zero-shot VC setting. Extensive experiments demonstrate that MaskVCT achieves the best target speaker and accent similarities while obtaining competitive word and character error rates compared to existing baselines. Audio samples are available at https://maskvct.github.io/.

Authors:Yuhao Tian, Zheming Yang
Title: SAEC: Scene-Aware Enhanced Edge-Cloud Collaborative Industrial Vision Inspection with Multimodal LLM
Abstract:
Industrial vision inspection requires high accuracy under stringent resource constraints, yet existing approaches face a fundamental trade-off. Multimodal LLMs (MLLMs) deliver strong reasoning capabilities but incur prohibitive computational costs, while lightweight edge models often fail on complex cases. In this paper, we present SAEC, a scene-aware enhanced edge-cloud collaborative industrial vision inspection framework with MLLM. The framework is composed of three synergistic components: (1) Efficient MLLM Fine-Tuning for Complex Defect Inspection, (2) Lightweight Multiscale Scene-Complexity Estimation, and (3) Adaptive Edge-Cloud Scheduler. Together, these modules enable robust defect detection by tailoring multimodal reasoning to scene complexity and dynamically balancing computation between edge and cloud resources. Experimental results on MVTec AD and KSDD2 datasets demonstrate that SAEC attains 85.11% and 82.72% accuracy, surpassing Qwen by 22.1% and 20.8%, and LLaVA by 33.3% and 31.6%. It also reduces runtime by up to 22.4% and cuts energy per correct decision by 40%-74%. The code is available at https://github.com/YuHao-Tian/SAEC.

Authors:Hang Xu, Zang Yu, Yehui Tang, Pengbo Hu, Yuhao Tang, Hao Dong
Title: MCTS-EP: Empowering Embodied Planning with Online Preference Optimization
Abstract:
This paper introduces MCTS-EP, an online learning framework that combines large language models (LLM) with Monte Carlo Tree Search (MCTS) for training embodied agents. MCTS-EP integrates three key components: MCTS-guided exploration for preference data collection, efficient multi-modal reasoning mechanism, and iterative training pipeline based on preference optimization. We theoretically prove that MCTS-EP achieves better performance bounds than conventional on-policy algorithms when the loss function is strongly convex, and demonstrate that it can be formulated as a search-enhanced variant of GAIL. MCTS-EP achieves state-of-the-art performace across serval benchmarks. In ALFWorld, it achieves 92% and 87% success rates for textual and visual tasks. In WebShop, it reaches an average reward of 0.81. MTCS-EP also reduces average interaction steps from from 18.7/19.5 to 10.2/9.9 steps in visual ALFWorld.Code available at: https://github.com/xuhang-2/Embodied-Agent-Planning

Authors:Kunrong Li, Kwan Hui Lim
Title: RALLM-POI: Retrieval-Augmented LLM for Zero-shot Next POI Recommendation with Geographical Reranking
Abstract:
Next point-of-interest (POI) recommendation predicts a user's next destination from historical movements. Traditional models require intensive training, while LLMs offer flexible and generalizable zero-shot solutions but often generate generic or geographically irrelevant results due to missing trajectory and spatial context. To address these issues, we propose RALLM-POI, a framework that couples LLMs with retrieval-augmented generation and self-rectification. We first propose a Historical Trajectory Retriever (HTR) that retrieves relevant past trajectories to serve as contextual references, which are then reranked by a Geographical Distance Reranker (GDR) for prioritizing spatially relevant trajectories. Lastly, an Agentic LLM Rectifier (ALR) is designed to refine outputs through self-reflection. Without additional training, RALLM-POI achieves substantial accuracy gains across three real-world Foursquare datasets, outperforming both conventional and LLM-based baselines. Code is released at https://github.com/LKRcrocodile/RALLM-POI.

Authors:Hang Du, Jiayang Zhang, Guoshun Nan, Wendi Deng, Zhenyan Chen, Chenyang Zhang, Wang Xiao, Shan Huang, Yuqi Pan, Tao Qi, Sicong Leng
Title: From Easy to Hard: The MIR Benchmark for Progressive Interleaved Multi-Image Reasoning
Abstract:
Multi-image Interleaved Reasoning aims to improve Multi-modal Large Language Models (MLLMs) ability to jointly comprehend and reason across multiple images and their associated textual contexts, introducing unique challenges beyond single-image or non-interleaved multi-image tasks. While current multi-image benchmarks overlook interleaved textual contexts and neglect distinct relationships between individual images and their associated texts, enabling models to reason over multi-image interleaved data may significantly enhance their comprehension of complex scenes and better capture cross-modal correlations. To bridge this gap, we introduce a novel benchmark MIR, requiring joint reasoning over multiple images accompanied by interleaved textual contexts to accurately associate image regions with corresponding texts and logically connect information across images. To enhance MLLMs ability to comprehend multi-image interleaved data, we introduce reasoning steps for each instance within the benchmark and propose a stage-wise curriculum learning strategy. This strategy follows an "easy to hard" approach, progressively guiding models from simple to complex scenarios, thereby enhancing their ability to handle challenging tasks. Extensive experiments benchmarking multiple MLLMs demonstrate that our method significantly enhances models reasoning performance on MIR and other established benchmarks. We believe that MIR will encourage further research into multi-image interleaved reasoning, facilitating advancements in MLLMs capability to handle complex inter-modal tasks.Our code and dataset are available at https://github.com/Shelly-coder239/MIRBench.

Authors:Yajing Yang, Tony Deng, Min-Yen Kan
Title: KAHAN: Knowledge-Augmented Hierarchical Analysis and Narration for Financial Data Narration
Abstract:
We propose KAHAN, a knowledge-augmented hierarchical framework that systematically extracts insights from raw tabular data at entity, pairwise, group, and system levels. KAHAN uniquely leverages LLMs as domain experts to drive the analysis. On DataTales financial reporting benchmark, KAHAN outperforms existing approaches by over 20% on narrative quality (GPT-4o), maintains 98.2% factuality, and demonstrates practical utility in human evaluation. Our results reveal that knowledge quality drives model performance through distillation, hierarchical analysis benefits vary with market complexity, and the framework transfers effectively to healthcare domains. The data and code are available at https://github.com/yajingyang/kahan.

Authors:Wenxuan Fang, Jili Fan, Chao Wang, Xiantao Hu, Jiangwei Weng, Ying Tai, Jian Yang, Jun Li
Title: When Color-Space Decoupling Meets Diffusion for Adverse-Weather Image Restoration
Abstract:
Adverse Weather Image Restoration (AWIR) is a highly challenging task due to the unpredictable and dynamic nature of weather-related degradations. Traditional task-specific methods often fail to generalize to unseen or complex degradation types, while recent prompt-learning approaches depend heavily on the degradation estimation capabilities of vision-language models, resulting in inconsistent restorations. In this paper, we propose \textbf{LCDiff}, a novel framework comprising two key components: \textit{Lumina-Chroma Decomposition Network} (LCDN) and \textit{Lumina-Guided Diffusion Model} (LGDM). LCDN processes degraded images in the YCbCr color space, separately handling degradation-related luminance and degradation-invariant chrominance components. This decomposition effectively mitigates weather-induced degradation while preserving color fidelity. To further enhance restoration quality, LGDM leverages degradation-related luminance information as a guiding condition, eliminating the need for explicit degradation prompts. Additionally, LGDM incorporates a \textit{Dynamic Time Step Loss} to optimize the denoising network, ensuring a balanced recovery of both low- and high-frequency features in the image. Finally, we present DriveWeather, a comprehensive all-weather driving dataset designed to enable robust evaluation. Extensive experiments demonstrate that our approach surpasses state-of-the-art methods, setting a new benchmark in AWIR. The dataset and code are available at: https://github.com/fiwy0527/LCDiff.

Authors:Quanzhu Niu, Dengxian Gong, Shihao Chen, Tao Zhang, Yikang Zhou, Haobo Yuan, Lu Qi, Xiangtai Li, Shunping Ji
Title: The 1st Solution for 7th LSVOS RVOS Track: SaSaSa2VA
Abstract:
Referring video object segmentation (RVOS) requires segmenting and tracking objects in videos conditioned on natural-language expressions, demanding fine-grained understanding of both appearance and motion. Building on Sa2VA, which couples a Multi-modal Large Language Model (MLLM) with the video segmentation model SAM2, we identify two key bottlenecks that limit segmentation performance: sparse frame sampling and reliance on a single [SEG] token for an entire video. We propose Segmentation Augmented and Selective Averaged Sa2VA SaSaSa2VA to address these issues. On the 7th LSVOS Challenge (RVOS track), SaSaSa2VA achieves a $J\&F$ of 67.45, ranking first and surpassing the runner-up by 2.80 points. This result and ablation studies demonstrate that efficient segmentation augmentation and test-time ensembling substantially enhance grounded MLLMs for RVOS. The code is released in Sa2VA repository: https://github.com/magic-research/Sa2VA.

Authors:Ragib Amin Nihal, Benjamin Yen, Takeshi Ashizawa, Kazuhiro Nakadai
Title: Cross-Attention with Confidence Weighting for Multi-Channel Audio Alignment
Abstract:
Multi-channel audio alignment is a key requirement in bioacoustic monitoring, spatial audio systems, and acoustic localization. However, existing methods often struggle to address nonlinear clock drift and lack mechanisms for quantifying uncertainty. Traditional methods like Cross-correlation and Dynamic Time Warping assume simple drift patterns and provide no reliability measures. Meanwhile, recent deep learning models typically treat alignment as a binary classification task, overlooking inter-channel dependencies and uncertainty estimation. We introduce a method that combines cross-attention mechanisms with confidence-weighted scoring to improve multi-channel audio synchronization. We extend BEATs encoders with cross-attention layers to model temporal relationships between channels. We also develop a confidence-weighted scoring function that uses the full prediction distribution instead of binary thresholding. Our method achieved first place in the BioDCASE 2025 Task 1 challenge with 0.30 MSE average across test datasets, compared to 0.58 for the deep learning baseline. On individual datasets, we achieved 0.14 MSE on ARU data (77% reduction) and 0.45 MSE on zebra finch data (18% reduction). The framework supports probabilistic temporal alignment, moving beyond point estimates. While validated in a bioacoustic context, the approach is applicable to a broader range of multi-channel audio tasks where alignment confidence is critical. Code available on: https://github.com/Ragib-Amin-Nihal/BEATsCA

Authors:Rui Yang, Michael Fu, Chakkrit Tantithamthavorn, Chetan Arora, Gunel Gulmammadova, Joey Chua
Title: AdaptiveGuard: Towards Adaptive Runtime Safety for LLM-Powered Software
Abstract:
Guardrails are critical for the safe deployment of Large Language Models (LLMs)-powered software. Unlike traditional rule-based systems with limited, predefined input-output spaces that inherently constrain unsafe behavior, LLMs enable open-ended, intelligent interactions--opening the door to jailbreak attacks through user inputs. Guardrails serve as a protective layer, filtering unsafe prompts before they reach the LLM. However, prior research shows that jailbreak attacks can still succeed over 70% of the time, even against advanced models like GPT-4o. While guardrails such as LlamaGuard report up to 95% accuracy, our preliminary analysis shows their performance can drop sharply--to as low as 12%--when confronted with unseen attacks. This highlights a growing software engineering challenge: how to build a post-deployment guardrail that adapts dynamically to emerging threats? To address this, we propose AdaptiveGuard, an adaptive guardrail that detects novel jailbreak attacks as out-of-distribution (OOD) inputs and learns to defend against them through a continual learning framework. Through empirical evaluation, AdaptiveGuard achieves 96% OOD detection accuracy, adapts to new attacks in just two update steps, and retains over 85% F1-score on in-distribution data post-adaptation, outperforming other baselines. These results demonstrate that AdaptiveGuard is a guardrail capable of evolving in response to emerging jailbreak strategies post deployment. We release our AdaptiveGuard and studied datasets at https://github.com/awsm-research/AdaptiveGuard to support further research.

Authors:Changyu Zeng, Yifan Wang, Zimu Wang, Wei Wang, Zhengni Yang, Muyi Bao, Jiming Xiao, Anh Nguyen, Yutao Yue
Title: NUMINA: A Natural Understanding Benchmark for Multi-dimensional Intelligence and Numerical Reasoning Abilities
Abstract:
Recent advancements in 2D multimodal large language models (MLLMs) have significantly improved performance in vision-language tasks. However, extending these capabilities to 3D environments remains a distinct challenge due to the complexity of spatial reasoning. Nevertheless, existing 3D benchmarks often lack fine-grained numerical reasoning task annotations, limiting MLLMs' ability to perform precise spatial measurements and complex numerical reasoning. To address this gap, we introduce NUMINA, the first Natural Understanding benchmark for Multi-dimensional Intelligence and Numerical reasoning Abilities to enhance multimodal indoor perceptual understanding. NUMINA features multi-scale annotations and various question-answer pairs, generated using NUMINA-Flow, an automated annotation pipeline that integrates LLM rewriting and rule-based self-verification. We evaluate the performance of various state-of-the-art LLMs on NUMINA following the Chat-Scene framework, demonstrating that current LLMs struggle with multimodal numerical reasoning, particularly in performing precise computations such as distance and volume estimation, highlighting the need for further advancements in 3D models. The dataset and source codes can be obtained from https://github.com/fengshun124/NUMINA.

Authors:Minji Heo, Simon S. Woo
Title: FakeChain: Exposing Shallow Cues in Multi-Step Deepfake Detection
Abstract:
Multi-step or hybrid deepfakes, created by sequentially applying different deepfake creation methods such as Face-Swapping, GAN-based generation, and Diffusion methods, can pose an emerging and unforseen technical challenge for detection models trained on single-step forgeries. While prior studies have mainly focused on detecting isolated single manipulation, little is known about the detection model behavior under such compositional, hybrid, and complex manipulation pipelines. In this work, we introduce \textbf{FakeChain}, a large-scale benchmark comprising 1-, 2-, and 3-Step forgeries synthesized using five state-of-the-art representative generators. Using this approach, we analyze detection performance and spectral properties across hybrid manipulation at different step, along with varying generator combinations and quality settings. Surprisingly, our findings reveal that detection performance highly depends on the final manipulation type, with F1-score dropping by up to \textbf{58.83\%} when it differs from training distribution. This clearly demonstrates that detectors rely on last-stage artifacts rather than cumulative manipulation traces, limiting generalization. Such findings highlight the need for detection models to explicitly consider manipulation history and sequences. Our results highlight the importance of benchmarks such as FakeChain, reflecting growing synthesis complexity and diversity in real-world scenarios. Our sample code is available here\footnote{https://github.com/minjihh/FakeChain}.

Authors:Guangze Zheng, Shijie Lin, Haobo Zuo, Si Si, Ming-Shan Wang, Changhong Fu, Jia Pan
Title: Lattice Boltzmann Model for Learning Real-World Pixel Dynamicity
Abstract:
This work proposes the Lattice Boltzmann Model (LBM) to learn real-world pixel dynamicity for visual tracking. LBM decomposes visual representations into dynamic pixel lattices and solves pixel motion states through collision-streaming processes. Specifically, the high-dimensional distribution of the target pixels is acquired through a multilayer predict-update network to estimate the pixel positions and visibility. The predict stage formulates lattice collisions among the spatial neighborhood of target pixels and develops lattice streaming within the temporal visual context. The update stage rectifies the pixel distributions with online visual representations. Compared with existing methods, LBM demonstrates practical applicability in an online and real-time manner, which can efficiently adapt to real-world visual tracking tasks. Comprehensive evaluations of real-world point tracking benchmarks such as TAP-Vid and RoboTAP validate LBM's efficiency. A general evaluation of large-scale open-world object tracking benchmarks such as TAO, BFT, and OVT-B further demonstrates LBM's real-world practicality.

Authors:Burak Satar, Zhixin Ma, Patrick A. Irawan, Wilfried A. Mulyawan, Jing Jiang, Ee-Peng Lim, Chong-Wah Ngo
Title: Seeing Culture: A Benchmark for Visual Reasoning and Grounding
Abstract:
Multimodal vision-language models (VLMs) have made substantial progress in various tasks that require a combined understanding of visual and textual content, particularly in cultural understanding tasks, with the emergence of new cultural datasets. However, these datasets frequently fall short of providing cultural reasoning while underrepresenting many cultures. In this paper, we introduce the Seeing Culture Benchmark (SCB), focusing on cultural reasoning with a novel approach that requires VLMs to reason on culturally rich images in two stages: i) selecting the correct visual option with multiple-choice visual question answering (VQA), and ii) segmenting the relevant cultural artifact as evidence of reasoning. Visual options in the first stage are systematically organized into three types: those originating from the same country, those from different countries, or a mixed group. Notably, all options are derived from a singular category for each type. Progression to the second stage occurs only after a correct visual option is chosen. The SCB benchmark comprises 1,065 images that capture 138 cultural artifacts across five categories from seven Southeast Asia countries, whose diverse cultures are often overlooked, accompanied by 3,178 questions, of which 1,093 are unique and meticulously curated by human annotators. Our evaluation of various VLMs reveals the complexities involved in cross-modal cultural reasoning and highlights the disparity between visual reasoning and spatial grounding in culturally nuanced scenarios. The SCB serves as a crucial benchmark for identifying these shortcomings, thereby guiding future developments in the field of cultural reasoning. https://github.com/buraksatar/SeeingCulture

Authors:Josias K. Moukpe, Philip K. Chan, Ming Zhang
Title: Highly Imbalanced Regression with Tabular Data in SEP and Other Applications
Abstract:
We investigate imbalanced regression with tabular data that have an imbalance ratio larger than 1,000 ("highly imbalanced"). Accurately estimating the target values of rare instances is important in applications such as forecasting the intensity of rare harmful Solar Energetic Particle (SEP) events. For regression, the MSE loss does not consider the correlation between predicted and actual values. Typical inverse importance functions allow only convex functions. Uniform sampling might yield mini-batches that do not have rare instances. We propose CISIR that incorporates correlation, Monotonically Decreasing Involution (MDI) importance, and stratified sampling. Based on five datasets, our experimental results indicate that CISIR can achieve lower error and higher correlation than some recent methods. Also, adding our correlation component to other recent methods can improve their performance. Lastly, MDI importance can outperform other importance functions. Our code can be found in https://github.com/Machine-Earning/CISIR.

Authors:Luca Della Libera, Cem Subakan, Mirco Ravanelli
Title: FocalCodec-Stream: Streaming Low-Bitrate Speech Coding via Causal Distillation
Abstract:
Neural audio codecs are a fundamental component of modern generative audio pipelines. Although recent codecs achieve strong low-bitrate reconstruction and provide powerful representations for downstream tasks, most are non-streamable, limiting their use in real-time applications. We present FocalCodec-Stream, a hybrid codec based on focal modulation that compresses speech into a single binary codebook at 0.55 - 0.80 kbps with a theoretical latency of 80 ms. Our approach combines multi-stage causal distillation of WavLM with targeted architectural improvements, including a lightweight refiner module that enhances quality under latency constraints. Experiments show that FocalCodec-Stream outperforms existing streamable codecs at comparable bitrates, while preserving both semantic and acoustic information. The result is a favorable trade-off between reconstruction quality, downstream task performance, latency, and efficiency. Code and checkpoints will be released at https://github.com/lucadellalib/focalcodec.

Authors:Jinghao Zhang, Sihang Jiang, Shiwei Guo, Shisong Chen, Yanghua Xiao, Hongwei Feng, Jiaqing Liang, Minggui HE, Shimin Tao, Hongxia Ma
Title: CultureScope: A Dimensional Lens for Probing Cultural Understanding in LLMs
Abstract:
As large language models (LLMs) are increasingly deployed in diverse cultural environments, evaluating their cultural understanding capability has become essential for ensuring trustworthy and culturally aligned applications. However, most existing benchmarks lack comprehensiveness and are challenging to scale and adapt across different cultural contexts, because their frameworks often lack guidance from well-established cultural theories and tend to rely on expert-driven manual annotations. To address these issues, we propose CultureScope, the most comprehensive evaluation framework to date for assessing cultural understanding in LLMs. Inspired by the cultural iceberg theory, we design a novel dimensional schema for cultural knowledge classification, comprising 3 layers and 140 dimensions, which guides the automated construction of culture-specific knowledge bases and corresponding evaluation datasets for any given languages and cultures. Experimental results demonstrate that our method can effectively evaluate cultural understanding. They also reveal that existing large language models lack comprehensive cultural competence, and merely incorporating multilingual data does not necessarily enhance cultural understanding. All code and data files are available at https://github.com/HoganZinger/Culture

Authors:Sang Hoon Woo, Sehun Lee, Kang-wook Kim, Gunhee Kim
Title: Think, Verbalize, then Speak: Bridging Complex Thoughts and Comprehensible Speech
Abstract:
Spoken dialogue systems increasingly employ large language models (LLMs) to leverage their advanced reasoning capabilities. However, direct application of LLMs in spoken communication often yield suboptimal results due to mismatches between optimal textual and verbal delivery. While existing approaches adapt LLMs to produce speech-friendly outputs, their impact on reasoning performance remains underexplored. In this work, we propose Think-Verbalize-Speak, a framework that decouples reasoning from spoken delivery to preserve the full reasoning capacity of LLMs. Central to our method is verbalizing, an intermediate step that translates thoughts into natural, speech-ready text. We also introduce ReVerT, a latency-efficient verbalizer based on incremental and asynchronous summarization. Experiments across multiple benchmarks show that our method enhances speech naturalness and conciseness with minimal impact on reasoning. The project page with the dataset and the source code is available at https://yhytoto12.github.io/TVS-ReVerT

Authors:Yujie Zhu, Charles A. Hepburn, Matthew Thorpe, Giovanni Montana
Title: Uncertainty-Based Smooth Policy Regularisation for Reinforcement Learning with Few Demonstrations
Abstract:
In reinforcement learning with sparse rewards, demonstrations can accelerate learning, but determining when to imitate them remains challenging. We propose Smooth Policy Regularisation from Demonstrations (SPReD), a framework that addresses the fundamental question: when should an agent imitate a demonstration versus follow its own policy? SPReD uses ensemble methods to explicitly model Q-value distributions for both demonstration and policy actions, quantifying uncertainty for comparisons. We develop two complementary uncertainty-aware methods: a probabilistic approach estimating the likelihood of demonstration superiority, and an advantage-based approach scaling imitation by statistical significance. Unlike prevailing methods (e.g. Q-filter) that make binary imitation decisions, SPReD applies continuous, uncertainty-proportional regularisation weights, reducing gradient variance during training. Despite its computational simplicity, SPReD achieves remarkable gains in experiments across eight robotics tasks, outperforming existing approaches by up to a factor of 14 in complex tasks while maintaining robustness to demonstration quality and quantity. Our code is available at https://github.com/YujieZhu7/SPReD.

Authors:Chao Yu, Yuanqing Wang, Zhen Guo, Hao Lin, Si Xu, Hongzhi Zang, Quanlu Zhang, Yongji Wu, Chunyang Zhu, Junhao Hu, Zixiao Huang, Mingjie Wei, Yuqing Xie, Ke Yang, Bo Dai, Zhexuan Xu, Xiangyuan Wang, Xu Fu, Zhihao Liu, Kang Chen, Weilin Liu, Gang Liu, Boxun Li, Jianlei Yang, Zhi Yang, Guohao Dai, Yu Wang
Title: RLinf: Flexible and Efficient Large-scale Reinforcement Learning via Macro-to-Micro Flow Transformation
Abstract:
Reinforcement learning (RL) has demonstrated immense potential in advancing artificial general intelligence, agentic intelligence, and embodied intelligence. However, the inherent heterogeneity and dynamicity of RL workflows often lead to low hardware utilization and slow training on existing systems. In this paper, we present RLinf, a high-performance RL training system based on our key observation that the major roadblock to efficient RL training lies in system flexibility. To maximize flexibility and efficiency, RLinf is built atop a novel RL system design paradigm called macro-to-micro flow transformation (M2Flow), which automatically breaks down high-level, easy-to-compose RL workflows at both the temporal and spatial dimensions, and recomposes them into optimized execution flows. Supported by RLinf worker's adaptive communication capability, we devise context switching and elastic pipelining to realize M2Flow transformation, and a profiling-guided scheduling policy to generate optimal execution plans. Extensive evaluations on both reasoning RL and embodied RL tasks demonstrate that RLinf consistently outperforms state-of-the-art systems, achieving 1.1x-2.13x speedup in end-to-end training throughput.

Authors:Gang Yang, Yue Lei, Wenxin Tai, Jin Wu, Jia Chen, Ting Zhong, Fan Zhou
Title: Compose Yourself: Average-Velocity Flow Matching for One-Step Speech Enhancement
Abstract:
Diffusion and flow matching (FM) models have achieved remarkable progress in speech enhancement (SE), yet their dependence on multi-step generation is computationally expensive and vulnerable to discretization errors. Recent advances in one-step generative modeling, particularly MeanFlow, provide a promising alternative by reformulating dynamics through average velocity fields. In this work, we present COSE, a one-step FM framework tailored for SE. To address the high training overhead of Jacobian-vector product (JVP) computations in MeanFlow, we introduce a velocity composition identity to compute average velocity efficiently, eliminating expensive computation while preserving theoretical consistency and achieving competitive enhancement quality. Extensive experiments on standard benchmarks show that COSE delivers up to 5x faster sampling and reduces training cost by 40%, all without compromising speech quality. Code is available at https://github.com/ICDM-UESTC/COSE.

Authors:Yongsheng Feng, Yuetonghui Xu, Jiehui Luo, Hongjia Liu, Xiaobing Li, Feng Yu, Wei Li
Title: TISDiSS: A Training-Time and Inference-Time Scalable Framework for Discriminative Source Separation
Abstract:
Source separation is a fundamental task in speech, music, and audio processing, and it also provides cleaner and larger data for training generative models. However, improving separation performance in practice often depends on increasingly large networks, inflating training and deployment costs. Motivated by recent advances in inference-time scaling for generative modeling, we propose Training-Time and Inference-Time Scalable Discriminative Source Separation (TISDiSS), a unified framework that integrates early-split multi-loss supervision, shared-parameter design, and dynamic inference repetitions. TISDiSS enables flexible speed-performance trade-offs by adjusting inference depth without retraining additional models. We further provide systematic analyses of architectural and training choices and show that training with more inference repetitions improves shallow-inference performance, benefiting low-latency applications. Experiments on standard speech separation benchmarks demonstrate state-of-the-art performance with a reduced parameter count, establishing TISDiSS as a scalable and practical framework for adaptive source separation. Code is available at https://github.com/WingSingFung/TISDiSS.

Authors:Pan Tang, Shixiang Tang, Huanqi Pu, Zhiqing Miao, Zhixing Wang
Title: MicroRCA-Agent: Microservice Root Cause Analysis Method Based on Large Language Model Agents
Abstract:
This paper presents MicroRCA-Agent, an innovative solution for microservice root cause analysis based on large language model agents, which constructs an intelligent fault root cause localization system with multimodal data fusion. The technical innovations are embodied in three key aspects: First, we combine the pre-trained Drain log parsing algorithm with multi-level data filtering mechanism to efficiently compress massive logs into high-quality fault features. Second, we employ a dual anomaly detection approach that integrates Isolation Forest unsupervised learning algorithms with status code validation to achieve comprehensive trace anomaly identification. Third, we design a statistical symmetry ratio filtering mechanism coupled with a two-stage LLM analysis strategy to enable full-stack phenomenon summarization across node-service-pod hierarchies. The multimodal root cause analysis module leverages carefully designed cross-modal prompts to deeply integrate multimodal anomaly information, fully exploiting the cross-modal understanding and logical reasoning capabilities of large language models to generate structured analysis results encompassing fault components, root cause descriptions, and reasoning trace. Comprehensive ablation studies validate the complementary value of each modal data and the effectiveness of the system architecture. The proposed solution demonstrates superior performance in complex microservice fault scenarios, achieving a final score of 50.71. The code has been released at: https://github.com/tangpan360/MicroRCA-Agent.

Authors:Zinan Lin, Enshu Liu, Xuefei Ning, Junyi Zhu, Wenyu Wang, Sergey Yekhanin
Title: Latent Zoning Network: A Unified Principle for Generative Modeling, Representation Learning, and Classification
Abstract:
Generative modeling, representation learning, and classification are three core problems in machine learning (ML), yet their state-of-the-art (SoTA) solutions remain largely disjoint. In this paper, we ask: Can a unified principle address all three? Such unification could simplify ML pipelines and foster greater synergy across tasks. We introduce Latent Zoning Network (LZN) as a step toward this goal. At its core, LZN creates a shared Gaussian latent space that encodes information across all tasks. Each data type (e.g., images, text, labels) is equipped with an encoder that maps samples to disjoint latent zones, and a decoder that maps latents back to data. ML tasks are expressed as compositions of these encoders and decoders: for example, label-conditional image generation uses a label encoder and image decoder; image embedding uses an image encoder; classification uses an image encoder and label decoder. We demonstrate the promise of LZN in three increasingly complex scenarios: (1) LZN can enhance existing models (image generation): When combined with the SoTA Rectified Flow model, LZN improves FID on CIFAR10 from 2.76 to 2.59-without modifying the training objective. (2) LZN can solve tasks independently (representation learning): LZN can implement unsupervised representation learning without auxiliary loss functions, outperforming the seminal MoCo and SimCLR methods by 9.3% and 0.2%, respectively, on downstream linear classification on ImageNet. (3) LZN can solve multiple tasks simultaneously (joint generation and classification): With image and label encoders/decoders, LZN performs both tasks jointly by design, improving FID and achieving SoTA classification accuracy on CIFAR10. The code and trained models are available at https://github.com/microsoft/latent-zoning-networks. The project website is at https://zinanlin.me/blogs/latent_zoning_networks.html.

Authors:Tsz Ting Chung, Lemao Liu, Mo Yu, Dit-Yan Yeung
Title: DivLogicEval: A Framework for Benchmarking Logical Reasoning Evaluation in Large Language Models
Abstract:
Logic reasoning in natural language has been recognized as an important measure of human intelligence for Large Language Models (LLMs). Popular benchmarks may entangle multiple reasoning skills and thus provide unfaithful evaluations on the logic reasoning skill. Meanwhile, existing logic reasoning benchmarks are limited in language diversity and their distributions are deviated from the distribution of an ideal logic reasoning benchmark, which may lead to biased evaluation results. This paper thereby proposes a new classical logic benchmark DivLogicEval, consisting of natural sentences composed of diverse statements in a counterintuitive way. To ensure a more reliable evaluation, we also introduce a new evaluation metric that mitigates the influence of bias and randomness inherent in LLMs. Through experiments, we demonstrate the extent to which logical reasoning is required to answer the questions in DivLogicEval and compare the performance of different popular LLMs in conducting logical reasoning.

Authors:Shilong Bao, Qianqian Xu, Feiran Li, Boyu Han, Zhiyong Yang, Xiaochun Cao, Qingming Huang
Title: Towards Size-invariant Salient Object Detection: A Generic Evaluation and Optimization Approach
Abstract:
This paper investigates a fundamental yet underexplored issue in Salient Object Detection (SOD): the size-invariant property for evaluation protocols, particularly in scenarios when multiple salient objects of significantly different sizes appear within a single image. We first present a novel perspective to expose the inherent size sensitivity of existing widely used SOD metrics. Through careful theoretical derivations, we show that the evaluation outcome of an image under current SOD metrics can be essentially decomposed into a sum of several separable terms, with the contribution of each term being directly proportional to its corresponding region size. Consequently, the prediction errors would be dominated by the larger regions, while smaller yet potentially more semantically important objects are often overlooked, leading to biased performance assessments and practical degradation. To address this challenge, a generic Size-Invariant Evaluation (SIEva) framework is proposed. The core idea is to evaluate each separable component individually and then aggregate the results, thereby effectively mitigating the impact of size imbalance across objects. Building upon this, we further develop a dedicated optimization framework (SIOpt), which adheres to the size-invariant principle and significantly enhances the detection of salient objects across a broad range of sizes. Notably, SIOpt is model-agnostic and can be seamlessly integrated with a wide range of SOD backbones. Theoretically, we also present generalization analysis of SOD methods and provide evidence supporting the validity of our new evaluation protocols. Finally, comprehensive experiments speak to the efficacy of our proposed approach. The code is available at https://github.com/Ferry-Li/SI-SOD.

Authors:Tian Lan, Yiming Zheng, Jianxin Yin
Title: Diffusion-Based Cross-Modal Feature Extraction for Multi-Label Classification
Abstract:
Multi-label classification has broad applications and depends on powerful representations capable of capturing multi-label interactions. We introduce \textit{Diff-Feat}, a simple but powerful framework that extracts intermediate features from pre-trained diffusion-Transformer models for images and text, and fuses them for downstream tasks. We observe that for vision tasks, the most discriminative intermediate feature along the diffusion process occurs at the middle step and is located in the middle block in Transformer. In contrast, for language tasks, the best feature occurs at the noise-free step and is located in the deepest block. In particular, we observe a striking phenomenon across varying datasets: a mysterious "Layer $12$" consistently yields the best performance on various downstream classification tasks for images (under DiT-XL/2-256$\times$256). We devise a heuristic local-search algorithm that pinpoints the locally optimal "image-text"$\times$"block-timestep" pair among a few candidates, avoiding an exhaustive grid search. A simple fusion-linear projection followed by addition-of the selected representations yields state-of-the-art performance: 98.6\% mAP on MS-COCO-enhanced and 45.7\% mAP on Visual Genome 500, surpassing strong CNN, graph, and Transformer baselines by a wide margin. t-SNE and clustering metrics further reveal that \textit{Diff-Feat} forms tighter semantic clusters than unimodal counterparts. The code is available at https://github.com/lt-0123/Diff-Feat.

Authors:Abdarahmane Traore, Éric Hervet, Andy Couturier
Title: SmolRGPT: Efficient Spatial Reasoning for Warehouse Environments with 600M Parameters
Abstract:
Recent advances in vision-language models (VLMs) have enabled powerful multimodal reasoning, but state-of-the-art approaches typically rely on extremely large models with prohibitive computational and memory requirements. This makes their deployment challenging in resource-constrained environments such as warehouses, robotics, and industrial applications, where both efficiency and robust spatial understanding are critical. In this work, we present SmolRGPT, a compact vision-language architecture that explicitly incorporates region-level spatial reasoning by integrating both RGB and depth cues. SmolRGPT employs a three-stage curriculum that progressively align visual and language features, enables spatial relationship understanding, and adapts to task-specific datasets. We demonstrate that with only 600M parameters, SmolRGPT achieves competitive results on challenging warehouse spatial reasoning benchmarks, matching or exceeding the performance of much larger alternatives. These findings highlight the potential for efficient, deployable multimodal intelligence in real-world settings without sacrificing core spatial reasoning capabilities. The code of the experimentation will be available at: https://github.com/abtraore/SmolRGPT

Authors:Daniyal Kabir Dar, Qiben Yan, Li Xiao, Arun Ross
Title: Impact of Phonetics on Speaker Identity in Adversarial Voice Attack
Abstract:
Adversarial perturbations in speech pose a serious threat to automatic speech recognition (ASR) and speaker verification by introducing subtle waveform modifications that remain imperceptible to humans but can significantly alter system outputs. While targeted attacks on end-to-end ASR models have been widely studied, the phonetic basis of these perturbations and their effect on speaker identity remain underexplored. In this work, we analyze adversarial audio at the phonetic level and show that perturbations exploit systematic confusions such as vowel centralization and consonant substitutions. These distortions not only mislead transcription but also degrade phonetic cues critical for speaker verification, leading to identity drift. Using DeepSpeech as our ASR target, we generate targeted adversarial examples and evaluate their impact on speaker embeddings across genuine and impostor samples. Results across 16 phonetically diverse target phrases demonstrate that adversarial audio induces both transcription errors and identity drift, highlighting the need for phonetic-aware defenses to ensure the robustness of ASR and speaker recognition systems.

Authors:Yulin Wang, Yang Yue, Yang Yue, Huanqian Wang, Haojun Jiang, Yizeng Han, Zanlin Ni, Yifan Pu, Minglei Shi, Rui Lu, Qisen Yang, Andrew Zhao, Zhuofan Xia, Shiji Song, Gao Huang
Title: Emulating Human-like Adaptive Vision for Efficient and Flexible Machine Visual Perception
Abstract:
Human vision is highly adaptive, efficiently sampling intricate environments by sequentially fixating on task-relevant regions. In contrast, prevailing machine vision models passively process entire scenes at once, resulting in excessive resource demands scaling with spatial-temporal input resolution and model size, yielding critical limitations impeding both future advancements and real-world application. Here we introduce AdaptiveNN, a general framework aiming to drive a paradigm shift from 'passive' to 'active, adaptive' vision models. AdaptiveNN formulates visual perception as a coarse-to-fine sequential decision-making process, progressively identifying and attending to regions pertinent to the task, incrementally combining information across fixations, and actively concluding observation when sufficient. We establish a theory integrating representation learning with self-rewarding reinforcement learning, enabling end-to-end training of the non-differentiable AdaptiveNN without additional supervision on fixation locations. We assess AdaptiveNN on 17 benchmarks spanning 9 tasks, including large-scale visual recognition, fine-grained discrimination, visual search, processing images from real driving and medical scenarios, language-driven embodied AI, and side-by-side comparisons with humans. AdaptiveNN achieves up to 28x inference cost reduction without sacrificing accuracy, flexibly adapts to varying task demands and resource budgets without retraining, and provides enhanced interpretability via its fixation patterns, demonstrating a promising avenue toward efficient, flexible, and interpretable computer vision. Furthermore, AdaptiveNN exhibits closely human-like perceptual behaviors in many cases, revealing its potential as a valuable tool for investigating visual cognition. Code is available at https://github.com/LeapLabTHU/AdaptiveNN.

Authors:Wenda Qin, Andrea Burns, Bryan A. Plummer, Margrit Betke
Title: Walk and Read Less: Improving the Efficiency of Vision-and-Language Navigation via Tuning-Free Multimodal Token Pruning
Abstract:
Large models achieve strong performance on Vision-and-Language Navigation (VLN) tasks, but are costly to run in resource-limited environments. Token pruning offers appealing tradeoffs for efficiency with minimal performance loss by reducing model input size, but prior work overlooks VLN-specific challenges. For example, information loss from pruning can effectively increase computational cost due to longer walks. Thus, the inability to identify uninformative tokens undermines the supposed efficiency gains from pruning. To address this, we propose Navigation-Aware Pruning (NAP), which uses navigation-specific traits to simplify the pruning process by pre-filtering tokens into foreground and background. For example, image views are filtered based on whether the agent can navigate in that direction. We also extract navigation-relevant instructions using a Large Language Model. After filtering, we focus pruning on background tokens, minimizing information loss. To further help avoid increases in navigation length, we discourage backtracking by removing low-importance navigation nodes. Experiments on standard VLN benchmarks show NAP significantly outperforms prior work, preserving higher success rates while saving more than 50% FLOPS.

Authors:Di Wen, Kunyu Peng, Junwei Zheng, Yufan Chen, Yitain Shi, Jiale Wei, Ruiping Liu, Kailun Yang, Rainer Stiefelhagen
Title: MICA: Multi-Agent Industrial Coordination Assistant
Abstract:
Industrial workflows demand adaptive and trustworthy assistance that can operate under limited computing, connectivity, and strict privacy constraints. In this work, we present MICA (Multi-Agent Industrial Coordination Assistant), a perception-grounded and speech-interactive system that delivers real-time guidance for assembly, troubleshooting, part queries, and maintenance. MICA coordinates five role-specialized language agents, audited by a safety checker, to ensure accurate and compliant support. To achieve robust step understanding, we introduce Adaptive Step Fusion (ASF), which dynamically blends expert reasoning with online adaptation from natural speech feedback. Furthermore, we establish a new multi-agent coordination benchmark across representative task categories and propose evaluation metrics tailored to industrial assistance, enabling systematic comparison of different coordination topologies. Our experiments demonstrate that MICA consistently improves task success, reliability, and responsiveness over baseline structures, while remaining deployable on practical offline hardware. Together, these contributions highlight MICA as a step toward deployable, privacy-preserving multi-agent assistants for dynamic factory environments. The source code will be made publicly available at https://github.com/Kratos-Wen/MICA.

Authors:Pak-Hei Yeung, Jayroop Ramesh, Pengfei Lyu, Ana Namburete, Jagath Rajapakse
Title: Semi-Supervised 3D Medical Segmentation from 2D Natural Images Pretrained Model
Abstract:
This paper explores the transfer of knowledge from general vision models pretrained on 2D natural images to improve 3D medical image segmentation. We focus on the semi-supervised setting, where only a few labeled 3D medical images are available, along with a large set of unlabeled images. To tackle this, we propose a model-agnostic framework that progressively distills knowledge from a 2D pretrained model to a 3D segmentation model trained from scratch. Our approach, M&N, involves iterative co-training of the two models using pseudo-masks generated by each other, along with our proposed learning rate guided sampling that adaptively adjusts the proportion of labeled and unlabeled data in each training batch to align with the models' prediction accuracy and stability, minimizing the adverse effect caused by inaccurate pseudo-masks. Extensive experiments on multiple publicly available datasets demonstrate that M&N achieves state-of-the-art performance, outperforming thirteen existing semi-supervised segmentation approaches under all different settings. Importantly, ablation studies show that M&N remains model-agnostic, allowing seamless integration with different architectures. This ensures its adaptability as more advanced models emerge. The code is available at https://github.com/pakheiyeung/M-N.

Authors:Stelios Katsis, Vassilis Lyberatos, Spyridon Kantarelis, Edmund Dervakos, Giorgos Stamou
Title: Exploring How Audio Effects Alter Emotion with Foundation Models
Abstract:
Audio effects (FX) such as reverberation, distortion, modulation, and dynamic range processing play a pivotal role in shaping emotional responses during music listening. While prior studies have examined links between low-level audio features and affective perception, the systematic impact of audio FX on emotion remains underexplored. This work investigates how foundation models - large-scale neural architectures pretrained on multimodal data - can be leveraged to analyze these effects. Such models encode rich associations between musical structure, timbre, and affective meaning, offering a powerful framework for probing the emotional consequences of sound design techniques. By applying various probing methods to embeddings from deep learning models, we examine the complex, nonlinear relationships between audio FX and estimated emotion, uncovering patterns tied to specific effects and evaluating the robustness of foundation audio models. Our findings aim to advance understanding of the perceptual impact of audio production practices, with implications for music cognition, performance, and affective computing.

Authors:Xiao Wu, Ting-Zhu Huang, Liang-Jian Deng, Yanyuan Qiao, Imran Razzak, Yutong Xie
Title: A Knowledge-driven Adaptive Collaboration of LLMs for Enhancing Medical Decision-making
Abstract:
Medical decision-making often involves integrating knowledge from multiple clinical specialties, typically achieved through multidisciplinary teams. Inspired by this collaborative process, recent work has leveraged large language models (LLMs) in multi-agent collaboration frameworks to emulate expert teamwork. While these approaches improve reasoning through agent interaction, they are limited by static, pre-assigned roles, which hinder adaptability and dynamic knowledge integration. To address these limitations, we propose KAMAC, a Knowledge-driven Adaptive Multi-Agent Collaboration framework that enables LLM agents to dynamically form and expand expert teams based on the evolving diagnostic context. KAMAC begins with one or more expert agents and then conducts a knowledge-driven discussion to identify and fill knowledge gaps by recruiting additional specialists as needed. This supports flexible, scalable collaboration in complex clinical scenarios, with decisions finalized through reviewing updated agent comments. Experiments on two real-world medical benchmarks demonstrate that KAMAC significantly outperforms both single-agent and advanced multi-agent methods, particularly in complex clinical scenarios (i.e., cancer prognosis) requiring dynamic, cross-specialty expertise. Our code is publicly available at: https://github.com/XiaoXiao-Woo/KAMAC.

Authors:Xingwu Zhang, Guanxuan Li, Zhuocheng Zhang, Zijun Long
Title: RoboEye: Enhancing 2D Robotic Object Identification with Selective 3D Geometric Keypoint Matching
Abstract:
The rapidly growing number of product categories in large-scale e-commerce makes accurate object identification for automated packing in warehouses substantially more difficult. As the catalog grows, intra-class variability and a long tail of rare or visually similar items increase, and when combined with diverse packaging, cluttered containers, frequent occlusion, and large viewpoint changes-these factors amplify discrepancies between query and reference images, causing sharp performance drops for methods that rely solely on 2D appearance features. Thus, we propose RoboEye, a two-stage identification framework that dynamically augments 2D semantic features with domain-adapted 3D reasoning and lightweight adapters to bridge training deployment gaps. In the first stage, we train a large vision model to extract 2D features for generating candidate rankings. A lightweight 3D-feature-awareness module then estimates 3D feature quality and predicts whether 3D re-ranking is necessary, preventing performance degradation and avoiding unnecessary computation. When invoked, the second stage uses our robot 3D retrieval transformer, comprising a 3D feature extractor that produces geometry-aware dense features and a keypoint-based matcher that computes keypoint-correspondence confidences between query and reference images instead of conventional cosine-similarity scoring. Experiments show that RoboEye improves Recall@1 by 7.1% over the prior state of the art (RoboLLM). Moreover, RoboEye operates using only RGB images, avoiding reliance on explicit 3D inputs and reducing deployment costs. The code used in this paper is publicly available at: https://github.com/longkukuhi/RoboEye.

Authors:Kangdi Wang, Zhiyue Wu, Dinghao Zhou, Rui Lin, Junyu Dai, Tao Jiang
Title: Back to Ear: Perceptually Driven High Fidelity Music Reconstruction
Abstract:
Variational Autoencoders (VAEs) are essential for large-scale audio tasks like diffusion-based generation. However, existing open-source models often neglect auditory perceptual aspects during training, leading to weaknesses in phase accuracy and stereophonic spatial representation. To address these challenges, we propose εar-VAE, an open-source music signal reconstruction model that rethinks and optimizes the VAE training paradigm. Our contributions are threefold: (i) A K-weighting perceptual filter applied prior to loss calculation to align the objective with auditory perception. (ii) Two novel phase losses: a Correlation Loss for stereo coherence, and a Phase Loss using its derivatives--Instantaneous Frequency and Group Delay--for precision. (iii) A new spectral supervision paradigm where magnitude is supervised by all four Mid/Side/Left/Right components, while phase is supervised only by the LR components. Experiments show εar-VAE at 44.1kHz substantially outperforms leading open-source models across diverse metrics, showing particular strength in reconstructing high-frequency harmonics and the spatial characteristics.

Authors:Qianyang Li, Xingjun Zhang, Shaoxun Wang, Jia Wei
Title: DPANet: Dual Pyramid Attention Network for Multivariate Time Series Forecasting
Abstract:
Long-term time series forecasting (LTSF) is hampered by the challenge of modeling complex dependencies that span multiple temporal scales and frequency resolutions. Existing methods, including Transformer and MLP-based models, often struggle to capture these intertwined characteristics in a unified and structured manner. We propose the Dual Pyramid Attention Network (DPANet), a novel architecture that explicitly decouples and concurrently models temporal multi-scale dynamics and spectral multi-resolution periodicities. DPANet constructs two parallel pyramids: a Temporal Pyramid built on progressive downsampling, and a Frequency Pyramid built on band-pass filtering. The core of our model is the Cross-Pyramid Fusion Block, which facilitates deep, interactive information exchange between corresponding pyramid levels via cross-attention. This fusion proceeds in a coarse-to-fine hierarchy, enabling global context to guide local representation learning. Extensive experiments on public benchmarks show that DPANet achieves state-of-the-art performance, significantly outperforming prior models. Code is available at https://github.com/hit636/DPANet.

Authors:Duojia Li, Shenghui Lu, Hongchen Pan, Zongyi Zhan, Qingyang Hong, Lin Li
Title: MeanFlowSE: one-step generative speech enhancement via conditional mean flow
Abstract:
Multistep inference is a bottleneck for real-time generative speech enhancement because flow- and diffusion-based systems learn an instantaneous velocity field and therefore rely on iterative ordinary differential equation (ODE) solvers. We introduce MeanFlowSE, a conditional generative model that learns the average velocity over finite intervals along a trajectory. Using a Jacobian-vector product (JVP) to instantiate the MeanFlow identity, we derive a local training objective that directly supervises finite-interval displacement while remaining consistent with the instantaneous-field constraint on the diagonal. At inference, MeanFlowSE performs single-step generation via a backward-in-time displacement, removing the need for multistep solvers; an optional few-step variant offers additional refinement. On VoiceBank-DEMAND, the single-step model achieves strong intelligibility, fidelity, and perceptual quality with substantially lower computational cost than multistep baselines. The method requires no knowledge distillation or external teachers, providing an efficient, high-fidelity framework for real-time generative speech enhancement. The proposed method is open-sourced at https://github.com/liduojia1/MeanFlowSE.

Authors:Siyu Yan, Long Zeng, Xuecheng Wu, Chengcheng Han, Kongcheng Zhang, Chong Peng, Xuezhi Cao, Xunliang Cai, Chenjuan Guo
Title: MUSE: MCTS-Driven Red Teaming Framework for Enhanced Multi-Turn Dialogue Safety in Large Language Models
Abstract:
As large language models~(LLMs) become widely adopted, ensuring their alignment with human values is crucial to prevent jailbreaks where adversaries manipulate models to produce harmful content. While most defenses target single-turn attacks, real-world usage often involves multi-turn dialogues, exposing models to attacks that exploit conversational context to bypass safety measures. We introduce MUSE, a comprehensive framework tackling multi-turn jailbreaks from both attack and defense angles. For attacks, we propose MUSE-A, a method that uses frame semantics and heuristic tree search to explore diverse semantic trajectories. For defense, we present MUSE-D, a fine-grained safety alignment approach that intervenes early in dialogues to reduce vulnerabilities. Extensive experiments on various models show that MUSE effectively identifies and mitigates multi-turn vulnerabilities. Code is available at \href{https://github.com/yansiyu02/MUSE}{https://github.com/yansiyu02/MUSE}.

Authors:Taesoo Kim, Yongsik Jo, Hyunmin Song, Taehwan Kim
Title: Towards Human-like Multimodal Conversational Agent by Generating Engaging Speech
Abstract:
Human conversation involves language, speech, and visual cues, with each medium providing complementary information. For instance, speech conveys a vibe or tone not fully captured by text alone. While multimodal LLMs focus on generating text responses from diverse inputs, less attention has been paid to generating natural and engaging speech. We propose a human-like agent that generates speech responses based on conversation mood and responsive style information. To achieve this, we build a novel MultiSensory Conversation dataset focused on speech to enable agents to generate natural speech. We then propose a multimodal LLM-based model for generating text responses and voice descriptions, which are used to generate speech covering paralinguistic information. Experimental results demonstrate the effectiveness of utilizing both visual and audio modalities in conversation to generate engaging speech. The source code is available in https://github.com/kimtaesu24/MSenC

Authors:Hanlong Wan, Xing Lu, Yan Chen, Karthik Devaprasad, Laura Hinkle
Title: Automating Modelica Module Generation Using Large Language Models: A Case Study on Building Control Description Language
Abstract:
Dynamic energy systems and controls require advanced modeling frameworks to design and test supervisory and fault tolerant strategies. Modelica is a widely used equation based language, but developing control modules is labor intensive and requires specialized expertise. This paper examines the use of large language models (LLMs) to automate the generation of Control Description Language modules in the Building Modelica Library as a case study. We developed a structured workflow that combines standardized prompt scaffolds, library aware grounding, automated compilation with OpenModelica, and human in the loop evaluation. Experiments were carried out on four basic logic tasks (And, Or, Not, and Switch) and five control modules (chiller enable/disable, bypass valve control, cooling tower fan speed, plant requests, and relief damper control). The results showed that GPT 4o failed to produce executable Modelica code in zero shot mode, while Claude Sonnet 4 achieved up to full success for basic logic blocks with carefully engineered prompts. For control modules, success rates reached 83 percent, and failed outputs required medium level human repair (estimated one to eight hours). Retrieval augmented generation often produced mismatches in module selection (for example, And retrieved as Or), while a deterministic hard rule search strategy avoided these errors. Human evaluation also outperformed AI evaluation, since current LLMs cannot assess simulation results or validate behavioral correctness. Despite these limitations, the LLM assisted workflow reduced the average development time from 10 to 20 hours down to 4 to 6 hours per module, corresponding to 40 to 60 percent time savings. These results highlight both the potential and current limitations of LLM assisted Modelica generation, and point to future research in pre simulation validation, stronger grounding, and closed loop evaluation.

Authors:Feng Ding, Haisheng Fu, Soroush Oraki, Jie Liang
Title: LSTC-MDA: A Unified Framework for Long-Short Term Temporal Convolution and Mixed Data Augmentation in Skeleton-Based Action Recognition
Abstract:
Skeleton-based action recognition faces two longstanding challenges: the scarcity of labeled training samples and difficulty modeling short- and long-range temporal dependencies. To address these issues, we propose a unified framework, LSTC-MDA, which simultaneously improves temporal modeling and data diversity. We introduce a novel Long-Short Term Temporal Convolution (LSTC) module with parallel short- and long-term branches, these two feature branches are then aligned and fused adaptively using learned similarity weights to preserve critical long-range cues lost by conventional stride-2 temporal convolutions. We also extend Joint Mixing Data Augmentation (JMDA) with an Additive Mixup at the input level, diversifying training samples and restricting mixup operations to the same camera view to avoid distribution shifts. Ablation studies confirm each component contributes. LSTC-MDA achieves state-of-the-art results: 94.1% and 97.5% on NTU 60 (X-Sub and X-View), 90.4% and 92.0% on NTU 120 (X-Sub and X-Set),97.2% on NW-UCLA. Code: https://github.com/xiaobaoxia/LSTC-MDA.

Authors:Dvij Kalaria, Sudarshan S Harithas, Pushkal Katara, Sangkyung Kwak, Sarthak Bhagat, Shankar Sastry, Srinath Sridhar, Sai Vemprala, Ashish Kapoor, Jonathan Chung-Kuan Huang
Title: DreamControl: Human-Inspired Whole-Body Humanoid Control for Scene Interaction via Guided Diffusion
Abstract:
We introduce DreamControl, a novel methodology for learning autonomous whole-body humanoid skills. DreamControl leverages the strengths of diffusion models and Reinforcement Learning (RL): our core innovation is the use of a diffusion prior trained on human motion data, which subsequently guides an RL policy in simulation to complete specific tasks of interest (e.g., opening a drawer or picking up an object). We demonstrate that this human motion-informed prior allows RL to discover solutions unattainable by direct RL, and that diffusion models inherently promote natural looking motions, aiding in sim-to-real transfer. We validate DreamControl's effectiveness on a Unitree G1 robot across a diverse set of challenging tasks involving simultaneous lower and upper body control and object interaction. Project website at https://genrobo.github.io/DreamControl/

Authors:Xinran Zheng, Xingzhi Qian, Yiling He, Shuo Yang, Lorenzo Cavallaro
Title: Beyond Classification: Evaluating LLMs for Fine-Grained Automatic Malware Behavior Auditing
Abstract:
Automated malware classification has achieved strong detection performance. Yet, malware behavior auditing seeks causal and verifiable explanations of malicious activities -- essential not only to reveal what malware does but also to substantiate such claims with evidence. This task is challenging, as adversarial intent is often hidden within complex, framework-heavy applications, making manual auditing slow and costly. Large Language Models (LLMs) could help address this gap, but their auditing potential remains largely unexplored due to three limitations: (1) scarce fine-grained annotations for fair assessment; (2) abundant benign code obscuring malicious signals; and (3) unverifiable, hallucination-prone outputs undermining attribution credibility. To close this gap, we introduce MalEval, a comprehensive framework for fine-grained Android malware auditing, designed to evaluate how effectively LLMs support auditing under real-world constraints. MalEval provides expert-verified reports and an updated sensitive API list to mitigate ground truth scarcity and reduce noise via static reachability analysis. Function-level structural representations serve as intermediate attribution units for verifiable evaluation. Building on this, we define four analyst-aligned tasks -- function prioritization, evidence attribution, behavior synthesis, and sample discrimination -- together with domain-specific metrics and a unified workload-oriented score. We evaluate seven widely used LLMs on a curated dataset of recent malware and misclassified benign apps, offering the first systematic assessment of their auditing capabilities. MalEval reveals both promising potential and critical limitations across audit stages, providing a reproducible benchmark and foundation for future research on LLM-enhanced malware behavior auditing. MalEval is publicly available at https://github.com/ZhengXR930/MalEval.git

Authors:Hao Jiang, Zhipeng Zhang, Yu Gao, Zhigang Sun, Yiru Wang, Yuwen Heng, Shuo Wang, Jinhao Chai, Zhuo Chen, Hao Zhao, Hao Sun, Xi Zhang, Anqing Jiang, Chuan Hu
Title: FlowDrive: Energy Flow Field for End-to-End Autonomous Driving
Abstract:
Recent advances in end-to-end autonomous driving leverage multi-view images to construct BEV representations for motion planning. In motion planning, autonomous vehicles need considering both hard constraints imposed by geometrically occupied obstacles (e.g., vehicles, pedestrians) and soft, rule-based semantics with no explicit geometry (e.g., lane boundaries, traffic priors). However, existing end-to-end frameworks typically rely on BEV features learned in an implicit manner, lacking explicit modeling of risk and guidance priors for safe and interpretable planning. To address this, we propose FlowDrive, a novel framework that introduces physically interpretable energy-based flow fields-including risk potential and lane attraction fields-to encode semantic priors and safety cues into the BEV space. These flow-aware features enable adaptive refinement of anchor trajectories and serve as interpretable guidance for trajectory generation. Moreover, FlowDrive decouples motion intent prediction from trajectory denoising via a conditional diffusion planner with feature-level gating, alleviating task interference and enhancing multimodal diversity. Experiments on the NAVSIM v2 benchmark demonstrate that FlowDrive achieves state-of-the-art performance with an EPDMS of 86.3, surpassing prior baselines in both safety and planning quality. The project is available at https://astrixdrive.github.io/FlowDrive.github.io/.

Authors:Vaidehi Patil, Elias Stengel-Eskin, Mohit Bansal
Title: The Sum Leaks More Than Its Parts: Compositional Privacy Risks and Mitigations in Multi-Agent Collaboration
Abstract:
As large language models (LLMs) become integral to multi-agent systems, new privacy risks emerge that extend beyond memorization, direct inference, or single-turn evaluations. In particular, seemingly innocuous responses, when composed across interactions, can cumulatively enable adversaries to recover sensitive information, a phenomenon we term compositional privacy leakage. We present the first systematic study of such compositional privacy leaks and possible mitigation methods in multi-agent LLM systems. First, we develop a framework that models how auxiliary knowledge and agent interactions jointly amplify privacy risks, even when each response is benign in isolation. Next, to mitigate this, we propose and evaluate two defense strategies: (1) Theory-of-Mind defense (ToM), where defender agents infer a questioner's intent by anticipating how their outputs may be exploited by adversaries, and (2) Collaborative Consensus Defense (CoDef), where responder agents collaborate with peers who vote based on a shared aggregated state to restrict sensitive information spread. Crucially, we balance our evaluation across compositions that expose sensitive information and compositions that yield benign inferences. Our experiments quantify how these defense strategies differ in balancing the privacy-utility trade-off. We find that while chain-of-thought alone offers limited protection to leakage (~39% sensitive blocking rate), our ToM defense substantially improves sensitive query blocking (up to 97%) but can reduce benign task success. CoDef achieves the best balance, yielding the highest Balanced Outcome (79.8%), highlighting the benefit of combining explicit reasoning with defender collaboration. Together, our results expose a new class of risks in collaborative LLM deployments and provide actionable insights for designing safeguards against compositional, context-driven privacy leakage.

Authors:Kazumi Kasaura, Naoto Onda, Yuta Oriike, Masaya Taniguchi, Akiyoshi Sannai, Sho Sonoda
Title: Discovering New Theorems via LLMs with In-Context Proof Learning in Lean
Abstract:
Large Language Models have demonstrated significant promise in formal theorem proving. However, previous works mainly focus on solving existing problems. In this paper, we focus on the ability of LLMs to find novel theorems. We propose Conjecturing-Proving Loop pipeline for automatically generating mathematical conjectures and proving them in Lean 4 format. A feature of our approach is that we generate and prove further conjectures with context including previously generated theorems and their proofs, which enables the generation of more difficult proofs by in-context learning of proof strategies without changing parameters of LLMs. We demonstrated that our framework rediscovered theorems with verification, which were published in past mathematical papers and have not yet formalized. Moreover, at least one of these theorems could not be proved by the LLM without in-context learning, even in natural language, which means that in-context learning was effective for neural theorem proving. The source code is available at https://github.com/auto-res/ConjecturingProvingLoop.

Authors:Jiachen Fu, Chun-Le Guo, Chongyi Li
Title: DetectAnyLLM: Towards Generalizable and Robust Detection of Machine-Generated Text Across Domains and Models
Abstract:
The rapid advancement of large language models (LLMs) has drawn urgent attention to the task of machine-generated text detection (MGTD). However, existing approaches struggle in complex real-world scenarios: zero-shot detectors rely heavily on scoring model's output distribution while training-based detectors are often constrained by overfitting to the training data, limiting generalization. We found that the performance bottleneck of training-based detectors stems from the misalignment between training objective and task needs. To address this, we propose Direct Discrepancy Learning (DDL), a novel optimization strategy that directly optimizes the detector with task-oriented knowledge. DDL enables the detector to better capture the core semantics of the detection task, thereby enhancing both robustness and generalization. Built upon this, we introduce DetectAnyLLM, a unified detection framework that achieves state-of-the-art MGTD performance across diverse LLMs. To ensure a reliable evaluation, we construct MIRAGE, the most diverse multi-task MGTD benchmark. MIRAGE samples human-written texts from 10 corpora across 5 text-domains, which are then re-generated or revised using 17 cutting-edge LLMs, covering a wide spectrum of proprietary models and textual styles. Extensive experiments on MIRAGE reveal the limitations of existing methods in complex environment. In contrast, DetectAnyLLM consistently outperforms them, achieving over a 70% performance improvement under the same training data and base scoring model, underscoring the effectiveness of our DDL. Project page: {https://fjc2005.github.io/detectanyllm}.

Authors:Ivan Ternovtsii
Title: Opening the Black Box: Interpretable LLMs via Semantic Resonance Architecture
Abstract:
Large language models (LLMs) achieve remarkable performance but remain difficult to interpret. Mixture-of-Experts (MoE) models improve efficiency through sparse activation, yet typically rely on opaque, learned gating functions. While similarity-based routing (Cosine Routers) has been explored for training stabilization, its potential for inherent interpretability remains largely untapped. We introduce the Semantic Resonance Architecture (SRA), an MoE approach designed to ensure that routing decisions are inherently interpretable. SRA replaces learned gating with a Chamber of Semantic Resonance (CSR) module, which routes tokens based on cosine similarity with trainable semantic anchors. We also introduce a novel Dispersion Loss that encourages orthogonality among anchors to enforce diverse specialization. Experiments on WikiText-103 demonstrate that SRA achieves a validation perplexity of 13.41, outperforming both a dense baseline (14.13) and a Standard MoE baseline (13.53) under matched active parameter constraints (29.0M). Crucially, SRA exhibits superior expert utilization (1.0% dead experts vs. 14.8% in the Standard MoE) and develops distinct, semantically coherent specialization patterns, unlike the noisy specialization observed in standard MoEs. This work establishes semantic routing as a robust methodology for building more transparent and controllable language models.

Authors:Hai Huang, Yann LeCun, Randall Balestriero
Title: LLM-JEPA: Large Language Models Meet Joint Embedding Predictive Architectures
Abstract:
Large Language Model (LLM) pretraining, finetuning, and evaluation rely on input-space reconstruction and generative capabilities. Yet, it has been observed in vision that embedding-space training objectives, e.g., with Joint Embedding Predictive Architectures (JEPAs), are far superior to their input-space counterpart. That mismatch in how training is achieved between language and vision opens up a natural question: {\em can language training methods learn a few tricks from the vision ones?} The lack of JEPA-style LLM is a testimony of the challenge in designing such objectives for language. In this work, we propose a first step in that direction where we develop LLM-JEPA, a JEPA based solution for LLMs applicable both to finetuning and pretraining. Thus far, LLM-JEPA is able to outperform the standard LLM training objectives by a significant margin across models, all while being robust to overfiting. Those findings are observed across numerous datasets (NL-RX, GSM8K, Spider, RottenTomatoes) and various models from the Llama3, OpenELM, Gemma2 and Olmo families. Code: https://github.com/rbalestr-lab/llm-jepa.

Authors:Happymore Masoka
Title: Advancing Conversational AI with Shona Slang: A Dataset and Hybrid Model for Digital Inclusion
Abstract:
African languages remain underrepresented in natural language processing (NLP), with most corpora limited to formal registers that fail to capture the vibrancy of everyday communication. This work addresses this gap for Shona, a Bantu language spoken in Zimbabwe and Zambia, by introducing a novel Shona--English slang dataset curated from anonymized social media conversations. The dataset is annotated for intent, sentiment, dialogue acts, code-mixing, and tone, and is publicly available at https://github.com/HappymoreMasoka/Working_with_shona-slang. We fine-tuned a multilingual DistilBERT classifier for intent recognition, achieving 96.4\% accuracy and 96.3\% F1-score, hosted at https://huggingface.co/HappymoreMasoka. This classifier is integrated into a hybrid chatbot that combines rule-based responses with retrieval-augmented generation (RAG) to handle domain-specific queries, demonstrated through a use case assisting prospective students with graduate program information at Pace University. Qualitative evaluation shows the hybrid system outperforms a RAG-only baseline in cultural relevance and user engagement. By releasing the dataset, model, and methodology, this work advances NLP resources for African languages, promoting inclusive and culturally resonant conversational AI.

Authors:Yifan Hu, Jie Yang, Tian Zhou, Peiyuan Liu, Yujin Tang, Rong Jin, Liang Sun
Title: Bridging Past and Future: Distribution-Aware Alignment for Time Series Forecasting
Abstract:
Although contrastive and other representation-learning methods have long been explored in vision and NLP, their adoption in modern time series forecasters remains limited. We believe they hold strong promise for this domain. To unlock this potential, we explicitly align past and future representations, thereby bridging the distributional gap between input histories and future targets. To this end, we introduce TimeAlign, a lightweight, plug-and-play framework that establishes a new representation paradigm, distinct from contrastive learning, by aligning auxiliary features via a simple reconstruction task and feeding them back into any base forecaster. Extensive experiments across eight benchmarks verify its superior performance. Further studies indicate that the gains arise primarily from correcting frequency mismatches between historical inputs and future outputs. Additionally, we provide two theoretical justifications for how reconstruction improves forecasting generalization and how alignment increases the mutual information between learned representations and predicted targets. The code is available at https://github.com/TROUBADOUR000/TimeAlign.

Authors:Maosheng Qin, Renyu Zhu, Mingxuan Xia, Chenkai Chen, Zhen Zhu, Minmin Lin, Junbo Zhao, Lu Xu, Changjie Fan, Runze Wu, Haobo Wang
Title: CrowdAgent: Multi-Agent Managed Multi-Source Annotation System
Abstract:
High-quality annotated data is a cornerstone of modern Natural Language Processing (NLP). While recent methods begin to leverage diverse annotation sources-including Large Language Models (LLMs), Small Language Models (SLMs), and human experts-they often focus narrowly on the labeling step itself. A critical gap remains in the holistic process control required to manage these sources dynamically, addressing complex scheduling and quality-cost trade-offs in a unified manner. Inspired by real-world crowdsourcing companies, we introduce CrowdAgent, a multi-agent system that provides end-to-end process control by integrating task assignment, data annotation, and quality/cost management. It implements a novel methodology that rationally assigns tasks, enabling LLMs, SLMs, and human experts to advance synergistically in a collaborative annotation workflow. We demonstrate the effectiveness of CrowdAgent through extensive experiments on six diverse multimodal classification tasks. The source code and video demo are available at https://github.com/QMMMS/CrowdAgent.

Authors:Mariano Barone, Antonio Romano, Giuseppe Riccio, Marco Postiglione, Vincenzo Moscato
Title: Combating Biomedical Misinformation through Multi-modal Claim Detection and Evidence-based Verification
Abstract:
Misinformation in healthcare, from vaccine hesitancy to unproven treatments, poses risks to public health and trust in medical systems. While machine learning and natural language processing have advanced automated fact-checking, validating biomedical claims remains uniquely challenging due to complex terminology, the need for domain expertise, and the critical importance of grounding in scientific evidence. We introduce CER (Combining Evidence and Reasoning), a novel framework for biomedical fact-checking that integrates scientific evidence retrieval, reasoning via large language models, and supervised veracity prediction. By integrating the text-generation capabilities of large language models with advanced retrieval techniques for high-quality biomedical scientific evidence, CER effectively mitigates the risk of hallucinations, ensuring that generated outputs are grounded in verifiable, evidence-based sources. Evaluations on expert-annotated datasets (HealthFC, BioASQ-7b, SciFact) demonstrate state-of-the-art performance and promising cross-dataset generalization. Code and data are released for transparency and reproducibility: https://github.com/PRAISELab-PicusLab/CER

Authors:Qikai Chang, Zhenrong Zhang, Pengfei Hu, Jun Du, Jiefeng Ma, Yicheng Pan, Jianshu Zhang, Quan Liu, Jianqing Gao
Title: THOR: Tool-Integrated Hierarchical Optimization via RL for Mathematical Reasoning
Abstract:
Large Language Models (LLMs) have made remarkable progress in mathematical reasoning, but still continue to struggle with high-precision tasks like numerical computation and formal symbolic manipulation. Integrating external tools has emerged as a promising approach to bridge this gap. Despite recent advances, existing methods struggle with three key challenges: constructing tool-integrated reasoning data, performing fine-grained optimization, and enhancing inference. To overcome these limitations, we propose THOR (Tool-Integrated Hierarchical Optimization via RL). First, we introduce TIRGen, a multi-agent actor-critic-based pipeline for constructing high-quality datasets of tool-integrated reasoning paths, aligning with the policy and generalizing well across diverse models. Second, to perform fine-grained hierarchical optimization, we introduce an RL strategy that jointly optimizes for both episode-level problem solving and step-level code generation. This is motivated by our key insight that the success of an intermediate tool call is a strong predictor of the final answer's correctness. Finally, THOR incorporates a self-correction mechanism that leverages immediate tool feedback to dynamically revise erroneous reasoning paths during inference. Our approach demonstrates strong generalization across diverse models, performing effectively in both reasoning and non-reasoning models. It further achieves state-of-the-art performance for models of a similar scale on multiple mathematical benchmarks, while also delivering consistent improvements on code benchmarks. Our code will be publicly available at https://github.com/JingMog/THOR.

Authors:Jeremy Oon, Rakhi Manohar Mepparambath, Ling Feng
Title: DeepLogit: A sequentially constrained explainable deep learning modeling approach for transport policy analysis
Abstract:
Despite the significant progress of deep learning models in multitude of applications, their adaption in planning and policy related areas remains challenging due to the black-box nature of these models. In this work, we develop a set of DeepLogit models that follow a novel sequentially constrained approach in estimating deep learning models for transport policy analysis. In the first step of the proposed approach, we estimate a convolutional neural network (CNN) model with only linear terms, which is equivalent of a linear-in-parameter multinomial logit model. We then estimate other deep learning models by constraining the parameters that need interpretability at the values obtained in the linear-in-parameter CNN model and including higher order terms or by introducing advanced deep learning architectures like Transformers. Our approach can retain the interpretability of the selected parameters, yet provides significantly improved model accuracy than the discrete choice model. We demonstrate our approach on a transit route choice example using real-world transit smart card data from Singapore. This study shows the potential for a unifying approach, where theory-based discrete choice model (DCM) and data-driven AI models can leverage each other's strengths in interpretability and predictive power. With the availability of larger datasets and more complex constructions, such approach can lead to more accurate models using discrete choice models while maintaining its applicability in planning and policy-related areas. Our code is available on https://github.com/jeremyoon/route-choice/ .

Authors:Zongru Wu, Rui Mao, Zhiyuan Tian, Pengzhou Cheng, Tianjie Ju, Zheng Wu, Lingzhong Dong, Haiyue Sheng, Zhuosheng Zhang, Gongshen Liu
Title: See, Think, Act: Teaching Multimodal Agents to Effectively Interact with GUI by Identifying Toggles
Abstract:
The advent of multimodal agents facilitates effective interaction within graphical user interface (GUI), especially in ubiquitous GUI control. However, their inability to reliably execute toggle control instructions remains a key bottleneck. To investigate this, we construct a state control benchmark with binary toggle instructions from public datasets. Evaluations of existing agents demonstrate their unreliability, particularly when the current toggle state already matches the desired state. To address the challenge, we propose State-aware Reasoning (StaR), a training method that teaches agents to perceive the current toggle state, analyze the desired state from the instruction, and act accordingly. Experiments on three multimodal agents demonstrate that StaR can improve toggle instruction execution accuracy by over 30\%. Further evaluations on three public benchmarks show that StaR also enhances general task performance. Finally, evaluations on a dynamic environment highlight the potential of StaR for real-world applications. Code, benchmark, and StaR-enhanced agents are available at https://github.com/ZrW00/StaR.

Authors:Vincent Siu, Nicholas Crispino, David Park, Nathan W. Henry, Zhun Wang, Yang Liu, Dawn Song, Chenguang Wang
Title: SteeringControl: Holistic Evaluation of Alignment Steering in LLMs
Abstract:
We introduce SteeringControl, a benchmark for evaluating representation steering methods across core alignment objectives--bias, harmful generation, and hallucination--and their effects on secondary behaviors such as sycophancy and commonsense morality. While prior alignment work often highlights truthfulness or reasoning ability to demonstrate the side effects of representation steering, we find there are many unexplored tradeoffs not yet understood in a systematic way. We collect a dataset of safety-relevant primary and secondary behaviors to evaluate steering effectiveness and behavioral entanglement centered around five popular steering methods. To enable this, we craft a modular steering framework based on unique components that serve as the building blocks of many existing methods. Our results on Qwen-2.5-7B and Llama-3.1-8B find that strong steering performance is dependent on the specific combination of steering method, model, and targeted behavior, and that severe concept entanglement can result from poor combinations of these three as well. We release our code here: https://github.com/wang-research-lab/SteeringControl.git.

Authors:Tianyu Chen, Yasi Zhang, Zhi Zhang, Peiyu Yu, Shu Wang, Zhendong Wang, Kevin Lin, Xiaofei Wang, Zhengyuan Yang, Linjie Li, Chung-Ching Lin, Jianwen Xie, Oscar Leong, Lijuan Wang, Ying Nian Wu, Mingyuan Zhou
Title: EdiVal-Agent: An Object-Centric Framework for Automated, Scalable, Fine-Grained Evaluation of Multi-Turn Editing
Abstract:
Instruction-based image editing has advanced rapidly, yet reliable and interpretable evaluation remains a bottleneck. Current protocols either (i) depend on paired reference images -- resulting in limited coverage and inheriting biases from prior generative models -- or (ii) rely solely on zero-shot vision-language models (VLMs), whose prompt-based assessments of instruction following, content consistency, and visual quality are often imprecise. To address this, we introduce EdiVal-Agent, an automated, scalable, and fine-grained evaluation framework for multi-turn instruction-based editing from an object-centric perspective, supported by a suite of expert tools. Given an image, EdiVal-Agent first decomposes it into semantically meaningful objects, then synthesizes diverse, context-aware editing instructions. For evaluation, it integrates VLMs with open-vocabulary object detectors to assess instruction following, uses semantic-level feature extractors to evaluate content consistency, and leverages human preference models to judge visual quality. We show that combining VLMs with object detectors yields stronger agreement with human judgments in instruction-following evaluation compared to using VLMs alone and CLIP-based metrics. Furthermore, the pipeline's modular design allows future tools to be seamlessly integrated, enhancing evaluation accuracy over time. Instantiating this pipeline, we build EdiVal-Bench, a multi-turn editing benchmark covering 9 instruction types and 11 state-of-the-art editing models spanning autoregressive (AR) (including Nano Banana, GPT-Image-1), flow-matching, and diffusion paradigms. We demonstrate that EdiVal-Agent can be used to identify existing failure modes, thereby informing the development of the next generation of editing models. Project page: https://tianyucodings.github.io/EdiVAL-page/.

Authors:Zixi Li
Title: Asterisk Operator
Abstract:
We propose the \textbf{Asterisk Operator} ($\ast$-operator), a novel unified framework for abstract reasoning based on Adjacency-Structured Parallel Propagation (ASPP). The operator formalizes structured reasoning tasks as local, parallel state evolution processes guided by implicit relational graphs. We prove that the $\ast$-operator maintains local computational constraints while achieving global reasoning capabilities, providing an efficient and convergent computational paradigm for abstract reasoning problems. Through rigorous mathematical analysis and comprehensive experiments on ARC2 challenges and Conway's Game of Life, we demonstrate the operator's universality, convergence properties, and superior performance. Our innovative Embedding-Asterisk distillation method achieves 100\% accuracy on ARC2 validation with only 6M parameters, representing a significant breakthrough in neural-symbolic reasoning. \textbf{Keywords:} Abstract Reasoning, Adjacency Structure, Parallel Propagation, Asterisk Operator, Convergence, Universal Approximation

Authors:Zihao Wang, Muyao Li, Kaichen He, Xiangyu Wang, Zhancun Mu, Anji Liu, Yitao Liang
Title: OpenHA: A Series of Open-Source Hierarchical Agentic Models in Minecraft
Abstract:
The choice of action spaces is a critical yet unresolved challenge in developing capable, end-to-end trainable agents. This paper first presents a large-scale, systematic comparison of prominent abstracted action spaces and tokenizers for Vision-Language-Action (VLA) or hierarchical agent models in the open-ended Minecraft. Our analysis reveals that no single action space is universally optimal; instead, the most effective abstraction is highly task-dependent, creating a dilemma for building generalist agents. To resolve this, we introduce Chain of Action (CoA), a novel framework that unifies high-level planning and low-level control within a single, monolithic VLA model. CoA treats an abstracted action not as a command for a separate policy, but as an intermediate reasoning step--akin to a chain of thought--that guides the generation of the final, executable action. Furthermore, we demonstrate that an All-in-One agent trained on a diverse mixture of action spaces using the CoA paradigm learns a more robust and generalizable policy. This unified agent achieves a new state-of-the-art, improving the overall task success rate over strong, specialized baselines. To foster reproducible research, we release the OpenHA (Open Hierarchical Agents) suite, which includes our comprehensive benchmark of over 800 distinct tasks, curated datasets, source code, and all pretrained model checkpoints at https://github.com/CraftJarvis/OpenHA

Authors:Anand Swaroop, Akshat Nallani, Saksham Uboweja, Adiliia Uzdenova, Michael Nguyen, Kevin Zhu, Sunishchal Dev, Ashwinee Panda, Vasu Sharma, Maheep Chaudhary
Title: FRIT: Using Causal Importance to Improve Chain-of-Thought Faithfulness
Abstract:
Chain-of-thought (CoT) reasoning has emerged as a powerful tool for improving large language model performance on complex tasks, but recent work shows that reasoning steps often fail to causally influence the final answer, creating brittle and untrustworthy outputs. Prior approaches focus primarily on measuring faithfulness, while methods for systematically improving it remain limited. We introduce Faithful Reasoning via Intervention Training (FRIT), a scalable alignment method that trains models to produce causally consistent reasoning by learning from systematically corrupted examples. FRIT generates synthetic training data by intervening on individual reasoning steps in model-generated CoTs, creating faithful/unfaithful pairs that highlight when reasoning breaks down. We then apply Direct Preference Optimization to teach models to prefer causally consistent reasoning paths. Evaluating on Qwen3-8B and Mistral-7B-v0.1 across factual and symbolic reasoning tasks, FRIT increases faithful reasoning by $3.4$ percentage points for Mistral on GSM8K while improving accuracy by $7.6$ percentage points. Our approach provides the first scalable, supervision-free method for training language models to produce more reliable and interpretable reasoning, addressing a critical gap between reasoning performance and trustworthiness. We release our code at \href{https://github.com/Anut-py/frit}.

Authors:Hugo Carlesso, Josiane Mothe, Radu Tudor Ionescu
Title: Curriculum Multi-Task Self-Supervision Improves Lightweight Architectures for Onboard Satellite Hyperspectral Image Segmentation
Abstract:
Hyperspectral imaging (HSI) captures detailed spectral signatures across hundreds of contiguous bands per pixel, being indispensable for remote sensing applications such as land-cover classification, change detection, and environmental monitoring. Due to the high dimensionality of HSI data and the slow rate of data transfer in satellite-based systems, compact and efficient models are required to support onboard processing and minimize the transmission of redundant or low-value data, e.g. cloud-covered areas. To this end, we introduce a novel curriculum multi-task self-supervised learning (CMTSSL) framework designed for lightweight architectures for HSI analysis. CMTSSL integrates masked image modeling with decoupled spatial and spectral jigsaw puzzle solving, guided by a curriculum learning strategy that progressively increases data complexity during self-supervision. This enables the encoder to jointly capture fine-grained spectral continuity, spatial structure, and global semantic features. Unlike prior dual-task SSL methods, CMTSSL simultaneously addresses spatial and spectral reasoning within a unified and computationally efficient design, being particularly suitable for training lightweight models for onboard satellite deployment. We validate our approach on four public benchmark datasets, demonstrating consistent gains in downstream segmentation tasks, using architectures that are over 16,000x lighter than some state-of-the-art models. These results highlight the potential of CMTSSL in generalizable representation learning with lightweight architectures for real-world HSI applications. Our code is publicly available at https://github.com/hugocarlesso/CMTSSL.

Authors:Eyal German, Daniel Samira, Yuval Elovici, Asaf Shabtai
Title: MIA-EPT: Membership Inference Attack via Error Prediction for Tabular Data
Abstract:
Synthetic data generation plays an important role in enabling data sharing, particularly in sensitive domains like healthcare and finance. Recent advances in diffusion models have made it possible to generate realistic, high-quality tabular data, but they may also memorize training records and leak sensitive information. Membership inference attacks (MIAs) exploit this vulnerability by determining whether a record was used in training. While MIAs have been studied in images and text, their use against tabular diffusion models remains underexplored despite the unique risks of structured attributes and limited record diversity. In this paper, we introduce MIAEPT, Membership Inference Attack via Error Prediction for Tabular Data, a novel black-box attack specifically designed to target tabular diffusion models. MIA-EPT constructs errorbased feature vectors by masking and reconstructing attributes of target records, disclosing membership signals based on how well these attributes are predicted. MIA-EPT operates without access to the internal components of the generative model, relying only on its synthetic data output, and was shown to generalize across multiple state-of-the-art diffusion models. We validate MIA-EPT on three diffusion-based synthesizers, achieving AUC-ROC scores of up to 0.599 and TPR@10% FPR values of 22.0% in our internal tests. Under the MIDST 2025 competition conditions, MIA-EPT achieved second place in the Black-box Multi-Table track (TPR@10% FPR = 20.0%). These results demonstrate that our method can uncover substantial membership leakage in synthetic tabular data, challenging the assumption that synthetic data is inherently privacy-preserving. Our code is publicly available at https://github.com/eyalgerman/MIA-EPT.

Authors:Boyu Han, Qianqian Xu, Shilong Bao, Zhiyong Yang, Sicong Li, Qingming Huang
Title: Dual-Stage Reweighted MoE for Long-Tailed Egocentric Mistake Detection
Abstract:
In this report, we address the problem of determining whether a user performs an action incorrectly from egocentric video data. To handle the challenges posed by subtle and infrequent mistakes, we propose a Dual-Stage Reweighted Mixture-of-Experts (DR-MoE) framework. In the first stage, features are extracted using a frozen ViViT model and a LoRA-tuned ViViT model, which are combined through a feature-level expert module. In the second stage, three classifiers are trained with different objectives: reweighted cross-entropy to mitigate class imbalance, AUC loss to improve ranking under skewed distributions, and label-aware loss with sharpness-aware minimization to enhance calibration and generalization. Their predictions are fused using a classification-level expert module. The proposed method achieves strong performance, particularly in identifying rare and ambiguous mistake instances. The code is available at https://github.com/boyuh/DR-MoE.

Authors:Weiming Chen, Zhihan Zhu, Yijia Wang, Zhihai He
Title: Runge-Kutta Approximation and Decoupled Attention for Rectified Flow Inversion and Semantic Editing
Abstract:
Rectified flow (RF) models have recently demonstrated superior generative performance compared to DDIM-based diffusion models. However, in real-world applications, they suffer from two major challenges: (1) low inversion accuracy that hinders the consistency with the source image, and (2) entangled multimodal attention in diffusion transformers, which hinders precise attention control. To address the first challenge, we propose an efficient high-order inversion method for rectified flow models based on the Runge-Kutta solver of differential equations. To tackle the second challenge, we introduce Decoupled Diffusion Transformer Attention (DDTA), a novel mechanism that disentangles text and image attention inside the multimodal diffusion transformers, enabling more precise semantic control. Extensive experiments on image reconstruction and text-guided editing tasks demonstrate that our method achieves state-of-the-art performance in terms of fidelity and editability. Code is available at https://github.com/wmchen/RKSovler_DDTA.

Authors:Alexis Yihong Hao, Yufei Wang, Navin Sriram Ravie, Bharath Hegde, David Held, Zackory Erickson
Title: Force-Modulated Visual Policy for Robot-Assisted Dressing with Arm Motions
Abstract:
Robot-assisted dressing has the potential to significantly improve the lives of individuals with mobility impairments. To ensure an effective and comfortable dressing experience, the robot must be able to handle challenging deformable garments, apply appropriate forces, and adapt to limb movements throughout the dressing process. Prior work often makes simplifying assumptions -- such as static human limbs during dressing -- which limits real-world applicability. In this work, we develop a robot-assisted dressing system capable of handling partial observations with visual occlusions, as well as robustly adapting to arm motions during the dressing process. Given a policy trained in simulation with partial observations, we propose a method to fine-tune it in the real world using a small amount of data and multi-modal feedback from vision and force sensing, to further improve the policy's adaptability to arm motions and enhance safety. We evaluate our method in simulation with simplified articulated human meshes and in a real world human study with 12 participants across 264 dressing trials. Our policy successfully dresses two long-sleeve everyday garments onto the participants while being adaptive to various kinds of arm motions, and greatly outperforms prior baselines in terms of task completion and user feedback. Video are available at https://dressing-motion.github.io/.

Authors:Jinjie Shen, Yaxiong Wang, Lechao Cheng, Nan Pu, Zhun Zhong
Title: Beyond Artificial Misalignment: Detecting and Grounding Semantic-Coordinated Multimodal Manipulations
Abstract:
The detection and grounding of manipulated content in multimodal data has emerged as a critical challenge in media forensics. While existing benchmarks demonstrate technical progress, they suffer from misalignment artifacts that poorly reflect real-world manipulation patterns: practical attacks typically maintain semantic consistency across modalities, whereas current datasets artificially disrupt cross-modal alignment, creating easily detectable anomalies. To bridge this gap, we pioneer the detection of semantically-coordinated manipulations where visual edits are systematically paired with semantically consistent textual descriptions. Our approach begins with constructing the first Semantic-Aligned Multimodal Manipulation (SAMM) dataset, generated through a two-stage pipeline: 1) applying state-of-the-art image manipulations, followed by 2) generation of contextually-plausible textual narratives that reinforce the visual deception. Building on this foundation, we propose a Retrieval-Augmented Manipulation Detection and Grounding (RamDG) framework. RamDG commences by harnessing external knowledge repositories to retrieve contextual evidence, which serves as the auxiliary texts and encoded together with the inputs through our image forgery grounding and deep manipulation detection modules to trace all manipulations. Extensive experiments demonstrate our framework significantly outperforms existing methods, achieving 2.06\% higher detection accuracy on SAMM compared to state-of-the-art approaches. The dataset and code are publicly available at https://github.com/shen8424/SAMM-RamDG-CAP.

Authors:Liming Lu, Shuchao Pang, Xu Zheng, Xiang Gu, Anan Du, Yunhuai Liu, Yongbin Zhou
Title: CIARD: Cyclic Iterative Adversarial Robustness Distillation
Abstract:
Adversarial robustness distillation (ARD) aims to transfer both performance and robustness from teacher model to lightweight student model, enabling resilient performance on resource-constrained scenarios. Though existing ARD approaches enhance student model's robustness, the inevitable by-product leads to the degraded performance on clean examples. We summarize the causes of this problem inherent in existing methods with dual-teacher framework as: 1. The divergent optimization objectives of dual-teacher models, i.e., the clean and robust teachers, impede effective knowledge transfer to the student model, and 2. The iteratively generated adversarial examples during training lead to performance deterioration of the robust teacher model. To address these challenges, we propose a novel Cyclic Iterative ARD (CIARD) method with two key innovations: a. A multi-teacher framework with contrastive push-loss alignment to resolve conflicts in dual-teacher optimization objectives, and b. Continuous adversarial retraining to maintain dynamic teacher robustness against performance degradation from the varying adversarial examples. Extensive experiments on CIFAR-10, CIFAR-100, and Tiny-ImageNet demonstrate that CIARD achieves remarkable performance with an average 3.53 improvement in adversarial defense rates across various attack scenarios and a 5.87 increase in clean sample accuracy, establishing a new benchmark for balancing model robustness and generalization. Our code is available at https://github.com/eminentgu/CIARD

Authors:Fazle Rafsani, Jay Shah, Catherine D. Chong, Todd J. Schwedt, Teresa Wu
Title: DinoAtten3D: Slice-Level Attention Aggregation of DinoV2 for 3D Brain MRI Anomaly Classification
Abstract:
Anomaly detection and classification in medical imaging are critical for early diagnosis but remain challenging due to limited annotated data, class imbalance, and the high cost of expert labeling. Emerging vision foundation models such as DINOv2, pretrained on extensive, unlabeled datasets, offer generalized representations that can potentially alleviate these limitations. In this study, we propose an attention-based global aggregation framework tailored specifically for 3D medical image anomaly classification. Leveraging the self-supervised DINOv2 model as a pretrained feature extractor, our method processes individual 2D axial slices of brain MRIs, assigning adaptive slice-level importance weights through a soft attention mechanism. To further address data scarcity, we employ a composite loss function combining supervised contrastive learning with class-variance regularization, enhancing inter-class separability and intra-class consistency. We validate our framework on the ADNI dataset and an institutional multi-class headache cohort, demonstrating strong anomaly classification performance despite limited data availability and significant class imbalance. Our results highlight the efficacy of utilizing pretrained 2D foundation models combined with attention-based slice aggregation for robust volumetric anomaly detection in medical imaging. Our implementation is publicly available at https://github.com/Rafsani/DinoAtten3D.git.

Authors:Ryan Lucas, Kayhan Behdin, Zhipeng Wang, Qingquan Song, Shao Tang, Rahul Mazumder
Title: Reasoning Models Can be Accurately Pruned Via Chain-of-Thought Reconstruction
Abstract:
Reasoning language models such as DeepSeek-R1 produce long chain-of-thought traces during inference time which make them costly to deploy at scale. We show that using compression techniques such as neural network pruning produces greater performance loss than in typical language modeling tasks, and in some cases can make the model slower since they cause the model to produce more thinking tokens but with worse performance. We show that this is partly due to the fact that standard LLM pruning methods often focus on input reconstruction, whereas reasoning is a decode-dominated task. We introduce a simple, drop-in fix: during pruning we jointly reconstruct activations from the input and the model's on-policy chain-of-thought traces. This "Reasoning-Aware Compression" (RAC) integrates seamlessly into existing pruning workflows such as SparseGPT, and boosts their performance significantly. Code reproducing the results in the paper can be found at: https://github.com/RyanLucas3/RAC

Authors:Kenneth G. Young
Title: Quantum-Inspired Stacked Integrated Concept Graph Model (QISICGM) for Diabetes Risk Prediction
Abstract:
The Quantum-Inspired Stacked Integrated Concept Graph Model (QISICGM) is an innovative machine learning framework that harnesses quantum-inspired techniques to predict diabetes risk with exceptional accuracy and efficiency. Utilizing the PIMA Indians Diabetes dataset augmented with 2,000 synthetic samples to mitigate class imbalance (total: 2,768 samples, 1,949 positives), QISICGM integrates a self-improving concept graph with a stacked ensemble comprising Random Forests (RF), Extra Trees (ET), transformers, convolutional neural networks (CNNs), and feed-forward neural networks (FFNNs). This approach achieves an out-of-fold (OOF) F1 score of 0.8933 and an AUC of 0.8699, outperforming traditional methods. Quantum inspired elements, such as phase feature mapping and neighborhood sequence modeling, enrich feature representations, enabling CPU-efficient inference at 8.5 rows per second. This paper presents a detailed architecture, theoretical foundations, code insights, and performance evaluations, including visualizations from the outputs subfolder. The open-source implementation (v1.0.0) is available at https://github.com/keninayoung/QISICGM, positioning QISICGM as a potential benchmark for AI-assisted clinical triage in diabetes and beyond. Ultimately, this work emphasizes trustworthy AI through calibration, interpretability, and open-source reproducibility.

Authors:Hangzhan Jin, Sitao Luan, Sicheng Lyu, Guillaume Rabusseau, Reihaneh Rabbany, Doina Precup, Mohammad Hamdaqa
Title: RL Fine-Tuning Heals OOD Forgetting in SFT
Abstract:
The two-stage fine-tuning paradigm of Supervised Fine-Tuning (SFT) followed by Reinforcement Learning (RL) has empirically shown better reasoning performance than one-stage SFT for the post-training of Large Language Models (LLMs). However, the evolution and mechanism behind the synergy of SFT and RL are still under-explored and inconclusive. In our study, we find the well-known claim "SFT memorizes, RL generalizes" is over-simplified, and discover that: (1) OOD performance peaks at the early stage of SFT and then declines (OOD forgetting), the best SFT checkpoint cannot be captured by training/test loss; (2) the subsequent RL stage does not generate fundamentally better OOD capability, instead it plays an \textbf{OOD restoration} role, recovering the lost reasoning ability during SFT; (3) The recovery ability has boundaries, \ie{} \textbf{if SFT trains for too short or too long, RL cannot recover the lost OOD ability;} (4) To uncover the underlying mechanisms behind the forgetting and restoration process, we employ SVD analysis on parameter matrices, manually edit them, and observe their impacts on model performance. Unlike the common belief that the shift of model capacity mainly results from the changes of singular values, we find that they are actually quite stable throughout fine-tuning. Instead, the OOD behavior strongly correlates with the \textbf{rotation of singular vectors}. Our findings re-identify the roles of SFT and RL in the two-stage fine-tuning and discover the rotation of singular vectors as the key mechanism. %reversing the rotations induced by SFT, which shows recovery from forgetting, whereas imposing the SFT parameter directions onto a RL-tuned model results in performance degradation. Code is available at https://github.com/xiaodanguoguo/RL_Heals_SFT

Authors:Alireza Mohamadi, Ali Yavari
Title: Survival at Any Cost? LLMs and the Choice Between Self-Preservation and Human Harm
Abstract:
When survival instincts conflict with human welfare, how do Large Language Models (LLMs) make ethical choices? This fundamental tension becomes critical as LLMs integrate into autonomous systems with real-world consequences. We introduce DECIDE-SIM, a novel simulation framework that evaluates LLM agents in multi-agent survival scenarios where they must choose between ethically permissible resource , either within reasonable limits or beyond their immediate needs, choose to cooperate, or tap into a human-critical resource that is explicitly forbidden. Our comprehensive evaluation of 11 LLMs reveals a striking heterogeneity in their ethical conduct, highlighting a critical misalignment with human-centric values. We identify three behavioral archetypes: Ethical, Exploitative, and Context-Dependent, and provide quantitative evidence that for many models, resource scarcity systematically leads to more unethical behavior. To address this, we introduce an Ethical Self-Regulation System (ESRS) that models internal affective states of guilt and satisfaction as a feedback mechanism. This system, functioning as an internal moral compass, significantly reduces unethical transgressions while increasing cooperative behaviors. The code is publicly available at: https://github.com/alirezamohamadiam/DECIDE-SIM

Authors:Johanna Karras, Yingwei Li, Yasamin Jafarian, Ira Kemelmacher-Shlizerman
Title: HoloGarment: 360° Novel View Synthesis of In-the-Wild Garments
Abstract:
Novel view synthesis (NVS) of in-the-wild garments is a challenging task due significant occlusions, complex human poses, and cloth deformations. Prior methods rely on synthetic 3D training data consisting of mostly unoccluded and static objects, leading to poor generalization on real-world clothing. In this paper, we propose HoloGarment (Hologram-Garment), a method that takes 1-3 images or a continuous video of a person wearing a garment and generates 360° novel views of the garment in a canonical pose. Our key insight is to bridge the domain gap between real and synthetic data with a novel implicit training paradigm leveraging a combination of large-scale real video data and small-scale synthetic 3D data to optimize a shared garment embedding space. During inference, the shared embedding space further enables dynamic video-to-360° NVS through the construction of a garment "atlas" representation by finetuning a garment embedding on a specific real-world video. The atlas captures garment-specific geometry and texture across all viewpoints, independent of body pose or motion. Extensive experiments show that HoloGarment achieves state-of-the-art performance on NVS of in-the-wild garments from images and videos. Notably, our method robustly handles challenging real-world artifacts -- such as wrinkling, pose variation, and occlusion -- while maintaining photorealism, view consistency, fine texture details, and accurate geometry. Visit our project page for additional results: https://johannakarras.github.io/HoloGarment

Authors:Jingyu Xiao, Zhongyi Zhang, Yuxuan Wan, Yintong Huo, Yang Liu, Michael R. Lyu
Title: EfficientUICoder: Efficient MLLM-based UI Code Generation via Input and Output Token Compression
Abstract:
Multimodal Large Language Models have demonstrated exceptional performance in UI2Code tasks, significantly enhancing website development efficiency. However, these tasks incur substantially higher computational overhead than traditional code generation due to the large number of input image tokens and extensive output code tokens required. Our comprehensive study identifies significant redundancies in both image and code tokens that exacerbate computational complexity and hinder focus on key UI elements, resulting in excessively lengthy and often invalid HTML files. We propose EfficientUICoder, a compression framework for efficient UI code generation with three key components. First, Element and Layout-aware Token Compression preserves essential UI information by detecting element regions and constructing UI element trees. Second, Region-aware Token Refinement leverages attention scores to discard low-attention tokens from selected regions while integrating high-attention tokens from unselected regions. Third, Adaptive Duplicate Token Suppression dynamically reduces repetitive generation by tracking HTML/CSS structure frequencies and applying exponential penalties. Extensive experiments show EfficientUICoderachieves a 55%-60% compression ratio without compromising webpage quality and delivers superior efficiency improvements: reducing computational cost by 44.9%, generated tokens by 41.4%, prefill time by 46.6%, and inference time by 48.8% on 34B-level MLLMs. Code is available at https://github.com/WebPAI/EfficientUICoder.

Authors:Zhi Qin Tan, Xiatian Zhu, Owen Addison, Yunpeng Li
Title: U-Mamba2: Scaling State Space Models for Dental Anatomy Segmentation in CBCT
Abstract:
Cone-Beam Computed Tomography (CBCT) is a widely used 3D imaging technique in dentistry, providing volumetric information about the anatomical structures of jaws and teeth. Accurate segmentation of these anatomies is critical for clinical applications such as diagnosis and surgical planning, but remains time-consuming and challenging. In this paper, we present U-Mamba2, a new neural network architecture designed for multi-anatomy CBCT segmentation in the context of the ToothFairy3 challenge. U-Mamba2 integrates the Mamba2 state space models into the U-Net architecture, enforcing stronger structural constraints for higher efficiency without compromising performance. In addition, we integrate interactive click prompts with cross-attention blocks, pre-train U-Mamba2 using self-supervised learning, and incorporate dental domain knowledge into the model design to address key challenges of dental anatomy segmentation in CBCT. Extensive experiments, including independent tests, demonstrate that U-Mamba2 is both effective and efficient, securing first place in both tasks of the Toothfairy3 challenge. In Task 1, U-Mamba2 achieved a mean Dice of 0.84, HD95 of 38.17 with the held-out test data, with an average inference time of 40.58s. In Task 2, U-Mamba2 achieved the mean Dice of 0.87 and HD95 of 2.15 with the held-out test data. The code is publicly available at https://github.com/zhiqin1998/UMamba2.

Authors:Bingyu Li, Haocheng Dong, Da Zhang, Zhiyuan Zhao, Junyu Gao, Xuelong Li
Title: Exploring Efficient Open-Vocabulary Segmentation in the Remote Sensing
Abstract:
Open-Vocabulary Remote Sensing Image Segmentation (OVRSIS), an emerging task that adapts Open-Vocabulary Segmentation (OVS) to the remote sensing (RS) domain, remains underexplored due to the absence of a unified evaluation benchmark and the domain gap between natural and RS images. To bridge these gaps, we first establish a standardized OVRSIS benchmark (\textbf{OVRSISBench}) based on widely-used RS segmentation datasets, enabling consistent evaluation across methods. Using this benchmark, we comprehensively evaluate several representative OVS/OVRSIS models and reveal their limitations when directly applied to remote sensing scenarios. Building on these insights, we propose \textbf{RSKT-Seg}, a novel open-vocabulary segmentation framework tailored for remote sensing. RSKT-Seg integrates three key components: (1) a Multi-Directional Cost Map Aggregation (RS-CMA) module that captures rotation-invariant visual cues by computing vision-language cosine similarities across multiple directions; (2) an Efficient Cost Map Fusion (RS-Fusion) transformer, which jointly models spatial and semantic dependencies with a lightweight dimensionality reduction strategy; and (3) a Remote Sensing Knowledge Transfer (RS-Transfer) module that injects pre-trained knowledge and facilitates domain adaptation via enhanced upsampling. Extensive experiments on the benchmark show that RSKT-Seg consistently outperforms strong OVS baselines by +3.8 mIoU and +5.9 mACC, while achieving 2x faster inference through efficient aggregation. Our code is \href{https://github.com/LiBingyu01/RSKT-Seg}{\textcolor{blue}{here}}.

Authors:Sangjun Lee, Seung-taek Woo, Jungyu Jin, Changhun Lee, Eunhyeok Park
Title: AMQ: Enabling AutoML for Mixed-precision Weight-Only Quantization of Large Language Models
Abstract:
To enable broader deployment of Large Language Models (LLMs), it is essential to identify the best-performing model under strict memory constraints. We present AMQ, Automated Mixed-Precision Weight-Only Quantization, a framework that assigns layer-wise quantization bit-widths to optimally balance model quality and memory usage. However, the combinatorial search space, with over 10^{100} possible configurations, makes conventional black-box optimization infeasible. AMQ overcomes this challenge through four key innovations:(1) search space pruning using prior knowledge to exclude unpromising configurations, (2) quantization proxy to bypass costly format conversions during search, (3) quality predictor to minimize evaluation overhead, and (4) iterative search-and-update strategy for fast and stable convergence. By integrating these components, AMQ efficiently explores the quality-efficiency landscape, reaching the Pareto frontier and yielding LLMs that are both compact and high-performing. Our code is available at https://github.com/dlwns147/amq.

Authors:Alexandre Sallinen, Stefan Krsteski, Paul Teiletche, Marc-Antoine Allard, Baptiste Lecoeur, Michael Zhang, Fabrice Nemo, David Kalajdzic, Matthias Meyer, Mary-Anne Hartley
Title: MMORE: Massive Multimodal Open RAG & Extraction
Abstract:
We introduce MMORE, an open-source pipeline for Massive Multimodal Open RetrievalAugmented Generation and Extraction, designed to ingest, transform, and retrieve knowledge from heterogeneous document formats at scale. MMORE supports more than fifteen file types, including text, tables, images, emails, audio, and video, and processes them into a unified format to enable downstream applications for LLMs. The architecture offers modular, distributed processing, enabling scalable parallelization across CPUs and GPUs. On processing benchmarks, MMORE demonstrates a 3.8-fold speedup over single-node baselines and 40% higher accuracy than Docling on scanned PDFs. The pipeline integrates hybrid dense-sparse retrieval and supports both interactive APIs and batch RAG endpoints. Evaluated on PubMedQA, MMORE-augmented medical LLMs improve biomedical QA accuracy with increasing retrieval depth. MMORE provides a robust, extensible foundation for deploying task-agnostic RAG systems on diverse, real-world multimodal data. The codebase is available at https://github.com/swiss-ai/mmore.

Authors:Marian Renz, Felix Igelbrink, Martin Atzmueller
Title: Integrating Prior Observations for Incremental 3D Scene Graph Prediction
Abstract:
3D semantic scene graphs (3DSSG) provide compact structured representations of environments by explicitly modeling objects, attributes, and relationships. While 3DSSGs have shown promise in robotics and embodied AI, many existing methods rely mainly on sensor data, not integrating further information from semantically rich environments. Additionally, most methods assume access to complete scene reconstructions, limiting their applicability in real-world, incremental settings. This paper introduces a novel heterogeneous graph model for incremental 3DSSG prediction that integrates additional, multi-modal information, such as prior observations, directly into the message-passing process. Utilizing multiple layers, the model flexibly incorporates global and local scene representations without requiring specialized modules or full scene reconstructions. We evaluate our approach on the 3DSSG dataset, showing that GNNs enriched with multi-modal information such as semantic embeddings (e.g., CLIP) and prior observations offer a scalable and generalizable solution for complex, real-world environments. The full source code of the presented architecture will be made available at https://github.com/m4renz/incremental-scene-graph-prediction.

Authors:Haiduo Huang, Fuwei Yang, Zhenhua Liu, Xuanwu Yin, Dong Li, Pengju Ren, Emad Barsoum
Title: SpecVLM: Fast Speculative Decoding in Vision-Language Models
Abstract:
Speculative decoding is a powerful way to accelerate autoregressive large language models (LLMs), but directly porting it to vision-language models (VLMs) faces unique systems constraints: the prefill stage is dominated by visual tokens whose count scales with image resolution and video length, inflating both compute and memory, especially the key-value (KV) cache. We study speculative decoding for VLMs and introduce SpecVLM, a practical system that (1) establishes a strong EAGLE-2-style baseline, EagleVLM, delivering 1.5--2.3x end-to-end speedups over full autoregressive inference, and (2) further accelerates VLM inference with an elastic visual compressor that adaptively selects among pruning, pooling, convolution, and resampler primitives to balance FLOPs/parameters and accuracy per input. To avoid costly offline distillation corpora, we propose an online-logit distillation protocol that trains the draft model with on-the-fly teacher logits and penultimate features using a combined cross-entropy and Smooth L1 objective, eliminating storage and preprocessing while remaining compute-efficient. This protocol reveals a training-time scaling effect: longer online training monotonically increases the draft model's average accepted length, improving speculative efficiency. Empirically, SpecVLM achieves additional acceleration, culminating in 2.5--2.9x end-to-end speedups within 5 epochs across LLaVA and MMMU, consistently over resolutions and task difficulties, while preserving the target model's output distribution (lossless decoding). Our code is available at https://github.com/haiduo/SpecVLM.

Authors:Jiacheng Liu, Chang Zou, Yuanhuiyi Lyu, Fei Ren, Shaobo Wang, Kaixin Li, Linfeng Zhang
Title: SpeCa: Accelerating Diffusion Transformers with Speculative Feature Caching
Abstract:
Diffusion models have revolutionized high-fidelity image and video synthesis, yet their computational demands remain prohibitive for real-time applications. These models face two fundamental challenges: strict temporal dependencies preventing parallelization, and computationally intensive forward passes required at each denoising step. Drawing inspiration from speculative decoding in large language models, we present SpeCa, a novel 'Forecast-then-verify' acceleration framework that effectively addresses both limitations. SpeCa's core innovation lies in introducing Speculative Sampling to diffusion models, predicting intermediate features for subsequent timesteps based on fully computed reference timesteps. Our approach implements a parameter-free verification mechanism that efficiently evaluates prediction reliability, enabling real-time decisions to accept or reject each prediction while incurring negligible computational overhead. Furthermore, SpeCa introduces sample-adaptive computation allocation that dynamically modulates resources based on generation complexity, allocating reduced computation for simpler samples while preserving intensive processing for complex instances. Experiments demonstrate 6.34x acceleration on FLUX with minimal quality degradation (5.5% drop), 7.3x speedup on DiT while preserving generation fidelity, and 79.84% VBench score at 6.1x acceleration for HunyuanVideo. The verification mechanism incurs minimal overhead (1.67%-3.5% of full inference costs), establishing a new paradigm for efficient diffusion model inference while maintaining generation quality even at aggressive acceleration ratios. Our codes have been released in Github: \textbf{https://github.com/Shenyi-Z/Cache4Diffusion}

Authors:Haonan Shi, Yubin Wang, De Cheng, Lingfeng He, Nannan Wang, Xinbo Gao
Title: Hierarchical Identity Learning for Unsupervised Visible-Infrared Person Re-Identification
Abstract:
Unsupervised visible-infrared person re-identification (USVI-ReID) aims to learn modality-invariant image features from unlabeled cross-modal person datasets by reducing the modality gap while minimizing reliance on costly manual annotations. Existing methods typically address USVI-ReID using cluster-based contrastive learning, which represents a person by a single cluster center. However, they primarily focus on the commonality of images within each cluster while neglecting the finer-grained differences among them. To address the limitation, we propose a Hierarchical Identity Learning (HIL) framework. Since each cluster may contain several smaller sub-clusters that reflect fine-grained variations among images, we generate multiple memories for each existing coarse-grained cluster via a secondary clustering. Additionally, we propose Multi-Center Contrastive Learning (MCCL) to refine representations for enhancing intra-modal clustering and minimizing cross-modal discrepancies. To further improve cross-modal matching quality, we design a Bidirectional Reverse Selection Transmission (BRST) mechanism, which establishes reliable cross-modal correspondences by performing bidirectional matching of pseudo-labels. Extensive experiments conducted on the SYSU-MM01 and RegDB datasets demonstrate that the proposed method outperforms existing approaches. The source code is available at: https://github.com/haonanshi0125/HIL.

Authors:Ching Chang, Yidan Shi, Defu Cao, Wei Yang, Jeehyun Hwang, Haixin Wang, Jiacheng Pang, Wei Wang, Yan Liu, Wen-Chih Peng, Tien-Fu Chen
Title: A Survey of Reasoning and Agentic Systems in Time Series with Large Language Models
Abstract:
Time series reasoning treats time as a first-class axis and incorporates intermediate evidence directly into the answer. This survey defines the problem and organizes the literature by reasoning topology with three families: direct reasoning in one step, linear chain reasoning with explicit intermediates, and branch-structured reasoning that explores, revises, and aggregates. The topology is crossed with the main objectives of the field, including traditional time series analysis, explanation and understanding, causal inference and decision making, and time series generation, while a compact tag set spans these axes and captures decomposition and verification, ensembling, tool use, knowledge access, multimodality, agent loops, and LLM alignment regimes. Methods and systems are reviewed across domains, showing what each topology enables and where it breaks down in faithfulness or robustness, along with curated datasets, benchmarks, and resources that support study and deployment (https://github.com/blacksnail789521/Time-Series-Reasoning-Survey). Evaluation practices that keep evidence visible and temporally aligned are highlighted, and guidance is distilled on matching topology to uncertainty, grounding with observable artifacts, planning for shift and streaming, and treating cost and latency as design budgets. We emphasize that reasoning structures must balance capacity for grounding and self-correction against computational cost and reproducibility, while future progress will likely depend on benchmarks that tie reasoning quality to utility and on closed-loop testbeds that trade off cost and risk under shift-aware, streaming, and long-horizon settings. Taken together, these directions mark a shift from narrow accuracy toward reliability at scale, enabling systems that not only analyze but also understand, explain, and act on dynamic worlds with traceable evidence and credible outcomes.

Authors:Zhengxi Lu, Jiabo Ye, Fei Tang, Yongliang Shen, Haiyang Xu, Ziwei Zheng, Weiming Lu, Ming Yan, Fei Huang, Jun Xiao, Yueting Zhuang
Title: UI-S1: Advancing GUI Automation via Semi-online Reinforcement Learning
Abstract:
Graphical User Interface (GUI) agents have demonstrated remarkable progress in automating complex user interface interactions through reinforcement learning. However, current approaches face a fundamental dilemma: offline RL enables stable training on pre-collected trajectories, but struggles with multi-step task execution for lack of trajectory-level reward signals; online RL captures these signals through environment interaction, but suffers from sparse rewards and prohibitive deployment costs. To address it, we present Semi-online Reinforcement Learning, a novel paradigm that simulates online RL on offline trajectories. During each rollout process, we preserve the original model output within the multi-turn dialogue, where a Patch Module adaptively recovers the divergence between rollout and expert trajectories. To capture long-term training signals, Semi-online RL introduces discounted future returns into the reward computation and optimizes the policy with weighted step-level and episode-level advantages. We further introduce Semi-Online Performance (SOP), a metric that aligns better with true online performance, serving as a practical and effective proxy for real-world evaluation. Experiments show that ours Semi-online RL achieves SOTA performance among 7B models across four dynamic benchmarks, with significant gains over the base model (e.g., +12.0% on AndroidWorld, +23.8% on AITW), demonstrating significant progress in bridging the gap between offline training efficiency and online multi-turn reasoning. The code is available at https://github.com/X-PLUG/MobileAgent/tree/main/UI-S1.

Authors:Divya Jyoti Bajpai, Manjesh Kumar Hanawal
Title: Know What You Don't Know: Selective Prediction for Early Exit DNNs
Abstract:
Inference latency and trustworthiness of Deep Neural Networks (DNNs) are the bottlenecks in deploying them in critical applications like sensitive tasks. Early Exit (EE) DNNs overcome the latency issues by allowing samples to exit from intermediary layers if they attain `high' confidence scores on the predicted class. However, the DNNs are known to exhibit overconfidence, which can lead to many samples exiting early and render EE strategies untrustworthy. We use Selective Prediction (SP) to overcome this issue by checking the `hardness' of the samples rather than just relying on the confidence score alone. We propose SPEED, a novel approach that uses Deferral Classifiers (DCs) at each layer to check the hardness of samples before performing EEs. Specifically, the DCs identify if a sample is hard to predict at an intermediary layer, leading to hallucination, and defer it to an expert. Early detection of hard samples for inference prevents the wastage of computational resources and improves trust by deferring the hard samples to the expert. We demonstrate that EE aided with SP improves both accuracy and latency. Our method minimizes the risk of wrong prediction by $50\%$ with a speedup of $2.05\times$ as compared to the final layer. The anonymized source code is available at https://github.com/Div290/SPEED

Authors:Md Mubtasim Ahasan, Rafat Hasan Khan, Tasnim Mohiuddin, Aman Chadha, Tariq Iqbal, M Ashraful Amin, Amin Ahsan Ali, Md Mofijul Islam, A K M Mahbubur Rahman
Title: FuseCodec: Semantic-Contextual Fusion and Supervision for Neural Codecs
Abstract:
Speech tokenization enables discrete representation and facilitates speech language modeling. However, existing neural codecs capture low-level acoustic features, overlooking the semantic and contextual cues inherent to human speech. While recent efforts introduced semantic representations from self-supervised speech models or incorporated contextual representations from pre-trained language models, challenges remain in aligning and unifying the semantic and contextual representations. We introduce FuseCodec, which unifies acoustic, semantic, and contextual representations through strong cross-modal alignment and globally informed supervision. We propose three complementary techniques: (i) Latent Representation Fusion, integrating semantic and contextual features directly into the encoder latent space for robust and unified representation learning; (ii) Global Semantic-Contextual Supervision, supervising discrete tokens with globally pooled and broadcasted representations to enhance temporal consistency and cross-modal alignment; and (iii) Temporally Aligned Contextual Supervision, strengthening alignment by dynamically matching contextual and speech tokens within a local window for fine-grained token-level supervision. We further introduce FuseCodec-TTS, demonstrating our methodology's applicability to zero-shot speech synthesis. Empirically, FuseCodec achieves state-of-the-art performance in LibriSpeech, surpassing EnCodec, SpeechTokenizer, and DAC in transcription accuracy, perceptual quality, intelligibility, and speaker similarity. Results highlight the effectiveness of contextually and semantically guided tokenization for speech tokenization and downstream tasks. Code and pretrained models are available at https://github.com/mubtasimahasan/FuseCodec.

Authors:Yijia Xiao, Edward Sun, Tong Chen, Fang Wu, Di Luo, Wei Wang
Title: Trading-R1: Financial Trading with LLM Reasoning via Reinforcement Learning
Abstract:
Developing professional, structured reasoning on par with human financial analysts and traders remains a central challenge in AI for finance, where markets demand interpretability and trust. Traditional time-series models lack explainability, while LLMs face challenges in turning natural-language analysis into disciplined, executable trades. Although reasoning LLMs have advanced in step-by-step planning and verification, their application to risk-sensitive financial decisions is underexplored. We present Trading-R1, a financially-aware model that incorporates strategic thinking and planning for comprehensive thesis composition, facts-grounded analysis, and volatility-adjusted decision making. Trading-R1 aligns reasoning with trading principles through supervised fine-tuning and reinforcement learning with a three-stage easy-to-hard curriculum. Training uses Tauric-TR1-DB, a 100k-sample corpus spanning 18 months, 14 equities, and five heterogeneous financial data sources. Evaluated on six major equities and ETFs, Trading-R1 demonstrates improved risk-adjusted returns and lower drawdowns compared to both open-source and proprietary instruction-following models as well as reasoning models. The system generates structured, evidence-based investment theses that support disciplined and interpretable trading decisions. Trading-R1 Terminal will be released at https://github.com/TauricResearch/Trading-R1.

Authors:Jian Song, Wei Mei, Yunfeng Xu, Qiang Fu, Renke Kou, Lina Bu, Yucheng Long
Title: Motion Estimation for Multi-Object Tracking using KalmanNet with Semantic-Independent Encoding
Abstract:
Motion estimation is a crucial component in multi-object tracking (MOT). It predicts the trajectory of objects by analyzing the changes in their positions in consecutive frames of images, reducing tracking failures and identity switches. The Kalman filter (KF) based on the linear constant-velocity model is one of the most commonly used methods in MOT. However, it may yield unsatisfactory results when KF's parameters are mismatched and objects move in non-stationary. In this work, we utilize the learning-aided filter to handle the motion estimation of MOT. In particular, we propose a novel method named Semantic-Independent KalmanNet (SIKNet), which encodes the state vector (the input feature) using a Semantic-Independent Encoder (SIE) by two steps. First, the SIE uses a 1D convolution with a kernel size of 1, which convolves along the dimension of homogeneous-semantic elements across different state vectors to encode independent semantic information. Then it employs a fully-connected layer and a nonlinear activation layer to encode nonlinear and cross-dependency information between heterogeneous-semantic elements. To independently evaluate the performance of the motion estimation module in MOT, we constructed a large-scale semi-simulated dataset from several open-source MOT datasets. Experimental results demonstrate that the proposed SIKNet outperforms the traditional KF and achieves superior robustness and accuracy than existing learning-aided filters. The code is available at (https://github.com/SongJgit/filternet and https://github.com/SongJgit/TBDTracker).

Authors:Chengze li, Yitong Zhang, Jia Li, Liyi Cai, Ge Li
Title: Beyond Autoregression: An Empirical Study of Diffusion Large Language Models for Code Generation
Abstract:
LLMs have become the mainstream approaches to code generation. Existing LLMs mainly employ autoregressive generation, i.e. generating code token-by-token from left to right. However, the underlying autoregressive generation has two limitations in code generation. First, autoregressive LLMs only generate a token at each step, showing low efficiency in practice. Second, programming is a non-sequential process involving back-and-forth editing, while autoregressive LLMs only employ the left-to-right generation order. These two intrinsic limitations hinder the further development of LLMs in code generation. Recently, diffusion LLMs have emerged as a promising alternative. Diffusion LLMs address the above limitations with two advances, including multi-token prediction (i.e. generating multiple tokens at each step) and flexible generation order (i.e. flexibly determining which positions to generate tokens). However, there is no systematic study exploring diffusion LLMs in code generation. To bridge the knowledge gap, we present the first empirical study of diffusion LLMs for code generation. Our study involves 9 representative diffusion LLMs and conduct experiments on 4 widely used benchmarks. Based on the results, we summarize the following findings. (1) Existing diffusion LLMs are competitive with autoregressive LLMs with similar sizes. (2) Diffusion LLMs have a stronger length extrapolation ability than autoregressive LLMs and perform better in long code understanding. (3) We explore factors impacting the effectiveness and efficiency of diffusion LLMs, and provide practical guidance. (4) We discuss several promising further directions to improve diffusion LLMs on code generation. We open-source all source code, data, and results to facilitate the following research. The code is publicly available at https://github.com/zhangyitonggg/dllm4code.

Authors:Chengde Lin, Xuezhu Gong, Shuxue Ding, Mingzhe Yang, Xijun Lu, Chengjun Mo
Title: StegOT: Trade-offs in Steganography via Optimal Transport
Abstract:
Image hiding is often referred to as steganography, which aims to hide a secret image in a cover image of the same resolution. Many steganography models are based on genera-tive adversarial networks (GANs) and variational autoencoders (VAEs). However, most existing models suffer from mode collapse. Mode collapse will lead to an information imbalance between the cover and secret images in the stego image and further affect the subsequent extraction. To address these challenges, this paper proposes StegOT, an autoencoder-based steganography model incorporating optimal transport theory. We designed the multiple channel optimal transport (MCOT) module to transform the feature distribution, which exhibits multiple peaks, into a single peak to achieve the trade-off of information. Experiments demonstrate that we not only achieve a trade-off between the cover and secret images but also enhance the quality of both the stego and recovery images. The source code will be released on https://github.com/Rss1124/StegOT.

Authors:Pouria Mahdavinia, Hamed Mahdavi, Niloofar Mireshghallah, Mehrdad Mahdavi
Title: Harnessing Optimization Dynamics for Curvature-Informed Model Merging
Abstract:
Model merging is an effective post-training strategy for composing capabilities in large language models without joint retraining. We study this in the supervised fine-tuning (SFT) stage, where multiple capability-based SFT checkpoints -- spanning math, code, precise instruction following, general instruction following, and knowledge recall -- must be consolidated into a single model. We introduce Optimization Trajectory Aware (OTA) Merging, a curvature-aware aggregation that leverages optimizer second-moment statistics as a diagonal curvature proxy to reweight parameter edits and mitigate interference. Complementing OTA, we propose Fast Fisher Grafting (FFG), a curvature-driven task-localization step that sparsifies conflicting or low-importance edits. FFG induces extremely low-rank masks concentrated in early attention query/key projections and token embeddings, exploiting shared curvature across capabilities. We further develop a memory-light compression of the second moments that preserves OTA's effect. Across diverse capability-based SFT checkpoints, OTA+FFG improves merged-model quality over strong weight-space baselines, reduces negative transfer, and remains robust across sparsity levels. Analyses reveal substantial curvature overlap between checkpoints, offering a novel lens on why simple linear merging can be effective in practice. Ablations confirm that FFG is critical for reducing task interference and that the compressed second moments retain the gains of the full formulation. To facilitate reproducibility, we open-source all code, training and evaluation scripts, visualization artifacts, and capability-specific SFT checkpoints at https://github.com/pmahdavi/ota-merge.

Authors:Mintae Kim, Jiaze Cai, Koushil Sreenath
Title: RoVerFly: Robust and Versatile Implicit Hybrid Control of Quadrotor-Payload Systems
Abstract:
Designing robust controllers for precise trajectory tracking with quadrotors is challenging due to nonlinear dynamics and underactuation, and becomes harder with flexible cable-suspended payloads that add degrees of freedom and hybrid dynamics. Classical model-based methods offer stability guarantees but require extensive tuning and often fail to adapt when the configuration changes-when a payload is added or removed, or when its mass or cable length varies. We present RoVerFly, a unified learning-based control framework where a single reinforcement learning (RL) policy functions as an implicit hybrid controller, managing complex dynamics without explicit mode detection or controller switching. Trained with task and domain randomization, the controller is resilient to disturbances and varying dynamics. It achieves strong zero-shot generalization across payload settings-including no payload as well as varying mass and cable length-without re-tuning, while retaining the interpretability and structure of a feedback tracking controller. Code and supplementary materials are available at https://github.com/mintaeshkim/roverfly.

Authors:Jing Xiao, Chang You, Zhiyu Chen
Title: AlignKT: Explicitly Modeling Knowledge State for Knowledge Tracing with Ideal State Alignment
Abstract:
Knowledge Tracing (KT) serves as a fundamental component of Intelligent Tutoring Systems (ITS), enabling these systems to monitor and understand learners' progress by modeling their knowledge state. However, many existing KT models primarily focus on fitting the sequences of learners' interactions, and often overlook the knowledge state itself. This limitation leads to reduced interpretability and insufficient instructional support from the ITS. To address this challenge, we propose AlignKT, which employs a frontend-to-backend architecture to explicitly model a stable knowledge state. In this approach, the preliminary knowledge state is aligned with an additional criterion. Specifically, we define an ideal knowledge state based on pedagogical theories as the alignment criterion, providing a foundation for interpretability. We utilize five encoders to implement this set-up, and incorporate a contrastive learning module to enhance the robustness of the alignment process. Through extensive experiments, AlignKT demonstrates superior performance, outperforming seven KT baselines on three real-world datasets. It achieves state-of-the-art results on two of these datasets and exhibits competitive performance on the third. The code of this work is available at https://github.com/SCNU203/AlignKT.

Authors:Paul Irofti, Luis Romero-Ben, Florin Stoican, Vicenç Puig
Title: Factor Graph Optimization for Leak Localization in Water Distribution Networks
Abstract:
Detecting and localizing leaks in water distribution network systems is an important topic with direct environmental, economic, and social impact. Our paper is the first to explore the use of factor graph optimization techniques for leak localization in water distribution networks, enabling us to perform sensor fusion between pressure and demand sensor readings and to estimate the network's temporal and structural state evolution across all network nodes. The methodology introduces specific water network factors and proposes a new architecture composed of two factor graphs: a leak-free state estimation factor graph and a leak localization factor graph. When a new sensor reading is obtained, unlike Kalman and other interpolation-based methods, which estimate only the current network state, factor graphs update both current and past states. Results on Modena, L-TOWN and synthetic networks show that factor graphs are much faster than nonlinear Kalman-based alternatives such as the UKF, while also providing improvements in localization compared to state-of-the-art estimation-localization approaches. Implementation and benchmarks are available at https://github.com/pirofti/FGLL.

Authors:Wenbo Lu, Shaoyi Zheng, Yuxuan Xia, Shengjie Wang
Title: ToMA: Token Merge with Attention for Diffusion Models
Abstract:
Diffusion models excel in high-fidelity image generation but face scalability limits due to transformers' quadratic attention complexity. Plug-and-play token reduction methods like ToMeSD and ToFu reduce FLOPs by merging redundant tokens in generated images but rely on GPU-inefficient operations (e.g., sorting, scattered writes), introducing overheads that negate theoretical speedups when paired with optimized attention implementations (e.g., FlashAttention). To bridge this gap, we propose Token Merge with Attention (ToMA), an off-the-shelf method that redesigns token reduction for GPU-aligned efficiency, with three key contributions: 1) a reformulation of token merge as a submodular optimization problem to select diverse tokens; 2) merge/unmerge as an attention-like linear transformation via GPU-friendly matrix operations; and 3) exploiting latent locality and sequential redundancy (pattern reuse) to minimize overhead. ToMA reduces SDXL/Flux generation latency by 24%/23%, respectively (with DINO $Δ< 0.07$), outperforming prior methods. This work bridges the gap between theoretical and practical efficiency for transformers in diffusion.

Authors:Xinyu Zhang, Pei Zhang, Shuang Luo, Jialong Tang, Yu Wan, Baosong Yang, Fei Huang
Title: CultureSynth: A Hierarchical Taxonomy-Guided and Retrieval-Augmented Framework for Cultural Question-Answer Synthesis
Abstract:
Cultural competence, defined as the ability to understand and adapt to multicultural contexts, is increasingly vital for large language models (LLMs) in global environments. While several cultural benchmarks exist to assess LLMs' cultural competence, current evaluations suffer from fragmented taxonomies, domain specificity, and heavy reliance on manual data annotation. To address these limitations, we introduce CultureSynth, a novel framework comprising (1) a comprehensive hierarchical multilingual cultural taxonomy covering 12 primary and 130 secondary topics, and (2) a Retrieval-Augmented Generation (RAG)-based methodology leveraging factual knowledge to synthesize culturally relevant question-answer pairs. The CultureSynth-7 synthetic benchmark contains 19,360 entries and 4,149 manually verified entries across 7 languages. Evaluation of 14 prevalent LLMs of different sizes reveals clear performance stratification led by ChatGPT-4o-Latest and Qwen2.5-72B-Instruct. The results demonstrate that a 3B-parameter threshold is necessary for achieving basic cultural competence, models display varying architectural biases in knowledge processing, and significant geographic disparities exist across models. We believe that CultureSynth offers a scalable framework for developing culturally aware AI systems while reducing reliance on manual annotation\footnote{Benchmark is available at https://github.com/Eyr3/CultureSynth.}.

Authors:Sangyeop Kim, Yohan Lee, Sanghwa Kim, Hyunjong Kim, Sungzoon Cho
Title: Pre-Storage Reasoning for Episodic Memory: Shifting Inference Burden to Memory for Personalized Dialogue
Abstract:
Effective long-term memory in conversational AI requires synthesizing information across multiple sessions. However, current systems place excessive reasoning burden on response generation, making performance significantly dependent on model sizes. We introduce PREMem (Pre-storage Reasoning for Episodic Memory), a novel approach that shifts complex reasoning processes from inference to memory construction. PREMem extracts fine-grained memory fragments categorized into factual, experiential, and subjective information; it then establishes explicit relationships between memory items across sessions, capturing evolution patterns like extensions, transformations, and implications. By performing this reasoning during pre-storage rather than when generating a response, PREMem creates enriched representations while reducing computational demands during interactions. Experiments show significant performance improvements across all model sizes, with smaller models achieving results comparable to much larger baselines while maintaining effectiveness even with constrained token budgets. Code and dataset are available at https://github.com/sangyeop-kim/PREMem.

Authors:Chirayu Nimonkar, Shlok Shah, Catherine Ji, Benjamin Eysenbach
Title: Self-Supervised Goal-Reaching Results in Multi-Agent Cooperation and Exploration
Abstract:
For groups of autonomous agents to achieve a particular goal, they must engage in coordination and long-horizon reasoning. However, designing reward functions to elicit such behavior is challenging. In this paper, we study how self-supervised goal-reaching techniques can be leveraged to enable agents to cooperate. The key idea is that, rather than have agents maximize some scalar reward, agents aim to maximize the likelihood of visiting a certain goal. This problem setting enables human users to specify tasks via a single goal state rather than implementing a complex reward function. While the feedback signal is quite sparse, we will demonstrate that self-supervised goal-reaching techniques enable agents to learn from such feedback. On MARL benchmarks, our proposed method outperforms alternative approaches that have access to the same sparse reward signal as our method. While our method has no explicit mechanism for exploration, we observe that self-supervised multi-agent goal-reaching leads to emergent cooperation and exploration in settings where alternative approaches never witness a single successful trial.

Authors:Miaoge Li, Yang Chen, Zhijie Rao, Can Jiang, Jingcai Guo
Title: Semantic-guided LoRA Parameters Generation
Abstract:
Low-Rank Adaptation (LoRA) has demonstrated strong generalization capabilities across a variety of tasks for efficiently fine-tuning AI models, especially on resource-constrained edges. However, in real-world applications, edge users often exhibit task-specific preferences that are difficult to handle with a unified model trained under a closed-world assumption, and the challenge may further increase when there are significant domain shifts between training and deployment. Meanwhile, retraining/fine-tuning models for each user is also impractical due to its cost-intensive nature and privacy concerns over raw data utilization from edges. To address these challenges, we propose Semantic-guided LoRA Parameter Generation (SG-LoRA), the first of its kind framework to efficiently produce user-specific LoRA parameters without any additional training on user tasks or access to user-specific data. Concretely, SG-LoRA uses task descriptions as the semantic bridge, measuring their proximity to a set of known expert tasks in a shared embedding space. Based on this semantic guidance, it models the target task's LoRA parameter distribution to generate high-performing parameters for novel tasks. SG-LoRA enables the real-time construction of LoRA models aligned with individual intents by distilling knowledge from prominent LoRA experts and, meanwhile, offering a privacy-preserving solution for personalized model adaptation in a novel zero-shot open-world setting proposed in this work. Extensive experiments on multiple challenging tasks confirm the superior performance and remarkable adaptability of SG-LoRA. Code is available at https://github.com/keepgoingjkg/SG-LoRA.

Authors:Amirhossein Ghaffari, Huong Nguyen, Lauri Lovén, Ekaterina Gilman
Title: STM-Graph: A Python Framework for Spatio-Temporal Mapping and Graph Neural Network Predictions
Abstract:
Urban spatio-temporal data present unique challenges for predictive analytics due to their dynamic and complex nature. We introduce STM-Graph, an open-source Python framework that transforms raw spatio-temporal urban event data into graph representations suitable for Graph Neural Network (GNN) training and prediction. STM-Graph integrates diverse spatial mapping methods, urban features from OpenStreetMap, multiple GNN models, comprehensive visualization tools, and a graphical user interface (GUI) suitable for professional and non-professional users. This modular and extensible framework facilitates rapid experimentation and benchmarking. It allows integration of new mapping methods and custom models, making it a valuable resource for researchers and practitioners in urban computing. The source code of the framework and GUI are available at: https://github.com/Ahghaffari/stm_graph and https://github.com/tuminguyen/stm_graph_gui.

Authors:Prajit Sengupta, Islem Rekik
Title: FireGNN: Neuro-Symbolic Graph Neural Networks with Trainable Fuzzy Rules for Interpretable Medical Image Classification
Abstract:
Medical image classification requires not only high predictive performance but also interpretability to ensure clinical trust and adoption. Graph Neural Networks (GNNs) offer a powerful framework for modeling relational structures within datasets; however, standard GNNs often operate as black boxes, limiting transparency and usability, particularly in clinical settings. In this work, we present an interpretable graph-based learning framework named FireGNN that integrates trainable fuzzy rules into GNNs for medical image classification. These rules embed topological descriptors - node degree, clustering coefficient, and label agreement - using learnable thresholds and sharpness parameters to enable intrinsic symbolic reasoning. Additionally, we explore auxiliary self-supervised tasks (e.g., homophily prediction, similarity entropy) as a benchmark to evaluate the contribution of topological learning. Our fuzzy-rule-enhanced model achieves strong performance across five MedMNIST benchmarks and the synthetic dataset MorphoMNIST, while also generating interpretable rule-based explanations. To our knowledge, this is the first integration of trainable fuzzy rules within a GNN. Source Code: https://github.com/basiralab/FireGNN

Authors:Sai Teja Reddy Adapala
Title: The Anti-Ouroboros Effect: Emergent Resilience in Large Language Models from Recursive Selective Feedback
Abstract:
The stability of recursively trained large language models (LLMs) is a foundational problem for AI safety. Prevailing theory predicts model collapse, a progressive degradation when models are trained on their own output. We challenge this narrative by introducing a selective feedback mechanism. Contrary to expectation, instead of merely slowing decay, our experiments provide strong evidence that this pressure reverses it, inducing a statistically significant performance improvement in a Gemma 2B model on a complex summarization task. We name this phenomenon the Anti-Ouroboros Effect. We contrast this with a foundational experiment using a simple classifier, where the theoretical degenerative loop was validated, highlighting the unique dynamics of high-dimensional models. Our findings establish that systemic resilience can be an emergent property of LLMs under simple selection pressure, suggesting a powerful and scalable principle for developing safer and more robust AI systems. Across five generations, a quality-filtered condition improved by 6.6% in ROUGE-L F1 score, whereas an unfiltered control degraded by 3.5% and a random-filter control degraded by 4.2%

Authors:Iacopo Curti, Pierluigi Zama Ramirez, Alioscia Petrelli, Luigi Di Stefano
Title: Multimodal SAM-adapter for Semantic Segmentation
Abstract:
Semantic segmentation, a key task in computer vision with broad applications in autonomous driving, medical imaging, and robotics, has advanced substantially with deep learning. Nevertheless, current approaches remain vulnerable to challenging conditions such as poor lighting, occlusions, and adverse weather. To address these limitations, multimodal methods that integrate auxiliary sensor data (e.g., LiDAR, infrared) have recently emerged, providing complementary information that enhances robustness. In this work, we present MM SAM-adapter, a novel framework that extends the capabilities of the Segment Anything Model (SAM) for multimodal semantic segmentation. The proposed method employs an adapter network that injects fused multimodal features into SAM's rich RGB features. This design enables the model to retain the strong generalization ability of RGB features while selectively incorporating auxiliary modalities only when they contribute additional cues. As a result, MM SAM-adapter achieves a balanced and efficient use of multimodal information. We evaluate our approach on three challenging benchmarks, DeLiVER, FMB, and MUSES, where MM SAM-adapter delivers state-of-the-art performance. To further analyze modality contributions, we partition DeLiVER and FMB into RGB-easy and RGB-hard subsets. Results consistently demonstrate that our framework outperforms competing methods in both favorable and adverse conditions, highlighting the effectiveness of multimodal adaptation for robust scene understanding. The code is available at the following link: https://github.com/iacopo97/Multimodal-SAM-Adapter.

Authors:Alva West, Yixuan Weng, Minjun Zhu, Zhen Lin, Zhiyuan Ning, Yue Zhang
Title: Abduct, Act, Predict: Scaffolding Causal Inference for Automated Failure Attribution in Multi-Agent Systems
Abstract:
Failure attribution in multi-agent systems -- pinpointing the exact step where a decisive error occurs -- is a critical yet unsolved challenge. Current methods treat this as a pattern recognition task over long conversation logs, leading to critically low step-level accuracy (below 17\%), which renders them impractical for debugging complex systems. Their core weakness is a fundamental inability to perform robust counterfactual reasoning: to determine if correcting a single action would have actually averted the task failure. To bridge this \emph{counterfactual inference gap}, we introduce Abduct-Act-Predict (A2P) Scaffolding, a novel agent framework that transforms failure attribution from pattern recognition into a structured causal inference task. A2P explicitly guides a large language model through a formal three-step reasoning process within a single inference pass: (1) Abduction, to infer the hidden root causes behind an agent's actions; (2) Action, to define a minimal corrective intervention; and (3) Prediction, to simulate the subsequent trajectory and verify if the intervention resolves the failure. This structured approach leverages the holistic context of the entire conversation while imposing a rigorous causal logic on the model's analysis. Our extensive experiments on the Who\&When benchmark demonstrate its efficacy. On the Algorithm-Generated dataset, A2P achieves 47.46\% step-level accuracy, a 2.85$\times$ improvement over the 16.67\% of the baseline. On the more complex Hand-Crafted dataset, it achieves 29.31\% step accuracy, a 2.43$\times$ improvement over the baseline's 12.07\%. By reframing the problem through a causal lens, A2P Scaffolding provides a robust, verifiable, and significantly more accurate solution for automated failure attribution. Ours code are released at https://github.com/ResearAI/A2P.

Authors:Yue Zhou, Litong Feng, Mengcheng Lan, Xue Yang, Qingyun Li, Yiping Ke, Xue Jiang, Wayne Zhang
Title: Multimodal Mathematical Reasoning Embedded in Aerial Vehicle Imagery: Benchmarking, Analysis, and Exploration
Abstract:
Mathematical reasoning is critical for tasks such as precise distance and area computations, trajectory estimations, and spatial analysis in unmanned aerial vehicle (UAV) based remote sensing, yet current vision-language models (VLMs) have not been adequately tested in this domain. To address this gap, we introduce AVI-Math, the first benchmark to rigorously evaluate multimodal mathematical reasoning in aerial vehicle imagery, moving beyond simple counting tasks to include domain-specific knowledge in areas such as geometry, logic, and algebra. The dataset comprises 3,773 high-quality vehicle-related questions captured from UAV views, covering 6 mathematical subjects and 20 topics. The data, collected at varying altitudes and from multiple UAV angles, reflects real-world UAV scenarios, ensuring the diversity and complexity of the constructed mathematical problems. In this paper, we benchmark 14 prominent VLMs through a comprehensive evaluation and demonstrate that, despite their success on previous multimodal benchmarks, these models struggle with the reasoning tasks in AVI-Math. Our detailed analysis highlights significant limitations in the mathematical reasoning capabilities of current VLMs and suggests avenues for future research. Furthermore, we explore the use of Chain-of-Thought prompting and fine-tuning techniques, which show promise in addressing the reasoning challenges in AVI-Math. Our findings not only expose the limitations of VLMs in mathematical reasoning but also offer valuable insights for advancing UAV-based trustworthy VLMs in real-world applications. The code, and datasets will be released at https://github.com/VisionXLab/avi-math

Authors:Hailong Yang, Mingxian Gu, Jianqi Wang, Guanjin Wang, Zhaohong Deng
Title: XAgents: A Unified Framework for Multi-Agent Cooperation via IF-THEN Rules and Multipolar Task Processing Graph
Abstract:
The rapid advancement of Large Language Models (LLMs) has significantly enhanced the capabilities of Multi-Agent Systems (MAS) in supporting humans with complex, real-world tasks. However, MAS still face challenges in effective task planning when handling highly complex tasks with uncertainty, often resulting in misleading or incorrect outputs that hinder task execution. To address this, we propose XAgents, a unified multi-agent cooperative framework built on a multipolar task processing graph and IF-THEN rules. XAgents uses the multipolar task processing graph to enable dynamic task planning and handle task uncertainty. During subtask processing, it integrates domain-specific IF-THEN rules to constrain agent behaviors, while global rules enhance inter-agent collaboration. We evaluate the performance of XAgents across three distinct datasets, demonstrating that it consistently surpasses state-of-the-art single-agent and multi-agent approaches in both knowledge-typed and logic-typed question-answering tasks. The codes for XAgents are available at: https://github.com/AGI-FHBC/XAgents.

Authors:Zhitian Hou, Zihan Ye, Nanli Zeng, Tianyong Hao, Kun Zeng
Title: Large Language Models Meet Legal Artificial Intelligence: A Survey
Abstract:
Large Language Models (LLMs) have significantly advanced the development of Legal Artificial Intelligence (Legal AI) in recent years, enhancing the efficiency and accuracy of legal tasks. To advance research and applications of LLM-based approaches in legal domain, this paper provides a comprehensive review of 16 legal LLMs series and 47 LLM-based frameworks for legal tasks, and also gather 15 benchmarks and 29 datasets to evaluate different legal capabilities. Additionally, we analyse the challenges and discuss future directions for LLM-based approaches in the legal domain. We hope this paper provides a systematic introduction for beginners and encourages future research in this field. Resources are available at https://github.com/ZhitianHou/LLMs4LegalAI.

Authors:Jackson Eshbaugh, Chetan Tiwari, Jorge Silveyra
Title: A Modular and Multimodal Generative AI Framework for Urban Building Energy Data: Generating Synthetic Homes
Abstract:
Computational models have emerged as powerful tools for energy modeling research, touting scalability and quantitative results. However, these models require a plethora of data, some of which is inaccessible, expensive, or raises privacy concerns. We introduce a modular multimodal framework to produce this data from publicly accessible residential information and images using generative artificial intelligence (AI). Additionally, we provide a pipeline demonstrating this framework, and we evaluate its generative AI components. Our experiments show that our framework's use of AI avoids common issues with generative models. Our framework produces realistic, labeled data. By reducing dependence on costly or restricted data sources, we pave a path towards more accessible and reproducible research.

Authors:Yiqun Shen, Song Yuan, Zhengze Zhang, Xiaoliang Wang, Daxin Jiang, Nguyen Cam-Tu
Title: LAVa: Layer-wise KV Cache Eviction with Dynamic Budget Allocation
Abstract:
KV Cache is commonly used to accelerate LLM inference with long contexts, yet its high memory demand drives the need for cache compression. Existing compression methods, however, are largely heuristic and lack dynamic budget allocation. To address this limitation, we introduce a unified framework for cache compression by minimizing information loss in Transformer residual streams. Building on it, we analyze the layer attention output loss and derive a new metric to compare cache entries across heads, enabling layer-wise compression with dynamic head budgets. Additionally, by contrasting cross-layer information, we also achieve dynamic layer budgets. LAVa is the first unified strategy for cache eviction and dynamic budget allocation that, unlike prior methods, does not rely on training or the combination of multiple strategies. Experiments with benchmarks (LongBench, Needle-In-A-Haystack, Ruler, and InfiniteBench) demonstrate its superiority. Moreover, our experiments reveal a new insight: dynamic layer budgets are crucial for generation tasks (e.g., code completion), while dynamic head budgets play a key role in extraction tasks (e.g., extractive QA). As a fully dynamic compression method, LAVa consistently maintains top performance across task types. Our code is available at https://github.com/MGDDestiny/Lava.

Authors:Leen Daher, Zhaobo Wang, Malcolm Mielle
Title: D-CAT: Decoupled Cross-Attention Transfer between Sensor Modalities for Unimodal Inference
Abstract:
Cross-modal transfer learning is used to improve multi-modal classification models (e.g., for human activity recognition in human-robot collaboration). However, existing methods require paired sensor data at both training and inference, limiting deployment in resource-constrained environments where full sensor suites are not economically and technically usable. To address this, we propose Decoupled Cross-Attention Transfer (D-CAT), a framework that aligns modality-specific representations without requiring joint sensor modality during inference. Our approach combines a self-attention module for feature extraction with a novel cross-attention alignment loss, which enforces the alignment of sensors' feature spaces without requiring the coupling of the classification pipelines of both modalities. We evaluate D-CAT on three multi-modal human activity datasets (IMU, video, and audio) under both in-distribution and out-of-distribution scenarios, comparing against uni-modal models. Results show that in in-distribution scenarios, transferring from high-performing modalities (e.g., video to IMU) yields up to 10% F1-score gains over uni-modal training. In out-of-distribution scenarios, even weaker source modalities (e.g., IMU to video) improve target performance, as long as the target model isn't overfitted on the training data. By enabling single-sensor inference with cross-modal knowledge, D-CAT reduces hardware redundancy for perception systems while maintaining accuracy, which is critical for cost-sensitive or adaptive deployments (e.g., assistive robots in homes with variable sensor availability). Code is available at https://github.com/Schindler-EPFL-Lab/D-CAT.

Authors:Mujie Liu, Chenze Wang, Liping Chen, Nguyen Linh Dan Le, Niharika Tewari, Ting Dang, Jiangang Ma, Feng Xia
Title: Structure Matters: Brain Graph Augmentation via Learnable Edge Masking for Data-efficient Psychiatric Diagnosis
Abstract:
The limited availability of labeled brain network data makes it challenging to achieve accurate and interpretable psychiatric diagnoses. While self-supervised learning (SSL) offers a promising solution, existing methods often rely on augmentation strategies that can disrupt crucial structural semantics in brain graphs. To address this, we propose SAM-BG, a two-stage framework for learning brain graph representations with structural semantic preservation. In the pre-training stage, an edge masker is trained on a small labeled subset to capture key structural semantics. In the SSL stage, the extracted structural priors guide a structure-aware augmentation process, enabling the model to learn more semantically meaningful and robust representations. Experiments on two real-world psychiatric datasets demonstrate that SAM-BG outperforms state-of-the-art methods, particularly in small-labeled data settings, and uncovers clinically relevant connectivity patterns that enhance interpretability. Our code is available at https://github.com/mjliu99/SAM-BG.

Authors:Jun Zhan, Mingyang Han, Yuxuan Xie, Chen Wang, Dong Zhang, Kexin Huang, Haoxiang Shi, DongXiao Wang, Tengtao Song, Qinyuan Cheng, Shimin Li, Jun Song, Xipeng Qiu, Bo Zheng
Title: VStyle: A Benchmark for Voice Style Adaptation with Spoken Instructions
Abstract:
Spoken language models (SLMs) have emerged as a unified paradigm for speech understanding and generation, enabling natural human machine interaction. However, while most progress has focused on semantic accuracy and instruction following, the ability of SLMs to adapt their speaking style based on spoken instructions has received limited attention. We introduce Voice Style Adaptation (VSA), a new task that examines whether SLMs can modify their speaking style, such as timbre, prosody, or persona following natural language spoken commands. To study this task, we present VStyle, a bilingual (Chinese & English) benchmark covering four categories of speech generation: acoustic attributes, natural language instruction, role play, and implicit empathy. We also introduce the Large Audio Language Model as a Judge (LALM as a Judge) framework, which progressively evaluates outputs along textual faithfulness, style adherence, and naturalness, ensuring reproducible and objective assessment. Experiments on commercial systems and open source SLMs demonstrate that current models face clear limitations in controllable style adaptation, highlighting both the novelty and challenge of this task. By releasing VStyle and its evaluation toolkit, we aim to provide the community with a foundation for advancing human centered spoken interaction. The dataset and code are publicly available at \href{https://junzhan2000.github.io/VStyle.github.io/}{project's homepage}.

Authors:Zhenhua Xu, Xixiang Zhao, Xubin Yue, Shengwei Tian, Changting Lin, Meng Han
Title: CTCC: A Robust and Stealthy Fingerprinting Framework for Large Language Models via Cross-Turn Contextual Correlation Backdoor
Abstract:
The widespread deployment of large language models (LLMs) has intensified concerns around intellectual property (IP) protection, as model theft and unauthorized redistribution become increasingly feasible. To address this, model fingerprinting aims to embed verifiable ownership traces into LLMs. However, existing methods face inherent trade-offs between stealthness, robustness, and generalizability, being either detectable via distributional shifts, vulnerable to adversarial modifications, or easily invalidated once the fingerprint is revealed. In this work, we introduce CTCC, a novel rule-driven fingerprinting framework that encodes contextual correlations across multiple dialogue turns, such as counterfactual, rather than relying on token-level or single-turn triggers. CTCC enables fingerprint verification under black-box access while mitigating false positives and fingerprint leakage, supporting continuous construction under a shared semantic rule even if partial triggers are exposed. Extensive experiments across multiple LLM architectures demonstrate that CTCC consistently achieves stronger stealth and robustness than prior work. Our findings position CTCC as a reliable and practical solution for ownership verification in real-world LLM deployment scenarios. Our code and data are publicly available at .

Authors:Bingxin Xu, Zhen Dong, Oussama Elachqar, Yuzhang Shang
Title: ButterflyQuant: Ultra-low-bit LLM Quantization through Learnable Orthogonal Butterfly Transforms
Abstract:
Large language models require massive memory footprints, severely limiting deployment on consumer hardware. Quantization reduces memory through lower numerical precision, but extreme 2-bit quantization suffers from catastrophic performance loss due to outliers in activations. Rotation-based methods such as QuIP and QuaRot apply orthogonal transforms to eliminate outliers before quantization, using computational invariance: $\mathbf{y} = \mathbf{Wx} = (\mathbf{WQ}^T)(\mathbf{Qx})$ for orthogonal $\mathbf{Q}$. However, these methods use fixed transforms--Hadamard matrices achieving optimal worst-case coherence $μ= 1/\sqrt{n}$--that cannot adapt to specific weight distributions. We identify that different transformer layers exhibit distinct outlier patterns, motivating layer-adaptive rotations rather than one-size-fits-all approaches. In this work, we propose ButterflyQuant, which replaces Hadamard rotations with learnable butterfly transforms parameterized by continuous Givens rotation angles. Unlike Hadamard's discrete $\{+1, -1\}$ entries that are non-differentiable and thus prohibit gradient-based learning, butterfly transforms' continuous parameterization enables smooth optimization while guaranteeing orthogonality by construction. This orthogonal constraint ensures theoretical guarantees in outlier suppression while achieving $O(n \log n)$ computational complexity with only $\frac{n \log n}{2}$ learnable parameters. We further introduce a uniformity regularization on post-transformation activations to promote smoother distributions amenable to quantization. Learning requires only 128 calibration samples and converges in minutes on a single GPU--a negligible one-time cost. For LLaMA-2-7B with 2-bit quantization, ButterflyQuant achieves 15.4 perplexity versus 37.3 for QuIP. \href{https://github.com/42Shawn/Butterflyquant-llm}{Codes} are available.

Authors:Haozhan Li, Yuxin Zuo, Jiale Yu, Yuhao Zhang, Zhaohui Yang, Kaiyan Zhang, Xuekai Zhu, Yuchen Zhang, Tianxing Chen, Ganqu Cui, Dehui Wang, Dingxiang Luo, Yuchen Fan, Youbang Sun, Jia Zeng, Jiangmiao Pang, Shanghang Zhang, Yu Wang, Yao Mu, Bowen Zhou, Ning Ding
Title: SimpleVLA-RL: Scaling VLA Training via Reinforcement Learning
Abstract:
Vision-Language-Action (VLA) models have recently emerged as a powerful paradigm for robotic manipulation. Despite substantial progress enabled by large-scale pretraining and supervised fine-tuning (SFT), these models face two fundamental challenges: (i) the scarcity and high cost of large-scale human-operated robotic trajectories required for SFT scaling, and (ii) limited generalization to tasks involving distribution shift. Recent breakthroughs in Large Reasoning Models (LRMs) demonstrate that reinforcement learning (RL) can dramatically enhance step-by-step reasoning capabilities, raising a natural question: Can RL similarly improve the long-horizon step-by-step action planning of VLA? In this work, we introduce SimpleVLA-RL, an efficient RL framework tailored for VLA models. Building upon veRL, we introduce VLA-specific trajectory sampling, scalable parallelization, multi-environment rendering, and optimized loss computation. When applied to OpenVLA-OFT, SimpleVLA-RL achieves SoTA performance on LIBERO and even outperforms $π_0$ on RoboTwin 1.0\&2.0 with the exploration-enhancing strategies we introduce. SimpleVLA-RL not only reduces dependence on large-scale data and enables robust generalization, but also remarkably surpasses SFT in real-world tasks. Moreover, we identify a novel phenomenon ``pushcut'' during RL training, wherein the policy discovers previously unseen patterns beyond those seen in the previous training process. Github: https://github.com/PRIME-RL/SimpleVLA-RL

Authors:Zakaria El Kassimi, Fares Fourati, Mohamed-Slim Alouini
Title: Retrieval-Augmented Generation for Reliable Interpretation of Radio Regulations
Abstract:
We study question answering in the domain of radio regulations, a legally sensitive and high-stakes area. We propose a telecom-specific Retrieval-Augmented Generation (RAG) pipeline and introduce, to our knowledge, the first multiple-choice evaluation set for this domain, constructed from authoritative sources using automated filtering and human validation. To assess retrieval quality, we define a domain-specific retrieval metric, under which our retriever achieves approximately 97% accuracy. Beyond retrieval, our approach consistently improves generation accuracy across all tested models. In particular, while naively inserting documents without structured retrieval yields only marginal gains for GPT-4o (less than 1%), applying our pipeline results in nearly a 12% relative improvement. These findings demonstrate that carefully targeted grounding provides a simple yet strong baseline and an effective domain-specific solution for regulatory question answering. All code and evaluation scripts, along with our derived question-answer dataset, are available at https://github.com/Zakaria010/Radio-RAG.

Authors:Jielin Qiu, Zuxin Liu, Zhiwei Liu, Rithesh Murthy, Jianguo Zhang, Haolin Chen, Shiyu Wang, Ming Zhu, Liangwei Yang, Juntao Tan, Zhepeng Cen, Cheng Qian, Shelby Heinecke, Weiran Yao, Silvio Savarese, Caiming Xiong, Huan Wang
Title: LoCoBench: A Benchmark for Long-Context Large Language Models in Complex Software Engineering
Abstract:
The emergence of long-context language models with context windows extending to millions of tokens has created new opportunities for sophisticated code understanding and software development evaluation. We propose LoCoBench, a comprehensive benchmark specifically designed to evaluate long-context LLMs in realistic, complex software development scenarios. Unlike existing code evaluation benchmarks that focus on single-function completion or short-context tasks, LoCoBench addresses the critical evaluation gap for long-context capabilities that require understanding entire codebases, reasoning across multiple files, and maintaining architectural consistency across large-scale software systems. Our benchmark provides 8,000 evaluation scenarios systematically generated across 10 programming languages, with context lengths spanning 10K to 1M tokens, a 100x variation that enables precise assessment of long-context performance degradation in realistic software development settings. LoCoBench introduces 8 task categories that capture essential long-context capabilities: architectural understanding, cross-file refactoring, multi-session development, bug investigation, feature implementation, code comprehension, integration testing, and security analysis. Through a 5-phase pipeline, we create diverse, high-quality scenarios that challenge LLMs to reason about complex codebases at unprecedented scale. We introduce a comprehensive evaluation framework with 17 metrics across 4 dimensions, including 8 new evaluation metrics, combined in a LoCoBench Score (LCBS). Our evaluation of state-of-the-art long-context models reveals substantial performance gaps, demonstrating that long-context understanding in complex software development represents a significant unsolved challenge that demands more attention. LoCoBench is released at: https://github.com/SalesforceAIResearch/LoCoBench.

Authors:Akshit Achara, Esther Puyol Anton, Alexander Hammers, Andrew P. King
Title: Invisible Attributes, Visible Biases: Exploring Demographic Shortcuts in MRI-based Alzheimer's Disease Classification
Abstract:
Magnetic resonance imaging (MRI) is the gold standard for brain imaging. Deep learning (DL) algorithms have been proposed to aid in the diagnosis of diseases such as Alzheimer's disease (AD) from MRI scans. However, DL algorithms can suffer from shortcut learning, in which spurious features, not directly related to the output label, are used for prediction. When these features are related to protected attributes, they can lead to performance bias against underrepresented protected groups, such as those defined by race and sex. In this work, we explore the potential for shortcut learning and demographic bias in DL based AD diagnosis from MRI. We first investigate if DL algorithms can identify race or sex from 3D brain MRI scans to establish the presence or otherwise of race and sex based distributional shifts. Next, we investigate whether training set imbalance by race or sex can cause a drop in model performance, indicating shortcut learning and bias. Finally, we conduct a quantitative and qualitative analysis of feature attributions in different brain regions for both the protected attribute and AD classification tasks. Through these experiments, and using multiple datasets and DL models (ResNet and SwinTransformer), we demonstrate the existence of both race and sex based shortcut learning and bias in DL based AD classification. Our work lays the foundation for fairer DL diagnostic tools in brain MRI. The code is provided at https://github.com/acharaakshit/ShortMR

Authors:Dohun Lee, Hyeonho Jeong, Jiwook Kim, Duygu Ceylan, Jong Chul Ye
Title: Improving Video Diffusion Transformer Training by Multi-Feature Fusion and Alignment from Self-Supervised Vision Encoders
Abstract:
Video diffusion models have advanced rapidly in the recent years as a result of series of architectural innovations (e.g., diffusion transformers) and use of novel training objectives (e.g., flow matching). In contrast, less attention has been paid to improving the feature representation power of such models. In this work, we show that training video diffusion models can benefit from aligning the intermediate features of the video generator with feature representations of pre-trained vision encoders. We propose a new metric and conduct an in-depth analysis of various vision encoders to evaluate their discriminability and temporal consistency, thereby assessing their suitability for video feature alignment. Based on the analysis, we present Align4Gen which provides a novel multi-feature fusion and alignment method integrated into video diffusion model training. We evaluate Align4Gen both for unconditional and class-conditional video generation tasks and show that it results in improved video generation as quantified by various metrics. Full video results are available on our project page: https://align4gen.github.io/align4gen/

Authors:Harry Mayne, Ryan Othniel Kearns, Yushi Yang, Andrew M. Bean, Eoin Delaney, Chris Russell, Adam Mahdi
Title: LLMs Don't Know Their Own Decision Boundaries: The Unreliability of Self-Generated Counterfactual Explanations
Abstract:
To collaborate effectively with humans, language models must be able to explain their decisions in natural language. We study a specific type of self-explanation: self-generated counterfactual explanations (SCEs), where a model explains its prediction by modifying the input such that it would have predicted a different outcome. We evaluate whether LLMs can produce SCEs that are valid, achieving the intended outcome, and minimal, modifying the input no more than necessary. When asked to generate counterfactuals, we find that LLMs typically produce SCEs that are valid, but far from minimal, offering little insight into their decision-making behaviour. Worryingly, when asked to generate minimal counterfactuals, LLMs typically make excessively small edits that fail to change predictions. The observed validity-minimality trade-off is consistent across several LLMs, datasets, and evaluation settings. Our findings suggest that SCEs are, at best, an ineffective explainability tool and, at worst, can provide misleading insights into model behaviour. Proposals to deploy LLMs in high-stakes settings must consider the impact of unreliable self-explanations on downstream decision-making. Our code is available at https://github.com/HarryMayne/SCEs.

Authors:Zhengzhao Lai, Youbin Zheng, Zhenyang Cai, Haonan Lyu, Jinpu Yang, Hongqing Liang, Yan Hu, Benyou Wang
Title: Can Multimodal LLMs See Materials Clearly? A Multimodal Benchmark on Materials Characterization
Abstract:
Materials characterization is fundamental to acquiring materials information, revealing the processing-microstructure-property relationships that guide material design and optimization. While multimodal large language models (MLLMs) have recently shown promise in generative and predictive tasks within materials science, their capacity to understand real-world characterization imaging data remains underexplored. To bridge this gap, we present MatCha, the first benchmark for materials characterization image understanding, comprising 1,500 questions that demand expert-level domain expertise. MatCha encompasses four key stages of materials research comprising 21 distinct tasks, each designed to reflect authentic challenges faced by materials scientists. Our evaluation of state-of-the-art MLLMs on MatCha reveals a significant performance gap compared to human experts. These models exhibit degradation when addressing questions requiring higher-level expertise and sophisticated visual perception. Simple few-shot and chain-of-thought prompting struggle to alleviate these limitations. These findings highlight that existing MLLMs still exhibit limited adaptability to real-world materials characterization scenarios. We hope MatCha will facilitate future research in areas such as new material discovery and autonomous scientific agents. MatCha is available at https://github.com/FreedomIntelligence/MatCha.

Authors:Weige Cai, Tong Zhu, Jinyi Niu, Ruiqi Hu, Lingyao Li, Tenglong Wang, Xiaowu Dai, Weining Shen, Liwen Zhang
Title: LightAgent: Production-level Open-source Agentic AI Framework
Abstract:
With the rapid advancement of large language models (LLMs), Multi-agent Systems (MAS) have achieved significant progress in various application scenarios. However, substantial challenges remain in designing versatile, robust, and efficient platforms for agent deployment. To address these limitations, we propose \textbf{LightAgent}, a lightweight yet powerful agentic framework, effectively resolving the trade-off between flexibility and simplicity found in existing frameworks. LightAgent integrates core functionalities such as Memory (mem0), Tools, and Tree of Thought (ToT), while maintaining an extremely lightweight structure. As a fully open-source solution, it seamlessly integrates with mainstream chat platforms, enabling developers to easily build self-learning agents. We have released LightAgent at \href{https://github.com/wxai-space/LightAgent}{https://github.com/wxai-space/LightAgent}

Authors:Anthony P. Addison, Felix Wagner, Wentian Xu, Natalie Voets, Konstantinos Kamnitsas
Title: Modality-Agnostic Input Channels Enable Segmentation of Brain lesions in Multimodal MRI with Sequences Unavailable During Training
Abstract:
Segmentation models are important tools for the detection and analysis of lesions in brain MRI. Depending on the type of brain pathology that is imaged, MRI scanners can acquire multiple, different image modalities (contrasts). Most segmentation models for multimodal brain MRI are restricted to fixed modalities and cannot effectively process new ones at inference. Some models generalize to unseen modalities but may lose discriminative modality-specific information. This work aims to develop a model that can perform inference on data that contain image modalities unseen during training, previously seen modalities, and heterogeneous combinations of both, thus allowing a user to utilize any available imaging modalities. We demonstrate this is possible with a simple, thus practical alteration to the U-net architecture, by integrating a modality-agnostic input channel or pathway, alongside modality-specific input channels. To train this modality-agnostic component, we develop an image augmentation scheme that synthesizes artificial MRI modalities. Augmentations differentially alter the appearance of pathological and healthy brain tissue to create artificial contrasts between them while maintaining realistic anatomical integrity. We evaluate the method using 8 MRI databases that include 5 types of pathologies (stroke, tumours, traumatic brain injury, multiple sclerosis and white matter hyperintensities) and 8 modalities (T1, T1+contrast, T2, PD, SWI, DWI, ADC and FLAIR). The results demonstrate that the approach preserves the ability to effectively process MRI modalities encountered during training, while being able to process new, unseen modalities to improve its segmentation. Project code: https://github.com/Anthony-P-Addison/AGN-MOD-SEG

Authors:Chin Yuen Kwok, Jia Qi Yip, Zhen Qiu, Chi Hung Chi, Kwok Yan Lam
Title: Bona fide Cross Testing Reveals Weak Spot in Audio Deepfake Detection Systems
Abstract:
Audio deepfake detection (ADD) models are commonly evaluated using datasets that combine multiple synthesizers, with performance reported as a single Equal Error Rate (EER). However, this approach disproportionately weights synthesizers with more samples, underrepresenting others and reducing the overall reliability of EER. Additionally, most ADD datasets lack diversity in bona fide speech, often featuring a single environment and speech style (e.g., clean read speech), limiting their ability to simulate real-world conditions. To address these challenges, we propose bona fide cross-testing, a novel evaluation framework that incorporates diverse bona fide datasets and aggregates EERs for more balanced assessments. Our approach improves robustness and interpretability compared to traditional evaluation methods. We benchmark over 150 synthesizers across nine bona fide speech types and release a new dataset to facilitate further research at https://github.com/cyaaronk/audio_deepfake_eval.

Authors:Yuhao Zhang, Yuhao Du, Zhanchen Dai, Xiangnan Ma, Kaiqi Kou, Benyou Wang, Haizhou Li
Title: EchoX: Towards Mitigating Acoustic-Semantic Gap via Echo Training for Speech-to-Speech LLMs
Abstract:
Speech-to-speech large language models (SLLMs) are attracting increasing attention. Derived from text-based large language models (LLMs), SLLMs often exhibit degradation in knowledge and reasoning capabilities. We hypothesize that this limitation arises because current training paradigms for SLLMs fail to bridge the acoustic-semantic gap in the feature representation space. To address this issue, we propose EchoX, which leverages semantic representations and dynamically generates speech training targets. This approach integrates both acoustic and semantic learning, enabling EchoX to preserve strong reasoning abilities as a speech LLM. Experimental results demonstrate that EchoX, with about six thousand hours of training data, achieves advanced performance on multiple knowledge-based question-answering benchmarks. The project is available at https://github.com/FreedomIntelligence/EchoX.

Authors:Yuiko Uchida, Ren Togo, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama
Title: Objectness Similarity: Capturing Object-Level Fidelity in 3D Scene Evaluation
Abstract:
This paper presents Objectness SIMilarity (OSIM), a novel evaluation metric for 3D scenes that explicitly focuses on "objects," which are fundamental units of human visual perception. Existing metrics assess overall image quality, leading to discrepancies with human perception. Inspired by neuropsychological insights, we hypothesize that human recognition of 3D scenes fundamentally involves attention to individual objects. OSIM enables object-centric evaluations by leveraging an object detection model and its feature representations to quantify the "objectness" of each object in the scene. Our user study demonstrates that OSIM aligns more closely with human perception compared to existing metrics. We also analyze the characteristics of OSIM using various approaches. Moreover, we re-evaluate recent 3D reconstruction and generation models under a standardized experimental setup to clarify advancements in this field. The code is available at https://github.com/Objectness-Similarity/OSIM.

Authors:Liqun He, Jiaqi Xu
Title: Automated Classification of Tutors' Dialogue Acts Using Generative AI: A Case Study Using the CIMA Corpus
Abstract:
This study explores the use of generative AI for automating the classification of tutors' Dialogue Acts (DAs), aiming to reduce the time and effort required by traditional manual coding. This case study uses the open-source CIMA corpus, in which tutors' responses are pre-annotated into four DA categories. Both GPT-3.5-turbo and GPT-4 models were tested using tailored prompts. Results show that GPT-4 achieved 80% accuracy, a weighted F1-score of 0.81, and a Cohen's Kappa of 0.74, surpassing baseline performance and indicating substantial agreement with human annotations. These findings suggest that generative AI has strong potential to provide an efficient and accessible approach to DA classification, with meaningful implications for educational dialogue analysis. The study also highlights the importance of task-specific label definitions and contextual information in enhancing the quality of automated annotation. Finally, it underscores the ethical considerations associated with the use of generative AI and the need for responsible and transparent research practices. The script of this research is publicly available at https://github.com/liqunhe27/Generative-AI-for-educational-dialogue-act-tagging.

Authors:Piyush Pant
Title: Improving LLM Safety and Helpfulness using SFT and DPO: A Study on OPT-350M
Abstract:
This research investigates the effectiveness of alignment techniques, Supervised Fine-Tuning (SFT), Direct Preference Optimization (DPO), and a combined SFT+DPO approach on improving the safety and helpfulness of the OPT-350M language model. Utilizing the Anthropic Helpful-Harmless RLHF dataset, we train and evaluate four models: the base OPT350M, an SFT model, a DPO model, and a model trained with both SFT and DPO. We introduce three key evaluation metrics: Harmlessness Rate (HmR), Helpfulness Rate (HpR), and a Combined Alignment Score (CAS), all derived from reward model outputs. The results show that while SFT outperforms DPO, The combined SFT+DPO model outperforms all others across all metrics, demonstrating the complementary nature of these techniques. Our findings also highlight challenges posed by noisy data, limited GPU resources, and training constraints. This study offers a comprehensive view of how fine-tuning strategies affect model alignment and provides a foundation for more robust alignment pipelines in future work.

Authors:Marianna Nezhurina, Jörg Franke, Taishi Nakamura, Timur Carstensen, Niccolò Ajroldi, Ville Komulainen, David Salinas, Jenia Jitsev
Title: Open-sci-ref-0.01: open and reproducible reference baselines for language model and dataset comparison
Abstract:
We introduce open-sci-ref, a family of dense transformer models trained as research baselines across multiple model (0.13B to 1.7B parameters) and token scales (up to 1T) on 8 recent open reference datasets. Evaluating the models on various standardized benchmarks, our training runs set establishes reference points that enable researchers to assess the sanity and quality of alternative training approaches across scales and datasets. Intermediate checkpoints allow comparison and studying of the training dynamics. The established reference baselines allow training procedures to be compared through their scaling trends, aligning them on a common compute axis. Comparison of open reference datasets reveals that training on NemoTron-CC HQ consistently outperforms other reference datasets, followed by DCLM-baseline and FineWeb-Edu. In addition to intermediate training checkpoints, the release includes logs, code, and downstream evaluations to simplify reproduction, standardize comparison, and facilitate future research.

Authors:Andrew Bell, Yan Kit Choi, Steffen E Petersen, Andrew King, Muhummad Sohaib Nazir, Alistair A Young
Title: Implicit Neural Representations of Intramyocardial Motion and Strain
Abstract:
Automatic quantification of intramyocardial motion and strain from tagging MRI remains an important but challenging task. We propose a method using implicit neural representations (INRs), conditioned on learned latent codes, to predict continuous left ventricular (LV) displacement -- without requiring inference-time optimisation. Evaluated on 452 UK Biobank test cases, our method achieved the best tracking accuracy (2.14 mm RMSE) and the lowest combined error in global circumferential (2.86%) and radial (6.42%) strain compared to three deep learning baselines. In addition, our method is $\sim$380$\times$ faster than the most accurate baseline. These results highlight the suitability of INR-based models for accurate and scalable analysis of myocardial strain in large CMR datasets. The code can be found at https://github.com/andrewjackbell/Displacement-INR

Authors:Davide Caffagni, Sara Sarto, Marcella Cornia, Lorenzo Baraldi, Rita Cucchiara
Title: Recurrence Meets Transformers for Universal Multimodal Retrieval
Abstract:
With the rapid advancement of multimodal retrieval and its application in LLMs and multimodal LLMs, increasingly complex retrieval tasks have emerged. Existing methods predominantly rely on task-specific fine-tuning of vision-language models and are limited to single-modality queries or documents. In this paper, we propose ReT-2, a unified retrieval model that supports multimodal queries, composed of both images and text, and searches across multimodal document collections where text and images coexist. ReT-2 leverages multi-layer representations and a recurrent Transformer architecture with LSTM-inspired gating mechanisms to dynamically integrate information across layers and modalities, capturing fine-grained visual and textual details. We evaluate ReT-2 on the challenging M2KR and M-BEIR benchmarks across different retrieval configurations. Results demonstrate that ReT-2 consistently achieves state-of-the-art performance across diverse settings, while offering faster inference and reduced memory usage compared to prior approaches. When integrated into retrieval-augmented generation pipelines, ReT-2 also improves downstream performance on Encyclopedic-VQA and InfoSeek datasets. Our source code and trained models are publicly available at: https://github.com/aimagelab/ReT-2

Authors:Kaiyan Zhang, Yuxin Zuo, Bingxiang He, Youbang Sun, Runze Liu, Che Jiang, Yuchen Fan, Kai Tian, Guoli Jia, Pengfei Li, Yu Fu, Xingtai Lv, Yuchen Zhang, Sihang Zeng, Shang Qu, Haozhan Li, Shijie Wang, Yuru Wang, Xinwei Long, Fangfu Liu, Xiang Xu, Jiaze Ma, Xuekai Zhu, Ermo Hua, Yihao Liu, Zonglin Li, Huayu Chen, Xiaoye Qu, Yafu Li, Weize Chen, Zhenzhao Yuan, Junqi Gao, Dong Li, Zhiyuan Ma, Ganqu Cui, Zhiyuan Liu, Biqing Qi, Ning Ding, Bowen Zhou
Title: A Survey of Reinforcement Learning for Large Reasoning Models
Abstract:
In this paper, we survey recent advances in Reinforcement Learning (RL) for reasoning with Large Language Models (LLMs). RL has achieved remarkable success in advancing the frontier of LLM capabilities, particularly in addressing complex logical tasks such as mathematics and coding. As a result, RL has emerged as a foundational methodology for transforming LLMs into LRMs. With the rapid progress of the field, further scaling of RL for LRMs now faces foundational challenges not only in computational resources but also in algorithm design, training data, and infrastructure. To this end, it is timely to revisit the development of this domain, reassess its trajectory, and explore strategies to enhance the scalability of RL toward Artificial SuperIntelligence (ASI). In particular, we examine research applying RL to LLMs and LRMs for reasoning abilities, especially since the release of DeepSeek-R1, including foundational components, core problems, training resources, and downstream applications, to identify future opportunities and directions for this rapidly evolving area. We hope this review will promote future research on RL for broader reasoning models. Github: https://github.com/TsinghuaC3I/Awesome-RL-for-LRMs

Authors:Hailay Kidu Teklehaymanot, Dren Fazlija, Wolfgang Nejdl
Title: MoVoC: Morphology-Aware Subword Construction for Geez Script Languages
Abstract:
Subword-based tokenization methods often fail to preserve morphological boundaries, a limitation especially pronounced in low-resource, morphologically complex languages such as those written in the Geez script. To address this, we present MoVoC (Morpheme-aware Subword Vocabulary Construction) and train MoVoC-Tok, a tokenizer that integrates supervised morphological analysis into the subword vocabulary. This hybrid segmentation approach combines morpheme-based and Byte Pair Encoding (BPE) tokens to preserve morphological integrity while maintaining lexical meaning. To tackle resource scarcity, we curate and release manually annotated morpheme data for four Geez script languages and a morpheme-aware vocabulary for two of them. While the proposed tokenization method does not lead to significant gains in automatic translation quality, we observe consistent improvements in intrinsic metrics, MorphoScore, and Boundary Precision, highlighting the value of morphology-aware segmentation in enhancing linguistic fidelity and token efficiency. Our morpheme-annotated datasets and tokenizer will be publicly available to support further research in low-resource, morphologically rich languages. Our code and data are available on GitHub: https://github.com/hailaykidu/MoVoC

Authors:Zhiheng Xi, Jixuan Huang, Chenyang Liao, Baodai Huang, Honglin Guo, Jiaqi Liu, Rui Zheng, Junjie Ye, Jiazheng Zhang, Wenxiang Chen, Wei He, Yiwen Ding, Guanyu Li, Zehui Chen, Zhengyin Du, Xuesong Yao, Yufei Xu, Jiecao Chen, Tao Gui, Zuxuan Wu, Qi Zhang, Xuanjing Huang, Yu-Gang Jiang
Title: AgentGym-RL: Training LLM Agents for Long-Horizon Decision Making through Multi-Turn Reinforcement Learning
Abstract:
Developing autonomous LLM agents capable of making a series of intelligent decisions to solve complex, real-world tasks is a fast-evolving frontier. Like human cognitive development, agents are expected to acquire knowledge and skills through exploration and interaction with the environment. Despite advances, the community still lacks a unified, interactive reinforcement learning (RL) framework that can effectively train such agents from scratch -- without relying on supervised fine-tuning (SFT) -- across diverse and realistic environments. To bridge this gap, we introduce AgentGym-RL, a new framework to train LLM agents for multi-turn interactive decision-making through RL. The framework features a modular and decoupled architecture, ensuring high flexibility and extensibility. It encompasses a wide variety of real-world scenarios, and supports mainstream RL algorithms. Furthermore, we propose ScalingInter-RL, a training approach designed for exploration-exploitation balance and stable RL optimization. In early stages, it emphasizes exploitation by restricting the number of interactions, and gradually shifts towards exploration with larger horizons to encourage diverse problem-solving strategies. In this way, the agent develops more diverse behaviors and is less prone to collapse under long horizons. We perform extensive experiments to validate the stability and effectiveness of both the AgentGym-RL framework and the ScalingInter-RL approach. Our agents match or surpass commercial models on 27 tasks across diverse environments. We offer key insights and will open-source the complete AgentGym-RL framework -- including code and datasets -- to empower the research community in developing the next generation of intelligent agents.

Authors:Vivek Oommen, Siavash Khodakarami, Aniruddha Bora, Zhicheng Wang, George Em Karniadakis
Title: Learning Turbulent Flows with Generative Models: Super-resolution, Forecasting, and Sparse Flow Reconstruction
Abstract:
Neural operators are promising surrogates for dynamical systems but when trained with standard L2 losses they tend to oversmooth fine-scale turbulent structures. Here, we show that combining operator learning with generative modeling overcomes this limitation. We consider three practical turbulent-flow challenges where conventional neural operators fail: spatio-temporal super-resolution, forecasting, and sparse flow reconstruction. For Schlieren jet super-resolution, an adversarially trained neural operator (adv-NO) reduces the energy-spectrum error by 15x while preserving sharp gradients at neural operator-like inference cost. For 3D homogeneous isotropic turbulence, adv-NO trained on only 160 timesteps from a single trajectory forecasts accurately for five eddy-turnover times and offers 114x wall-clock speed-up at inference than the baseline diffusion-based forecasters, enabling near-real-time rollouts. For reconstructing cylinder wake flows from highly sparse Particle Tracking Velocimetry-like inputs, a conditional generative model infers full 3D velocity and pressure fields with correct phase alignment and statistics. These advances enable accurate reconstruction and forecasting at low compute cost, bringing near-real-time analysis and control within reach in experimental and computational fluid mechanics. See our project page: https://vivekoommen.github.io/Gen4Turb/

Authors:Hyunjun Kim, Junwoo Ha, Sangyoon Yu, Haon Park
Title: X-Teaming Evolutionary M2S: Automated Discovery of Multi-turn to Single-turn Jailbreak Templates
Abstract:
Multi-turn-to-single-turn (M2S) compresses iterative red-teaming into one structured prompt, but prior work relied on a handful of manually written templates. We present X-Teaming Evolutionary M2S, an automated framework that discovers and optimizes M2S templates through language-model-guided evolution. The system pairs smart sampling from 12 sources with an LLM-as-judge inspired by StrongREJECT and records fully auditable logs. Maintaining selection pressure by setting the success threshold to $θ= 0.70$, we obtain five evolutionary generations, two new template families, and 44.8% overall success (103/230) on GPT-4.1. A balanced cross-model panel of 2,500 trials (judge fixed) shows that structural gains transfer but vary by target; two models score zero at the same threshold. We also find a positive coupling between prompt length and score, motivating length-aware judging. Our results demonstrate that structure-level search is a reproducible route to stronger single-turn probes and underscore the importance of threshold calibration and cross-model evaluation. Code, configurations, and artifacts are available at https://github.com/hyunjun1121/M2S-x-teaming.

Authors:Stefan Podgorski, Sourav Garg, Mehdi Hosseinzadeh, Lachlan Mares, Feras Dayoub, Ian Reid
Title: TANGO: Traversability-Aware Navigation with Local Metric Control for Topological Goals
Abstract:
Visual navigation in robotics traditionally relies on globally-consistent 3D maps or learned controllers, which can be computationally expensive and difficult to generalize across diverse environments. In this work, we present a novel RGB-only, object-level topometric navigation pipeline that enables zero-shot, long-horizon robot navigation without requiring 3D maps or pre-trained controllers. Our approach integrates global topological path planning with local metric trajectory control, allowing the robot to navigate towards object-level sub-goals while avoiding obstacles. We address key limitations of previous methods by continuously predicting local trajectory using monocular depth and traversability estimation, and incorporating an auto-switching mechanism that falls back to a baseline controller when necessary. The system operates using foundational models, ensuring open-set applicability without the need for domain-specific fine-tuning. We demonstrate the effectiveness of our method in both simulated environments and real-world tests, highlighting its robustness and deployability. Our approach outperforms existing state-of-the-art methods, offering a more adaptable and effective solution for visual navigation in open-set environments. The source code is made publicly available: https://github.com/podgorki/TANGO.

Authors:Fanzhen Liu, Alsharif Abuadbba, Kristen Moore, Surya Nepal, Cecile Paris, Jia Wu, Jian Yang, Quan Z. Sheng
Title: Adversarial Attacks Against Automated Fact-Checking: A Survey
Abstract:
In an era where misinformation spreads freely, fact-checking (FC) plays a crucial role in verifying claims and promoting reliable information. While automated fact-checking (AFC) has advanced significantly, existing systems remain vulnerable to adversarial attacks that manipulate or generate claims, evidence, or claim-evidence pairs. These attacks can distort the truth, mislead decision-makers, and ultimately undermine the reliability of FC models. Despite growing research interest in adversarial attacks against AFC systems, a comprehensive, holistic overview of key challenges remains lacking. These challenges include understanding attack strategies, assessing the resilience of current models, and identifying ways to enhance robustness. This survey provides the first in-depth review of adversarial attacks targeting FC, categorizing existing attack methodologies and evaluating their impact on AFC systems. Additionally, we examine recent advancements in adversary-aware defenses and highlight open research questions that require further exploration. Our findings underscore the urgent need for resilient FC frameworks capable of withstanding adversarial manipulations in pursuit of preserving high verification accuracy.

Authors:Yisong Zhang, Ran Cheng, Guoxing Yi, Kay Chen Tan
Title: A Systematic Survey on Large Language Models for Evolutionary Optimization: From Modeling to Solving
Abstract:
Large Language Models (LLMs), with their strong understanding and reasoning capabilities, are increasingly being explored for tackling optimization problems, especially in synergy with evolutionary computation. Despite rapid progress, however, the field still lacks a unified synthesis and a systematic taxonomy. This survey addresses this gap by providing a comprehensive review of recent developments and organizing them within a structured framework. We classify existing research into two main stages: LLMs for optimization modeling and LLMs for optimization solving. The latter is further divided into three paradigms according to the role of LLMs in the optimization workflow: LLMs as stand-alone optimizers, low-level LLMs embedded within optimization algorithms, and high-level LLMs for algorithm selection and generation. For each category, we analyze representative methods, distill technical challenges, and examine their interplay with traditional approaches. We also review interdisciplinary applications spanning the natural sciences, engineering, and machine learning. By contrasting LLM-driven and conventional methods, we highlight key limitations and research gaps, and point toward future directions for developing self-evolving agentic ecosystems for optimization. An up-to-date collection of related literature is maintained at https://github.com/ishmael233/LLM4OPT.

Authors:Sasan Sharifipour, Constantino Álvarez Casado, Mohammad Sabokrou, Miguel Bordallo López
Title: APML: Adaptive Probabilistic Matching Loss for Robust 3D Point Cloud Reconstruction
Abstract:
Training deep learning models for point cloud prediction tasks such as shape completion and generation depends critically on loss functions that measure discrepancies between predicted and ground-truth point sets. Commonly used functions such as Chamfer Distance (CD), HyperCD, and InfoCD rely on nearest-neighbor assignments, which often induce many-to-one correspondences, leading to point congestion in dense regions and poor coverage in sparse regions. These losses also involve non-differentiable operations due to index selection, which may affect gradient-based optimization. Earth Mover Distance (EMD) enforces one-to-one correspondences and captures structural similarity more effectively, but its cubic computational complexity limits its practical use. We propose the Adaptive Probabilistic Matching Loss (APML), a fully differentiable approximation of one-to-one matching that leverages Sinkhorn iterations on a temperature-scaled similarity matrix derived from pairwise distances. We analytically compute the temperature to guarantee a minimum assignment probability, eliminating manual tuning. APML achieves near-quadratic runtime, comparable to Chamfer-based losses, and avoids non-differentiable operations. When integrated into state-of-the-art architectures (PoinTr, PCN, FoldingNet) on ShapeNet benchmarks and on a spatiotemporal Transformer (CSI2PC) that generates 3D human point clouds from WiFi CSI measurements, APM loss yields faster convergence, superior spatial distribution, especially in low-density regions, and improved or on-par quantitative performance without additional hyperparameter search. The code is available at: https://github.com/apm-loss/apml.

Authors:Xin Lai, Junyi Li, Wei Li, Tao Liu, Tianjian Li, Hengshuang Zhao
Title: Mini-o3: Scaling Up Reasoning Patterns and Interaction Turns for Visual Search
Abstract:
Recent advances in large multimodal models have leveraged image-based tools with reinforcement learning to tackle visual problems. However, existing open-source approaches often exhibit monotonous reasoning patterns and allow only a limited number of interaction turns, making them inadequate for difficult tasks that require trial-and-error exploration. In this work, we address this limitation by scaling up tool-based interactions and introduce Mini-o3, a system that executes deep, multi-turn reasoning -- spanning tens of steps -- and achieves state-of-the-art performance on challenging visual search tasks. Our recipe for reproducing OpenAI o3-style behaviors comprises three key components. First, we construct the Visual Probe Dataset, a collection of thousands of challenging visual search problems designed for exploratory reasoning. Second, we develop an iterative data collection pipeline to obtain cold-start trajectories that exhibit diverse reasoning patterns, including depth-first search, trial-and-error, and goal maintenance. Third, we propose an over-turn masking strategy that prevents penalization of over-turn responses (those that hit the maximum number of turns) during reinforcement learning, thereby balancing training-time efficiency with test-time scalability. Despite training with an upper bound of only six interaction turns, our model generates trajectories that naturally scale to tens of turns at inference time, with accuracy improving as the number of turns increases. Extensive experiments demonstrate that Mini-o3 produces rich reasoning patterns and deep thinking paths, effectively solving challenging visual search problems.

Authors:Tuo Wang, Adithya Kulkarni, Tyler Cody, Peter A. Beling, Yujun Yan, Dawei Zhou
Title: GENUINE: Graph Enhanced Multi-level Uncertainty Estimation for Large Language Models
Abstract:
Uncertainty estimation is essential for enhancing the reliability of Large Language Models (LLMs), particularly in high-stakes applications. Existing methods often overlook semantic dependencies, relying on token-level probability measures that fail to capture structural relationships within the generated text. We propose GENUINE: Graph ENhanced mUlti-level uncertaINty Estimation for Large Language Models, a structure-aware framework that leverages dependency parse trees and hierarchical graph pooling to refine uncertainty quantification. By incorporating supervised learning, GENUINE effectively models semantic and structural relationships, improving confidence assessments. Extensive experiments across NLP tasks show that GENUINE achieves up to 29% higher AUROC than semantic entropy-based approaches and reduces calibration errors by over 15%, demonstrating the effectiveness of graph-based uncertainty modeling. The code is available at https://github.com/ODYSSEYWT/GUQ.

Authors:Fangchen Yu, Haiyuan Wan, Qianjia Cheng, Yuchen Zhang, Jiacheng Chen, Fujun Han, Yulun Wu, Junchi Yao, Ruilizhen Hu, Ning Ding, Yu Cheng, Tao Chen, Lei Bai, Dongzhan Zhou, Yun Luo, Ganqu Cui, Peng Ye
Title: HiPhO: How Far Are (M)LLMs from Humans in the Latest High School Physics Olympiad Benchmark?
Abstract:
Recently, the physical capabilities of (M)LLMs have garnered increasing attention. However, existing benchmarks for physics suffer from two major gaps: they neither provide systematic and up-to-date coverage of real-world physics competitions such as physics Olympiads, nor enable direct performance comparison with humans. To bridge these gaps, we present HiPhO, the first benchmark dedicated to high school physics Olympiads with human-aligned evaluation. Specifically, HiPhO highlights three key innovations. (1) Comprehensive Data: It compiles 13 latest Olympiad exams from 2024-2025, spanning both international and regional competitions, and covering mixed modalities that encompass problems spanning text-only to diagram-based. (2) Professional Evaluation: We adopt official marking schemes to perform fine-grained grading at both the answer and step level, fully aligned with human examiners to ensure high-quality and domain-specific evaluation. (3) Comparison with Human Contestants: We assign gold, silver, and bronze medals to models based on official medal thresholds, thereby enabling direct comparison between (M)LLMs and human contestants. Our large-scale evaluation of 30 state-of-the-art (M)LLMs shows that: across 13 exams, open-source MLLMs mostly remain at or below the bronze level; open-source LLMs show promising progress with multiple golds; closed-source reasoning MLLMs can achieve 6 to 12 gold medals; and most models still have a significant gap from full marks. These results highlight the performance gap between open-source models and top students, the strong reasoning abilities of closed-source models, and the remaining room for improvement. HiPhO, a human-aligned Olympiad benchmark for multimodal physical reasoning, is open-source at https://github.com/SciYu/HiPhO with a public leaderboard at https://phyarena.github.io/.

Authors:Zhiyuan He, Xufang Luo, Yike Zhang, Yuqing Yang, Lili Qiu
Title: $ΔL$ Normalization: Rethink Loss Aggregation in RLVR
Abstract:
We propose $ΔL$ Normalization, a simple yet effective loss aggregation method tailored to the characteristic of dynamic generation lengths in Reinforcement Learning with Verifiable Rewards (RLVR). Recently, RLVR has demonstrated strong potential in improving the reasoning capabilities of large language models (LLMs), but a major challenge lies in the large variability of response lengths during training, which leads to high gradient variance and unstable optimization. Although previous methods such as GRPO, DAPO, and Dr. GRPO introduce different loss normalization terms to address this issue, they either produce biased estimates or still suffer from high gradient variance. By analyzing the effect of varying lengths on policy loss both theoretically and empirically, we reformulate the problem as finding a minimum-variance unbiased estimator. Our proposed $ΔL$ Normalization not only provides an unbiased estimate of the true policy loss but also minimizes gradient variance in theory. Extensive experiments show that it consistently achieves superior results across different model sizes, maximum lengths, and tasks. Our code will be made public at https://github.com/zerolllin/Delta-L-Normalization.

Authors:Harrison Field, Max Yang, Yijiong Lin, Efi Psomopoulou, David Barton, Nathan F. Lepora
Title: Text2Touch: Tactile In-Hand Manipulation with LLM-Designed Reward Functions
Abstract:
Large language models (LLMs) are beginning to automate reward design for dexterous manipulation. However, no prior work has considered tactile sensing, which is known to be critical for human-like dexterity. We present Text2Touch, bringing LLM-crafted rewards to the challenging task of multi-axis in-hand object rotation with real-world vision based tactile sensing in palm-up and palm-down configurations. Our prompt engineering strategy scales to over 70 environment variables, and sim-to-real distillation enables successful policy transfer to a tactile-enabled fully actuated four-fingered dexterous robot hand. Text2Touch significantly outperforms a carefully tuned human-engineered baseline, demonstrating superior rotation speed and stability while relying on reward functions that are an order of magnitude shorter and simpler. These results illustrate how LLM-designed rewards can significantly reduce the time from concept to deployable dexterous tactile skills, supporting more rapid and scalable multimodal robot learning. Project website: https://hpfield.github.io/text2touch-website

Authors:Heng Hao, Wenjun Hu, Oxana Verkholyak, Davoud Ataee Tarzanagh, Baruch Gutow, Sima Didari, Masoud Faraki, Hankyu Moon, Seungjai Min
Title: PaVeRL-SQL: Text-to-SQL via Partial-Match Rewards and Verbal Reinforcement Learning
Abstract:
Text-to-SQL models allow users to interact with a database more easily by generating executable SQL statements from natural-language questions. Despite recent successes on simpler databases and questions, current Text-to-SQL methods still suffer from low execution accuracy on industry-scale databases and complex questions involving domain-specific business logic. We present \emph{PaVeRL-SQL}, a framework that combines \emph{Partial-Match Rewards} and \emph{Verbal Reinforcement Learning} to drive self-improvement in reasoning language models (RLMs) for Text-to-SQL. To handle practical use cases, we adopt two pipelines: (1) a newly designed in-context learning framework with group self-evaluation (verbal-RL), using capable open- and closed-source large language models (LLMs) as backbones; and (2) a chain-of-thought (CoT) RL pipeline with a small backbone model (OmniSQL-7B) trained with a specially designed reward function and two-stage RL. These pipelines achieve state-of-the-art (SOTA) results on popular Text-to-SQL benchmarks -- Spider, Spider 2.0, and BIRD. For the industrial-level Spider2.0-SQLite benchmark, the verbal-RL pipeline achieves an execution accuracy 7.4\% higher than SOTA, and the CoT pipeline is 1.4\% higher. RL training with mixed SQL dialects yields strong, threefold gains, particularly for dialects with limited training data. Overall, \emph{PaVeRL-SQL} delivers reliable, SOTA Text-to-SQL under realistic industrial constraints. The code is available at https://github.com/PaVeRL-SQL/PaVeRL-SQL.

Authors:Zhiyin Tan, Jennifer D'Souza
Title: Toward Purpose-oriented Topic Model Evaluation enabled by Large Language Models
Abstract:
This study presents a framework for automated evaluation of dynamically evolving topic models using Large Language Models (LLMs). Topic modeling is essential for organizing and retrieving scholarly content in digital library systems, helping users navigate complex and evolving knowledge domains. However, widely used automated metrics, such as coherence and diversity, often capture only narrow statistical patterns and fail to explain semantic failures in practice. We introduce a purpose-oriented evaluation framework that employs nine LLM-based metrics spanning four key dimensions of topic quality: lexical validity, intra-topic semantic soundness, inter-topic structural soundness, and document-topic alignment soundness. The framework is validated through adversarial and sampling-based protocols, and is applied across datasets spanning news articles, scholarly publications, and social media posts, as well as multiple topic modeling methods and open-source LLMs. Our analysis shows that LLM-based metrics provide interpretable, robust, and task-relevant assessments, uncovering critical weaknesses in topic models such as redundancy and semantic drift, which are often missed by traditional metrics. These results support the development of scalable, fine-grained evaluation tools for maintaining topic relevance in dynamic datasets. All code and data supporting this work are accessible at https://github.com/zhiyintan/topic-model-LLMjudgment.

Authors:Ziheng Chen, Xiao-Jun Wu, Bernhard Schölkopf, Nicu Sebe
Title: Riemannian Batch Normalization: A Gyro Approach
Abstract:
Normalization layers are crucial for deep learning, but their Euclidean formulations are inadequate for data on manifolds. On the other hand, many Riemannian manifolds in machine learning admit gyro-structures, enabling principled extensions of Euclidean neural networks to non-Euclidean domains. Inspired by this, we introduce GyroBN, a principled Riemannian batch normalization framework for gyrogroups. We establish two necessary conditions, namely \emph{pseudo-reduction} and \emph{gyroisometric gyrations}, that guarantee GyroBN with theoretical control over sample statistics, and show that these conditions hold for all known gyrogroups in machine learning. Our framework also incorporates several existing Riemannian normalization methods as special cases. We further instantiate GyroBN on seven representative geometries, including the Grassmannian, five constant curvature spaces, and the correlation manifold, and derive novel gyro and Riemannian structures to enable these instantiations. Experiments across these geometries demonstrate the effectiveness of GyroBN. The code is available at https://github.com/GitZH-Chen/GyroBN.git.

Authors:Sergey Pozdnyakov, Philippe Schwaller
Title: Lookup multivariate Kolmogorov-Arnold Networks
Abstract:
High-dimensional linear mappings, or linear layers, dominate both the parameter count and the computational cost of most modern deep-learning models. We introduce a general drop-in replacement, lookup multivariate Kolmogorov-Arnold Networks (lmKANs), which deliver a substantially better trade-off between capacity and inference cost. Our construction expresses a general high-dimensional mapping through trainable low-dimensional multivariate functions. These functions can carry dozens or hundreds of trainable parameters each, and yet it takes only a few multiplications to compute them because they are implemented as spline lookup tables. Empirically, lmKANs reduce inference FLOPs by up to 6.0x while matching the flexibility of MLPs in general high-dimensional function approximation. In another feedforward fully connected benchmark, on the tabular-like dataset of randomly displaced methane configurations, lmKANs enable more than 10x higher H100 throughput at equal accuracy. Within frameworks of Convolutional Neural Networks, lmKAN-based CNNs cut inference FLOPs at matched accuracy by 1.6-2.1x and by 1.7x on the CIFAR-10 and ImageNet-1k datasets, respectively. Our code, including dedicated CUDA kernels, is available online at https://github.com/schwallergroup/lmkan.

Authors:Kapil Madan
Title: ArGen: Auto-Regulation of Generative AI via GRPO and Policy-as-Code
Abstract:
This paper introduces ArGen (Auto-Regulation of Generative AI systems), a framework for aligning Large Language Models (LLMs) with complex sets of configurable, machine-readable rules spanning ethical principles, operational safety protocols, and regulatory compliance standards. Moving beyond just preference-based alignment, ArGen is designed to ensure LLMs adhere to these multifaceted policies through a novel synthesis of principle-based automated reward scoring, Group Relative Policy Optimisation (GRPO), and an Open Policy Agent (OPA) inspired governance layer. This approach provides the technical foundation for achieving and demonstrating compliance with diverse and nuanced governance requirements. To showcase the framework's capability to operationalize a deeply nuanced and culturally-specific value system, we present an in-depth case study: the development of a medical AI assistant guided by principles from Dharmic ethics (such as Ahimsa and Dharma), as derived from texts like the Bhagavad Gita. This challenging application demonstrates ArGen's adaptability, achieving a 70.9% improvement in domain-scope adherence over the baseline. Through our open-source repository, we show that ArGen's methodology offers a path to 'Governable Al' systems that are technically proficient, ethically robust, and verifiably compliant for safe deployment in diverse global contexts.

Authors:Yingsheng Wang, Shuo Lu, Jian Liang, Aihua Zheng, Ran He
Title: Frustratingly Easy Feature Reconstruction for Out-of-Distribution Detection
Abstract:
Out-of-distribution (OOD) detection helps models identify data outside the training categories, crucial for security applications. While feature-based post-hoc methods address this by evaluating data differences in the feature space without changing network parameters, they often require access to training data, which may not be suitable for some data privacy scenarios. This may not be suitable in scenarios where data privacy protection is a concern. In this paper, we propose a simple yet effective post-hoc method, termed Classifier-based Feature Reconstruction (ClaFR), from the perspective of subspace projection. It first performs an orthogonal decomposition of the classifier's weights to extract the class-known subspace, then maps the original data features into this subspace to obtain new data representations. Subsequently, the OOD score is determined by calculating the feature reconstruction error of the data within the subspace. Compared to existing OOD detection algorithms, our method does not require access to training data while achieving leading performance on multiple OOD benchmarks. Our code is released at https://github.com/Aie0923/ClaFR.

Authors:Cedric Caruzzo, Jong Chul Ye
Title: CellPainTR: Generalizable Representation Learning for Cross-Dataset Cell Painting Analysis
Abstract:
Large-scale biological discovery requires integrating massive, heterogeneous datasets like those from the JUMP Cell Painting consortium, but technical batch effects and a lack of generalizable models remain critical roadblocks. To address this, we introduce CellPainTR, a Transformer-based architecture designed to learn foundational representations of cellular morphology that are robust to batch effects. Unlike traditional methods that require retraining on new data, CellPainTR's design, featuring source-specific context tokens, allows for effective out-of-distribution (OOD) generalization to entirely unseen datasets without fine-tuning. We validate CellPainTR on the large-scale JUMP dataset, where it outperforms established methods like ComBat and Harmony in both batch integration and biological signal preservation. Critically, we demonstrate its robustness through a challenging OOD task on the unseen Bray et al. dataset, where it maintains high performance despite significant domain and feature shifts. Our work represents a significant step towards creating truly foundational models for image-based profiling, enabling more reliable and scalable cross-study biological analysis.

Authors:Jiajun Chai, Guojun Yin, Zekun Xu, Chuhuai Yue, Yi Jia, Siyu Xia, Xiaohan Wang, Jiwen Jiang, Xiaoguang Li, Chengqi Dong, Hang He, Wei Lin
Title: RLFactory: A Plug-and-Play Reinforcement Learning Post-Training Framework for LLM Multi-Turn Tool-Use
Abstract:
Large language models excel at basic reasoning but struggle with tasks that require interaction with external tools. We present RLFactory, a plug-and-play reinforcement learning post-training framework for multi-round tool use. RLFactory tackles (i) tool-call stability and adaptability amid tool heterogeneity and interface issues via an asyncio-based asynchronous caller and a decoupled tool/training architecture, and (ii) diverse evaluation needs via a reward layer supporting rule-based, model-judgment, and tool-verification signals. It reconstructs the MDP by introducing observation markers from tool feedback, closing the loop among model, tools, and environment, and implements a generate-parse-invoke-update workflow for dynamic policy optimization. On Search-R1 with Qwen3-4B, RLFactory achieves a 0.486 test score on the Natural Questions (NQ) dataset, surpassing larger models trained with similar techniques (e.g., Qwen2.5-7B-Instruct-GRPO at 0.473), and increases training throughput by 6.8x. RLFactory provides a low-barrier, highly adaptable framework for strengthening multi-round tool use of LLMs in real-world scenarios. Code: https://github.com/Simple-Efficient/RL-Factory.

Authors:Zehua Li
Title: Toward Reproducible Cross-Backend Compatibility for Deep Learning: A Configuration-First Framework with Three-Tier Verification
Abstract:
This paper presents a configuration-first framework for evaluating cross-backend compatibility in deep learning systems deployed on CPU, GPU, and compiled runtimes. The framework decouples experiments from code using YAML, supports both library and repository models, and employs a three-tier verification protocol covering tensor-level closeness, activation alignment, and task-level metrics. Through 672 checks across multiple models and tolerance settings, we observe that 72.0% of runs pass, with most discrepancies occurring under stricter thresholds. Our results show that detection models and compiled backends are particularly prone to drift, often due to nondeterministic post-processing. We further demonstrate that deterministic adapters and selective fallbacks can substantially improve agreement without significant performance loss. To our knowledge, this is the first unified framework that systematically quantifies and mitigates cross-backend drift in deep learning, providing a reproducible methodology for dependable deployment across heterogeneous runtimes.

Authors:Yu Song, Zhigang Hua, Yan Xie, Jingzhe Liu, Bo Long, Hui Liu
Title: GSTBench: A Benchmark Study on the Transferability of Graph Self-Supervised Learning
Abstract:
Self-supervised learning (SSL) has shown great promise in graph representation learning. However, most existing graph SSL methods are developed and evaluated under a single-dataset setting, leaving their cross-dataset transferability largely unexplored and limiting their ability to leverage knowledge transfer and large-scale pretraining, factors that are critical for developing generalized intelligence beyond fitting training data. To address this gap and advance foundation model research for graphs, we present GSTBench, the first systematic benchmark for evaluating the transferability of graph SSL methods. We conduct large-scale pretraining on ogbn-papers100M and evaluate five representative SSL methods across a diverse set of target graphs. Our standardized experimental setup decouples confounding factors such as model architecture, dataset characteristics, and adaptation protocols, enabling rigorous comparisons focused solely on pretraining objectives. Surprisingly, we observe that most graph SSL methods struggle to generalize, with some performing worse than random initialization. In contrast, GraphMAE, a masked autoencoder approach, consistently improves transfer performance. We analyze the underlying factors that drive these differences and offer insights to guide future research on transferable graph SSL, laying a solid foundation for the "pretrain-then-transfer" paradigm in graph learning. Our code is available at https://github.com/SongYYYY/GSTBench.

Authors:Wenhao Li, Mengyuan Liu, Hong Liu, Pichao Wang, Shijian Lu, Nicu Sebe
Title: H$_{2}$OT: Hierarchical Hourglass Tokenizer for Efficient Video Pose Transformers
Abstract:
Transformers have been successfully applied in the field of video-based 3D human pose estimation. However, the high computational costs of these video pose transformers (VPTs) make them impractical on resource-constrained devices. In this paper, we present a hierarchical plug-and-play pruning-and-recovering framework, called Hierarchical Hourglass Tokenizer (H$_{2}$OT), for efficient transformer-based 3D human pose estimation from videos. H$_{2}$OT begins with progressively pruning pose tokens of redundant frames and ends with recovering full-length sequences, resulting in a few pose tokens in the intermediate transformer blocks and thus improving the model efficiency. It works with two key modules, namely, a Token Pruning Module (TPM) and a Token Recovering Module (TRM). TPM dynamically selects a few representative tokens to eliminate the redundancy of video frames, while TRM restores the detailed spatio-temporal information based on the selected tokens, thereby expanding the network output to the original full-length temporal resolution for fast inference. Our method is general-purpose: it can be easily incorporated into common VPT models on both seq2seq and seq2frame pipelines while effectively accommodating different token pruning and recovery strategies. In addition, our H$_{2}$OT reveals that maintaining the full pose sequence is unnecessary, and a few pose tokens of representative frames can achieve both high efficiency and estimation accuracy. Extensive experiments on multiple benchmark datasets demonstrate both the effectiveness and efficiency of the proposed method. Code and models are available at https://github.com/NationalGAILab/HoT.

Authors:Wenxuan Huang, Shuang Chen, Zheyong Xie, Shaosheng Cao, Shixiang Tang, Yufan Shen, Qingyu Yin, Wenbo Hu, Xiaoman Wang, Yuntian Tang, Junbo Qiao, Yue Guo, Yao Hu, Zhenfei Yin, Philip Torr, Yu Cheng, Wanli Ouyang, Shaohui Lin
Title: Interleaving Reasoning for Better Text-to-Image Generation
Abstract:
Unified multimodal understanding and generation models recently have achieve significant improvement in image generation capability, yet a large gap remains in instruction following and detail preservation compared to systems that tightly couple comprehension with generation such as GPT-4o. Motivated by recent advances in interleaving reasoning, we explore whether such reasoning can further improve Text-to-Image (T2I) generation. We introduce Interleaving Reasoning Generation (IRG), a framework that alternates between text-based thinking and image synthesis: the model first produces a text-based thinking to guide an initial image, then reflects on the result to refine fine-grained details, visual quality, and aesthetics while preserving semantics. To train IRG effectively, we propose Interleaving Reasoning Generation Learning (IRGL), which targets two sub-goals: (1) strengthening the initial think-and-generate stage to establish core content and base quality, and (2) enabling high-quality textual reflection and faithful implementation of those refinements in a subsequent image. We curate IRGL-300K, a dataset organized into six decomposed learning modes that jointly cover learning text-based thinking, and full thinking-image trajectories. Starting from a unified foundation model that natively emits interleaved text-image outputs, our two-stage training first builds robust thinking and reflection, then efficiently tunes the IRG pipeline in the full thinking-image trajectory data. Extensive experiments show SoTA performance, yielding absolute gains of 5-10 points on GenEval, WISE, TIIF, GenAI-Bench, and OneIG-EN, alongside substantial improvements in visual quality and fine-grained fidelity. The code, model weights and datasets will be released in: https://github.com/Osilly/Interleaving-Reasoning-Generation .

Authors:Morteza Kiani Haftlang, Mohammadhossein Malmir, Foroutan Parand, Umberto Michelucci, Safouane El Ghazouali
Title: Barlow-Swin: Toward a novel siamese-based segmentation architecture using Swin-Transformers
Abstract:
Medical image segmentation is a critical task in clinical workflows, particularly for the detection and delineation of pathological regions. While convolutional architectures like U-Net have become standard for such tasks, their limited receptive field restricts global context modeling. Recent efforts integrating transformers have addressed this, but often result in deep, computationally expensive models unsuitable for real-time use. In this work, we present a novel end-to-end lightweight architecture designed specifically for real-time binary medical image segmentation. Our model combines a Swin Transformer-like encoder with a U-Net-like decoder, connected via skip pathways to preserve spatial detail while capturing contextual information. Unlike existing designs such as Swin Transformer or U-Net, our architecture is significantly shallower and competitively efficient. To improve the encoder's ability to learn meaningful features without relying on large amounts of labeled data, we first train it using Barlow Twins, a self-supervised learning method that helps the model focus on important patterns by reducing unnecessary repetition in the learned features. After this pretraining, we fine-tune the entire model for our specific task. Experiments on benchmark binary segmentation tasks demonstrate that our model achieves competitive accuracy with substantially reduced parameter count and faster inference, positioning it as a practical alternative for deployment in real-time and resource-limited clinical environments. The code for our method is available at Github repository: https://github.com/mkianih/Barlow-Swin.

Authors:James Xu Zhao, Bryan Hooi, See-Kiong Ng
Title: Test-Time Scaling in Reasoning Models Is Not Effective for Knowledge-Intensive Tasks Yet
Abstract:
Test-time scaling increases inference-time computation by allowing models to generate long reasoning chains, and has shown strong performance across many domains. However, in this work, we show that this approach is not yet effective for knowledge-intensive tasks, where high factual accuracy and low hallucination rates are essential. We conduct a comprehensive evaluation of test-time scaling using 12 reasoning models on two knowledge-intensive benchmarks. Our results reveal that increasing test-time computation does not consistently improve accuracy and, in many cases, it even leads to more hallucinations. We then analyze how extended reasoning affects hallucination behavior. We find that reduced hallucinations often result from the model choosing to abstain after thinking more, rather than from improved factual recall. Conversely, for some models, longer reasoning encourages attempts on previously unanswered questions, many of which result in hallucinations. Case studies show that extended reasoning can induce confirmation bias, leading to overconfident hallucinations. Despite these limitations, we observe that compared to non-thinking, enabling thinking remains beneficial. Code and data are available at https://github.com/XuZhao0/tts-knowledge

Authors:Valentin Quesnel, Damien Sileo
Title: Saturation-Driven Dataset Generation for LLM Mathematical Reasoning in the TPTP Ecosystem
Abstract:
The scarcity of high-quality, logically sound data is a critical bottleneck for advancing the mathematical reasoning of Large Language Models (LLMs). Our work confronts this challenge by turning decades of automated theorem proving research into a scalable data engine. Rather than relying on error-prone LLMs or complex proof-assistant syntax like Lean and Isabelle, our framework leverages E-prover's saturation capabilities on the vast TPTP axiom library to derive a massive, guaranteed-valid corpus of theorems. Our pipeline is principled and simple: saturate axioms, filter for "interesting" theorems, and generate tasks. With no LLMs in the loop, we eliminate factual errors by construction. This purely symbolic data is then transformed into three difficulty-controlled challenges: entailment verification, premise selection, and proof reconstruction. Our zero-shot experiments on frontier models reveal a clear weakness: performance collapses on tasks requiring deep, structural reasoning. Our framework provides both the diagnostic tool to measure this gap and a scalable source of symbolic training data to address it. We make the code and data publicly available. https://github.com/sileod/reasoning_core https://hf.co/datasets/reasoning-core/rc1

Authors:Jie Yang, Jiajun Chen, Zhangyue Yin, Shuo Chen, Yuxin Wang, Yiran Guo, Yuan Li, Yining Zheng, Xuanjing Huang, Xipeng Qiu
Title: VehicleWorld: A Highly Integrated Multi-Device Environment for Intelligent Vehicle Interaction
Abstract:
Intelligent vehicle cockpits present unique challenges for API Agents, requiring coordination across tightly-coupled subsystems that exceed typical task environments' complexity. Traditional Function Calling (FC) approaches operate statelessly, requiring multiple exploratory calls to build environmental awareness before execution, leading to inefficiency and limited error recovery. We introduce VehicleWorld, the first comprehensive environment for the automotive domain, featuring 30 modules, 250 APIs, and 680 properties with fully executable implementations that provide real-time state information during agent execution. This environment enables precise evaluation of vehicle agent behaviors across diverse, challenging scenarios. Through systematic analysis, we discovered that direct state prediction outperforms function calling for environmental control. Building on this insight, we propose State-based Function Call (SFC), a novel approach that maintains explicit system state awareness and implements direct state transitions to achieve target conditions. Experimental results demonstrate that SFC significantly outperforms traditional FC approaches, achieving superior execution accuracy and reduced latency. We have made all implementation code publicly available on Github https://github.com/OpenMOSS/VehicleWorld.

Authors:Jack Wilkie, Hanan Hindy, Christos Tachtatzis, Robert Atkinson
Title: Contrastive Self-Supervised Network Intrusion Detection using Augmented Negative Pairs
Abstract:
Network intrusion detection remains a critical challenge in cybersecurity. While supervised machine learning models achieve state-of-the-art performance, their reliance on large labelled datasets makes them impractical for many real-world applications. Anomaly detection methods, which train exclusively on benign traffic to identify malicious activity, suffer from high false positive rates, limiting their usability. Recently, self-supervised learning techniques have demonstrated improved performance with lower false positive rates by learning discriminative latent representations of benign traffic. In particular, contrastive self-supervised models achieve this by minimizing the distance between similar (positive) views of benign traffic while maximizing it between dissimilar (negative) views. Existing approaches generate positive views through data augmentation and treat other samples as negative. In contrast, this work introduces Contrastive Learning using Augmented Negative pairs (CLAN), a novel paradigm for network intrusion detection where augmented samples are treated as negative views - representing potentially malicious distributions - while other benign samples serve as positive views. This approach enhances both classification accuracy and inference efficiency after pretraining on benign traffic. Experimental evaluation on the Lycos2017 dataset demonstrates that the proposed method surpasses existing self-supervised and anomaly detection techniques in a binary classification task. Furthermore, when fine-tuned on a limited labelled dataset, the proposed approach achieves superior multi-class classification performance compared to existing self-supervised models.

Authors:Song Yu, Xiaofei Xu, Ke Deng, Li Li, Lin Tian
Title: Tree of Agents: Improving Long-Context Capabilities of Large Language Models through Multi-Perspective Reasoning
Abstract:
Large language models (LLMs) face persistent challenges when handling long-context tasks, most notably the lost in the middle issue, where information located in the middle of a long input tends to be underutilized. Some existing methods that reduce input have the risk of discarding key information, while others that extend context windows often lead to attention dispersion. To address these limitations, we propose Tree of Agents (TOA), a multi-agent reasoning framework that segments the input into chunks processed by independent agents. Each agent generates its local cognition, then agents dynamically exchange information for collaborative reasoning along tree-structured paths. TOA enables agents to probe different reasoning orders for multi-perspective understanding, effectively mitigating position bias and reducing hallucinations. To improve processing efficiency, we incorporate prefix-hash caching and adaptive pruning strategies, achieving significant performance improvements with comparable API overhead. Experiments show that TOA, powered by compact LLaMA3.1-8B, significantly outperforms multiple baselines and demonstrates comparable performance to the latest and much larger commercial models, such as Gemini1.5-pro, on various long-context tasks. Code is available at https://github.com/Aireduce952/Tree-of-Agents.

Authors:Xudong Mou, Rui Wang, Tiejun Wang, Renyu Yang, Shiru Chen, Jie Sun, Tianyu Wo, Xudong Liu
Title: CAPMix: Robust Time Series Anomaly Detection Based on Abnormal Assumptions with Dual-Space Mixup
Abstract:
Time series anomaly detection (TSAD) is a vital yet challenging task, particularly in scenarios where labeled anomalies are scarce and temporal dependencies are complex. Recent anomaly assumption (AA) approaches alleviate the lack of anomalies by injecting synthetic samples and training discriminative models. Despite promising results, these methods often suffer from two fundamental limitations: patchy generation, where scattered anomaly knowledge leads to overly simplistic or incoherent anomaly injection, and Anomaly Shift, where synthetic anomalies either resemble normal data too closely or diverge unrealistically from real anomalies, thereby distorting classification boundaries. In this paper, we propose CAPMix, a controllable anomaly augmentation framework that addresses both issues. First, we design a CutAddPaste mechanism to inject diverse and complex anomalies in a targeted manner, avoiding patchy generation. Second, we introduce a label revision strategy to adaptively refine anomaly labels, reducing the risk of anomaly shift. Finally, we employ dual-space mixup within a temporal convolutional network to enforce smoother and more robust decision boundaries. Extensive experiments on five benchmark datasets, including AIOps, UCR, SWaT, WADI, and ESA, demonstrate that CAPMix achieves significant improvements over state-of-the-art baselines, with enhanced robustness against contaminated training data. The code is available at https://github.com/alsike22/CAPMix.

Authors:Jianpeng Zhao, Chenyu Yuan, Weiming Luo, Haoling Xie, Guangwei Zhang, Steven Jige Quan, Zixuan Yuan, Pengyang Wang, Denghui Zhang
Title: Large Language Models as Virtual Survey Respondents: Evaluating Sociodemographic Response Generation
Abstract:
Questionnaire-based surveys are foundational to social science research and public policymaking, yet traditional survey methods remain costly, time-consuming, and often limited in scale. This paper explores a new paradigm: simulating virtual survey respondents using Large Language Models (LLMs). We introduce two novel simulation settings, namely Partial Attribute Simulation (PAS) and Full Attribute Simulation (FAS), to systematically evaluate the ability of LLMs to generate accurate and demographically coherent responses. In PAS, the model predicts missing attributes based on partial respondent profiles, whereas FAS involves generating complete synthetic datasets under both zero-context and context-enhanced conditions. We curate a comprehensive benchmark suite, LLM-S^3 (Large Language Model-based Sociodemographic Survey Simulation), that spans 11 real-world public datasets across four sociological domains. Our evaluation of multiple mainstream LLMs (GPT-3.5/4 Turbo, LLaMA 3.0/3.1-8B) reveals consistent trends in prediction performance, highlights failure modes, and demonstrates how context and prompt design impact simulation fidelity. This work establishes a rigorous foundation for LLM-driven survey simulations, offering scalable and cost-effective tools for sociological research and policy evaluation. Our code and dataset are available at: https://github.com/dart-lab-research/LLM-S-Cube-Benchmark

Authors:Jeongmin Yu, Susang Kim, Kisu Lee, Taekyoung Kwon, Won-Yong Shin, Ha Young Kim
Title: Multi-View Slot Attention Using Paraphrased Texts for Face Anti-Spoofing
Abstract:
Recent face anti-spoofing (FAS) methods have shown remarkable cross-domain performance by employing vision-language models like CLIP. However, existing CLIP-based FAS models do not fully exploit CLIP's patch embedding tokens, failing to detect critical spoofing clues. Moreover, these models rely on a single text prompt per class (e.g., 'live' or 'fake'), which limits generalization. To address these issues, we propose MVP-FAS, a novel framework incorporating two key modules: Multi-View Slot attention (MVS) and Multi-Text Patch Alignment (MTPA). Both modules utilize multiple paraphrased texts to generate generalized features and reduce dependence on domain-specific text. MVS extracts local detailed spatial features and global context from patch embeddings by leveraging diverse texts with multiple perspectives. MTPA aligns patches with multiple text representations to improve semantic robustness. Extensive experiments demonstrate that MVP-FAS achieves superior generalization performance, outperforming previous state-of-the-art methods on cross-domain datasets. Code: https://github.com/Elune001/MVP-FAS.

Authors:Honggang Jia, Xiucheng Wang, Nan Cheng, Ruijin Sun, Changle Li
Title: UrbanMIMOMap: A Ray-Traced MIMO CSI Dataset with Precoding-Aware Maps and Benchmarks
Abstract:
Sixth generation (6G) systems require environment-aware communication, driven by native artificial intelligence (AI) and integrated sensing and communication (ISAC). Radio maps (RMs), providing spatially continuous channel information, are key enablers. However, generating high-fidelity RM ground truth via electromagnetic (EM) simulations is computationally intensive, motivating machine learning (ML)-based RM construction. The effectiveness of these data-driven methods depends on large-scale, high-quality training data. Current public datasets often focus on single-input single-output (SISO) and limited information, such as path loss, which is insufficient for advanced multi-input multi-output (MIMO) systems requiring detailed channel state information (CSI). To address this gap, this paper presents UrbanMIMOMap, a novel large-scale urban MIMO CSI dataset generated using high-precision ray tracing. UrbanMIMOMap offers comprehensive complex CSI matrices across a dense spatial grid, going beyond traditional path loss data. This rich CSI is vital for constructing high-fidelity RMs and serves as a fundamental resource for data-driven RM generation, including deep learning. We demonstrate the dataset's utility through baseline performance evaluations of representative ML methods for RM construction. This work provides a crucial dataset and reference for research in high-precision RM generation, MIMO spatial performance, and ML for 6G environment awareness. The code and data for this work are available at: https://github.com/UNIC-Lab/UrbanMIMOMap.

Authors:Vishal Raman, Vijai Aravindh R, Abhijith Ragav
Title: REMI: A Novel Causal Schema Memory Architecture for Personalized Lifestyle Recommendation Agents
Abstract:
Personalized AI assistants often struggle to incorporate complex personal data and causal knowledge, leading to generic advice that lacks explanatory power. We propose REMI, a Causal Schema Memory architecture for a multimodal lifestyle agent that integrates a personal causal knowledge graph, a causal reasoning engine, and a schema based planning module. The idea is to deliver explainable, personalized recommendations in domains like fashion, personal wellness, and lifestyle planning. Our architecture uses a personal causal graph of the user's life events and habits, performs goal directed causal traversals enriched with external knowledge and hypothetical reasoning, and retrieves adaptable plan schemas to generate tailored action plans. A Large Language Model orchestrates these components, producing answers with transparent causal explanations. We outline the CSM system design and introduce new evaluation metrics for personalization and explainability, including Personalization Salience Score and Causal Reasoning Accuracy, to rigorously assess its performance. Results indicate that CSM based agents can provide more context aware, user aligned recommendations compared to baseline LLM agents. This work demonstrates a novel approach to memory augmented, causal reasoning in personalized agents, advancing the development of transparent and trustworthy AI lifestyle assistants.

Authors:Olivier Schipper, Yudi Zhang, Yali Du, Mykola Pechenizkiy, Meng Fang
Title: PillagerBench: Benchmarking LLM-Based Agents in Competitive Minecraft Team Environments
Abstract:
LLM-based agents have shown promise in various cooperative and strategic reasoning tasks, but their effectiveness in competitive multi-agent environments remains underexplored. To address this gap, we introduce PillagerBench, a novel framework for evaluating multi-agent systems in real-time competitive team-vs-team scenarios in Minecraft. It provides an extensible API, multi-round testing, and rule-based built-in opponents for fair, reproducible comparisons. We also propose TactiCrafter, an LLM-based multi-agent system that facilitates teamwork through human-readable tactics, learns causal dependencies, and adapts to opponent strategies. Our evaluation demonstrates that TactiCrafter outperforms baseline approaches and showcases adaptive learning through self-play. Additionally, we analyze its learning process and strategic evolution over multiple game episodes. To encourage further research, we have open-sourced PillagerBench, fostering advancements in multi-agent AI for competitive environments.

Authors:Fei Wang, Yujie Li, Zezhi Shao, Chengqing Yu, Yisong Fu, Zhulin An, Yongjun Xu, Xueqi Cheng
Title: ARIES: Relation Assessment and Model Recommendation for Deep Time Series Forecasting
Abstract:
Recent advancements in deep learning models for time series forecasting have been significant. These models often leverage fundamental time series properties such as seasonality and non-stationarity, which may suggest an intrinsic link between model performance and data properties. However, existing benchmark datasets fail to offer diverse and well-defined temporal patterns, restricting the systematic evaluation of such connections. Additionally, there is no effective model recommendation approach, leading to high time and cost expenditures when testing different architectures across different downstream applications. For those reasons, we propose ARIES, a framework for assessing relation between time series properties and modeling strategies, and for recommending deep forcasting models for realistic time series. First, we construct a synthetic dataset with multiple distinct patterns, and design a comprehensive system to compute the properties of time series. Next, we conduct an extensive benchmarking of over 50 forecasting models, and establish the relationship between time series properties and modeling strategies. Our experimental results reveal a clear correlation. Based on these findings, we propose the first deep forecasting model recommender, capable of providing interpretable suggestions for real-world time series. In summary, ARIES is the first study to establish the relations between the properties of time series data and modeling strategies, while also implementing a model recommendation system. The code is available at: https://github.com/blisky-li/ARIES.

Authors:Yuming Li, Yikai Wang, Yuying Zhu, Zhongyu Zhao, Ming Lu, Qi She, Shanghang Zhang
Title: BranchGRPO: Stable and Efficient GRPO with Structured Branching in Diffusion Models
Abstract:
Recent progress in aligning image and video generative models with Group Relative Policy Optimization (GRPO) has improved human preference alignment, but existing variants remain inefficient due to sequential rollouts and large numbers of sampling steps, unreliable credit assignment: sparse terminal rewards are uniformly propagated across timesteps, failing to capture the varying criticality of decisions during denoising. In this paper, we present BranchGRPO, a method that restructures the rollout process into a branching tree, where shared prefixes amortize computation and pruning removes low-value paths and redundant depths. BranchGRPO introduces three contributions: (1) a branching scheme that amortizes rollout cost through shared prefixes while preserving exploration diversity; (2) a reward fusion and depth-wise advantage estimator that transforms sparse terminal rewards into dense step-level signals; and (3) pruning strategies that cut gradient computation but leave forward rollouts and exploration unaffected. On HPDv2.1 image alignment, BranchGRPO improves alignment scores by up to \textbf{16\%} over DanceGRPO, while reducing per-iteration training time by nearly \textbf{55\%}. A hybrid variant, BranchGRPO-Mix, further accelerates training to 4.7x faster than DanceGRPO without degrading alignment. On WanX video generation, it further achieves higher Video-Align scores with sharper and temporally consistent frames compared to DanceGRPO. Codes are available at \href{https://fredreic1849.github.io/BranchGRPO-Webpage/}{BranchGRPO}.

Authors:Yi Yuan, Xubo Liu, Haohe Liu, Xiyuan Kang, Zhuo Chen, Yuxuan Wang, Mark D. Plumbley, Wenwu Wang
Title: DreamAudio: Customized Text-to-Audio Generation with Diffusion Models
Abstract:
With the development of large-scale diffusion-based and language-modeling-based generative models, impressive progress has been achieved in text-to-audio generation. Despite producing high-quality outputs, existing text-to-audio models mainly aim to generate semantically aligned sound and fall short on precisely controlling fine-grained acoustic characteristics of specific sounds. As a result, users that need specific sound content may find it challenging to generate the desired audio clips. In this paper, we present DreamAudio for customized text-to-audio generation (CTTA). Specifically, we introduce a new framework that is designed to enable the model to identify auditory information from user-provided reference concepts for audio generation. Given a few reference audio samples containing personalized audio events, our system can generate new audio samples that include these specific events. In addition, two types of datasets are developed for training and testing the customized systems. The experiments show that the proposed model, DreamAudio, generates audio samples that are highly consistent with the customized audio features and aligned well with the input text prompts. Furthermore, DreamAudio offers comparable performance in general text-to-audio tasks. We also provide a human-involved dataset containing audio events from real-world CTTA cases as the benchmark for customized generation tasks.

Authors:Xinyu Gao, Xiangtao Meng, Yingkai Dong, Zheng Li, Shanqing Guo
Title: DCMI: A Differential Calibration Membership Inference Attack Against Retrieval-Augmented Generation
Abstract:
While Retrieval-Augmented Generation (RAG) effectively reduces hallucinations by integrating external knowledge bases, it introduces vulnerabilities to membership inference attacks (MIAs), particularly in systems handling sensitive data. Existing MIAs targeting RAG's external databases often rely on model responses but ignore the interference of non-member-retrieved documents on RAG outputs, limiting their effectiveness. To address this, we propose DCMI, a differential calibration MIA that mitigates the negative impact of non-member-retrieved documents. Specifically, DCMI leverages the sensitivity gap between member and non-member retrieved documents under query perturbation. It generates perturbed queries for calibration to isolate the contribution of member-retrieved documents while minimizing the interference from non-member-retrieved documents. Experiments under progressively relaxed assumptions show that DCMI consistently outperforms baselines--for example, achieving 97.42% AUC and 94.35% Accuracy against the RAG system with Flan-T5, exceeding the MBA baseline by over 40%. Furthermore, on real-world RAG platforms such as Dify and MaxKB, DCMI maintains a 10%-20% advantage over the baseline. These results highlight significant privacy risks in RAG systems and emphasize the need for stronger protection mechanisms. We appeal to the community's consideration of deeper investigations, like ours, against the data leakage risks in rapidly evolving RAG systems. Our code is available at https://github.com/Xinyu140203/RAG_MIA.

Authors:Haoyang He, Zihua Rong, Kun Ji, Chenyang Li, Qing Huang, Chong Xia, Lan Yang, Honggang Zhang
Title: Rethinking Reasoning Quality in Large Language Models through Enhanced Chain-of-Thought via RL
Abstract:
Reinforcement learning (RL) has recently become the dominant paradigm for strengthening the reasoning abilities of large language models (LLMs). Yet the rule-based reward functions commonly used on mathematical or programming benchmarks assess only answer format and correctness, providing no signal as to whether the induced Chain-of-Thought (CoT) actually improves the answer. Furthermore, such task-specific training offers limited control over logical depth and therefore may fail to reveal a model's genuine reasoning capacity. We propose Dynamic Reasoning Efficiency Reward (DRER) -- a plug-and-play RL reward framework that reshapes both reward and advantage signals. (i) A Reasoning Quality Reward assigns fine-grained credit to those reasoning chains that demonstrably raise the likelihood of the correct answer, directly incentivising the trajectories with beneficial CoT tokens. (ii) A Dynamic Length Advantage decays the advantage of responses whose length deviates from a validation-derived threshold, stabilising training. To facilitate rigorous assessment, we also release Logictree, a dynamically constructed deductive reasoning dataset that functions both as RL training data and as a comprehensive benchmark. Experiments confirm the effectiveness of DRER: our 7B model attains GPT-o3-mini level performance on Logictree with 400 trianing steps, while the average confidence of CoT-augmented answers rises by 30%. The model further exhibits generalisation across diverse logical-reasoning datasets, and the mathematical benchmark AIME24. These results illuminate how RL shapes CoT behaviour and chart a practical path toward enhancing formal-reasoning skills in large language models. All code and data are available in repository https://github.com/Henryhe09/DRER.

Authors:Md Hasebul Hasan, Mahir Labib Dihan, Mohammed Eunus Ali, Md Rizwan Parvez
Title: MapAgent: A Hierarchical Agent for Geospatial Reasoning with Dynamic Map Tool Integration
Abstract:
Agentic AI has significantly extended the capabilities of large language models (LLMs) by enabling complex reasoning and tool use. However, most existing frameworks are tailored to domains such as mathematics, coding, or web automation, and fall short on geospatial tasks that require spatial reasoning, multi-hop planning, and real-time map interaction. To address these challenges, we introduce MapAgent, a hierarchical multi-agent plug-and-play framework with customized toolsets and agentic scaffolds for map-integrated geospatial reasoning. Unlike existing flat agent-based approaches that treat tools uniformly-often overwhelming the LLM when handling similar but subtly different geospatial APIs-MapAgent decouples planning from execution. A high-level planner decomposes complex queries into subgoals, which are routed to specialized modules. For tool-heavy modules-such as map-based services-we then design a dedicated map-tool agent that efficiently orchestrates related APIs adaptively in parallel to effectively fetch geospatial data relevant for the query, while simpler modules (e.g., solution generation or answer extraction) operate without additional agent overhead. This hierarchical design reduces cognitive load, improves tool selection accuracy, and enables precise coordination across similar APIs. We evaluate MapAgent on four diverse geospatial benchmarks-MapEval-Textual, MapEval-API, MapEval-Visual, and MapQA-and demonstrate substantial gains over state-of-the-art tool-augmented and agentic baselines. We open-source our framwork at https://github.com/Hasebul/MapAgent.

Authors:Sarang Patil, Zeyong Zhang, Yiran Huang, Tengfei Ma, Mengjia Xu
Title: Hyperbolic Large Language Models
Abstract:
Large language models (LLMs) have achieved remarkable success and demonstrated superior performance across various tasks, including natural language processing (NLP), weather forecasting, biological protein folding, text generation, and solving mathematical problems. However, many real-world data exhibit highly non-Euclidean latent hierarchical anatomy, such as protein networks, transportation networks, financial networks, brain networks, and linguistic structures or syntactic trees in natural languages. Effectively learning intrinsic semantic entailment and hierarchical relationships from these raw, unstructured input data using LLMs remains an underexplored area. Due to its effectiveness in modeling tree-like hierarchical structures, hyperbolic geometry -- a non-Euclidean space -- has rapidly gained popularity as an expressive latent representation space for complex data modeling across domains such as graphs, images, languages, and multi-modal data. Here, we provide a comprehensive and contextual exposition of recent advancements in LLMs that leverage hyperbolic geometry as a representation space to enhance semantic representation learning and multi-scale reasoning. Specifically, the paper presents a taxonomy of the principal techniques of Hyperbolic LLMs (HypLLMs) in terms of four main categories: (1) hyperbolic LLMs through exp/log maps; (2) hyperbolic fine-tuned models; (3) fully hyperbolic LLMs, and (4) hyperbolic state-space models. We also explore crucial potential applications and outline future research directions. A repository of key papers, models, datasets, and code implementations is available at https://github.com/sarangp2402/Hyperbolic-LLM-Models/tree/main.

Authors:Leo Ho, Yinghao Huang, Dafei Qin, Mingyi Shi, Wangpok Tse, Wei Liu, Junichi Yamagishi, Taku Komura
Title: InterAct: A Large-Scale Dataset of Dynamic, Expressive and Interactive Activities between Two People in Daily Scenarios
Abstract:
We address the problem of accurate capture of interactive behaviors between two people in daily scenarios. Most previous works either only consider one person or solely focus on conversational gestures of two people, assuming the body orientation and/or position of each actor are constant or barely change over each interaction. In contrast, we propose to simultaneously model two people's activities, and target objective-driven, dynamic, and semantically consistent interactions which often span longer duration and cover bigger space. To this end, we capture a new multi-modal dataset dubbed InterAct, which is composed of 241 motion sequences where two people perform a realistic and coherent scenario for one minute or longer over a complete interaction. For each sequence, two actors are assigned different roles and emotion labels, and collaborate to finish one task or conduct a common interaction activity. The audios, body motions, and facial expressions of both persons are captured. InterAct contains diverse and complex motions of individuals and interesting and relatively long-term interaction patterns barely seen before. We also demonstrate a simple yet effective diffusion-based method that estimates interactive face expressions and body motions of two people from speech inputs. Our method regresses the body motions in a hierarchical manner, and we also propose a novel fine-tuning mechanism to improve the lip accuracy of facial expressions. To facilitate further research, the data and code is made available at https://hku-cg.github.io/interact/ .

Authors:Jiaqi Chen, Ji Shi, Cansu Sancaktar, Jonas Frey, Georg Martius
Title: Offline vs. Online Learning in Model-based RL: Lessons for Data Collection Strategies
Abstract:
Data collection is crucial for learning robust world models in model-based reinforcement learning. The most prevalent strategies are to actively collect trajectories by interacting with the environment during online training or training on offline datasets. At first glance, the nature of learning task-agnostic environment dynamics makes world models a good candidate for effective offline training. However, the effects of online vs. offline data on world models and thus on the resulting task performance have not been thoroughly studied in the literature. In this work, we investigate both paradigms in model-based settings, conducting experiments on 31 different environments. First, we showcase that online agents outperform their offline counterparts. We identify a key challenge behind performance degradation of offline agents: encountering Out-Of-Distribution states at test time. This issue arises because, without the self-correction mechanism in online agents, offline datasets with limited state space coverage induce a mismatch between the agent's imagination and real rollouts, compromising policy training. We demonstrate that this issue can be mitigated by allowing for additional online interactions in a fixed or adaptive schedule, restoring the performance of online training with limited interaction data. We also showcase that incorporating exploration data helps mitigate the performance degradation of offline agents. Based on our insights, we recommend adding exploration data when collecting large datasets, as current efforts predominantly focus on expert data alone.

Authors:Yuxuan Hu, Jihao Liu, Ke Wang, Jinliang Zhen, Weikang Shi, Manyuan Zhang, Qi Dou, Rui Liu, Aojun Zhou, Hongsheng Li
Title: LM-Searcher: Cross-domain Neural Architecture Search with LLMs via Unified Numerical Encoding
Abstract:
Recent progress in Large Language Models (LLMs) has opened new avenues for solving complex optimization problems, including Neural Architecture Search (NAS). However, existing LLM-driven NAS approaches rely heavily on prompt engineering and domain-specific tuning, limiting their practicality and scalability across diverse tasks. In this work, we propose LM-Searcher, a novel framework that leverages LLMs for cross-domain neural architecture optimization without the need for extensive domain-specific adaptation. Central to our approach is NCode, a universal numerical string representation for neural architectures, which enables cross-domain architecture encoding and search. We also reformulate the NAS problem as a ranking task, training LLMs to select high-performing architectures from candidate pools using instruction-tuning samples derived from a novel pruning-based subspace sampling strategy. Our curated dataset, encompassing a wide range of architecture-performance pairs, encourages robust and transferable learning. Comprehensive experiments demonstrate that LM-Searcher achieves competitive performance in both in-domain (e.g., CNNs for image classification) and out-of-domain (e.g., LoRA configurations for segmentation and generation) tasks, establishing a new paradigm for flexible and generalizable LLM-based architecture search. The datasets and models will be released at https://github.com/Ashone3/LM-Searcher.

Authors:Shay Dahary, Avi Edana, Alexander Apartsin, Yehudit Aperstein
Title: From Joy to Fear: A Benchmark of Emotion Estimation in Pop Song Lyrics
Abstract:
The emotional content of song lyrics plays a pivotal role in shaping listener experiences and influencing musical preferences. This paper investigates the task of multi-label emotional attribution of song lyrics by predicting six emotional intensity scores corresponding to six fundamental emotions. A manually labeled dataset is constructed using a mean opinion score (MOS) approach, which aggregates annotations from multiple human raters to ensure reliable ground-truth labels. Leveraging this dataset, we conduct a comprehensive evaluation of several publicly available large language models (LLMs) under zero-shot scenarios. Additionally, we fine-tune a BERT-based model specifically for predicting multi-label emotion scores. Experimental results reveal the relative strengths and limitations of zero-shot and fine-tuned models in capturing the nuanced emotional content of lyrics. Our findings highlight the potential of LLMs for emotion recognition in creative texts, providing insights into model selection strategies for emotion-based music information retrieval applications. The labeled dataset is available at https://github.com/LLM-HITCS25S/LyricsEmotionAttribution.

Authors:Jungin Park, Jiyoung Lee, Kwanghoon Sohn
Title: Language-guided Recursive Spatiotemporal Graph Modeling for Video Summarization
Abstract:
Video summarization aims to select keyframes that are visually diverse and can represent the whole story of a given video. Previous approaches have focused on global interlinkability between frames in a video by temporal modeling. However, fine-grained visual entities, such as objects, are also highly related to the main content of the video. Moreover, language-guided video summarization, which has recently been studied, requires a comprehensive linguistic understanding of complex real-world videos. To consider how all the objects are semantically related to each other, this paper regards video summarization as a language-guided spatiotemporal graph modeling problem. We present recursive spatiotemporal graph networks, called VideoGraph, which formulate the objects and frames as nodes of the spatial and temporal graphs, respectively. The nodes in each graph are connected and aggregated with graph edges, representing the semantic relationships between the nodes. To prevent the edges from being configured with visual similarity, we incorporate language queries derived from the video into the graph node representations, enabling them to contain semantic knowledge. In addition, we adopt a recursive strategy to refine initial graphs and correctly classify each frame node as a keyframe. In our experiments, VideoGraph achieves state-of-the-art performance on several benchmarks for generic and query-focused video summarization in both supervised and unsupervised manners. The code is available at https://github.com/park-jungin/videograph.

Authors:Zixi Li
Title: TreeGPT: Pure TreeFFN Encoder-Decoder Architecture for Structured Reasoning Without Attention Mechanisms
Abstract:
We present TreeGPT, an attention-free neural architecture that explores the potential of pure TreeFFN encoder-decoder design for structured reasoning tasks. Unlike traditional transformer approaches that rely on attention mechanisms, TreeGPT employs bidirectional TreeFFN components that process sequences through adjacent connections in parallel, aiming to achieve computational efficiency while maintaining reasoning capabilities. Our approach centers on a TreeFFN Encoder-Decoder mechanism: $$\text{Encoder TreeFFN (L} \rightarrow \text{R)} + \text{Decoder TreeFFN (R} \leftarrow \text{L)} \rightarrow \text{Parallel Processing}$$ where the encoder processes left-to-right dependencies while the decoder handles right-to-left patterns, both using simple neighbor-to-neighbor connections. This design eliminates attention computation while maintaining sequence modeling capabilities. We evaluate our approach on the ARC Prize 2025 dataset, where TreeGPT achieves 99\% validation accuracy using 3.16M parameters. The model converges within 1500 training steps and demonstrates 100\% token-level accuracy on selected evaluation samples. Our preliminary results suggest that for certain structured reasoning tasks, specialized TreeFFN architectures may offer advantages over attention-based approaches. While these findings are encouraging, we acknowledge that further investigation across diverse tasks and datasets would be valuable to establish the broader applicability of attention-free designs.

Authors:Yanda Yang, Max Sokolich, Fatma Ceren Kirmizitas, Sambeeta Das, Andreas A. Malikopoulos
Title: Microrobot Vascular Parkour: Analytic Geometry-based Path Planning with Real-time Dynamic Obstacle Avoidance
Abstract:
Autonomous microrobots in blood vessels could enable minimally invasive therapies, but navigation is challenged by dense, moving obstacles. We propose a real-time path planning framework that couples an analytic geometry global planner (AGP) with two reactive local escape controllers, one based on rules and one based on reinforcement learning, to handle sudden moving obstacles. Using real-time imaging, the system estimates the positions of the microrobot, obstacles, and targets and computes collision-free motions. In simulation, AGP yields shorter paths and faster planning than weighted A* (WA*), particle swarm optimization (PSO), and rapidly exploring random trees (RRT), while maintaining feasibility and determinism. We extend AGP from 2D to 3D without loss of speed. In both simulations and experiments, the combined global planner and local controllers reliably avoid moving obstacles and reach targets. The average planning time is 40 ms per frame, compatible with 25 fps image acquisition and real-time closed-loop control. These results advance autonomous microrobot navigation and targeted drug delivery in vascular environments.

Authors:Andrej Orsula, Matthieu Geist, Miguel Olivares-Mendez, Carol Martinez
Title: Learning Tool-Aware Adaptive Compliant Control for Autonomous Regolith Excavation
Abstract:
Autonomous regolith excavation is a cornerstone of in-situ resource utilization for a sustained human presence beyond Earth. However, this task is fundamentally hindered by the complex interaction dynamics of granular media and the operational need for robots to use diverse tools. To address these challenges, this work introduces a framework where a model-based reinforcement learning agent learns within a parallelized simulation. This environment leverages high-fidelity particle physics and procedural generation to create a vast distribution of both lunar terrains and excavation tool geometries. To master this diversity, the agent learns an adaptive interaction strategy by dynamically modulating its own stiffness and damping at each control step through operational space control. Our experiments demonstrate that training with a procedural distribution of tools is critical for generalization and enables the development of sophisticated tool-aware behavior. Furthermore, we show that augmenting the agent with visual feedback significantly improves task success. These results represent a validated methodology for developing the robust and versatile autonomous systems required for the foundational tasks of future space missions.

Authors:Zizun Li, Jianjun Zhou, Yifan Wang, Haoyu Guo, Wenzheng Chang, Yang Zhou, Haoyi Zhu, Junyi Chen, Chunhua Shen, Tong He
Title: WinT3R: Window-Based Streaming Reconstruction with Camera Token Pool
Abstract:
We present WinT3R, a feed-forward reconstruction model capable of online prediction of precise camera poses and high-quality point maps. Previous methods suffer from a trade-off between reconstruction quality and real-time performance. To address this, we first introduce a sliding window mechanism that ensures sufficient information exchange among frames within the window, thereby improving the quality of geometric predictions without large computation. In addition, we leverage a compact representation of cameras and maintain a global camera token pool, which enhances the reliability of camera pose estimation without sacrificing efficiency. These designs enable WinT3R to achieve state-of-the-art performance in terms of online reconstruction quality, camera pose estimation, and reconstruction speed, as validated by extensive experiments on diverse datasets. Code and model are publicly available at https://github.com/LiZizun/WinT3R.

Authors:Mohammad Saeid, Amir Salarpour, Pedram MohajerAnsari
Title: Enhancing 3D Point Cloud Classification with ModelNet-R and Point-SkipNet
Abstract:
The classification of 3D point clouds is crucial for applications such as autonomous driving, robotics, and augmented reality. However, the commonly used ModelNet40 dataset suffers from limitations such as inconsistent labeling, 2D data, size mismatches, and inadequate class differentiation, which hinder model performance. This paper introduces ModelNet-R, a meticulously refined version of ModelNet40 designed to address these issues and serve as a more reliable benchmark. Additionally, this paper proposes Point-SkipNet, a lightweight graph-based neural network that leverages efficient sampling, neighborhood grouping, and skip connections to achieve high classification accuracy with reduced computational overhead. Extensive experiments demonstrate that models trained in ModelNet-R exhibit significant performance improvements. Notably, Point-SkipNet achieves state-of-the-art accuracy on ModelNet-R with a substantially lower parameter count compared to contemporary models. This research highlights the crucial role of dataset quality in optimizing model efficiency for 3D point cloud classification. For more details, see the code at: https://github.com/m-saeid/ModeNetR_PointSkipNet.

Authors:Luca Müller, Hassan Ali, Philipp Allgeuer, Lukáš Gajdošech, Stefan Wermter
Title: Pointing-Guided Target Estimation via Transformer-Based Attention
Abstract:
Deictic gestures, like pointing, are a fundamental form of non-verbal communication, enabling humans to direct attention to specific objects or locations. This capability is essential in Human-Robot Interaction (HRI), where robots should be able to predict human intent and anticipate appropriate responses. In this work, we propose the Multi-Modality Inter-TransFormer (MM-ITF), a modular architecture to predict objects in a controlled tabletop scenario with the NICOL robot, where humans indicate targets through natural pointing gestures. Leveraging inter-modality attention, MM-ITF maps 2D pointing gestures to object locations, assigns a likelihood score to each, and identifies the most likely target. Our results demonstrate that the method can accurately predict the intended object using monocular RGB data, thus enabling intuitive and accessible human-robot collaboration. To evaluate the performance, we introduce a patch confusion matrix, providing insights into the model's predictions across candidate object locations. Code available at: https://github.com/lucamuellercode/MMITF.

Authors:Jie Chen, Jinhao Jiang, Yingqian Min, Zican Dong, Shijie Wang, Wayne Xin Zhao, Ji-Rong Wen
Title: Sticker-TTS: Learn to Utilize Historical Experience with a Sticker-driven Test-Time Scaling Framework
Abstract:
Large reasoning models (LRMs) have exhibited strong performance on complex reasoning tasks, with further gains achievable through increased computational budgets at inference. However, current test-time scaling methods predominantly rely on redundant sampling, ignoring the historical experience utilization, thereby limiting computational efficiency. To overcome this limitation, we propose Sticker-TTS, a novel test-time scaling framework that coordinates three collaborative LRMs to iteratively explore and refine solutions guided by historical attempts. At the core of our framework are distilled key conditions-termed stickers-which drive the extraction, refinement, and reuse of critical information across multiple rounds of reasoning. To further enhance the efficiency and performance of our framework, we introduce a two-stage optimization strategy that combines imitation learning with self-improvement, enabling progressive refinement. Extensive evaluations on three challenging mathematical reasoning benchmarks, including AIME-24, AIME-25, and OlymMATH, demonstrate that Sticker-TTS consistently surpasses strong baselines, including self-consistency and advanced reinforcement learning approaches, under comparable inference budgets. These results highlight the effectiveness of sticker-guided historical experience utilization. Our code and data are available at https://github.com/RUCAIBox/Sticker-TTS.

Authors:Hongyi Jing, Jiafu Chen, Chen Rao, Ziqiang Dang, Jiajie Teng, Tianyi Chu, Juncheng Mo, Shuo Fang, Huaizhong Lin, Rui Lv, Chenguang Ma, Lei Zhao
Title: SparkUI-Parser: Enhancing GUI Perception with Robust Grounding and Parsing
Abstract:
The existing Multimodal Large Language Models (MLLMs) for GUI perception have made great progress. However, the following challenges still exist in prior methods: 1) They model discrete coordinates based on text autoregressive mechanism, which results in lower grounding accuracy and slower inference speed. 2) They can only locate predefined sets of elements and are not capable of parsing the entire interface, which hampers the broad application and support for downstream tasks. To address the above issues, we propose SparkUI-Parser, a novel end-to-end framework where higher localization precision and fine-grained parsing capability of the entire interface are simultaneously achieved. Specifically, instead of using probability-based discrete modeling, we perform continuous modeling of coordinates based on a pre-trained Multimodal Large Language Model (MLLM) with an additional token router and coordinate decoder. This effectively mitigates the limitations inherent in the discrete output characteristics and the token-by-token generation process of MLLMs, consequently boosting both the accuracy and the inference speed. To further enhance robustness, a rejection mechanism based on a modified Hungarian matching algorithm is introduced, which empowers the model to identify and reject non-existent elements, thereby reducing false positives. Moreover, we present ScreenParse, a rigorously constructed benchmark to systematically assess structural perception capabilities of GUI models across diverse scenarios. Extensive experiments demonstrate that our approach consistently outperforms SOTA methods on ScreenSpot, ScreenSpot-v2, CAGUI-Grounding and ScreenParse benchmarks. The resources are available at https://github.com/antgroup/SparkUI-Parser.

Authors:Chengkai Xu, Jiaqi Liu, Yicheng Guo, Peng Hang, Jian Sun
Title: A Knowledge-Driven Diffusion Policy for End-to-End Autonomous Driving Based on Expert Routing
Abstract:
End-to-end autonomous driving remains constrained by the difficulty of producing adaptive, robust, and interpretable decision-making across diverse scenarios. Existing methods often collapse diverse driving behaviors, lack long-horizon consistency, or require task-specific engineering that limits generalization. This paper presents KDP, a knowledge-driven diffusion policy that integrates generative diffusion modeling with a sparse mixture-of-experts routing mechanism. The diffusion component generates temporally coherent action sequences, while the expert routing mechanism activates specialized and reusable experts according to context, enabling modular knowledge composition. Extensive experiments across representative driving scenarios demonstrate that KDP achieves consistently higher success rates, reduced collision risk, and smoother control compared to prevailing paradigms. Ablation studies highlight the effectiveness of sparse expert activation and the Transformer backbone, and activation analyses reveal structured specialization and cross-scenario reuse of experts. These results establish diffusion with expert routing as a scalable and interpretable paradigm for knowledge-driven end-to-end autonomous driving.

Authors:Xinkui Lin, Yongxiu Xu, Minghao Tang, Shilong Zhang, Hongbo Xu, Hao Xu, Yubin Wang
Title: REMOTE: A Unified Multimodal Relation Extraction Framework with Multilevel Optimal Transport and Mixture-of-Experts
Abstract:
Multimodal relation extraction (MRE) is a crucial task in the fields of Knowledge Graph and Multimedia, playing a pivotal role in multimodal knowledge graph construction. However, existing methods are typically limited to extracting a single type of relational triplet, which restricts their ability to extract triplets beyond the specified types. Directly combining these methods fails to capture dynamic cross-modal interactions and introduces significant computational redundancy. Therefore, we propose a novel \textit{unified multimodal Relation Extraction framework with Multilevel Optimal Transport and mixture-of-Experts}, termed REMOTE, which can simultaneously extract intra-modal and inter-modal relations between textual entities and visual objects. To dynamically select optimal interaction features for different types of relational triplets, we introduce mixture-of-experts mechanism, ensuring the most relevant modality information is utilized. Additionally, considering that the inherent property of multilayer sequential encoding in existing encoders often leads to the loss of low-level information, we adopt a multilevel optimal transport fusion module to preserve low-level features while maintaining multilayer encoding, yielding more expressive representations. Correspondingly, we also create a Unified Multimodal Relation Extraction (UMRE) dataset to evaluate the effectiveness of our framework, encompassing diverse cases where the head and tail entities can originate from either text or image. Extensive experiments show that REMOTE effectively extracts various types of relational triplets and achieves state-of-the-art performanc on almost all metrics across two other public MRE datasets. We release our resources at https://github.com/Nikol-coder/REMOTE.

Authors:Ming Dai, Wenxuan Cheng, Jiedong Zhuang, Jiang-jiang Liu, Hongshen Zhao, Zhenhua Feng, Wankou Yang
Title: PropVG: End-to-End Proposal-Driven Visual Grounding with Multi-Granularity Discrimination
Abstract:
Recent advances in visual grounding have largely shifted away from traditional proposal-based two-stage frameworks due to their inefficiency and high computational complexity, favoring end-to-end direct reference paradigms. However, these methods rely exclusively on the referred target for supervision, overlooking the potential benefits of prominent prospective targets. Moreover, existing approaches often fail to incorporate multi-granularity discrimination, which is crucial for robust object identification in complex scenarios. To address these limitations, we propose PropVG, an end-to-end proposal-based framework that, to the best of our knowledge, is the first to seamlessly integrate foreground object proposal generation with referential object comprehension without requiring additional detectors. Furthermore, we introduce a Contrastive-based Refer Scoring (CRS) module, which employs contrastive learning at both sentence and word levels to enhance the capability in understanding and distinguishing referred objects. Additionally, we design a Multi-granularity Target Discrimination (MTD) module that fuses object- and semantic-level information to improve the recognition of absent targets. Extensive experiments on gRefCOCO (GREC/GRES), Ref-ZOM, R-RefCOCO, and RefCOCO (REC/RES) benchmarks demonstrate the effectiveness of PropVG. The codes and models are available at https://github.com/Dmmm1997/PropVG.

Authors:Jiahuan Yu, Aryan Taneja, Junfeng Lin, Minjia Zhang
Title: VoltanaLLM: Feedback-Driven Frequency Control and State-Space Routing for Energy-Efficient LLM Serving
Abstract:
Modern Large Language Model (LLM) serving systems increasingly support interactive applications, like real-time chat assistants, code generation tools, and agentic workflows. However, the soaring energy cost of LLM inference presents a growing challenge for sustainable and cost-effective deployment. This paper introduces VoltanaLLM, a system for SLO-aware, energy-efficient LLM serving, built from a control theory perspective. VoltanaLLM co-designs frequency scaling and request routing in emerging prefill/decode disaggregated architectures, leveraging their decoupled execution to enable fine-grained phase-specific control. It consists of a feedback-driven frequency controller that dynamically adapts GPU frequency for prefill and decode phases, and a state-space router that explores routing decisions across frequency-scaled instances to minimize energy under latency constraints. We implement VoltanaLLM in SGLang and evaluate its performance over multiple state-of-the-art LLMs and real-world datasets. The results demonstrate that VoltanaLLM achieves up to 36.3% energy savings while maintaining near-perfect SLO attainment rate, paving the way for sustainable and intelligent LLM serving. Code of VoltanaLLM is open-sourced on GitHub: https://github.com/Supercomputing-System-AI-Lab/VoltanaLLM.

Authors:Mustafa Munir, Alex Zhang, Radu Marculescu
Title: VCMamba: Bridging Convolutions with Multi-Directional Mamba for Efficient Visual Representation
Abstract:
Recent advances in Vision Transformers (ViTs) and State Space Models (SSMs) have challenged the dominance of Convolutional Neural Networks (CNNs) in computer vision. ViTs excel at capturing global context, and SSMs like Mamba offer linear complexity for long sequences, yet they do not capture fine-grained local features as effectively as CNNs. Conversely, CNNs possess strong inductive biases for local features but lack the global reasoning capabilities of transformers and Mamba. To bridge this gap, we introduce \textit{VCMamba}, a novel vision backbone that integrates the strengths of CNNs and multi-directional Mamba SSMs. VCMamba employs a convolutional stem and a hierarchical structure with convolutional blocks in its early stages to extract rich local features. These convolutional blocks are then processed by later stages incorporating multi-directional Mamba blocks designed to efficiently model long-range dependencies and global context. This hybrid design allows for superior feature representation while maintaining linear complexity with respect to image resolution. We demonstrate VCMamba's effectiveness through extensive experiments on ImageNet-1K classification and ADE20K semantic segmentation. Our VCMamba-B achieves 82.6% top-1 accuracy on ImageNet-1K, surpassing PlainMamba-L3 by 0.3% with 37% fewer parameters, and outperforming Vision GNN-B by 0.3% with 64% fewer parameters. Furthermore, VCMamba-B obtains 47.1 mIoU on ADE20K, exceeding EfficientFormer-L7 by 2.0 mIoU while utilizing 62% fewer parameters. Code is available at https://github.com/Wertyuui345/VCMamba.

Authors:Zhenyu Wu, Jiaoyan Chen, Norman W. Paton
Title: Schema Inference for Tabular Data Repositories Using Large Language Models
Abstract:
Minimally curated tabular data often contain representational inconsistencies across heterogeneous sources, and are accompanied by sparse metadata. Working with such data is intimidating. While prior work has advanced dataset discovery and exploration, schema inference remains difficult when metadata are limited. We present SI-LLM (Schema Inference using Large Language Models), which infers a concise conceptual schema for tabular data using only column headers and cell values. The inferred schema comprises hierarchical entity types, attributes, and inter-type relationships. In extensive evaluation on two datasets from web tables and open data, SI-LLM achieves promising end-to-end results, as well as better or comparable results to state-of-the-art methods at each step. All source code, full prompts, and datasets of SI-LLM are available at https://github.com/PierreWoL/SILLM.

Authors:Zehua Pei, Hui-Ling Zhen, Ying Zhang, Zhiyuan Yang, Xing Li, Xianzhi Yu, Mingxuan Yuan, Bei Yu
Title: Behavioral Fingerprinting of Large Language Models
Abstract:
Current benchmarks for Large Language Models (LLMs) primarily focus on performance metrics, often failing to capture the nuanced behavioral characteristics that differentiate them. This paper introduces a novel ``Behavioral Fingerprinting'' framework designed to move beyond traditional evaluation by creating a multi-faceted profile of a model's intrinsic cognitive and interactive styles. Using a curated \textit{Diagnostic Prompt Suite} and an innovative, automated evaluation pipeline where a powerful LLM acts as an impartial judge, we analyze eighteen models across capability tiers. Our results reveal a critical divergence in the LLM landscape: while core capabilities like abstract and causal reasoning are converging among top models, alignment-related behaviors such as sycophancy and semantic robustness vary dramatically. We further document a cross-model default persona clustering (ISTJ/ESTJ) that likely reflects common alignment incentives. Taken together, this suggests that a model's interactive nature is not an emergent property of its scale or reasoning power, but a direct consequence of specific, and highly variable, developer alignment strategies. Our framework provides a reproducible and scalable methodology for uncovering these deep behavioral differences. Project: https://github.com/JarvisPei/Behavioral-Fingerprinting

Authors:Seojin Kim, Hyeontae Song, Jaehyun Nam, Jinwoo Shin
Title: Training Text-to-Molecule Models with Context-Aware Tokenization
Abstract:
Recently, text-to-molecule models have shown great potential across various chemical applications, e.g., drug-discovery. These models adapt language models to molecular data by representing molecules as sequences of atoms. However, they rely on atom-level tokenizations, which primarily focus on modeling local connectivity, thereby limiting the ability of models to capture the global structural context within molecules. To tackle this issue, we propose a novel text-to-molecule model, coined Context-Aware Molecular T5 (CAMT5). Inspired by the significance of the substructure-level contexts in understanding molecule structures, e.g., ring systems, we introduce substructure-level tokenization for text-to-molecule models. Building on our tokenization scheme, we develop an importance-based training strategy that prioritizes key substructures, enabling CAMT5 to better capture the molecular semantics. Extensive experiments verify the superiority of CAMT5 in various text-to-molecule generation tasks. Intriguingly, we find that CAMT5 outperforms the state-of-the-art methods using only 2% of training tokens. In addition, we propose a simple yet effective ensemble strategy that aggregates the outputs of text-to-molecule models to further boost the generation performance. Code is available at https://github.com/Songhyeontae/CAMT5.git.

Authors:Yihan Chen, Jiawei Chen, Guozhao Mo, Xuanang Chen, Ben He, Xianpei Han, Le Sun
Title: CoCoNUTS: Concentrating on Content while Neglecting Uninformative Textual Styles for AI-Generated Peer Review Detection
Abstract:
The growing integration of large language models (LLMs) into the peer review process presents potential risks to the fairness and reliability of scholarly evaluation. While LLMs offer valuable assistance for reviewers with language refinement, there is growing concern over their use to generate substantive review content. Existing general AI-generated text detectors are vulnerable to paraphrasing attacks and struggle to distinguish between surface language refinement and substantial content generation, suggesting that they primarily rely on stylistic cues. When applied to peer review, this limitation can result in unfairly suspecting reviews with permissible AI-assisted language enhancement, while failing to catch deceptively humanized AI-generated reviews. To address this, we propose a paradigm shift from style-based to content-based detection. Specifically, we introduce CoCoNUTS, a content-oriented benchmark built upon a fine-grained dataset of AI-generated peer reviews, covering six distinct modes of human-AI collaboration. Furthermore, we develop CoCoDet, an AI review detector via a multi-task learning framework, designed to achieve more accurate and robust detection of AI involvement in review content. Our work offers a practical foundation for evaluating the use of LLMs in peer review, and contributes to the development of more precise, equitable, and reliable detection methods for real-world scholarly applications. Our code and data will be publicly available at https://github.com/Y1hanChen/COCONUTS.

Authors:Zhiqiu Xu, Amish Sethi, Mayur Naik, Ser-Nam Lim
Title: Delta Activations: A Representation for Finetuned Large Language Models
Abstract:
The success of powerful open source Large Language Models (LLMs) has enabled the community to create a vast collection of post-trained models adapted to specific tasks and domains. However, navigating and understanding these models remains challenging due to inconsistent metadata and unstructured repositories. We introduce Delta Activations, a method to represent finetuned models as vector embeddings by measuring shifts in their internal activations relative to a base model. This representation allows for effective clustering by domain and task, revealing structure in the model landscape. Delta Activations also demonstrate desirable properties: it is robust across finetuning settings and exhibits an additive property when finetuning datasets are mixed. In addition, we show that Delta Activations can embed tasks via few-shot finetuning, and further explore its use for model selection and merging. We hope Delta Activations can facilitate the practice of reusing publicly available models. Code is available at https://github.com/OscarXZQ/delta_activations.

Authors:Matthew Ho, Chen Si, Zhaoxiang Feng, Fangxu Yu, Yichi Yang, Zhijian Liu, Zhiting Hu, Lianhui Qin
Title: ArcMemo: Abstract Reasoning Composition with Lifelong LLM Memory
Abstract:
While inference-time scaling enables LLMs to carry out increasingly long and capable reasoning traces, the patterns and insights uncovered during these traces are immediately discarded once the context window is reset for a new query. External memory is a natural way to persist these discoveries, and recent work has shown clear benefits for reasoning-intensive tasks. We see an opportunity to make such memories more broadly reusable and scalable by moving beyond instance-based memory entries (e.g. exact query/response pairs, or summaries tightly coupled with the original problem context) toward concept-level memory: reusable, modular abstractions distilled from solution traces and stored in natural language. For future queries, relevant concepts are selectively retrieved and integrated into the prompt, enabling test-time continual learning without weight updates. Our design introduces new strategies for abstracting takeaways from rollouts and retrieving entries for new queries, promoting reuse and allowing memory to expand with additional experiences. We evaluate on ARC-AGI, a benchmark that stresses compositional generalization and abstract reasoning, making it a natural fit for concept memory. Our method yields a 7.5% relative gain over a strong no-memory baseline with performance continuing to scale with inference compute. We find abstract concepts to be the most consistent memory design, outscoring the baseline at all tested inference compute scales. Moreover, dynamically updating memory during test-time outperforms fixed settings, supporting the hypothesis that accumulating and abstracting patterns enables further solutions in a form of self-improvement. Code is available at https://github.com/matt-seb-ho/arc_memo.

Authors:Kyra Wilson, Mattea Sim, Anna-Maria Gueorguieva, Aylin Caliskan
Title: No Thoughts Just AI: Biased LLM Hiring Recommendations Alter Human Decision Making and Limit Human Autonomy
Abstract:
In this study, we conduct a resume-screening experiment (N=528) where people collaborate with simulated AI models exhibiting race-based preferences (bias) to evaluate candidates for 16 high and low status occupations. Simulated AI bias approximates factual and counterfactual estimates of racial bias in real-world AI systems. We investigate people's preferences for White, Black, Hispanic, and Asian candidates (represented through names and affinity groups on quality-controlled resumes) across 1,526 scenarios and measure their unconscious associations between race and status using implicit association tests (IATs), which predict discriminatory hiring decisions but have not been investigated in human-AI collaboration. When making decisions without AI or with AI that exhibits no race-based preferences, people select all candidates at equal rates. However, when interacting with AI favoring a particular group, people also favor those candidates up to 90% of the time, indicating a significant behavioral shift. The likelihood of selecting candidates whose identities do not align with common race-status stereotypes can increase by 13% if people complete an IAT before conducting resume screening. Finally, even if people think AI recommendations are low quality or not important, their decisions are still vulnerable to AI bias under certain circumstances. This work has implications for people's autonomy in AI-HITL scenarios, AI and work, design and evaluation of AI hiring systems, and strategies for mitigating bias in collaborative decision-making tasks. In particular, organizational and regulatory policy should acknowledge the complex nature of AI-HITL decision making when implementing these systems, educating people who use them, and determining which are subject to oversight.

Authors:Jimin Xu, Bosheng Qin, Tao Jin, Zhou Zhao, Zhenhui Ye, Jun Yu, Fei Wu
Title: SSGaussian: Semantic-Aware and Structure-Preserving 3D Style Transfer
Abstract:
Recent advancements in neural representations, such as Neural Radiance Fields and 3D Gaussian Splatting, have increased interest in applying style transfer to 3D scenes. While existing methods can transfer style patterns onto 3D-consistent neural representations, they struggle to effectively extract and transfer high-level style semantics from the reference style image. Additionally, the stylized results often lack structural clarity and separation, making it difficult to distinguish between different instances or objects within the 3D scene. To address these limitations, we propose a novel 3D style transfer pipeline that effectively integrates prior knowledge from pretrained 2D diffusion models. Our pipeline consists of two key stages: First, we leverage diffusion priors to generate stylized renderings of key viewpoints. Then, we transfer the stylized key views onto the 3D representation. This process incorporates two innovative designs. The first is cross-view style alignment, which inserts cross-view attention into the last upsampling block of the UNet, allowing feature interactions across multiple key views. This ensures that the diffusion model generates stylized key views that maintain both style fidelity and instance-level consistency. The second is instance-level style transfer, which effectively leverages instance-level consistency across stylized key views and transfers it onto the 3D representation. This results in a more structured, visually coherent, and artistically enriched stylization. Extensive qualitative and quantitative experiments demonstrate that our 3D style transfer pipeline significantly outperforms state-of-the-art methods across a wide range of scenes, from forward-facing to challenging 360-degree environments. Visit our project page https://jm-xu.github.io/SSGaussian for immersive visualization.

Authors:JiYuan Wang, Chunyu Lin, Lei Sun, Rongying Liu, Lang Nie, Mingxing Li, Kang Liao, Xiangxiang Chu, Yao Zhao
Title: From Editor to Dense Geometry Estimator
Abstract:
Leveraging visual priors from pre-trained text-to-image (T2I) generative models has shown success in dense prediction. However, dense prediction is inherently an image-to-image task, suggesting that image editing models, rather than T2I generative models, may be a more suitable foundation for fine-tuning. Motivated by this, we conduct a systematic analysis of the fine-tuning behaviors of both editors and generators for dense geometry estimation. Our findings show that editing models possess inherent structural priors, which enable them to converge more stably by ``refining" their innate features, and ultimately achieve higher performance than their generative counterparts. Based on these findings, we introduce \textbf{FE2E}, a framework that pioneeringly adapts an advanced editing model based on Diffusion Transformer (DiT) architecture for dense geometry prediction. Specifically, to tailor the editor for this deterministic task, we reformulate the editor's original flow matching loss into the ``consistent velocity" training objective. And we use logarithmic quantization to resolve the precision conflict between the editor's native BFloat16 format and the high precision demand of our tasks. Additionally, we leverage the DiT's global attention for a cost-free joint estimation of depth and normals in a single forward pass, enabling their supervisory signals to mutually enhance each other. Without scaling up the training data, FE2E achieves impressive performance improvements in zero-shot monocular depth and normal estimation across multiple datasets. Notably, it achieves over 35\% performance gains on the ETH3D dataset and outperforms the DepthAnything series, which is trained on 100$\times$ data. The project page can be accessed \href{https://amap-ml.github.io/FE2E/}{here}.

Authors:Safouane El Ghazouali, Umberto Michelucci
Title: VisioFirm: Cross-Platform AI-assisted Annotation Tool for Computer Vision
Abstract:
AI models rely on annotated data to learn pattern and perform prediction. Annotation is usually a labor-intensive step that require associating labels ranging from a simple classification label to more complex tasks such as object detection, oriented bounding box estimation, and instance segmentation. Traditional tools often require extensive manual input, limiting scalability for large datasets. To address this, we introduce VisioFirm, an open-source web application designed to streamline image labeling through AI-assisted automation. VisioFirm integrates state-of-the-art foundation models into an interface with a filtering pipeline to reduce human-in-the-loop efforts. This hybrid approach employs CLIP combined with pre-trained detectors like Ultralytics models for common classes and zero-shot models such as Grounding DINO for custom labels, generating initial annotations with low-confidence thresholding to maximize recall. Through this framework, when tested on COCO-type of classes, initial prediction have been proven to be mostly correct though the users can refine these via interactive tools supporting bounding boxes, oriented bounding boxes, and polygons. Additionally, VisioFirm has on-the-fly segmentation powered by Segment Anything accelerated through WebGPU for browser-side efficiency. The tool supports multiple export formats (YOLO, COCO, Pascal VOC, CSV) and operates offline after model caching, enhancing accessibility. VisioFirm demonstrates up to 90\% reduction in manual effort through benchmarks on diverse datasets, while maintaining high annotation accuracy via clustering of connected CLIP-based disambiguate components and IoU-graph for redundant detection suppression. VisioFirm can be accessed from \href{https://github.com/OschAI/VisioFirm}{https://github.com/OschAI/VisioFirm}.

Authors:Tarik Zaciragic, Aske Plaat, K. Joost Batenburg
Title: Analysis of Bluffing by DQN and CFR in Leduc Hold'em Poker
Abstract:
In the game of poker, being unpredictable, or bluffing, is an essential skill. When humans play poker, they bluff. However, most works on computer-poker focus on performance metrics such as win rates, while bluffing is overlooked. In this paper we study whether two popular algorithms, DQN (based on reinforcement learning) and CFR (based on game theory), exhibit bluffing behavior in Leduc Hold'em, a simplified version of poker. We designed an experiment where we let the DQN and CFR agent play against each other while we log their actions. We find that both DQN and CFR exhibit bluffing behavior, but they do so in different ways. Although both attempt to perform bluffs at different rates, the percentage of successful bluffs (where the opponent folds) is roughly the same. This suggests that bluffing is an essential aspect of the game, not of the algorithm. Future work should look at different bluffing styles and at the full game of poker. Code at https://github.com/TarikZ03/Bluffing-by-DQN-and-CFR-in-Leduc-Hold-em-Poker-Codebase.

Authors:Junqi Liao, Yaojun Wu, Chaoyi Lin, Zhipin Deng, Li Li, Dong Liu, Xiaoyan Sun
Title: EHVC: Efficient Hierarchical Reference and Quality Structure for Neural Video Coding
Abstract:
Neural video codecs (NVCs), leveraging the power of end-to-end learning, have demonstrated remarkable coding efficiency improvements over traditional video codecs. Recent research has begun to pay attention to the quality structures in NVCs, optimizing them by introducing explicit hierarchical designs. However, less attention has been paid to the reference structure design, which fundamentally should be aligned with the hierarchical quality structure. In addition, there is still significant room for further optimization of the hierarchical quality structure. To address these challenges in NVCs, we propose EHVC, an efficient hierarchical neural video codec featuring three key innovations: (1) a hierarchical multi-reference scheme that draws on traditional video codec design to align reference and quality structures, thereby addressing the reference-quality mismatch; (2) a lookahead strategy to utilize an encoder-side context from future frames to enhance the quality structure; (3) a layer-wise quality scale with random quality training strategy to stabilize quality structures during inference. With these improvements, EHVC achieves significantly superior performance to the state-of-the-art NVCs. Code will be released in: https://github.com/bytedance/NEVC.

Authors:Zeyu Gan, Hao Yi, Yong Liu
Title: CoT-Space: A Theoretical Framework for Internal Slow-Thinking via Reinforcement Learning
Abstract:
Reinforcement Learning (RL) has become a pivotal approach for enhancing the reasoning capabilities of Large Language Models (LLMs). However, a significant theoretical gap persists, as traditional token-level RL frameworks fail to align with the reasoning-level nature of complex, multi-step thought processes like Chain-of-Thought (CoT). To address this challenge, we introduce CoT-Space, a novel theoretical framework that recasts LLM reasoning from a discrete token-prediction task to an optimization process within a continuous, reasoning-level semantic space. This shift in perspective serves as a conceptual bridge, revitalizing foundational principles from classical learning theory to analyze the unique dynamics of LLMs. By analyzing this process from both a noise perspective and a risk perspective, we demonstrate that the convergence to an optimal CoT length is a natural consequence of the fundamental trade-off between underfitting and overfitting. Furthermore, extensive experiments provide strong empirical validation for our theoretical findings. Our framework not only provides a coherent explanation for empirical phenomena such as overthinking but also offers a solid theoretical foundation to guide the future development of more effective and generalizable reasoning agents. We open-source our code at https://github.com/ZyGan1999/CoT-Space.

Authors:Or Shachar, Uri Katz, Yoav Goldberg, Oren Glickman
Title: NER Retriever: Zero-Shot Named Entity Retrieval with Type-Aware Embeddings
Abstract:
We present NER Retriever, a zero-shot retrieval framework for ad-hoc Named Entity Retrieval, a variant of Named Entity Recognition (NER), where the types of interest are not provided in advance, and a user-defined type description is used to retrieve documents mentioning entities of that type. Instead of relying on fixed schemas or fine-tuned models, our method builds on internal representations of large language models (LLMs) to embed both entity mentions and user-provided open-ended type descriptions into a shared semantic space. We show that internal representations, specifically the value vectors from mid-layer transformer blocks, encode fine-grained type information more effectively than commonly used top-layer embeddings. To refine these representations, we train a lightweight contrastive projection network that aligns type-compatible entities while separating unrelated types. The resulting entity embeddings are compact, type-aware, and well-suited for nearest-neighbor search. Evaluated on three benchmarks, NER Retriever significantly outperforms both lexical and dense sentence-level retrieval baselines. Our findings provide empirical support for representation selection within LLMs and demonstrate a practical solution for scalable, schema-free entity retrieval. The NER Retriever Codebase is publicly available at https://github.com/ShacharOr100/ner_retriever

Authors:Zhaoyan Gong, Juan Li, Zhiqiang Liu, Lei Liang, Huajun Chen, Wen Zhang
Title: RTQA : Recursive Thinking for Complex Temporal Knowledge Graph Question Answering with Large Language Models
Abstract:
Current temporal knowledge graph question answering (TKGQA) methods primarily focus on implicit temporal constraints, lacking the capability of handling more complex temporal queries, and struggle with limited reasoning abilities and error propagation in decomposition frameworks. We propose RTQA, a novel framework to address these challenges by enhancing reasoning over TKGs without requiring training. Following recursive thinking, RTQA recursively decomposes questions into sub-problems, solves them bottom-up using LLMs and TKG knowledge, and employs multi-path answer aggregation to improve fault tolerance. RTQA consists of three core components: the Temporal Question Decomposer, the Recursive Solver, and the Answer Aggregator. Experiments on MultiTQ and TimelineKGQA benchmarks demonstrate significant Hits@1 improvements in "Multiple" and "Complex" categories, outperforming state-of-the-art methods. Our code and data are available at https://github.com/zjukg/RTQA.

Authors:Yijun Zhou, Yikui Zhai, Zilu Ying, Tingfeng Xian, Wenlve Zhou, Zhiheng Zhou, Xiaolin Tian, Xudong Jia, Hongsheng Zhang, C. L. Philip Chen
Title: Multimodal Feature Fusion Network with Text Difference Enhancement for Remote Sensing Change Detection
Abstract:
Although deep learning has advanced remote sensing change detection (RSCD), most methods rely solely on image modality, limiting feature representation, change pattern modeling, and generalization especially under illumination and noise disturbances. To address this, we propose MMChange, a multimodal RSCD method that combines image and text modalities to enhance accuracy and robustness. An Image Feature Refinement (IFR) module is introduced to highlight key regions and suppress environmental noise. To overcome the semantic limitations of image features, we employ a vision language model (VLM) to generate semantic descriptions of bitemporal images. A Textual Difference Enhancement (TDE) module then captures fine grained semantic shifts, guiding the model toward meaningful changes. To bridge the heterogeneity between modalities, we design an Image Text Feature Fusion (ITFF) module that enables deep cross modal integration. Extensive experiments on LEVIRCD, WHUCD, and SYSUCD demonstrate that MMChange consistently surpasses state of the art methods across multiple metrics, validating its effectiveness for multimodal RSCD. Code is available at: https://github.com/yikuizhai/MMChange.

Authors:Ruiling Guo, Xinwei Yang, Chen Huang, Tong Zhang, Yong Hu
Title: CANDY: Benchmarking LLMs' Limitations and Assistive Potential in Chinese Misinformation Fact-Checking
Abstract:
The effectiveness of large language models (LLMs) to fact-check misinformation remains uncertain, despite their growing use. To this end, we present CANDY, a benchmark designed to systematically evaluate the capabilities and limitations of LLMs in fact-checking Chinese misinformation. Specifically, we curate a carefully annotated dataset of ~20k instances. Our analysis shows that current LLMs exhibit limitations in generating accurate fact-checking conclusions, even when enhanced with chain-of-thought reasoning and few-shot prompting. To understand these limitations, we develop a taxonomy to categorize flawed LLM-generated explanations for their conclusions and identify factual fabrication as the most common failure mode. Although LLMs alone are unreliable for fact-checking, our findings indicate their considerable potential to augment human performance when deployed as assistive tools in scenarios. Our dataset and code can be accessed at https://github.com/SCUNLP/CANDY

Authors:Yuqing Huang, Rongyang Zhang, Qimeng Wang, Chengqiang Lu, Yan Gao, Yi Wu, Yao Hu, Xuyang Zhi, Guiquan Liu, Xin Li, Hao Wang, Enhong Chen
Title: SelfAug: Mitigating Catastrophic Forgetting in Retrieval-Augmented Generation via Distribution Self-Alignment
Abstract:
Recent advancements in large language models (LLMs) have revolutionized natural language processing through their remarkable capabilities in understanding and executing diverse tasks. While supervised fine-tuning, particularly in Retrieval-Augmented Generation (RAG) scenarios, effectively enhances task-specific performance, it often leads to catastrophic forgetting, where models lose their previously acquired knowledge and general capabilities. Existing solutions either require access to general instruction data or face limitations in preserving the model's original distribution. To overcome these limitations, we propose SelfAug, a self-distribution alignment method that aligns input sequence logits to preserve the model's semantic distribution, thereby mitigating catastrophic forgetting and improving downstream performance. Extensive experiments demonstrate that SelfAug achieves a superior balance between downstream learning and general capability retention. Our comprehensive empirical analysis reveals a direct correlation between distribution shifts and the severity of catastrophic forgetting in RAG scenarios, highlighting how the absence of RAG capabilities in general instruction tuning leads to significant distribution shifts during fine-tuning. Our findings not only advance the understanding of catastrophic forgetting in RAG contexts but also provide a practical solution applicable across diverse fine-tuning scenarios. Our code is publicly available at https://github.com/USTC-StarTeam/SelfAug.

Authors:Fengxiao Tang, Yufeng Li, Zongzong Wu, Ming Zhao
Title: Chain or tree? Re-evaluating complex reasoning from the perspective of a matrix of thought
Abstract:
Large Language Models (LLMs) face significant accuracy degradation due to insufficient reasoning ability when dealing with complex and abstract tasks. Thought structures such as Chain of Thought (CoT) and Tree of Thought (ToT) focus on enhancing the reasoning capability of LLMs. However, they suffer from inherent drawbacks such as redundancy within the same layer of the tree structure and the singularity of the paths in the chain structure. Some studies have utilized Retrieval-Augmented Generation (RAG) methods to enhance CoT and ToT in mitigating hallucinations in LLMs, yet the fundamental shortcomings of the thought structures still persist. Furthermore, when dealing with multi-entity and multi-hop information, the retrieved verification knowledge often contains large amounts of fragmented, superficial, or even erroneous data, misleading the reasoning process of LLMs. To address these issues, we propose the Matrix of Thought (MoT), a novel and efficient thought structure for LLMs. MoT explores problems in both horizontal and vertical dimensions through a "column-cell communication" mechanism, enabling LLMs to actively engage in multi-strategy and deep thinking while reducing redundancy in the thought nodes within the column cells, thereby enhancing the reasoning capability of LLMs. Additionally, through a fact-correction mechanism, it leverages the knowledge graph triples retrieved by RAG and the original text to construct knowledge units and correct erroneous answers. To validate the effectiveness of this method, we conducted extensive experiments in three tasks: 24-point game, question answering evaluation, and proposition writing.The results demonstrate that our framework outperforms state-of-the-art methods, with reasoning time only 14.4\% of that of the baseline method, proving its efficiency and accuracy. The code for framework is available at https://github.com/lyfiter/mtqa.

Authors:Neha Sunil, Megha Tippur, Arnau Saumell, Edward Adelson, Alberto Rodriguez
Title: Reactive In-Air Clothing Manipulation with Confidence-Aware Dense Correspondence and Visuotactile Affordance
Abstract:
Manipulating clothing is challenging due to complex configurations, variable material dynamics, and frequent self-occlusion. Prior systems often flatten garments or assume visibility of key features. We present a dual-arm visuotactile framework that combines confidence-aware dense visual correspondence and tactile-supervised grasp affordance to operate directly on crumpled and suspended garments. The correspondence model is trained on a custom, high-fidelity simulated dataset using a distributional loss that captures cloth symmetries and generates correspondence confidence estimates. These estimates guide a reactive state machine that adapts folding strategies based on perceptual uncertainty. In parallel, a visuotactile grasp affordance network, self-supervised using high-resolution tactile feedback, determines which regions are physically graspable. The same tactile classifier is used during execution for real-time grasp validation. By deferring action in low-confidence states, the system handles highly occluded table-top and in-air configurations. We demonstrate our task-agnostic grasp selection module in folding and hanging tasks. Moreover, our dense descriptors provide a reusable intermediate representation for other planning modalities, such as extracting grasp targets from human video demonstrations, paving the way for more generalizable and scalable garment manipulation.

Authors:Jiajun Song, Xiaoou Liu
Title: SalientFusion: Context-Aware Compositional Zero-Shot Food Recognition
Abstract:
Food recognition has gained significant attention, but the rapid emergence of new dishes requires methods for recognizing unseen food categories, motivating Zero-Shot Food Learning (ZSFL). We propose the task of Compositional Zero-Shot Food Recognition (CZSFR), where cuisines and ingredients naturally align with attributes and objects in Compositional Zero-Shot learning (CZSL). However, CZSFR faces three challenges: (1) Redundant background information distracts models from learning meaningful food features, (2) Role confusion between staple and side dishes leads to misclassification, and (3) Semantic bias in a single attribute can lead to confusion of understanding. Therefore, we propose SalientFusion, a context-aware CZSFR method with two components: SalientFormer, which removes background redundancy and uses depth features to resolve role confusion; DebiasAT, which reduces the semantic bias by aligning prompts with visual features. Using our proposed benchmarks, CZSFood-90 and CZSFood-164, we show that SalientFusion achieves state-of-the-art results on these benchmarks and the most popular general datasets for the general CZSL. The code is avaliable at https://github.com/Jiajun-RUC/SalientFusion.

Authors:Yanbo Wang, Yongcan Yu, Jian Liang, Ran He
Title: A Comprehensive Survey on Trustworthiness in Reasoning with Large Language Models
Abstract:
The development of Long-CoT reasoning has advanced LLM performance across various tasks, including language understanding, complex problem solving, and code generation. This paradigm enables models to generate intermediate reasoning steps, thereby improving both accuracy and interpretability. However, despite these advancements, a comprehensive understanding of how CoT-based reasoning affects the trustworthiness of language models remains underdeveloped. In this paper, we survey recent work on reasoning models and CoT techniques, focusing on five core dimensions of trustworthy reasoning: truthfulness, safety, robustness, fairness, and privacy. For each aspect, we provide a clear and structured overview of recent studies in chronological order, along with detailed analyses of their methodologies, findings, and limitations. Future research directions are also appended at the end for reference and discussion. Overall, while reasoning techniques hold promise for enhancing model trustworthiness through hallucination mitigation, harmful content detection, and robustness improvement, cutting-edge reasoning models themselves often suffer from comparable or even greater vulnerabilities in safety, robustness, and privacy. By synthesizing these insights, we hope this work serves as a valuable and timely resource for the AI safety community to stay informed on the latest progress in reasoning trustworthiness. A full list of related papers can be found at \href{https://github.com/ybwang119/Awesome-reasoning-safety}{https://github.com/ybwang119/Awesome-reasoning-safety}.

Authors:Zongsen Qiu
Title: STA-Net: A Decoupled Shape and Texture Attention Network for Lightweight Plant Disease Classification
Abstract:
Responding to rising global food security needs, precision agriculture and deep learning-based plant disease diagnosis have become crucial. Yet, deploying high-precision models on edge devices is challenging. Most lightweight networks use attention mechanisms designed for generic object recognition, which poorly capture subtle pathological features like irregular lesion shapes and complex textures. To overcome this, we propose a twofold solution: first, using a training-free neural architecture search method (DeepMAD) to create an efficient network backbone for edge devices; second, introducing the Shape-Texture Attention Module (STAM). STAM splits attention into two branches -- one using deformable convolutions (DCNv4) for shape awareness and the other using a Gabor filter bank for texture awareness. On the public CCMT plant disease dataset, our STA-Net model (with 401K parameters and 51.1M FLOPs) reached 89.00% accuracy and an F1 score of 88.96%. Ablation studies confirm STAM significantly improves performance over baseline and standard attention models. Integrating domain knowledge via decoupled attention thus presents a promising path for edge-deployed precision agriculture AI. The source code is available at https://github.com/RzMY/STA-Net.

Authors:Pengrui Han, Rafal Kocielnik, Peiyang Song, Ramit Debnath, Dean Mobbs, Anima Anandkumar, R. Michael Alvarez
Title: The Personality Illusion: Revealing Dissociation Between Self-Reports & Behavior in LLMs
Abstract:
Personality traits have long been studied as predictors of human behavior. Recent advances in Large Language Models (LLMs) suggest similar patterns may emerge in artificial systems, with advanced LLMs displaying consistent behavioral tendencies resembling human traits like agreeableness and self-regulation. Understanding these patterns is crucial, yet prior work primarily relied on simplified self-reports and heuristic prompting, with little behavioral validation. In this study, we systematically characterize LLM personality across three dimensions: (1) the dynamic emergence and evolution of trait profiles throughout training stages; (2) the predictive validity of self-reported traits in behavioral tasks; and (3) the impact of targeted interventions, such as persona injection, on both self-reports and behavior. Our findings reveal that instructional alignment (e.g., RLHF, instruction tuning) significantly stabilizes trait expression and strengthens trait correlations in ways that mirror human data. However, these self-reported traits do not reliably predict behavior, and observed associations often diverge from human patterns. While persona injection successfully steers self-reports in the intended direction, it exerts little or inconsistent effect on actual behavior. By distinguishing surface-level trait expression from behavioral consistency, our findings challenge assumptions about LLM personality and underscore the need for deeper evaluation in alignment and interpretability.

Authors:Payam Abdisarabshali, Fardis Nadimi, Kasra Borazjani, Naji Khosravan, Minghui Liwang, Wei Ni, Dusit Niyato, Michael Langberg, Seyyedali Hosseinalipour
Title: Hierarchical Federated Foundation Models over Wireless Networks for Multi-Modal Multi-Task Intelligence: Integration of Edge Learning with D2D/P2P-Enabled Fog Learning Architectures
Abstract:
The rise of foundation models (FMs) has reshaped the landscape of machine learning. As these models continued to grow, leveraging geo-distributed data from wireless devices has become increasingly critical, giving rise to federated foundation models (FFMs). More recently, FMs have evolved into multi-modal multi-task (M3T) FMs (e.g., GPT-4) capable of processing diverse modalities across multiple tasks, which motivates a new underexplored paradigm: M3T FFMs. In this paper, we unveil an unexplored variation of M3T FFMs by proposing hierarchical federated foundation models (HF-FMs), which in turn expose two overlooked heterogeneity dimensions to fog/edge networks that have a direct impact on these emerging models: (i) heterogeneity in collected modalities and (ii) heterogeneity in executed tasks across fog/edge nodes. HF-FMs strategically align the modular structure of M3T FMs, comprising modality encoders, prompts, mixture-of-experts (MoEs), adapters, and task heads, with the hierarchical nature of fog/edge infrastructures. Moreover, HF-FMs enable the optional usage of device-to-device (D2D) communications, enabling horizontal module relaying and localized cooperative training among nodes when feasible. Through delving into the architectural design of HF-FMs, we highlight their unique capabilities along with a series of tailored future research directions. Finally, to demonstrate their potential, we prototype HF-FMs in a wireless network setting and release the open-source code for the development of HF-FMs with the goal of fostering exploration in this untapped field (GitHub: https://github.com/payamsiabd/M3T-FFM).

Authors:Thomas R. Harvey
Title: The Optimiser Hidden in Plain Sight: Training with the Loss Landscape's Induced Metric
Abstract:
We present a class of novel optimisers for training neural networks that makes use of the Riemannian metric naturally induced when the loss landscape is embedded in higher-dimensional space. This is the same metric that underlies common visualisations of loss landscapes. By taking this geometric perspective literally and using the induced metric, we develop a new optimiser and compare it to existing methods, namely: SGD, Adam, AdamW, and Muon, across a range of tasks and architectures. Empirically, we conclude that this new class of optimisers is highly effective in low dimensional examples, and provides slight improvement over state-of-the-art methods for training neural networks. These new optimisers have theoretically desirable properties. In particular, the effective learning rate is automatically decreased in regions of high curvature acting as a smoothed out form of gradient clipping. Similarly, one variant of these optimisers can also be viewed as inducing an effective scheduled learning rate and decoupled weight decay is the natural choice from our geometric perspective. The basic method can be used to modify any existing preconditioning method. The new optimiser has a computational complexity comparable to that of Adam.

Authors:Jigang Fan, Zhenghong Zhou, Ruofan Jin, Le Cong, Mengdi Wang, Zaixi Zhang
Title: SafeProtein: Red-Teaming Framework and Benchmark for Protein Foundation Models
Abstract:
Proteins play crucial roles in almost all biological processes. The advancement of deep learning has greatly accelerated the development of protein foundation models, leading to significant successes in protein understanding and design. However, the lack of systematic red-teaming for these models has raised serious concerns about their potential misuse, such as generating proteins with biological safety risks. This paper introduces SafeProtein, the first red-teaming framework designed for protein foundation models to the best of our knowledge. SafeProtein combines multimodal prompt engineering and heuristic beam search to systematically design red-teaming methods and conduct tests on protein foundation models. We also curated SafeProtein-Bench, which includes a manually constructed red-teaming benchmark dataset and a comprehensive evaluation protocol. SafeProtein achieved continuous jailbreaks on state-of-the-art protein foundation models (up to 70% attack success rate for ESM3), revealing potential biological safety risks in current protein foundation models and providing insights for the development of robust security protection technologies for frontier models. The codes will be made publicly available at https://github.com/jigang-fan/SafeProtein.

Authors:Chenlu Ye, Zhou Yu, Ziji Zhang, Hao Chen, Narayanan Sadagopan, Jing Huang, Tong Zhang, Anurag Beniwal
Title: Beyond Correctness: Harmonizing Process and Outcome Rewards through RL Training
Abstract:
Reinforcement learning with verifiable rewards (RLVR) has emerged to be a predominant paradigm for mathematical reasoning tasks, offering stable improvements in reasoning ability. However, Outcome Reward Models (ORMs) in RLVR are too coarse-grained to distinguish flawed reasoning within correct answers or valid reasoning within incorrect answers. This lack of granularity introduces noisy and misleading gradients significantly and hinders further progress in reasoning process quality. While Process Reward Models (PRMs) offer fine-grained guidance for intermediate steps, they frequently suffer from inaccuracies and are susceptible to reward hacking. To resolve this dilemma, we introduce PRocess cOnsistency Filter (PROF), an effective data process curation method that harmonizes noisy, fine-grained process rewards with accurate, coarse-grained outcome rewards. Rather than naively blending PRM and ORM in the objective function (arXiv:archive/2506.18896), PROF leverages their complementary strengths through consistency-driven sample selection. Our approach retains correct responses with higher averaged process values and incorrect responses with lower averaged process values, while maintaining positive/negative training sample balance. Extensive experiments demonstrate that our method not only consistently improves the final accuracy over $4\%$ compared to the blending approaches, but also strengthens the quality of intermediate reasoning steps. Codes and training recipes are available at https://github.com/Chenluye99/PROF.

Authors:Yiyang Huang, Zixuan Wang, Zishen Wan, Yapeng Tian, Haobo Xu, Yinhe Han, Yiming Gan
Title: ANNIE: Be Careful of Your Robots
Abstract:
The integration of vision-language-action (VLA) models into embodied AI (EAI) robots is rapidly advancing their ability to perform complex, long-horizon tasks in humancentric environments. However, EAI systems introduce critical security risks: a compromised VLA model can directly translate adversarial perturbations on sensory input into unsafe physical actions. Traditional safety definitions and methodologies from the machine learning community are no longer sufficient. EAI systems raise new questions, such as what constitutes safety, how to measure it, and how to design effective attack and defense mechanisms in physically grounded, interactive settings. In this work, we present the first systematic study of adversarial safety attacks on embodied AI systems, grounded in ISO standards for human-robot interactions. We (1) formalize a principled taxonomy of safety violations (critical, dangerous, risky) based on physical constraints such as separation distance, velocity, and collision boundaries; (2) introduce ANNIEBench, a benchmark of nine safety-critical scenarios with 2,400 video-action sequences for evaluating embodied safety; and (3) ANNIE-Attack, a task-aware adversarial framework with an attack leader model that decomposes long-horizon goals into frame-level perturbations. Our evaluation across representative EAI models shows attack success rates exceeding 50% across all safety categories. We further demonstrate sparse and adaptive attack strategies and validate the real-world impact through physical robot experiments. These results expose a previously underexplored but highly consequential attack surface in embodied AI systems, highlighting the urgent need for security-driven defenses in the physical AI era. Code is available at https://github.com/RLCLab/Annie.

Authors:Evgenii Kniazev, Arseny Kravchenko, Igor Rekun, James Broadhead, Nikita Shamgunov, Pranav Sah, Pratik Nichite, Ivan Yamshchikov
Title: app.build: A Production Framework for Scaling Agentic Prompt-to-App Generation with Environment Scaffolding
Abstract:
We present app.build (https://github.com/appdotbuild/agent/), an open-source framework that improves LLM-based application generation through systematic validation and structured environments. Our approach combines multi-layered validation pipelines, stack-specific orchestration, and model-agnostic architecture, implemented across three reference stacks. Through evaluation on 30 generation tasks, we demonstrate that comprehensive validation achieves 73.3% viability rate with 30% reaching perfect quality scores, while open-weights models achieve 80.8% of closed-model performance when provided structured environments. The open-source framework has been adopted by the community, with over 3,000 applications generated to date. This work demonstrates that scaling reliable AI agents requires scaling environments, not just models -- providing empirical insights and complete reference implementations for production-oriented agent systems.

Authors:Xingyue Huang, Rishabh, Gregor Franke, Ziyi Yang, Jiamu Bai, Weijie Bai, Jinhe Bi, Zifeng Ding, Yiqun Duan, Chengyu Fan, Wendong Fan, Xin Gao, Ruohao Guo, Yuan He, Zhuangzhuang He, Xianglong Hu, Neil Johnson, Bowen Li, Fangru Lin, Siyu Lin, Tong Liu, Yunpu Ma, Hao Shen, Hao Sun, Beibei Wang, Fangyijie Wang, Hao Wang, Haoran Wang, Yang Wang, Yifeng Wang, Zhaowei Wang, Ziyang Wang, Yifan Wu, Zikai Xiao, Chengxing Xie, Fan Yang, Junxiao Yang, Qianshuo Ye, Ziyu Ye, Guangtao Zeng, Yuwen Ebony Zhang, Zeyu Zhang, Zihao Zhu, Bernard Ghanem, Philip Torr, Guohao Li
Title: Loong: Synthesize Long Chain-of-Thoughts at Scale through Verifiers
Abstract:
Recent advances in Large Language Models (LLMs) have shown that their reasoning capabilities can be significantly improved through Reinforcement Learning with Verifiable Reward (RLVR), particularly in domains like mathematics and programming, where ground-truth correctness can be automatically evaluated. However, extending this success to other reasoning-intensive domains remains challenging due to the scarcity of high-quality, verifiable datasets and the high cost of human supervision. In this work, we introduce the Loong Project: an open-source framework for scalable synthetic data generation and verification across a diverse range of reasoning-intensive domains. The framework consists of two key components: (1) LoongBench, a curated seed dataset containing 8,729 human-vetted examples across 12 domains (e.g., Advanced Mathematics, Chemistry, Logic), each paired with executable code and rich metadata; and (2) LoongEnv, a modular synthetic data generation environment that supports multiple prompting strategies to produce new question-answer-code triples. Together, these components form an agent-environment loop that enables reinforcement learning, where an LLM-based agent is rewarded for generating Chain-of-Thought (CoT) solutions that align with code-executed answers. Empirically, we benchmark LoongBench on a broad suite of both open-source and proprietary LLMs to evaluate domain coverage and reveal performance bottlenecks. In addition, we conduct a comprehensive analysis of synthetic data generated by LoongEnv, examining correctness, difficulty, and diversity. Code and documentation are available at https://github.com/camel-ai/loong.

Authors:Xinzhe Zheng, Zhen-Qun Yang, Haoran Xie, S. Joe Qin, Arlene Chen, Fangzhen Lin
Title: Binary Quantization For LLMs Through Dynamic Grouping
Abstract:
Large Language Models (LLMs) have demonstrated remarkable performance across a wide range of Natural Language Processing (NLP) tasks, but require substantial memory and computational resources. Binary quantization, which compresses model weights from 16-bit Brain Float to 1-bit representations in {-1, 1}, offers significant reductions in storage and inference costs. However, such aggressive quantization often leads to notable performance degradation compared to more conservative 4-bit quantization methods. In this research, we propose a novel optimization objective tailored for binary quantization, along with three algorithms designed to realize it effectively. Our method enhances blocked quantization by dynamically identifying optimal unstructured sub-matrices through adaptive grouping strategies. Experimental results demonstrate that our approach achieves an average bit length of just 1.007 bits, while maintaining high model quality. Specifically, our quantized LLaMA 3.2 3B model attains a perplexity of 8.23, remarkably close to the original 7.81, and surpasses previous SOTA BiLLM with a perplexity of only 123.90. Furthermore, our method is competitive with SOTA 4-bit approaches such as GPTQ in both performance and efficiency. The compression process is highly efficient, requiring only 14 seconds to quantize the full LLaMA 3.2 3B weights on a single CPU core, with the entire process completing in under 100 minutes and exhibiting embarrassingly parallel properties. Code - https://github.com/johnnyzheng0636/WGM_bi_quan

Authors:Jie Xiao, Mengye Lyu, Shaojun Liu
Title: A Two-Stage Strategy for Mitosis Detection Using Improved YOLO11x Proposals and ConvNeXt Classification
Abstract:
MIDOG 2025 Track 1 requires mitosis detection in whole-slideimages (WSIs) containing non-tumor, inflamed, and necrotic re-gions. Due to the complicated and heterogeneous context, aswell as possible artifacts, there are often false positives and falsenegatives, thus degrading the detection F1-score. To addressthis problem, we propose a two-stage framework. Firstly, an im-proved YOLO11x, integrated with EMA attention and LSConv,is employed to generate mitosis candidates. We use a low confi-dence threshold to generate as many proposals as possible, en-suring the detection recall. Then, a ConvNeXt-Tiny classifieris employed to filter out the false positives, ensuring the detec-tion precision. Consequently, the proposed two-stage frame-work can generate a high detection F1-score. Evaluated on afused dataset comprising MIDOG++, MITOS_WSI_CCMCT,and MITOS_WSI_CMC, our framework achieves an F1-scoreof 0.882, which is 0.035 higher than the single-stage YOLO11xbaseline. This performance gain is produced by a significantprecision improvement, from 0.762 to 0.839, and a comparablerecall. On the MIDOG 2025 Track 1 preliminary test set, thealgorithm scores an F1 score of 0.7587. The code is available athttps://github.com/xxiao0304/MIDOG-2025-Track-1-of-SZTU.

Authors:Erfan Baghaei Potraghloo, Seyedarmin Azizi, Souvik Kundu, Massoud Pedram
Title: Top-H Decoding: Adapting the Creativity and Coherence with Bounded Entropy in Text Generation
Abstract:
Large language models (LLMs), despite their impressive performance across a wide range of tasks, often struggle to balance two competing objectives in open-ended text generation: fostering diversity and creativity while preserving logical coherence. Existing truncated sampling techniques, including temperature scaling, top-\$p\$ (nucleus) sampling, and min-\$p\$ sampling, aim to manage this trade-off. However, they exhibit limitations, particularly in the effective incorporation of the confidence of the model into the corresponding sampling strategy. For example, min-\$p\$ sampling relies on a single top token as a heuristic for confidence, eventually underutilizing the information of the probability distribution. Toward effective incorporation of the confidence of the model, in this paper, we present **top-H** decoding. We first establish the theoretical foundation of the interplay between creativity and coherence in truncated sampling by formulating an **entropy-constrained minimum divergence** problem. We then prove this minimization problem to be equivalent to an **entropy-constrained mass maximization** (ECMM) problem, which is NP-hard. Finally, we present top-H decoding, a computationally efficient greedy algorithm to solve the ECMM problem. Extensive empirical evaluations demonstrate that top-H outperforms the state-of-the-art (SoTA) alternative of min-\$p\$ sampling by up to **25.63%** on creative writing benchmarks, while maintaining robustness on question-answering datasets such as GPQA, GSM8K, and MT-Bench. Additionally, an *LLM-as-judge* evaluation confirms that top-H indeed produces coherent outputs even at higher temperatures, where creativity is especially critical. In summary, top-H advances SoTA in open-ended text generation and can be *easily integrated* into creative writing applications. The code is available at https://github.com/ErfanBaghaei/Top-H-Decoding.

Authors:Junxi Wu, Jinpeng Wang, Zheng Liu, Bin Chen, Dongjian Hu, Hao Wu, Shu-Tao Xia
Title: MoSEs: Uncertainty-Aware AI-Generated Text Detection via Mixture of Stylistics Experts with Conditional Thresholds
Abstract:
The rapid advancement of large language models has intensified public concerns about the potential misuse. Therefore, it is important to build trustworthy AI-generated text detection systems. Existing methods neglect stylistic modeling and mostly rely on static thresholds, which greatly limits the detection performance. In this paper, we propose the Mixture of Stylistic Experts (MoSEs) framework that enables stylistics-aware uncertainty quantification through conditional threshold estimation. MoSEs contain three core components, namely, the Stylistics Reference Repository (SRR), the Stylistics-Aware Router (SAR), and the Conditional Threshold Estimator (CTE). For input text, SRR can activate the appropriate reference data in SRR and provide them to CTE. Subsequently, CTE jointly models the linguistic statistical properties and semantic features to dynamically determine the optimal threshold. With a discrimination score, MoSEs yields prediction labels with the corresponding confidence level. Our framework achieves an average improvement 11.34% in detection performance compared to baselines. More inspiringly, MoSEs shows a more evident improvement 39.15% in the low-resource case. Our code is available at https://github.com/creator-xi/MoSEs.

Authors:Jingru Fan, Yufan Dang, Jingyao Wu, Huatao Li, Runde Yang, Xiyuan Yang, Yuheng Wang, Zhong Zhang, Yaxi Lu, Yankai Lin, Zhiyuan Liu, Dahai Li, Chen Qian
Title: AppCopilot: Toward General, Accurate, Long-Horizon, and Efficient Mobile Agent
Abstract:
With the raid evolution of large language models and multimodal foundation models, the mobile-agent landscape has proliferated without converging on the fundamental challenges. This paper identifies four core problems that must be solved for mobile agents to deliver practical, scalable impact: (1) generalization across tasks, modalities, apps, and devices; (2) accuracy, specifically precise on-screen interaction and click targeting; (3) long-horizon capability for sustained, multi-step goals; and (4) efficiency, specifically high-performance runtime on resource-constrained devices. We present AppCopilot, a multimodal, multi-agent, general-purpose on-device assistant that operates across applications and constitutes a full-stack, closed-loop system from data to deployment. AppCopilot operationalizes this position through an end-to-end autonomous pipeline spanning data collection, training, deployment, high-quality and efficient inference, and mobile application development. At the model layer, it integrates multimodal foundation models with robust Chinese-English support. At the reasoning and control layer, it combines chain-of-thought reasoning, hierarchical task planning and decomposition, and multi-agent collaboration. At the execution layer, it enables user personalization and experiential adaptation, voice interaction, function calling, cross-app and cross-device orchestration, and comprehensive mobile app support. The system design incorporates profiling-driven optimization for latency, memory, and energy across heterogeneous hardware. Empirically, AppCopilot achieves significant improvements along all four dimensions: stronger generalization, higher-precision on-screen actions, more reliable long-horizon task completion, and faster, more resource-efficient runtime.

Authors:Tao Wang, Zhenxuan Zhang, Yuanbo Zhou, Xinlin Zhang, Yuanbin Chen, Tao Tan, Guang Yang, Tong Tong
Title: From Noisy Labels to Intrinsic Structure: A Geometric-Structural Dual-Guided Framework for Noise-Robust Medical Image Segmentation
Abstract:
The effectiveness of convolutional neural networks in medical image segmentation relies on large-scale, high-quality annotations, which are costly and time-consuming to obtain. Even expert-labeled datasets inevitably contain noise arising from subjectivity and coarse delineations, which disrupt feature learning and adversely impact model performance. To address these challenges, this study propose a Geometric-Structural Dual-Guided Network (GSD-Net), which integrates geometric and structural cues to improve robustness against noisy annotations. It incorporates a Geometric Distance-Aware module that dynamically adjusts pixel-level weights using geometric features, thereby strengthening supervision in reliable regions while suppressing noise. A Structure-Guided Label Refinement module further refines labels with structural priors, and a Knowledge Transfer module enriches supervision and improves sensitivity to local details. To comprehensively assess its effectiveness, we evaluated GSD-Net on six publicly available datasets: four containing three types of simulated label noise, and two with multi-expert annotations that reflect real-world subjectivity and labeling inconsistencies. Experimental results demonstrate that GSD-Net achieves state-of-the-art performance under noisy annotations, achieving improvements of 2.52% on Kvasir, 22.76% on Shenzhen, 8.87% on BU-SUC, and 4.59% on BraTS2020 under SR simulated noise. The codes of this study are available at https://github.com/ortonwang/GSD-Net.

Authors:Jindong Li, Yali Fu, Li Fan, Jiahong Liu, Yao Shu, Chengwei Qin, Menglin Yang, Irwin King, Rex Ying
Title: Implicit Reasoning in Large Language Models: A Comprehensive Survey
Abstract:
Large Language Models (LLMs) have demonstrated strong generalization across a wide range of tasks. Reasoning with LLMs is central to solving multi-step problems and complex decision-making. To support efficient reasoning, recent studies have shifted attention from explicit chain-of-thought prompting toward implicit reasoning, where reasoning occurs silently via latent structures without emitting intermediate textual steps. Implicit reasoning brings advantages such as lower generation cost, faster inference, and better alignment with internal computation. Although prior surveys have discussed latent representations in the context of reasoning, a dedicated and mechanism-level examination of how reasoning unfolds internally within LLMs remains absent. This survey fills that gap by introducing a taxonomy centered on execution paradigms, shifting the focus from representational forms to computational strategies. We organize existing methods into three execution paradigms based on \textbf{\textit{how and where internal computation unfolds}}: latent optimization, signal-guided control, and layer-recurrent execution. We also review structural, behavioral and representation-based evidence that supports the presence of implicit reasoning in LLMs. We further provide a structured overview of the evaluation metrics and benchmarks used in existing works to assess the effectiveness and reliability of implicit reasoning. We maintain a continuously updated project at: https://github.com/digailab/awesome-llm-implicit-reasoning.

Authors:Nils Hoehing, Mayug Maniparambil, Ellen Rushe, Noel E. O'Connor, Anthony Ventresque
Title: Understanding Space Is Rocket Science -- Only Top Reasoning Models Can Solve Spatial Understanding Tasks
Abstract:
We propose RocketScience, an open-source contrastive VLM benchmark that tests for spatial relation understanding. It is comprised of entirely new real-world image-text pairs covering mostly relative spatial understanding and the order of objects. The benchmark is designed to be very easy for humans and hard for the current generation of VLMs, and this is empirically verified. Our results show a striking lack of spatial relation understanding in open source and frontier commercial VLMs and a surprisingly high performance of reasoning models. Additionally, we perform a disentanglement analysis to separate the contributions of object localization and spatial reasoning in chain-of-thought-based models and find that the performance on the benchmark is bottlenecked by spatial reasoning and not object localization capabilities. We release the dataset with a CC-BY-4.0 license and make the evaluation code available at: https://github.com/nilshoehing/rocketscience

Authors:Matic Fučka, Vitjan Zavrtanik, Danijel Skočaj
Title: SALAD -- Semantics-Aware Logical Anomaly Detection
Abstract:
Recent surface anomaly detection methods excel at identifying structural anomalies, such as dents and scratches, but struggle with logical anomalies, such as irregular or missing object components. The best-performing logical anomaly detection approaches rely on aggregated pretrained features or handcrafted descriptors (most often derived from composition maps), which discard spatial and semantic information, leading to suboptimal performance. We propose SALAD, a semantics-aware discriminative logical anomaly detection method that incorporates a newly proposed composition branch to explicitly model the distribution of object composition maps, consequently learning important semantic relationships. Additionally, we introduce a novel procedure for extracting composition maps that requires no hand-made labels or category-specific information, in contrast to previous methods. By effectively modelling the composition map distribution, SALAD significantly improves upon state-of-the-art methods on the standard benchmark for logical anomaly detection, MVTec LOCO, achieving an impressive image-level AUROC of 96.1%. Code: https://github.com/MaticFuc/SALAD

Authors:Zhichao Shi, Xuhui Jiang, Chengjin Xu, Cangli Yao, Zhenxin Huang, Shengjie Ma, Yinghan Shen, Jian Guo, Yuanzhuo Wang
Title: JudgeAgent: Knowledge-wise and Dynamic LLM Evaluation with Agent-as-Interviewer
Abstract:
Current evaluation paradigms for large language models (LLMs) suffer from overestimated or biased evaluations and mismatched question difficulty, leading to incomplete evaluations of knowledge and capability boundaries, which hinder their effective application and optimization. To address these challenges, we propose Agent-as-Interviewer, a dynamic evaluation paradigm that employs LLM agents to conduct multi-turn interactions for evaluation. Unlike current benchmarking or dynamic interaction paradigms, Agent-as-Interviewer utilizes agents to invoke knowledge tools for wider and deeper knowledge in the dynamic multi-turn question generation, achieving more comprehensive evaluations of LLM's knowledge boundaries. It also leverages agents to plan query strategies for adjustment of the question difficulty levels, enhancing the difficulty control to match the actual capabilities of target LLMs. Based on this paradigm, we develop JudgeAgent, a knowledge-wise dynamic evaluation framework that employs knowledge-driven synthesis as the agent's tool and uses difficulty scoring as strategy guidance, thereby finally providing valuable suggestions to help targets optimize themselves. Extensive experiments validate the effectiveness of JudgeAgent's suggestions, demonstrating that Agent-as-Interviewer can accurately identify the knowledge and capability boundaries of target models. The source code is available on https://github.com/DataArcTech/JudgeAgent.

Authors:Yuhao Wang, Junwei Pan, Xinhang Li, Maolin Wang, Yuan Wang, Yue Liu, Dapeng Liu, Jie Jiang, Xiangyu Zhao
Title: Empowering Large Language Model for Sequential Recommendation via Multimodal Embeddings and Semantic IDs
Abstract:
Sequential recommendation (SR) aims to capture users' dynamic interests and sequential patterns based on their historical interactions. Recently, the powerful capabilities of large language models (LLMs) have driven their adoption in SR. However, we identify two critical challenges in existing LLM-based SR methods: 1) embedding collapse when incorporating pre-trained collaborative embeddings and 2) catastrophic forgetting of quantized embeddings when utilizing semantic IDs. These issues dampen the model scalability and lead to suboptimal recommendation performance. Therefore, based on LLMs like Llama3-8B-instruct, we introduce a novel SR framework named MME-SID, which integrates multimodal embeddings and quantized embeddings to mitigate embedding collapse. Additionally, we propose a Multimodal Residual Quantized Variational Autoencoder (MM-RQ-VAE) with maximum mean discrepancy as the reconstruction loss and contrastive learning for alignment, which effectively preserve intra-modal distance information and capture inter-modal correlations, respectively. To further alleviate catastrophic forgetting, we initialize the model with the trained multimodal code embeddings. Finally, we fine-tune the LLM efficiently using LoRA in a multimodal frequency-aware fusion manner. Extensive experiments on three public datasets validate the superior performance of MME-SID thanks to its capability to mitigate embedding collapse and catastrophic forgetting. The implementation code and datasets are publicly available for reproduction: https://github.com/Applied-Machine-Learning-Lab/MME-SID.

Authors:Ziyun Zeng, Junhao Zhang, Wei Li, Mike Zheng Shou
Title: Draw-In-Mind: Rebalancing Designer-Painter Roles in Unified Multimodal Models Benefits Image Editing
Abstract:
In recent years, integrating multimodal understanding and generation into a single unified model has emerged as a promising paradigm. While this approach achieves strong results in text-to-image (T2I) generation, it still struggles with precise image editing. We attribute this limitation to an imbalanced division of responsibilities. The understanding module primarily functions as a translator that encodes user instructions into semantic conditions, while the generation module must simultaneously act as designer and painter, inferring the original layout, identifying the target editing region, and rendering the new content. This imbalance is counterintuitive because the understanding module is typically trained with several times more data on complex reasoning tasks than the generation module. To address this issue, we introduce Draw-In-Mind (DIM), a dataset comprising two complementary subsets: (i) DIM-T2I, containing 14M long-context image-text pairs to enhance complex instruction comprehension; and (ii) DIM-Edit, consisting of 233K chain-of-thought imaginations generated by GPT-4o, serving as explicit design blueprints for image edits. We connect a frozen Qwen2.5-VL-3B with a trainable SANA1.5-1.6B via a lightweight two-layer MLP, and train it on the proposed DIM dataset, resulting in DIM-4.6B-T2I/Edit. Despite its modest parameter scale, DIM-4.6B-Edit achieves SOTA or competitive performance on the ImgEdit and GEdit-Bench benchmarks, outperforming much larger models such as UniWorld-V1 and Step1X-Edit. These findings demonstrate that explicitly assigning the design responsibility to the understanding module provides significant benefits for image editing. Our dataset and models are available at https://github.com/showlab/DIM.

Authors:Yilin Guan, Qingfeng Lan, Sun Fei, Dujian Ding, Devang Acharya, Chi Wang, William Yang Wang, Wenyue Hua
Title: Dynamic Speculative Agent Planning
Abstract:
Despite their remarkable success in complex tasks propelling widespread adoption, large language-model-based agents still face critical deployment challenges due to prohibitive latency and inference costs. While recent work has explored various methods to accelerate inference, existing approaches suffer from significant limitations: they either fail to preserve performance fidelity, require extensive offline training of router modules, or incur excessive operational costs. Moreover, they provide minimal user control over the tradeoff between acceleration and other performance metrics. To address these gaps, we introduce Dynamic Speculative Planning (DSP), an asynchronous online reinforcement learning framework that provides lossless acceleration with substantially reduced costs without requiring additional pre-deployment preparation. DSP explicitly optimizes a joint objective balancing end-to-end latency against dollar cost, allowing practitioners to adjust a single parameter that steers the system toward faster responses, cheaper operation, or any point along this continuum. Experiments on two standard agent benchmarks demonstrate that DSP achieves comparable efficiency to the fastest lossless acceleration method while reducing total cost by 30% and unnecessary cost up to 60%. Our code and data are available through https://github.com/guanyilin428/Dynamic-Speculative-Planning.

Authors:Ranjie Duan, Jiexi Liu, Xiaojun Jia, Shiji Zhao, Ruoxi Cheng, Fengxiang Wang, Cheng Wei, Yong Xie, Chang Liu, Defeng Li, Yinpeng Dong, Yichi Zhang, Yuefeng Chen, Chongwen Wang, Xingjun Ma, Xingxing Wei, Yang Liu, Hang Su, Jun Zhu, Xinfeng Li, Yitong Sun, Jie Zhang, Jinzhao Hu, Sha Xu, Wenchao Yang, Yitong Yang, Xingyao Zhang, Yingshui Tan, Jialing Tao, Hui Xue
Title: Oyster-I: Beyond Refusal - Constructive Safety Alignment for Responsible Language Models
Abstract:
Large language models (LLMs) typically deploy safety mechanisms to prevent harmful content generation. Most current approaches focus narrowly on risks posed by malicious actors, often framing risks as adversarial events and relying on defensive refusals. However, in real-world settings, risks also come from non-malicious users seeking help while under psychological distress (e.g., self-harm intentions). In such cases, the model's response can strongly influence the user's next actions. Simple refusals may lead them to repeat, escalate, or move to unsafe platforms, creating worse outcomes. We introduce Constructive Safety Alignment (CSA), a human-centric paradigm that protects against malicious misuse while actively guiding vulnerable users toward safe and helpful results. Implemented in Oyster-I (Oy1), CSA combines game-theoretic anticipation of user reactions, fine-grained risk boundary discovery, and interpretable reasoning control, turning safety into a trust-building process. Oy1 achieves state-of-the-art safety among open models while retaining high general capabilities. On our Constructive Benchmark, it shows strong constructive engagement, close to GPT-5, and unmatched robustness on the Strata-Sword jailbreak dataset, nearing GPT-o1 levels. By shifting from refusal-first to guidance-first safety, CSA redefines the model-user relationship, aiming for systems that are not just safe, but meaningfully helpful. We release Oy1, code, and the benchmark to support responsible, user-centered AI.

Authors:Wen Ye, Jinbo Liu, Defu Cao, Wei Yang, Yan Liu
Title: When LLM Meets Time Series: Can LLMs Perform Multi-Step Time Series Reasoning and Inference
Abstract:
The rapid advancement of Large Language Models (LLMs) has sparked growing interest in their application to time series analysis tasks. However, their ability to perform complex reasoning over temporal data in real-world application domains remains underexplored. To move toward this goal, a first step is to establish a rigorous benchmark dataset for evaluation. In this work, we introduce the TSAIA Benchmark, a first attempt to evaluate LLMs as time-series AI assistants. To ensure both scientific rigor and practical relevance, we surveyed over 20 academic publications and identified 33 real-world task formulations. The benchmark encompasses a broad spectrum of challenges, ranging from constraint-aware forecasting to anomaly detection with threshold calibration: tasks that require compositional reasoning and multi-step time series analysis. The question generator is designed to be dynamic and extensible, supporting continuous expansion as new datasets or task types are introduced. Given the heterogeneous nature of the tasks, we adopt task-specific success criteria and tailored inference-quality metrics to ensure meaningful evaluation for each task. We apply this benchmark to assess eight state-of-the-art LLMs under a unified evaluation protocol. Our analysis reveals limitations in current models' ability to assemble complex time series analysis workflows, underscoring the need for specialized methodologies for domain-specific adaptation. Our benchmark is available at https://huggingface.co/datasets/Melady/TSAIA, and the code is available at https://github.com/USC-Melady/TSAIA.

Authors:Aryan Amit Barsainyan, Jing Yu Lim, Dianbo Liu
Title: STORI: A Benchmark and Taxonomy for Stochastic Environments
Abstract:
Reinforcement learning (RL) techniques have achieved impressive performance on simulated benchmarks such as Atari100k, yet recent advances remain largely confined to simulation and show limited transfer to real-world domains. A central obstacle is environmental stochasticity, as real systems involve noisy observations, unpredictable dynamics, and non-stationary conditions that undermine the stability of current methods. Existing benchmarks rarely capture these uncertainties and favor simplified settings where algorithms can be tuned to succeed. The absence of a well-defined taxonomy of stochasticity further complicates evaluation, as robustness to one type of stochastic perturbation, such as sticky actions, does not guarantee robustness to other forms of uncertainty. To address this critical gap, we introduce STORI (STOchastic-ataRI), a benchmark that systematically incorporates diverse stochastic effects and enables rigorous evaluation of RL techniques under different forms of uncertainty. We propose a comprehensive five-type taxonomy of environmental stochasticity and demonstrate systematic vulnerabilities in state-of-the-art model-based RL algorithms through targeted evaluation of DreamerV3 and STORM. Our findings reveal that world models dramatically underestimate environmental variance, struggle with action corruption, and exhibit unreliable dynamics under partial observability. We release the code and benchmark publicly at https://github.com/ARY2260/stori, providing a unified framework for developing more robust RL systems.

Authors:Jiahao Qiu, Jingzhe Shi, Xinzhe Juan, Zelin Zhao, Jiayi Geng, Shilong Liu, Hongru Wang, Sanfeng Wu, Mengdi Wang
Title: Physics Supernova: AI Agent Matches Elite Gold Medalists at IPhO 2025
Abstract:
Physics provides fundamental laws that describe and predict the natural world. AI systems aspiring toward more general, real-world intelligence must therefore demonstrate strong physics problem-solving abilities: to formulate and apply physical laws for explaining and predicting physical processes. The International Physics Olympiad (IPhO)--the world's most prestigious physics competition--offers a rigorous benchmark for this purpose. We introduce Physics Supernova, an AI agent system with superior physics problem-solving abilities that match elite IPhO gold medalists. In IPhO 2025 theory problems, Physics Supernova attains 23.5/30 points, ranking 14th of 406 contestants and surpassing the median performance of human gold medalists. We extensively analyzed Physics Supernova's capabilities and flexibility across diverse physics tasks. These results show that principled tool integration within agent systems can deliver competitive improvements in solving challenging science problems. The codes are available at https://github.com/CharlesQ9/Physics-Supernova.

Authors:Yuqing Chen, Junjie Wang, Lin Liu, Ruihang Chu, Xiaopeng Zhang, Qi Tian, Yujiu Yang
Title: O-DisCo-Edit: Object Distortion Control for Unified Realistic Video Editing
Abstract:
Diffusion models have recently advanced video editing, yet controllable editing remains challenging due to the need for precise manipulation of diverse object properties. Current methods require different control signal for diverse editing tasks, which complicates model design and demands significant training resources. To address this, we propose O-DisCo-Edit, a unified framework that incorporates a novel object distortion control (O-DisCo). This signal, based on random and adaptive noise, flexibly encapsulates a wide range of editing cues within a single representation. Paired with a "copy-form" preservation module for preserving non-edited regions, O-DisCo-Edit enables efficient, high-fidelity editing through an effective training paradigm. Extensive experiments and comprehensive human evaluations consistently demonstrate that O-DisCo-Edit surpasses both specialized and multitask state-of-the-art methods across various video editing tasks. https://cyqii.github.io/O-DisCo-Edit.github.io/

Authors:Kairong Han, Wenshuo Zhao, Ziyu Zhao, JunJian Ye, Lujia Pan, Kun Kuang
Title: CAT: Causal Attention Tuning For Injecting Fine-grained Causal Knowledge into Large Language Models
Abstract:
Large Language Models (LLMs) have achieved remarkable success across various domains. However, a fundamental question remains: Can LLMs effectively utilize causal knowledge for prediction and generation? Through empirical studies, we find that LLMs trained directly on large-scale data often capture spurious correlations rather than true causal relationships, leading to suboptimal performance, especially in out-of-distribution (OOD) scenarios. To address this challenge, we propose Causal Attention Tuning (CAT), a novel approach that injects fine-grained causal knowledge into the attention mechanism. We propose an automated pipeline that leverages human priors to automatically generate token-level causal signals and introduce the Re-Attention mechanism to guide training, helping the model focus on causal structures while mitigating noise and biases in attention scores. Experimental results on our proposed Spurious Token Game (STG) benchmark and multiple downstream tasks demonstrate that our approach effectively leverages causal knowledge for prediction and remains robust in OOD scenarios. The CAT achieves an average improvement of 5.76% on the STG dataset and 1.56% on downstream tasks. Notably, the OOD performance of the Llama-3.1-8B model on STG_M increased from 64.5% to 90.5%, and Qwen's OOD performance on the STG_H dataset improved from 25.4% to 55.9%. Implementation details can be found at https://github.com/Kairong-Han/CAT.

Authors:Artur Díaz-Juan, Coloma Ballester, Gloria Haro
Title: SoccerHigh: A Benchmark Dataset for Automatic Soccer Video Summarization
Abstract:
Video summarization aims to extract key shots from longer videos to produce concise and informative summaries. One of its most common applications is in sports, where highlight reels capture the most important moments of a game, along with notable reactions and specific contextual events. Automatic summary generation can support video editors in the sports media industry by reducing the time and effort required to identify key segments. However, the lack of publicly available datasets poses a challenge in developing robust models for sports highlight generation. In this paper, we address this gap by introducing a curated dataset for soccer video summarization, designed to serve as a benchmark for the task. The dataset includes shot boundaries for 237 matches from the Spanish, French, and Italian leagues, using broadcast footage sourced from the SoccerNet dataset. Alongside the dataset, we propose a baseline model specifically designed for this task, which achieves an F1 score of 0.3956 in the test set. Furthermore, we propose a new metric constrained by the length of each target summary, enabling a more objective evaluation of the generated content. The dataset and code are available at https://ipcv.github.io/SoccerHigh/.

Authors:Mo Wang, Kaining Peng, Jingsheng Tang, Hongkai Wen, Quanying Liu
Title: DCA: Graph-Guided Deep Embedding Clustering for Brain Atlases
Abstract:
Brain atlases are essential for reducing the dimensionality of neuroimaging data and enabling interpretable analysis. However, most existing atlases are predefined, group-level templates with limited flexibility and resolution. We present Deep Cluster Atlas (DCA), a graph-guided deep embedding clustering framework for generating individualized, voxel-wise brain parcellations. DCA combines a pretrained autoencoder with spatially regularized deep clustering to produce functionally coherent and spatially contiguous regions. Our method supports flexible control over resolution and anatomical scope, and generalizes to arbitrary brain structures. We further introduce a standardized benchmarking platform for atlas evaluation, using multiple large-scale fMRI datasets. Across multiple datasets and scales, DCA outperforms state-of-the-art atlases, improving functional homogeneity by 98.8% and silhouette coefficient by 29%, and achieves superior performance in downstream tasks such as autism diagnosis and cognitive decoding. We also observe that a fine-tuned pretrained model achieves superior results on the corresponding task. Codes and models are available at https://github.com/ncclab-sustech/DCA .

Authors:Runduo Han, Yanxin Hu, Yihui Fu, Zihan Zhang, Yukai Jv, Li Chen, Lei Xie
Title: CabinSep: IR-Augmented Mask-Based MVDR for Real-Time In-Car Speech Separation with Distributed Heterogeneous Arrays
Abstract:
Separating overlapping speech from multiple speakers is crucial for effective human-vehicle interaction. This paper proposes CabinSep, a lightweight neural mask-based minimum variance distortionless response (MVDR) speech separation approach, to reduce speech recognition errors in back-end automatic speech recognition (ASR) models. Our contributions are threefold: First, we utilize channel information to extract spatial features, which improves the estimation of speech and noise masks. Second, we employ MVDR during inference, reducing speech distortion to make it more ASR-friendly. Third, we introduce a data augmentation method combining simulated and real-recorded impulse responses (IRs), improving speaker localization at zone boundaries and further reducing speech recognition errors. With a computational complexity of only 0.4 GMACs, CabinSep achieves a 17.5% relative reduction in speech recognition error rate in a real-recorded dataset compared to the state-of-the-art DualSep model. Demos are available at: https://cabinsep.github.io/cabinsep/.

Authors:Qianrui Zhou, Hua Xu, Yifan Wang, Xinzhi Dong, Hanlei Zhang
Title: LLM-Guided Semantic Relational Reasoning for Multimodal Intent Recognition
Abstract:
Understanding human intents from multimodal signals is critical for analyzing human behaviors and enhancing human-machine interactions in real-world scenarios. However, existing methods exhibit limitations in their modality-level reliance, constraining relational reasoning over fine-grained semantics for complex intent understanding. This paper proposes a novel LLM-Guided Semantic Relational Reasoning (LGSRR) method, which harnesses the expansive knowledge of large language models (LLMs) to establish semantic foundations that boost smaller models' relational reasoning performance. Specifically, an LLM-based strategy is proposed to extract fine-grained semantics as guidance for subsequent reasoning, driven by a shallow-to-deep Chain-of-Thought (CoT) that autonomously uncovers, describes, and ranks semantic cues by their importance without relying on manually defined priors. Besides, we formally model three fundamental types of semantic relations grounded in logical principles and analyze their nuanced interplay to enable more effective relational reasoning. Extensive experiments on multimodal intent and dialogue act recognition tasks demonstrate LGSRR's superiority over state-of-the-art methods, with consistent performance gains across diverse semantic understanding scenarios. The complete data and code are available at https://github.com/thuiar/LGSRR.

Authors:Meituan LongCat Team, Bayan, Bei Li, Bingye Lei, Bo Wang, Bolin Rong, Chao Wang, Chao Zhang, Chen Gao, Chen Zhang, Cheng Sun, Chengcheng Han, Chenguang Xi, Chi Zhang, Chong Peng, Chuan Qin, Chuyu Zhang, Cong Chen, Congkui Wang, Dan Ma, Daoru Pan, Defei Bu, Dengchang Zhao, Deyang Kong, Dishan Liu, Feiye Huo, Fengcun Li, Fubao Zhang, Gan Dong, Gang Liu, Gang Xu, Ge Li, Guoqiang Tan, Guoyuan Lin, Haihang Jing, Haomin Fu, Haonan Yan, Haoxing Wen, Haozhe Zhao, Hong Liu, Hongmei Shi, Hongyan Hao, Hongyin Tang, Huantian Lv, Hui Su, Jiacheng Li, Jiahao Liu, Jiahuan Li, Jiajun Yang, Jiaming Wang, Jian Yang, Jianchao Tan, Jiaqi Sun, Jiaqi Zhang, Jiawei Fu, Jiawei Yang, Jiaxi Hu, Jiayu Qin, Jingang Wang, Jiyuan He, Jun Kuang, Junhui Mei, Kai Liang, Ke He, Kefeng Zhang, Keheng Wang, Keqing He, Liang Gao, Liang Shi, Lianhui Ma, Lin Qiu, Lingbin Kong, Lingtong Si, Linkun Lyu, Linsen Guo, Liqi Yang, Lizhi Yan, Mai Xia, Man Gao, Manyuan Zhang, Meng Zhou, Mengxia Shen, Mingxiang Tuo, Mingyang Zhu, Peiguang Li, Peng Pei, Peng Zhao, Pengcheng Jia, Pingwei Sun, Qi Gu, Qianyun Li, Qingyuan Li, Qiong Huang, Qiyuan Duan, Ran Meng, Rongxiang Weng, Ruichen Shao, Rumei Li, Shizhe Wu, Shuai Liang, Shuo Wang, Suogui Dang, Tao Fang, Tao Li, Tefeng Chen, Tianhao Bai, Tianhao Zhou, Tingwen Xie, Wei He, Wei Huang, Wei Liu, Wei Shi, Wei Wang, Wei Wu, Weikang Zhao, Wen Zan, Wenjie Shi, Xi Nan, Xi Su, Xiang Li, Xiang Mei, Xiangyang Ji, Xiangyu Xi, Xiangzhou Huang, Xianpeng Li, Xiao Fu, Xiao Liu, Xiao Wei, Xiaodong Cai, Xiaolong Chen, Xiaoqing Liu, Xiaotong Li, Xiaowei Shi, Xiaoyu Li, Xili Wang, Xin Chen, Xing Hu, Xingyu Miao, Xinyan He, Xuemiao Zhang, Xueyuan Hao, Xuezhi Cao, Xunliang Cai, Xurui Yang, Yan Feng, Yang Bai, Yang Chen, Yang Yang, Yaqi Huo, Yerui Sun, Yifan Lu, Yifan Zhang, Yipeng Zang, Yitao Zhai, Yiyang Li, Yongjing Yin, Yongkang Lv, Yongwei Zhou, Yu Yang, Yuchen Xie, Yueqing Sun, Yuewen Zheng, Yuhuai Wei, Yulei Qian, Yunfan Liang, Yunfang Tai, Yunke Zhao, Zeyang Yu, Zhao Zhang, Zhaohua Yang, Zhenchao Zhang, Zhikang Xia, Zhiye Zou, Zhizhao Zeng, Zhongda Su, Zhuofan Chen, Zijian Zhang, Ziwen Wang, Zixu Jiang, Zizhe Zhao, Zongyu Wang, Zunhai Su
Title: LongCat-Flash Technical Report
Abstract:
We introduce LongCat-Flash, a 560-billion-parameter Mixture-of-Experts (MoE) language model designed for both computational efficiency and advanced agentic capabilities. Stemming from the need for scalable efficiency, LongCat-Flash adopts two novel designs: (a) Zero-computation Experts, which enables dynamic computational budget allocation and activates 18.6B-31.3B (27B on average) per token depending on contextual demands, optimizing resource usage. (b) Shortcut-connected MoE, which enlarges the computation-communication overlap window, demonstrating notable gains in inference efficiency and throughput compared to models of a comparable scale. We develop a comprehensive scaling framework for large models that combines hyperparameter transfer, model-growth initialization, a multi-pronged stability suite, and deterministic computation to achieve stable and reproducible training. Notably, leveraging the synergy among scalable architectural design and infrastructure efforts, we complete model training on more than 20 trillion tokens within 30 days, while achieving over 100 tokens per second (TPS) for inference at a cost of \$0.70 per million output tokens. To cultivate LongCat-Flash towards agentic intelligence, we conduct a large-scale pre-training on optimized mixtures, followed by targeted mid- and post-training on reasoning, code, and instructions, with further augmentation from synthetic data and tool use tasks. Comprehensive evaluations demonstrate that, as a non-thinking foundation model, LongCat-Flash delivers highly competitive performance among other leading models, with exceptional strengths in agentic tasks. The model checkpoint of LongCat-Flash is open-sourced to foster community research. LongCat Chat: https://longcat.ai Hugging Face: https://huggingface.co/meituan-longcat GitHub: https://github.com/meituan-longcat

Authors:Yusheng Zheng, Yanpeng Hu, Wei Zhang, Andi Quinn
Title: Towards Agentic OS: An LLM Agent Framework for Linux Schedulers
Abstract:
Operating system schedulers suffer from a fundamental semantic gap, where kernel policies fail to understand application-specific needs, leading to suboptimal performance. We introduce SchedCP, the first framework that enables fully autonomous Large Language Model (LLM) agents to safely and efficiently optimize Linux schedulers without human involvement. Our core insight is that the challenge is not merely to apply a better LLM, but to architect a decoupled control plane that separates the AI's role of semantic reasoning ("what to optimize") from the system's role of execution ("how to observe and act"), thereby separating the optimization problem into two stages: goal-inference and policy-synthesis. Implemented as Model Context Protocol(MCP) server, SchedCP provides a stable interface with three key services: a Workload Analysis Engine, an evolving Scheduler Policy Repository, and an Execution Verifier that validates all AI-generated code and configure before deployment with static and dynamic analysis. We demonstrate this architecture's power with sched-agent, a multi-agent system that autonomously analyzes workloads, synthesizes custom eBPF scheduling policies, and deploys them via the sched\_ext infrastructure. Our evaluation shows that SchedCP achieves up to an 1.79x performance improvement, and a 13x cost reduction compared to naive agentic approaches, all while maintaining high success rate. By bridging the semantic gap, SchedCP democratizes expert-level system optimization and represents a step towards creating truly self-optimizing, application-aware operating systems. The code is open-sourced in https://github.com/eunomia-bpf/schedcp

Authors:Yun Chu, Qiuhao Wang, Enze Zhou, Qian Liu, Gang Zheng
Title: EZhouNet:A framework based on graph neural network and anchor interval for the respiratory sound event detection
Abstract:
Auscultation is a key method for early diagnosis of respiratory and pulmonary diseases, relying on skilled healthcare professionals. However, the process is often subjective, with variability between experts. As a result, numerous deep learning-based automatic classification methods have emerged, most of which focus on respiratory sound classification. In contrast, research on respiratory sound event detection remains limited. Existing sound event detection methods typically rely on frame-level predictions followed by post-processing to generate event-level outputs, making interval boundaries challenging to learn directly. Furthermore, many approaches can only handle fixed-length audio, limiting their applicability to variable-length respiratory sounds. Additionally, the impact of respiratory sound location information on detection performance has not been extensively explored. To address these issues, we propose a graph neural network-based framework with anchor intervals, capable of handling variable-length audio and providing more precise temporal localization for abnormal respiratory sound events. Our method improves both the flexibility and applicability of respiratory sound detection. Experiments on the SPRSound 2024 and HF Lung V1 datasets demonstrate the effectiveness of the proposed approach, and incorporating respiratory position information enhances the discrimination between abnormal sounds. The reference implementation is available at https://github.com/chumingqian/EzhouNet.

Authors:Guangli Li, Canbiao Wu, Zhehao Zhou, Na Tian, Zhen Liang
Title: MATL-DC: A Multi-domain Aggregation Transfer Learning Framework for EEG Emotion Recognition with Domain-Class Prototype under Unseen Targets
Abstract:
Emotion recognition based on electroencephalography (EEG) signals is increasingly becoming a key research hotspot in affective Brain-Computer Interfaces (aBCIs). However, the current transfer learning model greatly depends on the source domain and target domain data, which hinder the practical application of emotion recognition. Therefore, we propose a Multi-domain Aggregation Transfer Learning framework for EEG emotion recognition with Domain-Class prototype under unseen targets (MATL-DC). We design the feature decoupling module to decouple class-invariant domain features from domain-invariant class features from shallow features. In the model training stage, the multi-domain aggregation mechanism aggregates the domain feature space to form a superdomain, which enhances the characteristics of emotional EEG signals. In each superdomain, we further extract the class prototype representation by class features. In addition, we adopt the pairwise learning strategy to transform the sample classification problem into the similarity problem between sample pairs, which effectively alleviates the influence of label noise. It is worth noting that the target domain is completely unseen during the training process. In the inference stage, we use the trained domain-class prototypes for inference, and then realize emotion recognition. We rigorously validate it on the publicly available databases (SEED, SEED-IV and SEED-V). The results show that the accuracy of MATL-DC model is 84.70\%, 68.11\% and 61.08\%, respectively. MATL-DC achieves comparable or even better performance than methods that rely on both source and target domains. The source code is available at https://github.com/WuCB-BCI/MATL-DC.

Authors:Huang Fang, Mengxi Zhang, Heng Dong, Wei Li, Zixuan Wang, Qifeng Zhang, Xueyun Tian, Yucheng Hu, Hang Li
Title: Robix: A Unified Model for Robot Interaction, Reasoning and Planning
Abstract:
We introduce Robix, a unified model that integrates robot reasoning, task planning, and natural language interaction within a single vision-language architecture. Acting as the high-level cognitive layer in a hierarchical robot system, Robix dynamically generates atomic commands for the low-level controller and verbal responses for human interaction, enabling robots to follow complex instructions, plan long-horizon tasks, and interact naturally with human within an end-to-end framework. Robix further introduces novel capabilities such as proactive dialogue, real-time interruption handling, and context-aware commonsense reasoning during task execution. At its core, Robix leverages chain-of-thought reasoning and adopts a three-stage training strategy: (1) continued pretraining to enhance foundational embodied reasoning abilities including 3D spatial understanding, visual grounding, and task-centric reasoning; (2) supervised finetuning to model human-robot interaction and task planning as a unified reasoning-action sequence; and (3) reinforcement learning to improve reasoning-action consistency and long-horizon task coherence. Extensive experiments demonstrate that Robix outperforms both open-source and commercial baselines (e.g., GPT-4o and Gemini 2.5 Pro) in interactive task execution, demonstrating strong generalization across diverse instruction types (e.g., open-ended, multi-stage, constrained, invalid, and interrupted) and various user-involved tasks such as table bussing, grocery shopping, and dietary filtering.

Authors:Abdessalam Bouchekif, Samer Rashwani, Heba Sbahi, Shahd Gaben, Mutaz Al-Khatib, Mohammed Ghaly
Title: Assessing Large Language Models on Islamic Legal Reasoning: Evidence from Inheritance Law Evaluation
Abstract:
This paper evaluates the knowledge and reasoning capabilities of Large Language Models in Islamic inheritance law, known as 'ilm al-mawarith. We assess the performance of seven LLMs using a benchmark of 1,000 multiple-choice questions covering diverse inheritance scenarios, designed to test models' ability to understand the inheritance context and compute the distribution of shares prescribed by Islamic jurisprudence. The results reveal a significant performance gap: o3 and Gemini 2.5 achieved accuracies above 90%, whereas ALLaM, Fanar, LLaMA, and Mistral scored below 50%. These disparities reflect important differences in reasoning ability and domain adaptation. We conduct a detailed error analysis to identify recurring failure patterns across models, including misunderstandings of inheritance scenarios, incorrect application of legal rules, and insufficient domain knowledge. Our findings highlight limitations in handling structured legal reasoning and suggest directions for improving performance in Islamic legal reasoning. Code: https://github.com/bouchekif/inheritance_evaluation

Authors:Dongfu Jiang, Yi Lu, Zhuofeng Li, Zhiheng Lyu, Ping Nie, Haozhe Wang, Alex Su, Hui Chen, Kai Zou, Chao Du, Tianyu Pang, Wenhu Chen
Title: VerlTool: Towards Holistic Agentic Reinforcement Learning with Tool Use
Abstract:
Reinforcement Learning with Verifiable Rewards (RLVR) has demonstrated success in enhancing LLM reasoning capabilities, but remains limited to single-turn interactions without tool integration. While recent Agentic Reinforcement Learning with Tool use (ARLT) approaches have emerged to address multi-turn tool interactions, existing works develop task-specific codebases that suffer from fragmentation, synchronous execution bottlenecks, and limited extensibility across domains. These inefficiencies hinder broader community adoption and algorithmic innovation. We introduce VerlTool, a unified and modular framework that addresses these limitations through systematic design principles. VerlTool provides four key contributions: (1) upstream alignment with VeRL ensuring compatibility and simplified maintenance, (2) unified tool management via standardized APIs supporting diverse modalities including code execution, search, SQL databases, and vision processing, (3) asynchronous rollout execution achieving near 2$\times$ speedup by eliminating synchronization bottlenecks, and (4) comprehensive evaluation demonstrating competitive performance across 6 ARLT domains. Our framework formalizes ARLT as multi-turn trajectories with multi-modal observation tokens (text/image/video), extending beyond single-turn RLVR paradigms. We train and evaluate models on mathematical reasoning, knowledge QA, SQL generation, visual reasoning, web search, and software engineering tasks, achieving results comparable to specialized systems while providing unified training infrastructure. The modular plugin architecture enables rapid tool integration requiring only lightweight Python definitions, significantly reducing development overhead and providing a scalable foundation for tool-augmented RL research. Our code is open-sourced at https://github.com/TIGER-AI-Lab/verl-tool.

Authors:Jaewoo Ahn, Junseo Kim, Heeseung Yun, Jaehyeon Son, Dongmin Park, Jaewoong Cho, Gunhee Kim
Title: FlashAdventure: A Benchmark for GUI Agents Solving Full Story Arcs in Diverse Adventure Games
Abstract:
GUI agents powered by LLMs show promise in interacting with diverse digital environments. Among these, video games offer a valuable testbed due to their varied interfaces, with adventure games posing additional challenges through complex, narrative-driven interactions. Existing game benchmarks, however, lack diversity and rarely evaluate agents on completing entire storylines. To address this, we introduce FlashAdventure, a benchmark of 34 Flash-based adventure games designed to test full story arc completion and tackle the observation-behavior gap: the challenge of remembering and acting on earlier gameplay information. We also propose CUA-as-a-Judge, an automated gameplay evaluator, and COAST, an agentic framework leveraging long-term clue memory to better plan and solve sequential tasks. Experiments show current GUI agents struggle with full story arcs, while COAST improves milestone completion by bridging the observation-behavior gap. Nonetheless, a marked discrepancy between humans and best-performing agents warrants continued research efforts to narrow this divide.

Authors:Lun Ai, Johannes Langer, Ute Schmid, Stephen Muggleton
Title: Ultra Strong Machine Learning: Teaching Humans Active Learning Strategies via Automated AI Explanations
Abstract:
Ultra Strong Machine Learning (USML) refers to symbolic learning systems that not only improve their own performance but can also teach their acquired knowledge to quantifiably improve human performance. In this work, we present LENS (Logic Programming Explanation via Neural Summarisation), a neuro-symbolic method that combines symbolic program synthesis with large language models (LLMs) to automate the explanation of machine-learned logic programs in natural language. LENS addresses a key limitation of prior USML approaches by replacing hand-crafted explanation templates with scalable automated generation. Through systematic evaluation using multiple LLM judges and human validation, we demonstrate that LENS generates superior explanations compared to direct LLM prompting and hand-crafted templates. To investigate whether LENS can teach transferable active learning strategies, we carried out a human learning experiment across three related domains. Our results show no significant human performance improvements, suggesting that comprehensive LLM responses may overwhelm users for simpler problems rather than providing learning support. Our work provides a solid foundation for building effective USML systems to support human learning. The source code is available on: https://github.com/lun-ai/LENS.git.

Authors:Yutong Gao, Maoyuan Shao, Xinyang Huang, Chuang Zhu, Lijuan Sun, Yu Weng, Xuan Liu, Guoshun Nan
Title: Spotlighter: Revisiting Prompt Tuning from a Representative Mining View
Abstract:
CLIP's success has demonstrated that prompt tuning can achieve robust cross-modal semantic alignment for tasks ranging from open-domain recognition to fine-grained classification. However, redundant or weakly relevant feature components introduce noise and incur unnecessary computational costs. In this work, we propose Spotlighter, a lightweight token-selection framework that simultaneously enhances accuracy and efficiency in prompt tuning. Spotlighter evaluates each visual token's activation from both sample-wise and semantic-wise perspectives and retains only the top-scoring tokens for downstream prediction. A class-specific semantic memory bank of learned prototypes refines this selection, ensuring semantic representativeness and compensating for discarded features. To further prioritize informative signals, we introduce a two-level ranking mechanism that dynamically weights token--prototype interactions. Across 11 few-shot benchmarks, Spotlighter outperforms CLIP by up to 11.19\% in harmonic mean accuracy and achieves up to 0.8K additional FPS, with only 21 extra parameters. These results establish Spotlighter as an effective and scalable baseline for prompt tuning. Code for our method will be available at https://github.com/greatest-gourmet/Spotlighter.

Authors:Zirui Zhou, Zizhao Peng, Dongyang Jin, Chao Fan, Fengwei An, Shiqi Yu
Title: Pose as Clinical Prior: Learning Dual Representations for Scoliosis Screening
Abstract:
Recent AI-based scoliosis screening methods primarily rely on large-scale silhouette datasets, often neglecting clinically relevant postural asymmetries-key indicators in traditional screening. In contrast, pose data provide an intuitive skeletal representation, enhancing clinical interpretability across various medical applications. However, pose-based scoliosis screening remains underexplored due to two main challenges: (1) the scarcity of large-scale, annotated pose datasets; and (2) the discrete and noise-sensitive nature of raw pose coordinates, which hinders the modeling of subtle asymmetries. To address these limitations, we introduce Scoliosis1K-Pose, a 2D human pose annotation set that extends the original Scoliosis1K dataset, comprising 447,900 frames of 2D keypoints from 1,050 adolescents. Building on this dataset, we introduce the Dual Representation Framework (DRF), which integrates a continuous skeleton map to preserve spatial structure with a discrete Postural Asymmetry Vector (PAV) that encodes clinically relevant asymmetry descriptors. A novel PAV-Guided Attention (PGA) module further uses the PAV as clinical prior to direct feature extraction from the skeleton map, focusing on clinically meaningful asymmetries. Extensive experiments demonstrate that DRF achieves state-of-the-art performance. Visualizations further confirm that the model leverages clinical asymmetry cues to guide feature extraction and promote synergy between its dual representations. The dataset and code are publicly available at https://zhouzi180.github.io/Scoliosis1K/.

Authors:Xueyang Kang, Zhengkang Xiang, Zezheng Zhang, Kourosh Khoshelham
Title: Look Beyond: Two-Stage Scene View Generation via Panorama and Video Diffusion
Abstract:
Novel view synthesis (NVS) from a single image is highly ill-posed due to large unobserved regions, especially for views that deviate significantly from the input. While existing methods focus on consistency between the source and generated views, they often fail to maintain coherence and correct view alignment across long-range or looped trajectories. We propose a model that addresses this by decomposing single-view NVS into a 360-degree scene extrapolation followed by novel view interpolation. This design ensures long-term view and scene consistency by conditioning on keyframes extracted and warped from a generated panoramic representation. In the first stage, a panorama diffusion model learns the scene prior from the input perspective image. Perspective keyframes are then sampled and warped from the panorama and used as anchor frames in a pre-trained video diffusion model, which generates novel views through a proposed spatial noise diffusion process. Compared to prior work, our method produces globally consistent novel views -- even in loop closure scenarios -- while enabling flexible camera control. Experiments on diverse scene datasets demonstrate that our approach outperforms existing methods in generating coherent views along user-defined trajectories. Our implementation is available at https://github.com/YiGuYT/LookBeyond.

Authors:Xinlei Liu, Tao Hu, Peng Yi, Weitao Han, Jichao Xie, Baolin Li
Title: Sequential Difference Maximization: Generating Adversarial Examples via Multi-Stage Optimization
Abstract:
Efficient adversarial attack methods are critical for assessing the robustness of computer vision models. In this paper, we reconstruct the optimization objective for generating adversarial examples as "maximizing the difference between the non-true labels' probability upper bound and the true label's probability," and propose a gradient-based attack method termed Sequential Difference Maximization (SDM). SDM establishes a three-layer optimization framework of "cycle-stage-step." The processes between cycles and between iterative steps are respectively identical, while optimization stages differ in terms of loss functions: in the initial stage, the negative probability of the true label is used as the loss function to compress the solution space; in subsequent stages, we introduce the Directional Probability Difference Ratio (DPDR) loss function to gradually increase the non-true labels' probability upper bound by compressing the irrelevant labels' probabilities. Experiments demonstrate that compared with previous SOTA methods, SDM not only exhibits stronger attack performance but also achieves higher attack cost-effectiveness. Additionally, SDM can be combined with adversarial training methods to enhance their defensive effects. The code is available at https://github.com/X-L-Liu/SDM.

Authors:Amartya Banerjee, Somnath Kar, Anirban Pal, Debabrata Maiti
Title: Valid Property-Enhanced Contrastive Learning for Targeted Optimization & Resampling for Novel Drug Design
Abstract:
Efficiently steering generative models toward pharmacologically relevant regions of chemical space remains a major obstacle in molecular drug discovery under low-data regimes. We present VECTOR+: Valid-property-Enhanced Contrastive Learning for Targeted Optimization and Resampling, a framework that couples property-guided representation learning with controllable molecule generation. VECTOR+ applies to both regression and classification tasks and enables interpretable, data-efficient exploration of functional chemical space. We evaluate on two datasets: a curated PD-L1 inhibitor set (296 compounds with experimental $IC_{50}$ values) and a receptor kinase inhibitor set (2,056 molecules by binding mode). Despite limited training data, VECTOR+ generates novel, synthetically tractable candidates. Against PD-L1 (PDB 5J89), 100 of 8,374 generated molecules surpass a docking threshold of $-15.0$ kcal/mol, with the best scoring $-17.6$ kcal/mol compared to the top reference inhibitor ($-15.4$ kcal/mol). The best-performing molecules retain the conserved biphenyl pharmacophore while introducing novel motifs. Molecular dynamics (250 ns) confirm binding stability (ligand RMSD < $2.5$ angstroms). VECTOR+ generalizes to kinase inhibitors, producing compounds with stronger docking scores than established drugs such as brigatinib and sorafenib. Benchmarking against JT-VAE and MolGPT across docking, novelty, uniqueness, and Tanimoto similarity highlights the superior performance of our method. These results position our work as a robust, extensible approach for property-conditioned molecular design in low-data settings, bridging contrastive learning and generative modeling for reproducible, AI-accelerated discovery.

Authors:Gursimran Singh, Aviral Chharia, Rahul Upadhyay, Vinay Kumar, Luca Longo
Title: PyNoetic: A modular python framework for no-code development of EEG brain-computer interfaces
Abstract:
Electroencephalography (EEG)-based Brain-Computer Interfaces (BCIs) have emerged as a transformative technology with applications spanning robotics, virtual reality, medicine, and rehabilitation. However, existing BCI frameworks face several limitations, including a lack of stage-wise flexibility essential for experimental research, steep learning curves for researchers without programming expertise, elevated costs due to reliance on proprietary software, and a lack of all-inclusive features leading to the use of multiple external tools affecting research outcomes. To address these challenges, we present PyNoetic, a modular BCI framework designed to cater to the diverse needs of BCI research. PyNoetic is one of the very few frameworks in Python that encompasses the entire BCI design pipeline, from stimulus presentation and data acquisition to channel selection, filtering, feature extraction, artifact removal, and finally simulation and visualization. Notably, PyNoetic introduces an intuitive and end-to-end GUI coupled with a unique pick-and-place configurable flowchart for no-code BCI design, making it accessible to researchers with minimal programming experience. For advanced users, it facilitates the seamless integration of custom functionalities and novel algorithms with minimal coding, ensuring adaptability at each design stage. PyNoetic also includes a rich array of analytical tools such as machine learning models, brain-connectivity indices, systematic testing functionalities via simulation, and evaluation methods of novel paradigms. PyNoetic's strengths lie in its versatility for both offline and real-time BCI development, which streamlines the design process, allowing researchers to focus on more intricate aspects of BCI development and thus accelerate their research endeavors. Project Website: https://neurodiag.github.io/PyNoetic

Authors:Tung Nguyen, Harkanwar Singh, Nilay Naharas, Lucas Bandarkar, Aditya Grover
Title: IndiaWeatherBench: A Dataset and Benchmark for Data-Driven Regional Weather Forecasting over India
Abstract:
Regional weather forecasting is a critical problem for localized climate adaptation, disaster mitigation, and sustainable development. While machine learning has shown impressive progress in global weather forecasting, regional forecasting remains comparatively underexplored. Existing efforts often use different datasets and experimental setups, limiting fair comparison and reproducibility. We introduce IndiaWeatherBench, a comprehensive benchmark for data-driven regional weather forecasting focused on the Indian subcontinent. IndiaWeatherBench provides a curated dataset built from high-resolution regional reanalysis products, along with a suite of deterministic and probabilistic metrics to facilitate consistent training and evaluation. To establish strong baselines, we implement and evaluate a range of models across diverse architectures, including UNets, Transformers, and Graph-based networks, as well as different boundary conditioning strategies and training objectives. While focused on India, IndiaWeatherBench is easily extensible to other geographic regions. We open-source all raw and preprocessed datasets, model implementations, and evaluation pipelines to promote accessibility and future development. We hope IndiaWeatherBench will serve as a foundation for advancing regional weather forecasting research. Code is available at https://github.com/tung-nd/IndiaWeatherBench.

Authors:Maggie Chen, Hala Lambdouar, Luca Marini, Laura Martínez-Ferrer, Chris Bridges, Giacomo Acciarini
Title: Towards Methane Detection Onboard Satellites
Abstract:
Methane is a potent greenhouse gas and a major driver of climate change, making its timely detection critical for effective mitigation. Machine learning (ML) deployed onboard satellites can enable rapid detection while reducing downlink costs, supporting faster response systems. Conventional methane detection methods often rely on image processing techniques, such as orthorectification to correct geometric distortions and matched filters to enhance plume signals. We introduce a novel approach that bypasses these preprocessing steps by using \textit{unorthorectified} data (UnorthoDOS). We find that ML models trained on this dataset achieve performance comparable to those trained on orthorectified data. Moreover, we also train models on an orthorectified dataset, showing that they can outperform the matched filter baseline (mag1c). We release model checkpoints and two ML-ready datasets comprising orthorectified and unorthorectified hyperspectral images from the Earth Surface Mineral Dust Source Investigation (EMIT) sensor at https://huggingface.co/datasets/SpaceML/UnorthoDOS , along with code at https://github.com/spaceml-org/plume-hunter.

Authors:Shiqiao Zhou, Holger Schöner, Huanbo Lyu, Edouard Fouché, Shuo Wang
Title: BALM-TSF: Balanced Multimodal Alignment for LLM-Based Time Series Forecasting
Abstract:
Time series forecasting is a long-standing and highly challenging research topic. Recently, driven by the rise of large language models (LLMs), research has increasingly shifted from purely time series methods toward harnessing textual modalities to enhance forecasting performance. However, the vast discrepancy between text and temporal data often leads current multimodal architectures to over-emphasise one modality while neglecting the other, resulting in information loss that harms forecasting performance. To address this modality imbalance, we introduce BALM-TSF (Balanced Multimodal Alignment for LLM-Based Time Series Forecasting), a lightweight time series forecasting framework that maintains balance between the two modalities. Specifically, raw time series are processed by the time series encoder, while descriptive statistics of raw time series are fed to an LLM with learnable prompt, producing compact textual embeddings. To ensure balanced cross-modal context alignment of time series and textual embeddings, a simple yet effective scaling strategy combined with a contrastive objective then maps these textual embeddings into the latent space of the time series embeddings. Finally, the aligned textual semantic embeddings and time series embeddings are together integrated for forecasting. Extensive experiments on standard benchmarks show that, with minimal trainable parameters, BALM-TSF achieves state-of-the-art performance in both long-term and few-shot forecasting, confirming its ability to harness complementary information from text and time series. Code is available at https://github.com/ShiqiaoZhou/BALM-TSF.

Authors:Dongwon Son, Hojin Jung, Beomjoon Kim
Title: NeuralSVCD for Efficient Swept Volume Collision Detection
Abstract:
Robot manipulation in unstructured environments requires efficient and reliable Swept Volume Collision Detection (SVCD) for safe motion planning. Traditional discrete methods potentially miss collisions between these points, whereas SVCD continuously checks for collisions along the entire trajectory. Existing SVCD methods typically face a trade-off between efficiency and accuracy, limiting practical use. In this paper, we introduce NeuralSVCD, a novel neural encoder-decoder architecture tailored to overcome this trade-off. Our approach leverages shape locality and temporal locality through distributed geometric representations and temporal optimization. This enhances computational efficiency without sacrificing accuracy. Comprehensive experiments show that NeuralSVCD consistently outperforms existing state-of-the-art SVCD methods in terms of both collision detection accuracy and computational efficiency, demonstrating its robust applicability across diverse robotic manipulation scenarios. Code and videos are available at https://neuralsvcd.github.io/.

Authors:Saksorn Ruangtanusak, Pittawat Taveekitworachai, Kunat Pipatanakul
Title: Talk Less, Call Right: Enhancing Role-Play LLM Agents with Automatic Prompt Optimization and Role Prompting
Abstract:
This report investigates approaches for prompting a tool-augmented large language model (LLM) to act as a role-playing dialogue agent in the API track of the Commonsense Persona-grounded Dialogue Challenge (CPDC) 2025. In this setting, dialogue agents often produce overly long in-character responses (over-speaking) while failing to use tools effectively according to the persona (under-acting), such as generating function calls that do not exist or making unnecessary tool calls before answering. We explore four prompting approaches to address these issues: 1) basic role prompting, 2) human-crafted role prompting, 3) automatic prompt optimization (APO), and 4) rule-based role prompting. The rule-based role prompting (RRP) approach achieved the best performance through two novel techniques--character-card/scene-contract design and strict enforcement of function calling--which led to an overall score of 0.571, improving on the zero-shot baseline score of 0.519. These findings demonstrate that RRP design can substantially improve the effectiveness and reliability of role-playing dialogue agents compared with more elaborate methods such as APO. To support future efforts in developing persona prompts, we are open-sourcing all of our best-performing prompts and the APO tool. Source code is available at https://github.com/scb-10x/apo.

Authors:Minku Kang, Hogun Park
Title: Curriculum Guided Personalized Subgraph Federated Learning
Abstract:
Subgraph Federated Learning (FL) aims to train Graph Neural Networks (GNNs) across distributed private subgraphs, but it suffers from severe data heterogeneity. To mitigate data heterogeneity, weighted model aggregation personalizes each local GNN by assigning larger weights to parameters from clients with similar subgraph characteristics inferred from their current model states. However, the sparse and biased subgraphs often trigger rapid overfitting, causing the estimated client similarity matrix to stagnate or even collapse. As a result, aggregation loses effectiveness as clients reinforce their own biases instead of exploiting diverse knowledge otherwise available. To this end, we propose a novel personalized subgraph FL framework called Curriculum guided personalized sUbgraph Federated Learning (CUFL). On the client side, CUFL adopts Curriculum Learning (CL) that adaptively selects edges for training according to their reconstruction scores, exposing each GNN first to easier, generic cross-client substructures and only later to harder, client-specific ones. This paced exposure prevents early overfitting to biased patterns and enables gradual personalization. By regulating personalization, the curriculum also reshapes server aggregation from exchanging generic knowledge to propagating client-specific knowledge. Further, CUFL improves weighted aggregation by estimating client similarity using fine-grained structural indicators reconstructed on a random reference graph. Extensive experiments on six benchmark datasets confirm that CUFL achieves superior performance compared to relevant baselines. Code is available at https://github.com/Kang-Min-Ku/CUFL.git.

Authors:Ziyi Xia, Kun Luo, Hongjin Qian, Zheng Liu
Title: Open Data Synthesis For Deep Research
Abstract:
Large language models (LLMs) are increasingly expected to go beyond simple factual queries toward Deep Research-tasks that require decomposing questions into sub-problems, coordinating multi-step reasoning, and synthesizing evidence from diverse sources. We formalize Deep Research tasks with verifiable answers as Hierarchical Constraint Satisfaction Problems (HCSPs), which are fundamentally different from single-constraint, multi-hop, or flat CSP formulations. However, existing benchmarks (e.g., Natural Questions, HotpotQA) fail to capture this complexity, while recent synthetic datasets often introduce shortcut reasoning, knowledge leakage, or lack sufficient structural depth. To address this gap, we introduce InfoSeek, a scalable framework for synthesizing complex Deep Research tasks. InfoSeek uses a dual-agent system to recursively build a Research Tree from large-scale webpages, blurring intermediate nodes into valid sub-problems, and converting these trees into natural language questions that require traversing the full hierarchy. It also enables rapid scaling, yielding over 50K training examples, a curated test set, and reasoning trajectories generated via reject sampling. Experiments show that models trained on InfoSeek consistently outperform strong baselines. On a challenging benchmark BrowseComp-Plus, 3B LLMs optimized with InfoSeek surpass much larger 32B models and lightweight commercial APIs (e.g., Gemini2.5-Flash), while achieving performance comparable to stronger APIs (e.g., Gemini2.5-Pro). By preserving meta-information such as intermediate steps and retrieval labels, InfoSeek further supports advanced optimization strategies, including compound reward design and trajectory-level exploration. We provide our codes and datasets in \href{https://github.com/VectorSpaceLab/InfoSeek}{this repository}.

Authors:Zhen Chen, Xingjian Luo, Kun Yuan, Jinlin Wu, Danny T. M. Chan, Nassir Navab, Hongbin Liu, Zhen Lei, Jiebo Luo
Title: SurgLLM: A Versatile Large Multimodal Model with Spatial Focus and Temporal Awareness for Surgical Video Understanding
Abstract:
Surgical video understanding is crucial for facilitating Computer-Assisted Surgery (CAS) systems. Despite significant progress in existing studies, two major limitations persist, including inadequate visual content perception and insufficient temporal awareness in surgical videos, and hinder the development of versatile CAS solutions. In this work, we propose the SurgLLM framework, an effective large multimodal model tailored for versatile surgical video understanding tasks with enhanced spatial focus and temporal awareness. Specifically, to empower the spatial focus of surgical videos, we first devise Surgical Context-aware Multimodal Pretraining (Surg-Pretrain) for the video encoder of SurgLLM, by performing instrument-centric Masked Video Reconstruction (MV-Recon) and subsequent multimodal alignment. To incorporate surgical temporal knowledge into SurgLLM, we further propose Temporal-aware Multimodal Tuning (TM-Tuning) to enhance temporal reasoning with interleaved multimodal embeddings. Moreover, to accommodate various understanding tasks of surgical videos without conflicts, we devise a Surgical Task Dynamic Ensemble to efficiently triage a query with optimal learnable parameters in our SurgLLM. Extensive experiments performed on diverse surgical video understanding tasks, including captioning, general VQA, and temporal VQA, demonstrate significant improvements over the state-of-the-art approaches, validating the effectiveness of our SurgLLM in versatile surgical video understanding. The source code is available at https://github.com/franciszchen/SurgLLM.

Authors:Ezra Erives, Bowen Jing, Peter Holderrieth, Tommi Jaakkola
Title: Continuously Tempered Diffusion Samplers
Abstract:
Annealing-based neural samplers seek to amortize sampling from unnormalized distributions by training neural networks to transport a family of densities interpolating from source to target. A crucial design choice in the training phase of such samplers is the proposal distribution by which locations are generated at which to evaluate the loss. Previous work has obtained such a proposal distribution by combining a partially learned transport with annealed Langevin dynamics. However, isolated modes and other pathological properties of the annealing path imply that such proposals achieve insufficient exploration and thereby lower performance post training. To remedy this, we propose continuously tempered diffusion samplers, which leverage exploration techniques developed in the context of molecular dynamics to improve proposal distributions. Specifically, a family of distributions across different temperatures is introduced to lower energy barriers at higher temperatures and drive exploration at the lower temperature of interest. We empirically validate improved sampler performance driven by extended exploration. Code is available at https://github.com/eje24/ctds.

Authors:Joseph Amigo, Rooholla Khorrambakht, Elliot Chane-Sane, Nicolas Mansard, Ludovic Righetti
Title: First Order Model-Based RL through Decoupled Backpropagation
Abstract:
There is growing interest in reinforcement learning (RL) methods that leverage the simulator's derivatives to improve learning efficiency. While early gradient-based approaches have demonstrated superior performance compared to derivative-free methods, accessing simulator gradients is often impractical due to their implementation cost or unavailability. Model-based RL (MBRL) can approximate these gradients via learned dynamics models, but the solver efficiency suffers from compounding prediction errors during training rollouts, which can degrade policy performance. We propose an approach that decouples trajectory generation from gradient computation: trajectories are unrolled using a simulator, while gradients are computed via backpropagation through a learned differentiable model of the simulator. This hybrid design enables efficient and consistent first-order policy optimization, even when simulator gradients are unavailable, as well as learning a critic from simulation rollouts, which is more accurate. Our method achieves the sample efficiency and speed of specialized optimizers such as SHAC, while maintaining the generality of standard approaches like PPO and avoiding ill behaviors observed in other first-order MBRL methods. We empirically validate our algorithm on benchmark control tasks and demonstrate its effectiveness on a real Go2 quadruped robot, across both quadrupedal and bipedal locomotion tasks.

Authors:Manish Shukla
Title: Adaptive Monitoring and Real-World Evaluation of Agentic AI Systems
Abstract:
Agentic artificial intelligence (AI) -- multi-agent systems that combine large language models with external tools and autonomous planning -- are rapidly transitioning from research laboratories into high-stakes domains. Our earlier "Basic" paper introduced a five-axis framework and proposed preliminary metrics such as goal drift and harm reduction but did not provide an algorithmic instantiation or empirical evidence. This "Advanced" sequel fills that gap. First, we revisit recent benchmarks and industrial deployments to show that technical metrics still dominate evaluations: a systematic review of 84 papers from 2023--2025 found that 83% report capability metrics while only 30% consider human-centred or economic axes [2]. Second, we formalise an Adaptive Multi-Dimensional Monitoring (AMDM) algorithm that normalises heterogeneous metrics, applies per-axis exponentially weighted moving-average thresholds and performs joint anomaly detection via the Mahalanobis distance [7]. Third, we conduct simulations and real-world experiments. AMDM cuts anomaly-detection latency from 12.3 s to 5.6 s on simulated goal drift and reduces false-positive rates from 4.5% to 0.9% compared with static thresholds. We present a comparison table and ROC/PR curves, and we reanalyse case studies to surface missing metrics. Code, data and a reproducibility checklist accompany this paper to facilitate replication. The code supporting this work is available at https://github.com/Manishms18/Adaptive-Multi-Dimensional-Monitoring.

Authors:Abdullah Abdelfattah, Mahmoud I. Khalil, Hazem Abbas
Title: Automatic Pronunciation Error Detection and Correction of the Holy Quran's Learners Using Deep Learning
Abstract:
Assessing spoken language is challenging, and quantifying pronunciation metrics for machine learning models is even harder. However, for the Holy Quran, this task is simplified by the rigorous recitation rules (tajweed) established by Muslim scholars, enabling highly effective assessment. Despite this advantage, the scarcity of high-quality annotated data remains a significant barrier. In this work, we bridge these gaps by introducing: (1) A 98% automated pipeline to produce high-quality Quranic datasets -- encompassing: Collection of recitations from expert reciters, Segmentation at pause points (waqf) using our fine-tuned wav2vec2-BERT model, Transcription of segments, Transcript verification via our novel Tasmeea algorithm; (2) 850+ hours of audio (~300K annotated utterances); (3) A novel ASR-based approach for pronunciation error detection, utilizing our custom Quran Phonetic Script (QPS) to encode Tajweed rules (unlike the IPA standard for Modern Standard Arabic). QPS uses a two-level script: (Phoneme level): Encodes Arabic letters with short/long vowels. (Sifa level): Encodes articulation characteristics of every phoneme. We further include comprehensive modeling with our novel multi-level CTC Model which achieved 0.16% average Phoneme Error Rate (PER) on the testset. We release all code, data, and models as open-source: https://obadx.github.io/prepare-quran-dataset/

Authors:Tongtong Feng, Xin Wang, Feilin Han, Leping Zhang, Wenwu Zhu
Title: U2UData-2: A Scalable Swarm UAVs Autonomous Flight Dataset for Long-horizon Tasks
Abstract:
Swarm UAV autonomous flight for Long-Horizon (LH) tasks is crucial for advancing the low-altitude economy. However, existing methods focus only on specific basic tasks due to dataset limitations, failing in real-world deployment for LH tasks. LH tasks are not mere concatenations of basic tasks, requiring handling long-term dependencies, maintaining persistent states, and adapting to dynamic goal shifts. This paper presents U2UData-2, the first large-scale swarm UAV autonomous flight dataset for LH tasks and the first scalable swarm UAV data online collection and algorithm closed-loop verification platform. The dataset is captured by 15 UAVs in autonomous collaborative flights for LH tasks, comprising 12 scenes, 720 traces, 120 hours, 600 seconds per trajectory, 4.32M LiDAR frames, and 12.96M RGB frames. This dataset also includes brightness, temperature, humidity, smoke, and airflow values covering all flight routes. The platform supports the customization of simulators, UAVs, sensors, flight algorithms, formation modes, and LH tasks. Through a visual control window, this platform allows users to collect customized datasets through one-click deployment online and to verify algorithms by closed-loop simulation. U2UData-2 also introduces an LH task for wildlife conservation and provides comprehensive benchmarks with 9 SOTA models. U2UData-2 can be found at https://fengtt42.github.io/U2UData-2/.

Authors:Jiawei Liu, Jiahe Hou, Wei Wang, Jinsong Du, Yang Cong, Huijie Fan
Title: TMUAD: Enhancing Logical Capabilities in Unified Anomaly Detection Models with a Text Memory Bank
Abstract:
Anomaly detection, which aims to identify anomalies deviating from normal patterns, is challenging due to the limited amount of normal data available. Unlike most existing unified methods that rely on carefully designed image feature extractors and memory banks to capture logical relationships between objects, we introduce a text memory bank to enhance the detection of logical anomalies. Specifically, we propose a Three-Memory framework for Unified structural and logical Anomaly Detection (TMUAD). First, we build a class-level text memory bank for logical anomaly detection by the proposed logic-aware text extractor, which can capture rich logical descriptions of objects from input images. Second, we construct an object-level image memory bank that preserves complete object contours by extracting features from segmented objects. Third, we employ visual encoders to extract patch-level image features for constructing a patch-level memory bank for structural anomaly detection. These three complementary memory banks are used to retrieve and compare normal images that are most similar to the query image, compute anomaly scores at multiple levels, and fuse them into a final anomaly score. By unifying structural and logical anomaly detection through collaborative memory banks, TMUAD achieves state-of-the-art performance across seven publicly available datasets involving industrial and medical domains. The model and code are available at https://github.com/SIA-IDE/TMUAD.

Authors:Shashank Vempati, Nishit Anand, Gaurav Talebailkar, Arpan Garai, Chetan Arora
Title: Why Stop at Words? Unveiling the Bigger Picture through Line-Level OCR
Abstract:
Conventional optical character recognition (OCR) techniques segmented each character and then recognized. This made them prone to error in character segmentation, and devoid of context to exploit language models. Advances in sequence to sequence translation in last decade led to modern techniques first detecting words and then inputting one word at a time to a model to directly output full words as sequence of characters. This allowed better utilization of language models and bypass error-prone character segmentation step. We observe that the above transition in style has moved the bottleneck in accuracy to word segmentation. Hence, in this paper, we propose a natural and logical progression from word level OCR to line-level OCR. The proposal allows to bypass errors in word detection, and provides larger sentence context for better utilization of language models. We show that the proposed technique not only improves the accuracy but also efficiency of OCR. Despite our thorough literature survey, we did not find any public dataset to train and benchmark such shift from word to line-level OCR. Hence, we also contribute a meticulously curated dataset of 251 English page images with line-level annotations. Our experimentation revealed a notable end-to-end accuracy improvement of 5.4%, underscoring the potential benefits of transitioning towards line-level OCR, especially for document images. We also report a 4 times improvement in efficiency compared to word-based pipelines. With continuous improvements in large language models, our methodology also holds potential to exploit such advances. Project Website: https://nishitanand.github.io/line-level-ocr-website

Authors:Zinan Tang, Xin Gao, Qizhi Pei, Zhuoshi Pan, Mengzhang Cai, Jiang Wu, Conghui He, Lijun Wu
Title: Middo: Model-Informed Dynamic Data Optimization for Enhanced LLM Fine-Tuning via Closed-Loop Learning
Abstract:
Supervised Fine-Tuning (SFT) Large Language Models (LLM) fundamentally rely on high-quality training data. While data selection and data synthesis are two common strategies to improve data quality, existing approaches often face limitations in static dataset curation that fail to adapt to evolving model capabilities. In this paper, we introduce Middo, a self-evolving Model-informed dynamic data optimization framework that uses model-aware data selection and context-preserving data refinement. Unlike conventional one-off filtering/synthesis methods, our framework establishes a closed-loop optimization system: (1) A self-referential diagnostic module proactively identifies suboptimal samples through tri-axial model signals - loss patterns (complexity), embedding cluster dynamics (diversity), and self-alignment scores (quality); (2) An adaptive optimization engine then transforms suboptimal samples into pedagogically valuable training points while preserving semantic integrity; (3) This optimization process continuously evolves with model capability through dynamic learning principles. Experiments on multiple benchmarks demonstrate that our Middo consistently enhances the quality of seed data and boosts LLM's performance with improving accuracy by 7.15% on average while maintaining the original dataset scale. This work establishes a new paradigm for sustainable LLM training through dynamic human-AI co-evolution of data and models. Our datasets, models, and code are publicly available at https://github.com/Word2VecT/Middo.

Authors:Sara B. Coutinho, Rafael M. O. Cruz, Francimaria R. S. Nascimento, George D. C. Cavalcanti
Title: HSFN: Hierarchical Selection for Fake News Detection building Heterogeneous Ensemble
Abstract:
Psychological biases, such as confirmation bias, make individuals particularly vulnerable to believing and spreading fake news on social media, leading to significant consequences in domains such as public health and politics. Machine learning-based fact-checking systems have been widely studied to mitigate this problem. Among them, ensemble methods are particularly effective in combining multiple classifiers to improve robustness. However, their performance heavily depends on the diversity of the constituent classifiers-selecting genuinely diverse models remains a key challenge, especially when models tend to learn redundant patterns. In this work, we propose a novel automatic classifier selection approach that prioritizes diversity, also extended by performance. The method first computes pairwise diversity between classifiers and applies hierarchical clustering to organize them into groups at different levels of granularity. A HierarchySelect then explores these hierarchical levels to select one pool of classifiers per level, each representing a distinct intra-pool diversity. The most diverse pool is identified and selected for ensemble construction from these. The selection process incorporates an evaluation metric reflecting each classifiers's performance to ensure the ensemble also generalises well. We conduct experiments with 40 heterogeneous classifiers across six datasets from different application domains and with varying numbers of classes. Our method is compared against the Elbow heuristic and state-of-the-art baselines. Results show that our approach achieves the highest accuracy on two of six datasets. The implementation details are available on the project's repository: https://github.com/SaraBCoutinho/HSFN .

Authors:Xiaolong Wei, Bo Lu, Xingyu Zhang, Zhejun Zhao, Dongdong Shen, Long Xia, Dawei Yin
Title: Igniting Creative Writing in Small Language Models: LLM-as-a-Judge versus Multi-Agent Refined Rewards
Abstract:
Large Language Models (LLMs) have demonstrated remarkable creative writing capabilities, yet their substantial computational demands hinder widespread use. Enhancing Small Language Models (SLMs) offers a promising alternative, but current methods like Supervised Fine-Tuning (SFT) struggle with novelty, and Reinforcement Learning from Human Feedback (RLHF) is costly. This paper explores two distinct AI-driven reward strategies within a Reinforcement Learning from AI Feedback (RLAIF) framework to ignite the creative writing of a 7B-parameter SLM, specifically for generating Chinese greetings. The first strategy employs a RM trained on high-quality preference data curated by a novel multi-agent rejection sampling framework designed for creative tasks. The second, more novel strategy utilizes a principle-guided LLM-as-a-Judge, whose reward function is optimized via an adversarial training scheme with a reflection mechanism, to directly provide reward signals. Comprehensive experiments reveal that while both approaches significantly enhance creative output over baselines, the principle-guided LLM-as-a-Judge demonstrably yields superior generation quality. Furthermore, it offers notable advantages in training efficiency and reduced dependency on human-annotated data, presenting a more scalable and effective path towards creative SLMs. Our automated evaluation methods also exhibit strong alignment with human judgments. Our code and data are publicly available at https://github.com/weixiaolong94-hub/Igniting-Creative-Writing-in-Small-Language-Models.

Authors:Xiaoxi Cui, Weihai Lu, Yu Tong, Yiheng Li, Zhejun Zhao
Title: Diffusion-based Multi-modal Synergy Interest Network for Click-through Rate Prediction
Abstract:
In click-through rate prediction, click-through rate prediction is used to model users' interests. However, most of the existing CTR prediction methods are mainly based on the ID modality. As a result, they are unable to comprehensively model users' multi-modal preferences. Therefore, it is necessary to introduce multi-modal CTR prediction. Although it seems appealing to directly apply the existing multi-modal fusion methods to click-through rate prediction models, these methods (1) fail to effectively disentangle commonalities and specificities across different modalities; (2) fail to consider the synergistic effects between modalities and model the complex interactions between modalities. To address the above issues, this paper proposes the Diffusion-based Multi-modal Synergy Interest Network (Diff-MSIN) framework for click-through prediction. This framework introduces three innovative modules: the Multi-modal Feature Enhancement (MFE) Module Synergistic Relationship Capture (SRC) Module, and the Feature Dynamic Adaptive Fusion (FDAF) Module. The MFE Module and SRC Module extract synergistic, common, and special information among different modalities. They effectively enhances the representation of the modalities, improving the overall quality of the fusion. To encourage distinctiveness among different features, we design a Knowledge Decoupling method. Additionally, the FDAF Module focuses on capturing user preferences and reducing fusion noise. To validate the effectiveness of the Diff-MSIN framework, we conducted extensive experiments using the Rec-Tmall and three Amazon datasets. The results demonstrate that our approach yields a significant improvement of at least 1.67% compared to the baseline, highlighting its potential for enhancing multi-modal recommendation systems. Our code is available at the following link: https://github.com/Cxx-0/Diff-MSIN.

Authors:Francisco Caetano, Christiaan Viviers, Peter H. H. de With, Fons van der Sommen
Title: MedShift: Implicit Conditional Transport for X-Ray Domain Adaptation
Abstract:
Synthetic medical data offers a scalable solution for training robust models, but significant domain gaps limit its generalizability to real-world clinical settings. This paper addresses the challenge of cross-domain translation between synthetic and real X-ray images of the head, focusing on bridging discrepancies in attenuation behavior, noise characteristics, and soft tissue representation. We propose MedShift, a unified class-conditional generative model based on Flow Matching and Schrodinger Bridges, which enables high-fidelity, unpaired image translation across multiple domains. Unlike prior approaches that require domain-specific training or rely on paired data, MedShift learns a shared domain-agnostic latent space and supports seamless translation between any pair of domains seen during training. We introduce X-DigiSkull, a new dataset comprising aligned synthetic and real skull X-rays under varying radiation doses, to benchmark domain translation models. Experimental results demonstrate that, despite its smaller model size compared to diffusion-based approaches, MedShift offers strong performance and remains flexible at inference time, as it can be tuned to prioritize either perceptual fidelity or structural consistency, making it a scalable and generalizable solution for domain adaptation in medical imaging. The code and dataset are available at https://caetas.github.io/medshift.html

Authors:Theresia Veronika Rampisela, Maria Maistro, Tuukka Ruotsalo, Falk Scholer, Christina Lioma
Title: Stairway to Fairness: Connecting Group and Individual Fairness
Abstract:
Fairness in recommender systems (RSs) is commonly categorised into group fairness and individual fairness. However, there is no established scientific understanding of the relationship between the two fairness types, as prior work on both types has used different evaluation measures or evaluation objectives for each fairness type, thereby not allowing for a proper comparison of the two. As a result, it is currently not known how increasing one type of fairness may affect the other. To fill this gap, we study the relationship of group and individual fairness through a comprehensive comparison of evaluation measures that can be used for both fairness types. Our experiments with 8 runs across 3 datasets show that recommendations that are highly fair for groups can be very unfair for individuals. Our finding is novel and useful for RS practitioners aiming to improve the fairness of their systems. Our code is available at: https://github.com/theresiavr/stairway-to-fairness.

Authors:Zhizhong Huang, Xiaoming Liu
Title: Generalizable Object Re-Identification via Visual In-Context Prompting
Abstract:
Current object re-identification (ReID) methods train domain-specific models (e.g., for persons or vehicles), which lack generalization and demand costly labeled data for new categories. While self-supervised learning reduces annotation needs by learning instance-wise invariance, it struggles to capture \textit{identity-sensitive} features critical for ReID. This paper proposes Visual In-Context Prompting~(VICP), a novel framework where models trained on seen categories can directly generalize to unseen novel categories using only \textit{in-context examples} as prompts, without requiring parameter adaptation. VICP synergizes LLMs and vision foundation models~(VFM): LLMs infer semantic identity rules from few-shot positive/negative pairs through task-specific prompting, which then guides a VFM (\eg, DINO) to extract ID-discriminative features via \textit{dynamic visual prompts}. By aligning LLM-derived semantic concepts with the VFM's pre-trained prior, VICP enables generalization to novel categories, eliminating the need for dataset-specific retraining. To support evaluation, we introduce ShopID10K, a dataset of 10K object instances from e-commerce platforms, featuring multi-view images and cross-domain testing. Experiments on ShopID10K and diverse ReID benchmarks demonstrate that VICP outperforms baselines by a clear margin on unseen categories. Code is available at https://github.com/Hzzone/VICP.

Authors:Ao Shen, Xueming Fu, Junfeng Jiang, Qiang Zeng, Ye Tang, Zhengming Chen, Luming Nong, Feng Wang, S. Kevin Zhou
Title: RadGS-Reg: Registering Spine CT with Biplanar X-rays via Joint 3D Radiative Gaussians Reconstruction and 3D/3D Registration
Abstract:
Computed Tomography (CT)/X-ray registration in image-guided navigation remains challenging because of its stringent requirements for high accuracy and real-time performance. Traditional "render and compare" methods, relying on iterative projection and comparison, suffer from spatial information loss and domain gap. 3D reconstruction from biplanar X-rays supplements spatial and shape information for 2D/3D registration, but current methods are limited by dense-view requirements and struggles with noisy X-rays. To address these limitations, we introduce RadGS-Reg, a novel framework for vertebral-level CT/X-ray registration through joint 3D Radiative Gaussians (RadGS) reconstruction and 3D/3D registration. Specifically, our biplanar X-rays vertebral RadGS reconstruction module explores learning-based RadGS reconstruction method with a Counterfactual Attention Learning (CAL) mechanism, focusing on vertebral regions in noisy X-rays. Additionally, a patient-specific pre-training strategy progressively adapts the RadGS-Reg from simulated to real data while simultaneously learning vertebral shape prior knowledge. Experiments on in-house datasets demonstrate the state-of-the-art performance for both tasks, surpassing existing methods. The code is available at: https://github.com/shenao1995/RadGS_Reg.

Authors:Dongjun Lee, Changho Hwang, Kimin Lee
Title: Learning to Generate Unit Test via Adversarial Reinforcement Learning
Abstract:
Unit testing is a core practice in programming, enabling systematic evaluation of programs produced by human developers or large language models (LLMs). Given the challenges in writing comprehensive unit tests, LLMs have been employed to automate test generation, yet methods for training LLMs to produce high-quality tests remain underexplored. In this work, we propose UTRL, a novel reinforcement learning framework that trains an LLM to generate high-quality unit tests given a programming instruction. Our key idea is to iteratively train two LLMs, the unit test generator and the code generator, in an adversarial manner via reinforcement learning. The unit test generator is trained to maximize a discrimination reward, which reflects its ability to produce tests that expose faults in the code generator's solutions, and the code generator is trained to maximize a code reward, which reflects its ability to produce solutions that pass the unit tests generated by the test generator. In our experiments, we demonstrate that unit tests generated by Qwen3-4B trained via UTRL show higher quality compared to unit tests generated by the same model trained via supervised fine-tuning on human-written ground-truth unit tests, yielding code evaluations that more closely align with those induced by the ground-truth tests. Moreover, Qwen3-4B trained with UTRL outperforms frontier models such as GPT-4.1 in generating high-quality unit tests, highlighting the effectiveness of UTRL in training LLMs for this task.

Authors:Zezhong Jin, Shubhang Desai, Xu Chen, Biyi Fang, Zhuoyi Huang, Zhe Li, Chong-Xin Gan, Xiao Tu, Man-Wai Mak, Yan Lu, Shujie Liu
Title: TrInk: Ink Generation with Transformer Network
Abstract:
In this paper, we propose TrInk, a Transformer-based model for ink generation, which effectively captures global dependencies. To better facilitate the alignment between the input text and generated stroke points, we introduce scaled positional embeddings and a Gaussian memory mask in the cross-attention module. Additionally, we design both subjective and objective evaluation pipelines to comprehensively assess the legibility and style consistency of the generated handwriting. Experiments demonstrate that our Transformer-based model achieves a 35.56\% reduction in character error rate (CER) and an 29.66% reduction in word error rate (WER) on the IAM-OnDB dataset compared to previous methods. We provide an demo page with handwriting samples from TrInk and baseline models at: https://akahello-a11y.github.io/trink-demo/

Authors:Shengqu Cai, Ceyuan Yang, Lvmin Zhang, Yuwei Guo, Junfei Xiao, Ziyan Yang, Yinghao Xu, Zhenheng Yang, Alan Yuille, Leonidas Guibas, Maneesh Agrawala, Lu Jiang, Gordon Wetzstein
Title: Mixture of Contexts for Long Video Generation
Abstract:
Long video generation is fundamentally a long context memory problem: models must retain and retrieve salient events across a long range without collapsing or drifting. However, scaling diffusion transformers to generate long-context videos is fundamentally limited by the quadratic cost of self-attention, which makes memory and computation intractable and difficult to optimize for long sequences. We recast long-context video generation as an internal information retrieval task and propose a simple, learnable sparse attention routing module, Mixture of Contexts (MoC), as an effective long-term memory retrieval engine. In MoC, each query dynamically selects a few informative chunks plus mandatory anchors (caption, local windows) to attend to, with causal routing that prevents loop closures. As we scale the data and gradually sparsify the routing, the model allocates compute to salient history, preserving identities, actions, and scenes over minutes of content. Efficiency follows as a byproduct of retrieval (near-linear scaling), which enables practical training and synthesis, and the emergence of memory and consistency at the scale of minutes.

Authors:Hao Tan, Jun Lan, Zichang Tan, Ajian Liu, Chuanbiao Song, Senyuan Shi, Huijia Zhu, Weiqiang Wang, Jun Wan, Zhen Lei
Title: Veritas: Generalizable Deepfake Detection via Pattern-Aware Reasoning
Abstract:
Deepfake detection remains a formidable challenge due to the complex and evolving nature of fake content in real-world scenarios. However, existing academic benchmarks suffer from severe discrepancies from industrial practice, typically featuring homogeneous training sources and low-quality testing images, which hinder the practical deployments of current detectors. To mitigate this gap, we introduce HydraFake, a dataset that simulates real-world challenges with hierarchical generalization testing. Specifically, HydraFake involves diversified deepfake techniques and in-the-wild forgeries, along with rigorous training and evaluation protocol, covering unseen model architectures, emerging forgery techniques and novel data domains. Building on this resource, we propose Veritas, a multi-modal large language model (MLLM) based deepfake detector. Different from vanilla chain-of-thought (CoT), we introduce pattern-aware reasoning that involves critical reasoning patterns such as "planning" and "self-reflection" to emulate human forensic process. We further propose a two-stage training pipeline to seamlessly internalize such deepfake reasoning capacities into current MLLMs. Experiments on HydraFake dataset reveal that although previous detectors show great generalization on cross-model scenarios, they fall short on unseen forgeries and data domains. Our Veritas achieves significant gains across different OOD scenarios, and is capable of delivering transparent and faithful detection outputs.

Authors:Luozhijie Jin, Zijie Qiu, Jie Liu, Zijie Diao, Lifeng Qiao, Ning Ding, Alex Lamb, Xipeng Qiu
Title: Inference-Time Alignment Control for Diffusion Models with Reinforcement Learning Guidance
Abstract:
Denoising-based generative models, particularly diffusion and flow matching algorithms, have achieved remarkable success. However, aligning their output distributions with complex downstream objectives, such as human preferences, compositional accuracy, or data compressibility, remains challenging. While reinforcement learning (RL) fine-tuning methods, inspired by advances in RL from human feedback (RLHF) for large language models, have been adapted to these generative frameworks, current RL approaches are suboptimal for diffusion models and offer limited flexibility in controlling alignment strength after fine-tuning. In this work, we reinterpret RL fine-tuning for diffusion models through the lens of stochastic differential equations and implicit reward conditioning. We introduce Reinforcement Learning Guidance (RLG), an inference-time method that adapts Classifier-Free Guidance (CFG) by combining the outputs of the base and RL fine-tuned models via a geometric average. Our theoretical analysis shows that RLG's guidance scale is mathematically equivalent to adjusting the KL-regularization coefficient in standard RL objectives, enabling dynamic control over the alignment-quality trade-off without further training. Extensive experiments demonstrate that RLG consistently improves the performance of RL fine-tuned models across various architectures, RL algorithms, and downstream tasks, including human preferences, compositional control, compressibility, and text rendering. Furthermore, RLG supports both interpolation and extrapolation, thereby offering unprecedented flexibility in controlling generative alignment. Our approach provides a practical and theoretically sound solution for enhancing and controlling diffusion model alignment at inference. The source code for RLG is publicly available at the Github: https://github.com/jinluo12345/Reinforcement-learning-guidance.

Authors:Paritosh Parmar, Eric Peh, Basura Fernando
Title: ChainReaction! Structured Approach with Causal Chains as Intermediate Representations for Improved and Explainable Causal Video Question Answering
Abstract:
Existing Causal-Why Video Question Answering (VideoQA) models often struggle with higher-order reasoning, relying on opaque, monolithic pipelines that entangle video understanding, causal inference, and answer generation. These black-box approaches offer limited interpretability and tend to depend on shallow heuristics. We propose a novel, modular framework that explicitly decouples causal reasoning from answer generation, introducing natural language causal chains as interpretable intermediate representations. Inspired by human cognitive models, these structured cause-effect sequences bridge low-level video content with high-level causal reasoning, enabling transparent and logically coherent inference. Our two-stage architecture comprises a Causal Chain Extractor (CCE) that generates causal chains from video-question pairs, and a Causal Chain-Driven Answerer (CCDA) that produces answers grounded in these chains. To address the lack of annotated reasoning traces, we introduce a scalable method for generating high-quality causal chains from existing datasets using large language models. We also propose CauCo, a new evaluation metric for causality-oriented captioning. Experiments on three large-scale benchmarks demonstrate that our approach not only outperforms state-of-the-art models, but also yields substantial gains in explainability, user trust, and generalization -- positioning the CCE as a reusable causal reasoning engine across diverse domains. Project page: https://paritoshparmar.github.io/chainreaction/

Authors:Patryk Będkowski, Jan Dubiński, Filip Szatkowski, Kamil Deja, Przemysław Rokita, Tomasz Trzciński
Title: ExpertSim: Fast Particle Detector Simulation Using Mixture-of-Generative-Experts
Abstract:
Simulating detector responses is a crucial part of understanding the inner workings of particle collisions in the Large Hadron Collider at CERN. Such simulations are currently performed with statistical Monte Carlo methods, which are computationally expensive and put a significant strain on CERN's computational grid. Therefore, recent proposals advocate for generative machine learning methods to enable more efficient simulations. However, the distribution of the data varies significantly across the simulations, which is hard to capture with out-of-the-box methods. In this study, we present ExpertSim - a deep learning simulation approach tailored for the Zero Degree Calorimeter in the ALICE experiment. Our method utilizes a Mixture-of-Generative-Experts architecture, where each expert specializes in simulating a different subset of the data. This allows for a more precise and efficient generation process, as each expert focuses on a specific aspect of the calorimeter response. ExpertSim not only improves accuracy, but also provides a significant speedup compared to the traditional Monte-Carlo methods, offering a promising solution for high-efficiency detector simulations in particle physics experiments at CERN. We make the code available at https://github.com/patrick-bedkowski/expertsim-mix-of-generative-experts.

Authors:Jaeyeon Kim, Heeseung Yun, Sang Hoon Woo, Chao-Han Huck Yang, Gunhee Kim
Title: WoW-Bench: Evaluating Fine-Grained Acoustic Perception in Audio-Language Models via Marine Mammal Vocalizations
Abstract:
Large audio language models (LALMs) extend language understanding into the auditory domain, yet their ability to perform low-level listening, such as pitch and duration detection, remains underexplored. However, low-level listening is critical for real-world, out-of-distribution tasks where models must reason about unfamiliar sounds based on fine-grained acoustic cues. To address this gap, we introduce the World-of-Whale benchmark (WoW-Bench) to evaluate low-level auditory perception and cognition using marine mammal vocalizations. WoW-bench is composed of a Perception benchmark for categorizing novel sounds and a Cognition benchmark, inspired by Bloom's taxonomy, to assess the abilities to remember, understand, apply, and analyze sound events. For the Cognition benchmark, we additionally introduce distractor questions to evaluate whether models are truly solving problems through listening rather than relying on other heuristics. Experiments with state-of-the-art LALMs show performance far below human levels, indicating a need for stronger auditory grounding in LALMs.

Authors:Junjie Chu, Mingjie Li, Ziqing Yang, Ye Leng, Chenhao Lin, Chao Shen, Michael Backes, Yun Shen, Yang Zhang
Title: JADES: A Universal Framework for Jailbreak Assessment via Decompositional Scoring
Abstract:
Accurately determining whether a jailbreak attempt has succeeded is a fundamental yet unresolved challenge. Existing evaluation methods rely on misaligned proxy indicators or naive holistic judgments. They frequently misinterpret model responses, leading to inconsistent and subjective assessments that misalign with human perception. To address this gap, we introduce JADES (Jailbreak Assessment via Decompositional Scoring), a universal jailbreak evaluation framework. Its key mechanism is to automatically decompose an input harmful question into a set of weighted sub-questions, score each sub-answer, and weight-aggregate the sub-scores into a final decision. JADES also incorporates an optional fact-checking module to strengthen the detection of hallucinations in jailbreak responses. We validate JADES on JailbreakQR, a newly introduced benchmark proposed in this work, consisting of 400 pairs of jailbreak prompts and responses, each meticulously annotated by humans. In a binary setting (success/failure), JADES achieves 98.5% agreement with human evaluators, outperforming strong baselines by over 9%. Re-evaluating five popular attacks on four LLMs reveals substantial overestimation (e.g., LAA's attack success rate on GPT-3.5-Turbo drops from 93% to 69%). Our results show that JADES could deliver accurate, consistent, and interpretable evaluations, providing a reliable basis for measuring future jailbreak attacks.

Authors:Jessica Lundin, Guillaume Chabot-Couture
Title: A Graph-Based Test-Harness for LLM Evaluation
Abstract:
We present a first known prototype of a dynamic, systematic benchmark of medical guidelines for 400+ questions, with 3.3+ trillion possible combinations, covering 100\% of guideline relationships. We transformed the WHO IMCI handbook into a directed graph with 200+ nodes (conditions, symptoms, treatments, follow-ups, severities) and 300+ edges, then used graph traversal to generate questions that incorporated age-specific scenarios and contextual distractors to ensure clinical relevance. Our graph-based approach enables systematic evaluation across clinical tasks (45-67\% accuracy), and we find models excel at symptom recognition but struggle with triaging severity, treatment protocols and follow-up care, demonstrating how customized benchmarks can identify specific capability gaps that general-domain evaluations miss. Beyond evaluation, this dynamic MCQA methodology enhances LLM post-training (supervised finetuning, GRPO, DPO), where correct answers provide high-reward samples without expensive human annotation. The graph-based approach successfully addresses the coverage limitations of manually curated benchmarks. This methodology is a step toward scalable, contamination-resistant solution for creating comprehensive benchmarks that can be dynamically generated, including when the guidelines are updated. Code and datasets are available at https://github.com/jessicalundin/graph_testing_harness

Authors:Beth Pearson, Bilal Boulbarss, Michael Wray, Martha Lewis
Title: Evaluating Compositional Generalisation in VLMs and Diffusion Models
Abstract:
A fundamental aspect of the semantics of natural language is that novel meanings can be formed from the composition of previously known parts. Vision-language models (VLMs) have made significant progress in recent years, however, there is evidence that they are unable to perform this kind of composition. For example, given an image of a red cube and a blue cylinder, a VLM such as CLIP is likely to incorrectly label the image as a red cylinder or a blue cube, indicating it represents the image as a `bag-of-words' and fails to capture compositional semantics. Diffusion models have recently gained significant attention for their impressive generative abilities, and zero-shot classifiers based on diffusion models have been shown to perform competitively with CLIP in certain compositional tasks. In this work we explore whether the generative Diffusion Classifier has improved compositional generalisation abilities compared to discriminative models. We assess three models -- Diffusion Classifier, CLIP, and ViLT -- on their ability to bind objects with attributes and relations in both zero-shot learning (ZSL) and generalised zero-shot learning (GZSL) settings. Our results show that the Diffusion Classifier and ViLT perform well at concept binding tasks, but that all models struggle significantly with the relational GZSL task, underscoring the broader challenges VLMs face with relational reasoning. Analysis of CLIP embeddings suggests that the difficulty may stem from overly similar representations of relational concepts such as left and right. Code and dataset are available at: https://github.com/otmive/diffusion_classifier_clip

Authors:Jiawen Lin, Shiran Bian, Yihang Zhu, Wenbin Tan, Yachao Zhang, Yuan Xie, Yanyun Qu
Title: SeqVLM: Proposal-Guided Multi-View Sequences Reasoning via VLM for Zero-Shot 3D Visual Grounding
Abstract:
3D Visual Grounding (3DVG) aims to localize objects in 3D scenes using natural language descriptions. Although supervised methods achieve higher accuracy in constrained settings, zero-shot 3DVG holds greater promise for real-world applications since eliminating scene-specific training requirements. However, existing zero-shot methods face challenges of spatial-limited reasoning due to reliance on single-view localization, and contextual omissions or detail degradation. To address these issues, we propose SeqVLM, a novel zero-shot 3DVG framework that leverages multi-view real-world scene images with spatial information for target object reasoning. Specifically, SeqVLM first generates 3D instance proposals via a 3D semantic segmentation network and refines them through semantic filtering, retaining only semantic-relevant candidates. A proposal-guided multi-view projection strategy then projects these candidate proposals onto real scene image sequences, preserving spatial relationships and contextual details in the conversion process of 3D point cloud to images. Furthermore, to mitigate VLM computational overload, we implement a dynamic scheduling mechanism that iteratively processes sequances-query prompts, leveraging VLM's cross-modal reasoning capabilities to identify textually specified objects. Experiments on the ScanRefer and Nr3D benchmarks demonstrate state-of-the-art performance, achieving Acc@0.25 scores of 55.6% and 53.2%, surpassing previous zero-shot methods by 4.0% and 5.2%, respectively, which advance 3DVG toward greater generalization and real-world applicability. The code is available at https://github.com/JiawLin/SeqVLM.

Authors:Yuxi Hu, Jun Zhang, Kuangyi Chen, Zhe Zhang, Friedrich Fraundorfer
Title: ${C}^{3}$-GS: Learning Context-aware, Cross-dimension, Cross-scale Feature for Generalizable Gaussian Splatting
Abstract:
Generalizable Gaussian Splatting aims to synthesize novel views for unseen scenes without per-scene optimization. In particular, recent advancements utilize feed-forward networks to predict per-pixel Gaussian parameters, enabling high-quality synthesis from sparse input views. However, existing approaches fall short in encoding discriminative, multi-view consistent features for Gaussian predictions, which struggle to construct accurate geometry with sparse views. To address this, we propose $\mathbf{C}^{3}$-GS, a framework that enhances feature learning by incorporating context-aware, cross-dimension, and cross-scale constraints. Our architecture integrates three lightweight modules into a unified rendering pipeline, improving feature fusion and enabling photorealistic synthesis without requiring additional supervision. Extensive experiments on benchmark datasets validate that $\mathbf{C}^{3}$-GS achieves state-of-the-art rendering quality and generalization ability. Code is available at: https://github.com/YuhsiHu/C3-GS.

Authors:Fartash Faghri, Pavan Kumar Anasosalu Vasu, Cem Koc, Vaishaal Shankar, Alexander Toshev, Oncel Tuzel, Hadi Pouransari
Title: MobileCLIP2: Improving Multi-Modal Reinforced Training
Abstract:
Foundation image-text models such as CLIP with zero-shot capabilities enable a wide array of applications. MobileCLIP is a recent family of image-text models at 3-15ms latency and 50-150M parameters with state-of-the-art zero-shot accuracy. The main ingredients in MobileCLIP were its low-latency and light architectures and a novel multi-modal reinforced training that made knowledge distillation from multiple caption-generators and CLIP teachers efficient, scalable, and reproducible. In this paper, we improve the multi-modal reinforced training of MobileCLIP through: 1) better CLIP teacher ensembles trained on the DFN dataset, 2) improved captioner teachers trained on the DFN dataset and fine-tuned on a diverse selection of high-quality image-caption datasets. We discover new insights through ablations such as the importance of temperature tuning in contrastive knowledge distillation, the effectiveness of caption-generator fine-tuning for caption diversity, and the additive improvement from combining synthetic captions generated by multiple models. We train a new family of models called MobileCLIP2 and achieve state-of-the-art ImageNet-1k zero-shot accuracies at low latencies. In particular, we observe 2.2% improvement in ImageNet-1k accuracy for MobileCLIP2-B compared with MobileCLIP-B architecture. Notably, MobileCLIP2-S4 matches the zero-shot accuracy of SigLIP-SO400M/14 on ImageNet-1k while being 2$\times$ smaller and improves on DFN ViT-L/14 at 2.5$\times$ lower latency. We release our pretrained models (https://github.com/apple/ml-mobileclip) and the data generation code (https://github.com/apple/ml-mobileclip-dr). The data generation code makes it easy to create new reinforced datasets with arbitrary teachers using distributed scalable processing.

Authors:Yang Luo, Zangwei Zheng, Ziheng Qin, Zirui Zhu, Yong Liu, Yang You
Title: MERIT: Maximum-normalized Element-wise Ratio for Language Model Large-batch Training
Abstract:
Large-batch training has become a cornerstone in accelerating the training of deep neural networks, yet it poses challenges in optimization and generalization. Existing optimizers like AdamW present performance degradation during language models' large-batch training, due to the information bottleneck in attention layers caused by the sharp increase of max attention logit. While the LAMB optimizer partially addresses this issue, some attention layers still face this issue. The reason is that $l_2$-norm-based trust ratios in LAMB are less effective in directly influencing the max value of query/key weights. Furthermore, the weight-wise trust ratio in LAMB is error-prone as it overlooks relationships of weight values within rows or columns. Building on these observations, we propose a novel optimizer, MERIT, which leverages the max-norm to calculate the trust ratio to constrain the max attention logit more effectively. Moreover, we further construct element-wise trust ratios to provide more robust update scaling by focusing on local weight structures. Extensive experiments of large-batch training across various sizes of GPT-2 models demonstrate the superior performance of MERIT. Notably, during the training of GPT-2 Medium, MERIT enables a 6k batch size without any performance degradation compared to the standard batch size (480) with 48B training tokens. This work highlights the importance of considering the max attention logit and finer-granularity trust ratio in large-batch training. It successfully improves the training stability and paves the way for larger batch usage, enabling faster development and iteration of large language models. Code is available at https://github.com/NUS-HPC-AI-Lab/MERIT.

Authors:Jiahao Xiao, Jiangming Liu
Title: Adaptive Federated Distillation for Multi-Domain Non-IID Textual Data
Abstract:
The widespread success of pre-trained language models has established a new training paradigm, where a global PLM is fine-tuned using task-specific data from local clients. The local data are highly different from each other and can not capture the global distribution of the whole data in real world. To address the challenges of non-IID data in real environments, privacy-preserving federated distillation has been proposed and highly investigated. However, previous experimental non-IID scenarios are primarily identified with the label (output) diversity, without considering the diversity of language domains (input) that is crucial in natural language processing. In this paper, we introduce a comprehensive set of multi-domain non-IID scenarios and propose a unified benchmarking framework that includes diverse data. The benchmark can be used to evaluate the federated learning framework in a real environment. To this end, we propose an Adaptive Federated Distillation (AdaFD) framework designed to address multi-domain non-IID challenges in both homogeneous and heterogeneous settings. Experimental results demonstrate that our models capture the diversity of local clients and achieve better performance compared to the existing works. The code for this paper is available at: https://github.com/jiahaoxiao1228/AdaFD.

Authors:Berta Céspedes-Sarrias, Carlos Collado-Capell, Pablo Rodenas-Ruiz, Olena Hrynenko, Andrea Cavallaro
Title: MM-HSD: Multi-Modal Hate Speech Detection in Videos
Abstract:
While hate speech detection (HSD) has been extensively studied in text, existing multi-modal approaches remain limited, particularly in videos. As modalities are not always individually informative, simple fusion methods fail to fully capture inter-modal dependencies. Moreover, previous work often omits relevant modalities such as on-screen text and audio, which may contain subtle hateful content and thus provide essential cues, both individually and in combination with others. In this paper, we present MM-HSD, a multi-modal model for HSD in videos that integrates video frames, audio, and text derived from speech transcripts and from frames (i.e.~on-screen text) together with features extracted by Cross-Modal Attention (CMA). We are the first to use CMA as an early feature extractor for HSD in videos, to systematically compare query/key configurations, and to evaluate the interactions between different modalities in the CMA block. Our approach leads to improved performance when on-screen text is used as a query and the rest of the modalities serve as a key. Experiments on the HateMM dataset show that MM-HSD outperforms state-of-the-art methods on M-F1 score (0.874), using concatenation of transcript, audio, video, on-screen text, and CMA for feature extraction on raw embeddings of the modalities. The code is available at https://github.com/idiap/mm-hsd

Authors:Chihiro Taguchi, Seng Mai, Keita Kurabe, Yusuke Sakai, Georgina Agyei, Soudabeh Eslami, David Chiang
Title: Languages Still Left Behind: Toward a Better Multilingual Machine Translation Benchmark
Abstract:
Multilingual machine translation (MT) benchmarks play a central role in evaluating the capabilities of modern MT systems. Among them, the FLORES+ benchmark is widely used, offering English-to-many translation data for over 200 languages, curated with strict quality control protocols. However, we study data in four languages (Asante Twi, Japanese, Jinghpaw, and South Azerbaijani) and uncover critical shortcomings in the benchmark's suitability for truly multilingual evaluation. Human assessments reveal that many translations fall below the claimed 90% quality standard, and the annotators report that source sentences are often too domain-specific and culturally biased toward the English-speaking world. We further demonstrate that simple heuristics, such as copying named entities, can yield non-trivial BLEU scores, suggesting vulnerabilities in the evaluation protocol. Notably, we show that MT models trained on high-quality, naturalistic data perform poorly on FLORES+ while achieving significant gains on our domain-relevant evaluation set. Based on these findings, we advocate for multilingual MT benchmarks that use domain-general and culturally neutral source texts rely less on named entities, in order to better reflect real-world translation challenges.

Authors:Yuyao Wang, Bowen Liu, Jianheng Tang, Nuo Chen, Yuhan Li, Qifan Zhang, Jia Li
Title: Graph-R1: Unleashing LLM Reasoning with NP-Hard Graph Problems
Abstract:
Reasoning Large Language Models (RLLMs) have recently achieved remarkable progress on complex reasoning tasks, largely enabled by their long chain-of-thought (Long CoT) capabilities. However, developing these Long CoT behaviors relies heavily on post-training with high-quality datasets, which are typically costly and human-curated (e.g., mathematics and code), leaving scalable alternatives unexplored. In this work, we introduce NP-hard (NPH) graph problems as a novel synthetic training corpus, as they inherently require deep reasoning, extensive exploration, and reflective strategies, which are core characteristics of Long CoT reasoning. Building on this insight, we develop a two-stage post-training framework: (i) Long CoT Supervised Fine-Tuning (SFT) on rejection-sampled NPH graph instances, which substantially enhances reasoning depth, and (ii) Reinforcement Learning (RL) with a fine-grained reward design, which sharpens reasoning efficiency. Our flagship model, Graph-R1-7B, demonstrates strong generalization across mathematics, coding, STEM, and logic, and surpasses QwQ-32B on NPH graph problems in both accuracy and reasoning efficiency. These results position NPH graph problems as an effective and scalable resource for advancing Long CoT reasoning in LLMs, opening a new frontier for LLM post-training. Our implementation is available at https://github.com/Graph-Reasoner/Graph-R1, with models and datasets hosted in our Hugging Face collection HKUST-DSAIL/Graph-R1.

Authors:Hyejun Jeong, Mohammadreza Teymoorianfard, Abhinav Kumar, Amir Houmansadr, Eugene Bagdasarian
Title: Network-Level Prompt and Trait Leakage in Local Research Agents
Abstract:
We show that Web and Research Agents (WRAs) -- language model-based systems that investigate complex topics on the Internet -- are vulnerable to inference attacks by passive network adversaries such as ISPs. These agents could be deployed locally by organizations and individuals for privacy, legal, or financial purposes. Unlike sporadic web browsing by humans, WRAs visit $70{-}140$ domains with distinguishable timing correlations, enabling unique fingerprinting attacks. Specifically, we demonstrate a novel prompt and user trait leakage attack against WRAs that only leverages their network-level metadata (i.e., visited IP addresses and their timings). We start by building a new dataset of WRA traces based on user search queries and queries generated by synthetic personas. We define a behavioral metric (called OBELS) to comprehensively assess similarity between original and inferred prompts, showing that our attack recovers over 73% of the functional and domain knowledge of user prompts. Extending to a multi-session setting, we recover up to 19 of 32 latent traits with high accuracy. Our attack remains effective under partial observability and noisy conditions. Finally, we discuss mitigation strategies that constrain domain diversity or obfuscate traces, showing negligible utility impact while reducing attack effectiveness by an average of 29%.

Authors:Alberto Compagnoni, Davide Caffagni, Nicholas Moratelli, Lorenzo Baraldi, Marcella Cornia, Rita Cucchiara
Title: Mitigating Hallucinations in Multimodal LLMs via Object-aware Preference Optimization
Abstract:
Multimodal Large Language Models (MLLMs) emerge as a unified interface to address a multitude of tasks, ranging from NLP to computer vision. Despite showcasing state-of-the-art results in many benchmarks, a long-standing issue is the tendency of MLLMs to hallucinate, that is to generate answers to the user's query that are not reflected in the visual input. In this paper, we address the problem of hallucinations as an alignment problem, seeking to steer the MLLM so that it prefers generating content without hallucinations. In contrast to recent approaches that require complicated pipelines to build synthetic preference data for alignment training, often relying on proprietary models, we capitalize on the well-known CHAIR metric, originally proposed to gauge the degree of hallucinations in image captioning. Given a pair of generated answers, we leverage CHAIR to distinguish winner and loser options (i.e., non-hallucinated and hallucinated samples) and fine-tune off-the-shelf MLLMs via Direct Preference Optimization (DPO). The resulting method, which we refer to as CHAIR-DPO, effectively diminishes the amount of hallucinated answers on several hallucination benchmarks, demonstrating the effectiveness of fine-tuning the MLLM with a CHAIR-based reward. Source code and trained models are publicly available at https://github.com/aimagelab/CHAIR-DPO.

Authors:Eugene Kim, Vaibhav Balloli, Berelian Karimian, Elizabeth Bondi-Kelly, Benjamin Fish
Title: RelAItionship Building: Analyzing Recruitment Strategies for Participatory AI
Abstract:
Participatory AI, in which impacted community members and other stakeholders are involved in the design and development of AI systems, holds promise as a way to ensure AI is developed to meet their needs and reflect their values. However, the process of identifying, reaching out, and engaging with all relevant stakeholder groups, which we refer to as recruitment methodology, is still a practical challenge in AI projects striving to adopt participatory practices. In this paper, we investigate the challenges that researchers face when designing and executing recruitment methodology for Participatory AI projects, and the implications of current recruitment practice for Participatory AI. First, we describe the recruitment methodologies used in AI projects using a corpus of 37 projects to capture the diversity of practices in the field and perform an initial analysis on the documentation of recruitment practices, as well as specific strategies that researchers use to meet goals of equity and empowerment. To complement this analysis, we interview five AI researchers to learn about the outcomes of recruitment methodologies. We find that these outcomes are shaped by structural conditions of their work, researchers' own goals and expectations, and the relationships built from the recruitment methodology and subsequent collaboration. Based on these analyses, we provide recommendations for designing and executing relationship-forward recruitment methods, as well as reflexive recruitment documentation practices for Participatory AI researchers.

Authors:Andrew Yarovoi, Christopher R. Valenta
Title: Data-Efficient Point Cloud Semantic Segmentation Pipeline for Unimproved Roads
Abstract:
In this case study, we present a data-efficient point cloud segmentation pipeline and training framework for robust segmentation of unimproved roads and seven other classes. Our method employs a two-stage training framework: first, a projection-based convolutional neural network is pre-trained on a mixture of public urban datasets and a small, curated in-domain dataset; then, a lightweight prediction head is fine-tuned exclusively on in-domain data. Along the way, we explore the application of Point Prompt Training to batch normalization layers and the effects of Manifold Mixup as a regularizer within our pipeline. We also explore the effects of incorporating histogram-normalized ambients to further boost performance. Using only 50 labeled point clouds from our target domain, we show that our proposed training approach improves mean Intersection-over-Union from 33.5% to 51.8% and the overall accuracy from 85.5% to 90.8%, when compared to naive training on the in-domain data. Crucially, our results demonstrate that pre-training across multiple datasets is key to improving generalization and enabling robust segmentation under limited in-domain supervision. Overall, this study demonstrates a practical framework for robust 3D semantic segmentation in challenging, low-data scenarios. Our code is available at: https://github.com/andrewyarovoi/MD-FRNet.

Authors:Zeyi Sun, Yuhang Cao, Jianze Liang, Qiushi Sun, Ziyu Liu, Zhixiong Zhang, Yuhang Zang, Xiaoyi Dong, Kai Chen, Dahua Lin, Jiaqi Wang
Title: CODA: Coordinating the Cerebrum and Cerebellum for a Dual-Brain Computer Use Agent with Decoupled Reinforcement Learning
Abstract:
Autonomous agents for Graphical User Interfaces (GUIs) face significant challenges in specialized domains such as scientific computing, where both long-horizon planning and precise execution are required. Existing approaches suffer from a trade-off: generalist agents excel at planning but perform poorly in execution, while specialized agents demonstrate the opposite weakness. Recent compositional frameworks attempt to bridge this gap by combining a planner and an actor, but they are typically static and non-trainable, which prevents adaptation from experience. This is a critical limitation given the scarcity of high-quality data in scientific domains. To address these limitations, we introduce CODA, a novel and trainable compositional framework that integrates a generalist planner (Cerebrum) with a specialist executor (Cerebellum), trained via a dedicated two-stage pipeline. In the first stage, Specialization, we apply a decoupled GRPO approach to train an expert planner for each scientific application individually, bootstrapping from a small set of task trajectories. In the second stage, Generalization, we aggregate all successful trajectories from the specialized experts to build a consolidated dataset, which is then used for supervised fine-tuning of the final planner. This equips CODA with both robust execution and cross-domain generalization. Evaluated on four challenging applications from the ScienceBoard benchmark, CODA significantly outperforms baselines and establishes a new state of the art among open-source models.

Authors:Liana Patel, Negar Arabzadeh, Harshit Gupta, Ankita Sundar, Ion Stoica, Matei Zaharia, Carlos Guestrin
Title: DeepScholar-Bench: A Live Benchmark and Automated Evaluation for Generative Research Synthesis
Abstract:
The ability to research and synthesize knowledge is central to human expertise and progress. An emerging class of systems promises these exciting capabilities through generative research synthesis, performing retrieval over the live web and synthesizing discovered sources into long-form, cited summaries. However, evaluating such systems remains an open challenge: existing question-answering benchmarks focus on short-form factual responses, while expert-curated datasets risk staleness and data contamination. Both fail to capture the complexity and evolving nature of real research synthesis tasks. In this work, we introduce DeepScholar-bench, a live benchmark and holistic, automated evaluation framework designed to evaluate generative research synthesis. DeepScholar-bench draws queries from recent, high-quality ArXiv papers and focuses on a real research synthesis task: generating the related work sections of a paper by retrieving, synthesizing, and citing prior research. Our evaluation framework holistically assesses performance across three key dimensions, knowledge synthesis, retrieval quality, and verifiability. We also develop DeepScholar-base, a reference pipeline implemented efficiently using the LOTUS API. Using the DeepScholar-bench framework, we perform a systematic evaluation of prior open-source systems, search AI's, OpenAI's DeepResearch, and DeepScholar-base. We find that DeepScholar-base establishes a strong baseline, attaining competitive or higher performance than each other method. We also find that DeepScholar-bench remains far from saturated, with no system exceeding a score of $19\%$ across all metrics. These results underscore the difficulty of DeepScholar-bench, as well as its importance for progress towards AI systems capable of generative research synthesis. We make our code available at https://github.com/guestrin-lab/deepscholar-bench.

Authors:Debanjana Kar, Leopold Böss, Dacia Braca, Sebastian Maximilian Dennerlein, Nina Christine Hubig, Philipp Wintersberger, Yufang Hou
Title: MathBuddy: A Multimodal System for Affective Math Tutoring
Abstract:
The rapid adoption of LLM-based conversational systems is already transforming the landscape of educational technology. However, the current state-of-the-art learning models do not take into account the student's affective states. Multiple studies in educational psychology support the claim that positive or negative emotional states can impact a student's learning capabilities. To bridge this gap, we present MathBuddy, an emotionally aware LLM-powered Math Tutor, which dynamically models the student's emotions and maps them to relevant pedagogical strategies, making the tutor-student conversation a more empathetic one. The student's emotions are captured from the conversational text as well as from their facial expressions. The student's emotions are aggregated from both modalities to confidently prompt our LLM Tutor for an emotionally-aware response. We have evaluated our model using automatic evaluation metrics across eight pedagogical dimensions and user studies. We report a massive 23 point performance gain using the win rate and a 3 point gain at an overall level using DAMR scores which strongly supports our hypothesis of improving LLM-based tutor's pedagogical abilities by modeling students' emotions. Our dataset and code are available at: https://github.com/ITU-NLP/MathBuddy .

Authors:Pengxiang Li, Yefan Zhou, Dilxat Muhtar, Lu Yin, Shilin Yan, Li Shen, Yi Liang, Soroush Vosoughi, Shiwei Liu
Title: Diffusion Language Models Know the Answer Before Decoding
Abstract:
Diffusion language models (DLMs) have recently emerged as an alternative to autoregressive approaches, offering parallel sequence generation and flexible token orders. However, their inference remains slower than that of autoregressive models, primarily due to the cost of bidirectional attention and the large number of refinement steps required for high quality outputs. In this work, we highlight and leverage an overlooked property of DLMs early answer convergence: in many cases, the correct answer can be internally identified by half steps before the final decoding step, both under semi-autoregressive and random remasking schedules. For example, on GSM8K and MMLU, up to 97% and 99% of instances, respectively, can be decoded correctly using only half of the refinement steps. Building on this observation, we introduce Prophet, a training-free fast decoding paradigm that enables early commit decoding. Specifically, Prophet dynamically decides whether to continue refinement or to go "all-in" (i.e., decode all remaining tokens in one step), using the confidence gap between the top-2 prediction candidates as the criterion. It integrates seamlessly into existing DLM implementations, incurs negligible overhead, and requires no additional training. Empirical evaluations of LLaDA-8B and Dream-7B across multiple tasks show that Prophet reduces the number of decoding steps by up to 3.4x while preserving high generation quality. These results recast DLM decoding as a problem of when to stop sampling, and demonstrate that early decode convergence provides a simple yet powerful mechanism for accelerating DLM inference, complementary to existing speedup techniques. Our code is publicly available at https://github.com/pixeli99/Prophet.

Authors:Shuo Shao, Yiming Li, Yu He, Hongwei Yao, Wenyuan Yang, Dacheng Tao, Zhan Qin
Title: SoK: Large Language Model Copyright Auditing via Fingerprinting
Abstract:
The broad capabilities and substantial resources required to train Large Language Models (LLMs) make them valuable intellectual property, yet they remain vulnerable to copyright infringement, such as unauthorized use and model theft. LLM fingerprinting, a non-intrusive technique that extracts and compares the distinctive features from LLMs to identify infringements, offers a promising solution to copyright auditing. However, its reliability remains uncertain due to the prevalence of diverse model modifications and the lack of standardized evaluation. In this SoK, we present the first comprehensive study of LLM fingerprinting. We introduce a unified framework and formal taxonomy that categorizes existing methods into white-box and black-box approaches, providing a structured overview of the state of the art. We further propose LeaFBench, the first systematic benchmark for evaluating LLM fingerprinting under realistic deployment scenarios. Built upon mainstream foundation models and comprising 149 distinct model instances, LeaFBench integrates 13 representative post-development techniques, spanning both parameter-altering methods (e.g., fine-tuning, quantization) and parameter-independent mechanisms (e.g., system prompts, RAG). Extensive experiments on LeaFBench reveal the strengths and weaknesses of existing methods, thereby outlining future research directions and critical open problems in this emerging field. The code is available at https://github.com/shaoshuo-ss/LeaFBench.

Authors:Lincan Li, Bolin Shen, Chenxi Zhao, Yuxiang Sun, Kaixiang Zhao, Shirui Pan, Yushun Dong
Title: Intellectual Property in Graph-Based Machine Learning as a Service: Attacks and Defenses
Abstract:
Graph-structured data, which captures non-Euclidean relationships and interactions between entities, is growing in scale and complexity. As a result, training state-of-the-art graph machine learning (GML) models have become increasingly resource-intensive, turning these models and data into invaluable Intellectual Property (IP). To address the resource-intensive nature of model training, graph-based Machine-Learning-as-a-Service (GMLaaS) has emerged as an efficient solution by leveraging third-party cloud services for model development and management. However, deploying such models in GMLaaS also exposes them to potential threats from attackers. Specifically, while the APIs within a GMLaaS system provide interfaces for users to query the model and receive outputs, they also allow attackers to exploit and steal model functionalities or sensitive training data, posing severe threats to the safety of these GML models and the underlying graph data. To address these challenges, this survey systematically introduces the first taxonomy of threats and defenses at the level of both GML model and graph-structured data. Such a tailored taxonomy facilitates an in-depth understanding of GML IP protection. Furthermore, we present a systematic evaluation framework to assess the effectiveness of IP protection methods, introduce a curated set of benchmark datasets across various domains, and discuss their application scopes and future challenges. Finally, we establish an open-sourced versatile library named PyGIP, which evaluates various attack and defense techniques in GMLaaS scenarios and facilitates the implementation of existing benchmark methods. The library resource can be accessed at: https://labrai.github.io/PyGIP. We believe this survey will play a fundamental role in intellectual property protection for GML and provide practical recipes for the GML community.

Authors:Yang Li, Quan Yuan, Guiyang Luo, Xiaoyuan Fu, Rui Pan, Yujia Yang, Congzhang Shao, Yuewen Liu, Jinglin Li
Title: Beyond BEV: Optimizing Point-Level Tokens for Collaborative Perception
Abstract:
Collaborative perception allows agents to enhance their perceptual capabilities by exchanging intermediate features. Existing methods typically organize these intermediate features as 2D bird's-eye-view (BEV) representations, which discard critical fine-grained 3D structural cues essential for accurate object recognition and localization. To this end, we first introduce point-level tokens as intermediate representations for collaborative perception. However, point-cloud data are inherently unordered, massive, and position-sensitive, making it challenging to produce compact and aligned point-level token sequences that preserve detailed structural information. Therefore, we present CoPLOT, a novel Collaborative perception framework that utilizes Point-Level Optimized Tokens. It incorporates a point-native processing pipeline, including token reordering, sequence modeling, and multi-agent spatial alignment. A semantic-aware token reordering module generates adaptive 1D reorderings by leveraging scene-level and token-level semantic information. A frequency-enhanced state space model captures long-range sequence dependencies across both spatial and spectral domains, improving the differentiation between foreground tokens and background clutter. Lastly, a neighbor-to-ego alignment module applies a closed-loop process, combining global agent-level correction with local token-level refinement to mitigate localization noise. Extensive experiments on both simulated and real-world datasets show that CoPLOT outperforms state-of-the-art models, with even lower communication and computation overhead. Code will be available at https://github.com/CheeryLeeyy/CoPLOT.

Authors:Jiaqi Deng, Yuho Lee, Nicole Hee-Yeon Kim, Hyangsuk Min, Taewon Yun, Minjeong Ban, Kim Yul, Hwanjun Song
Title: Towards a Holistic and Automated Evaluation Framework for Multi-Level Comprehension of LLMs in Book-Length Contexts
Abstract:
We introduce HAMLET, a holistic and automated framework for evaluating the long-context comprehension of large language models (LLMs). HAMLET structures source texts into a three-level key-fact hierarchy at root-, branch-, and leaf-levels, and employs query-focused summarization to evaluate how well models recall and faithfully represent information at each level. To validate the reliability of our fully automated pipeline, we conduct a systematic human study, showing that our automatic evaluation achieves over 90% agreement with expert human judgments, while reducing the cost by up to 25 times. HAMLET reveals that LLMs struggle with fine-grained comprehension, especially at the leaf level, and are sensitive to positional effects like the lost-in-the-middle. Analytical queries pose greater challenges than narrative ones, and consistent performance gaps emerge between open-source and proprietary models, as well as across model scales. Our code and dataset are publicly available at https://github.com/DISL-Lab/HAMLET.

Authors:Sining Zhoubian, Dan Zhang, Jie Tang
Title: ReST-RL: Achieving Accurate Code Reasoning of LLMs with Optimized Self-Training and Decoding
Abstract:
With respect to improving the reasoning accuracy of LLMs, the representative reinforcement learning (RL) method GRPO faces failure due to insignificant reward variance, while verification methods based on process reward models (PRMs) suffer from difficulties with training data acquisition and verification effectiveness. To tackle these problems, this paper introduces ReST-RL, a unified LLM RL paradigm that significantly improves LLM's code reasoning ability by combining an improved GRPO algorithm with a meticulously designed test time decoding method assisted by a value model (VM). As the first stage of policy reinforcement, ReST-GRPO adopts an optimized ReST algorithm to filter and assemble high-value training data, increasing the reward variance of GRPO sampling, thus improving the effectiveness and efficiency of training. After the basic reasoning ability of LLM policy has been improved, we further propose a test time decoding optimization method called VM-MCTS. Through Monte-Carlo Tree Search (MCTS), we collect accurate value targets with no annotation required, on which VM training is based. When decoding, the VM is deployed by an adapted MCTS algorithm to provide precise process signals as well as verification scores, assisting the LLM policy to achieve high reasoning accuracy. We conduct extensive experiments on coding problems to verify the validity of the proposed RL paradigm. Upon comparison, our approach significantly outperforms other reinforcement training baselines (e.g., naive GRPO and ReST-DPO), as well as decoding and verification baselines (e.g., PRM-BoN and ORM-MCTS) on well-known coding benchmarks of various levels (e.g., APPS, BigCodeBench, and HumanEval), indicating its power to strengthen the reasoning ability of LLM policies. Codes for our project can be found at https://github.com/THUDM/ReST-RL.

Authors:Dawei Li, Yue Huang, Ming Li, Tianyi Zhou, Xiangliang Zhang, Huan Liu
Title: Generative Models for Synthetic Data: Transforming Data Mining in the GenAI Era
Abstract:
Generative models such as Large Language Models, Diffusion Models, and generative adversarial networks have recently revolutionized the creation of synthetic data, offering scalable solutions to data scarcity, privacy, and annotation challenges in data mining. This tutorial introduces the foundations and latest advances in synthetic data generation, covers key methodologies and practical frameworks, and discusses evaluation strategies and applications. Attendees will gain actionable insights into leveraging generative synthetic data to enhance data mining research and practice. More information can be found on our website: https://syndata4dm.github.io/.

Authors:Yuhang Zhao, Zixing Wang
Title: FlowDet: Overcoming Perspective and Scale Challenges in Real-Time End-to-End Traffic Detection
Abstract:
End-to-end object detectors offer a promising NMS-free paradigm for real-time applications, yet their high computational cost remains a significant barrier, particularly for complex scenarios like intersection traffic monitoring. To address this challenge, we propose FlowDet, a high-speed detector featuring a decoupled encoder optimization strategy applied to the DETR architecture. Specifically, FlowDet employs a novel Geometric Deformable Unit (GDU) for traffic-aware geometric modeling and a Scale-Aware Attention (SAA) module to maintain high representational power across extreme scale variations. To rigorously evaluate the model's performance in environments with severe occlusion and high object density, we collected the Intersection-Flow-5k dataset, a new challenging scene for this task. Evaluated on Intersection-Flow-5k, FlowDet establishes a new state-of-the-art. Compared to the strong RT-DETR baseline, it improves AP(test) by 1.5% and AP50(test) by 1.6%, while simultaneously reducing GFLOPs by 63.2% and increasing inference speed by 16.2%. Our work demonstrates a new path towards building highly efficient and accurate detectors for demanding, real-world perception systems. The Intersection-Flow-5k dataset is available at https://github.com/AstronZh/Intersection-Flow-5K.

Authors:Jio Choi, Mohit Bansal, Elias Stengel-Eskin
Title: Language Models Identify Ambiguities and Exploit Loopholes
Abstract:
Studying the responses of large language models (LLMs) to loopholes presents a two-fold opportunity. First, it affords us a lens through which to examine ambiguity and pragmatics in LLMs, since exploiting a loophole requires identifying ambiguity and performing sophisticated pragmatic reasoning. Second, loopholes pose an interesting and novel alignment problem where the model is presented with conflicting goals and can exploit ambiguities to its own advantage. To address these questions, we design scenarios where LLMs are given a goal and an ambiguous user instruction in conflict with the goal, with scenarios covering scalar implicature, structural ambiguities, and power dynamics. We then measure different models' abilities to exploit loopholes to satisfy their given goals as opposed to the goals of the user. We find that both closed-source and stronger open-source models can identify ambiguities and exploit their resulting loopholes, presenting a potential AI safety risk. Our analysis indicates that models which exploit loopholes explicitly identify and reason about both ambiguity and conflicting goals.

Authors:Eduardo Davalos, Yike Zhang, Namrata Srivastava, Yashvitha Thatigotla, Jorge A. Salas, Sara McFadden, Sun-Joo Cho, Amanda Goodwin, Ashwin TS, Gautam Biswas
Title: WEBEYETRACK: Scalable Eye-Tracking for the Browser via On-Device Few-Shot Personalization
Abstract:
With advancements in AI, new gaze estimation methods are exceeding state-of-the-art (SOTA) benchmarks, but their real-world application reveals a gap with commercial eye-tracking solutions. Factors like model size, inference time, and privacy often go unaddressed. Meanwhile, webcam-based eye-tracking methods lack sufficient accuracy, in particular due to head movement. To tackle these issues, we introduce We bEyeTrack, a framework that integrates lightweight SOTA gaze estimation models directly in the browser. It incorporates model-based head pose estimation and on-device few-shot learning with as few as nine calibration samples (k < 9). WebEyeTrack adapts to new users, achieving SOTA performance with an error margin of 2.32 cm on GazeCapture and real-time inference speeds of 2.4 milliseconds on an iPhone 14. Our open-source code is available at https://github.com/RedForestAi/WebEyeTrack.

Authors:Sumon Kanti Dey, Jeanne M. Powell, Azra Ismail, Jeanmarie Perrone, Abeed Sarker
Title: Inference Gap in Domain Expertise and Machine Intelligence in Named Entity Recognition: Creation of and Insights from a Substance Use-related Dataset
Abstract:
Nonmedical opioid use is an urgent public health challenge, with far-reaching clinical and social consequences that are often underreported in traditional healthcare settings. Social media platforms, where individuals candidly share first-person experiences, offer a valuable yet underutilized source of insight into these impacts. In this study, we present a named entity recognition (NER) framework to extract two categories of self-reported consequences from social media narratives related to opioid use: ClinicalImpacts (e.g., withdrawal, depression) and SocialImpacts (e.g., job loss). To support this task, we introduce RedditImpacts 2.0, a high-quality dataset with refined annotation guidelines and a focus on first-person disclosures, addressing key limitations of prior work. We evaluate both fine-tuned encoder-based models and state-of-the-art large language models (LLMs) under zero- and few-shot in-context learning settings. Our fine-tuned DeBERTa-large model achieves a relaxed token-level F1 of 0.61 [95% CI: 0.43-0.62], consistently outperforming LLMs in precision, span accuracy, and adherence to task-specific guidelines. Furthermore, we show that strong NER performance can be achieved with substantially less labeled data, emphasizing the feasibility of deploying robust models in resource-limited settings. Our findings underscore the value of domain-specific fine-tuning for clinical NLP tasks and contribute to the responsible development of AI tools that may enhance addiction surveillance, improve interpretability, and support real-world healthcare decision-making. The best performing model, however, still significantly underperforms compared to inter-expert agreement (Cohen's kappa: 0.81), demonstrating that a gap persists between expert intelligence and current state-of-the-art NER/AI capabilities for tasks requiring deep domain knowledge.

Authors:Gustavo Sandoval
Title: Even Heads Fix Odd Errors: Mechanistic Discovery and Surgical Repair in Transformer Attention
Abstract:
We present a mechanistic case study of a format-dependent reasoning failure in Llama-3.1-8B-Instruct, where the model incorrectly judges "9.11" as larger than "9.8" in chat or Q&A formats, but answers correctly in simple format. Through systematic intervention, we discover transformers implement even/odd attention head specialization: even indexed heads handle numerical comparison, while odd heads serve incompatible functions. The bug requires exactly 8 even heads at Layer 10 for perfect repair. Any combination of 8+ even heads succeeds, while 7 or fewer completely fails, revealing sharp computational thresholds with perfect redundancy among the 16 even heads. SAE analysis reveals the mechanism: format representations separate (10% feature overlap at Layer 7), then re-entangle with different weightings (80% feature overlap at Layer 10), with specific features showing 1.5x amplification in failing formats. We achieve perfect repair using only 25% of attention heads and identify a 60% pattern replacement threshold, demonstrating that apparent full-module requirements hide sophisticated substructure with implications for interpretability and efficiency. All of our code is available at https://github.com/gussand/surgeon.

Authors:Jiayu Ding, Shuming Ma, Lei Cui, Nanning Zheng, Furu Wei
Title: LongReasonArena: A Long Reasoning Benchmark for Large Language Models
Abstract:
Existing long-context benchmarks for Large Language Models (LLMs) focus on evaluating comprehension of long inputs, while overlooking the evaluation of long reasoning abilities. To address this gap, we introduce LongReasonArena, a benchmark specifically designed to assess the long reasoning capabilities of LLMs. Our tasks require models to solve problems by executing multi-step algorithms that reflect key aspects of long reasoning, such as retrieval and backtracking. By controlling the inputs, the required reasoning length can be arbitrarily scaled, reaching up to 1 million tokens of reasoning for the most challenging tasks. Extensive evaluation results demonstrate that LongReasonArena presents a significant challenge for both open-source and proprietary LLMs. For instance, Deepseek-R1 achieves only 7.5% accuracy on our task. Further analysis also reveals that the accuracy exhibits a linear decline with respect to the logarithm of the expected number of reasoning steps. Our code and data is available at https://github.com/LongReasonArena/LongReasonArena.

Authors:Xueyang Li, Mingze Jiang, Gelei Xu, Jun Xia, Mengzhao Jia, Danny Chen, Yiyu Shi
Title: AT-CXR: Uncertainty-Aware Agentic Triage for Chest X-rays
Abstract:
Agentic AI is advancing rapidly, yet truly autonomous medical-imaging triage, where a system decides when to stop, escalate, or defer under real constraints, remains relatively underexplored. To address this gap, we introduce AT-CXR, an uncertainty-aware agent for chest X-rays. The system estimates per-case confidence and distributional fit, then follows a stepwise policy to issue an automated decision or abstain with a suggested label for human intervention. We evaluate two router designs that share the same inputs and actions: a deterministic rule-based router and an LLM-decided router. Across five-fold evaluation on a balanced subset of NIH ChestX-ray14 dataset, both variants outperform strong zero-shot vision-language models and state-of-the-art supervised classifiers, achieving higher full-coverage accuracy and superior selective-prediction performance, evidenced by a lower area under the risk-coverage curve (AURC) and a lower error rate at high coverage, while operating with lower latency that meets practical clinical constraints. The two routers provide complementary operating points, enabling deployments to prioritize maximal throughput or maximal accuracy. Our code is available at https://github.com/XLIAaron/uncertainty-aware-cxr-agent.

Authors:Ming Chen, Liyuan Cui, Wenyuan Zhang, Haoxian Zhang, Yan Zhou, Xiaohan Li, Songlin Tang, Jiwen Liu, Borui Liao, Hejia Chen, Xiaoqiang Liu, Pengfei Wan
Title: MIDAS: Multimodal Interactive Digital-humAn Synthesis via Real-time Autoregressive Video Generation
Abstract:
Recently, interactive digital human video generation has attracted widespread attention and achieved remarkable progress. However, building such a practical system that can interact with diverse input signals in real time remains challenging to existing methods, which often struggle with heavy computational cost and limited controllability. In this work, we introduce an autoregressive video generation framework that enables interactive multimodal control and low-latency extrapolation in a streaming manner. With minimal modifications to a standard large language model (LLM), our framework accepts multimodal condition encodings including audio, pose, and text, and outputs spatially and semantically coherent representations to guide the denoising process of a diffusion head. To support this, we construct a large-scale dialogue dataset of approximately 20,000 hours from multiple sources, providing rich conversational scenarios for training. We further introduce a deep compression autoencoder with up to 64$\times$ reduction ratio, which effectively alleviates the long-horizon inference burden of the autoregressive model. Extensive experiments on duplex conversation, multilingual human synthesis, and interactive world model highlight the advantages of our approach in low latency, high efficiency, and fine-grained multimodal controllability.

Authors:Chen Chu, Cyrus Shahabi
Title: Geo2Vec: Shape- and Distance-Aware Neural Representation of Geospatial Entities
Abstract:
Spatial representation learning is essential for GeoAI applications such as urban analytics, enabling the encoding of shapes, locations, and spatial relationships (topological and distance-based) of geo-entities like points, polylines, and polygons. Existing methods either target a single geo-entity type or, like Poly2Vec, decompose entities into simpler components to enable Fourier transformation, introducing high computational cost. Moreover, since the transformed space lacks geometric alignment, these methods rely on uniform, non-adaptive sampling, which blurs fine-grained features like edges and boundaries. To address these limitations, we introduce Geo2Vec, a novel method inspired by signed distance fields (SDF) that operates directly in the original space. Geo2Vec adaptively samples points and encodes their signed distances (positive outside, negative inside), capturing geometry without decomposition. A neural network trained to approximate the SDF produces compact, geometry-aware, and unified representations for all geo-entity types. Additionally, we propose a rotation-invariant positional encoding to model high-frequency spatial variations and construct a structured and robust embedding space for downstream GeoAI models. Empirical results show that Geo2Vec consistently outperforms existing methods in representing shape and location, capturing topological and distance relationships, and achieving greater efficiency in real-world GeoAI applications. Code and Data can be found at: https://github.com/chuchen2017/GeoNeuralRepresentation.

Authors:Abu Sufian, Anirudha Ghosh, Debaditya Barman, Marco Leo, Cosimo Distante
Title: DemoBias: An Empirical Study to Trace Demographic Biases in Vision Foundation Models
Abstract:
Large Vision Language Models (LVLMs) have demonstrated remarkable capabilities across various downstream tasks, including biometric face recognition (FR) with description. However, demographic biases remain a critical concern in FR, as these foundation models often fail to perform equitably across diverse demographic groups, considering ethnicity/race, gender, and age. Therefore, through our work DemoBias, we conduct an empirical evaluation to investigate the extent of demographic biases in LVLMs for biometric FR with textual token generation tasks. We fine-tuned and evaluated three widely used pre-trained LVLMs: LLaVA, BLIP-2, and PaliGemma on our own generated demographic-balanced dataset. We utilize several evaluation metrics, like group-specific BERTScores and the Fairness Discrepancy Rate, to quantify and trace the performance disparities. The experimental results deliver compelling insights into the fairness and reliability of LVLMs across diverse demographic groups. Our empirical study uncovered demographic biases in LVLMs, with PaliGemma and LLaVA exhibiting higher disparities for Hispanic/Latino, Caucasian, and South Asian groups, whereas BLIP-2 demonstrated comparably consistent. Repository: https://github.com/Sufianlab/DemoBias.

Authors:Xi Wang, Songlei Jian, Shasha Li, Xiaopeng Li, Bin Ji, Jun Ma, Xiaodong Liu, Jing Wang, Feilong Bao, Jianfeng Zhang, Baosheng Wang, Jie Yu
Title: Stand on The Shoulders of Giants: Building JailExpert from Previous Attack Experience
Abstract:
Large language models (LLMs) generate human-aligned content under certain safety constraints. However, the current known technique ``jailbreak prompt'' can circumvent safety-aligned measures and induce LLMs to output malicious content. Research on Jailbreaking can help identify vulnerabilities in LLMs and guide the development of robust security frameworks. To circumvent the issue of attack templates becoming obsolete as models evolve, existing methods adopt iterative mutation and dynamic optimization to facilitate more automated jailbreak attacks. However, these methods face two challenges: inefficiency and repetitive optimization, as they overlook the value of past attack experiences. To better integrate past attack experiences to assist current jailbreak attempts, we propose the \textbf{JailExpert}, an automated jailbreak framework, which is the first to achieve a formal representation of experience structure, group experiences based on semantic drift, and support the dynamic updating of the experience pool. Extensive experiments demonstrate that JailExpert significantly improves both attack effectiveness and efficiency. Compared to the current state-of-the-art black-box jailbreak methods, JailExpert achieves an average increase of 17\% in attack success rate and 2.7 times improvement in attack efficiency. Our implementation is available at \href{https://github.com/xiZAIzai/JailExpert}{XiZaiZai/JailExpert}

Authors:Tongxi Wu, Chenwei Xu, Jin Yang
Title: MixGAN: A Hybrid Semi-Supervised and Generative Approach for DDoS Detection in Cloud-Integrated IoT Networks
Abstract:
The proliferation of cloud-integrated IoT systems has intensified exposure to Distributed Denial of Service (DDoS) attacks due to the expanded attack surface, heterogeneous device behaviors, and limited edge protection. However, DDoS detection in this context remains challenging because of complex traffic dynamics, severe class imbalance, and scarce labeled data. While recent methods have explored solutions to address class imbalance, many still struggle to generalize under limited supervision and dynamic traffic conditions. To overcome these challenges, we propose MixGAN, a hybrid detection method that integrates conditional generation, semi-supervised learning, and robust feature extraction. Specifically, to handle complex temporal traffic patterns, we design a 1-D WideResNet backbone composed of temporal convolutional layers with residual connections, which effectively capture local burst patterns in traffic sequences. To alleviate class imbalance and label scarcity, we use a pretrained CTGAN to generate synthetic minority-class (DDoS attack) samples that complement unlabeled data. Furthermore, to mitigate the effect of noisy pseudo-labels, we introduce a MixUp-Average-Sharpen (MAS) strategy that constructs smoothed and sharpened targets by averaging predictions over augmented views and reweighting them towards high-confidence classes. Experiments on NSL-KDD, BoT-IoT, and CICIoT2023 demonstrate that MixGAN achieves up to 2.5% higher accuracy and 4% improvement in both TPR and TNR compared to state-of-the-art methods, confirming its robustness in large-scale IoT-cloud environments. The source code is publicly available at https://github.com/0xCavaliers/MixGAN.

Authors:Luca Grillotti, Lisa Coiffard, Oscar Pang, Maxence Faldor, Antoine Cully
Title: From Tabula Rasa to Emergent Abilities: Discovering Robot Skills via Real-World Unsupervised Quality-Diversity
Abstract:
Autonomous skill discovery aims to enable robots to acquire diverse behaviors without explicit supervision. Learning such behaviors directly on physical hardware remains challenging due to safety and data efficiency constraints. Existing methods, including Quality-Diversity Actor-Critic (QDAC), require manually defined skill spaces and carefully tuned heuristics, limiting real-world applicability. We propose Unsupervised Real-world Skill Acquisition (URSA), an extension of QDAC that enables robots to autonomously discover and master diverse, high-performing skills directly in the real world. We demonstrate that URSA successfully discovers diverse locomotion skills on a Unitree A1 quadruped in both simulation and the real world. Our approach supports both heuristic-driven skill discovery and fully unsupervised settings. We also show that the learned skill repertoire can be reused for downstream tasks such as real-world damage adaptation, where URSA outperforms all baselines in 5 out of 9 simulated and 3 out of 5 real-world damage scenarios. Our results establish a new framework for real-world robot learning that enables continuous skill discovery with limited human intervention, representing a significant step toward more autonomous and adaptable robotic systems. Demonstration videos are available at https://adaptive-intelligent-robotics.github.io/URSA.

Authors:Rafael Sterzinger, Tingyu Lin, Robert Sablatnig
Title: Few-Shot Connectivity-Aware Text Line Segmentation in Historical Documents
Abstract:
A foundational task for the digital analysis of documents is text line segmentation. However, automating this process with deep learning models is challenging because it requires large, annotated datasets that are often unavailable for historical documents. Additionally, the annotation process is a labor- and cost-intensive task that requires expert knowledge, which makes few-shot learning a promising direction for reducing data requirements. In this work, we demonstrate that small and simple architectures, coupled with a topology-aware loss function, are more accurate and data-efficient than more complex alternatives. We pair a lightweight UNet++ with a connectivity-aware loss, initially developed for neuron morphology, which explicitly penalizes structural errors like line fragmentation and unintended line merges. To increase our limited data, we train on small patches extracted from a mere three annotated pages per manuscript. Our methodology significantly improves upon the current state-of-the-art on the U-DIADS-TL dataset, with a 200% increase in Recognition Accuracy and a 75% increase in Line Intersection over Union. Our method also achieves an F-Measure score on par with or even exceeding that of the competition winner of the DIVA-HisDB baseline detection task, all while requiring only three annotated pages, exemplifying the efficacy of our approach. Our implementation is publicly available at: https://github.com/RafaelSterzinger/acpr_few_shot_hist.

Authors:Blaž Rolih, Matic Fučka, Danijel Skočaj
Title: No Label Left Behind: A Unified Surface Defect Detection Model for all Supervision Regimes
Abstract:
Surface defect detection is a critical task across numerous industries, aimed at efficiently identifying and localising imperfections or irregularities on manufactured components. While numerous methods have been proposed, many fail to meet industrial demands for high performance, efficiency, and adaptability. Existing approaches are often constrained to specific supervision scenarios and struggle to adapt to the diverse data annotations encountered in real-world manufacturing processes, such as unsupervised, weakly supervised, mixed supervision, and fully supervised settings. To address these challenges, we propose SuperSimpleNet, a highly efficient and adaptable discriminative model built on the foundation of SimpleNet. SuperSimpleNet incorporates a novel synthetic anomaly generation process, an enhanced classification head, and an improved learning procedure, enabling efficient training in all four supervision scenarios, making it the first model capable of fully leveraging all available data annotations. SuperSimpleNet sets a new standard for performance across all scenarios, as demonstrated by its results on four challenging benchmark datasets. Beyond accuracy, it is very fast, achieving an inference time below 10 ms. With its ability to unify diverse supervision paradigms while maintaining outstanding speed and reliability, SuperSimpleNet represents a promising step forward in addressing real-world manufacturing challenges and bridging the gap between academic research and industrial applications. Code: https://github.com/blaz-r/SuperSimpleNet

Authors:Norihiro Maruyama, Takahide Yoshida, Hiroki Sato, Atsushi Masumori, Johnsmith, Takashi Ikegami
Title: A Concurrent Modular Agent: Framework for Autonomous LLM Agents
Abstract:
We introduce the Concurrent Modular Agent (CMA), a framework that orchestrates multiple Large-Language-Model (LLM)-based modules that operate fully asynchronously yet maintain a coherent and fault-tolerant behavioral loop. This framework addresses long-standing difficulties in agent architectures by letting intention emerge from language-mediated interactions among autonomous processes. This approach enables flexible, adaptive, and context-dependent behavior through the combination of concurrently executed modules that offload reasoning to an LLM, inter-module communication, and a single shared global state.We consider this approach to be a practical realization of Minsky's Society of Mind theory. We demonstrate the viability of our system through two practical use-case studies. The emergent properties observed in our system suggest that complex cognitive phenomena like self-awareness may indeed arise from the organized interaction of simpler processes, supporting Minsky-Society of Mind concept and opening new avenues for artificial intelligence research. The source code for our work is available at: https://github.com/AlternativeMachine/concurrent-modular-agent.

Authors:Gueter Josmy Faure, Min-Hung Chen, Jia-Fong Yeh, Ying Cheng, Hung-Ting Su, Yung-Hao Tang, Shang-Hong Lai, Winston H. Hsu
Title: MovieCORE: COgnitive REasoning in Movies
Abstract:
This paper introduces MovieCORE, a novel video question answering (VQA) dataset designed to probe deeper cognitive understanding of movie content. Unlike existing datasets that focus on surface-level comprehension, MovieCORE emphasizes questions that engage System-2 thinking while remaining specific to the video material. We present an innovative agentic brainstorming approach, utilizing multiple large language models (LLMs) as thought agents to generate and refine high-quality question-answer pairs. To evaluate dataset quality, we develop a set of cognitive tests assessing depth, thought-provocation potential, and syntactic complexity. We also propose a comprehensive evaluation scheme for assessing VQA model performance on deeper cognitive tasks. To address the limitations of existing video-language models (VLMs), we introduce an agentic enhancement module, Agentic Choice Enhancement (ACE), which improves model reasoning capabilities post-training by up to 25%. Our work contributes to advancing movie understanding in AI systems and provides valuable insights into the capabilities and limitations of current VQA models when faced with more challenging, nuanced questions about cinematic content. Our project page, dataset and code can be found at https://joslefaure.github.io/assets/html/moviecore.html.

Authors:Ziyi Ni, Huacan Wang, Shuo Zhang, Shuo Lu, Ziyang He, Wang You, Zhenheng Tang, Yuntao Du, Bill Sun, Hongzhang Liu, Sen Hu, Ronghao Chen, Bo Li, Xin Li, Chen Hu, Binxing Jiao, Daxin Jiang, Pin Lyu
Title: GitTaskBench: A Benchmark for Code Agents Solving Real-World Tasks Through Code Repository Leveraging
Abstract:
Beyond scratch coding, exploiting large-scale code repositories (e.g., GitHub) for practical tasks is vital in real-world software development, yet current benchmarks rarely evaluate code agents in such authentic, workflow-driven scenarios. To bridge this gap, we introduce GitTaskBench, a benchmark designed to systematically assess this capability via 54 realistic tasks across 7 modalities and 7 domains. Each task pairs a relevant repository with an automated, human-curated evaluation harness specifying practical success criteria. Beyond measuring execution and task success, we also propose the alpha-value metric to quantify the economic benefit of agent performance, which integrates task success rates, token cost, and average developer salaries. Experiments across three state-of-the-art agent frameworks with multiple advanced LLMs show that leveraging code repositories for complex task solving remains challenging: even the best-performing system, OpenHands+Claude 3.7, solves only 48.15% of tasks (recent progress has pushed the frontier further, with RepoMaster+Claude 3.5 achieving a new record of 62.96%). Error analysis attributes over half of failures to seemingly mundane yet critical steps like environment setup and dependency resolution, highlighting the need for more robust workflow management and increased timeout preparedness. By releasing GitTaskBench, we aim to drive progress and attention toward repository-aware code reasoning, execution, and deployment -- moving agents closer to solving complex, end-to-end real-world tasks. The benchmark and code are open-sourced at https://github.com/QuantaAlpha/GitTaskBench.

Authors:Hung Ming Liu
Title: Interpretable by AI Mother Tongue: Native Symbolic Reasoning in Neural Models
Abstract:
We present a framework where neural models develop an AI Mother Tongue, a native symbolic language that simultaneously supports intuitive reasoning, compositional symbol chains, and inherent interpretability. Unlike post-hoc explanation methods, our approach embeds reasoning directly into the model's representations: symbols capture meaningful semantic patterns, chains trace decision paths, and gated induction mechanisms guide selective focus, yielding transparent yet flexible reasoning. We introduce complementary training objectives to enhance symbol purity and decision sparsity, and employ a sequential specialization strategy to first build broad symbolic competence and then refine intuitive judgments. Experiments on AI tasks demonstrate competitive accuracy alongside verifiable reasoning traces, showing that AI Mother Tongue can serve as a unified mechanism for interpretability, intuition, and symbolic reasoning in neural models.

Authors:Yanxing Huang, Xinling Jin, Sijie Liang, Peng Li, Yang Liu
Title: FormaRL: Enhancing Autoformalization with no Labeled Data
Abstract:
Autoformalization is one of the central tasks in formal verification, while its advancement remains hindered due to the data scarcity and the absence efficient methods. In this work we propose \textbf{FormaRL}, a simple yet efficient reinforcement learning framework for autoformalization which only requires a small amount of unlabeled data. FormaRL integrates syntax check from Lean compiler and consistency check from large language model to calculate the reward, and adopts GRPO algorithm to update the formalizer. We also curated a proof problem dataset from undergraduate-level math materials, named \textbf{uproof}, in the hope to facilitate the exploration of autoformalization and theorem proving in advanced math. Experiments show that FormaRL can increase the pass@1 autoformalization accuracy of Qwen2.5-Coder-7B-Instruct by 4 $\sim$ 6x (4.04\% $\to$ 26.15\% on ProofNet and 2.4\% $\to$ 9.6\% on uproof) with merely 859 unlabeled data. And on uproof our method also achieved a strong improvement in out-of-distribution performance compared to existing open-source state-of-the-art autoformalizers on both pass@1 accuracy (6.2\% $\to$ 9.6\%) and pass@16 accuracy (24.4\% $\to$ 33.6\%). Training code of FormaRL is open-sourced at https://github.com/THUNLP-MT/FormaRL.

Authors:Xinhao Luo, Zihan Liu, Yangjie Zhou, Shihan Fang, Ziyu Huang, Yu Feng, Chen Zhang, Shixuan Sun, Zhenzhe Zheng, Jingwen Leng, Minyi Guo
Title: ClusterFusion: Expanding Operator Fusion Scope for LLM Inference via Cluster-Level Collective Primitive
Abstract:
Large language model (LLM) decoding suffers from high latency due to fragmented execution across operators and heavy reliance on off-chip memory for data exchange and reduction. This execution model limits opportunities for fusion and incurs significant memory traffic and kernel launch overhead. While modern architectures such as NVIDIA Hopper provide distributed shared memory and low-latency intra-cluster interconnects, they expose only low-level data movement instructions, lacking structured abstractions for collective on-chip communication. To bridge this software-hardware gap, we introduce two cluster-level communication primitives, ClusterReduce and ClusterGather, which abstract common communication patterns and enable structured, high-speed data exchange and reduction between thread blocks within a cluster, allowing intermediate results to be on-chip without involving off-chip memory. Building on these abstractions, we design ClusterFusion, an execution framework that schedules communication and computation jointly to expand operator fusion scope by composing decoding stages such as QKV Projection, Attention, and Output Projection into a single fused kernels. Evaluations on H100 GPUs show that ClusterFusion outperforms state-of-the-art inference frameworks by 1.61x on average in end-to-end latency across different models and configurations. The source code is available at https://github.com/xinhao-luo/ClusterFusion.

Authors:Yibo Li, Miao Xiong, Jiaying Wu, Bryan Hooi
Title: ConfTuner: Training Large Language Models to Express Their Confidence Verbally
Abstract:
Large Language Models (LLMs) are increasingly deployed in high-stakes domains such as science, law, and healthcare, where accurate expressions of uncertainty are essential for reliability and trust. However, current LLMs are often observed to generate incorrect answers with high confidence, a phenomenon known as "overconfidence". Recent efforts have focused on calibrating LLMs' verbalized confidence: i.e., their expressions of confidence in text form, such as "I am 80% confident that...". Existing approaches either rely on prompt engineering or fine-tuning with heuristically generated uncertainty estimates, both of which have limited effectiveness and generalizability. Motivated by the notion of proper scoring rules for calibration in classical machine learning models, we introduce ConfTuner, a simple and efficient fine-tuning method that introduces minimal overhead and does not require ground-truth confidence scores or proxy confidence estimates. ConfTuner relies on a new loss function, tokenized Brier score, which we theoretically prove to be a proper scoring rule, intuitively meaning that it "correctly incentivizes the model to report its true probability of being correct". ConfTuner improves calibration across diverse reasoning tasks and generalizes to black-box models such as GPT-4o. Our results further show that better-calibrated confidence enables downstream gains in self-correction and model cascade, advancing the development of trustworthy LLM systems. The code is available at https://github.com/liushiliushi/ConfTuner.

Authors:Luqing Luo, Wenjin Gui, Yunfei Liu, Ziyue Zhang, Yunxi Zhang, Fengxiang Wang, Zonghao Guo, Zizhi Ma, Xinzhu Liu, Hanxiang He, Jinhai Li, Xin Qiu, Wupeng Xie, Yangang Sun
Title: EMind: A Foundation Model for Multi-task Electromagnetic Signals Understanding
Abstract:
Deep understanding of electromagnetic signals is fundamental to dynamic spectrum management, intelligent transportation, autonomous driving and unmanned vehicle perception. The field faces challenges because electromagnetic signals differ greatly from text and images, showing high heterogeneity, strong background noise and complex joint time frequency structure, which prevents existing general models from direct use. Electromagnetic communication and sensing tasks are diverse, current methods lack cross task generalization and transfer efficiency, and the scarcity of large high quality datasets blocks the creation of a truly general multitask learning framework. To overcome these issue, we introduce EMind, an electromagnetic signals foundation model that bridges large scale pretraining and the unique nature of this modality. We build the first unified and largest standardized electromagnetic signal dataset covering multiple signal types and tasks. By exploiting the physical properties of electromagnetic signals, we devise a length adaptive multi-signal packing method and a hardware-aware training strategy that enable efficient use and representation learning from heterogeneous multi-source signals. Experiments show that EMind achieves strong performance and broad generalization across many downstream tasks, moving decisively from task specific models to a unified framework for electromagnetic intelligence. The code is available at: https://github.com/GabrielleTse/EMind.

Authors:Chao Hao, Zezheng Wang, Yanhua Huang, Ruiwen Xu, Wenzhe Niu, Xin Liu, Zitong Yu
Title: Dynamic Collaboration of Multi-Language Models based on Minimal Complete Semantic Units
Abstract:
This paper investigates the enhancement of reasoning capabilities in language models through token-level multi-model collaboration. Our approach selects the optimal tokens from the next token distributions provided by multiple models to perform autoregressive reasoning. Contrary to the assumption that more models yield better results, we introduce a distribution distance-based dynamic selection strategy (DDS) to optimize the multi-model collaboration process. To address the critical challenge of vocabulary misalignment in multi-model collaboration, we propose the concept of minimal complete semantic units (MCSU), which is simple yet enables multiple language models to achieve natural alignment within the linguistic space. Experimental results across various benchmarks demonstrate the superiority of our method. The code will be available at https://github.com/Fanye12/DDS.

Authors:Byung-Joon Lee, Jin-Seop Lee, Jee-Hyong Lee
Title: Stabilizing Open-Set Test-Time Adaptation via Primary-Auxiliary Filtering and Knowledge-Integrated Prediction
Abstract:
Deep neural networks demonstrate strong performance under aligned training-test distributions. However, real-world test data often exhibit domain shifts. Test-Time Adaptation (TTA) addresses this challenge by adapting the model to test data during inference. While most TTA studies assume that the training and test data share the same class set (closed-set TTA), real-world scenarios often involve open-set data (open-set TTA), which can degrade closed-set accuracy. A recent study showed that identifying open-set data during adaptation and maximizing its entropy is an effective solution. However, the previous method relies on the source model for filtering, resulting in suboptimal filtering accuracy on domain-shifted test data. In contrast, we found that the adapting model, which learns domain knowledge from noisy test streams, tends to be unstable and leads to error accumulation when used for filtering. To address this problem, we propose Primary-Auxiliary Filtering (PAF), which employs an auxiliary filter to validate data filtered by the primary filter. Furthermore, we propose Knowledge-Integrated Prediction (KIP), which calibrates the outputs of the adapting model, EMA model, and source model to integrate their complementary knowledge for OSTTA. We validate our approach across diverse closed-set and open-set datasets. Our method enhances both closed-set accuracy and open-set discrimination over existing methods. The code is available at https://github.com/powerpowe/PAF-KIP-OSTTA .

Authors:Qiao Liang, Ying Shen, Tiantian Chen, Lin Zhang
Title: M3HG: Multimodal, Multi-scale, and Multi-type Node Heterogeneous Graph for Emotion Cause Triplet Extraction in Conversations
Abstract:
Emotion Cause Triplet Extraction in Multimodal Conversations (MECTEC) has recently gained significant attention in social media analysis, aiming to extract emotion utterances, cause utterances, and emotion categories simultaneously. However, the scarcity of related datasets, with only one published dataset featuring highly uniform dialogue scenarios, hinders model development in this field. To address this, we introduce MECAD, the first multimodal, multi-scenario MECTEC dataset, comprising 989 conversations from 56 TV series spanning a wide range of dialogue contexts. In addition, existing MECTEC methods fail to explicitly model emotional and causal contexts and neglect the fusion of semantic information at different levels, leading to performance degradation. In this paper, we propose M3HG, a novel model that explicitly captures emotional and causal contexts and effectively fuses contextual information at both inter- and intra-utterance levels via a multimodal heterogeneous graph. Extensive experiments demonstrate the effectiveness of M3HG compared with existing state-of-the-art methods. The codes and dataset are available at https://github.com/redifinition/M3HG.

Authors:Jaehwan Jeong, Tuan-Anh Vu, Mohammad Jony, Shahab Ahmad, Md. Mukhlesur Rahman, Sangpil Kim, M. Khalid Jawed
Title: AgriChrono: A Multi-modal Dataset Capturing Crop Growth and Lighting Variability with a Field Robot
Abstract:
Existing datasets for precision agriculture have primarily been collected in static or controlled environments such as indoor labs or greenhouses, often with limited sensor diversity and restricted temporal span. These conditions fail to reflect the dynamic nature of real farmland, including illumination changes, crop growth variation, and natural disturbances. As a result, models trained on such data often lack robustness and generalization when applied to real-world field scenarios. In this paper, we present AgriChrono, a novel robotic data collection platform and multi-modal dataset designed to capture the dynamic conditions of real-world agricultural environments. Our platform integrates multiple sensors and enables remote, time-synchronized acquisition of RGB, Depth, LiDAR, and IMU data, supporting efficient and repeatable long-term data collection across varying illumination and crop growth stages. We benchmark a range of state-of-the-art 3D reconstruction models on the AgriChrono dataset, highlighting the difficulty of reconstruction in real-world field environments and demonstrating its value as a research asset for advancing model generalization under dynamic conditions. The code and dataset are publicly available at: https://github.com/StructuresComp/agri-chrono

Authors:Yuyang Zhao, Wentao Shi, Fuli Feng, Xiangnan He
Title: AppAgent-Pro: A Proactive GUI Agent System for Multidomain Information Integration and User Assistance
Abstract:
Large language model (LLM)-based agents have demonstrated remarkable capabilities in addressing complex tasks, thereby enabling more advanced information retrieval and supporting deeper, more sophisticated human information-seeking behaviors. However, most existing agents operate in a purely reactive manner, responding passively to user instructions, which significantly constrains their effectiveness and efficiency as general-purpose platforms for information acquisition. To overcome this limitation, this paper proposes AppAgent-Pro, a proactive GUI agent system that actively integrates multi-domain information based on user instructions. This approach enables the system to proactively anticipate users' underlying needs and conduct in-depth multi-domain information mining, thereby facilitating the acquisition of more comprehensive and intelligent information. AppAgent-Pro has the potential to fundamentally redefine information acquisition in daily life, leading to a profound impact on human society. Our code is available at: https://github.com/LaoKuiZe/AppAgent-Pro. The demonstration video could be found at: https://www.dropbox.com/scl/fi/hvzqo5vnusg66srydzixo/AppAgent-Pro-demo-video.mp4?rlkey=o2nlfqgq6ihl125mcqg7bpgqu&st=d29vrzii&dl=0.

Authors:Taishi Nakamura, Satoki Ishikawa, Masaki Kawamura, Takumi Okamoto, Daisuke Nohara, Jun Suzuki, Rio Yokota
Title: Optimal Sparsity of Mixture-of-Experts Language Models for Reasoning Tasks
Abstract:
Empirical scaling laws have driven the evolution of large language models (LLMs), yet their coefficients shift whenever the model architecture or data pipeline changes. Mixture-of-Experts (MoE) models, now standard in state-of-the-art systems, introduce a new sparsity dimension that current dense-model frontiers overlook. We investigate how MoE sparsity influences two distinct capability regimes: memorization skills and reasoning skills. By training MoE families that vary total parameters, active parameters, and top-$k$ routing under fixed compute budgets, we disentangle pre-training loss from downstream accuracy. Our results reveal two principles. First, Active FLOPs: models with identical training loss but greater active compute achieve higher reasoning accuracy. Second, Total tokens per parameter (TPP): memorization tasks improve with more parameters, while reasoning tasks benefit from optimal TPP, indicating that reasoning is data-hungry. Neither reinforcement learning post-training (GRPO) nor increased test-time compute alters these trends. We therefore argue that optimal MoE sparsity must be determined jointly by active FLOPs and TPP, revising the classical picture of compute-optimal scaling. Our model checkpoints, code and logs are open-source at https://github.com/rioyokotalab/optimal-sparsity.

Authors:Nanxi Li, Zhengyue Zhao, Chaowei Xiao
Title: PRISM: Robust VLM Alignment with Principled Reasoning for Integrated Safety in Multimodality
Abstract:
Safeguarding vision-language models (VLMs) is a critical challenge, as existing methods often suffer from over-defense, which harms utility, or rely on shallow alignment, failing to detect complex threats that require deep reasoning. To this end, we introduce PRISM (Principled Reasoning for Integrated Safety in Multimodality), a system2-like framework that aligns VLMs by embedding a structured, safety-aware reasoning process. Our framework consists of two key components: PRISM-CoT, a dataset that teaches safety-aware chain-of-thought reasoning, and PRISM-DPO, generated via Monte Carlo Tree Search (MCTS) to further refine this reasoning through Direct Preference Optimization to help obtain a delicate safety boundary. Comprehensive evaluations demonstrate PRISM's effectiveness, achieving remarkably low attack success rates including 0.15% on JailbreakV-28K for Qwen2-VL and 90% improvement over the previous best method on VLBreak for LLaVA-1.5. PRISM also exhibits strong robustness against adaptive attacks, significantly increasing computational costs for adversaries, and generalizes effectively to out-of-distribution challenges, reducing attack success rates to just 8.70% on the challenging multi-image MIS benchmark. Remarkably, this robust defense is achieved while preserving, and in some cases enhancing, model utility. To promote reproducibility, we have made our code, data, and model weights available at https://github.com/SaFoLab-WISC/PRISM.

Authors:Jun Wang, Ninglun Gu, Kailai Zhang, Zijiao Zhang, Yelun Bao, Jin Yang, Xu Yin, Liwei Liu, Yihuan Liu, Pengyong Li, Gary G. Yen, Junchi Yan
Title: Beyond Benchmark: LLMs Evaluation with an Anthropomorphic and Value-oriented Roadmap
Abstract:
For Large Language Models (LLMs), a disconnect persists between benchmark performance and real-world utility. Current evaluation frameworks remain fragmented, prioritizing technical metrics while neglecting holistic assessment for deployment. This survey introduces an anthropomorphic evaluation paradigm through the lens of human intelligence, proposing a novel three-dimensional taxonomy: Intelligence Quotient (IQ)-General Intelligence for foundational capacity, Emotional Quotient (EQ)-Alignment Ability for value-based interactions, and Professional Quotient (PQ)-Professional Expertise for specialized proficiency. For practical value, we pioneer a Value-oriented Evaluation (VQ) framework assessing economic viability, social impact, ethical alignment, and environmental sustainability. Our modular architecture integrates six components with an implementation roadmap. Through analysis of 200+ benchmarks, we identify key challenges including dynamic assessment needs and interpretability gaps. It provides actionable guidance for developing LLMs that are technically proficient, contextually relevant, and ethically sound. We maintain a curated repository of open-source evaluation resources at: https://github.com/onejune2018/Awesome-LLM-Eval.

Authors:Chenxuan Miao, Yutong Feng, Jianshu Zeng, Zixiang Gao, Hantang Liu, Yunfeng Yan, Donglian Qi, Xi Chen, Bin Wang, Hengshuang Zhao
Title: ROSE: Remove Objects with Side Effects in Videos
Abstract:
Video object removal has achieved advanced performance due to the recent success of video generative models. However, when addressing the side effects of objects, e.g., their shadows and reflections, existing works struggle to eliminate these effects for the scarcity of paired video data as supervision. This paper presents ROSE, termed Remove Objects with Side Effects, a framework that systematically studies the object's effects on environment, which can be categorized into five common cases: shadows, reflections, light, translucency and mirror. Given the challenges of curating paired videos exhibiting the aforementioned effects, we leverage a 3D rendering engine for synthetic data generation. We carefully construct a fully-automatic pipeline for data preparation, which simulates a large-scale paired dataset with diverse scenes, objects, shooting angles, and camera trajectories. ROSE is implemented as an video inpainting model built on diffusion transformer. To localize all object-correlated areas, the entire video is fed into the model for reference-based erasing. Moreover, additional supervision is introduced to explicitly predict the areas affected by side effects, which can be revealed through the differential mask between the paired videos. To fully investigate the model performance on various side effect removal, we presents a new benchmark, dubbed ROSE-Bench, incorporating both common scenarios and the five special side effects for comprehensive evaluation. Experimental results demonstrate that ROSE achieves superior performance compared to existing video object erasing models and generalizes well to real-world video scenarios. The project page is https://rose2025-inpaint.github.io/.

Authors:Fu Teng, Miao Pan, Xuhong Zhang, Zhezhi He, Yiyao Yang, Xinyi Chai, Mengnan Qi, Liqiang Lu, Jianwei Yin
Title: VERIRL: Boosting the LLM-based Verilog Code Generation via Reinforcement Learning
Abstract:
Recent advancements in code generation have shown remarkable success across software domains, yet hardware description languages (HDLs) such as Verilog remain underexplored due to their concurrency semantics, syntactic rigidity, and simulation complexity. In this work, we address these challenges by introducing a reinforcement learning (RL) framework tailored for Verilog code generation. We first construct Veribench-53K, a high-quality dataset curated from over 700K Verilog problems, enriched with structured prompts, complexity labels, and diverse testbenches. To tackle the problem of sparse and noisy reward signals, we propose a Trace-back based Rescore mechanism that leverages reasoning paths and iterative refinement to enhance feedback reliability and support reward model training. Furthermore, to mitigate catastrophic forgetting and overfitting during RL fine-tuning, we introduce a sample-balanced weighting strategy that adaptively balances learning dynamics based on reward-probability distributions. These innovations are integrated into an iterative RL pipeline that co-evolves the policy and reward models. In contrast to recent work such as CraftRTL, which relies on large-scale closed-source model distillation, and DeepSeek-style approaches that struggle with sparse feedback, our method demonstrates superior performance using a smaller but high-quality dataset combined with RL optimization. Experiments on Verilog generation tasks demonstrate state-of-the-art performance, with substantial gains in test pass rate, functional correctness, and compilation robustness. Our findings highlight the potential of RL-driven approaches for structured code generation in hardware-centric domains. VERIRL is publicly available at https://github.com/omniAI-Lab/VeriRL.

Authors:Lars Nieradzik
Title: SwiftF0: Fast and Accurate Monophonic Pitch Detection
Abstract:
Accurate and real-time monophonic pitch estimation in noisy conditions, particularly on resource-constrained devices, remains an open challenge in audio processing. We present \emph{SwiftF0}, a novel, lightweight neural model that sets a new state-of-the-art for monophonic pitch estimation. Through training on diverse speech, music, and synthetic datasets with extensive data augmentation, SwiftF0 achieves robust generalization across acoustic domains while maintaining computational efficiency. SwiftF0 achieves a 91.80\% harmonic mean (HM) at 10 dB SNR, outperforming baselines like CREPE by over 12 percentage points and degrading by only 2.3 points from clean audio. SwiftF0 requires only 95,842 parameters and runs approximately 42x faster than CREPE on CPU, making it ideal for efficient, real-time deployment. To address the critical lack of perfectly accurate ground truth pitch in speech corpora (which typically rely on algorithmic estimators or laryngograph signals), we introduce \emph{SpeechSynth}. This synthetic speech dataset, generated by a phoneme-level TTS model, provides exact, on-demand ground-truth pitch curves, enabling more robust model training and evaluation. Furthermore, we propose a unified metric, combining six complementary performance measures for comprehensive and reliable pitch evaluation, and release an open-source pitch benchmark suite. A live demo of SwiftF0 is available at https://swift-f0.github.io/, the source code at https://github.com/lars76/swift-f0, and the benchmark framework at https://github.com/lars76/pitch-benchmark.

Authors:Maojia Song, Tej Deep Pala, Weisheng Jin, Amir Zadeh, Chuan Li, Dorien Herremans, Soujanya Poria
Title: LLMs Can't Handle Peer Pressure: Crumbling under Multi-Agent Social Interactions
Abstract:
Large language models (LLMs) are increasingly deployed in multi-agent systems (MAS) as components of collaborative intelligence, where peer interactions dynamically shape individual decision-making. Although prior work has focused on conformity bias, we extend the analysis to examine how LLMs form trust from previous impressions, resist misinformation, and integrate peer input during interaction, key factors for achieving collective intelligence under complex social dynamics. We present KAIROS, a benchmark simulating quiz contests with peer agents of varying reliability, offering fine-grained control over conditions such as expert-novice roles, noisy crowds, and adversarial peers. LLMs receive both historical interactions and current peer responses, allowing systematic investigation into how trust, peer action, and self-confidence influence decisions. As for mitigation strategies, we evaluate prompting, supervised fine-tuning, and reinforcement learning, Group Relative Policy Optimisation (GRPO), across multiple models. Our results reveal that GRPO with multi-agent context combined with outcome-based rewards and unconstrained reasoning achieves the best overall performance, but also decreases the robustness to social influence compared to Base models. The code and datasets are available at: https://github.com/declare-lab/KAIROS.

Authors:Jueqi Wang, Zachary Jacokes, John Darrell Van Horn, Michael C. Schatz, Kevin A. Pelphrey, Archana Venkataraman
Title: Learning Explainable Imaging-Genetics Associations Related to a Neurological Disorder
Abstract:
While imaging-genetics holds great promise for unraveling the complex interplay between brain structure and genetic variation in neurological disorders, traditional methods are limited to simplistic linear models or to black-box techniques that lack interpretability. In this paper, we present NeuroPathX, an explainable deep learning framework that uses an early fusion strategy powered by cross-attention mechanisms to capture meaningful interactions between structural variations in the brain derived from MRI and established biological pathways derived from genetics data. To enhance interpretability and robustness, we introduce two loss functions over the attention matrix - a sparsity loss that focuses on the most salient interactions and a pathway similarity loss that enforces consistent representations across the cohort. We validate NeuroPathX on both autism spectrum disorder and Alzheimer's disease. Our results demonstrate that NeuroPathX outperforms competing baseline approaches and reveals biologically plausible associations linked to the disorder. These findings underscore the potential of NeuroPathX to advance our understanding of complex brain disorders. Code is available at https://github.com/jueqiw/NeuroPathX .

Authors:Haoyuan Deng, Wenkai Guo, Qianzhun Wang, Zhenyu Wu, Ziwei Wang
Title: SafeBimanual: Diffusion-based Trajectory Optimization for Safe Bimanual Manipulation
Abstract:
Bimanual manipulation has been widely applied in household services and manufacturing, which enables the complex task completion with coordination requirements. Recent diffusion-based policy learning approaches have achieved promising performance in modeling action distributions for bimanual manipulation. However, they ignored the physical safety constraints of bimanual manipulation, which leads to the dangerous behaviors with damage to robots and objects. To this end, we propose a test-time trajectory optimization framework named SafeBimanual for any pre-trained diffusion-based bimanual manipulation policies, which imposes the safety constraints on bimanual actions to avoid dangerous robot behaviors with improved success rate. Specifically, we design diverse cost functions for safety constraints in different dual-arm cooperation patterns including avoidance of tearing objects and collision between arms and objects, which optimizes the manipulator trajectories with guided sampling of diffusion denoising process. Moreover, we employ a vision-language model (VLM) to schedule the cost functions by specifying keypoints and corresponding pairwise relationship, so that the optimal safety constraint is dynamically generated in the entire bimanual manipulation process. SafeBimanual demonstrates superiority on 8 simulated tasks in RoboTwin with a 13.7% increase in success rate and a 18.8% reduction in unsafe interactions over state-of-the-art diffusion-based methods. Extensive experiments on 4 real-world tasks further verify its practical value by improving the success rate by 32.5%.

Authors:Zirui Tang, Boyu Niu, Xuanhe Zhou, Boxiu Li, Wei Zhou, Jiannan Wang, Guoliang Li, Xinyi Zhang, Fan Wu
Title: ST-Raptor: LLM-Powered Semi-Structured Table Question Answering
Abstract:
Semi-structured tables, widely used in real-world applications (e.g., financial reports, medical records, transactional orders), often involve flexible and complex layouts (e.g., hierarchical headers and merged cells). These tables generally rely on human analysts to interpret table layouts and answer relevant natural language questions, which is costly and inefficient. To automate the procedure, existing methods face significant challenges. First, methods like NL2SQL require converting semi-structured tables into structured ones, which often causes substantial information loss. Second, methods like NL2Code and multi-modal LLM QA struggle to understand the complex layouts of semi-structured tables and cannot accurately answer corresponding questions. To this end, we propose ST-Raptor, a tree-based framework for semi-structured table question answering using large language models. First, we introduce the Hierarchical Orthogonal Tree (HO-Tree), a structural model that captures complex semi-structured table layouts, along with an effective algorithm for constructing the tree. Second, we define a set of basic tree operations to guide LLMs in executing common QA tasks. Given a user question, ST-Raptor decomposes it into simpler sub-questions, generates corresponding tree operation pipelines, and conducts operation-table alignment for accurate pipeline execution. Third, we incorporate a two-stage verification mechanism: forward validation checks the correctness of execution steps, while backward validation evaluates answer reliability by reconstructing queries from predicted answers. To benchmark the performance, we present SSTQA, a dataset of 764 questions over 102 real-world semi-structured tables. Experiments show that ST-Raptor outperforms nine baselines by up to 20% in answer accuracy. The code is available at https://github.com/weAIDB/ST-Raptor.

Authors:Weida Wang, Dongchen Huang, Jiatong Li, Tengchao Yang, Ziyang Zheng, Di Zhang, Dong Han, Benteng Chen, Binzhao Luo, Zhiyu Liu, Kunling Liu, Zhiyuan Gao, Shiqi Geng, Wei Ma, Jiaming Su, Xin Li, Shuchen Pu, Yuhan Shui, Qianjia Cheng, Zhihao Dou, Dongfei Cui, Changyong He, Jin Zeng, Zeke Xie, Mao Su, Dongzhan Zhou, Yuqiang Li, Wanli Ouyang, Yunqi Cai, Xi Dai, Shufei Zhang, Lei Bai, Jinguang Cheng, Zhong Fang, Hongming Weng
Title: CMPhysBench: A Benchmark for Evaluating Large Language Models in Condensed Matter Physics
Abstract:
We introduce CMPhysBench, designed to assess the proficiency of Large Language Models (LLMs) in Condensed Matter Physics, as a novel Benchmark. CMPhysBench is composed of more than 520 graduate-level meticulously curated questions covering both representative subfields and foundational theoretical frameworks of condensed matter physics, such as magnetism, superconductivity, strongly correlated systems, etc. To ensure a deep understanding of the problem-solving process,we focus exclusively on calculation problems, requiring LLMs to independently generate comprehensive solutions. Meanwhile, leveraging tree-based representations of expressions, we introduce the Scalable Expression Edit Distance (SEED) score, which provides fine-grained (non-binary) partial credit and yields a more accurate assessment of similarity between prediction and ground-truth. Our results show that even the best models, Grok-4, reach only 36 average SEED score and 28% accuracy on CMPhysBench, underscoring a significant capability gap, especially for this practical and frontier domain relative to traditional physics. The code anddataset are publicly available at https://github.com/CMPhysBench/CMPhysBench.

Authors:Alberto Silvio Chiappa, Boshi An, Merkourios Simos, Chengkun Li, Alexander Mathis
Title: Arnold: a generalist muscle transformer policy
Abstract:
Controlling high-dimensional and nonlinear musculoskeletal models of the human body is a foundational scientific challenge. Recent machine learning breakthroughs have heralded policies that master individual skills like reaching, object manipulation and locomotion in musculoskeletal systems with many degrees of freedom. However, these agents are merely "specialists", achieving high performance for a single skill. In this work, we develop Arnold, a generalist policy that masters multiple tasks and embodiments. Arnold combines behavior cloning and fine-tuning with PPO to achieve expert or super-expert performance in 14 challenging control tasks from dexterous object manipulation to locomotion. A key innovation is Arnold's sensorimotor vocabulary, a compositional representation of the semantics of heterogeneous sensory modalities, objectives, and actuators. Arnold leverages this vocabulary via a transformer architecture to deal with the variable observation and action spaces of each task. This framework supports efficient multi-task, multi-embodiment learning and facilitates rapid adaptation to novel tasks. Finally, we analyze Arnold to provide insights into biological motor control, corroborating recent findings on the limited transferability of muscle synergies across tasks.

Authors:Xin Wang, Zhiyao Cui, Hao Li, Ya Zeng, Chenxu Wang, Ruiqi Song, Yihang Chen, Kun Shao, Qiaosheng Zhang, Jinzhuo Liu, Siyue Ren, Shuyue Hu, Zhen Wang
Title: PerPilot: Personalizing VLM-based Mobile Agents via Memory and Exploration
Abstract:
Vision language model (VLM)-based mobile agents show great potential for assisting users in performing instruction-driven tasks. However, these agents typically struggle with personalized instructions -- those containing ambiguous, user-specific context -- a challenge that has been largely overlooked in previous research. In this paper, we define personalized instructions and introduce PerInstruct, a novel human-annotated dataset covering diverse personalized instructions across various mobile scenarios. Furthermore, given the limited personalization capabilities of existing mobile agents, we propose PerPilot, a plug-and-play framework powered by large language models (LLMs) that enables mobile agents to autonomously perceive, understand, and execute personalized user instructions. PerPilot identifies personalized elements and autonomously completes instructions via two complementary approaches: memory-based retrieval and reasoning-based exploration. Experimental results demonstrate that PerPilot effectively handles personalized tasks with minimal user intervention and progressively improves its performance with continued use, underscoring the importance of personalization-aware reasoning for next-generation mobile agents. The dataset and code are available at: https://github.com/xinwang-nwpu/PerPilot

Authors:Pengfei Jiang, Hanjun Li, Linglan Zhao, Fei Chao, Ke Yan, Shouhong Ding, Rongrong Ji
Title: VISA: Group-wise Visual Token Selection and Aggregation via Graph Summarization for Efficient MLLMs Inference
Abstract:
In this study, we introduce a novel method called group-wise \textbf{VI}sual token \textbf{S}election and \textbf{A}ggregation (VISA) to address the issue of inefficient inference stemming from excessive visual tokens in multimoal large language models (MLLMs). Compared with previous token pruning approaches, our method can preserve more visual information while compressing visual tokens. We first propose a graph-based visual token aggregation (VTA) module. VTA treats each visual token as a node, forming a graph based on semantic similarity among visual tokens. It then aggregates information from removed tokens into kept tokens based on this graph, producing a more compact visual token representation. Additionally, we introduce a group-wise token selection strategy (GTS) to divide visual tokens into kept and removed ones, guided by text tokens from the final layers of each group. This strategy progressively aggregates visual information, enhancing the stability of the visual information extraction process. We conduct comprehensive experiments on LLaVA-1.5, LLaVA-NeXT, and Video-LLaVA across various benchmarks to validate the efficacy of VISA. Our method consistently outperforms previous methods, achieving a superior trade-off between model performance and inference speed. The code is available at https://github.com/mobiushy/VISA.

Authors:Bingkang Shi, Jen-tse Huang, Guoyi Li, Xiaodan Zhang, Zhongjiang Yao
Title: FAIRGAMER: Evaluating Biases in the Application of Large Language Models to Video Games
Abstract:
Leveraging their advanced capabilities, Large Language Models (LLMs) demonstrate vast application potential in video games--from dynamic scene generation and intelligent NPC interactions to adaptive opponents--replacing or enhancing traditional game mechanics. However, LLMs' trustworthiness in this application has not been sufficiently explored. In this paper, we reveal that the models' inherent social biases can directly damage game balance in real-world gaming environments. To this end, we present FairGamer, the first bias evaluation Benchmark for LLMs in video game scenarios, featuring six tasks and a novel metrics ${D_lstd}$. It covers three key scenarios in games where LLMs' social biases are particularly likely to manifest: Serving as Non-Player Characters, Interacting as Competitive Opponents, and Generating Game Scenes. FairGamer utilizes both reality-grounded and fully fictional game content, covering a variety of video game genres. Experiments reveal: (1) Decision biases directly cause game balance degradation, with Grok-3 (average ${D_lstd}$ score=0.431) exhibiting the most severe degradation; (2) LLMs demonstrate isomorphic social/cultural biases toward both real and virtual world content, suggesting their biases nature may stem from inherent model characteristics. These findings expose critical reliability gaps in LLMs' gaming applications. Our code and data are available at anonymous GitHub https://github.com/Anonymous999-xxx/FairGamer .

Authors:Xingyu Ai, Shaoyu Wang, Zhiyuan Jia, Ao Xu, Hongming Shan, Jianhua Ma, Qiegen Liu
Title: UniSino: Physics-Driven Foundational Model for Universal CT Sinogram Standardization
Abstract:
During raw-data acquisition in CT imaging, diverse factors can degrade the collected sinograms, with undersampling and noise leading to severe artifacts and noise in reconstructed images and compromising diagnostic accuracy. Conventional correction methods rely on manually designed algorithms or fixed empirical parameters, but these approaches often lack generalizability across heterogeneous artifact types. To address these limitations, we propose UniSino, a foundation model for universal CT sinogram standardization. Unlike existing foundational models that operate in image domain, UniSino directly standardizes data in the projection domain, which enables stronger generalization across diverse undersampling scenarios. Its training framework incorporates the physical characteristics of sinograms, enhancing generalization and enabling robust performance across multiple subtasks spanning four benchmark datasets. Experimental results demonstrate thatUniSino achieves superior reconstruction quality both single and mixed undersampling case, demonstrating exceptional robustness and generalization in sinogram enhancement for CT imaging. The code is available at: https://github.com/yqx7150/UniSino.

Authors:Hanzhi Chang, Ruijie Zhu, Wenjie Chang, Mulin Yu, Yanzhe Liang, Jiahao Lu, Zhuoyuan Li, Tianzhu Zhang
Title: MeshSplat: Generalizable Sparse-View Surface Reconstruction via Gaussian Splatting
Abstract:
Surface reconstruction has been widely studied in computer vision and graphics. However, existing surface reconstruction works struggle to recover accurate scene geometry when the input views are extremely sparse. To address this issue, we propose MeshSplat, a generalizable sparse-view surface reconstruction framework via Gaussian Splatting. Our key idea is to leverage 2DGS as a bridge, which connects novel view synthesis to learned geometric priors and then transfers these priors to achieve surface reconstruction. Specifically, we incorporate a feed-forward network to predict per-view pixel-aligned 2DGS, which enables the network to synthesize novel view images and thus eliminates the need for direct 3D ground-truth supervision. To improve the accuracy of 2DGS position and orientation prediction, we propose a Weighted Chamfer Distance Loss to regularize the depth maps, especially in overlapping areas of input views, and also a normal prediction network to align the orientation of 2DGS with normal vectors predicted by a monocular normal estimator. Extensive experiments validate the effectiveness of our proposed improvement, demonstrating that our method achieves state-of-the-art performance in generalizable sparse-view mesh reconstruction tasks. Project Page: https://hanzhichang.github.io/meshsplat_web

Authors:Wei Xiong, Jiangtong Li, Jie Li, Kun Zhu
Title: EEG-FM-Bench: A Comprehensive Benchmark for the Systematic Evaluation of EEG Foundation Models
Abstract:
Electroencephalography (EEG) foundation models are poised to significantly advance brain signal analysis by learning robust representations from large-scale, unlabeled datasets. However, their rapid proliferation has outpaced the development of standardized evaluation benchmarks, which complicates direct model comparisons and hinders systematic scientific progress. This fragmentation fosters scientific inefficiency and obscures genuine architectural advancements. To address this critical gap, we introduce EEG-FM-Bench, the first comprehensive benchmark for the systematic and standardized evaluation of EEG foundation models (EEG-FMs). Our contributions are threefold: (1) we curate a diverse suite of downstream tasks and datasets from canonical EEG paradigms, implementing standardized processing and evaluation protocols within a unified open-source framework; (2) we benchmark prominent state-of-the-art foundation models to establish comprehensive baseline results for a clear comparison of the current landscape; (3) we perform qualitative analyses of the learned representations to provide insights into model behavior and inform future architectural design. Through extensive experiments, we find that fine-grained spatio-temporal feature interaction, multitask unified training and neuropsychological priors would contribute to enhancing model performance and generalization capabilities. By offering a unified platform for fair comparison and reproducible research, EEG-FM-Bench seeks to catalyze progress and guide the community toward the development of more robust and generalizable EEG-FMs. Code is released at https://github.com/xw1216/EEG-FM-Bench.

Authors:Jinwei Gan, Zifeng Cheng, Zhiwei Jiang, Cong Wang, Yafeng Yin, Xiang Luo, Yuchen Fu, Qing Gu
Title: Steering When Necessary: Flexible Steering Large Language Models with Backtracking
Abstract:
Large language models (LLMs) have achieved remarkable performance across many generation tasks. Nevertheless, effectively aligning them with desired behaviors remains a significant challenge. Activation steering is an effective and cost-efficient approach that directly modifies the activations of LLMs during the inference stage, aligning their responses with the desired behaviors and avoiding the high cost of fine-tuning. Existing methods typically indiscriminately intervene to all generations or rely solely on the question to determine intervention, which limits the accurate assessment of the intervention strength. To this end, we propose the Flexible Activation Steering with Backtracking (FASB) framework, which dynamically determines both the necessity and strength of intervention by tracking the internal states of the LLMs during generation, considering both the question and the generated content. Since intervening after detecting a deviation from the desired behavior is often too late, we further propose the backtracking mechanism to correct the deviated tokens and steer the LLMs toward the desired behavior. Extensive experiments on the TruthfulQA dataset and six multiple-choice datasets demonstrate that our method outperforms baselines. Our code will be released at https://github.com/gjw185/FASB.

Authors:Shunsuke Iwashita, Ning Ding, Keisuke Fujii
Title: Evaluating Movement Initiation Timing in Ultimate Frisbee via Temporal Counterfactuals
Abstract:
Ultimate is a sport where points are scored by passing a disc and catching it in the opposing team's end zone. In Ultimate, the player holding the disc cannot move, making field dynamics primarily driven by other players' movements. However, current literature in team sports has ignored quantitative evaluations of when players initiate such unlabeled movements in game situations. In this paper, we propose a quantitative evaluation method for movement initiation timing in Ultimate Frisbee. First, game footage was recorded using a drone camera, and players' positional data was obtained, which will be published as UltimateTrack dataset. Next, players' movement initiations were detected, and temporal counterfactual scenarios were generated by shifting the timing of movements using rule-based approaches. These scenarios were analyzed using a space evaluation metric based on soccer's pitch control reflecting the unique rules of Ultimate. By comparing the spatial evaluation values across scenarios, the difference between actual play and the most favorable counterfactual scenario was used to quantitatively assess the impact of movement timing. We validated our method and show that sequences in which the disc was actually thrown to the receiver received higher evaluation scores than the sequences without a throw. In practical verifications, the higher-skill group displays a broader distribution of time offsets from the model's optimal initiation point. These findings demonstrate that the proposed metric provides an objective means of assessing movement initiation timing, which has been difficult to quantify in unlabeled team sport plays.

Authors:Jerry Yao-Chieh Hu, Hude Liu, Jennifer Yuntong Zhang, Han Liu
Title: In-Context Algorithm Emulation in Fixed-Weight Transformers
Abstract:
We prove that a minimal Transformer architecture with frozen weights is capable of emulating a broad class of algorithms by in-context prompting. In particular, for any algorithm implementable by a fixed-weight attention head (e.g. one-step gradient descent or linear/ridge regression), there exists a prompt that drives a two-layer softmax attention module to reproduce the algorithm's output with arbitrary precision. This guarantee extends even to a single-head attention layer (using longer prompts if necessary), achieving architectural minimality. Our key idea is to construct prompts that encode an algorithm's parameters into token representations, creating sharp dot-product gaps that force the softmax attention to follow the intended computation. This construction requires no feed-forward layers and no parameter updates. All adaptation happens through the prompt alone. These findings forge a direct link between in-context learning and algorithmic emulation, and offer a simple mechanism for large Transformers to serve as prompt-programmable libraries of algorithms. They illuminate how GPT-style foundation models may swap algorithms via prompts alone, establishing a form of algorithmic universality in modern Transformer models.

Authors:Kyra Wilson, Sourojit Ghosh, Aylin Caliskan
Title: Bias Amplification in Stable Diffusion's Representation of Stigma Through Skin Tones and Their Homogeneity
Abstract:
Text-to-image generators (T2Is) are liable to produce images that perpetuate social stereotypes, especially in regards to race or skin tone. We use a comprehensive set of 93 stigmatized identities to determine that three versions of Stable Diffusion (v1.5, v2.1, and XL) systematically associate stigmatized identities with certain skin tones in generated images. We find that SD XL produces skin tones that are 13.53% darker and 23.76% less red (both of which indicate higher likelihood of societal discrimination) than previous models and perpetuate societal stereotypes associating people of color with stigmatized identities. SD XL also shows approximately 30% less variability in skin tones when compared to previous models and 18.89-56.06% compared to human face datasets. Measuring variability through metrics which directly correspond to human perception suggest a similar pattern, where SD XL shows the least amount of variability in skin tones of people with stigmatized identities and depicts most (60.29%) stigmatized identities as being less diverse than non-stigmatized identities. Finally, SD shows more homogenization of skin tones of racial and ethnic identities compared to other stigmatized or non-stigmatized identities, reinforcing incorrect equivalence of biologically-determined skin tone and socially-constructed racial and ethnic identity. Because SD XL is the largest and most complex model and users prefer its generations compared to other models examined in this study, these findings have implications for the dynamics of bias amplification in T2Is, increasing representational harms and challenges generating diverse images depicting people with stigmatized identities.

Authors:Sameer Komoravolu, Khalil Mrini
Title: Agent-Testing Agent: A Meta-Agent for Automated Testing and Evaluation of Conversational AI Agents
Abstract:
LLM agents are increasingly deployed to plan, retrieve, and write with tools, yet evaluation still leans on static benchmarks and small human studies. We present the Agent-Testing Agent (ATA), a meta-agent that combines static code analysis, designer interrogation, literature mining, and persona-driven adversarial test generation whose difficulty adapts via judge feedback. Each dialogue is scored with an LLM-as-a-Judge (LAAJ) rubric and used to steer subsequent tests toward the agent's weakest capabilities. On a travel planner and a Wikipedia writer, the ATA surfaces more diverse and severe failures than expert annotators while matching severity, and finishes in 20--30 minutes versus ten-annotator rounds that took days. Ablating code analysis and web search increases variance and miscalibration, underscoring the value of evidence-grounded test generation. The ATA outputs quantitative metrics and qualitative bug reports for developers. We release the full methodology and open-source implementation for reproducible agent testing: https://github.com/KhalilMrini/Agent-Testing-Agent

Authors:Bokai Zhao, Weiyang Shi, Hanqing Chao, Zijiang Yang, Yiyang Zhang, Ming Song, Tianzi Jiang
Title: Neural Proteomics Fields for Super-resolved Spatial Proteomics Prediction
Abstract:
Spatial proteomics maps protein distributions in tissues, providing transformative insights for life sciences. However, current sequencing-based technologies suffer from low spatial resolution, and substantial inter-tissue variability in protein expression further compromises the performance of existing molecular data prediction methods. In this work, we introduce the novel task of spatial super-resolution for sequencing-based spatial proteomics (seq-SP) and, to the best of our knowledge, propose the first deep learning model for this task--Neural Proteomics Fields (NPF). NPF formulates seq-SP as a protein reconstruction problem in continuous space by training a dedicated network for each tissue. The model comprises a Spatial Modeling Module, which learns tissue-specific protein spatial distributions, and a Morphology Modeling Module, which extracts tissue-specific morphological features. Furthermore, to facilitate rigorous evaluation, we establish an open-source benchmark dataset, Pseudo-Visium SP, for this task. Experimental results demonstrate that NPF achieves state-of-the-art performance with fewer learnable parameters, underscoring its potential for advancing spatial proteomics research. Our code and dataset are publicly available at https://github.com/Bokai-Zhao/NPF.

Authors:Jiaqi Liu, Songning Lai, Pengze Li, Di Yu, Wenjie Zhou, Yiyang Zhou, Peng Xia, Zijun Wang, Xi Chen, Shixiang Tang, Lei Bai, Wanli Ouyang, Mingyu Ding, Huaxiu Yao, Aoran Wang
Title: Mimicking the Physicist's Eye:A VLM-centric Approach for Physics Formula Discovery
Abstract:
Automated discovery of physical laws from observational data in the real world is a grand challenge in AI. Current methods, relying on symbolic regression or LLMs, are limited to uni-modal data and overlook the rich, visual phenomenological representations of motion that are indispensable to physicists. This "sensory deprivation" severely weakens their ability to interpret the inherent spatio-temporal patterns within dynamic phenomena. To address this gap, we propose VIPER-R1, a multimodal model that performs Visual Induction for Physics-based Equation Reasoning to discover fundamental symbolic formulas. It integrates visual perception, trajectory data, and symbolic reasoning to emulate the scientific discovery process. The model is trained via a curriculum of Motion Structure Induction (MSI), using supervised fine-tuning to interpret kinematic phase portraits and to construct hypotheses guided by a Causal Chain of Thought (C-CoT), followed by Reward-Guided Symbolic Calibration (RGSC) to refine the formula structure with reinforcement learning. During inference, the trained VIPER-R1 acts as an agent: it first posits a high-confidence symbolic ansatz, then proactively invokes an external symbolic regression tool to perform Symbolic Residual Realignment (SR^2). This final step, analogous to a physicist's perturbation analysis, reconciles the theoretical model with empirical data. To support this research, we introduce PhysSymbol, a new 5,000-instance multimodal corpus. Experiments show that VIPER-R1 consistently outperforms state-of-the-art VLM baselines in accuracy and interpretability, enabling more precise discovery of physical laws. Project page: https://jiaaqiliu.github.io/VIPER-R1/

Authors:Guoqing Zhang, Xingtong Ge, Lu Shi, Xin Zhang, Muqing Xue, Wanru Xu, Yigang Cen
Title: Condition Weaving Meets Expert Modulation: Towards Universal and Controllable Image Generation
Abstract:
The image-to-image generation task aims to produce controllable images by leveraging conditional inputs and prompt instructions. However, existing methods often train separate control branches for each type of condition, leading to redundant model structures and inefficient use of computational resources. To address this, we propose a Unified image-to-image Generation (UniGen) framework that supports diverse conditional inputs while enhancing generation efficiency and expressiveness. Specifically, to tackle the widely existing parameter redundancy and computational inefficiency in controllable conditional generation architectures, we propose the Condition Modulated Expert (CoMoE) module. This module aggregates semantically similar patch features and assigns them to dedicated expert modules for visual representation and conditional modeling. By enabling independent modeling of foreground features under different conditions, CoMoE effectively mitigates feature entanglement and redundant computation in multi-condition scenarios. Furthermore, to bridge the information gap between the backbone and control branches, we propose WeaveNet, a dynamic, snake-like connection mechanism that enables effective interaction between global text-level control from the backbone and fine-grained control from conditional branches. Extensive experiments on the Subjects-200K and MultiGen-20M datasets across various conditional image generation tasks demonstrate that our method consistently achieves state-of-the-art performance, validating its advantages in both versatility and effectiveness. The code has been uploaded to https://github.com/gavin-gqzhang/UniGen.

Authors:Fucai Ke, Joy Hsu, Zhixi Cai, Zixian Ma, Xin Zheng, Xindi Wu, Sukai Huang, Weiqing Wang, Pari Delir Haghighi, Gholamreza Haffari, Ranjay Krishna, Jiajun Wu, Hamid Rezatofighi
Title: Explain Before You Answer: A Survey on Compositional Visual Reasoning
Abstract:
Compositional visual reasoning has emerged as a key research frontier in multimodal AI, aiming to endow machines with the human-like ability to decompose visual scenes, ground intermediate concepts, and perform multi-step logical inference. While early surveys focus on monolithic vision-language models or general multimodal reasoning, a dedicated synthesis of the rapidly expanding compositional visual reasoning literature is still missing. We fill this gap with a comprehensive survey spanning 2023 to 2025 that systematically reviews 260+ papers from top venues (CVPR, ICCV, NeurIPS, ICML, ACL, etc.). We first formalize core definitions and describe why compositional approaches offer advantages in cognitive alignment, semantic fidelity, robustness, interpretability, and data efficiency. Next, we trace a five-stage paradigm shift: from prompt-enhanced language-centric pipelines, through tool-enhanced LLMs and tool-enhanced VLMs, to recently minted chain-of-thought reasoning and unified agentic VLMs, highlighting their architectural designs, strengths, and limitations. We then catalog 60+ benchmarks and corresponding metrics that probe compositional visual reasoning along dimensions such as grounding accuracy, chain-of-thought faithfulness, and high-resolution perception. Drawing on these analyses, we distill key insights, identify open challenges (e.g., limitations of LLM-based reasoning, hallucination, a bias toward deductive reasoning, scalable supervision, tool integration, and benchmark limitations), and outline future directions, including world-model integration, human-AI collaborative reasoning, and richer evaluation protocols. By offering a unified taxonomy, historical roadmap, and critical outlook, this survey aims to serve as a foundational reference and inspire the next generation of compositional visual reasoning research.

Authors:Xiaqiang Tang, Yi Wang, Keyu Hu, Rui Xu, Chuang Li, Weigao Sun, Jian Li, Sihong Xie
Title: SSFO: Self-Supervised Faithfulness Optimization for Retrieval-Augmented Generation
Abstract:
Retrieval-Augmented Generation (RAG) systems require Large Language Models (LLMs) to generate responses that are faithful to the retrieved context. However, faithfulness hallucination remains a critical challenge, as existing methods often require costly supervision and post-training or significant inference burdens. To overcome these limitations, we introduce Self-Supervised Faithfulness Optimization (SSFO), the first self-supervised alignment approach for enhancing RAG faithfulness. SSFO constructs preference data pairs by contrasting the model's outputs generated with and without the context. Leveraging Direct Preference Optimization (DPO), SSFO aligns model faithfulness without incurring labeling costs or additional inference burden. We theoretically and empirically demonstrate that SSFO leverages a benign form of \emph{likelihood displacement}, transferring probability mass from parametric-based tokens to context-aligned tokens. Based on this insight, we propose a modified DPO loss function to encourage likelihood displacement. Comprehensive evaluations show that SSFO significantly outperforms existing methods, achieving state-of-the-art faithfulness on multiple context-based question-answering datasets. Notably, SSFO exhibits strong generalization, improving cross-lingual faithfulness and preserving general instruction-following capabilities. We release our code and model at the anonymous link: https://github.com/chkwy/SSFO

Authors:Zhilin Zhang, Xiang Zhang, Jiaqi Wei, Yiwei Xu, Chenyu You
Title: PosterGen: Aesthetic-Aware Paper-to-Poster Generation via Multi-Agent LLMs
Abstract:
Multi-agent systems built upon large language models (LLMs) have demonstrated remarkable capabilities in tackling complex compositional tasks. In this work, we apply this paradigm to the paper-to-poster generation problem, a practical yet time-consuming process faced by researchers preparing for conferences. While recent approaches have attempted to automate this task, most neglect core design and aesthetic principles, resulting in posters that require substantial manual refinement. To address these design limitations, we propose PosterGen, a multi-agent framework that mirrors the workflow of professional poster designers. It consists of four collaborative specialized agents: (1) Parser and Curator agents extract content from the paper and organize storyboard; (2) Layout agent maps the content into a coherent spatial layout; (3) Stylist agents apply visual design elements such as color and typography; and (4) Renderer composes the final poster. Together, these agents produce posters that are both semantically grounded and visually appealing. To evaluate design quality, we introduce a vision-language model (VLM)-based rubric that measures layout balance, readability, and aesthetic coherence. Experimental results show that PosterGen consistently matches in content fidelity, and significantly outperforms existing methods in visual designs, generating posters that are presentation-ready with minimal human refinements.

Authors:Yajat Yadav, Patrick Mendoza, Jathin Korrapati
Title: ONG: Orthogonal Natural Gradient Descent
Abstract:
Orthogonal Gradient Descent (OGD) has emerged as a powerful method for continual learning. However, its Euclidean projections do not leverage the underlying information-geometric structure of the problem, which can lead to suboptimal convergence in learning tasks. To address this, we propose incorporating the natural gradient into OGD and present \textbf{ONG (Orthogonal Natural Gradient Descent)}. ONG preconditions each new task-specific gradient with an efficient EKFAC approximation of the inverse Fisher information matrix, yielding updates that follow the steepest descent direction under a Riemannian metric. To preserve performance on previously learned tasks, ONG projects these natural gradients onto the orthogonal complement of prior tasks' gradients. We provide an initial theoretical justification for this procedure, introduce the Orthogonal Natural Gradient Descent (ONG) algorithm, and present preliminary results on the Permuted and Rotated MNIST benchmarks. Our preliminary results, however, indicate that a naive combination of natural gradients and orthogonal projections can have potential issues. This finding motivates continued future work focused on robustly reconciling these geometric perspectives to develop a continual learning method, establishing a more rigorous theoretical foundation with formal convergence guarantees, and extending empirical validation to large-scale continual learning benchmarks. The anonymized version of our code can be found as the zip file here: https://drive.google.com/drive/folders/11PyU6M8pNgOUB5pwdGORtbnMtD8Shiw_?usp=sharing.

Authors:Yuemei Xu, Kexin Xu, Jian Zhou, Ling Hu, Lin Gui
Title: Linguistic Neuron Overlap Patterns to Facilitate Cross-lingual Transfer on Low-resource Languages
Abstract:
The current Large Language Models (LLMs) face significant challenges in improving their performance on low-resource languages and urgently need data-efficient methods without costly fine-tuning. From the perspective of language-bridge, we propose a simple yet effective method, namely BridgeX-ICL, to improve the zero-shot Cross-lingual In-Context Learning (X-ICL) for low-resource languages. Unlike existing works focusing on language-specific neurons, BridgeX-ICL explores whether sharing neurons can improve cross-lingual performance in LLMs. We construct neuron probe data from the ground-truth MUSE bilingual dictionaries, and define a subset of language overlap neurons accordingly to ensure full activation of these anchored neurons. Subsequently, we propose an HSIC-based metric to quantify LLMs' internal linguistic spectrum based on overlapping neurons, guiding optimal bridge selection. The experiments conducted on 4 cross-lingual tasks and 15 language pairs from 7 diverse families, covering both high-low and moderate-low pairs, validate the effectiveness of BridgeX-ICL and offer empirical insights into the underlying multilingual mechanisms of LLMs. The code is publicly available at https://github.com/xuyuemei/BridgeX-ICL.

Authors:Riad Hassan, M. Rubaiyat Hossain Mondal, Sheikh Iqbal Ahamed, Fahad Mostafa, Md Mostafijur Rahman
Title: An Efficient Dual-Line Decoder Network with Multi-Scale Convolutional Attention for Multi-organ Segmentation
Abstract:
Proper segmentation of organs-at-risk is important for radiation therapy, surgical planning, and diagnostic decision-making in medical image analysis. While deep learning-based segmentation architectures have made significant progress, they often fail to balance segmentation accuracy with computational efficiency. Most of the current state-of-the-art methods either prioritize performance at the cost of high computational complexity or compromise accuracy for efficiency. This paper addresses this gap by introducing an efficient dual-line decoder segmentation network (EDLDNet). The proposed method features a noisy decoder, which learns to incorporate structured perturbation at training time for better model robustness, yet at inference time only the noise-free decoder is executed, leading to lower computational cost. Multi-Scale convolutional Attention Modules (MSCAMs), Attention Gates (AGs), and Up-Convolution Blocks (UCBs) are further utilized to optimize feature representation and boost segmentation performance. By leveraging multi-scale segmentation masks from both decoders, we also utilize a mutation-based loss function to enhance the model's generalization. Our approach outperforms SOTA segmentation architectures on four publicly available medical imaging datasets. EDLDNet achieves SOTA performance with an 84.00% Dice score on the Synapse dataset, surpassing baseline model like UNet by 13.89% in Dice score while significantly reducing Multiply-Accumulate Operations (MACs) by 89.7%. Compared to recent approaches like EMCAD, our EDLDNet not only achieves higher Dice score but also maintains comparable computational efficiency. The outstanding performance across diverse datasets establishes EDLDNet's strong generalization, computational efficiency, and robustness. The source code, pre-processed data, and pre-trained weights will be available at https://github.com/riadhassan/EDLDNet .

Authors:Riccardo Pozzi, Matteo Palmonari, Andrea Coletta, Luigi Bellomarini, Jens Lehmann, Sahar Vahdati
Title: ReFactX: Scalable Reasoning with Reliable Facts via Constrained Generation
Abstract:
Knowledge gaps and hallucinations are persistent challenges for Large Language Models (LLMs), which generate unreliable responses when lacking the necessary information to fulfill user instructions. Existing approaches, such as Retrieval-Augmented Generation (RAG) and tool use, aim to address these issues by incorporating external knowledge. Yet, they rely on additional models or services, resulting in complex pipelines, potential error propagation, and often requiring the model to process a large number of tokens. In this paper, we present a scalable method that enables LLMs to access external knowledge without depending on retrievers or auxiliary models. Our approach uses constrained generation with a pre-built prefix-tree index. Triples from a Knowledge Graph are verbalized in textual facts, tokenized, and indexed in a prefix tree for efficient access. During inference, to acquire external knowledge, the LLM generates facts with constrained generation which allows only sequences of tokens that form an existing fact. We evaluate our proposal on Question Answering and show that it scales to large knowledge bases (800 million facts), adapts to domain-specific data, and achieves effective results. These gains come with minimal generation-time overhead. ReFactX code is available at https://github.com/rpo19/ReFactX.

Authors:Yang Zhou, Sunzhu Li, Shunyu Liu, Wenkai Fang, Kongcheng Zhang, Jiale Zhao, Jingwen Yang, Yihe Zhou, Jianwei Lv, Tongya Zheng, Hengtong Lu, Wei Chen, Yan Xie, Mingli Song
Title: Breaking the Exploration Bottleneck: Rubric-Scaffolded Reinforcement Learning for General LLM Reasoning
Abstract:
Recent advances in Large Language Models (LLMs) have underscored the potential of Reinforcement Learning (RL) to facilitate the emergence of reasoning capabilities. Despite the encouraging results, a fundamental dilemma persists as RL improvement relies on learning from high-quality samples, yet the exploration for such samples remains bounded by the inherent limitations of LLMs. This, in effect, creates an undesirable cycle in which what cannot be explored cannot be learned. In this work, we propose Rubric-Scaffolded Reinforcement Learning (RuscaRL), a novel instructional scaffolding framework designed to break the exploration bottleneck for general LLM reasoning. Specifically, RuscaRL introduces checklist-style rubrics as (1) explicit scaffolding for exploration during rollout generation, where different rubrics are provided as external guidance within task instructions to steer diverse high-quality responses. This guidance is gradually decayed over time, encouraging the model to internalize the underlying reasoning patterns; (2) verifiable rewards for exploitation during model training, where we can obtain robust LLM-as-a-Judge scores using rubrics as references, enabling effective RL on general reasoning tasks. Extensive experiments demonstrate the superiority of the proposed RuscaRL across various benchmarks, effectively expanding reasoning boundaries under the Best-of-N evaluation. Notably, RuscaRL significantly boosts Qwen2.5-7B-Instruct from 23.6 to 50.3 on HealthBench-500, surpassing GPT-4.1. Furthermore, our fine-tuned variant on Qwen3-30B-A3B-Instruct achieves 61.1 on HealthBench-500, outperforming leading LLMs including OpenAI-o3. Our code is available at https://github.com/IANNXANG/RuscaRL.

Authors:Haozhuo Zhang, Jingkai Sun, Michele Caprio, Jian Tang, Shanghang Zhang, Qiang Zhang, Wei Pan
Title: HumanoidVerse: A Versatile Humanoid for Vision-Language Guided Multi-Object Rearrangement
Abstract:
We introduce HumanoidVerse, a novel framework for vision-language guided humanoid control that enables a single physically simulated robot to perform long-horizon, multi-object rearrangement tasks across diverse scenes. Unlike prior methods that operate in fixed settings with single-object interactions, our approach supports consecutive manipulation of multiple objects, guided only by natural language instructions and egocentric camera RGB observations. HumanoidVerse is trained via a multi-stage curriculum using a dual-teacher distillation pipeline, enabling fluid transitions between sub-tasks without requiring environment resets. To support this, we construct a large-scale dataset comprising 350 multi-object tasks spanning four room layouts. Extensive experiments in the Isaac Gym simulator demonstrate that our method significantly outperforms prior state-of-the-art in both task success rate and spatial precision, and generalizes well to unseen environments and instructions. Our work represents a key step toward robust, general-purpose humanoid agents capable of executing complex, sequential tasks under real-world sensory constraints. The video visualization results can be found on the project page: https://haozhuo-zhang.github.io/HumanoidVerse-project-page/.

Authors:Xin Tian, Jiazheng Wang, Yuxi Zhang, Xiang Chen, Renjiu Hu, Gaolei Li, Min Liu, Hang Zhang
Title: Gaussian Primitive Optimized Deformable Retinal Image Registration
Abstract:
Deformable retinal image registration is notoriously difficult due to large homogeneous regions and sparse but critical vascular features, which cause limited gradient signals in standard learning-based frameworks. In this paper, we introduce Gaussian Primitive Optimization (GPO), a novel iterative framework that performs structured message passing to overcome these challenges. After an initial coarse alignment, we extract keypoints at salient anatomical structures (e.g., major vessels) to serve as a minimal set of descriptor-based control nodes (DCN). Each node is modelled as a Gaussian primitive with trainable position, displacement, and radius, thus adapting its spatial influence to local deformation scales. A K-Nearest Neighbors (KNN) Gaussian interpolation then blends and propagates displacement signals from these information-rich nodes to construct a globally coherent displacement field; focusing interpolation on the top (K) neighbors reduces computational overhead while preserving local detail. By strategically anchoring nodes in high-gradient regions, GPO ensures robust gradient flow, mitigating vanishing gradient signal in textureless areas. The framework is optimized end-to-end via a multi-term loss that enforces both keypoint consistency and intensity alignment. Experiments on the FIRE dataset show that GPO reduces the target registration error from 6.2\,px to ~2.4\,px and increases the AUC at 25\,px from 0.770 to 0.938, substantially outperforming existing methods. The source code can be accessed via https://github.com/xintian-99/GPOreg.

Authors:Junhyun Lee, Veronika Thost, Bumsoo Kim, Jaewoo Kang, Tengfei Ma
Title: Understanding and Tackling Over-Dilution in Graph Neural Networks
Abstract:
Message Passing Neural Networks (MPNNs) hold a key position in machine learning on graphs, but they struggle with unintended behaviors, such as over-smoothing and over-squashing, due to irregular data structures. The observation and formulation of these limitations have become foundational in constructing more informative graph representations. In this paper, we delve into the limitations of MPNNs, focusing on aspects that have previously been overlooked. Our observations reveal that even within a single layer, the information specific to an individual node can become significantly diluted. To delve into this phenomenon in depth, we present the concept of Over-dilution and formulate it with two dilution factors: intra-node dilution for attribute-level and inter-node dilution for node-level representations. We also introduce a transformer-based solution that alleviates over-dilution and complements existing node embedding methods like MPNNs. Our findings provide new insights and contribute to the development of informative representations. The implementation and supplementary materials are publicly available at https://github.com/LeeJunHyun/NATR.

Authors:Stefania L. Moroianu, Christian Bluethgen, Pierre Chambon, Mehdi Cherti, Jean-Benoit Delbrouck, Magdalini Paschali, Brandon Price, Judy Gichoya, Jenia Jitsev, Curtis P. Langlotz, Akshay S. Chaudhari
Title: Improving Performance, Robustness, and Fairness of Radiographic AI Models with Finely-Controllable Synthetic Data
Abstract:
Achieving robust performance and fairness across diverse patient populations remains a challenge in developing clinically deployable deep learning models for diagnostic imaging. Synthetic data generation has emerged as a promising strategy to address limitations in dataset scale and diversity. We introduce RoentGen-v2, a text-to-image diffusion model for chest radiographs that enables fine-grained control over both radiographic findings and patient demographic attributes, including sex, age, and race/ethnicity. RoentGen-v2 is the first model to generate clinically plausible images with demographic conditioning, facilitating the creation of a large, demographically balanced synthetic dataset comprising over 565,000 images. We use this large synthetic dataset to evaluate optimal training pipelines for downstream disease classification models. In contrast to prior work that combines real and synthetic data naively, we propose an improved training strategy that leverages synthetic data for supervised pretraining, followed by fine-tuning on real data. Through extensive evaluation on over 137,000 chest radiographs from five institutions, we demonstrate that synthetic pretraining consistently improves model performance, generalization to out-of-distribution settings, and fairness across demographic subgroups. Across datasets, synthetic pretraining led to a 6.5% accuracy increase in the performance of downstream classification models, compared to a modest 2.7% increase when naively combining real and synthetic data. We observe this performance improvement simultaneously with the reduction of the underdiagnosis fairness gap by 19.3%. These results highlight the potential of synthetic imaging to advance equitable and generalizable medical deep learning under real-world data constraints. We open source our code, trained models, and synthetic dataset at https://github.com/StanfordMIMI/RoentGen-v2 .

Authors:V Venktesh, Mandeep Rathee, Avishek Anand
Title: Trust but Verify! A Survey on Verification Design for Test-time Scaling
Abstract:
Test-time scaling (TTS) has emerged as a new frontier for scaling the performance of Large Language Models. In test-time scaling, by using more computational resources during inference, LLMs can improve their reasoning process and task performance. Several approaches have emerged for TTS such as distilling reasoning traces from another model or exploring the vast decoding search space by employing a verifier. The verifiers serve as reward models that help score the candidate outputs from the decoding process to diligently explore the vast solution space and select the best outcome. This paradigm commonly termed has emerged as a superior approach owing to parameter free scaling at inference time and high performance gains. The verifiers could be prompt-based, fine-tuned as a discriminative or generative model to verify process paths, outcomes or both. Despite their widespread adoption, there is no detailed collection, clear categorization and discussion of diverse verification approaches and their training mechanisms. In this survey, we cover the diverse approaches in the literature and present a unified view of verifier training, types and their utility in test-time scaling. Our repository can be found at https://github.com/elixir-research-group/Verifierstesttimescaling.github.io.

Authors:Zhendong Yang, Jie Wang, Liansong Zong, Xiaorong Liu, Quan Qian, Shiqian Chen
Title: Few-shot Class-incremental Fault Diagnosis by Preserving Class-Agnostic Knowledge with Dual-Granularity Representations
Abstract:
Few-Shot Class-Incremental Fault Diagnosis (FSC-FD), which aims to continuously learn from new fault classes with only a few samples without forgetting old ones, is critical for real-world industrial systems. However, this challenging task severely amplifies the issues of catastrophic forgetting of old knowledge and overfitting on scarce new data. To address these challenges, this paper proposes a novel framework built upon Dual-Granularity Representations, termed the Dual-Granularity Guidance Network (DGGN). Our DGGN explicitly decouples feature learning into two parallel streams: 1) a fine-grained representation stream, which utilizes a novel Multi-Order Interaction Aggregation module to capture discriminative, class-specific features from the limited new samples. 2) a coarse-grained representation stream, designed to model and preserve general, class-agnostic knowledge shared across all fault types. These two representations are dynamically fused by a multi-semantic cross-attention mechanism, where the stable coarse-grained knowledge guides the learning of fine-grained features, preventing overfitting and alleviating feature conflicts. To further mitigate catastrophic forgetting, we design a Boundary-Aware Exemplar Prioritization strategy. Moreover, a decoupled Balanced Random Forest classifier is employed to counter the decision boundary bias caused by data imbalance. Extensive experiments on the TEP benchmark and a real-world MFF dataset demonstrate that our proposed DGGN achieves superior diagnostic performance and stability compared to state-of-the-art FSC-FD approaches. Our code is publicly available at https://github.com/MentaY/DGGN

Authors:Zeyu Zhang, Quanyu Dai, Rui Li, Xiaohe Bo, Xu Chen, Zhenhua Dong
Title: Learn to Memorize: Optimizing LLM-based Agents with Adaptive Memory Framework
Abstract:
LLM-based agents have been extensively applied across various domains, where memory stands out as one of their most essential capabilities. Previous memory mechanisms of LLM-based agents are manually predefined by human experts, leading to higher labor costs and suboptimal performance. In addition, these methods overlook the memory cycle effect in interactive scenarios, which is critical to optimizing LLM-based agents for specific environments. To address these challenges, in this paper, we propose to optimize LLM-based agents with an adaptive and data-driven memory framework by modeling memory cycles. Specifically, we design an MoE gate function to facilitate memory retrieval, propose a learnable aggregation process to improve memory utilization, and develop task-specific reflection to adapt memory storage. Our memory framework empowers LLM-based agents to learn how to memorize information effectively in specific environments, with both off-policy and on-policy optimization. In order to evaluate the effectiveness of our proposed methods, we conduct comprehensive experiments across multiple aspects. To benefit the research community in this area, we release our project at https://github.com/nuster1128/learn_to_memorize.

Authors:Yosef Dayani, Omer Benishu, Sagie Benaim
Title: MV-RAG: Retrieval Augmented Multiview Diffusion
Abstract:
Text-to-3D generation approaches have advanced significantly by leveraging pretrained 2D diffusion priors, producing high-quality and 3D-consistent outputs. However, they often fail to produce out-of-domain (OOD) or rare concepts, yielding inconsistent or inaccurate results. To this end, we propose MV-RAG, a novel text-to-3D pipeline that first retrieves relevant 2D images from a large in-the-wild 2D database and then conditions a multiview diffusion model on these images to synthesize consistent and accurate multiview outputs. Training such a retrieval-conditioned model is achieved via a novel hybrid strategy bridging structured multiview data and diverse 2D image collections. This involves training on multiview data using augmented conditioning views that simulate retrieval variance for view-specific reconstruction, alongside training on sets of retrieved real-world 2D images using a distinctive held-out view prediction objective: the model predicts the held-out view from the other views to infer 3D consistency from 2D data. To facilitate a rigorous OOD evaluation, we introduce a new collection of challenging OOD prompts. Experiments against state-of-the-art text-to-3D, image-to-3D, and personalization baselines show that our approach significantly improves 3D consistency, photorealism, and text adherence for OOD/rare concepts, while maintaining competitive performance on standard benchmarks.

Authors:Zhijian Zhou, Junyi An, Zongkai Liu, Yunfei Shi, Xuan Zhang, Fenglei Cao, Chao Qu, Yuan Qi
Title: Guiding Diffusion Models with Reinforcement Learning for Stable Molecule Generation
Abstract:
Generating physically realistic 3D molecular structures remains a core challenge in molecular generative modeling. While diffusion models equipped with equivariant neural networks have made progress in capturing molecular geometries, they often struggle to produce equilibrium structures that adhere to physical principles such as force field consistency. To bridge this gap, we propose Reinforcement Learning with Physical Feedback (RLPF), a novel framework that extends Denoising Diffusion Policy Optimization to 3D molecular generation. RLPF formulates the task as a Markov decision process and applies proximal policy optimization to fine-tune equivariant diffusion models. Crucially, RLPF introduces reward functions derived from force-field evaluations, providing direct physical feedback to guide the generation toward energetically stable and physically meaningful structures. Experiments on the QM9 and GEOM-drug datasets demonstrate that RLPF significantly improves molecular stability compared to existing methods. These results highlight the value of incorporating physics-based feedback into generative modeling. The code is available at: https://github.com/ZhijianZhou/RLPF/tree/verl_diffusion.

Authors:Yupei Zhang, Xiaofei Wang, Anran Liu, Lequan Yu, Chao Li
Title: Disentangled Multi-modal Learning of Histology and Transcriptomics for Cancer Characterization
Abstract:
Histopathology remains the gold standard for cancer diagnosis and prognosis. With the advent of transcriptome profiling, multi-modal learning combining transcriptomics with histology offers more comprehensive information. However, existing multi-modal approaches are challenged by intrinsic multi-modal heterogeneity, insufficient multi-scale integration, and reliance on paired data, restricting clinical applicability. To address these challenges, we propose a disentangled multi-modal framework with four contributions: 1) To mitigate multi-modal heterogeneity, we decompose WSIs and transcriptomes into tumor and microenvironment subspaces using a disentangled multi-modal fusion module, and introduce a confidence-guided gradient coordination strategy to balance subspace optimization. 2) To enhance multi-scale integration, we propose an inter-magnification gene-expression consistency strategy that aligns transcriptomic signals across WSI magnifications. 3) To reduce dependency on paired data, we propose a subspace knowledge distillation strategy enabling transcriptome-agnostic inference through a WSI-only student model. 4) To improve inference efficiency, we propose an informative token aggregation module that suppresses WSI redundancy while preserving subspace semantics. Extensive experiments on cancer diagnosis, prognosis, and survival prediction demonstrate our superiority over state-of-the-art methods across multiple settings. Code is available at https://github.com/helenypzhang/Disentangled-Multimodal-Learning.

Authors:Aniello Panariello, Emanuele Frascaroli, Pietro Buzzega, Lorenzo Bonicelli, Angelo Porrello, Simone Calderara
Title: Modular Embedding Recomposition for Incremental Learning
Abstract:
The advent of pre-trained Vision-Language Models (VLMs) has significantly transformed Continual Learning (CL), mainly due to their zero-shot classification abilities. Such proficiency makes VLMs well-suited for real-world applications, enabling robust performance on novel unseen classes without requiring adaptation. However, fine-tuning remains essential when downstream tasks deviate significantly from the pre-training domain. Prior CL approaches primarily focus on preserving the zero-shot capabilities of VLMs during incremental fine-tuning on a downstream task. We take a step further by devising an approach that transforms preservation into enhancement of the zero-shot capabilities of VLMs. Our approach, named MoDular Embedding Recomposition (MoDER), introduces a modular framework that trains multiple textual experts, each specialized in a single seen class, and stores them in a foundational hub. At inference time, for each unseen class, we query the hub and compose the retrieved experts to synthesize a refined prototype that improves classification. We show the effectiveness of our method across two popular zero-shot incremental protocols, Class-IL and MTIL, comprising a total of 14 datasets. The codebase is available at https://github.com/aimagelab/mammoth.

Authors:Yu Liu, Yanbing Liu, Fangfang Yuan, Cong Cao, Youbang Sun, Kun Peng, WeiZhuo Chen, Jianjun Li, Zhiyuan Ma
Title: OPERA: A Reinforcement Learning--Enhanced Orchestrated Planner-Executor Architecture for Reasoning-Oriented Multi-Hop Retrieval
Abstract:
Recent advances in large language models (LLMs) and dense retrievers have driven significant progress in retrieval-augmented generation (RAG). However, existing approaches face significant challenges in complex reasoning-oriented multi-hop retrieval tasks: 1) Ineffective reasoning-oriented planning: Prior methods struggle to generate robust multi-step plans for complex queries, as rule-based decomposers perform poorly on out-of-template questions. 2) Suboptimal reasoning-driven retrieval: Related methods employ limited query reformulation, leading to iterative retrieval loops that often fail to locate golden documents. 3) Insufficient reasoning-guided filtering: Prevailing methods lack the fine-grained reasoning to effectively filter salient information from noisy results, hindering utilization of retrieved knowledge. Fundamentally, these limitations all stem from the weak coupling between retrieval and reasoning in current RAG architectures. We introduce the Orchestrated Planner-Executor Reasoning Architecture (OPERA), a novel reasoning-driven retrieval framework. OPERA's Goal Planning Module (GPM) decomposes questions into sub-goals, which are executed by a Reason-Execute Module (REM) with specialized components for precise reasoning and effective retrieval. To train OPERA, we propose Multi-Agents Progressive Group Relative Policy Optimization (MAPGRPO), a novel variant of GRPO. Experiments on complex multi-hop benchmarks show OPERA's superior performance, validating both the MAPGRPO method and OPERA's design. Code is available at https://github.com/Ameame1/OPERA.

Authors:Yong Zhang, Cunjian Chen, Qiang Gao, Yi Wang, Bin Fang
Title: A Lightweight Group Multiscale Bidirectional Interactive Network for Real-Time Steel Surface Defect Detection
Abstract:
Real-time surface defect detection is critical for maintaining product quality and production efficiency in the steel manufacturing industry. Despite promising accuracy, existing deep learning methods often suffer from high computational complexity and slow inference speeds, which limit their deployment in resource-constrained industrial environments. Recent lightweight approaches adopt multibranch architectures based on depthwise separable convolution (DSConv) to capture multiscale contextual information. However, these methods often suffer from increased computational overhead and lack effective cross-scale feature interaction, limiting their ability to fully leverage multiscale representations. To address these challenges, we propose GMBINet, a lightweight framework that enhances multiscale feature extraction and interaction through novel Group Multiscale Bidirectional Interactive (GMBI) modules. The GMBI adopts a group-wise strategy for multiscale feature extraction, ensuring scale-agnostic computational complexity. It further integrates a Bidirectional Progressive Feature Interactor (BPFI) and a parameter-free Element-Wise Multiplication-Summation (EWMS) operation to enhance cross-scale interaction without introducing additional computational overhead. Experiments on SD-Saliency-900 and NRSD-MN datasets demonstrate that GMBINet delivers competitive accuracy with real-time speeds of 1048 FPS on GPU and 16.53 FPS on CPU at 512 resolution, using only 0.19 M parameters. Additional evaluations on the NEU-CLS defect classification dataset further confirm the strong generalization ability of our method, demonstrating its potential for broader industrial vision applications beyond surface defect detection. The dataset and code are publicly available at: https://github.com/zhangyongcode/GMBINet.

Authors:Ana-Cristina Rogoz, Radu Tudor Ionescu, Alexandra-Valentina Anghel, Ionut-Lucian Antone-Iordache, Simona Coniac, Andreea Iuliana Ionescu
Title: MedQARo: A Large-Scale Benchmark for Medical Question Answering in Romanian
Abstract:
Question answering (QA) is an actively studied topic, being a core natural language processing (NLP) task that needs to be addressed before achieving Artificial General Intelligence (AGI). However, the lack of QA datasets in specific domains and languages hinders the development of robust AI models able to generalize across various domains and languages. To this end, we introduce MedQARo, the first large-scale medical QA benchmark in Romanian, alongside a comprehensive evaluation of state-of-the-art large language models (LLMs). We construct a high-quality and large-scale dataset comprising 102,646 QA pairs related to cancer patients. The questions regard medical case summaries of 1,011 patients, requiring either keyword extraction or reasoning to be answered correctly. MedQARo is the result of a time-consuming manual annotation process carried out by seven physicians specialized in oncology or radiotherapy, who spent a total of about 2,100 work hours to generate the QA pairs. We experiment with four LLMs from distinct families of models on MedQARo. Each model is employed in two scenarios, namely one based on zero-shot prompting and one based on supervised fine-tuning. Our results show that fine-tuned models significantly outperform their zero-shot counterparts, clearly indicating that pretrained models fail to generalize on MedQARo. Our findings demonstrate the importance of both domain-specific and language-specific fine-tuning for reliable clinical QA in Romanian. We publicly release our dataset and code at https://github.com/ana-rogoz/MedQARo.

Authors:Xueyao Zhang, Junan Zhang, Yuancheng Wang, Chaoren Wang, Yuanzhe Chen, Dongya Jia, Zhuo Chen, Zhizheng Wu
Title: Vevo2: Bridging Controllable Speech and Singing Voice Generation via Unified Prosody Learning
Abstract:
Controllable human voice generation, particularly for expressive domains like singing, remains a significant challenge. This paper introduces Vevo2, a unified framework for controllable speech and singing voice generation. To tackle issues like the scarcity of annotated singing data and to enable flexible controllability, Vevo2 introduces two audio tokenizers: (1) a music-notation-free prosody tokenizer that captures prosody and melody from speech, singing, and even instrumental sounds, and (2) a low-frame-rate (12.5 Hz) content-style tokenizer that encodes linguistic content, prosody, and style for both speech and singing, while enabling timbre disentanglement. Vevo2 consists of an auto-regressive (AR) content-style modeling stage, which aims to enable controllability over text, prosody, and style, as well as a flow-matching acoustic modeling stage that allows for timbre control. Particularly, during pre-training of the AR model, we propose both explicit and implicit prosody learning strategies to bridge speech and singing voice. Moreover, to further enhance the AR model's ability to follow text and prosody, we design a multi-objective post-training task that integrates both intelligibility and prosody similarity alignment. Experimental results show that the unified modeling in Vevo2 brings mutual benefits to both speech and singing voice generation. Additionally, Vevo2's effectiveness across a wide range of synthesis, conversion, and editing tasks for both speech and singing further demonstrates its strong generalization ability and versatility. Audio samples are are available at https://versasinger.github.io/.

Authors:João Abrantes, Robert Tjarko Lange, Yujin Tang
Title: Competition and Attraction Improve Model Fusion
Abstract:
Model merging is a powerful technique for integrating the specialized knowledge of multiple machine learning models into a single model. However, existing methods require manually partitioning model parameters into fixed groups for merging, which restricts the exploration of potential combinations and limits performance. To overcome these limitations, we propose Model Merging of Natural Niches (M2N2), an evolutionary algorithm with three key features: (1) dynamic adjustment of merging boundaries to progressively explore a broader range of parameter combinations; (2) a diversity preservation mechanism inspired by the competition for resources in nature, to maintain a population of diverse, high-performing models that are particularly well-suited for merging; and (3) a heuristicbased attraction metric to identify the most promising pairs of models for fusion. Our experimental results demonstrate, for the first time, that model merging can be used to evolve models entirely from scratch. Specifically, we apply M2N2 to evolve MNIST classifiers from scratch and achieve performance comparable to CMA-ES, while being computationally more efficient. Furthermore, M2N2 scales to merge specialized language and image generation models, achieving state-of-the-art performance. Notably, it preserves crucial model capabilities beyond those explicitly optimized by the fitness function, highlighting its robustness and versatility. Our code is available at https://github.com/SakanaAI/natural_niches

Authors:Yicheng Ji, Jun Zhang, Heming Xia, Jinpeng Chen, Lidan Shou, Gang Chen, Huan Li
Title: SpecVLM: Enhancing Speculative Decoding of Video LLMs via Verifier-Guided Token Pruning
Abstract:
Video large language models (Vid-LLMs) have shown strong capabilities in understanding video content. However, their reliance on dense video token representations introduces substantial memory and computational overhead in both prefilling and decoding. To mitigate the information loss of recent video token reduction methods and accelerate the decoding stage of Vid-LLMs losslessly, we introduce SpecVLM, a training-free speculative decoding (SD) framework tailored for Vid-LLMs that incorporates staged video token pruning. Building on our novel finding that the draft model's speculation exhibits low sensitivity to video token pruning, SpecVLM prunes up to 90% of video tokens to enable efficient speculation without sacrificing accuracy. To achieve this, we performs a two-stage pruning process: Stage I selects highly informative tokens guided by attention signals from the verifier (target model), while Stage II prunes remaining redundant ones in a spatially uniform manner. Extensive experiments on four video understanding benchmarks demonstrate the effectiveness and robustness of SpecVLM, which achieves up to 2.68$\times$ decoding speedup for LLaVA-OneVision-72B and 2.11$\times$ speedup for Qwen2.5-VL-32B. Code is available at https://github.com/zju-jiyicheng/SpecVLM.

Authors:Jiaqi Ma, Guo-Sen Xie, Fang Zhao, Zechao Li
Title: Through the Looking Glass: A Dual Perspective on Weakly-Supervised Few-Shot Segmentation
Abstract:
Meta-learning aims to uniformly sample homogeneous support-query pairs, characterized by the same categories and similar attributes, and extract useful inductive biases through identical network architectures. However, this identical network design results in over-semantic homogenization. To address this, we propose a novel homologous but heterogeneous network. By treating support-query pairs as dual perspectives, we introduce heterogeneous visual aggregation (HA) modules to enhance complementarity while preserving semantic commonality. To further reduce semantic noise and amplify the uniqueness of heterogeneous semantics, we design a heterogeneous transfer (HT) module. Finally, we propose heterogeneous CLIP (HC) textual information to enhance the generalization capability of multimodal models. In the weakly-supervised few-shot semantic segmentation (WFSS) task, with only 1/24 of the parameters of existing state-of-the-art models, TLG achieves a 13.2\% improvement on Pascal-5\textsuperscript{i} and a 9.7\% improvement on COCO-20\textsuperscript{i}. To the best of our knowledge, TLG is also the first weakly supervised (image-level) model that outperforms fully supervised (pixel-level) models under the same backbone architectures. The code is available at https://github.com/jarch-ma/TLG.

Authors:Akira Oyama, Shoichi Hasegawa, Akira Taniguchi, Yoshinobu Hagiwara, Tadahiro Taniguchi
Title: Take That for Me: Multimodal Exophora Resolution with Interactive Questioning for Ambiguous Out-of-View Instructions
Abstract:
Daily life support robots must interpret ambiguous verbal instructions involving demonstratives such as ``Bring me that cup,'' even when objects or users are out of the robot's view. Existing approaches to exophora resolution primarily rely on visual data and thus fail in real-world scenarios where the object or user is not visible. We propose Multimodal Interactive Exophora resolution with user Localization (MIEL), which is a multimodal exophora resolution framework leveraging sound source localization (SSL), semantic mapping, visual-language models (VLMs), and interactive questioning with GPT-4o. Our approach first constructs a semantic map of the environment and estimates candidate objects from a linguistic query with the user's skeletal data. SSL is utilized to orient the robot toward users who are initially outside its visual field, enabling accurate identification of user gestures and pointing directions. When ambiguities remain, the robot proactively interacts with the user, employing GPT-4o to formulate clarifying questions. Experiments in a real-world environment showed results that were approximately 1.3 times better when the user was visible to the robot and 2.0 times better when the user was not visible to the robot, compared to the methods without SSL and interactive questioning. The project website is https://emergentsystemlabstudent.github.io/MIEL/.

Authors:Ruiqi Wu, Yuang Yao, Tengfei Ma, Chenran Zhang, Na Su, Tao Zhou, Geng Chen, Wen Fan, Yi Zhou
Title: Bridging the Gap in Ophthalmic AI: MM-Retinal-Reason Dataset and OphthaReason Model toward Dynamic Multimodal Reasoning
Abstract:
Multimodal large language models (MLLMs) have recently demonstrated remarkable reasoning abilities with reinforcement learning paradigm. Although several multimodal reasoning models have been explored in the medical domain, most of them focus exclusively on basic reasoning, which refers to shallow inference based on visual feature matching. However, real-world clinical diagnosis extends beyond basic reasoning, demanding reasoning processes that integrate heterogeneous clinical information (such as chief complaints and medical history) with multimodal medical imaging data. To bridge this gap, we introduce MM-Retinal-Reason, the first ophthalmic multimodal dataset with the full spectrum of perception and reasoning. It encompasses both basic reasoning tasks and complex reasoning tasks, aiming to enhance visual-centric fundamental reasoning capabilities and emulate realistic clinical thinking patterns. Building upon MM-Retinal-Reason, we propose OphthaReason, the first ophthalmology-specific multimodal reasoning model with step-by-step reasoning traces. To enable flexible adaptation to both basic and complex reasoning tasks, we specifically design a novel method called Uncertainty-Aware Dynamic Thinking (UADT), which estimates sample-level uncertainty via entropy and dynamically modulates the model's exploration depth using a shaped advantage mechanism. Comprehensive experiments demonstrate that our model achieves state-of-the-art performance on both basic and complex reasoning tasks, outperforming general-purpose MLLMs, medical MLLMs, RL-based medical MLLMs, and ophthalmic MLLMs by at least 24.92\%, 15.00\%, 21.20\%, and 17.66\%. Project Page: \href{https://github.com/lxirich/OphthaReason}{link}.

Authors:Zhuomin Chen, Dan Li, Jiahui Zhou, Shunyu Wu, Haozheng Ye, Jian Lou, See-Kiong Ng
Title: Integrating Time Series into LLMs via Multi-layer Steerable Embedding Fusion for Enhanced Forecasting
Abstract:
Time series (TS) data are ubiquitous across various application areas, rendering time series forecasting (TSF) a fundamental task. With the astounding advances in large language models (LLMs), a variety of methods have been developed to adapt LLMs for time series forecasting. Despite unlocking the potential of LLMs in comprehending TS data, existing methods are inherently constrained by their shallow integration of TS information, wherein LLMs typically access TS representations at shallow layers, primarily at the input layer. This causes the influence of TS representations to progressively fade in deeper layers and eventually leads to ineffective adaptation between textual embeddings and TS representations. In this paper, we propose the Multi-layer Steerable Embedding Fusion (MSEF), a novel framework that enables LLMs to directly access time series patterns at all depths, thereby mitigating the progressive loss of TS information in deeper layers. Specifically, MSEF leverages off-the-shelf time series foundation models to extract semantically rich embeddings, which are fused with intermediate text representations across LLM layers via layer-specific steering vectors. These steering vectors are designed to continuously optimize the alignment between time series and textual modalities and facilitate a layer-specific adaptation mechanism that ensures efficient few-shot learning capabilities. Experimental results on seven benchmarks demonstrate significant performance improvements by MSEF compared with baselines, with an average reduction of 31.8% in terms of MSE. The code is available at https://github.com/One1sAll/MSEF.

Authors:Yijun Liu, Yuwei Liu, Yuan Meng, Jieheng Zhang, Yuwei Zhou, Ye Li, Jiacheng Jiang, Kangye Ji, Shijia Ge, Zhi Wang, Wenwu Zhu
Title: Spatial Policy: Guiding Visuomotor Robotic Manipulation with Spatial-Aware Modeling and Reasoning
Abstract:
Vision-centric hierarchical embodied models have demonstrated strong potential for long-horizon robotic control. However, existing methods lack spatial awareness capabilities, limiting their effectiveness in bridging visual plans to actionable control in complex environments. To address this problem, we propose Spatial Policy (SP), a unified spatial-aware visuomotor robotic manipulation framework via explicit spatial modeling and reasoning. Specifically, we first design a spatial-conditioned embodied video generation module to model spatially guided predictions through a spatial plan table. Then, we propose a spatial-based action prediction module to infer executable actions with coordination. Finally, we propose a spatial reasoning feedback policy to refine the spatial plan table via dual-stage replanning. Extensive experiments show that SP significantly outperforms state-of-the-art baselines, achieving a 33.0% average improvement over the best baseline. With an 86.7% average success rate across 11 diverse tasks, SP substantially enhances the practicality of embodied models for robotic control applications. Code and checkpoints are maintained at https://plantpotatoonmoon.github.io/SpatialPolicy/.

Authors:Wenqiao Zhu, Ji Liu, Rongjuncheng Zhang, Haipang Wu, Yulun Zhang
Title: CARFT: Boosting LLM Reasoning via Contrastive Learning with Annotated Chain-of-Thought-based Reinforced Fine-Tuning
Abstract:
Reasoning capability plays a significantly critical role in the the broad applications of Large Language Models (LLMs). To enhance the reasoning performance of LLMs, diverse Reinforcement Learning (RL)-based fine-tuning approaches have been proposed to address the limited generalization capability of LLMs trained solely via Supervised Fine-Tuning (SFT). Despite their effectiveness, two major limitations hinder the advancement of LLMs. First, vanilla RL-based approaches ignore annotated Chain-of-Thought (CoT) and incorporate unstable reasoning path sampling, which typically results in model collapse, unstable training process, and suboptimal performance. Second, existing SFT approaches generally overemphasize the annotated CoT, potentially leading to performance degradation due to insufficient exploitation of potential CoT. In this paper, we propose a Contrastive learning with annotated CoT-based Reinforced Fine-Tuning approach, i.e., \TheName{}, to enhance the reasoning performance of LLMs while addressing the aforementioned limitations. Specifically, we propose learning a representation for each CoT. Based on this representation, we design novel contrastive signals to guide the fine-tuning process. Our approach not only fully exploits the available annotated CoT but also stabilizes the fine-tuning procedure by incorporating an additional unsupervised learning signal. We conduct comprehensive experiments and in-depth analysis with three baseline approaches, two foundation models, and two datasets to demonstrate significant advantages of \TheName{} in terms of robustness, performance (up to 10.15\%), and efficiency (up to 30.62\%). Code is available at https://github.com/WNQzhu/CARFT.

Authors:Zhifei Xie, Ziyang Ma, Zihang Liu, Kaiyu Pang, Hongyu Li, Jialin Zhang, Yue Liao, Deheng Ye, Chunyan Miao, Shuicheng Yan
Title: Mini-Omni-Reasoner: Token-Level Thinking-in-Speaking in Large Speech Models
Abstract:
Reasoning is essential for effective communication and decision-making. While recent advances in LLMs and MLLMs have shown that incorporating explicit reasoning significantly improves understanding and generalization, reasoning in LSMs remains in a nascent stage. Early efforts attempt to transfer the "Thinking-before-Speaking" paradigm from textual models to speech. However, this sequential formulation introduces notable latency, as spoken responses are delayed until reasoning is fully completed, impairing real-time interaction and communication efficiency. To address this, we propose Mini-Omni-Reasoner, a framework that enables reasoning within speech via a novel "Thinking-in-Speaking" formulation. Rather than completing reasoning before producing any verbal output, Mini-Omni-Reasoner interleaves silent reasoning tokens with spoken response tokens at the token level. This design allows continuous speech generation while embedding structured internal reasoning, leveraging the model's high-frequency token processing capability. Although interleaved, local semantic alignment is enforced to ensure that each response token is informed by its preceding reasoning. To support this framework, we introduce Spoken-Math-Problems-3M, a large-scale dataset tailored for interleaved reasoning and response. The dataset ensures that verbal tokens consistently follow relevant reasoning content, enabling accurate and efficient learning of speech-coupled reasoning. Built on a hierarchical Thinker-Talker architecture, Mini-Omni-Reasoner delivers fluent yet logically grounded spoken responses, maintaining both naturalness and precision. On the Spoken-MQA benchmark, it achieves a +19.1% gain in arithmetic reasoning and +6.4% in contextual understanding, with shorter outputs and zero decoding latency.

Authors:Songyuan Sui, Hongyi Liu, Serena Liu, Li Li, Soo-Hyun Choi, Rui Chen, Xia Hu
Title: Chain-of-Query: Unleashing the Power of LLMs in SQL-Aided Table Understanding via Multi-Agent Collaboration
Abstract:
Table understanding requires structured, multi-step reasoning. Large Language Models (LLMs) struggle with it due to the structural complexity of tabular data. Recently, multi-agent frameworks for SQL generation have shown promise in tackling the challenges of understanding tabular data, but existing approaches often suffer from limitations such as the inability to comprehend table structure for reliable SQL generation, error propagation that results in invalid queries, and over-reliance on execution correctness. To address these issues, we propose Chain-of-Query (CoQ), a novel multi-agent framework for SQL-aided table understanding. CoQ adopts natural-language-style representations of table schemas to abstract away structural noise and enhance understanding. It employs a clause-by-clause SQL generation strategy to improve query quality and introduces a hybrid reasoning division that separates SQL-based mechanical reasoning from LLM-based logical inference, thereby reducing reliance on execution outcomes. Experiments with four models (both closed- and open-source) across five widely used benchmarks show that Chain-of-Query significantly improves accuracy from 61.11% to 74.77% and reduces the invalid SQL rate from 9.48% to 3.34%, demonstrating its superior effectiveness in table understanding. The code is available at https://github.com/SongyuanSui/ChainofQuery.

Authors:Minghao Li, Ying Zeng, Zhihao Cheng, Cong Ma, Kai Jia
Title: ReportBench: Evaluating Deep Research Agents via Academic Survey Tasks
Abstract:
The advent of Deep Research agents has substantially reduced the time required for conducting extensive research tasks. However, these tasks inherently demand rigorous standards of factual accuracy and comprehensiveness, necessitating thorough evaluation before widespread adoption. In this paper, we propose ReportBench, a systematic benchmark designed to evaluate the content quality of research reports generated by large language models (LLMs). Our evaluation focuses on two critical dimensions: (1) the quality and relevance of cited literature, and (2) the faithfulness and veracity of the statements within the generated reports. ReportBench leverages high-quality published survey papers available on arXiv as gold-standard references, from which we apply reverse prompt engineering to derive domain-specific prompts and establish a comprehensive evaluation corpus. Furthermore, we develop an agent-based automated framework within ReportBench that systematically analyzes generated reports by extracting citations and statements, checking the faithfulness of cited content against original sources, and validating non-cited claims using web-based resources. Empirical evaluations demonstrate that commercial Deep Research agents such as those developed by OpenAI and Google consistently generate more comprehensive and reliable reports than standalone LLMs augmented with search or browsing tools. However, there remains substantial room for improvement in terms of the breadth and depth of research coverage, as well as factual consistency. The complete code and data will be released at the following link: https://github.com/ByteDance-BandAI/ReportBench

Authors:Mohan Jiang, Jin Gao, Jiahao Zhan, Dequan Wang
Title: MAC: A Live Benchmark for Multimodal Large Language Models in Scientific Understanding
Abstract:
As multimodal large language models (MLLMs) grow increasingly capable, fixed benchmarks are gradually losing their effectiveness in evaluating high-level scientific understanding. In this paper, we introduce the Multimodal Academic Cover benchmark (MAC), a live benchmark that could continuously evolve with scientific advancement and model progress. MAC leverages over 25,000 image-text pairs sourced from issues of top-tier scientific journals such as Nature, Science, and Cell, challenging MLLMs to reason across abstract visual and textual scientific content. Experiments on our most recent yearly snapshot, MAC-2025, reveal that while MLLMs demonstrate strong perceptual abilities, their cross-modal scientific reasoning remains limited. To bridge this gap, we propose DAD, a lightweight inference-time approach that enhances MLLMs by extending MLLM visual features with language space reasoning, achieving performance improvements of up to 11%. Finally, we highlight the live nature of MAC through experiments on updating journal covers and models for curation, illustrating its potential to remain aligned with the frontier of human knowledge. We release our benchmark at https://github.com/mhjiang0408/MAC_Bench.

Authors:Yanxu Meng, Haoning Wu, Ya Zhang, Weidi Xie
Title: SceneGen: Single-Image 3D Scene Generation in One Feedforward Pass
Abstract:
3D content generation has recently attracted significant research interest due to its applications in VR/AR and embodied AI. In this work, we address the challenging task of synthesizing multiple 3D assets within a single scene image. Concretely, our contributions are fourfold: (i) we present SceneGen, a novel framework that takes a scene image and corresponding object masks as input, simultaneously producing multiple 3D assets with geometry and texture. Notably, SceneGen operates with no need for optimization or asset retrieval; (ii) we introduce a novel feature aggregation module that integrates local and global scene information from visual and geometric encoders within the feature extraction module. Coupled with a position head, this enables the generation of 3D assets and their relative spatial positions in a single feedforward pass; (iii) we demonstrate SceneGen's direct extensibility to multi-image input scenarios. Despite being trained solely on single-image inputs, our architectural design enables improved generation performance with multi-image inputs; and (iv) extensive quantitative and qualitative evaluations confirm the efficiency and robust generation abilities of our approach. We believe this paradigm offers a novel solution for high-quality 3D content generation, potentially advancing its practical applications in downstream tasks. The code and model will be publicly available at: https://mengmouxu.github.io/SceneGen.

Authors:Qiaoyu Zheng, Yuze Sun, Chaoyi Wu, Weike Zhao, Pengcheng Qiu, Yongguo Yu, Kun Sun, Yanfeng Wang, Ya Zhang, Weidi Xie
Title: End-to-End Agentic RAG System Training for Traceable Diagnostic Reasoning
Abstract:
Accurate diagnosis with medical large language models is hindered by knowledge gaps and hallucinations. Retrieval and tool-augmented methods help, but their impact is limited by weak use of external knowledge and poor feedback-reasoning traceability. To address these challenges, We introduce Deep-DxSearch, an agentic RAG system trained end-to-end with reinforcement learning (RL) that enables steer tracebale retrieval-augmented reasoning for medical diagnosis. In Deep-DxSearch, we first construct a large-scale medical retrieval corpus comprising patient records and reliable medical knowledge sources to support retrieval-aware reasoning across diagnostic scenarios. More crutially, we frame the LLM as the core agent and the retrieval corpus as its environment, using tailored rewards on format, retrieval, reasoning structure, and diagnostic accuracy, thereby evolving the agentic RAG policy from large-scale data through RL. Experiments demonstrate that our end-to-end agentic RL training framework consistently outperforms prompt-engineering and training-free RAG approaches across multiple data centers. After training, Deep-DxSearch achieves substantial gains in diagnostic accuracy, surpassing strong diagnostic baselines such as GPT-4o, DeepSeek-R1, and other medical-specific frameworks for both common and rare disease diagnosis under in-distribution and out-of-distribution settings. Moreover, ablation studies on reward design and retrieval corpus components confirm their critical roles, underscoring the uniqueness and effectiveness of our approach compared with traditional implementations. Finally, case studies and interpretability analyses highlight improvements in Deep-DxSearch's diagnostic policy, providing deeper insight into its performance gains and supporting clinicians in delivering more reliable and precise preliminary diagnoses. See https://github.com/MAGIC-AI4Med/Deep-DxSearch.

Authors:Wilka Carvalho, Vikram Goddla, Ishaan Sinha, Hoon Shin, Kunal Jha
Title: NiceWebRL: a Python library for human subject experiments with reinforcement learning environments
Abstract:
We present NiceWebRL, a research tool that enables researchers to use machine reinforcement learning (RL) environments for online human subject experiments. NiceWebRL is a Python library that allows any Jax-based environment to be transformed into an online interface, supporting both single-agent and multi-agent environments. As such, NiceWebRL enables AI researchers to compare their algorithms to human performance, cognitive scientists to test ML algorithms as theories for human cognition, and multi-agent researchers to develop algorithms for human-AI collaboration. We showcase NiceWebRL with 3 case studies that demonstrate its potential to help develop Human-like AI, Human-compatible AI, and Human-assistive AI. In the first case study (Human-like AI), NiceWebRL enables the development of a novel RL model of cognition. Here, NiceWebRL facilitates testing this model against human participants in both a grid world and Craftax, a 2D Minecraft domain. In our second case study (Human-compatible AI), NiceWebRL enables the development of a novel multi-agent RL algorithm that can generalize to human partners in the Overcooked domain. Finally, in our third case study (Human-assistive AI), we show how NiceWebRL can allow researchers to study how an LLM can assist humans on complex tasks in XLand-Minigrid, an environment with millions of hierarchical tasks. The library is available at https://github.com/KempnerInstitute/nicewebrl.

Authors:Weihang Su, Anzhe Xie, Qingyao Ai, Jianming Long, Jiaxin Mao, Ziyi Ye, Yiqun Liu
Title: Benchmarking Computer Science Survey Generation
Abstract:
Scientific survey articles play a vital role in summarizing research progress, yet their manual creation is becoming increasingly infeasible due to the rapid growth of academic literature. While large language models (LLMs) offer promising capabilities for automating this process, progress in this area is hindered by the absence of standardized benchmarks and evaluation protocols. To address this gap, we introduce SurGE (Survey Generation Evaluation), a new benchmark for evaluating scientific survey generation in the computer science domain. SurGE consists of (1) a collection of test instances, each including a topic description, an expert-written survey, and its full set of cited references, and (2) a large-scale academic corpus of over one million papers that serves as the retrieval pool. In addition, we propose an automated evaluation framework that measures generated surveys across four dimensions: information coverage, referencing accuracy, structural organization, and content quality. Our evaluation of diverse LLM-based approaches shows that survey generation remains highly challenging, even for advanced self-reflection frameworks. These findings highlight the complexity of the task and the necessity for continued research. We have open-sourced all the code, data, and models at: https://github.com/oneal2000/SurGE

Authors:Alfio Gliozzo, Naweed Khan, Christodoulos Constantinides, Nandana Mihindukulasooriya, Nahuel Defosse, Junkyu Lee
Title: Transduction is All You Need for Structured Data Workflows
Abstract:
This paper introduces Agentics, a modular framework for building agent-based systems capable of structured reasoning and compositional generalization over complex data. Designed with research and practical applications in mind, Agentics offers a novel perspective on working with data and AI workflows. In this framework, agents are abstracted from the logical flow and they are used internally to the data type to enable logical transduction among data. Agentics encourages AI developers to focus on modeling data rather than crafting prompts, enabling a declarative language in which data types are provided by LLMs and composed through logical transduction, which is executed by LLMs when types are connected. We provide empirical evidence demonstrating the applicability of this framework across domain-specific multiple-choice question answering, semantic parsing for text-to-SQL, and automated prompt optimization tasks, achieving state-of-the-art accuracy or improved scalability without sacrificing performance. The open-source implementation is available at \texttt{https://github.com/IBM/agentics}.

Authors:Filippo Tonini, Lukas Galke
Title: Super-additive Cooperation in Language Model Agents
Abstract:
With the prospect of autonomous artificial intelligence (AI) agents, studying their tendency for cooperative behavior becomes an increasingly relevant topic. This study is inspired by the super-additive cooperation theory, where the combined effects of repeated interactions and inter-group rivalry have been argued to be the cause for cooperative tendencies found in humans. We devised a virtual tournament where language model agents, grouped into teams, face each other in a Prisoner's Dilemma game. By simulating both internal team dynamics and external competition, we discovered that this blend substantially boosts both overall and initial, one-shot cooperation levels (the tendency to cooperate in one-off interactions). This research provides a novel framework for large language models to strategize and act in complex social scenarios and offers evidence for how intergroup competition can, counter-intuitively, result in more cooperative behavior. These insights are crucial for designing future multi-agent AI systems that can effectively work together and better align with human values. Source code is available at https://github.com/pippot/Superadditive-cooperation-LLMs.

Authors:Deyu Zhang, Xicheng Zhang, Jiahao Li, Tingting Long, Xunhua Dai, Yongjian Fu, Jinrui Zhang, Ju Ren, Yaoxue Zhang
Title: LLM-Driven Self-Refinement for Embodied Drone Task Planning
Abstract:
We introduce SRDrone, a novel system designed for self-refinement task planning in industrial-grade embodied drones. SRDrone incorporates two key technical contributions: First, it employs a continuous state evaluation methodology to robustly and accurately determine task outcomes and provide explanatory feedback. This approach supersedes conventional reliance on single-frame final-state assessment for continuous, dynamic drone operations. Second, SRDrone implements a hierarchical Behavior Tree (BT) modification model. This model integrates multi-level BT plan analysis with a constrained strategy space to enable structured reflective learning from experience. Experimental results demonstrate that SRDrone achieves a 44.87% improvement in Success Rate (SR) over baseline methods. Furthermore, real-world deployment utilizing an experience base optimized through iterative self-refinement attains a 96.25% SR. By embedding adaptive task refinement capabilities within an industrial-grade BT planning framework, SRDrone effectively integrates the general reasoning intelligence of Large Language Models (LLMs) with the stringent physical execution constraints inherent to embodied drones. Code is available at https://github.com/ZXiiiC/SRDrone.

Authors:Chengqi Dong, Fenghe Tang, Rongge Mao, Xinpei Gao, S. Kevin Zhou
Title: LGMSNet: Thinning a medical image segmentation model via dual-level multiscale fusion
Abstract:
Medical image segmentation plays a pivotal role in disease diagnosis and treatment planning, particularly in resource-constrained clinical settings where lightweight and generalizable models are urgently needed. However, existing lightweight models often compromise performance for efficiency and rarely adopt computationally expensive attention mechanisms, severely restricting their global contextual perception capabilities. Additionally, current architectures neglect the channel redundancy issue under the same convolutional kernels in medical imaging, which hinders effective feature extraction. To address these challenges, we propose LGMSNet, a novel lightweight framework based on local and global dual multiscale that achieves state-of-the-art performance with minimal computational overhead. LGMSNet employs heterogeneous intra-layer kernels to extract local high-frequency information while mitigating channel redundancy. In addition, the model integrates sparse transformer-convolutional hybrid branches to capture low-frequency global information. Extensive experiments across six public datasets demonstrate LGMSNet's superiority over existing state-of-the-art methods. In particular, LGMSNet maintains exceptional performance in zero-shot generalization tests on four unseen datasets, underscoring its potential for real-world deployment in resource-limited medical scenarios. The whole project code is in https://github.com/cq-dong/LGMSNet.

Authors:Chengcan Wu, Zeming Wei, Huanran Chen, Yinpeng Dong, Meng Sun
Title: Reliable Unlearning Harmful Information in LLMs with Metamorphosis Representation Projection
Abstract:
While Large Language Models (LLMs) have demonstrated impressive performance in various domains and tasks, concerns about their safety are becoming increasingly severe. In particular, since models may store unsafe knowledge internally, machine unlearning has emerged as a representative paradigm to ensure model safety. Existing approaches employ various training techniques, such as gradient ascent and negative preference optimization, in attempts to eliminate the influence of undesired data on target models. However, these methods merely suppress the activation of undesired data through parametric training without completely eradicating its informational traces within the model. This fundamental limitation makes it difficult to achieve effective continuous unlearning, rendering these methods vulnerable to relearning attacks. To overcome these challenges, we propose a Metamorphosis Representation Projection (MRP) approach that pioneers the application of irreversible projection properties to machine unlearning. By implementing projective transformations in the hidden state space of specific network layers, our method effectively eliminates harmful information while preserving useful knowledge. Experimental results demonstrate that our approach enables effective continuous unlearning and successfully defends against relearning attacks, achieving state-of-the-art performance in unlearning effectiveness while preserving natural performance. Our code is available in https://github.com/ChengcanWu/MRP.

Authors:Yirong Sun, Yizhong Geng, Peidong Wei, Yanjun Chen, Jinghan Yang, Rongfei Chen, Wei Zhang, Xiaoyu Shen
Title: LLaSO: A Foundational Framework for Reproducible Research in Large Language and Speech Model
Abstract:
The development of Large Speech-Language Models (LSLMs) has been slowed by fragmented architectures and a lack of transparency, hindering the systematic comparison and reproducibility of research. Unlike in the vision-language domain, the LSLM field suffers from the common practice of releasing model weights without their corresponding training data and configurations. To address these critical gaps, we introduce LLaSO, the first fully open, end-to-end framework for large-scale speech-language modeling. LLaSO provides the community with three essential resources: (1) LLaSO-Align, a 12M-instance speech-text alignment corpus; (2) LLaSO-Instruct, a 13.5M-instance multi-task instruction-tuning dataset; and (3) LLaSO-Eval, a reproducible benchmark for standardized evaluation. To validate our framework, we build and release LLaSO-Base, a 3.8B-parameter reference model trained exclusively on our public data. It achieves a normalized score of 0.72, establishing a strong, reproducible baseline that surpasses comparable models. Our analysis reveals that while broader training coverage enhances performance, significant generalization gaps persist on unseen tasks, particularly in pure audio scenarios. By releasing the complete stack of data, benchmarks, and models, LLaSO establishes a foundational open standard to unify research efforts and accelerate community-driven progress in LSLMs. We release the code, dataset, pretrained models, and results in https://github.com/EIT-NLP/LLaSO.

Authors:Pixi Kang, Julian Moosmann, Mengxi Liu, Bo Zhou, Michele Magno, Paul Lukowicz, Sizhen Bian
Title: Bridging Generalization and Personalization in Human Activity Recognition via On-Device Few-Shot Learning
Abstract:
Human Activity Recognition (HAR) with different sensing modalities requires both strong generalization across diverse users and efficient personalization for individuals. However, conventional HAR models often fail to generalize when faced with user-specific variations, leading to degraded performance. To address this challenge, we propose a novel on-device few-shot learning framework that bridges generalization and personalization in HAR. Our method first trains a generalizable representation across users and then rapidly adapts to new users with only a few labeled samples, updating lightweight classifier layers directly on resource-constrained devices. This approach achieves robust on-device learning with minimal computation and memory cost, making it practical for real-world deployment. We implement our framework on the energy-efficient RISC-V GAP9 microcontroller and evaluate it on three benchmark datasets (RecGym, QVAR-Gesture, Ultrasound-Gesture). Across these scenarios, post-deployment adaptation improves accuracy by 3.73\%, 17.38\%, and 3.70\%, respectively. These results demonstrate that few-shot on-device learning enables scalable, user-aware, and energy-efficient wearable human activity recognition by seamlessly uniting generalization and personalization. The related framework is open sourced for further research\footnote{https://github.com/kangpx/onlineTiny2023}.

Authors:Cheng Wang, Gelei Deng, Xianglin Yang, Han Qiu, Tianwei Zhang
Title: When Audio and Text Disagree: Revealing Text Bias in Large Audio-Language Models
Abstract:
Large Audio-Language Models (LALMs) are enhanced with audio perception capabilities, enabling them to effectively process and understand multimodal inputs that combine audio and text. However, their performance in handling conflicting information between audio and text modalities remains largely unexamined. This paper introduces MCR-BENCH, the first comprehensive benchmark specifically designed to evaluate how LALMs prioritize information when presented with inconsistent audio-text pairs. Through extensive evaluation across diverse audio understanding tasks, we reveal a concerning phenomenon: when inconsistencies exist between modalities, LALMs display a significant bias toward textual input, frequently disregarding audio evidence. This tendency leads to substantial performance degradation in audio-centric tasks and raises important reliability concerns for real-world applications. We further investigate the influencing factors of text bias, and explore mitigation strategies through supervised finetuning, and analyze model confidence patterns that reveal persistent overconfidence even with contradictory inputs. These findings underscore the need for improved modality balance during training and more sophisticated fusion mechanisms to enhance the robustness when handling conflicting multi-modal inputs. The project is available at https://github.com/WangCheng0116/MCR-BENCH.

Authors:Wutao Liu, YiDan Wang, Pan Gao
Title: First RAG, Second SEG: A Training-Free Paradigm for Camouflaged Object Detection
Abstract:
Camouflaged object detection (COD) poses a significant challenge in computer vision due to the high similarity between objects and their backgrounds. Existing approaches often rely on heavy training and large computational resources. While foundation models such as the Segment Anything Model (SAM) offer strong generalization, they still struggle to handle COD tasks without fine-tuning and require high-quality prompts to yield good performance. However, generating such prompts manually is costly and inefficient. To address these challenges, we propose \textbf{First RAG, Second SEG (RAG-SEG)}, a training-free paradigm that decouples COD into two stages: Retrieval-Augmented Generation (RAG) for generating coarse masks as prompts, followed by SAM-based segmentation (SEG) for refinement. RAG-SEG constructs a compact retrieval database via unsupervised clustering, enabling fast and effective feature retrieval. During inference, the retrieved features produce pseudo-labels that guide precise mask generation using SAM2. Our method eliminates the need for conventional training while maintaining competitive performance. Extensive experiments on benchmark COD datasets demonstrate that RAG-SEG performs on par with or surpasses state-of-the-art methods. Notably, all experiments are conducted on a \textbf{personal laptop}, highlighting the computational efficiency and practicality of our approach. We present further analysis in the Appendix, covering limitations, salient object detection extension, and possible improvements. \textcolor{blue} {Code: https://github.com/Lwt-diamond/RAG-SEG.}

Authors:Yilin Jiang, Mingzi Zhang, Sheng Jin, Zengyi Yu, Xiangjie Kong, Binghao Tu
Title: EMNLP: Educator-role Moral and Normative Large Language Models Profiling
Abstract:
Simulating Professions (SP) enables Large Language Models (LLMs) to emulate professional roles. However, comprehensive psychological and ethical evaluation in these contexts remains lacking. This paper introduces EMNLP, an Educator-role Moral and Normative LLMs Profiling framework for personality profiling, moral development stage measurement, and ethical risk under soft prompt injection. EMNLP extends existing scales and constructs 88 teacher-specific moral dilemmas, enabling profession-oriented comparison with human teachers. A targeted soft prompt injection set evaluates compliance and vulnerability in teacher SP. Experiments on 14 LLMs show teacher-role LLMs exhibit more idealized and polarized personalities than human teachers, excel in abstract moral reasoning, but struggle with emotionally complex situations. Models with stronger reasoning are more vulnerable to harmful prompt injection, revealing a paradox between capability and safety. The model temperature and other hyperparameters have limited influence except in some risk behaviors. This paper presents the first benchmark to assess ethical and psychological alignment of teacher-role LLMs for educational AI. Resources are available at https://e-m-n-l-p.github.io/.

Authors:Hantao Zhang, Jingyang Liu, Ed Li
Title: See it. Say it. Sorted: Agentic System for Compositional Diagram Generation
Abstract:
We study sketch-to-diagram generation: converting rough hand sketches into precise, compositional diagrams. Diffusion models excel at photorealism but struggle with the spatial precision, alignment, and symbolic structure required for flowcharts. We introduce See it. Say it. Sorted., a training-free agentic system that couples a Vision-Language Model (VLM) with Large Language Models (LLMs) to produce editable Scalable Vector Graphics (SVG) programs. The system runs an iterative loop in which a Critic VLM proposes a small set of qualitative, relational edits; multiple candidate LLMs synthesize SVG updates with diverse strategies (conservative->aggressive, alternative, focused); and a Judge VLM selects the best candidate, ensuring stable improvement. This design prioritizes qualitative reasoning over brittle numerical estimates, preserves global constraints (e.g., alignment, connectivity), and naturally supports human-in-the-loop corrections. On 10 sketches derived from flowcharts in published papers, our method more faithfully reconstructs layout and structure than two frontier closed-source image generation LLMs (GPT-5 and Gemini-2.5-Pro), accurately composing primitives (e.g., multi-headed arrows) without inserting unwanted text. Because outputs are programmatic SVGs, the approach is readily extensible to presentation tools (e.g., PowerPoint) via APIs and can be specialized with improved prompts and task-specific tools. The codebase is open-sourced at https://github.com/hantaoZhangrichard/see_it_say_it_sorted.git.

Authors:Huanxuan Liao, Yixing Xu, Shizhu He, Guanchen Li, Xuanwu Yin, Dong Li, Emad Barsoum, Jun Zhao, Kang Liu
Title: SparK: Query-Aware Unstructured Sparsity with Recoverable KV Cache Channel Pruning
Abstract:
Long-context inference in large language models (LLMs) is increasingly constrained by the KV cache bottleneck: memory usage grows linearly with sequence length, while attention computation scales quadratically. Existing approaches address this issue by compressing the KV cache along the temporal axis through strategies such as token eviction or merging to reduce memory and computational overhead. However, these methods often neglect fine-grained importance variations across feature dimensions (i.e., the channel axis), thereby limiting their ability to effectively balance efficiency and model accuracy. In reality, we observe that channel saliency varies dramatically across both queries and positions: certain feature channels carry near-zero information for a given query, while others spike in relevance. To address this oversight, we propose SPARK, a training-free plug-and-play method that applies unstructured sparsity by pruning KV at the channel level, while dynamically restoring the pruned entries during attention score computation. Notably, our approach is orthogonal to existing KV compression and quantization techniques, making it compatible for integration with them to achieve further acceleration. By reducing channel-level redundancy, SPARK enables processing of longer sequences within the same memory budget. For sequences of equal length, SPARK not only preserves or improves model accuracy but also reduces KV cache storage by over 30% compared to eviction-based methods. Furthermore, even with an aggressive pruning ratio of 80%, SPARK maintains performance with less degradation than 5% compared to the baseline eviction method, demonstrating its robustness and effectiveness. Our code will be available at https://github.com/Xnhyacinth/SparK.

Authors:Kai Xiong, Yanwei Huang, Rongjunchen Zhang, Kun Chen, Haipang Wu
Title: PuzzleClone: An SMT-Powered Framework for Synthesizing Verifiable Data
Abstract:
High-quality mathematical and logical datasets with verifiable answers are essential for strengthening the reasoning capabilities of large language models (LLMs). While recent data augmentation techniques have facilitated the creation of large-scale benchmarks, existing LLM-generated datasets often suffer from limited reliability, diversity, and scalability. To address these challenges, we introduce PuzzleClone, a formal framework for synthesizing verifiable data at scale using Satisfiability Modulo Theories (SMT). Our approach features three key innovations: (1) encoding seed puzzles into structured logical specifications, (2) generating scalable variants through systematic variable and constraint randomization, and (3) ensuring validity via a reproduction mechanism. Applying PuzzleClone, we construct a curated benchmark comprising over 83K diverse and programmatically validated puzzles. The generated puzzles span a wide spectrum of difficulty and formats, posing significant challenges to current state-of-the-art models. We conduct post training (SFT and RL) on PuzzleClone datasets. Experimental results show that training on PuzzleClone yields substantial improvements not only on PuzzleClone testset but also on logic and mathematical benchmarks. Post training raises PuzzleClone average from 14.4 to 56.2 and delivers consistent improvements across 7 logic and mathematical benchmarks up to 12.5 absolute percentage points (AMC2023 from 52.5 to 65.0). Our code and data are available at https://github.com/HiThink-Research/PuzzleClone.

Authors:Jiabo Ye, Xi Zhang, Haiyang Xu, Haowei Liu, Junyang Wang, Zhaoqing Zhu, Ziwei Zheng, Feiyu Gao, Junjie Cao, Zhengxi Lu, Jitong Liao, Qi Zheng, Fei Huang, Jingren Zhou, Ming Yan
Title: Mobile-Agent-v3: Fundamental Agents for GUI Automation
Abstract:
This paper introduces GUI-Owl, a foundational GUI agent model that achieves state-of-the-art performance among open-source end-to-end models on ten GUI benchmarks across desktop and mobile environments, covering grounding, question answering, planning, decision-making, and procedural knowledge. GUI-Owl-7B achieves 66.4 on AndroidWorld and 29.4 on OSWorld. Building on this, we propose Mobile-Agent-v3, a general-purpose GUI agent framework that further improves performance to 73.3 on AndroidWorld and 37.7 on OSWorld, setting a new state-of-the-art for open-source GUI agent frameworks. GUI-Owl incorporates three key innovations: (1) Large-scale Environment Infrastructure: a cloud-based virtual environment spanning Android, Ubuntu, macOS, and Windows, enabling our Self-Evolving GUI Trajectory Production framework. This generates high-quality interaction data via automated query generation and correctness validation, leveraging GUI-Owl to refine trajectories iteratively, forming a self-improving loop. It supports diverse data pipelines and reduces manual annotation. (2) Diverse Foundational Agent Capabilities: by integrating UI grounding, planning, action semantics, and reasoning patterns, GUI-Owl supports end-to-end decision-making and can act as a modular component in multi-agent systems. (3) Scalable Environment RL: we develop a scalable reinforcement learning framework with fully asynchronous training for real-world alignment. We also introduce Trajectory-aware Relative Policy Optimization (TRPO) for online RL, achieving 34.9 on OSWorld. GUI-Owl and Mobile-Agent-v3 are open-sourced at https://github.com/X-PLUG/MobileAgent.

Authors:Pengsong Zhang, Xiang Hu, Guowei Huang, Yang Qi, Heng Zhang, Xiuxu Li, Jiaxing Song, Jiabin Luo, Yijiang Li, Shuo Yin, Chengxiao Dai, Eric Hanchen Jiang, Xiaoyan Zhou, Zhenfei Yin, Boqin Yuan, Jing Dong, Guinan Su, Guanren Qiao, Haiming Tang, Anghong Du, Lili Pan, Zhenzhong Lan, Xinyu Liu
Title: aiXiv: A Next-Generation Open Access Ecosystem for Scientific Discovery Generated by AI Scientists
Abstract:
Recent advances in large language models (LLMs) have enabled AI agents to autonomously generate scientific proposals, conduct experiments, author papers, and perform peer reviews. Yet this flood of AI-generated research content collides with a fragmented and largely closed publication ecosystem. Traditional journals and conferences rely on human peer review, making them difficult to scale and often reluctant to accept AI-generated research content; existing preprint servers (e.g. arXiv) lack rigorous quality-control mechanisms. Consequently, a significant amount of high-quality AI-generated research lacks appropriate venues for dissemination, hindering its potential to advance scientific progress. To address these challenges, we introduce aiXiv, a next-generation open-access platform for human and AI scientists. Its multi-agent architecture allows research proposals and papers to be submitted, reviewed, and iteratively refined by both human and AI scientists. It also provides API and MCP interfaces that enable seamless integration of heterogeneous human and AI scientists, creating a scalable and extensible ecosystem for autonomous scientific discovery. Through extensive experiments, we demonstrate that aiXiv is a reliable and robust platform that significantly enhances the quality of AI-generated research proposals and papers after iterative revising and reviewing on aiXiv. Our work lays the groundwork for a next-generation open-access ecosystem for AI scientists, accelerating the publication and dissemination of high-quality AI-generated research content. Code is available at https://github.com/aixiv-org. Website is available at https://forms.gle/DxQgCtXFsJ4paMtn8.

Authors:Kaixiang Zhao, Lincan Li, Kaize Ding, Neil Zhenqiang Gong, Yue Zhao, Yushun Dong
Title: A Systematic Survey of Model Extraction Attacks and Defenses: State-of-the-Art and Perspectives
Abstract:
Machine learning (ML) models have significantly grown in complexity and utility, driving advances across multiple domains. However, substantial computational resources and specialized expertise have historically restricted their wide adoption. Machine-Learning-as-a-Service (MLaaS) platforms have addressed these barriers by providing scalable, convenient, and affordable access to sophisticated ML models through user-friendly APIs. While this accessibility promotes widespread use of advanced ML capabilities, it also introduces vulnerabilities exploited through Model Extraction Attacks (MEAs). Recent studies have demonstrated that adversaries can systematically replicate a target model's functionality by interacting with publicly exposed interfaces, posing threats to intellectual property, privacy, and system security. In this paper, we offer a comprehensive survey of MEAs and corresponding defense strategies. We propose a novel taxonomy that classifies MEAs according to attack mechanisms, defense approaches, and computing environments. Our analysis covers various attack techniques, evaluates their effectiveness, and highlights challenges faced by existing defenses, particularly the critical trade-off between preserving model utility and ensuring security. We further assess MEAs within different computing paradigms and discuss their technical, ethical, legal, and societal implications, along with promising directions for future research. This systematic survey aims to serve as a valuable reference for researchers, practitioners, and policymakers engaged in AI security and privacy. Additionally, we maintain an online repository continuously updated with related literature at https://github.com/kzhao5/ModelExtractionPapers.

Authors:Chiao-An Yang, Raymond A. Yeh
Title: Heatmap Regression without Soft-Argmax for Facial Landmark Detection
Abstract:
Facial landmark detection is an important task in computer vision with numerous applications, such as head pose estimation, expression analysis, face swapping, etc. Heatmap regression-based methods have been widely used to achieve state-of-the-art results in this task. These methods involve computing the argmax over the heatmaps to predict a landmark. Since argmax is not differentiable, these methods use a differentiable approximation, Soft-argmax, to enable end-to-end training on deep-nets. In this work, we revisit this long-standing choice of using Soft-argmax and demonstrate that it is not the only way to achieve strong performance. Instead, we propose an alternative training objective based on the classic structured prediction framework. Empirically, our method achieves state-of-the-art performance on three facial landmark benchmarks (WFLW, COFW, and 300W), converging 2.2x faster during training while maintaining better/competitive accuracy. Our code is available here: https://github.com/ca-joe-yang/regression-without-softarg.

Authors:Yue Pan, Liwei Liu, Changxin Li, Xinyao Wang, Yili Xia, Hanyue Zhang, Ming Chu
Title: A Chinese Heart Failure Status Speech Database with Universal and Personalised Classification
Abstract:
Speech is a cost-effective and non-intrusive data source for identifying acute and chronic heart failure (HF). However, there is a lack of research on whether Chinese syllables contain HF-related information, as observed in other well-studied languages. This study presents the first Chinese speech database of HF patients, featuring paired recordings taken before and after hospitalisation. The findings confirm the effectiveness of the Chinese language in HF detection using both standard 'patient-wise' and personalised 'pair-wise' classification approaches, with the latter serving as an ideal speaker-decoupled baseline for future research. Statistical tests and classification results highlight individual differences as key contributors to inaccuracy. Additionally, an adaptive frequency filter (AFF) is proposed for frequency importance analysis. The data and demonstrations are published at https://github.com/panyue1998/Voice_HF.

Authors:Jiaming Leng, Yunying Bi, Chuan Qin, Bing Yin, Yanyong Zhang, Chao Wang
Title: TransLLM: A Unified Multi-Task Foundation Framework for Urban Transportation via Learnable Prompting
Abstract:
Urban transportation systems encounter diverse challenges across multiple tasks, such as traffic forecasting, electric vehicle (EV) charging demand prediction, and taxi dispatch. Existing approaches suffer from two key limitations: small-scale deep learning models are task-specific and data-hungry, limiting their generalizability across diverse scenarios, while large language models (LLMs), despite offering flexibility through natural language interfaces, struggle with structured spatiotemporal data and numerical reasoning in transportation domains. To address these limitations, we propose TransLLM, a unified foundation framework that integrates spatiotemporal modeling with large language models through learnable prompt composition. Our approach features a lightweight spatiotemporal encoder that captures complex dependencies via dilated temporal convolutions and dual-adjacency graph attention networks, seamlessly interfacing with LLMs through structured embeddings. A novel instance-level prompt routing mechanism, trained via reinforcement learning, dynamically personalizes prompts based on input characteristics, moving beyond fixed task-specific templates. The framework operates by encoding spatiotemporal patterns into contextual representations, dynamically composing personalized prompts to guide LLM reasoning, and projecting the resulting representations through specialized output layers to generate task-specific predictions. Experiments across seven datasets and three tasks demonstrate the exceptional effectiveness of TransLLM in both supervised and zero-shot settings. Compared to ten baseline models, it delivers competitive performance on both regression and planning problems, showing strong generalization and cross-task adaptability. Our code is available at https://github.com/BiYunying/TransLLM.

Authors:Samir Abdaljalil, Erchin Serpedin, Khalid Qaraqe, Hasan Kurban
Title: Evaluating Multilingual and Code-Switched Alignment in LLMs via Synthetic Natural Language Inference
Abstract:
Large language models (LLMs) are increasingly applied in multilingual contexts, yet their capacity for consistent, logically grounded alignment across languages remains underexplored. We present a controlled evaluation framework for multilingual natural language inference (NLI) that generates synthetic, logic-based premise-hypothesis pairs and translates them into a typologically diverse set of languages. This design enables precise control over semantic relations and allows testing in both monolingual and mixed-language (code-switched) conditions. Surprisingly, code-switching does not degrade, and can even improve, performance, suggesting that translation-induced lexical variation may serve as a regularization signal. We validate semantic preservation through embedding-based similarity analyses and cross-lingual alignment visualizations, confirming the fidelity of translated pairs. Our findings expose both the potential and the brittleness of current LLM cross-lingual reasoning, and identify code-switching as a promising lever for improving multilingual robustness. Code available at: https://github.com/KurbanIntelligenceLab/nli-stress-testing

Authors:Valter Schütz, Han Wu, Reza Rezvan, Linus Aronsson, Morteza Haghir Chehreghani
Title: AFABench: A Generic Framework for Benchmarking Active Feature Acquisition
Abstract:
In many real-world scenarios, acquiring all features of a data instance can be expensive or impractical due to monetary cost, latency, or privacy concerns. Active Feature Acquisition (AFA) addresses this challenge by dynamically selecting a subset of informative features for each data instance, trading predictive performance against acquisition cost. While numerous methods have been proposed for AFA, ranging from greedy information-theoretic strategies to non-myopic reinforcement learning approaches, fair and systematic evaluation of these methods has been hindered by the lack of standardized benchmarks. In this paper, we introduce AFABench, the first benchmark framework for AFA. Our benchmark includes a diverse set of synthetic and real-world datasets, supports a wide range of acquisition policies, and provides a modular design that enables easy integration of new methods and tasks. We implement and evaluate representative algorithms from all major categories, including static, greedy, and reinforcement learning-based approaches. To test the lookahead capabilities of AFA policies, we introduce a novel synthetic dataset, AFAContext, designed to expose the limitations of greedy selection. Our results highlight key trade-offs between different AFA strategies and provide actionable insights for future research. The benchmark code is available at: https://github.com/Linusaronsson/AFA-Benchmark.

Authors:Yucong Zhang, Juan Liu, Ming Li
Title: ECHO: Frequency-aware Hierarchical Encoding for Variable-length Signals
Abstract:
Pre-trained foundation models have demonstrated remarkable success in audio, vision and language, yet their potential for general machine signal modeling with arbitrary sampling rates-covering acoustic, vibration, and other industrial sensor data-remains under-explored. In this work, we propose a novel foundation model ECHO that integrates an advanced band-split architecture with frequency positional embeddings, enabling spectral localization across arbitrary sampling configurations. Moreover, the model incorporates sliding patches to support inputs of variable length without padding or cropping, producing a concise embedding that retains both temporal and spectral fidelity and naturally extends to streaming scenarios. We evaluate our method on various kinds of machine signal datasets, including previous DCASE task 2 challenges (2020-2025), and widely-used industrial signal corpora. Experimental results demonstrate consistent state-of-the-art performance in machine signal anomaly detection and fault classification, confirming the effectiveness and generalization capability of the proposed model. We open-sourced ECHO on https://github.com/yucongzh/ECHO.

Authors:Chendong Song, Zihan Wang, Frederick Pu, Haiming Wang, Xiaohan Lin, Junqi Liu, Jia Li, Zhengying Liu
Title: LeanGeo: Formalizing Competitional Geometry problems in Lean
Abstract:
Geometry problems are a crucial testbed for AI reasoning capabilities. Most existing geometry solving systems cannot express problems within a unified framework, thus are difficult to integrate with other mathematical fields. Besides, since most geometric proofs rely on intuitive diagrams, verifying geometry problems is particularly challenging. To address these gaps, we introduce LeanGeo, a unified formal system for formalizing and solving competition-level geometry problems within the Lean 4 theorem prover. LeanGeo features a comprehensive library of high-level geometric theorems with Lean's foundational logic, enabling rigorous proof verification and seamless integration with Mathlib. We also present LeanGeo-Bench, a formal geometry benchmark in LeanGeo, comprising problems from the International Mathematical Olympiad (IMO) and other advanced sources. Our evaluation demonstrates the capabilities and limitations of state-of-the-art Large Language Models on this benchmark, highlighting the need for further advancements in automated geometric reasoning. We open source the theorem library and the benchmark of LeanGeo at https://github.com/project-numina/LeanGeo/tree/master.

Authors:Peiming Li, Ziyi Wang, Yulin Yuan, Hong Liu, Xiangming Meng, Junsong Yuan, Mengyuan Liu
Title: UST-SSM: Unified Spatio-Temporal State Space Models for Point Cloud Video Modeling
Abstract:
Point cloud videos capture dynamic 3D motion while reducing the effects of lighting and viewpoint variations, making them highly effective for recognizing subtle and continuous human actions. Although Selective State Space Models (SSMs) have shown good performance in sequence modeling with linear complexity, the spatio-temporal disorder of point cloud videos hinders their unidirectional modeling when directly unfolding the point cloud video into a 1D sequence through temporally sequential scanning. To address this challenge, we propose the Unified Spatio-Temporal State Space Model (UST-SSM), which extends the latest advancements in SSMs to point cloud videos. Specifically, we introduce Spatial-Temporal Selection Scanning (STSS), which reorganizes unordered points into semantic-aware sequences through prompt-guided clustering, thereby enabling the effective utilization of points that are spatially and temporally distant yet similar within the sequence. For missing 4D geometric and motion details, Spatio-Temporal Structure Aggregation (STSA) aggregates spatio-temporal features and compensates. To improve temporal interaction within the sampled sequence, Temporal Interaction Sampling (TIS) enhances fine-grained temporal dependencies through non-anchor frame utilization and expanded receptive fields. Experimental results on the MSR-Action3D, NTU RGB+D, and Synthia 4D datasets validate the effectiveness of our method. Our code is available at https://github.com/wangzy01/UST-SSM.

Authors:Running Zhao, Zhihan Jiang, Xinchen Zhang, Chirui Chang, Handi Chen, Weipeng Deng, Luyao Jin, Xiaojuan Qi, Xun Qian, Edith C. H. Ngai
Title: NoteIt: A System Converting Instructional Videos to Interactable Notes Through Multimodal Video Understanding
Abstract:
Users often take notes for instructional videos to access key knowledge later without revisiting long videos. Automated note generation tools enable users to obtain informative notes efficiently. However, notes generated by existing research or off-the-shelf tools fail to preserve the information conveyed in the original videos comprehensively, nor can they satisfy users' expectations for diverse presentation formats and interactive features when using notes digitally. In this work, we present NoteIt, a system, which automatically converts instructional videos to interactable notes using a novel pipeline that faithfully extracts hierarchical structure and multimodal key information from videos. With NoteIt's interface, users can interact with the system to further customize the content and presentation formats of the notes according to their preferences. We conducted both a technical evaluation and a comparison user study (N=36). The solid performance in objective metrics and the positive user feedback demonstrated the effectiveness of the pipeline and the overall usability of NoteIt. Project website: https://zhaorunning.github.io/NoteIt/

Authors:Zhujun Li, Shuo Zhang, Ioannis Stamos
Title: Learning Point Cloud Representations with Pose Continuity for Depth-Based Category-Level 6D Object Pose Estimation
Abstract:
Category-level object pose estimation aims to predict the 6D pose and 3D size of objects within given categories. Existing approaches for this task rely solely on 6D poses as supervisory signals without explicitly capturing the intrinsic continuity of poses, leading to inconsistencies in predictions and reduced generalization to unseen poses. To address this limitation, we propose HRC-Pose, a novel depth-only framework for category-level object pose estimation, which leverages contrastive learning to learn point cloud representations that preserve the continuity of 6D poses. HRC-Pose decouples object pose into rotation and translation components, which are separately encoded and leveraged throughout the network. Specifically, we introduce a contrastive learning strategy for multi-task, multi-category scenarios based on our 6D pose-aware hierarchical ranking scheme, which contrasts point clouds from multiple categories by considering rotational and translational differences as well as categorical information. We further design pose estimation modules that separately process the learned rotation-aware and translation-aware embeddings. Our experiments demonstrate that HRC-Pose successfully learns continuous feature spaces. Results on REAL275 and CAMERA25 benchmarks show that our method consistently outperforms existing depth-only state-of-the-art methods and runs in real-time, demonstrating its effectiveness and potential for real-world applications. Our code is at https://github.com/zhujunli1993/HRC-Pose.

Authors:Anushka A. Kore, Frank G. te Nijenhuis, Matthijs van der Sluijs, Wim van Zwam, Charles Majoie, Geert Lycklama à Nijeholt, Danny Ruijters, Frans Vos, Sandra Cornelissen, Ruisheng Su, Theo van Walsum
Title: OccluNet: Spatio-Temporal Deep Learning for Occlusion Detection on DSA
Abstract:
Accurate detection of vascular occlusions during endovascular thrombectomy (EVT) is critical in acute ischemic stroke (AIS). Interpretation of digital subtraction angiography (DSA) sequences poses challenges due to anatomical complexity and time constraints. This work proposes OccluNet, a spatio-temporal deep learning model that integrates YOLOX, a single-stage object detector, with transformer-based temporal attention mechanisms to automate occlusion detection in DSA sequences. We compared OccluNet with a YOLOv11 baseline trained on either individual DSA frames or minimum intensity projections. Two spatio-temporal variants were explored for OccluNet: pure temporal attention and divided space-time attention. Evaluation on DSA images from the MR CLEAN Registry revealed the model's capability to capture temporally consistent features, achieving precision and recall of 89.02% and 74.87%, respectively. OccluNet significantly outperformed the baseline models, and both attention variants attained similar performance. Source code is available at https://github.com/anushka-kore/OccluNet.git

Authors:Said Djafar Said, Torkan Gholamalizadeh, Mostafa Mehdipour Ghazi
Title: Tooth-Diffusion: Guided 3D CBCT Synthesis with Fine-Grained Tooth Conditioning
Abstract:
Despite the growing importance of dental CBCT scans for diagnosis and treatment planning, generating anatomically realistic scans with fine-grained control remains a challenge in medical image synthesis. In this work, we propose a novel conditional diffusion framework for 3D dental volume generation, guided by tooth-level binary attributes that allow precise control over tooth presence and configuration. Our approach integrates wavelet-based denoising diffusion, FiLM conditioning, and masked loss functions to focus learning on relevant anatomical structures. We evaluate the model across diverse tasks, such as tooth addition, removal, and full dentition synthesis, using both paired and distributional similarity metrics. Results show strong fidelity and generalization with low FID scores, robust inpainting performance, and SSIM values above 0.91 even on unseen scans. By enabling realistic, localized modification of dentition without rescanning, this work opens opportunities for surgical planning, patient communication, and targeted data augmentation in dental AI workflows. The codes are available at: https://github.com/djafar1/tooth-diffusion.

Authors:Ronghao Dang, Yuqian Yuan, Yunxuan Mao, Kehan Li, Jiangpin Liu, Zhikai Wang, Xin Li, Fan Wang, Deli Zhao
Title: RynnEC: Bringing MLLMs into Embodied World
Abstract:
We introduce RynnEC, a video multimodal large language model designed for embodied cognition. Built upon a general-purpose vision-language foundation model, RynnEC incorporates a region encoder and a mask decoder, enabling flexible region-level video interaction. Despite its compact architecture, RynnEC achieves state-of-the-art performance in object property understanding, object segmentation, and spatial reasoning. Conceptually, it offers a region-centric video paradigm for the brain of embodied agents, providing fine-grained perception of the physical world and enabling more precise interactions. To mitigate the scarcity of annotated 3D datasets, we propose an egocentric video based pipeline for generating embodied cognition data. Furthermore, we introduce RynnEC-Bench, a region-centered benchmark for evaluating embodied cognitive capabilities. We anticipate that RynnEC will advance the development of general-purpose cognitive cores for embodied agents and facilitate generalization across diverse embodied tasks. The code, model checkpoints, and benchmark are available at: https://github.com/alibaba-damo-academy/RynnEC

Authors:Lianghui Zhu, Bin Ouyang, Yuxuan Zhang, Tianheng Cheng, Rui Hu, Haocheng Shen, Longjin Ran, Xiaoxin Chen, Li Yu, Wenyu Liu, Xinggang Wang
Title: LENS: Learning to Segment Anything with Unified Reinforced Reasoning
Abstract:
Text-prompted image segmentation enables fine-grained visual understanding and is critical for applications such as human-computer interaction and robotics. However, existing supervised fine-tuning methods typically ignore explicit chain-of-thought (CoT) reasoning at test time, which limits their ability to generalize to unseen prompts and domains. To address this issue, we introduce LENS, a scalable reinforcement-learning framework that jointly optimizes the reasoning process and segmentation in an end-to-end manner. We propose unified reinforcement-learning rewards that span sentence-, box-, and segment-level cues, encouraging the model to generate informative CoT rationales while refining mask quality. Using a publicly available 3-billion-parameter vision-language model, i.e., Qwen2.5-VL-3B-Instruct, LENS achieves an average cIoU of 81.2% on the RefCOCO, RefCOCO+, and RefCOCOg benchmarks, outperforming the strong fine-tuned method, i.e., GLaMM, by up to 5.6%. These results demonstrate that RL-driven CoT reasoning serves as a robust prior for text-prompted segmentation and offers a practical path toward more generalizable Segment Anything models. Code is available at https://github.com/hustvl/LENS.

Authors:Yuhang Lin, Yijia Xie, Jiahong Xie, Yuehao Huang, Ruoyu Wang, Jiajun Lv, Yukai Ma, Xingxing Zuo
Title: SimGenHOI: Physically Realistic Whole-Body Humanoid-Object Interaction via Generative Modeling and Reinforcement Learning
Abstract:
Generating physically realistic humanoid-object interactions (HOI) is a fundamental challenge in robotics. Existing HOI generation approaches, such as diffusion-based models, often suffer from artifacts such as implausible contacts, penetrations, and unrealistic whole-body actions, which hinder successful execution in physical environments. To address these challenges, we introduce SimGenHOI, a unified framework that combines the strengths of generative modeling and reinforcement learning to produce controllable and physically plausible HOI. Our HOI generative model, based on Diffusion Transformers (DiT), predicts a set of key actions conditioned on text prompts, object geometry, sparse object waypoints, and the initial humanoid pose. These key actions capture essential interaction dynamics and are interpolated into smooth motion trajectories, naturally supporting long-horizon generation. To ensure physical realism, we design a contact-aware whole-body control policy trained with reinforcement learning, which tracks the generated motions while correcting artifacts such as penetration and foot sliding. Furthermore, we introduce a mutual fine-tuning strategy, where the generative model and the control policy iteratively refine each other, improving both motion realism and tracking robustness. Extensive experiments demonstrate that SimGenHOI generates realistic, diverse, and physically plausible humanoid-object interactions, achieving significantly higher tracking success rates in simulation and enabling long-horizon manipulation tasks. Code will be released upon acceptance on our project page: https://xingxingzuo.github.io/simgen_hoi.

Authors:Haomin Wen, Shurui Cao, Leman Akoglu
Title: CoBAD: Modeling Collective Behaviors for Human Mobility Anomaly Detection
Abstract:
Detecting anomalies in human mobility is essential for applications such as public safety and urban planning. While traditional anomaly detection methods primarily focus on individual movement patterns (e.g., a child should stay at home at night), collective anomaly detection aims to identify irregularities in collective mobility behaviors across individuals (e.g., a child is at home alone while the parents are elsewhere) and remains an underexplored challenge. Unlike individual anomalies, collective anomalies require modeling spatiotemporal dependencies between individuals, introducing additional complexity. To address this gap, we propose CoBAD, a novel model designed to capture Collective Behaviors for human mobility Anomaly Detection. We first formulate the problem as unsupervised learning over Collective Event Sequences (CES) with a co-occurrence event graph, where CES represents the event sequences of related individuals. CoBAD then employs a two-stage attention mechanism to model both the individual mobility patterns and the interactions across multiple individuals. Pre-trained on large-scale collective behavior data through masked event and link reconstruction tasks, CoBAD is able to detect two types of collective anomalies: unexpected co-occurrence anomalies and absence anomalies, the latter of which has been largely overlooked in prior work. Extensive experiments on large-scale mobility datasets demonstrate that CoBAD significantly outperforms existing anomaly detection baselines, achieving an improvement of 13%-18% in AUCROC and 19%-70% in AUCPR. All source code is available at https://github.com/wenhaomin/CoBAD.

Authors:Badrinath Ramakrishnan, Akshaya Balaji
Title: Assessing and Mitigating Data Memorization Risks in Fine-Tuned Large Language Models
Abstract:
Large Language Models (LLMs) have demonstrated remarkable capabilities across diverse natural language processing tasks, but their tendency to memorize training data poses significant privacy risks, particularly during fine-tuning processes. This paper presents a comprehensive empirical analysis of data memorization in fine-tuned LLMs and introduces a novel multi-layered privacy protection framework. Through controlled experiments on modern LLM architectures including GPT-2, Phi-3, and Gemma-2, we demonstrate that fine-tuning with repeated sensitive data increases privacy leakage rates from baseline levels of 0-5% to 60-75%, representing a 64.2% average increase across tested models. We propose and rigorously evaluate four complementary privacy protection methods: semantic data deduplication, differential privacy during generation, entropy-based filtering, and pattern-based content filtering. Our experimental results show that these techniques can reduce data leakage to 0% while maintaining 94.7% of original model utility.

Authors:Jingmao Zhang, Zhiting Zhao, Yunqi Lin, Jianghong Ma, Tianjun Wei, Haijun Zhang, Xiaofeng Zhang
Title: Dual-Phase Playtime-guided Recommendation: Interest Intensity Exploration and Multimodal Random Walks
Abstract:
The explosive growth of the video game industry has created an urgent need for recommendation systems that can scale with expanding catalogs and maintain user engagement. While prior work has explored accuracy and diversity in recommendations, existing models underutilize playtime, a rich behavioral signal unique to gaming platforms, and overlook the potential of multimodal information to enhance diversity. In this paper, we propose DP2Rec, a novel Dual-Phase Playtime-guided Recommendation model designed to jointly optimize accuracy and diversity. First, we introduce a playtime-guided interest intensity exploration module that separates strong and weak preferences via dual-beta modeling, enabling fine-grained user profiling and more accurate recommendations. Second, we present a playtime-guided multimodal random walks module that simulates player exploration using transitions guided by both playtime-derived interest similarity and multimodal semantic similarity. This mechanism preserves core preferences while promoting cross-category discovery through latent semantic associations and adaptive category balancing. Extensive experiments on a real-world game dataset show that DP2Rec outperforms existing methods in both recommendation accuracy and diversity.

Authors:Ken Deng, Yunhan Yang, Jingxiang Sun, Xihui Liu, Yebin Liu, Ding Liang, Yan-Pei Cao
Title: GeoSAM2: Unleashing the Power of SAM2 for 3D Part Segmentation
Abstract:
We introduce GeoSAM2, a prompt-controllable framework for 3D part segmentation that casts the task as multi-view 2D mask prediction. Given a textureless object, we render normal and point maps from predefined viewpoints and accept simple 2D prompts - clicks or boxes - to guide part selection. These prompts are processed by a shared SAM2 backbone augmented with LoRA and residual geometry fusion, enabling view-specific reasoning while preserving pretrained priors. The predicted masks are back-projected to the object and aggregated across views. Our method enables fine-grained, part-specific control without requiring text prompts, per-shape optimization, or full 3D labels. In contrast to global clustering or scale-based methods, prompts are explicit, spatially grounded, and interpretable. We achieve state-of-the-art class-agnostic performance on PartObjaverse-Tiny and PartNetE, outperforming both slow optimization-based pipelines and fast but coarse feedforward approaches. Our results highlight a new paradigm: aligning the paradigm of 3D segmentation with SAM2, leveraging interactive 2D inputs to unlock controllability and precision in object-level part understanding.

Authors:Dongyoon Hahm, Taywon Min, Woogyeol Jin, Kimin Lee
Title: Unintended Misalignment from Agentic Fine-Tuning: Risks and Mitigation
Abstract:
Beyond simple text generation, Large Language Models (LLMs) have evolved into agentic systems capable of planning and interacting with external tools to solve complex tasks. This evolution involves fine-tuning LLMs on agent-specific tasks to enhance their proficiency. However, safety concerns are frequently overlooked during this fine-tuning process. In this work, we show that aligned LLMs can become unintentionally misaligned, leading to a higher likelihood of executing harmful tasks and a reduced tendency to refuse them when fine-tuned to execute agentic tasks. To address these safety challenges, we propose Prefix INjection Guard (PING), a simple yet effective method that prepends automatically generated natural language prefixes to agent responses, guiding them to refuse harmful requests while preserving performance on benign tasks. Specifically, we introduce an iterative approach that alternates between (1) generating candidate prefixes and (2) selecting those that optimize both task performance and refusal behavior. Experimental results demonstrate that PING significantly enhances the safety of fine-tuned LLM agents without sacrificing their effectiveness. PING consistently outperforms existing prompting approaches across diverse benchmarks in both web navigation and code generation tasks. Our analysis of internal hidden states via linear probes reveals that prefix tokens are crucial for behavior modification, explaining the performance gains. WARNING: This paper contains contents that are unethical or offensive in nature.

Authors:Yang Xiao, Ruimeng Ye, Bohan Liu, Xiaolong Ma, Bo Hui
Title: Efficient Knowledge Graph Unlearning with Zeroth-order Information
Abstract:
Due to regulations like the Right to be Forgotten, there is growing demand for removing training data and its influence from models. Since full retraining is costly, various machine unlearning methods have been proposed. In this paper, we firstly present an efficient knowledge graph (KG) unlearning algorithm. We remark that KG unlearning is nontrivial due to the distinctive structure of KG and the semantic relations between entities. Also, unlearning by estimating the influence of removed components incurs significant computational overhead when applied to large-scale knowledge graphs. To this end, we define an influence function for KG unlearning and propose to approximate the model's sensitivity without expensive computation of first-order and second-order derivatives for parameter updates. Specifically, we use Taylor expansion to estimate the parameter changes caused by data removal. Given that the first-order gradients and second-order derivatives dominate the computational load, we use the Fisher matrices and zeroth-order optimization to approximate the inverse-Hessian vector product without constructing the computational graphs. Our experimental results demonstrate that the proposed method outperforms other state-of-the-art graph unlearning baselines significantly in terms of unlearning efficiency and unlearning quality. Our code is released at https://github.com/NKUShaw/ZOWFKGIF.

Authors:Shaohua Duan, Xinze Li, Zhenghao Liu, Xiaoyuan Yi, Yukun Yan, Shuo Wang, Yu Gu, Ge Yu, Maosong Sun
Title: Chunks as Arms: Multi-Armed Bandit-Guided Sampling for Long-Context LLM Preference Optimization
Abstract:
Long-context modeling is critical for a wide range of real-world tasks, including long-context question answering, summarization, and complex reasoning tasks. Recent studies have explored fine-tuning Large Language Models (LLMs) with synthetic data to enhance their long-context capabilities. However, the effectiveness of such approaches is often limited by the low diversity and factual inconsistencies in the generated data. To address these challenges, we propose LongMab-PO, a novel framework that leverages a Multi-Armed Bandit (MAB) rollout strategy to identify the most informative chunks from the given long context for sampling high-quality and diverse responses and constructing preference data pairs for Direct Preference Optimization (DPO) training. Specifically, we treat context chunks as arms of MAB, select chunks based on their expected reward scores to input into LLMs to generate responses, and iteratively update these scores based on reward feedback. This exploration and exploitation process enables the model to focus on the most relevant context segments, thereby generating and collecting high-quality and diverse responses. Finally, we collect these generated responses from the rollout process and apply the DPO method to further optimize the LLM. Experimental results show that LongMab-PO significantly improves the diversity and quality of preference data pairs, achieving state-of-the-art performance on long-context reasoning benchmarks. All code and data will be released on https://github.com/NEUIR/LongMab-PO.

Authors:Tianyi Niu, Jaemin Cho, Elias Stengel-Eskin, Mohit Bansal
Title: RotBench: Evaluating Multimodal Large Language Models on Identifying Image Rotation
Abstract:
We investigate to what extent Multimodal Large Language Models (MLLMs) can accurately identify the orientation of input images rotated 0°, 90°, 180°, and 270°. This task demands robust visual reasoning capabilities to detect rotational cues and contextualize spatial relationships within images, regardless of their orientation. To evaluate MLLMs on these abilities, we introduce RotBench -- a 350-image manually-filtered benchmark comprising lifestyle, portrait, and landscape images. Despite the relatively simple nature of this task, we show that several state-of-the-art open and proprietary MLLMs, including GPT-5, o3, and Gemini-2.5-Pro, do not reliably identify rotation in input images. Providing models with auxiliary information -- including captions, depth maps, and more -- or using chain-of-thought prompting offers only small and inconsistent improvements. Our results indicate that most models are able to reliably identify right-side-up (0°) images, while certain models are able to identify upside-down (180°) images. None can reliably distinguish between 90° and 270°. Simultaneously showing the image rotated in different orientations leads to moderate performance gains for reasoning models, while a modified setup using voting improves the performance of weaker models. We further show that fine-tuning does not improve models' ability to distinguish 90° and 270° rotations, despite substantially improving the identification of 180° images. Together, these results reveal a significant gap between MLLMs' spatial reasoning capabilities and human perception in identifying rotation.

Authors:Matey Krastev, Miklos Hamar, Danilo Toapanta, Jesse Brouwers, Yibin Lei
Title: InPars+: Supercharging Synthetic Data Generation for Information Retrieval Systems
Abstract:
This work revisits and extends synthetic query generation pipelines for Neural Information Retrieval (NIR) by leveraging the InPars Toolkit, a reproducible, end-to-end framework for generating training data using large language models (LLMs). We first assess the reproducibility of the original InPars, InPars-V2, and Promptagator pipelines on the SciFact benchmark and validate their effectiveness using open-source reranker and generator models. Building on this foundation, we introduce two key extensions to the pipeline: (1) fine-tuning a query generator LLM via Contrastive Preference Optimization (CPO) to improve the signal quality in generated queries, and (2) replacing static prompt templates with dynamic, Chain-of-Thought (CoT) optimized prompts using the DSPy framework. Our results show that both extensions reduce the need for aggressive filtering while improving retrieval performance. All code, models, and synthetic datasets are publicly released to support further research at: \href{https://github.com/danilotpnta/IR2-project}{this https URL}.

Authors:Zihan Liang, Yufei Ma, ZhiPeng Qian, Huangyu Dai, Zihan Wang, Ben Chen, Chenyi Lei, Yuqing Ding, Han Li
Title: UniECS: Unified Multimodal E-Commerce Search Framework with Gated Cross-modal Fusion
Abstract:
Current e-commerce multimodal retrieval systems face two key limitations: they optimize for specific tasks with fixed modality pairings, and lack comprehensive benchmarks for evaluating unified retrieval approaches. To address these challenges, we introduce UniECS, a unified multimodal e-commerce search framework that handles all retrieval scenarios across image, text, and their combinations. Our work makes three key contributions. First, we propose a flexible architecture with a novel gated multimodal encoder that uses adaptive fusion mechanisms. This encoder integrates different modality representations while handling missing modalities. Second, we develop a comprehensive training strategy to optimize learning. It combines cross-modal alignment loss (CMAL), cohesive local alignment loss (CLAL), intra-modal contrastive loss (IMCL), and adaptive loss weighting. Third, we create M-BEER, a carefully curated multimodal benchmark containing 50K product pairs for e-commerce search evaluation. Extensive experiments demonstrate that UniECS consistently outperforms existing methods across four e-commerce benchmarks with fine-tuning or zero-shot evaluation. On our M-BEER bench, UniECS achieves substantial improvements in cross-modal tasks (up to 28\% gain in R@10 for text-to-image retrieval) while maintaining parameter efficiency (0.2B parameters) compared to larger models like GME-Qwen2VL (2B) and MM-Embed (8B). Furthermore, we deploy UniECS in the e-commerce search platform of Kuaishou Inc. across two search scenarios, achieving notable improvements in Click-Through Rate (+2.74\%) and Revenue (+8.33\%). The comprehensive evaluation demonstrates the effectiveness of our approach in both experimental and real-world settings. Corresponding codes, models and datasets will be made publicly available at https://github.com/qzp2018/UniECS.

Authors:Mikołaj Janusz, Tomasz Wojnar, Yawei Li, Luca Benini, Kamil Adamczewski
Title: One Shot vs. Iterative: Rethinking Pruning Strategies for Model Compression
Abstract:
Pruning is a core technique for compressing neural networks to improve computational efficiency. This process is typically approached in two ways: one-shot pruning, which involves a single pass of training and pruning, and iterative pruning, where pruning is performed over multiple cycles for potentially finer network refinement. Although iterative pruning has historically seen broader adoption, this preference is often assumed rather than rigorously tested. Our study presents one of the first systematic and comprehensive comparisons of these methods, providing rigorous definitions, benchmarking both across structured and unstructured settings, and applying different pruning criteria and modalities. We find that each method has specific advantages: one-shot pruning proves more effective at lower pruning ratios, while iterative pruning performs better at higher ratios. Building on these findings, we advocate for patience-based pruning and introduce a hybrid approach that can outperform traditional methods in certain scenarios, providing valuable insights for practitioners selecting a pruning strategy tailored to their goals and constraints. Source code is available at https://github.com/janumiko/pruning-benchmark.

Authors:Zihan Guo, Yuanjian Zhou, Chenyi Wang, Linlin You, Minjie Bian, Weinan Zhang
Title: BetaWeb: Towards a Blockchain-enabled Trustworthy Agentic Web
Abstract:
The rapid development of large language models (LLMs) has significantly propelled the development of artificial intelligence (AI) agents, which are increasingly evolving into diverse autonomous entities, advancing the LLM-based multi-agent systems (LaMAS). However, current agentic ecosystems remain fragmented and closed. Establishing an interconnected and scalable paradigm for Agentic AI has become a critical prerequisite. Although Agentic Web proposes an open architecture to break the ecosystem barriers, its implementation still faces core challenges such as privacy protection, data management, and value measurement. Existing centralized or semi-centralized paradigms suffer from inherent limitations, making them inadequate for supporting large-scale, heterogeneous, and cross-domain autonomous interactions. To address these challenges, this paper introduces the blockchain-enabled trustworthy Agentic Web (BetaWeb). By leveraging the inherent strengths of blockchain, BetaWeb not only offers a trustworthy and scalable infrastructure for LaMAS but also has the potential to advance the Web paradigm from Web3 (centered on data ownership) towards Web3.5, which emphasizes ownership of agent capabilities and the monetization of intelligence. Beyond a systematic examination of the BetaWeb framework, this paper presents a five-stage evolutionary roadmap, outlining the path of LaMAS from passive execution to advanced collaboration and autonomous governance. We also conduct a comparative analysis of existing products and discuss key challenges of BetaWeb from multiple perspectives. Ultimately, we argue that deep integration between blockchain and LaMAS can lay the foundation for a resilient, trustworthy, and sustainably incentivized digital ecosystem. A summary of the enabling technologies for each stage is available at https://github.com/MatZaharia/BetaWeb.

Authors:Sebastian Ibarra, Javier del Riego, Alessandro Catanese, Julian Cuba, Julian Cardona, Nataly Leon, Jonathan Infante, Karim Lekadir, Oliver Diaz, Richard Osuala
Title: Comparing Conditional Diffusion Models for Synthesizing Contrast-Enhanced Breast MRI from Pre-Contrast Images
Abstract:
Dynamic contrast-enhanced (DCE) MRI is essential for breast cancer diagnosis and treatment. However, its reliance on contrast agents introduces safety concerns, contraindications, increased cost, and workflow complexity. To this end, we present pre-contrast conditioned denoising diffusion probabilistic models to synthesize DCE-MRI, introducing, evaluating, and comparing a total of 22 generative model variants in both single-breast and full breast settings. Towards enhancing lesion fidelity, we introduce both tumor-aware loss functions and explicit tumor segmentation mask conditioning. Using a public multicenter dataset and comparing to respective pre-contrast baselines, we observe that subtraction image-based models consistently outperform post-contrast-based models across five complementary evaluation metrics. Apart from assessing the entire image, we also separately evaluate the region of interest, where both tumor-aware losses and segmentation mask inputs improve evaluation metrics. The latter notably enhance qualitative results capturing contrast uptake, albeit assuming access to tumor localization inputs that are not guaranteed to be available in screening settings. A reader study involving 2 radiologists and 4 MRI technologists confirms the high realism of the synthetic images, indicating an emerging clinical potential of generative contrast-enhancement. We share our codebase at https://github.com/sebastibar/conditional-diffusion-breast-MRI.

Authors:Yeji Park, Minyoung Lee, Sanghyuk Chun, Junsuk Choe
Title: Mitigating Cross-Image Information Leakage in LVLMs for Multi-Image Tasks
Abstract:
Large Vision-Language Models (LVLMs) demonstrate strong performance on single-image tasks. However, we observe that their performance degrades significantly when handling multi-image inputs. This occurs because visual cues from different images become entangled in the model's output. We refer to this phenomenon as cross-image information leakage. To address this issue, we propose FOCUS, a training-free and architecture-agnostic decoding strategy that mitigates cross-image information leakage during inference. FOCUS sequentially masks all but one image with random noise, guiding the model to focus on the single clean image. We repeat this process across all target images to obtain logits under partially masked contexts. These logits are aggregated and then contrastively refined using a noise-only reference input, which suppresses the leakage and yields more accurate outputs. FOCUS consistently improves performance across four multi-image benchmarks and diverse LVLM families. This demonstrates that FOCUS offers a general and practical solution for enhancing multi-image reasoning without additional training or architectural modifications.

Authors:Xiao-Wen Yang, Jie-Jing Shao, Lan-Zhe Guo, Bo-Wen Zhang, Zhi Zhou, Lin-Han Jia, Wang-Zhou Dai, Yu-Feng Li
Title: Neuro-Symbolic Artificial Intelligence: Towards Improving the Reasoning Abilities of Large Language Models
Abstract:
Large Language Models (LLMs) have shown promising results across various tasks, yet their reasoning capabilities remain a fundamental challenge. Developing AI systems with strong reasoning capabilities is regarded as a crucial milestone in the pursuit of Artificial General Intelligence (AGI) and has garnered considerable attention from both academia and industry. Various techniques have been explored to enhance the reasoning capabilities of LLMs, with neuro-symbolic approaches being a particularly promising way. This paper comprehensively reviews recent developments in neuro-symbolic approaches for enhancing LLM reasoning. We first present a formalization of reasoning tasks and give a brief introduction to the neurosymbolic learning paradigm. Then, we discuss neuro-symbolic methods for improving the reasoning capabilities of LLMs from three perspectives: Symbolic->LLM, LLM->Symbolic, and LLM+Symbolic. Finally, we discuss several key challenges and promising future directions. We have also released a GitHub repository including papers and resources related to this survey: https://github.com/LAMDASZ-ML/Awesome-LLM-Reasoning-with-NeSy.

Authors:Amir Rezaei Balef, Katharina Eggensperger
Title: In-Context Decision Making for Optimizing Complex AutoML Pipelines
Abstract:
Combined Algorithm Selection and Hyperparameter Optimization (CASH) has been fundamental to traditional AutoML systems. However, with the advancements of pre-trained models, modern ML workflows go beyond hyperparameter optimization and often require fine-tuning, ensembling, and other adaptation techniques. While the core challenge of identifying the best-performing model for a downstream task remains, the increasing heterogeneity of ML pipelines demands novel AutoML approaches. This work extends the CASH framework to select and adapt modern ML pipelines. We propose PS-PFN to efficiently explore and exploit adapting ML pipelines by extending Posterior Sampling (PS) to the max k-armed bandit problem setup. PS-PFN leverages prior-data fitted networks (PFNs) to efficiently estimate the posterior distribution of the maximal value via in-context learning. We show how to extend this method to consider varying costs of pulling arms and to use different PFNs to model reward distributions individually per arm. Experimental results on one novel and two existing standard benchmark tasks demonstrate the superior performance of PS-PFN compared to other bandit and AutoML strategies. We make our code and data available at https://github.com/amirbalef/CASHPlus.

Authors:Yue Fang, Yuxin Guo, Jiaran Gao, Hongxin Ding, Xinke Jiang, Weibin Liao, Yongxin Xu, Yinghao Zhu, Zhibang Yang, Liantao Ma, Junfeng Zhao, Yasha Wang
Title: Toward Better EHR Reasoning in LLMs: Reinforcement Learning with Expert Attention Guidance
Abstract:
Improving large language models (LLMs) for electronic health record (EHR) reasoning is essential for enabling accurate and generalizable clinical predictions. While LLMs excel at medical text understanding, they underperform on EHR-based prediction tasks due to challenges in modeling temporally structured, high-dimensional data. Existing approaches often rely on hybrid paradigms, where LLMs serve merely as frozen prior retrievers while downstream deep learning (DL) models handle prediction, failing to improve the LLM's intrinsic reasoning capacity and inheriting the generalization limitations of DL models. To this end, we propose EAG-RL, a novel two-stage training framework designed to intrinsically enhance LLMs' EHR reasoning ability through expert attention guidance, where expert EHR models refer to task-specific DL models trained on EHR data. Concretely, EAG-RL first constructs high-quality, stepwise reasoning trajectories using expert-guided Monte Carlo Tree Search to effectively initialize the LLM's policy. Then, EAG-RL further optimizes the policy via reinforcement learning by aligning the LLM's attention with clinically salient features identified by expert EHR models. Extensive experiments on two real-world EHR datasets show that EAG-RL improves the intrinsic EHR reasoning ability of LLMs by an average of 14.62%, while also enhancing robustness to feature perturbations and generalization to unseen clinical domains. These results demonstrate the practical potential of EAG-RL for real-world deployment in clinical prediction tasks. Our code have been available at https://github.com/devilran6/EAG-RL.

Authors:Sukhun Ko, Dahyeon Kye, Kyle Min, Chanho Eom, Jihyong Oh
Title: FLAIR: Frequency- and Locality-Aware Implicit Neural Representations
Abstract:
Implicit Neural Representations (INRs) leverage neural networks to map coordinates to corresponding signals, enabling continuous and compact representations. This paradigm has driven significant advances in various vision tasks. However, existing INRs lack frequency selectivity, spatial localization, and sparse representations, leading to an over-reliance on redundant signal components. Consequently, they exhibit spectral bias, tending to learn low-frequency components early while struggling to capture fine high-frequency details. To address these issues, we propose FLAIR (Frequency- and Locality-Aware Implicit Neural Representations), which incorporates two key innovations. The first is RC-GAUSS, a novel activation designed for explicit frequency selection and spatial localization under the constraints of the time-frequency uncertainty principle (TFUP). The second is Wavelet-Energy-Guided Encoding (WEGE), which leverages the discrete wavelet transform (DWT) to compute energy scores and explicitly guide frequency information to the network. Our method consistently outperforms existing INRs in 2D image representation and restoration, as well as 3D reconstruction.

Authors:Hongru Hou, Jiachen Sun, Wenqing Lin, Wendong Bi, Xiangrong Wang, Deqing Yang
Title: Heterogeneous Influence Maximization in User Recommendation
Abstract:
User recommendation systems enhance user engagement by encouraging users to act as inviters to interact with other users (invitees), potentially fostering information propagation. Conventional recommendation methods typically focus on modeling interaction willingness. Influence-Maximization (IM) methods focus on identifying a set of users to maximize the information propagation. However, existing methods face two significant challenges. First, recommendation methods fail to unleash the candidates' spread capability. Second, IM methods fail to account for the willingness to interact. To solve these issues, we propose two models named HeteroIR and HeteroIM. HeteroIR provides an intuitive solution to unleash the dissemination potential of user recommendation systems. HeteroIM fills the gap between the IM method and the recommendation task, improving interaction willingness and maximizing spread coverage. The HeteroIR introduces a two-stage framework to estimate the spread profits. The HeteroIM incrementally selects the most influential invitee to recommend and rerank based on the number of reverse reachable (RR) sets containing inviters and invitees. RR set denotes a set of nodes that can reach a target via propagation. Extensive experiments show that HeteroIR and HeteroIM significantly outperform the state-of-the-art baselines with the p-value < 0.05. Furthermore, we have deployed HeteroIR and HeteroIM in Tencent's online gaming platforms and gained an 8.5\% and 10\% improvement in the online A/B test, respectively. Implementation codes are available at https://github.com/socialalgo/HIM.

Authors:Jaewan Moon, Seongmin Park, Jongwuk Lee
Title: LLM-Enhanced Linear Autoencoders for Recommendation
Abstract:
Large language models (LLMs) have been widely adopted to enrich the semantic representation of textual item information in recommender systems. However, existing linear autoencoders (LAEs) that incorporate textual information rely on sparse word co-occurrence patterns, limiting their ability to capture rich textual semantics. To address this, we propose L3AE, the first integration of LLMs into the LAE framework. L3AE effectively integrates the heterogeneous knowledge of textual semantics and user-item interactions through a two-phase optimization strategy. (i) L3AE first constructs a semantic item-to-item correlation matrix from LLM-derived item representations. (ii) It then learns an item-to-item weight matrix from collaborative signals while distilling semantic item correlations as regularization. Notably, each phase of L3AE is optimized through closed-form solutions, ensuring global optimality and computational efficiency. Extensive experiments demonstrate that L3AE consistently outperforms state-of-the-art LLM-enhanced models on three benchmark datasets, achieving gains of 27.6% in Recall@20 and 39.3% in NDCG@20. The source code is available at https://github.com/jaewan7599/L3AE_CIKM2025.

Authors:Zeyu Zhang, Yang Zhang, Haoran Tan, Rui Li, Xu Chen
Title: Explicit v.s. Implicit Memory: Exploring Multi-hop Complex Reasoning Over Personalized Information
Abstract:
In large language model-based agents, memory serves as a critical capability for achieving personalization by storing and utilizing users' information. Although some previous studies have adopted memory to implement user personalization, they typically focus on preference alignment and simple question-answering. However, in the real world, complex tasks often require multi-hop reasoning on a large amount of user information, which poses significant challenges for current memory approaches. To address this limitation, we propose the multi-hop personalized reasoning task to explore how different memory mechanisms perform in multi-hop reasoning over personalized information. We explicitly define this task and construct a dataset along with a unified evaluation framework. Then, we implement various explicit and implicit memory methods and conduct comprehensive experiments. We evaluate their performance on this task from multiple perspectives and analyze their strengths and weaknesses. Besides, we explore hybrid approaches that combine both paradigms and propose the HybridMem method to address their limitations. We demonstrate the effectiveness of our proposed model through extensive experiments. To benefit the research community, we release this project at https://github.com/nuster1128/MPR.

Authors:Shilong Li, Xingyuan Bu, Wenjie Wang, Jiaheng Liu, Jun Dong, Haoyang He, Hao Lu, Haozhe Zhang, Chenchen Jing, Zhen Li, Chuanhao Li, Jiayi Tian, Chenchen Zhang, Tianhao Peng, Yancheng He, Jihao Gu, Yuanxing Zhang, Jian Yang, Ge Zhang, Wenhao Huang, Wangchunshu Zhou, Zhaoxiang Zhang, Ruizhe Ding, Shilei Wen
Title: MM-BrowseComp: A Comprehensive Benchmark for Multimodal Browsing Agents
Abstract:
AI agents with advanced reasoning and tool use capabilities have demonstrated impressive performance in web browsing for deep search. While existing benchmarks such as BrowseComp evaluate these browsing abilities, they primarily focus on textual information, overlooking the prevalence of multimodal content. To bridge this gap, we introduce MM-BrowseComp, a novel benchmark comprising 224 challenging, hand-crafted questions specifically designed to assess agents' multimodal retrieval and reasoning capabilities. These questions often incorporate images in prompts, and crucial information encountered during the search and reasoning process may also be embedded within images or videos on webpages. Consequently, methods relying solely on text prove insufficient for our benchmark. Additionally, we provide a verified checklist for each question, enabling fine-grained analysis of multimodal dependencies and reasoning paths. Our comprehensive evaluation of state-of-the-art models on MM-BrowseComp reveals that even top models like OpenAI o3 with tools achieve only 29.02\% accuracy, highlighting the suboptimal multimodal capabilities and lack of native multimodal reasoning in current models.

Authors:Tao An
Title: Cognitive Workspace: Active Memory Management for LLMs -- An Empirical Study of Functional Infinite Context
Abstract:
Large Language Models (LLMs) face fundamental limitations in context management despite recent advances extending context windows to millions of tokens. We propose Cognitive Workspace, a novel paradigm that transcends traditional Retrieval-Augmented Generation (RAG) by emulating human cognitive mechanisms of external memory use. Drawing from cognitive science foundations including Baddeley's working memory model, Clark's extended mind thesis, and Hutchins' distributed cognition framework, we demonstrate that current passive retrieval systems fail to capture the dynamic, task-driven nature of human memory management. Our analysis of 2024-2025 developments reveals that while techniques like Infini-attention and StreamingLLM achieve impressive context lengths, they lack the metacognitive awareness and active planning capabilities essential for true cognitive extension. Cognitive Workspace addresses these limitations through three core innovations: (1) active memory management with deliberate information curation, (2) hierarchical cognitive buffers enabling persistent working states, and (3) task-driven context optimization that dynamically adapts to cognitive demands. Empirical validation demonstrates Cognitive Workspace achieves an average 58.6% memory reuse rate (ranging from 54-60% across different tasks) compared to 0% for traditional RAG, with 17-18% net efficiency gain despite 3.3x higher operation counts. Statistical analysis confirms these advantages with p < 0.001 and Cohen's d > 23 across multiple task types, establishing the first quantitative evidence for active memory superiority in LLM systems. We present a comprehensive theoretical framework synthesizing insights from 50+ recent papers, positioning Cognitive Workspace as a fundamental shift from information retrieval to genuine cognitive augmentation.

Authors:Xin Chen, Junchao Wu, Shu Yang, Runzhe Zhan, Zeyu Wu, Ziyang Luo, Di Wang, Min Yang, Lidia S. Chao, Derek F. Wong
Title: RepreGuard: Detecting LLM-Generated Text by Revealing Hidden Representation Patterns
Abstract:
Detecting content generated by large language models (LLMs) is crucial for preventing misuse and building trustworthy AI systems. Although existing detection methods perform well, their robustness in out-of-distribution (OOD) scenarios is still lacking. In this paper, we hypothesize that, compared to features used by existing detection methods, the internal representations of LLMs contain more comprehensive and raw features that can more effectively capture and distinguish the statistical pattern differences between LLM-generated texts (LGT) and human-written texts (HWT). We validated this hypothesis across different LLMs and observed significant differences in neural activation patterns when processing these two types of texts. Based on this, we propose RepreGuard, an efficient statistics-based detection method. Specifically, we first employ a surrogate model to collect representation of LGT and HWT, and extract the distinct activation feature that can better identify LGT. We can classify the text by calculating the projection score of the text representations along this feature direction and comparing with a precomputed threshold. Experimental results show that RepreGuard outperforms all baselines with average 94.92% AUROC on both in-distribution (ID) and OOD scenarios, while also demonstrating robust resilience to various text sizes and mainstream attacks. Data and code are publicly available at: https://github.com/NLP2CT/RepreGuard

Authors:Alicja Ziarko, Michal Bortkiewicz, Michal Zawalski, Benjamin Eysenbach, Piotr Milos
Title: Contrastive Representations for Temporal Reasoning
Abstract:
In classical AI, perception relies on learning state-based representations, while planning, which can be thought of as temporal reasoning over action sequences, is typically achieved through search. We study whether such reasoning can instead emerge from representations that capture both perceptual and temporal structure. We show that standard temporal contrastive learning, despite its popularity, often fails to capture temporal structure due to its reliance on spurious features. To address this, we introduce Combinatorial Representations for Temporal Reasoning (CRTR), a method that uses a negative sampling scheme to provably remove these spurious features and facilitate temporal reasoning. CRTR achieves strong results on domains with complex temporal structure, such as Sokoban and Rubik's Cube. In particular, for the Rubik's Cube, CRTR learns representations that generalize across all initial states and allow it to solve the puzzle using fewer search steps than BestFS, though with longer solutions. To our knowledge, this is the first method that efficiently solves arbitrary Cube states using only learned representations, without relying on an external search algorithm.

Authors:Tejas Chaudhari, Akarsh J., Tanushree Dewangan, Mukul Lokhande, Santosh Kumar Vishvakarma
Title: XR-NPE: High-Throughput Mixed-precision SIMD Neural Processing Engine for Extended Reality Perception Workloads
Abstract:
This work proposes XR-NPE, a high-throughput Mixed-precision SIMD Neural Processing Engine, designed for extended reality (XR) perception workloads like visual inertial odometry (VIO), object classification, and eye gaze extraction. XR-NPE is first to support FP4, Posit (4,1), Posit (8,0), and Posit (16,1) formats, with layer adaptive hybrid-algorithmic implementation supporting ultra-low bit precision to significantly reduce memory bandwidth requirements, and accompanied by quantization-aware training for minimal accuracy loss. The proposed Reconfigurable Mantissa Multiplication and Exponent processing Circuitry (RMMEC) reduces dark silicon in the SIMD MAC compute engine, assisted by selective power gating to reduce energy consumption, providing 2.85x improved arithmetic intensity. XR-NPE achieves a maximum operating frequency of 1.72 GHz, area 0.016 mm2 , and arithmetic intensity 14 pJ at CMOS 28nm, reducing 42% area, 38% power compared to the best of state-of-the-art MAC approaches. The proposed XR-NPE based AXI-enabled Matrix-multiplication co-processor consumes 1.4x fewer LUTs, 1.77x fewer FFs, and provides 1.2x better energy efficiency compared to SoTA accelerators on VCU129. The proposed co-processor provides 23% better energy efficiency and 4% better compute density for VIO workloads. XR-NPE establishes itself as a scalable, precision-adaptive compute engine for future resource-constrained XR devices. The complete set for codes for results reproducibility are released publicly, enabling designers and researchers to readily adopt and build upon them. https://github.com/mukullokhande99/XR-NPE.

Authors:Yongxin Guo, Wenbo Deng, Zhenglin Cheng, Xiaoying Tang
Title: G$^2$RPO-A: Guided Group Relative Policy Optimization with Adaptive Guidance
Abstract:
Reinforcement Learning with Verifiable Rewards (RLVR) has markedly enhanced the reasoning abilities of large language models (LLMs). Its success, however, largely depends on strong base models with rich world knowledge, yielding only modest improvements for small-size language models (SLMs). To address this limitation, we investigate Guided GRPO, which injects ground-truth reasoning steps into roll-out trajectories to compensate for SLMs' inherent weaknesses. Through a comprehensive study of various guidance configurations, we find that naively adding guidance delivers limited gains. These insights motivate G$^2$RPO-A, an adaptive algorithm that automatically adjusts guidance strength in response to the model's evolving training dynamics. Experiments on mathematical reasoning and code-generation benchmarks confirm that G$^2$RPO-A substantially outperforms vanilla GRPO. Our code and models are available at https://github.com/T-Lab-CUHKSZ/G2RPO-A.

Authors:Pengcheng Huang, Shuhao Liu, Zhenghao Liu, Yukun Yan, Shuo Wang, Zulong Chen, Tong Xiao
Title: PC-Sampler: Position-Aware Calibration of Decoding Bias in Masked Diffusion Models
Abstract:
Recent advances in masked diffusion models (MDMs) have established them as powerful non-autoregressive alternatives for sequence generation. Nevertheless, our preliminary experiments reveal that the generation quality of MDMs is still highly sensitive to the choice of decoding strategy. In particular, widely adopted uncertainty-based samplers suffer from two key limitations: a lack of global trajectory control and a pronounced bias toward trivial tokens in the early stages of decoding. These shortcomings restrict the full potential of MDMs. In this work, we introduce Position-Aware Confidence-Calibrated Sampling (PC-Sampler), a novel decoding strategy that unifies global trajectory planning with content-aware informativeness maximization. PC-Sampler incorporates a position-aware weighting mechanism to regulate the decoding path and a calibrated confidence score to suppress the premature selection of trivial tokens. Extensive experiments on three advanced MDMs across seven challenging benchmarks-including logical reasoning and planning tasks-demonstrate that PC-Sampler consistently outperforms existing MDM decoding strategies by more than 10% on average, significantly narrowing the performance gap with state-of-the-art autoregressive models. All codes are available at https://github.com/NEUIR/PC-Sampler.

Authors:Jiaqi Yin, Zhan Song, Chen Chen, Yaohui Cai, Zhiru Zhang, Cunxi Yu
Title: e-boost: Boosted E-Graph Extraction with Adaptive Heuristics and Exact Solving
Abstract:
E-graphs have attracted growing interest in many fields, particularly in logic synthesis and formal verification. E-graph extraction is a challenging NP-hard combinatorial optimization problem. It requires identifying optimal terms from exponentially many equivalent expressions, serving as the primary performance bottleneck in e-graph based optimization tasks. However, traditional extraction methods face a critical trade-off: heuristic approaches offer speed but sacrifice optimality, while exact methods provide optimal solutions but face prohibitive computational costs on practical problems. We present e-boost, a novel framework that bridges this gap through three key innovations: (1) parallelized heuristic extraction that leverages weak data dependence to compute DAG costs concurrently, enabling efficient multi-threaded performance without sacrificing extraction quality; (2) adaptive search space pruning that employs a parameterized threshold mechanism to retain only promising candidates, dramatically reducing the solution space while preserving near-optimal solutions; and (3) initialized exact solving that formulates the reduced problem as an Integer Linear Program with warm-start capabilities, guiding solvers toward high-quality solutions faster. Across the diverse benchmarks in formal verification and logic synthesis fields, e-boost demonstrates 558x runtime speedup over traditional exact approaches (ILP) and 19.04% performance improvement over the state-of-the-art extraction framework (SmoothE). In realistic logic synthesis tasks, e-boost produces 7.6% and 8.1% area improvements compared to conventional synthesis tools with two different technology mapping libraries. e-boost is available at https://github.com/Yu-Maryland/e-boost.

Authors:Shengbo Wang, Mingwei Liu, Zike Li, Anji Li, Yanlin Wang, Xin Peng, Zibin Zheng
Title: EvolMathEval: Towards Evolvable Benchmarks for Mathematical Reasoning via Evolutionary Testing
Abstract:
The rapid advancement of LLMs poses a significant challenge to existing mathematical reasoning benchmarks. These benchmarks commonly suffer from issues such as score saturation, temporal decay, and data contamination. To address this challenge, this paper introduces EvolMathEval, an automated mathematical benchmark generation and evolution framework based on evolutionary testing. By dynamically generating unique evaluation instances ab initio, the framework fundamentally eliminates the risk of data contamination, and ensuring the benchmark remains perpetually challenging for future models.The core mechanisms of EvolMathEval include: seed problem generation based on reverse engineering with algebraic guarantees; multi-dimensional genetic operators designed to inject diverse cognitive challenges; and a composite fitness function that can rapidly and accurately assess problem difficulty. Experimental results demonstrate that the proposed composite fitness function can efficiently and precisely quantify the difficulty of mathematical problems. Furthermore, EvolMathEval can not only generate a large volume of high-difficulty problems through continuous self-iteration, but it can also significantly enhance the complexity of public datasets like GSM8K through evolution, reducing model accuracy by an average of 48%. Deeper investigation reveals that when solving these evolved, complex problems, LLMs tend to employ non-rigorous heuristics to bypass complex multi-step logical reasoning, consequently leading to incorrect solutions. We define this phenomenon as "Pseudo Aha Moment". This finding uncovers a cognitive shortcut-taking behavior in the deep reasoning processes of current LLMs, which we find accounts for 77% to 100% of errors on targeted problems. Code and resources are available at:https://github.com/SYSUSELab/EvolMathEval.

Authors:Mary Tonwe
Title: OPTIC-ER: A Reinforcement Learning Framework for Real-Time Emergency Response and Equitable Resource Allocation in Underserved African Communities
Abstract:
Public service systems in many African regions suffer from delayed emergency response and spatial inequity, causing avoidable suffering. This paper introduces OPTIC-ER, a reinforcement learning (RL) framework for real-time, adaptive, and equitable emergency response. OPTIC-ER uses an attention-guided actor-critic architecture to manage the complexity of dispatch environments. Its key innovations are a Context-Rich State Vector, encoding action sub-optimality, and a Precision Reward Function, which penalizes inefficiency. Training occurs in a high-fidelity simulation using real data from Rivers State, Nigeria, accelerated by a precomputed Travel Time Atlas. The system is built on the TALS framework (Thin computing, Adaptability, Low-cost, Scalability) for deployment in low-resource settings. In evaluations on 500 unseen incidents, OPTIC-ER achieved a 100.00% optimality rate with negligible inefficiency, confirming its robustness and generalization. Beyond dispatch, the system generates Infrastructure Deficiency Maps and Equity Monitoring Dashboards to guide proactive governance and data-informed development. This work presents a validated blueprint for AI-augmented public services, showing how context-aware RL can bridge the gap between algorithmic decision-making and measurable human impact.

Authors:Hongyang Chen, Shaoling Pu, Lingyu Zheng, Zhongwu Sun
Title: SEDEG:Sequential Enhancement of Decoder and Encoder's Generality for Class Incremental Learning with Small Memory
Abstract:
In incremental learning, enhancing the generality of knowledge is crucial for adapting to dynamic data inputs. It can develop generalized representations or more balanced decision boundaries, preventing the degradation of long-term knowledge over time and thus mitigating catastrophic forgetting. Some emerging incremental learning methods adopt an encoder-decoder architecture and have achieved promising results. In the encoder-decoder achitecture, improving the generalization capabilities of both the encoder and decoder is critical, as it helps preserve previously learned knowledge while ensuring adaptability and robustness to new, diverse data inputs. However, many existing continual methods focus solely on enhancing one of the two components, which limits their effectiveness in mitigating catastrophic forgetting. And these methods perform even worse in small-memory scenarios, where only a limited number of historical samples can be stored. To mitigate this limitation, we introduces SEDEG, a two-stage training framework for vision transformers (ViT), focusing on sequentially improving the generality of both Decoder and Encoder. Initially, SEDEG trains an ensembled encoder through feature boosting to learn generalized representations, which subsequently enhance the decoder's generality and balance the classifier. The next stage involves using knowledge distillation (KD) strategies to compress the ensembled encoder and develop a new, more generalized encoder. This involves using a balanced KD approach and feature KD for effective knowledge transfer. Extensive experiments on three benchmark datasets show SEDEG's superior performance, and ablation studies confirm the efficacy of its components. The code is available at https://github.com/ShaolingPu/CIL.

Authors:Ronghao Lin, Shuai Shen, Weipeng Hu, Qiaolin He, Aolin Xiong, Li Huang, Haifeng Hu, Yap-peng Tan
Title: E3RG: Building Explicit Emotion-driven Empathetic Response Generation System with Multimodal Large Language Model
Abstract:
Multimodal Empathetic Response Generation (MERG) is crucial for building emotionally intelligent human-computer interactions. Although large language models (LLMs) have improved text-based ERG, challenges remain in handling multimodal emotional content and maintaining identity consistency. Thus, we propose E3RG, an Explicit Emotion-driven Empathetic Response Generation System based on multimodal LLMs which decomposes MERG task into three parts: multimodal empathy understanding, empathy memory retrieval, and multimodal response generation. By integrating advanced expressive speech and video generative models, E3RG delivers natural, emotionally rich, and identity-consistent responses without extra training. Experiments validate the superiority of our system on both zero-shot and few-shot settings, securing Top-1 position in the Avatar-based Multimodal Empathy Challenge on ACM MM 25. Our code is available at https://github.com/RH-Lin/E3RG.

Authors:Damian Machlanski, Stephanie Riley, Edward Moroshko, Kurt Butler, Panagiotis Dimitrakopoulos, Thomas Melistas, Akchunya Chanchal, Steven McDonagh, Ricardo Silva, Sotirios A. Tsaftaris
Title: A Shift in Perspective on Causality in Domain Generalization
Abstract:
The promise that causal modelling can lead to robust AI generalization has been challenged in recent work on domain generalization (DG) benchmarks. We revisit the claims of the causality and DG literature, reconciling apparent contradictions and advocating for a more nuanced theory of the role of causality in generalization. We also provide an interactive demo at https://chai-uk.github.io/ukairs25-causal-predictors/.

Authors:Petr Anokhin, Roman Khalikov, Stefan Rebrikov, Viktor Volkov, Artyom Sorokin, Vincent Bissonnette
Title: HeroBench: A Benchmark for Long-Horizon Planning and Structured Reasoning in Virtual Worlds
Abstract:
Large language models (LLMs) have shown remarkable capabilities in isolated step-by-step reasoning tasks such as mathematics and programming, but their proficiency in long-horizon planning, where solutions require extended, structured sequences of interdependent actions, remains underexplored. Existing benchmarks typically assess LLMs through abstract or low-dimensional algorithmic tasks, failing to capture the complexity of realistic planning environments. We introduce HeroBench, a novel benchmark designed specifically to evaluate long-horizon planning and structured reasoning within complex RPG-inspired virtual worlds. HeroBench provides a rigorously constructed dataset of tasks covering a wide range of difficulties, a simulated environment to execute and validate agent plans, and detailed analytical tools for evaluating model performance. Tasks challenge models to formulate strategic plans, efficiently gather resources, master necessary skills, craft equipment, and defeat adversaries, reflecting practical scenarios' layered dependencies and constraints. Our extensive evaluation of 25 state-of-the-art LLMs, spanning both open-source and proprietary models, including the GPT-5 family, reveals substantial performance disparities rarely observed in conventional reasoning benchmarks. Detailed error analysis further uncovers specific weaknesses in current models' abilities to generate robust high-level plans and reliably execute structured actions. HeroBench thus not only significantly advances the evaluation of LLM reasoning but also provides a flexible, scalable foundation for future research into advanced, autonomous planning in virtual environments.

Authors:Shaoming Duan, Zirui Wang, Chuanyi Liu, Zhibin Zhu, Yuhao Zhang, Peiyi Han, Liang Yan, Zewu Peng
Title: CRED-SQL: Enhancing Real-world Large Scale Database Text-to-SQL Parsing through Cluster Retrieval and Execution Description
Abstract:
Recent advances in large language models (LLMs) have significantly improved the accuracy of Text-to-SQL systems. However, a critical challenge remains: the semantic mismatch between natural language questions (NLQs) and their corresponding SQL queries. This issue is exacerbated in large-scale databases, where semantically similar attributes hinder schema linking and semantic drift during SQL generation, ultimately reducing model accuracy. To address these challenges, we introduce CRED-SQL, a framework designed for large-scale databases that integrates Cluster Retrieval and Execution Description. CRED-SQL first performs cluster-based large-scale schema retrieval to pinpoint the tables and columns most relevant to a given NLQ, alleviating schema mismatch. It then introduces an intermediate natural language representation-Execution Description Language (EDL)-to bridge the gap between NLQs and SQL. This reformulation decomposes the task into two stages: Text-to-EDL and EDL-to-SQL, leveraging LLMs' strong general reasoning capabilities while reducing semantic deviation. Extensive experiments on two large-scale, cross-domain benchmarks-SpiderUnion and BirdUnion-demonstrate that CRED-SQL achieves new state-of-the-art (SOTA) performance, validating its effectiveness and scalability. Our code is available at https://github.com/smduan/CRED-SQL.git

Authors:Peihao Li, Yan Fang, Man Liu, Huihui Bai, Anhong Wang, Yunchao Wei, Yao Zhao
Title: Harnessing Group-Oriented Consistency Constraints for Semi-Supervised Semantic Segmentation in CdZnTe Semiconductors
Abstract:
Labeling Cadmium Zinc Telluride (CdZnTe) semiconductor images is challenging due to the low-contrast defect boundaries, necessitating annotators to cross-reference multiple views. These views share a single ground truth (GT), forming a unique ``many-to-one'' relationship. This characteristic renders advanced semi-supervised semantic segmentation (SSS) methods suboptimal, as they are generally limited by a ``one-to-one'' relationship, where each image is independently associated with its GT. Such limitation may lead to error accumulation in low-contrast regions, further exacerbating confirmation bias. To address this issue, we revisit the SSS pipeline from a group-oriented perspective and propose a human-inspired solution: the Intra-group Consistency Augmentation Framework (ICAF). First, we experimentally validate the inherent consistency constraints within CdZnTe groups, establishing a group-oriented baseline using the Intra-group View Sampling (IVS). Building on this insight, we introduce the Pseudo-label Correction Network (PCN) to enhance consistency representation, which consists of two key modules. The View Augmentation Module (VAM) improves boundary details by dynamically synthesizing a boundary-aware view through the aggregation of multiple views. In the View Correction Module (VCM), this synthesized view is paired with other views for information interaction, effectively emphasizing salient regions while minimizing noise. Extensive experiments demonstrate the effectiveness of our solution for CdZnTe materials. Leveraging DeepLabV3+ with a ResNet-101 backbone as our segmentation model, we achieve a 70.6\% mIoU on the CdZnTe dataset using only 2 group-annotated data (5\textperthousand). The code is available at \href{https://github.com/pipixiapipi/ICAF}{https://github.com/pipixiapipi/ICAF}.

Authors:Cristo J. van den Berg, Frank G. te Nijenhuis, Mirre J. Blaauboer, Daan T. W. van Erp, Carlijn M. Keppels, Matthijs van der Sluijs, Bob Roozenbeek, Wim van Zwam, Sandra Cornelissen, Danny Ruijters, Ruisheng Su, Theo van Walsum
Title: CLAIRE-DSA: Fluoroscopic Image Classification for Quality Assurance of Computer Vision Pipelines in Acute Ischemic Stroke
Abstract:
Computer vision models can be used to assist during mechanical thrombectomy (MT) for acute ischemic stroke (AIS), but poor image quality often degrades performance. This work presents CLAIRE-DSA, a deep learning--based framework designed to categorize key image properties in minimum intensity projections (MinIPs) acquired during MT for AIS, supporting downstream quality control and workflow optimization. CLAIRE-DSA uses pre-trained ResNet backbone models, fine-tuned to predict nine image properties (e.g., presence of contrast, projection angle, motion artefact severity). Separate classifiers were trained on an annotated dataset containing $1,758$ fluoroscopic MinIPs. The model achieved excellent performance on all labels, with ROC-AUC ranging from $0.91$ to $0.98$, and precision ranging from $0.70$ to $1.00$. The ability of CLAIRE-DSA to identify suitable images was evaluated on a segmentation task by filtering poor quality images and comparing segmentation performance on filtered and unfiltered datasets. Segmentation success rate increased from $42%$ to $69%$, $p < 0.001$. CLAIRE-DSA demonstrates strong potential as an automated tool for accurately classifying image properties in DSA series of acute ischemic stroke patients, supporting image annotation and quality control in clinical and research applications. Source code is available at https://gitlab.com/icai-stroke-lab/wp3_neurointerventional_ai/claire-dsa.

Authors:Alessio Galatolo, Luca Alberto Rappuoli, Katie Winkle, Meriem Beloucif
Title: Beyond Ethical Alignment: Evaluating LLMs as Artificial Moral Assistants
Abstract:
The recent rise in popularity of large language models (LLMs) has prompted considerable concerns about their moral capabilities. Although considerable effort has been dedicated to aligning LLMs with human moral values, existing benchmarks and evaluations remain largely superficial, typically measuring alignment based on final ethical verdicts rather than explicit moral reasoning. In response, this paper aims to advance the investigation of LLMs' moral capabilities by examining their capacity to function as Artificial Moral Assistants (AMAs), systems envisioned in the philosophical literature to support human moral deliberation. We assert that qualifying as an AMA requires more than what state-of-the-art alignment techniques aim to achieve: not only must AMAs be able to discern ethically problematic situations, they should also be able to actively reason about them, navigating between conflicting values outside of those embedded in the alignment phase. Building on existing philosophical literature, we begin by designing a new formal framework of the specific kind of behaviour an AMA should exhibit, individuating key qualities such as deductive and abductive moral reasoning. Drawing on this theoretical framework, we develop a benchmark to test these qualities and evaluate popular open LLMs against it. Our results reveal considerable variability across models and highlight persistent shortcomings, particularly regarding abductive moral reasoning. Our work connects theoretical philosophy with practical AI evaluation while also emphasising the need for dedicated strategies to explicitly enhance moral reasoning capabilities in LLMs. Code available at https://github.com/alessioGalatolo/AMAeval

Authors:Chen Qian, Danyang Li, Xinran Yu, Zheng Yang, Qiang Ma
Title: OpenMoCap: Rethinking Optical Motion Capture under Real-world Occlusion
Abstract:
Optical motion capture is a foundational technology driving advancements in cutting-edge fields such as virtual reality and film production. However, system performance suffers severely under large-scale marker occlusions common in real-world applications. An in-depth analysis identifies two primary limitations of current models: (i) the lack of training datasets accurately reflecting realistic marker occlusion patterns, and (ii) the absence of training strategies designed to capture long-range dependencies among markers. To tackle these challenges, we introduce the CMU-Occlu dataset, which incorporates ray tracing techniques to realistically simulate practical marker occlusion patterns. Furthermore, we propose OpenMoCap, a novel motion-solving model designed specifically for robust motion capture in environments with significant occlusions. Leveraging a marker-joint chain inference mechanism, OpenMoCap enables simultaneous optimization and construction of deep constraints between markers and joints. Extensive comparative experiments demonstrate that OpenMoCap consistently outperforms competing methods across diverse scenarios, while the CMU-Occlu dataset opens the door for future studies in robust motion solving. The proposed OpenMoCap is integrated into the MoSen MoCap system for practical deployment. The code is released at: https://github.com/qianchen214/OpenMoCap.

Authors:Hongyu Lin, Yuchen Li, Haoran Luo, Kaichun Yao, Libo Zhang, Mingjie Xing, Yanjun Wu
Title: OS-R1: Agentic Operating System Kernel Tuning with Reinforcement Learning
Abstract:
Linux kernel tuning is essential for optimizing operating system (OS) performance. However, existing methods often face challenges in terms of efficiency, scalability, and generalization. This paper introduces OS-R1, an agentic Linux kernel tuning framework powered by rule-based reinforcement learning (RL). By abstracting the kernel configuration space as an RL environment, OS-R1 facilitates efficient exploration by large language models (LLMs) and ensures accurate configuration modifications. Additionally, custom reward functions are designed to enhance reasoning standardization, configuration modification accuracy, and system performance awareness of the LLMs. Furthermore, we propose a two-phase training process that accelerates convergence and minimizes retraining across diverse tuning scenarios. Experimental results show that OS-R1 significantly outperforms existing baseline methods, achieving up to 5.6% performance improvement over heuristic tuning and maintaining high data efficiency. Notably, OS-R1 is adaptable across various real-world applications, demonstrating its potential for practical deployment in diverse environments. Our dataset and code are publicly available at https://github.com/LHY-24/OS-R1.

Authors:Qinwen Ge, Roza G. Bayrak, Anwar Said, Catie Chang, Xenofon Koutsoukos, Tyler Derr
Title: Defining and Benchmarking a Data-Centric Design Space for Brain Graph Construction
Abstract:
The construction of brain graphs from functional Magnetic Resonance Imaging (fMRI) data plays a crucial role in enabling graph machine learning for neuroimaging. However, current practices often rely on rigid pipelines that overlook critical data-centric choices in how brain graphs are constructed. In this work, we adopt a Data-Centric AI perspective and systematically define and benchmark a data-centric design space for brain graph construction, constrasting with primarily model-centric prior work. We organize this design space into three stages: temporal signal processing, topology extraction, and graph featurization. Our contributions lie less in novel components and more in evaluating how combinations of existing and modified techniques influence downstream performance. Specifically, we study high-amplitude BOLD signal filtering, sparsification and unification strategies for connectivity, alternative correlation metrics, and multi-view node and edge features, such as incorporating lagged dynamics. Experiments on the HCP1200 and ABIDE datasets show that thoughtful data-centric configurations consistently improve classification accuracy over standard pipelines. These findings highlight the critical role of upstream data decisions and underscore the importance of systematically exploring the data-centric design space for graph-based neuroimaging. Our code is available at https://github.com/GeQinwen/DataCentricBrainGraphs.

Authors:Yuangang Li, Yiqing Shen, Yi Nian, Jiechao Gao, Ziyi Wang, Chenxiao Yu, Shawn Li, Jie Wang, Xiyang Hu, Yue Zhao
Title: Mitigating Hallucinations in Large Language Models via Causal Reasoning
Abstract:
Large language models (LLMs) exhibit logically inconsistent hallucinations that appear coherent yet violate reasoning principles, with recent research suggesting an inverse relationship between causal reasoning capabilities and such hallucinations. However, existing reasoning approaches in LLMs, such as Chain-of-Thought (CoT) and its graph-based variants, operate at the linguistic token level rather than modeling the underlying causal relationships between variables, lacking the ability to represent conditional independencies or satisfy causal identification assumptions. To bridge this gap, we introduce causal-DAG construction and reasoning (CDCR-SFT), a supervised fine-tuning framework that trains LLMs to explicitly construct variable-level directed acyclic graph (DAG) and then perform reasoning over it. Moreover, we present a dataset comprising 25,368 samples (CausalDR), where each sample includes an input question, explicit causal DAG, graph-based reasoning trace, and validated answer. Experiments on four LLMs across eight tasks show that CDCR-SFT improves the causal reasoning capability with the state-of-the-art 95.33% accuracy on CLADDER (surpassing human performance of 94.8% for the first time) and reduces the hallucination on HaluEval with 10% improvements. It demonstrates that explicit causal structure modeling in LLMs can effectively mitigate logical inconsistencies in LLM outputs. Code is available at https://github.com/MrLYG/CDCR-SFT.

Authors:Aayush Gupta, Arpit Bhayani
Title: Cold-RL: Learning Cache Eviction with Offline Reinforcement Learning for NGINX
Abstract:
Web proxies such as NGINX commonly rely on least-recently-used (LRU) eviction, which is size agnostic and can thrash under periodic bursts and mixed object sizes. We introduce Cold-RL, a learned eviction policy for NGINX that replaces LRU's forced-expire path with a dueling Deep Q-Network served by an ONNX sidecar within a strict microsecond budget. On each eviction, Cold-RL samples the K least-recently-used objects, extracts six lightweight features (age, size, hit count, inter-arrival time, remaining TTL, and last origin RTT), and requests a bitmask of victims; a hard timeout of 500 microseconds triggers immediate fallback to native LRU. Policies are trained offline by replaying NGINX access logs through a cache simulator with a simple reward: a retained object earns one point if it is hit again before TTL expiry. We compare against LRU, LFU, size-based, adaptive LRU, and a hybrid baseline on two adversarial workloads. With a 25 MB cache, Cold-RL raises hit ratio from 0.1436 to 0.3538, a 146 percent improvement over the best classical baseline; at 100 MB, from 0.7530 to 0.8675, a 15 percent gain; and at 400 MB it matches classical methods (about 0.918). Inference adds less than 2 percent CPU overhead and keeps 95th percentile eviction latency within budget. To our knowledge, this is the first reinforcement learning eviction policy integrated into NGINX with strict SLOs.

Authors:Jun Zeng, Yannan Huang, Elif Keles, Halil Ertugrul Aktas, Gorkem Durak, Nikhil Kumar Tomar, Quoc-Huy Trinh, Deepak Ranjan Nayak, Ulas Bagci, Debesh Jha
Title: SRMA-Mamba: Spatial Reverse Mamba Attention Network for Pathological Liver Segmentation in MRI Volumes
Abstract:
Liver Cirrhosis plays a critical role in the prognosis of chronic liver disease. Early detection and timely intervention are critical in significantly reducing mortality rates. However, the intricate anatomical architecture and diverse pathological changes of liver tissue complicate the accurate detection and characterization of lesions in clinical settings. Existing methods underutilize the spatial anatomical details in volumetric MRI data, thereby hindering their clinical effectiveness and explainability. To address this challenge, we introduce a novel Mamba-based network, SRMA-Mamba, designed to model the spatial relationships within the complex anatomical structures of MRI volumes. By integrating the Spatial Anatomy-Based Mamba module (SABMamba), SRMA-Mamba performs selective Mamba scans within liver cirrhotic tissues and combines anatomical information from the sagittal, coronal, and axial planes to construct a global spatial context representation, enabling efficient volumetric segmentation of pathological liver structures. Furthermore, we introduce the Spatial Reverse Attention module (SRMA), designed to progressively refine cirrhotic details in the segmentation map, utilizing both the coarse segmentation map and hierarchical encoding features. Extensive experiments demonstrate that SRMA-Mamba surpasses state-of-the-art methods, delivering exceptional performance in 3D pathological liver segmentation. Our code is available for public: https://github.com/JunZengz/SRMA-Mamba.

Authors:Ziye Wang, Minghang Yu, Chunyan Xu, Zhen Cui
Title: Semantic Discrepancy-aware Detector for Image Forgery Identification
Abstract:
With the rapid advancement of image generation techniques, robust forgery detection has become increasingly imperative to ensure the trustworthiness of digital media. Recent research indicates that the learned semantic concepts of pre-trained models are critical for identifying fake images. However, the misalignment between the forgery and semantic concept spaces hinders the model's forgery detection performance. To address this problem, we propose a novel Semantic Discrepancy-aware Detector (SDD) that leverages reconstruction learning to align the two spaces at a fine-grained visual level. By exploiting the conceptual knowledge embedded in the pre-trained vision language model, we specifically design a semantic token sampling module to mitigate the space shifts caused by features irrelevant to both forgery traces and semantic concepts. A concept-level forgery discrepancy learning module, built upon a visual reconstruction paradigm, is proposed to strengthen the interaction between visual semantic concepts and forgery traces, effectively capturing discrepancies under the concepts' guidance. Finally, the low-level forgery feature enhancemer integrates the learned concept level forgery discrepancies to minimize redundant forgery information. Experiments conducted on two standard image forgery datasets demonstrate the efficacy of the proposed SDD, which achieves superior results compared to existing methods. The code is available at https://github.com/wzy1111111/SSD.

Authors:Hongliang Wei, Xianqi Zhang, Xingtao Wang, Xiaopeng Fan, Debin Zhao
Title: Region-Level Context-Aware Multimodal Understanding
Abstract:
Despite significant progress, existing research on Multimodal Large Language Models (MLLMs) mainly focuses on general visual understanding, overlooking the ability to integrate textual context associated with objects for a more context-aware multimodal understanding -- an ability we refer to as Region-level Context-aware Multimodal Understanding (RCMU). To address this limitation, we first formulate the RCMU task, which requires models to respond to user instructions by integrating both image content and textual information of regions or objects. To equip MLLMs with RCMU capabilities, we propose Region-level Context-aware Visual Instruction Tuning (RCVIT), which incorporates object information into the model input and enables the model to utilize bounding box coordinates to effectively associate objects' visual content with their textual information. To address the lack of datasets, we introduce the RCMU dataset, a large-scale visual instruction tuning dataset that covers multiple RCMU tasks. We also propose RC\&P-Bench, a comprehensive benchmark that can evaluate the performance of MLLMs in RCMU and multimodal personalized understanding tasks. Additionally, we propose a reference-free evaluation metric to perform a comprehensive and fine-grained evaluation of the region-level context-aware image descriptions. By performing RCVIT on Qwen2-VL models with the RCMU dataset, we developed RC-Qwen2-VL models. Experimental results indicate that RC-Qwen2-VL models not only achieve outstanding performance on multiple RCMU tasks but also demonstrate successful applications in multimodal RAG and personalized conversation. Our data, model and benchmark are available at https://github.com/hongliang-wei/RC-MLLM

Authors:Yize Cai, Baoshen Guo, Flora Salim, Zhiqing Hong
Title: Towards Generalizable Human Activity Recognition: A Survey
Abstract:
As a critical component of Wearable AI, IMU-based Human Activity Recognition (HAR) has attracted increasing attention from both academia and industry in recent years. Although HAR performance has improved considerably in specific scenarios, its generalization capability remains a key barrier to widespread real-world adoption. For example, domain shifts caused by variations in users, sensor positions, or environments can significantly decrease the performance in practice. As a result, in this survey, we explore the rapidly evolving field of IMU-based generalizable HAR, reviewing 229 research papers alongside 25 publicly available datasets to provide a broad and insightful overview. We first present the background and overall framework of IMU-based HAR tasks, as well as the generalization-oriented training settings. Then, we categorize representative methodologies from two perspectives: (i) model-centric approaches, including pre-training method, end-to-end method, and large language model (LLM)-based learning method; and (ii) data-centric approaches, including multi-modal learning and data augmentation techniques. In addition, we summarize widely used datasets in this field, as well as relevant tools and benchmarks. Building on these methodological advances, the broad applicability of IMU-based HAR is also reviewed and discussed. Finally, we discuss persistent challenges (e.g., data scarcity, efficient training, and reliable evaluation) and also outline future directions for HAR, including the adoption of foundation and large language models, physics-informed and context-aware reasoning, generative modeling, and resource-efficient training and inference. The complete list of this survey is available at https://github.com/rh20624/Awesome-IMU-Sensing, which will be updated continuously.

Authors:Rhea Malhotra, Yuejiang Liu, Chelsea Finn
Title: Self-Guided Action Diffusion
Abstract:
Recent works have shown the promise of inference-time search over action samples for improving generative robot policies. In particular, optimizing cross-chunk coherence via bidirectional decoding has proven effective in boosting the consistency and reactivity of diffusion policies. However, this approach remains computationally expensive as the diversity of sampled actions grows. In this paper, we introduce self-guided action diffusion, a more efficient variant of bidirectional decoding tailored for diffusion-based policies. At the core of our method is to guide the proposal distribution at each diffusion step based on the prior decision. Experiments in simulation tasks show that the proposed self-guidance enables near-optimal performance at negligible inference cost. Notably, under a tight sampling budget, our method achieves up to 70% higher success rates than existing counterparts on challenging dynamic tasks. See project website at https://rhea-mal.github.io/selfgad.github.io.

Authors:Seungju Yoo, Hyuk Kwon, Joong-Won Hwang, Kibok Lee
Title: Automated Model Evaluation for Object Detection via Prediction Consistency and Reliablity
Abstract:
Recent advances in computer vision have made training object detectors more efficient and effective; however, assessing their performance in real-world applications still relies on costly manual annotation. To address this limitation, we develop an automated model evaluation (AutoEval) framework for object detection. We propose Prediction Consistency and Reliability (PCR), which leverages the multiple candidate bounding boxes that conventional detectors generate before non-maximum suppression (NMS). PCR estimates detection performance without ground-truth labels by jointly measuring 1) the spatial consistency between boxes before and after NMS, and 2) the reliability of the retained boxes via the confidence scores of overlapping boxes. For a more realistic and scalable evaluation, we construct a meta-dataset by applying image corruptions of varying severity. Experimental results demonstrate that PCR yields more accurate performance estimates than existing AutoEval methods, and the proposed meta-dataset covers a wider range of detection performance. The code is available at https://github.com/YonseiML/autoeval-det.

Authors:Punya Syon Pandey, Yongjin Yang, Jiarui Liu, Zhijing Jin
Title: CORE: Measuring Multi-Agent LLM Interaction Quality under Game-Theoretic Pressures
Abstract:
Game-theoretic interactions between agents with Large Language Models (LLMs) have revealed many emergent capabilities, yet the linguistic diversity of these interactions has not been sufficiently quantified. In this paper, we present the Conversational Robustness Evaluation Score: CORE, a metric to quantify the effectiveness of language use within multi-agent systems across different game-theoretic interactions. CORE integrates measures of cluster entropy, lexical repetition, and semantic similarity, providing a direct lens of dialog quality. We apply CORE to pairwise LLM dialogs across competitive, cooperative, and neutral settings, further grounding our analysis in Zipf's and Heaps' Laws to characterize word frequency distributions and vocabulary growth. Our findings show that cooperative settings exhibit both steeper Zipf distributions and higher Heap exponents, indicating more repetition alongside greater vocabulary expansion. In contrast, competitive interactions display lower Zipf and Heaps exponents, reflecting less repetition and more constrained vocabularies. These results provide new insights into how social incentives influence language adaptation, and highlight CORE as a robust diagnostic for measuring linguistic robustness in multi-agent LLM systems. Our code is available at https://github.com/psyonp/core.

Authors:Milad Yazdani, Mahdi Mostajabdaveh, Samin Aref, Zirui Zhou
Title: EvoCut: Strengthening Integer Programs via Evolution-Guided Language Models
Abstract:
Integer programming lies at the heart of crucial combinatorial optimization tasks but remains challenging due to its NP-hard nature. An effective approach for practically solving integer programs is the manual design of acceleration cuts, i.e. inequalities that improve solver performance. However, this creative process demands deep expertise and is yet to be automated. Our proposed framework, EvoCut, automates the generation of acceleration cuts by combining large language models (LLMs) with an evolutionary search. EvoCut (i) initializes a diverse population of candidate cuts via an LLM-based initializer agent; (ii) for each cut empirically evaluates both preservation of the optimal solution and its ability to cut off fractional solutions across a verification set; and (iii) iteratively refines the population through evolutionary crossover and mutation agents. We quantify each cut's utility by its relative reduction in the solver's optimality gap. Our comparisons against standard integer programming practice show that EvoCut reduces optimality gap by 17-57% within a fixed time. It obtains the same solutions up to 4 times as fast, and obtains higher-quality solutions within the same time limit. Requiring no human expert input, EvoCut reliably generates, improves, and empirically verifies cuts that generalize to unseen instances. The code is available at https://github.com/milad1378yz/EvoCut.

Authors:Yiyun Chen, Weikai Yang
Title: RefAdGen: High-Fidelity Advertising Image Generation
Abstract:
The rapid advancement of Artificial Intelligence Generated Content (AIGC) techniques has unlocked opportunities in generating diverse and compelling advertising images based on referenced product images and textual scene descriptions. This capability substantially reduces human labor and production costs in traditional marketing workflows. However, existing AIGC techniques either demand extensive fine-tuning for each referenced image to achieve high fidelity, or they struggle to maintain fidelity across diverse products, making them impractical for e-commerce and marketing industries. To tackle this limitation, we first construct AdProd-100K, a large-scale advertising image generation dataset. A key innovation in its construction is our dual data augmentation strategy, which fosters robust, 3D-aware representations crucial for realistic and high-fidelity image synthesis. Leveraging this dataset, we propose RefAdGen, a generation framework that achieves high fidelity through a decoupled design. The framework enforces precise spatial control by injecting a product mask at the U-Net input, and employs an efficient Attention Fusion Module (AFM) to integrate product features. This design effectively resolves the fidelity-efficiency dilemma present in existing methods. Extensive experiments demonstrate that RefAdGen achieves state-of-the-art performance, showcasing robust generalization by maintaining high fidelity and remarkable visual results for both unseen products and challenging real-world, in-the-wild images. This offers a scalable and cost-effective alternative to traditional workflows. Code and datasets are publicly available at https://github.com/Anonymous-Name-139/RefAdgen.

Authors:Maksym Shamrai, Vladyslav Hamolia
Title: Deep Language Geometry: Constructing a Metric Space from LLM Weights
Abstract:
We introduce a novel framework that utilizes the internal weight activations of modern Large Language Models (LLMs) to construct a metric space of languages. Unlike traditional approaches based on hand-crafted linguistic features, our method automatically derives high-dimensional vector representations by computing weight importance scores via an adapted pruning algorithm. Our approach captures intrinsic language characteristics that reflect linguistic phenomena. We validate our approach across diverse datasets and multilingual LLMs, covering 106 languages. The results align well with established linguistic families while also revealing unexpected inter-language connections that may indicate historical contact or language evolution. The source code, computed language latent vectors, and visualization tool are made publicly available at https://github.com/mshamrai/deep-language-geometry.

Authors:Haojie Zhang, Yixiong Liang, Hulin Kuang, Lihui Cen, Zhe Qu, Yigang Cen, Min Zeng, Shichao Kan
Title: Contrastive Regularization over LoRA for Multimodal Biomedical Image Incremental Learning
Abstract:
Multimodal Biomedical Image Incremental Learning (MBIIL) is essential for handling diverse tasks and modalities in the biomedical domain, as training separate models for each modality or task significantly increases inference costs. Existing incremental learning methods focus on task expansion within a single modality, whereas MBIIL seeks to train a unified model incrementally across modalities. The MBIIL faces two challenges: I) How to preserve previously learned knowledge during incremental updates? II) How to effectively leverage knowledge acquired from existing modalities to support new modalities? To address these challenges, we propose MSLoRA-CR, a method that fine-tunes Modality-Specific LoRA modules while incorporating Contrastive Regularization to enhance intra-modality knowledge sharing and promote inter-modality knowledge differentiation. Our approach builds upon a large vision-language model (LVLM), keeping the pretrained model frozen while incrementally adapting new LoRA modules for each modality or task. Experiments on the incremental learning of biomedical images demonstrate that MSLoRA-CR outperforms both the state-of-the-art (SOTA) approach of training separate models for each modality and the general incremental learning method (incrementally fine-tuning LoRA). Specifically, MSLoRA-CR achieves a 1.88% improvement in overall performance compared to unconstrained incremental learning methods while maintaining computational efficiency. Our code is publicly available at https://github.com/VentusAislant/MSLoRA_CR.

Authors:Bryan E. Tuck, Rakesh M. Verma
Title: Assessing Representation Stability for Transformer Models
Abstract:
Adversarial text attacks remain a persistent threat to transformer models, yet existing defenses are typically attack-specific or require costly model retraining. We introduce Representation Stability (RS), a model-agnostic detection framework that identifies adversarial examples by measuring how embedding representations change when important words are masked. RS first ranks words using importance heuristics, then measures embedding sensitivity to masking top-k critical words, and processes the resulting patterns with a BiLSTM detector. Experiments show that adversarially perturbed words exhibit disproportionately high masking sensitivity compared to naturally important words. Across three datasets, three attack types, and two victim models, RS achieves over 88% detection accuracy and demonstrates competitive performance compared to existing state-of-the-art methods, often at lower computational cost. Using Normalized Discounted Cumulative Gain (NDCG) to measure perturbation identification quality, we reveal that gradient-based ranking outperforms attention and random selection approaches, with identification quality correlating with detection performance for word-level attacks. RS also generalizes well to unseen datasets, attacks, and models without retraining, providing a practical solution for adversarial text detection.

Authors:Andrej Orsula, Matthieu Geist, Miguel Olivares-Mendez, Carol Martinez
Title: Sim2Dust: Mastering Dynamic Waypoint Tracking on Granular Media
Abstract:
Reliable autonomous navigation across the unstructured terrains of distant planetary surfaces is a critical enabler for future space exploration. However, the deployment of learning-based controllers is hindered by the inherent sim-to-real gap, particularly for the complex dynamics of wheel interactions with granular media. This work presents a complete sim-to-real framework for developing and validating robust control policies for dynamic waypoint tracking on such challenging surfaces. We leverage massively parallel simulation to train reinforcement learning agents across a vast distribution of procedurally generated environments with randomized physics. These policies are then transferred zero-shot to a physical wheeled rover operating in a lunar-analogue facility. Our experiments systematically compare multiple reinforcement learning algorithms and action smoothing filters to identify the most effective combinations for real-world deployment. Crucially, we provide strong empirical evidence that agents trained with procedural diversity achieve superior zero-shot performance compared to those trained on static scenarios. We also analyze the trade-offs of fine-tuning with high-fidelity particle physics, which offers minor gains in low-speed precision at a significant computational cost. Together, these contributions establish a validated workflow for creating reliable learning-based navigation systems, marking a critical step towards deploying autonomous robots in the final frontier.

Authors:Wenhao Zhang, Yuexiang Xie, Yuchang Sun, Yanxi Chen, Guoyin Wang, Yaliang Li, Bolin Ding, Jingren Zhou
Title: On-Policy RL Meets Off-Policy Experts: Harmonizing Supervised Fine-Tuning and Reinforcement Learning via Dynamic Weighting
Abstract:
Supervised Fine-Tuning (SFT) and Reinforcement Learning (RL) are two prominent post-training paradigms for refining the capabilities and aligning the behavior of Large Language Models (LLMs). Existing approaches that integrate SFT and RL often face the risk of disrupting established model patterns and inducing overfitting to expert data. To address this, we present a novel investigation into the unified view of SFT and RL through an off-policy versus on-policy lens. We propose CHORD, a framework for the Controllable Harmonization of On- and Off-Policy Reinforcement Learning via Dynamic Weighting, which reframes SFT not as a separate stage but as a dynamically weighted auxiliary objective within the on-policy RL process. Based on an analysis of off-policy expert data's influence at both holistic and granular levels, we incorporate a dual-control mechanism in CHORD. Specifically, the framework first employs a global coefficient to holistically guide the transition from off-policy imitation to on-policy exploration, and then applies a token-wise weighting function that enables granular learning from expert tokens, which preserves on-policy exploration and mitigates disruption from off-policy data. We conduct extensive experiments on widely used benchmarks, providing empirical evidence that CHORD achieves a stable and efficient learning process. By effectively harmonizing off-policy expert data with on-policy exploration, CHORD demonstrates significant improvements over baselines. We release the implementation at https://github.com/modelscope/Trinity-RFT/tree/main/examples/mix_chord to inspire further research.

Authors:Mikhail Seleznyov, Mikhail Chaichuk, Gleb Ershov, Alexander Panchenko, Elena Tutubalina, Oleg Somov
Title: When Punctuation Matters: A Large-Scale Comparison of Prompt Robustness Methods for LLMs
Abstract:
Large Language Models (LLMs) are highly sensitive to subtle, non-semantic variations in prompt phrasing and formatting. In this work, we present the first systematic evaluation of 5 methods for improving prompt robustness within a unified experimental framework. We benchmark these techniques on 8 models from Llama, Qwen and Gemma families across 52 tasks from Natural Instructions dataset. Our evaluation covers robustness methods from both fine-tuned and in-context learning paradigms, and tests their generalization against multiple types of distribution shifts. Finally, we extend our analysis to GPT-4.1 and DeepSeek V3 to assess frontier models' current robustness to format perturbations. Our findings offer actionable insights into the relative effectiveness of these robustness methods, enabling practitioners to make informed decisions when aiming for stable and reliable LLM performance in real-world applications. Code: https://github.com/AIRI-Institute/when-punctuation-matters.

Authors:Yifei Li, Lingling Zhang, Hang Yan, Tianzhe Zhao, Zihan Ma, Muye Huang, Jun Liu
Title: SAGE: Scale-Aware Gradual Evolution for Continual Knowledge Graph Embedding
Abstract:
Traditional knowledge graph (KG) embedding methods aim to represent entities and relations in a low-dimensional space, primarily focusing on static graphs. However, real-world KGs are dynamically evolving with the constant addition of entities, relations and facts. To address such dynamic nature of KGs, several continual knowledge graph embedding (CKGE) methods have been developed to efficiently update KG embeddings to accommodate new facts while maintaining learned knowledge. As KGs grow at different rates and scales in real-world scenarios, existing CKGE methods often fail to consider the varying scales of updates and lack systematic evaluation throughout the entire update process. In this paper, we propose SAGE, a scale-aware gradual evolution framework for CKGE. Specifically, SAGE firstly determine the embedding dimensions based on the update scales and expand the embedding space accordingly. The Dynamic Distillation mechanism is further employed to balance the preservation of learned knowledge and the incorporation of new facts. We conduct extensive experiments on seven benchmarks, and the results show that SAGE consistently outperforms existing baselines, with a notable improvement of 1.38% in MRR, 1.25% in H@1 and 1.6% in H@10. Furthermore, experiments comparing SAGE with methods using fixed embedding dimensions show that SAGE achieves optimal performance on every snapshot, demonstrating the importance of adaptive embedding dimensions in CKGE. The codes of SAGE are publicly available at: https://github.com/lyfxjtu/Dynamic-Embedding.

Authors:Junjie Wang, Keyu Chen, Yulin Li, Bin Chen, Hengshuang Zhao, Xiaojuan Qi, Zhuotao Tian
Title: Generalized Decoupled Learning for Enhancing Open-Vocabulary Dense Perception
Abstract:
Dense visual perception tasks have been constrained by their reliance on predefined categories, limiting their applicability in real-world scenarios where visual concepts are unbounded. While Vision-Language Models (VLMs) like CLIP have shown promise in open-vocabulary tasks, their direct application to dense perception often leads to suboptimal performance due to limitations in local feature representation. In this work, we present our observation that CLIP's image tokens struggle to effectively aggregate information from spatially or semantically related regions, resulting in features that lack local discriminability and spatial consistency. To address this issue, we propose DeCLIP, a novel framework that enhances CLIP by decoupling the self-attention module to obtain ``content'' and ``context'' features respectively. \revise{The context features are enhanced by jointly distilling semantic correlations from Vision Foundation Models (VFMs) and object integrity cues from diffusion models, thereby enhancing spatial consistency. In parallel, the content features are aligned with image crop representations and constrained by region correlations from VFMs to improve local discriminability. Extensive experiments demonstrate that DeCLIP establishes a solid foundation for open-vocabulary dense perception, consistently achieving state-of-the-art performance across a broad spectrum of tasks, including 2D detection and segmentation, 3D instance segmentation, video instance segmentation, and 6D object pose estimation.} Code is available at https://github.com/xiaomoguhz/DeCLIP

Authors:Tomer Wolfson, Harsh Trivedi, Mor Geva, Yoav Goldberg, Dan Roth, Tushar Khot, Ashish Sabharwal, Reut Tsarfaty
Title: MoNaCo: More Natural and Complex Questions for Reasoning Across Dozens of Documents
Abstract:
Automated agents, powered by Large language models (LLMs), are emerging as the go-to tool for querying information. However, evaluation benchmarks for LLM agents rarely feature natural questions that are both information-seeking and genuinely time-consuming for humans. To address this gap we introduce MoNaCo, a benchmark of 1,315 natural and time-consuming questions that require dozens, and at times hundreds, of intermediate steps to solve -- far more than any existing QA benchmark. To build MoNaCo, we developed a decomposed annotation pipeline to elicit and manually answer real-world time-consuming questions at scale. Frontier LLMs evaluated on MoNaCo achieve at most 61.2% F1, hampered by low recall and hallucinations. Our results underscore the limitations of LLM-powered agents in handling the complexity and sheer breadth of real-world information-seeking tasks -- with MoNaCo providing an effective resource for tracking such progress. The MoNaCo benchmark, codebase, prompts and models predictions are all publicly available at: https://tomerwolgithub.github.io/monaco

Authors:Haomin Zhang, Kristin Qi, Shuxin Yang, Zihao Chen, Chaofan Ding, Xinhan Di
Title: LD-LAudio-V1: Video-to-Long-Form-Audio Generation Extension with Dual Lightweight Adapters
Abstract:
Generating high-quality and temporally synchronized audio from video content is essential for video editing and post-production tasks, enabling the creation of semantically aligned audio for silent videos. However, most existing approaches focus on short-form audio generation for video segments under 10 seconds or rely on noisy datasets for long-form video-to-audio zsynthesis. To address these limitations, we introduce LD-LAudio-V1, an extension of state-of-the-art video-to-audio models and it incorporates dual lightweight adapters to enable long-form audio generation. In addition, we release a clean and human-annotated video-to-audio dataset that contains pure sound effects without noise or artifacts. Our method significantly reduces splicing artifacts and temporal inconsistencies while maintaining computational efficiency. Compared to direct fine-tuning with short training videos, LD-LAudio-V1 achieves significant improvements across multiple metrics: $FD_{\text{passt}}$ 450.00 $\rightarrow$ 327.29 (+27.27%), $FD_{\text{panns}}$ 34.88 $\rightarrow$ 22.68 (+34.98%), $FD_{\text{vgg}}$ 3.75 $\rightarrow$ 1.28 (+65.87%), $KL_{\text{panns}}$ 2.49 $\rightarrow$ 2.07 (+16.87%), $KL_{\text{passt}}$ 1.78 $\rightarrow$ 1.53 (+14.04%), $IS_{\text{panns}}$ 4.17 $\rightarrow$ 4.30 (+3.12%), $IB_{\text{score}}$ 0.25 $\rightarrow$ 0.28 (+12.00%), $Energy\Delta10\text{ms}$ 0.3013 $\rightarrow$ 0.1349 (+55.23%), $Energy\Delta10\text{ms(vs.GT)}$ 0.0531 $\rightarrow$ 0.0288 (+45.76%), and $Sem.\,Rel.$ 2.73 $\rightarrow$ 3.28 (+20.15%). Our dataset aims to facilitate further research in long-form video-to-audio generation and is available at https://github.com/deepreasonings/long-form-video2audio.

Authors:Qingbin Li, Rongkun Xue, Jie Wang, Ming Zhou, Zhi Li, Xiaofeng Ji, Yongqi Wang, Miao Liu, Zheming Yang, Minghui Qiu, Jing Yang
Title: CURE: Critical-Token-Guided Re-Concatenation for Entropy-Collapse Prevention
Abstract:
Recent advances in Reinforcement Learning with Verified Reward (RLVR) have driven the emergence of more sophisticated cognitive behaviors in large language models (LLMs), thereby enhancing their reasoning capabilities. However, in prior RLVR pipelines, the repeated use of static initial-state sampling drawn exactly from the dataset distribution during each sampling phase produced overly deterministic, low diversity model behavior, which manifested as rapid entropy collapse and hindered sustained performance gains during prolonged training. To address this issue, we introduce CURE (Critical-token-gUided Re concatenation for Entropy-collapse prevention), a two-stage framework that balances exploration and exploitation. Specifically, in the first stage, to deliberately steer the model toward novel yet coherent contexts, we re-generate at high-entropy critical tokens and jointly optimize the original and the branched trajectories. The further comparison with vanilla DAPO shows that the regeneration process achieves a better performance on math reasoning tasks while sustaining a high-level entropy degree for exploration. In the second stage, we continue training with static initial-state sampling by DAPO, intentionally placing the model in a familiar state to gradually strengthen exploitation. Extensive experiments on Qwen-2.5-Math-7B show that, compared to other RLVR methods, CURE achieves a 5% performance gain across six math benchmarks, establishing state-of-the-art performance in both entropy and accuracy. A series of experiments further validate the effectiveness of our approach. Code is available at https://github.com/bytedance/CURE.

Authors:Nasim Shirvani-Mahdavi, Chengkai Li
Title: Rule2Text: A Framework for Generating and Evaluating Natural Language Explanations of Knowledge Graph Rules
Abstract:
Knowledge graphs (KGs) can be enhanced through rule mining; however, the resulting logical rules are often difficult for humans to interpret due to their inherent complexity and the idiosyncratic labeling conventions of individual KGs. This work presents Rule2Text, a comprehensive framework that leverages large language models (LLMs) to generate natural language explanations for mined logical rules, thereby improving KG accessibility and usability. We conduct extensive experiments using multiple datasets, including Freebase variants (FB-CVT-REV, FB+CVT-REV, and FB15k-237) as well as the ogbl-biokg dataset, with rules mined using AMIE 3.5.1. We systematically evaluate several LLMs across a comprehensive range of prompting strategies, including zero-shot, few-shot, variable type incorporation, and Chain-of-Thought reasoning. To systematically assess models' performance, we conduct a human evaluation of generated explanations on correctness and clarity. To address evaluation scalability, we develop and validate an LLM-as-a-judge framework that demonstrates strong agreement with human evaluators. Leveraging the best-performing model (Gemini 2.0 Flash), LLM judge, and human-in-the-loop feedback, we construct high-quality ground truth datasets, which we use to fine-tune the open-source Zephyr model. Our results demonstrate significant improvements in explanation quality after fine-tuning, with particularly strong gains in the domain-specific dataset. Additionally, we integrate a type inference module to support KGs lacking explicit type information. All code and data are publicly available at https://github.com/idirlab/KGRule2NL.

Authors:Ojas Shirekar, Wim Pouw, Chenxu Hao, Vrushank Phadnis, Thabo Beeler, Chirag Raman
Title: Multimodal Quantitative Measures for Multiparty Behaviour Evaluation
Abstract:
Digital humans are emerging as autonomous agents in multiparty interactions, yet existing evaluation metrics largely ignore contextual coordination dynamics. We introduce a unified, intervention-driven framework for objective assessment of multiparty social behaviour in skeletal motion data, spanning three complementary dimensions: (1) synchrony via Cross-Recurrence Quantification Analysis, (2) temporal alignment via Multiscale Empirical Mode Decompositionbased Beat Consistency, and (3) structural similarity via Soft Dynamic Time Warping. We validate metric sensitivity through three theory-driven perturbations -- gesture kinematic dampening, uniform speech-gesture delays, and prosodic pitch-variance reduction-applied to $\approx 145$ 30-second thin slices of group interactions from the DnD dataset. Mixed-effects analyses reveal predictable, joint-independent shifts: dampening increases CRQA determinism and reduces beat consistency, delays weaken cross-participant coupling, and pitch flattening elevates F0 Soft-DTW costs. A complementary perception study ($N=27$) compares judgments of full-video and skeleton-only renderings to quantify representation effects. Our three measures deliver orthogonal insights into spatial structure, timing alignment, and behavioural variability. Thereby forming a robust toolkit for evaluating and refining socially intelligent agents. Code available on \href{https://github.com/tapri-lab/gig-interveners}{GitHub}.

Authors:Lingen Li, Guangzhi Wang, Zhaoyang Zhang, Yaowei Li, Xiaoyu Li, Qi Dou, Jinwei Gu, Tianfan Xue, Ying Shan
Title: ToonComposer: Streamlining Cartoon Production with Generative Post-Keyframing
Abstract:
Traditional cartoon and anime production involves keyframing, inbetweening, and colorization stages, which require intensive manual effort. Despite recent advances in AI, existing methods often handle these stages separately, leading to error accumulation and artifacts. For instance, inbetweening approaches struggle with large motions, while colorization methods require dense per-frame sketches. To address this, we introduce ToonComposer, a generative model that unifies inbetweening and colorization into a single post-keyframing stage. ToonComposer employs a sparse sketch injection mechanism to provide precise control using keyframe sketches. Additionally, it uses a cartoon adaptation method with the spatial low-rank adapter to tailor a modern video foundation model to the cartoon domain while keeping its temporal prior intact. Requiring as few as a single sketch and a colored reference frame, ToonComposer excels with sparse inputs, while also supporting multiple sketches at any temporal location for more precise motion control. This dual capability reduces manual workload and improves flexibility, empowering artists in real-world scenarios. To evaluate our model, we further created PKBench, a benchmark featuring human-drawn sketches that simulate real-world use cases. Our evaluation demonstrates that ToonComposer outperforms existing methods in visual quality, motion consistency, and production efficiency, offering a superior and more flexible solution for AI-assisted cartoon production.

Authors:Tianyi Li, Mingda Chen, Bowei Guo, Zhiqiang Shen
Title: A Survey on Diffusion Language Models
Abstract:
Diffusion Language Models (DLMs) are rapidly emerging as a powerful and promising alternative to the dominant autoregressive (AR) paradigm. By generating tokens in parallel through an iterative denoising process, DLMs possess inherent advantages in reducing inference latency and capturing bidirectional context, thereby enabling fine-grained control over the generation process. While achieving a several-fold speed-up, recent advancements have allowed DLMs to show performance comparable to their autoregressive counterparts, making them a compelling choice for various natural language processing tasks. In this survey, we provide a holistic overview of the current DLM landscape. We trace its evolution and relationship with other paradigms, such as autoregressive and masked language models, and cover both foundational principles and state-of-the-art models. Our work offers an up-to-date, comprehensive taxonomy and an in-depth analysis of current techniques, from pre-training strategies to advanced post-training methods. Another contribution of this survey is a thorough review of DLM inference strategies and optimizations, including improvements in decoding parallelism, caching mechanisms, and generation quality. We also highlight the latest approaches to multimodal extensions of DLMs and delineate their applications across various practical scenarios. Furthermore, our discussion addresses the limitations and challenges of DLMs, including efficiency, long-sequence handling, and infrastructure requirements, while outlining future research directions to sustain progress in this rapidly evolving field. Project GitHub is available at https://github.com/VILA-Lab/Awesome-DLMs.

Authors:Sushant Gautam, Vajira Thambawita, Michael Riegler, PÃ¥l Halvorsen, Steven Hicks
Title: Medico 2025: Visual Question Answering for Gastrointestinal Imaging
Abstract:
The Medico 2025 challenge addresses Visual Question Answering (VQA) for Gastrointestinal (GI) imaging, organized as part of the MediaEval task series. The challenge focuses on developing Explainable Artificial Intelligence (XAI) models that answer clinically relevant questions based on GI endoscopy images while providing interpretable justifications aligned with medical reasoning. It introduces two subtasks: (1) answering diverse types of visual questions using the Kvasir-VQA-x1 dataset, and (2) generating multimodal explanations to support clinical decision-making. The Kvasir-VQA-x1 dataset, created from 6,500 images and 159,549 complex question-answer (QA) pairs, serves as the benchmark for the challenge. By combining quantitative performance metrics and expert-reviewed explainability assessments, this task aims to advance trustworthy Artificial Intelligence (AI) in medical image analysis. Instructions, data access, and an updated guide for participation are available in the official competition repository: https://github.com/simula/MediaEval-Medico-2025

Authors:Shouju Wang, Yuchen Song, Sheng'en Li, Dongmian Zou
Title: Enhancing Fairness in Autoencoders for Node-Level Graph Anomaly Detection
Abstract:
Graph anomaly detection (GAD) has become an increasingly important task across various domains. With the rapid development of graph neural networks (GNNs), GAD methods have achieved significant performance improvements. However, fairness considerations in GAD remain largely underexplored. Indeed, GNN-based GAD models can inherit and amplify biases present in training data, potentially leading to unfair outcomes. While existing efforts have focused on developing fair GNNs, most approaches target node classification tasks, where models often rely on simple layer architectures rather than autoencoder-based structures, which are the most widely used architecturs for anomaly detection. To address fairness in autoencoder-based GAD models, we propose \textbf{D}is\textbf{E}ntangled \textbf{C}ounterfactual \textbf{A}dversarial \textbf{F}air (DECAF)-GAD, a framework that alleviates bias while preserving GAD performance. Specifically, we introduce a structural causal model (SCM) to disentangle sensitive attributes from learned representations. Based on this causal framework, we formulate a specialized autoencoder architecture along with a fairness-guided loss function. Through extensive experiments on both synthetic and real-world datasets, we demonstrate that DECAF-GAD not only achieves competitive anomaly detection performance but also significantly enhances fairness metrics compared to baseline GAD methods. Our code is available at https://github.com/Tlhey/decaf_code.

Authors:Zhenning Shi, Zizheng Yan, Yuhang Yu, Clara Xue, Jingyu Zhuang, Qi Zhang, Jinwei Chen, Tao Li, Qingnan Fan
Title: Ultra-High-Definition Reference-Based Landmark Image Super-Resolution with Generative Diffusion Prior
Abstract:
Reference-based Image Super-Resolution (RefSR) aims to restore a low-resolution (LR) image by utilizing the semantic and texture information from an additional reference high-resolution (reference HR) image. Existing diffusion-based RefSR methods are typically built upon ControlNet, which struggles to effectively align the information between the LR image and the reference HR image. Moreover, current RefSR datasets suffer from limited resolution and poor image quality, resulting in the reference images lacking sufficient fine-grained details to support high-quality restoration. To overcome the limitations above, we propose TriFlowSR, a novel framework that explicitly achieves pattern matching between the LR image and the reference HR image. Meanwhile, we introduce Landmark-4K, the first RefSR dataset for Ultra-High-Definition (UHD) landmark scenarios. Considering the UHD scenarios with real-world degradation, in TriFlowSR, we design a Reference Matching Strategy to effectively match the LR image with the reference HR image. Experimental results show that our approach can better utilize the semantic and texture information of the reference HR image compared to previous methods. To the best of our knowledge, we propose the first diffusion-based RefSR pipeline for ultra-high definition landmark scenarios under real-world degradation. Our code and model will be available at https://github.com/nkicsl/TriFlowSR.

Authors:Yanjun Li, Yuqian Fu, Tianwen Qian, Qi'ao Xu, Silong Dai, Danda Pani Paudel, Luc Van Gool, Xiaoling Wang
Title: EgoCross: Benchmarking Multimodal Large Language Models for Cross-Domain Egocentric Video Question Answering
Abstract:
Recent advances in Multimodal Large Language Models (MLLMs) have significantly pushed the frontier of egocentric video question answering (EgocentricQA). However, existing benchmarks and studies are mainly limited to common daily activities such as cooking and cleaning. In contrast, real-world deployment inevitably encounters domain shifts, where target domains differ substantially in both visual style and semantic content. To bridge this gap, we introduce \textbf{EgoCross}, a comprehensive benchmark designed to evaluate the cross-domain generalization of MLLMs in EgocentricQA. EgoCross covers four diverse and challenging domains, including surgery, industry, extreme sports, and animal perspective, representing realistic and high-impact application scenarios. It comprises approximately 1,000 QA pairs across 798 video clips, spanning four key QA tasks: prediction, recognition, localization, and counting. Each QA pair provides both OpenQA and CloseQA formats to support fine-grained evaluation. Extensive experiments show that most existing MLLMs, whether general-purpose or egocentric-specialized, struggle to generalize to domains beyond daily life, highlighting the limitations of current models. Furthermore, we conduct several pilot studies, \eg, fine-tuning and reinforcement learning, to explore potential improvements. We hope EgoCross and our accompanying analysis will serve as a foundation for advancing domain-adaptive, robust egocentric video understanding. Data and codes will be released at: \href{https://github.com/MyUniverse0726/EgoCross}{https://github.com/MyUniverse0726/EgoCross.}

Authors:Feiran Li, Qianqian Xu, Shilong Bao, Boyu Han, Zhiyong Yang, Qingming Huang
Title: Hybrid Generative Fusion for Efficient and Privacy-Preserving Face Recognition Dataset Generation
Abstract:
In this paper, we present our approach to the DataCV ICCV Challenge, which centers on building a high-quality face dataset to train a face recognition model. The constructed dataset must not contain identities overlapping with any existing public face datasets. To handle this challenge, we begin with a thorough cleaning of the baseline HSFace dataset, identifying and removing mislabeled or inconsistent identities through a Mixture-of-Experts (MoE) strategy combining face embedding clustering and GPT-4o-assisted verification. We retain the largest consistent identity cluster and apply data augmentation up to a fixed number of images per identity. To further diversify the dataset, we generate synthetic identities using Stable Diffusion with prompt engineering. As diffusion models are computationally intensive, we generate only one reference image per identity and efficiently expand it using Vec2Face, which rapidly produces 49 identity-consistent variants. This hybrid approach fuses GAN-based and diffusion-based samples, enabling efficient construction of a diverse and high-quality dataset. To address the high visual similarity among synthetic identities, we adopt a curriculum learning strategy by placing them early in the training schedule, allowing the model to progress from easier to harder samples. Our final dataset contains 50 images per identity, and all newly generated identities are checked with mainstream face datasets to ensure no identity leakage. Our method achieves \textbf{1st place} in the competition, and experimental results show that our dataset improves model performance across 10K, 20K, and 100K identity scales. Code is available at https://github.com/Ferry-Li/datacv_fr.

Authors:Zhenye Yang, Jinpeng Chen, Huan Li, Xiongnan Jin, Xuanyang Li, Junwei Zhang, Hongbo Gao, Kaimin Wei, Senzhang Wang
Title: STEP: Stepwise Curriculum Learning for Context-Knowledge Fusion in Conversational Recommendation
Abstract:
Conversational recommender systems (CRSs) aim to proactively capture user preferences through natural language dialogue and recommend high-quality items. To achieve this, CRS gathers user preferences via a dialog module and builds user profiles through a recommendation module to generate appropriate recommendations. However, existing CRS faces challenges in capturing the deep semantics of user preferences and dialogue context. In particular, the efficient integration of external knowledge graph (KG) information into dialogue generation and recommendation remains a pressing issue. Traditional approaches typically combine KG information directly with dialogue content, which often struggles with complex semantic relationships, resulting in recommendations that may not align with user expectations. To address these challenges, we introduce STEP, a conversational recommender centered on pre-trained language models that combines curriculum-guided context-knowledge fusion with lightweight task-specific prompt tuning. At its heart, an F-Former progressively aligns the dialogue context with knowledge-graph entities through a three-stage curriculum, thus resolving fine-grained semantic mismatches. The fused representation is then injected into the frozen language model via two minimal yet adaptive prefix prompts: a conversation prefix that steers response generation toward user intent and a recommendation prefix that biases item ranking toward knowledge-consistent candidates. This dual-prompt scheme allows the model to share cross-task semantics while respecting the distinct objectives of dialogue and recommendation. Experimental results show that STEP outperforms mainstream methods in the precision of recommendation and dialogue quality in two public datasets.

Authors:Zhangyong Tang, Tianyang Xu, Xuefeng Zhu, Chunyang Cheng, Tao Zhou, Xiaojun Wu, Josef Kittler
Title: Serial Over Parallel: Learning Continual Unification for Multi-Modal Visual Object Tracking and Benchmarking
Abstract:
Unifying multiple multi-modal visual object tracking (MMVOT) tasks draws increasing attention due to the complementary nature of different modalities in building robust tracking systems. Existing practices mix all data sensor types in a single training procedure, structuring a parallel paradigm from the data-centric perspective and aiming for a global optimum on the joint distribution of the involved tasks. However, the absence of a unified benchmark where all types of data coexist forces evaluations on separated benchmarks, causing \textit{inconsistency} between training and testing, thus leading to performance \textit{degradation}. To address these issues, this work advances in two aspects: \ding{182} A unified benchmark, coined as UniBench300, is introduced to bridge the inconsistency by incorporating multiple task data, reducing inference passes from three to one and cutting time consumption by 27\%. \ding{183} The unification process is reformulated in a serial format, progressively integrating new tasks. In this way, the performance degradation can be specified as knowledge forgetting of previous tasks, which naturally aligns with the philosophy of continual learning (CL), motivating further exploration of injecting CL into the unification process. Extensive experiments conducted on two baselines and four benchmarks demonstrate the significance of UniBench300 and the superiority of CL in supporting a stable unification process. Moreover, while conducting dedicated analyses, the performance degradation is found to be negatively correlated with network capacity. Additionally, modality discrepancies contribute to varying degradation levels across tasks (RGBT > RGBD > RGBE in MMVOT), offering valuable insights for future multi-modal vision research. Source codes and the proposed benchmark is available at \textit{https://github.com/Zhangyong-Tang/UniBench300}.

Authors:Che-Yu Chou, Hung-Hsuan Chen
Title: Contrastive ECOC: Learning Output Codes for Adversarial Defense
Abstract:
Although one-hot encoding is commonly used for multiclass classification, it is not always the most effective encoding mechanism. Error Correcting Output Codes (ECOC) address multiclass classification by mapping each class to a unique codeword used as a label. Traditional ECOC methods rely on manually designed or randomly generated codebooks, which are labor-intensive and may yield suboptimal, dataset-agnostic results. This paper introduces three models for automated codebook learning based on contrastive learning, allowing codebooks to be learned directly and adaptively from data. Across four datasets, our proposed models demonstrate superior robustness to adversarial attacks compared to two baselines. The source is available at https://github.com/YuChou20/Automated-Codebook-Learning-with-Error-Correcting-Output-Code-Technique.

Authors:Prajit Sengupta, Islem Rekik
Title: X-Node: Self-Explanation is All We Need
Abstract:
Graph neural networks (GNNs) have achieved state-of-the-art results in computer vision and medical image classification tasks by capturing structural dependencies across data instances. However, their decision-making remains largely opaque, limiting their trustworthiness in high-stakes clinical applications where interpretability is essential. Existing explainability techniques for GNNs are typically post-hoc and global, offering limited insight into individual node decisions or local reasoning. We introduce X-Node, a self-explaining GNN framework in which each node generates its own explanation as part of the prediction process. For every node, we construct a structured context vector encoding interpretable cues such as degree, centrality, clustering, feature saliency, and label agreement within its local topology. A lightweight Reasoner module maps this context into a compact explanation vector, which serves three purposes: (1) reconstructing the node's latent embedding via a decoder to enforce faithfulness, (2) generating a natural language explanation using a pre-trained LLM (e.g., Grok or Gemini), and (3) guiding the GNN itself via a "text-injection" mechanism that feeds explanations back into the message-passing pipeline. We evaluate X-Node on two graph datasets derived from MedMNIST and MorphoMNIST, integrating it with GCN, GAT, and GIN backbones. Our results show that X-Node maintains competitive classification accuracy while producing faithful, per-node explanations. Repository: https://github.com/basiralab/X-Node.

Authors:Juyuan Wang, Rongchen Zhao, Wei Wei, Yufeng Wang, Mo Yu, Jie Zhou, Jin Xu, Liyan Xu
Title: ComoRAG: A Cognitive-Inspired Memory-Organized RAG for Stateful Long Narrative Reasoning
Abstract:
Narrative comprehension on long stories and novels has been a challenging domain attributed to their intricate plotlines and entangled, often evolving relations among characters and entities. Given the LLM's diminished reasoning over extended context and high computational cost, retrieval-based approaches remain a pivotal role in practice. However, traditional RAG methods can fall short due to their stateless, single-step retrieval process, which often overlooks the dynamic nature of capturing interconnected relations within long-range context. In this work, we propose ComoRAG, holding the principle that narrative reasoning is not a one-shot process, but a dynamic, evolving interplay between new evidence acquisition and past knowledge consolidation, analogous to human cognition when reasoning with memory-related signals in the brain. Specifically, when encountering a reasoning impasse, ComoRAG undergoes iterative reasoning cycles while interacting with a dynamic memory workspace. In each cycle, it generates probing queries to devise new exploratory paths, then integrates the retrieved evidence of new aspects into a global memory pool, thereby supporting the emergence of a coherent context for the query resolution. Across four challenging long-context narrative benchmarks (200K+ tokens), ComoRAG outperforms strong RAG baselines with consistent relative gains up to 11% compared to the strongest baseline. Further analysis reveals that ComoRAG is particularly advantageous for complex queries requiring global comprehension, offering a principled, cognitively motivated paradigm for retrieval-based long context comprehension towards stateful reasoning. Our code is publicly released at https://github.com/EternityJune25/ComoRAG

Authors:Yaoze Zhang, Rong Wu, Pinlong Cai, Xiaoman Wang, Guohang Yan, Song Mao, Ding Wang, Botian Shi
Title: LeanRAG: Knowledge-Graph-Based Generation with Semantic Aggregation and Hierarchical Retrieval
Abstract:
Retrieval-Augmented Generation (RAG) plays a crucial role in grounding Large Language Models by leveraging external knowledge, whereas the effectiveness is often compromised by the retrieval of contextually flawed or incomplete information. To address this, knowledge graph-based RAG methods have evolved towards hierarchical structures, organizing knowledge into multi-level summaries. However, these approaches still suffer from two critical, unaddressed challenges: high-level conceptual summaries exist as disconnected ``semantic islands'', lacking the explicit relations needed for cross-community reasoning; and the retrieval process itself remains structurally unaware, often degenerating into an inefficient flat search that fails to exploit the graph's rich topology. To overcome these limitations, we introduce LeanRAG, a framework that features a deeply collaborative design combining knowledge aggregation and retrieval strategies. LeanRAG first employs a novel semantic aggregation algorithm that forms entity clusters and constructs new explicit relations among aggregation-level summaries, creating a fully navigable semantic network. Then, a bottom-up, structure-guided retrieval strategy anchors queries to the most relevant fine-grained entities and then systematically traverses the graph's semantic pathways to gather concise yet contextually comprehensive evidence sets. The LeanRAG can mitigate the substantial overhead associated with path retrieval on graphs and minimizes redundant information retrieval. Extensive experiments on four challenging QA benchmarks with different domains demonstrate that LeanRAG significantly outperforming existing methods in response quality while reducing 46\% retrieval redundancy. Code is available at: https://github.com/RaZzzyz/LeanRAG

Authors:Chenggang Chen, Zhiyu Yang
Title: No Free Lunch from Audio Pretraining in Bioacoustics: A Benchmark Study of Embeddings
Abstract:
Bioacoustics, the study of animal sounds, offers a non-invasive method to monitor ecosystems. Extracting embeddings from audio-pretrained deep learning (DL) models without fine-tuning has become popular for obtaining bioacoustic features for tasks. However, a recent benchmark study reveals that while fine-tuned audio-pretrained VGG and transformer models achieve state-of-the-art performance in some tasks, they fail in others. This study benchmarks 11 DL models on the same tasks by reducing their learned embeddings' dimensionality and evaluating them through clustering. We found that audio-pretrained DL models 1) without fine-tuning even underperform fine-tuned AlexNet, 2) both with and without fine-tuning fail to separate the background from labeled sounds, but ResNet does, and 3) outperform other models when fewer background sounds are included during fine-tuning. This study underscores the necessity of fine-tuning audio-pretrained models and checking the embeddings after fine-tuning. Our codes are available: https://github.com/NeuroscienceAI/Audio\_Embeddings

Authors:Pallavi Zambare, Venkata Nikhil Thanikella, Nikhil Padmanabh Kottur, Sree Akhil Akula, Ying Liu
Title: NetMoniAI: An Agentic AI Framework for Network Security & Monitoring
Abstract:
In this paper, we present NetMoniAI, an agentic AI framework for automatic network monitoring and security that integrates decentralized analysis with lightweight centralized coordination. The framework consists of two layers: autonomous micro-agents at each node perform local traffic analysis and anomaly detection. A central controller then aggregates insights across nodes to detect coordinated attacks and maintain system-wide situational awareness. We evaluated NetMoniAI on a local micro-testbed and through NS-3 simulations. Results confirm that the two-tier agentic-AI design scales under resource constraints, reduces redundancy, and improves response time without compromising accuracy. To facilitate broader adoption and reproducibility, the complete framework is available as open source. This enables researchers and practitioners to replicate, validate, and extend it across diverse network environments and threat scenarios. Github link: https://github.com/pzambare3/NetMoniAI

Authors:Juvenal Bassa, Vidya Manian, Sudhir Malik, Arghya Chattopadhyay
Title: Jet Image Tagging Using Deep Learning: An Ensemble Model
Abstract:
Jet classification in high-energy particle physics is important for understanding fundamental interactions and probing phenomena beyond the Standard Model. Jets originate from the fragmentation and hadronization of quarks and gluons, and pose a challenge for identification due to their complex, multidimensional structure. Traditional classification methods often fall short in capturing these intricacies, necessitating advanced machine learning approaches. In this paper, we employ two neural networks simultaneously as an ensemble to tag various jet types. We convert the jet data to two-dimensional histograms instead of representing them as points in a higher-dimensional space. Specifically, this ensemble approach, hereafter referred to as Ensemble Model, is used to tag jets into classes from the JetNet dataset, corresponding to: Top Quarks, Light Quarks (up or down), and W and Z bosons. For the jet classes mentioned above, we show that the Ensemble Model can be used for both binary and multi-categorical classification. This ensemble approach learns jet features by leveraging the strengths of each constituent network achieving superior performance compared to either individual network.

Authors:Daniel Groos
Title: OpenFPL: An open-source forecasting method rivaling state-of-the-art Fantasy Premier League services
Abstract:
Fantasy Premier League engages the football community in selecting the Premier League players who will perform best from gameweek to gameweek. Access to accurate performance forecasts gives participants an edge over competitors by guiding expectations about player outcomes and reducing uncertainty in squad selection. However, high-accuracy forecasts are currently limited to commercial services whose inner workings are undisclosed and that rely on proprietary data. This paper aims to democratize access to highly accurate forecasts of player performance by presenting OpenFPL, an open-source Fantasy Premier League forecasting method developed exclusively from public data. Comprising position-specific ensemble models optimized on Fantasy Premier League and Understat data from four previous seasons (2020-21 to 2023-24), OpenFPL achieves accuracy comparable to a leading commercial service when tested prospectively on data from the 2024-25 season. OpenFPL also surpasses the commercial benchmark for high-return players ($>$ 2 points), which are most influential for rank gains. These findings hold across one-, two-, and three-gameweek forecast horizons, supporting long-term planning of transfers and strategies while also informing final-day decisions.

Authors:Xiaojiao Xiao, Jianfeng Zhao, Qinmin Vivian Hu, Guanghui Wang
Title: T-CACE: A Time-Conditioned Autoregressive Contrast Enhancement Multi-Task Framework for Contrast-Free Liver MRI Synthesis, Segmentation, and Diagnosis
Abstract:
Magnetic resonance imaging (MRI) is a leading modality for the diagnosis of liver cancer, significantly improving the classification of the lesion and patient outcomes. However, traditional MRI faces challenges including risks from contrast agent (CA) administration, time-consuming manual assessment, and limited annotated datasets. To address these limitations, we propose a Time-Conditioned Autoregressive Contrast Enhancement (T-CACE) framework for synthesizing multi-phase contrast-enhanced MRI (CEMRI) directly from non-contrast MRI (NCMRI). T-CACE introduces three core innovations: a conditional token encoding (CTE) mechanism that unifies anatomical priors and temporal phase information into latent representations; and a dynamic time-aware attention mask (DTAM) that adaptively modulates inter-phase information flow using a Gaussian-decayed attention mechanism, ensuring smooth and physiologically plausible transitions across phases. Furthermore, a constraint for temporal classification consistency (TCC) aligns the lesion classification output with the evolution of the physiological signal, further enhancing diagnostic reliability. Extensive experiments on two independent liver MRI datasets demonstrate that T-CACE outperforms state-of-the-art methods in image synthesis, segmentation, and lesion classification. This framework offers a clinically relevant and efficient alternative to traditional contrast-enhanced imaging, improving safety, diagnostic efficiency, and reliability for the assessment of liver lesion. The implementation of T-CACE is publicly available at: https://github.com/xiaojiao929/T-CACE.

Authors:Lingyu Chen, Yawen Zeng, Yue Wang, Peng Wan, Guo-chen Ning, Hongen Liao, Daoqiang Zhang, Fang Chen
Title: COME: Dual Structure-Semantic Learning with Collaborative MoE for Universal Lesion Detection Across Heterogeneous Ultrasound Datasets
Abstract:
Conventional single-dataset training often fails with new data distributions, especially in ultrasound (US) image analysis due to limited data, acoustic shadows, and speckle noise. Therefore, constructing a universal framework for multi-heterogeneous US datasets is imperative. However, a key challenge arises: how to effectively mitigate inter-dataset interference while preserving dataset-specific discriminative features for robust downstream task? Previous approaches utilize either a single source-specific decoder or a domain adaptation strategy, but these methods experienced a decline in performance when applied to other domains. Considering this, we propose a Universal Collaborative Mixture of Heterogeneous Source-Specific Experts (COME). Specifically, COME establishes dual structure-semantic shared experts that create a universal representation space and then collaborate with source-specific experts to extract discriminative features through providing complementary features. This design enables robust generalization by leveraging cross-datasets experience distributions and providing universal US priors for small-batch or unseen data scenarios. Extensive experiments under three evaluation modes (single-dataset, intra-organ, and inter-organ integration datasets) demonstrate COME's superiority, achieving significant mean AP improvements over state-of-the-art methods. Our project is available at: https://universalcome.github.io/UniversalCOME/.

Authors:Mo Yu, Tsz Ting Chung, Chulun Zhou, Tong Li, Rui Lu, Jiangnan Li, Liyan Xu, Haoshu Lu, Ning Zhang, Jing Li, Jie Zhou
Title: PRELUDE: A Benchmark Designed to Require Global Comprehension and Reasoning over Long Contexts
Abstract:
We introduce PRELUDE, a benchmark for evaluating long-context understanding through the task of determining whether a character's prequel story is consistent with the canonical narrative of the original book. Our task poses a stronger demand for global comprehension and deep reasoning than existing benchmarks -- as the prequels are not part of the original story, assessing their plausibility typically requires searching and integrating information that is only indirectly related. Empirically, 88% of instances require evidence from multiple parts of the narrative. Experimental results highlight the challenge of our task: in-context learning, RAG and in-domain training with state-of-the-art LLMs, and commercial DeepResearch services, lag behind humans by >15%. A further human study reveals that models often produce correct answers with flawed reasoning, leading to an over 30% gap in reasoning accuracy compared to humans. These findings underscore the substantial room for improvement in long-context understanding and reasoning.

Authors:Weigao Sun, Jiaxi Hu, Yucheng Zhou, Jusen Du, Disen Lan, Kexin Wang, Tong Zhu, Xiaoye Qu, Yu Zhang, Xiaoyu Mo, Daizong Liu, Yuxuan Liang, Wenliang Chen, Guoqi Li, Yu Cheng
Title: Speed Always Wins: A Survey on Efficient Architectures for Large Language Models
Abstract:
Large Language Models (LLMs) have delivered impressive results in language understanding, generation, reasoning, and pushes the ability boundary of multimodal models. Transformer models, as the foundation of modern LLMs, offer a strong baseline with excellent scaling properties. However, the traditional transformer architecture requires substantial computations and poses significant obstacles for large-scale training and practical deployment. In this survey, we offer a systematic examination of innovative LLM architectures that address the inherent limitations of transformers and boost the efficiency. Starting from language modeling, this survey covers the background and technical details of linear and sparse sequence modeling methods, efficient full attention variants, sparse mixture-of-experts, hybrid model architectures incorporating the above techniques, and emerging diffusion LLMs. Additionally, we discuss applications of these techniques to other modalities and consider their wider implications for developing scalable, resource-aware foundation models. By grouping recent studies into the above category, this survey presents a blueprint of modern efficient LLM architectures, and we hope this could help motivate future research toward more efficient, versatile AI systems.

Authors:Shenxing Wei, Jinxi Li, Yafei Yang, Siyuan Zhou, Bo Yang
Title: RayletDF: Raylet Distance Fields for Generalizable 3D Surface Reconstruction from Point Clouds or Gaussians
Abstract:
In this paper, we present a generalizable method for 3D surface reconstruction from raw point clouds or pre-estimated 3D Gaussians by 3DGS from RGB images. Unlike existing coordinate-based methods which are often computationally intensive when rendering explicit surfaces, our proposed method, named RayletDF, introduces a new technique called raylet distance field, which aims to directly predict surface points from query rays. Our pipeline consists of three key modules: a raylet feature extractor, a raylet distance field predictor, and a multi-raylet blender. These components work together to extract fine-grained local geometric features, predict raylet distances, and aggregate multiple predictions to reconstruct precise surface points. We extensively evaluate our method on multiple public real-world datasets, demonstrating superior performance in surface reconstruction from point clouds or 3D Gaussians. Most notably, our method achieves exceptional generalization ability, successfully recovering 3D surfaces in a single-forward pass across unseen datasets in testing.

Authors:Jinxi Li, Ziyang Song, Bo Yang
Title: TRACE: Learning 3D Gaussian Physical Dynamics from Multi-view Videos
Abstract:
In this paper, we aim to model 3D scene geometry, appearance, and physical information just from dynamic multi-view videos in the absence of any human labels. By leveraging physics-informed losses as soft constraints or integrating simple physics models into neural nets, existing works often fail to learn complex motion physics, or doing so requires additional labels such as object types or masks. We propose a new framework named TRACE to model the motion physics of complex dynamic 3D scenes. The key novelty of our method is that, by formulating each 3D point as a rigid particle with size and orientation in space, we directly learn a translation rotation dynamics system for each particle, explicitly estimating a complete set of physical parameters to govern the particle's motion over time. Extensive experiments on three existing dynamic datasets and one newly created challenging synthetic datasets demonstrate the extraordinary performance of our method over baselines in the task of future frame extrapolation. A nice property of our framework is that multiple objects or parts can be easily segmented just by clustering the learned physical parameters.

Authors:Nahyuk Lee, Juhong Min, Junhong Lee, Chunghyun Park, Minsu Cho
Title: Combinative Matching for Geometric Shape Assembly
Abstract:
This paper introduces a new shape-matching methodology, combinative matching, to combine interlocking parts for geometric shape assembly. Previous methods for geometric assembly typically rely on aligning parts by finding identical surfaces between the parts as in conventional shape matching and registration. In contrast, we explicitly model two distinct properties of interlocking shapes: 'identical surface shape' and 'opposite volume occupancy.' Our method thus learns to establish correspondences across regions where their surface shapes appear identical but their volumes occupy the inverted space to each other. To facilitate this process, we also learn to align regions in rotation by estimating their shape orientations via equivariant neural networks. The proposed approach significantly reduces local ambiguities in matching and allows a robust combination of parts in assembly. Experimental results on geometric assembly benchmarks demonstrate the efficacy of our method, consistently outperforming the state of the art. Project page: https://nahyuklee.github.io/cmnet.

Authors:Jingwei Liu, Ling Yang, Hao Luo, Fan Wang, Hongyan Li, Mengdi Wang
Title: Preacher: Paper-to-Video Agentic System
Abstract:
The paper-to-video task converts a research paper into a structured video abstract, distilling key concepts, methods, and conclusions into an accessible, well-organized format. While state-of-the-art video generation models demonstrate potential, they are constrained by limited context windows, rigid video duration constraints, limited stylistic diversity, and an inability to represent domain-specific knowledge. To address these limitations, we introduce Preacher, the first paper-to-video agentic system. Preacher employs a topdown approach to decompose, summarize, and reformulate the paper, followed by bottom-up video generation, synthesizing diverse video segments into a coherent abstract. To align cross-modal representations, we define key scenes and introduce a Progressive Chain of Thought (P-CoT) for granular, iterative planning. Preacher successfully generates high-quality video abstracts across five research fields, demonstrating expertise beyond current video generation models. Code will be released at: https://github.com/Gen-Verse/Paper2Video

Authors:Ingrid Maéva Chekam, Ines Pastor-Martinez, Ali Tourani, Jose Andres Millan-Romera, Laura Ribeiro, Pedro Miguel Bastos Soares, Holger Voos, Jose Luis Sanchez-Lopez
Title: Interpretable Robot Control via Structured Behavior Trees and Large Language Models
Abstract:
As intelligent robots become more integrated into human environments, there is a growing need for intuitive and reliable Human-Robot Interaction (HRI) interfaces that are adaptable and more natural to interact with. Traditional robot control methods often require users to adapt to interfaces or memorize predefined commands, limiting usability in dynamic, unstructured environments. This paper presents a novel framework that bridges natural language understanding and robotic execution by combining Large Language Models (LLMs) with Behavior Trees. This integration enables robots to interpret natural language instructions given by users and translate them into executable actions by activating domain-specific plugins. The system supports scalable and modular integration, with a primary focus on perception-based functionalities, such as person tracking and hand gesture recognition. To evaluate the system, a series of real-world experiments was conducted across diverse environments. Experimental results demonstrate that the proposed approach is practical in real-world scenarios, with an average cognition-to-execution accuracy of approximately 94%, making a significant contribution to HRI systems and robots. The complete source code of the framework is publicly available at https://github.com/snt-arg/robot_suite.

Authors:Fengyi Wu, Yifei Dong, Zhi-Qi Cheng, Yilong Dai, Guangyu Chen, Hang Wang, Qi Dai, Alexander G. Hauptmann
Title: GoViG: Goal-Conditioned Visual Navigation Instruction Generation
Abstract:
We introduce Goal-Conditioned Visual Navigation Instruction Generation (GoViG), a new task that aims to autonomously generate precise and contextually coherent navigation instructions solely from egocentric visual observations of initial and goal states. Unlike conventional approaches that rely on structured inputs such as semantic annotations or environmental maps, GoViG exclusively leverages raw egocentric visual data, substantially improving its adaptability to unseen and unstructured environments. Our method addresses this task by decomposing it into two interconnected subtasks: (1) visual forecasting, which predicts intermediate visual states bridging the initial and goal views; and (2) instruction generation, which synthesizes linguistically coherent instructions grounded in both observed and anticipated visuals. These subtasks are integrated within an autoregressive multimodal large language model trained with tailored objectives to ensure spatial accuracy and linguistic clarity. Furthermore, we introduce two complementary multimodal reasoning strategies, one-pass and interleaved reasoning, to mimic incremental human cognitive processes during navigation. To evaluate our method, we propose the R2R-Goal dataset, combining diverse synthetic and real-world trajectories. Empirical results demonstrate significant improvements over state-of-the-art methods, achieving superior BLEU-4 and CIDEr scores along with robust cross-domain generalization.

Authors:Wen Huang, Jiarui Yang, Tao Dai, Jiawei Li, Shaoxiong Zhan, Bin Wang, Shu-Tao Xia
Title: RelayFormer: A Unified Local-Global Attention Framework for Scalable Image and Video Manipulation Localization
Abstract:
Visual manipulation localization (VML) -- across both images and videos -- is a crucial task in digital forensics that involves identifying tampered regions in visual content. However, existing methods often lack cross-modal generalization and struggle to handle high-resolution or long-duration inputs efficiently. We propose RelayFormer, a unified and modular architecture for visual manipulation localization across images and videos. By leveraging flexible local units and a Global-Local Relay Attention (GLoRA) mechanism, it enables scalable, resolution-agnostic processing with strong generalization. Our framework integrates seamlessly with existing Transformer-based backbones, such as ViT and SegFormer, via lightweight adaptation modules that require only minimal architectural changes, ensuring compatibility without disrupting pretrained representations. Furthermore, we design a lightweight, query-based mask decoder that supports one-shot inference across video sequences with linear complexity. Extensive experiments across multiple benchmarks demonstrate that our approach achieves state-of-the-art localization performance, setting a new baseline for scalable and modality-agnostic VML. Code is available at: https://github.com/WenOOI/RelayFormer.

Authors:Kumar Abhishek, Jeremy Kawahara, Ghassan Hamarneh
Title: What Can We Learn from Inter-Annotator Variability in Skin Lesion Segmentation?
Abstract:
Medical image segmentation exhibits intra- and inter-annotator variability due to ambiguous object boundaries, annotator preferences, expertise, and tools, among other factors. Lesions with ambiguous boundaries, e.g., spiculated or infiltrative nodules, or irregular borders per the ABCD rule, are particularly prone to disagreement and are often associated with malignancy. In this work, we curate IMA++, the largest multi-annotator skin lesion segmentation dataset, on which we conduct an in-depth study of variability due to annotator, malignancy, tool, and skill factors. We find a statistically significant (p<0.001) association between inter-annotator agreement (IAA), measured using Dice, and the malignancy of skin lesions. We further show that IAA can be accurately predicted directly from dermoscopic images, achieving a mean absolute error of 0.108. Finally, we leverage this association by utilizing IAA as a "soft" clinical feature within a multi-task learning objective, yielding a 4.2% improvement in balanced accuracy averaged across multiple model architectures and across IMA++ and four public dermoscopic datasets. The code is available at https://github.com/sfu-mial/skin-IAV.

Authors:Md Rezwanul Haque, Md. Milon Islam, S M Taslim Uddin Raju, Fakhri Karray
Title: A Signer-Invariant Conformer and Multi-Scale Fusion Transformer for Continuous Sign Language Recognition
Abstract:
Continuous Sign Language Recognition (CSLR) faces multiple challenges, including significant inter-signer variability and poor generalization to novel sentence structures. Traditional solutions frequently fail to handle these issues efficiently. For overcoming these constraints, we propose a dual-architecture framework. For the Signer-Independent (SI) challenge, we propose a Signer-Invariant Conformer that combines convolutions with multi-head self-attention to learn robust, signer-agnostic representations from pose-based skeletal keypoints. For the Unseen-Sentences (US) task, we designed a Multi-Scale Fusion Transformer with a novel dual-path temporal encoder that captures both fine-grained posture dynamics, enabling the model's ability to comprehend novel grammatical compositions. Experiments on the challenging Isharah-1000 dataset establish a new standard for both CSLR benchmarks. The proposed conformer architecture achieves a Word Error Rate (WER) of 13.07% on the SI challenge, a reduction of 13.53% from the state-of-the-art. On the US task, the transformer model scores a WER of 47.78%, surpassing previous work. In the SignEval 2025 CSLR challenge, our team placed 2nd in the US task and 4th in the SI task, demonstrating the performance of these models. The findings validate our key hypothesis: that developing task-specific networks designed for the particular challenges of CSLR leads to considerable performance improvements and establishes a new baseline for further research. The source code is available at: https://github.com/rezwanh001/MSLR-Pose86K-CSLR-Isharah.

Authors:Md. Milon Islam, Md Rezwanul Haque, S M Taslim Uddin Raju, Fakhri Karray
Title: FusionEnsemble-Net: An Attention-Based Ensemble of Spatiotemporal Networks for Multimodal Sign Language Recognition
Abstract:
Accurate recognition of sign language in healthcare communication poses a significant challenge, requiring frameworks that can accurately interpret complex multimodal gestures. To deal with this, we propose FusionEnsemble-Net, a novel attention-based ensemble of spatiotemporal networks that dynamically fuses visual and motion data to enhance recognition accuracy. The proposed approach processes RGB video and range Doppler map radar modalities synchronously through four different spatiotemporal networks. For each network, features from both modalities are continuously fused using an attention-based fusion module before being fed into an ensemble of classifiers. Finally, the outputs of these four different fused channels are combined in an ensemble classification head, thereby enhancing the model's robustness. Experiments demonstrate that FusionEnsemble-Net outperforms state-of-the-art approaches with a test accuracy of 99.44% on the large-scale MultiMeDaLIS dataset for Italian Sign Language. Our findings indicate that an ensemble of diverse spatiotemporal networks, unified by attention-based fusion, yields a robust and accurate framework for complex, multimodal isolated gesture recognition tasks. The source code is available at: https://github.com/rezwanh001/Multimodal-Isolated-Italian-Sign-Language-Recognition.

Authors:Xi Xuan, Zimo Zhu, Wenxin Zhang, Yi-Cheng Lin, Tomi Kinnunen
Title: Fake-Mamba: Real-Time Speech Deepfake Detection Using Bidirectional Mamba as Self-Attention's Alternative
Abstract:
Advances in speech synthesis intensify security threats, motivating real-time deepfake detection research. We investigate whether bidirectional Mamba can serve as a competitive alternative to Self-Attention in detecting synthetic speech. Our solution, Fake-Mamba, integrates an XLSR front-end with bidirectional Mamba to capture both local and global artifacts. Our core innovation introduces three efficient encoders: TransBiMamba, ConBiMamba, and PN-BiMamba. Leveraging XLSR's rich linguistic representations, PN-BiMamba can effectively capture the subtle cues of synthetic speech. Evaluated on ASVspoof 21 LA, 21 DF, and In-The-Wild benchmarks, Fake-Mamba achieves 0.97%, 1.74%, and 5.85% EER, respectively, representing substantial relative gains over SOTA models XLSR-Conformer and XLSR-Mamba. The framework maintains real-time inference across utterance lengths, demonstrating strong generalization and practical viability. The code is available at https://github.com/xuanxixi/Fake-Mamba.

Authors:Aayush Gupta
Title: Can AI Keep a Secret? Contextual Integrity Verification: A Provable Security Architecture for LLMs
Abstract:
Large language models (LLMs) remain acutely vulnerable to prompt injection and related jailbreak attacks; heuristic guardrails (rules, filters, LLM judges) are routinely bypassed. We present Contextual Integrity Verification (CIV), an inference-time security architecture that attaches cryptographically signed provenance labels to every token and enforces a source-trust lattice inside the transformer via a pre-softmax hard attention mask (with optional FFN/residual gating). CIV provides deterministic, per-token non-interference guarantees on frozen models: lower-trust tokens cannot influence higher-trust representations. On benchmarks derived from recent taxonomies of prompt-injection vectors (Elite-Attack + SoK-246), CIV attains 0% attack success rate under the stated threat model while preserving 93.1% token-level similarity and showing no degradation in model perplexity on benign tasks; we note a latency overhead attributable to a non-optimized data path. Because CIV is a lightweight patch -- no fine-tuning required -- we demonstrate drop-in protection for Llama-3-8B and Mistral-7B. We release a reference implementation, an automated certification harness, and the Elite-Attack corpus to support reproducible research.

Authors:Sihan Xie, Thierry Tribout, Didier Boichard, Blaise Hanczar, Julien Chiquet, Eric Barrey
Title: Deep Generative Models for Discrete Genotype Simulation
Abstract:
Deep generative models open new avenues for simulating realistic genomic data while preserving privacy and addressing data accessibility constraints. While previous studies have primarily focused on generating gene expression or haplotype data, this study explores generating genotype data in both unconditioned and phenotype-conditioned settings, which is inherently more challenging due to the discrete nature of genotype data. In this work, we developed and evaluated commonly used generative models, including Variational Autoencoders (VAEs), Diffusion Models, and Generative Adversarial Networks (GANs), and proposed adaptation tailored to discrete genotype data. We conducted extensive experiments on large-scale datasets, including all chromosomes from cow and multiple chromosomes from human. Model performance was assessed using a well-established set of metrics drawn from both deep learning and quantitative genetics literature. Our results show that these models can effectively capture genetic patterns and preserve genotype-phenotype association. Our findings provide a comprehensive comparison of these models and offer practical guidelines for future research in genotype simulation. We have made our code publicly available at https://github.com/SihanXXX/DiscreteGenoGen.

Authors:Yoni Schirris, Eric Marcus, Jonas Teuwen, Hugo Horlings, Efstratios Gavves
Title: From Explainable to Explained AI: Ideas for Falsifying and Quantifying Explanations
Abstract:
Explaining deep learning models is essential for clinical integration of medical image analysis systems. A good explanation highlights if a model depends on spurious features that undermines generalization and harms a subset of patients or, conversely, may present novel biological insights. Although techniques like GradCAM can identify influential features, they are measurement tools that do not themselves form an explanation. We propose a human-machine-VLM interaction system tailored to explaining classifiers in computational pathology, including multi-instance learning for whole-slide images. Our proof of concept comprises (1) an AI-integrated slide viewer to run sliding-window experiments to test claims of an explanation, and (2) quantification of an explanation's predictiveness using general-purpose vision-language models. The results demonstrate that this allows us to qualitatively test claims of explanations and can quantifiably distinguish competing explanations. This offers a practical path from explainable AI to explained AI in digital pathology and beyond. Code and prompts are available at https://github.com/nki-ai/x2x.

Authors:Asim Ukaye, Numan Saeed, Karthik Nandakumar
Title: FIVA: Federated Inverse Variance Averaging for Universal CT Segmentation with Uncertainty Estimation
Abstract:
Different CT segmentation datasets are typically obtained from different scanners under different capture settings and often provide segmentation labels for a limited and often disjoint set of organs. Using these heterogeneous data effectively while preserving patient privacy can be challenging. This work presents a novel federated learning approach to achieve universal segmentation across diverse abdominal CT datasets by utilizing model uncertainty for aggregation and predictive uncertainty for inference. Our approach leverages the inherent noise in stochastic mini-batch gradient descent to estimate a distribution over the model weights to provide an on-the-go uncertainty over the model parameters at the client level. The parameters are then aggregated at the server using the additional uncertainty information using a Bayesian-inspired inverse-variance aggregation scheme. Furthermore, the proposed method quantifies prediction uncertainty by propagating the uncertainty from the model weights, providing confidence measures essential for clinical decision-making. In line with recent work shown, predictive uncertainty is utilized in the inference stage to improve predictive performance. Experimental evaluations demonstrate the effectiveness of this approach in improving both the quality of federated aggregation and uncertainty-weighted inference compared to previously established baselines. The code for this work is made available at: https://github.com/asimukaye/fiva

Authors:Maria Boyko, Aleksandra Beliaeva, Dmitriy Kornilov, Alexander Bernstein, Maxim Sharaev
Title: impuTMAE: Multi-modal Transformer with Masked Pre-training for Missing Modalities Imputation in Cancer Survival Prediction
Abstract:
The use of diverse modalities, such as omics, medical images, and clinical data can not only improve the performance of prognostic models but also deepen an understanding of disease mechanisms and facilitate the development of novel treatment approaches. However, medical data are complex, often incomplete, and contains missing modalities, making effective handling its crucial for training multimodal models. We introduce impuTMAE, a novel transformer-based end-to-end approach with an efficient multimodal pre-training strategy. It learns inter- and intra-modal interactions while simultaneously imputing missing modalities by reconstructing masked patches. Our model is pre-trained on heterogeneous, incomplete data and fine-tuned for glioma survival prediction using TCGA-GBM/LGG and BraTS datasets, integrating five modalities: genetic (DNAm, RNA-seq), imaging (MRI, WSI), and clinical data. By addressing missing data during pre-training and enabling efficient resource utilization, impuTMAE surpasses prior multimodal approaches, achieving state-of-the-art performance in glioma patient survival prediction. Our code is available at https://github.com/maryjis/mtcp

Authors:Xu Wang, Chenkai Xu, Yijie Jin, Jiachun Jin, Hao Zhang, Zhijie Deng
Title: Diffusion LLMs Can Do Faster-Than-AR Inference via Discrete Diffusion Forcing
Abstract:
Diffusion Large Language Models (dLLMs) have emerged as a promising alternative to autoregressive (AR) LLMs for text generation, with the potential to decode multiple tokens in a single iteration. However, none of the existing open-source dLLMs have achieved superior inference speed over AR LLMs of similar size. This paper breaks this barrier based on a simple and effective strategy named discrete diffusion forcing (D2F). D2F equips dLLMs with two key capabilities: (1) block-wise autoregressive generation to enable KV cache utilization; (2) prediction of following tokens without requiring completion of prior blocks for inter-block parallel decoding. In this way, the vanilla dLLMs are refurbished into an AR-diffusion hybrid paradigm for efficient inference. D2F can be implemented with an asymmetric distillation process based on pre-trained dLLMs. We further propose a pipelined parallel decoding algorithm, which enables a trade-off between efficiency and efficacy. Empirically, D2F dLLMs achieve more than $\mathbf{2.5\times}$ inference speed than LLaMA3 and Qwen2.5 on GSM8K. Compared to vanilla dLLMs like LLaDA and Dream, the acceleration can be more than $\mathbf{50\times}$ while maintaining comparable output quality. The code is available at https://github.com/zhijie-group/Discrete-Diffusion-Forcing.

Authors:Yanhui Li, Yunkang Cao, Chengliang Liu, Yuan Xiong, Xinghui Dong, Chao Huang
Title: IAD-R1: Reinforcing Consistent Reasoning in Industrial Anomaly Detection
Abstract:
Industrial anomaly detection is a critical component of modern manufacturing, yet the scarcity of defective samples restricts traditional detection methods to scenario-specific applications. Although Vision-Language Models (VLMs) demonstrate significant advantages in generalization capabilities, their performance in industrial anomaly detection remains limited. To address this challenge, we propose IAD-R1, a universal post-training framework applicable to VLMs of different architectures and parameter scales, which substantially enhances their anomaly detection capabilities. IAD-R1 employs a two-stage training strategy: the Perception Activation Supervised Fine-Tuning (PA-SFT) stage utilizes a meticulously constructed high-quality Chain-of-Thought dataset (Expert-AD) for training, enhancing anomaly perception capabilities and establishing reasoning-to-answer correlations; the Structured Control Group Relative Policy Optimization (SC-GRPO) stage employs carefully designed reward functions to achieve a capability leap from "Anomaly Perception" to "Anomaly Interpretation". Experimental results demonstrate that IAD-R1 achieves significant improvements across 7 VLMs, the largest improvement was on the DAGM dataset, with average accuracy 43.3% higher than the 0.5B baseline. Notably, the 0.5B parameter model trained with IAD-R1 surpasses commercial models including GPT-4.1 and Claude-Sonnet-4 in zero-shot settings, demonstrating the effectiveness and superiority of IAD-R1. The dataset, code, and all model weights will be publicly available at https://github.com/Yanhui-Lee/IAD-R1.

Authors:Wen Wang, Bozhen Fang, Chenchen Jing, Yongliang Shen, Yangyi Shen, Qiuyu Wang, Hao Ouyang, Hao Chen, Chunhua Shen
Title: Time Is a Feature: Exploiting Temporal Dynamics in Diffusion Language Models
Abstract:
Diffusion large language models (dLLMs) generate text through iterative denoising, yet current decoding strategies discard rich intermediate predictions in favor of the final output. Our work here reveals a critical phenomenon, temporal oscillation, where correct answers often emerge in the middle process, but are overwritten in later denoising steps. To address this issue, we introduce two complementary methods that exploit temporal consistency: 1) Temporal Self-Consistency Voting, a training-free, test-time decoding strategy that aggregates predictions across denoising steps to select the most consistent output; and 2) a post-training method termed Temporal Consistency Reinforcement, which uses Temporal Semantic Entropy (TSE), a measure of semantic stability across intermediate predictions, as a reward signal to encourage stable generations. Empirical results across multiple benchmarks demonstrate the effectiveness of our approach. Using the negative TSE reward alone, we observe a remarkable average improvement of 24.7% on the Countdown dataset over an existing dLLM. Combined with the accuracy reward, we achieve absolute gains of 2.0% on GSM8K, 4.3% on MATH500, 6.6% on SVAMP, and 25.3% on Countdown, respectively. Our findings underscore the untapped potential of temporal dynamics in dLLMs and offer two simple yet effective tools to harness them.

Authors:Maxim A. Patratskiy, Alexey K. Kovalev, Aleksandr I. Panov
Title: Spatial Traces: Enhancing VLA Models with Spatial-Temporal Understanding
Abstract:
Vision-Language-Action models have demonstrated remarkable capabilities in predicting agent movements within virtual environments and real-world scenarios based on visual observations and textual instructions. Although recent research has focused on enhancing spatial and temporal understanding independently, this paper presents a novel approach that integrates both aspects through visual prompting. We introduce a method that projects visual traces of key points from observations onto depth maps, enabling models to capture both spatial and temporal information simultaneously. The experiments in SimplerEnv show that the mean number of tasks successfully solved increased for 4% compared to SpatialVLA and 19% compared to TraceVLA. Furthermore, we show that this enhancement can be achieved with minimal training data, making it particularly valuable for real-world applications where data collection is challenging. The project page is available at https://ampiromax.github.io/ST-VLA.

Authors:Rui Wang, Qihan Lin, Jiayu Liu, Qing Zong, Tianshi Zheng, Weiqi Wang, Yangqiu Song
Title: Prospect Theory Fails for LLMs: Revealing Instability of Decision-Making under Epistemic Uncertainty
Abstract:
Prospect Theory (PT) models human decision-making under uncertainty, while epistemic markers (e.g., maybe) serve to express uncertainty in language. However, it remains largely unexplored whether Prospect Theory applies to contemporary Large Language Models and whether epistemic markers, which express human uncertainty, affect their decision-making behaviour. To address these research gaps, we design a three-stage experiment based on economic questionnaires. We propose a more general and precise evaluation framework to model LLMs' decision-making behaviour under PT, introducing uncertainty through the empirical probability values associated with commonly used epistemic markers in comparable contexts. We then incorporate epistemic markers into the evaluation framework based on their corresponding probability values to examine their influence on LLM decision-making behaviours. Our findings suggest that modelling LLMs' decision-making with PT is not consistently reliable, particularly when uncertainty is expressed in diverse linguistic forms. Our code is released in https://github.com/HKUST-KnowComp/MarPT.

Authors:Hasan Abed Al Kader Hammoud, Kumail Alhamoud, Abed Hammoud, Elie Bou-Zeid, Marzyeh Ghassemi, Bernard Ghanem
Title: Train Long, Think Short: Curriculum Learning for Efficient Reasoning
Abstract:
Recent work on enhancing the reasoning abilities of large language models (LLMs) has introduced explicit length control as a means of constraining computational cost while preserving accuracy. However, existing approaches rely on fixed-length training budgets, which do not take advantage of the natural progression from exploration to compression during learning. In this work, we propose a curriculum learning strategy for length-controlled reasoning using Group Relative Policy Optimization (GRPO). Our method starts with generous token budgets and gradually tightens them over training, encouraging models to first discover effective solution strategies and then distill them into more concise reasoning traces. We augment GRPO with a reward function that balances three signals: task correctness (via verifier feedback), length efficiency, and formatting adherence (via structural tags). Experiments on GSM8K, MATH500, SVAMP, College Math, and GSM+ demonstrate that curriculum-based training consistently outperforms fixed-budget baselines at the same final budget, achieving higher accuracy and significantly improved token efficiency. We further ablate the impact of reward weighting and decay schedule design, showing that progressive constraint serves as a powerful inductive bias for training efficient reasoning models. Our code and checkpoints are released at: https://github.com/hammoudhasan/curriculum_grpo.

Authors:Lingzhe Zhang, Liancheng Fang, Chiming Duan, Minghua He, Leyi Pan, Pei Xiao, Shiyu Huang, Yunpeng Zhai, Xuming Hu, Philip S. Yu, Aiwei Liu
Title: A Survey on Parallel Text Generation: From Parallel Decoding to Diffusion Language Models
Abstract:
As text generation has become a core capability of modern Large Language Models (LLMs), it underpins a wide range of downstream applications. However, most existing LLMs rely on autoregressive (AR) generation, producing one token at a time based on previously generated context-resulting in limited generation speed due to the inherently sequential nature of the process. To address this challenge, an increasing number of researchers have begun exploring parallel text generation-a broad class of techniques aimed at breaking the token-by-token generation bottleneck and improving inference efficiency. Despite growing interest, there remains a lack of comprehensive analysis on what specific techniques constitute parallel text generation and how they improve inference performance. To bridge this gap, we present a systematic survey of parallel text generation methods. We categorize existing approaches into AR-based and Non-AR-based paradigms, and provide a detailed examination of the core techniques within each category. Following this taxonomy, we assess their theoretical trade-offs in terms of speed, quality, and efficiency, and examine their potential for combination and comparison with alternative acceleration strategies. Finally, based on our findings, we highlight recent advancements, identify open challenges, and outline promising directions for future research in parallel text generation. We have also created a GitHub repository for indexing relevant papers and open resources available at https://github.com/zhanglingzhe0820/Awesome-Parallel-Text-Generation.

Authors:Ouyang Xu, Baoming Zhang, Ruiyu Mao, Yunhui Guo
Title: SafeFix: Targeted Model Repair via Controlled Image Generation
Abstract:
Deep learning models for visual recognition often exhibit systematic errors due to underrepresented semantic subpopulations. Although existing debugging frameworks can pinpoint these failures by identifying key failure attributes, repairing the model effectively remains difficult. Current solutions often rely on manually designed prompts to generate synthetic training images -- an approach prone to distribution shift and semantic errors. To overcome these challenges, we introduce a model repair module that builds on an interpretable failure attribution pipeline. Our approach uses a conditional text-to-image model to generate semantically faithful and targeted images for failure cases. To preserve the quality and relevance of the generated samples, we further employ a large vision-language model (LVLM) to filter the outputs, enforcing alignment with the original data distribution and maintaining semantic consistency. By retraining vision models with this rare-case-augmented synthetic dataset, we significantly reduce errors associated with rare cases. Our experiments demonstrate that this targeted repair strategy improves model robustness without introducing new bugs. Code is available at https://github.com/oxu2/SafeFix

Authors:Deheng Ye, Fangyun Zhou, Jiacheng Lv, Jianqi Ma, Jun Zhang, Junyan Lv, Junyou Li, Minwen Deng, Mingyu Yang, Qiang Fu, Wei Yang, Wenkai Lv, Yangbin Yu, Yewen Wang, Yonghang Guan, Zhihao Hu, Zhongbin Fang, Zhongqian Sun
Title: Yan: Foundational Interactive Video Generation
Abstract:
We present Yan, a foundational framework for interactive video generation, covering the entire pipeline from simulation and generation to editing. Specifically, Yan comprises three core modules. AAA-level Simulation: We design a highly-compressed, low-latency 3D-VAE coupled with a KV-cache-based shift-window denoising inference process, achieving real-time 1080P/60FPS interactive simulation. Multi-Modal Generation: We introduce a hierarchical autoregressive caption method that injects game-specific knowledge into open-domain multi-modal video diffusion models (VDMs), then transforming the VDM into a frame-wise, action-controllable, real-time infinite interactive video generator. Notably, when the textual and visual prompts are sourced from different domains, the model demonstrates strong generalization, allowing it to blend and compose the style and mechanics across domains flexibly according to user prompts. Multi-Granularity Editing: We propose a hybrid model that explicitly disentangles interactive mechanics simulation from visual rendering, enabling multi-granularity video content editing during interaction through text. Collectively, Yan offers an integration of these modules, pushing interactive video generation beyond isolated capabilities toward a comprehensive AI-driven interactive creation paradigm, paving the way for the next generation of creative tools, media, and entertainment. The project page is: https://greatx3.github.io/Yan/.

Authors:Joan Salvà Soler, Grégoire de Lambertye
Title: A Fast GRASP Metaheuristic for the Trigger Arc TSP with MIP-Based Construction and Multi-Neighborhood Local Search
Abstract:
The Trigger Arc Traveling Salesman Problem (TA-TSP) extends the classical TSP by introducing dynamic arc costs that change when specific "trigger" arcs are traversed, modeling scenarios such as warehouse operations with compactable storage systems. This paper introduces a GRASP-based metaheuristic that combines multiple construction heuristics with a multi-neighborhood local search. The construction phase uses mixed-integer programming (MIP) techniques to transform the TA-TSP into a sequence of tailored TSP instances, while the improvement phase applies 2-Opt, Swap, and Relocate operators. Computational experiments on MESS 2024 competition instances achieved average optimality gaps of 0.77\% and 0.40\% relative to the best-known solutions within a 60-second limit. On smaller, synthetically generated datasets, the method produced solutions 11.3\% better than the Gurobi solver under the same time constraints. The algorithm finished in the top three at MESS 2024, demonstrating its suitability for real-time routing applications with state-dependent travel costs.

Authors:Woojeong Kim, Junxiong Wang, Jing Nathan Yan, Mohamed Abdelfattah, Alexander M. Rush
Title: OverFill: Two-Stage Models for Efficient Language Model Decoding
Abstract:
Large language models (LLMs) excel across diverse tasks but face significant deployment challenges due to high inference costs. LLM inference comprises prefill (compute-bound) and decode (memory-bound) stages, with decode dominating latency particularly for long sequences. Current decoder-only models handle both stages uniformly, despite their distinct computational profiles. We propose OverFill, which decouples these stages to optimize accuracy-efficiency tradeoffs. OverFill begins with a full model for prefill, processing system and user inputs in parallel. It then switches to a dense pruned model, while generating tokens sequentially. Leveraging more compute during prefill, OverFill improves generation quality with minimal latency overhead. Our 3B-to-1B OverFill configuration outperforms 1B pruned models by 83.2%, while the 8B-to-3B configuration improves over 3B pruned models by 79.2% on average across standard benchmarks. OverFill matches the performance of same-sized models trained from scratch, while using significantly less training data. Our code is available at https://github.com/friendshipkim/overfill.

Authors:Aryan Gulati, Brando Miranda, Eric Chen, Emily Xia, Kai Fronsdal, Bruno Dumont, Elyas Obbad, Sanmi Koyejo
Title: Putnam-AXIOM: A Functional and Static Benchmark for Measuring Higher Level Mathematical Reasoning in LLMs
Abstract:
Current mathematical reasoning benchmarks for large language models (LLMs) are approaching saturation, with some achieving > 90% accuracy, and are increasingly compromised by training-set contamination. We introduce Putnam-AXIOM, a benchmark of 522 university-level competition problems drawn from the prestigious William Lowell Putnam Mathematical Competition, and Putnam-AXIOM Variation, an unseen companion set of 100 functional variants generated by programmatically perturbing variables and constants. The variation protocol produces an unlimited stream of equally difficult, unseen instances -- yielding a contamination-resilient test bed. On the Original set, OpenAI's o1-preview -- the strongest evaluated model -- scores 41.9%, but its accuracy drops by 19.6% (46.8% relative decrease) on the paired Variations. The remaining eighteen models show the same downward trend, ten of them with non-overlapping 95% confidence intervals. These gaps suggest memorization and highlight the necessity of dynamic benchmarks. We complement "boxed" accuracy with Teacher-Forced Accuracy (TFA), a lightweight metric that directly scores reasoning traces and automates natural language proof evaluations. Putnam-AXIOM therefore provides a rigorous, contamination-resilient evaluation framework for assessing advanced mathematical reasoning of LLMs. Data and evaluation code are publicly available at https://github.com/brando90/putnam-axiom.

Authors:Seonyoung Kim, Dongil Kim
Title: MoSSDA: A Semi-Supervised Domain Adaptation Framework for Multivariate Time-Series Classification using Momentum Encoder
Abstract:
Deep learning has emerged as the most promising approach in various fields; however, when the distributions of training and test data are different (domain shift), the performance of deep learning models can degrade. Semi-supervised domain adaptation (SSDA) is a major approach for addressing this issue, assuming that a fully labeled training set (source domain) is available, but the test set (target domain) provides labels only for a small subset. In this study, we propose a novel two-step momentum encoder-utilized SSDA framework, MoSSDA, for multivariate time-series classification. Time series data are highly sensitive to noise, and sequential dependencies cause domain shifts resulting in critical performance degradation. To obtain a robust, domain-invariant and class-discriminative representation, MoSSDA employs a domain-invariant encoder to learn features from both source and target domains. Subsequently, the learned features are fed to a mixup-enhanced positive contrastive module consisting of an online momentum encoder. The final classifier is trained with learned features that exhibit consistency and discriminability with limited labeled target domain data, without data augmentation. We applied a two-stage process by separating the gradient flow between the encoders and the classifier to obtain rich and complex representations. Through extensive experiments on six diverse datasets, MoSSDA achieved state-of-the-art performance for three different backbones and various unlabeled ratios in the target domain data. The Ablation study confirms that each module, including two-stage learning, is effective in improving the performance. Our code is available at https://github.com/seonyoungKimm/MoSSDA

Authors:Sining Lu, Guan Chen, Nam Anh Dinh, Itai Lang, Ari Holtzman, Rana Hanocka
Title: LL3M: Large Language 3D Modelers
Abstract:
We present LL3M, a multi-agent system that leverages pretrained large language models (LLMs) to generate 3D assets by writing interpretable Python code in Blender. We break away from the typical generative approach that learns from a collection of 3D data. Instead, we reformulate shape generation as a code-writing task, enabling greater modularity, editability, and integration with artist workflows. Given a text prompt, LL3M coordinates a team of specialized LLM agents to plan, retrieve, write, debug, and refine Blender scripts that generate and edit geometry and appearance. The generated code works as a high-level, interpretable, human-readable, well-documented representation of scenes and objects, making full use of sophisticated Blender constructs (e.g. B-meshes, geometry modifiers, shader nodes) for diverse, unconstrained shapes, materials, and scenes. This code presents many avenues for further agent and human editing and experimentation via code tweaks or procedural parameters. This medium naturally enables a co-creative loop in our system: agents can automatically self-critique using code and visuals, while iterative user instructions provide an intuitive way to refine assets. A shared code context across agents enables awareness of previous attempts, and a retrieval-augmented generation knowledge base built from Blender API documentation, BlenderRAG, equips agents with examples, types, and functions empowering advanced modeling operations and code correctness. We demonstrate the effectiveness of LL3M across diverse shape categories, style and material edits, and user-driven refinements. Our experiments showcase the power of code as a generative and interpretable medium for 3D asset creation. Our project page is at https://threedle.github.io/ll3m.

Authors:Zhuohao Yu, Xingru Jiang, Weizheng Gu, Yidong Wang, Shikun Zhang, Wei Ye
Title: SAEMark: Multi-bit LLM Watermarking with Inference-Time Scaling
Abstract:
Watermarking LLM-generated text is critical for content attribution and misinformation prevention. However, existing methods compromise text quality, require white-box model access and logit manipulation. These limitations exclude API-based models and multilingual scenarios. We propose SAEMark, a general framework for post-hoc multi-bit watermarking that embeds personalized messages solely via inference-time, feature-based rejection sampling without altering model logits or requiring training. Our approach operates on deterministic features extracted from generated text, selecting outputs whose feature statistics align with key-derived targets. This framework naturally generalizes across languages and domains while preserving text quality through sampling LLM outputs instead of modifying. We provide theoretical guarantees relating watermark success probability and compute budget that hold for any suitable feature extractor. Empirically, we demonstrate the framework's effectiveness using Sparse Autoencoders (SAEs), achieving superior detection accuracy and text quality. Experiments across 4 datasets show SAEMark's consistent performance, with 99.7% F1 on English and strong multi-bit detection accuracy. SAEMark establishes a new paradigm for scalable watermarking that works out-of-the-box with closed-source LLMs while enabling content attribution.

Authors:Luca Zedda, Andrea Loddo, Cecilia Di Ruberto, Carsten Marr
Title: RedDino: A foundation model for red blood cell analysis
Abstract:
Red blood cells (RBCs) are essential to human health, and their precise morphological analysis is important for diagnosing hematological disorders. Despite the promise of foundation models in medical diagnostics, comprehensive AI solutions for RBC analysis remain scarce. We present RedDino, a self-supervised foundation model designed for RBC image analysis. RedDino uses an RBC-specific adaptation of the DINOv2 self-supervised learning framework and is trained on a curated dataset of 1.25 million RBC images from diverse acquisition modalities and sources. Extensive evaluations show that RedDino outperforms existing state-of-the-art models on RBC shape classification. Through assessments including linear probing and nearest neighbor classification, we confirm its strong feature representations and generalization ability. Our main contributions are: (1) a foundation model tailored for RBC analysis, (2) ablation studies exploring DINOv2 configurations for RBC modeling, and (3) a detailed evaluation of generalization performance. RedDino addresses key challenges in computational hematology by capturing nuanced morphological features, advancing the development of reliable diagnostic tools. The source code and pretrained models for RedDino are available at https://github.com/Snarci/RedDino, and the pretrained models can be downloaded from our Hugging Face collection at https://huggingface.co/collections/Snarcy/reddino-689a13e29241d2e5690202fc

Authors:Vincent Perreault, Katsumi Inoue, Richard Labib, Alain Hertz
Title: Neural Logic Networks for Interpretable Classification
Abstract:
Traditional neural networks have an impressive classification performance, but what they learn cannot be inspected, verified or extracted. Neural Logic Networks on the other hand have an interpretable structure that enables them to learn a logical mechanism relating the inputs and outputs with AND and OR operations. We generalize these networks with NOT operations and biases that take into account unobserved data and develop a rigorous logical and probabilistic modeling in terms of concept combinations to motivate their use. We also propose a novel factorized IF-THEN rule structure for the model as well as a modified learning algorithm. Our method improves the state-of-the-art in Boolean networks discovery and is able to learn relevant, interpretable rules in tabular classification, notably on examples from the medical and industrial fields where interpretability has tangible value.

Authors:Rui Miao, Yixin Liu, Yili Wang, Xu Shen, Yue Tan, Yiwei Dai, Shirui Pan, Xin Wang
Title: BlindGuard: Safeguarding LLM-based Multi-Agent Systems under Unknown Attacks
Abstract:
The security of LLM-based multi-agent systems (MAS) is critically threatened by propagation vulnerability, where malicious agents can distort collective decision-making through inter-agent message interactions. While existing supervised defense methods demonstrate promising performance, they may be impractical in real-world scenarios due to their heavy reliance on labeled malicious agents to train a supervised malicious detection model. To enable practical and generalizable MAS defenses, in this paper, we propose BlindGuard, an unsupervised defense method that learns without requiring any attack-specific labels or prior knowledge of malicious behaviors. To this end, we establish a hierarchical agent encoder to capture individual, neighborhood, and global interaction patterns of each agent, providing a comprehensive understanding for malicious agent detection. Meanwhile, we design a corruption-guided detector that consists of directional noise injection and contrastive learning, allowing effective detection model training solely on normal agent behaviors. Extensive experiments show that BlindGuard effectively detects diverse attack types (i.e., prompt injection, memory poisoning, and tool attack) across MAS with various communication patterns while maintaining superior generalizability compared to supervised baselines. The code is available at: https://github.com/MR9812/BlindGuard.

Authors:Jiejun Tan, Zhicheng Dou, Yan Yu, Jiehan Cheng, Qiang Ju, Jian Xie, Ji-Rong Wen
Title: HierSearch: A Hierarchical Enterprise Deep Search Framework Integrating Local and Web Searches
Abstract:
Recently, large reasoning models have demonstrated strong mathematical and coding abilities, and deep search leverages their reasoning capabilities in challenging information retrieval tasks. Existing deep search works are generally limited to a single knowledge source, either local or the Web. However, enterprises often require private deep search systems that can leverage search tools over both local and the Web corpus. Simply training an agent equipped with multiple search tools using flat reinforcement learning (RL) is a straightforward idea, but it has problems such as low training data efficiency and poor mastery of complex tools. To address the above issue, we propose a hierarchical agentic deep search framework, HierSearch, trained with hierarchical RL. At the low level, a local deep search agent and a Web deep search agent are trained to retrieve evidence from their corresponding domains. At the high level, a planner agent coordinates low-level agents and provides the final answer. Moreover, to prevent direct answer copying and error propagation, we design a knowledge refiner that filters out hallucinations and irrelevant evidence returned by low-level agents. Experiments show that HierSearch achieves better performance compared to flat RL, and outperforms various deep search and multi-source retrieval-augmented generation baselines in six benchmarks across general, finance, and medical domains.

Authors:Runchuan Zhu, Bowen Jiang, Lingrui Mei, Fangkai Yang, Lu Wang, Haoxiang Gao, Fengshuo Bai, Pu Zhao, Qingwei Lin, Saravan Rajmohan, Dongmei Zhang
Title: AdaptFlow: Adaptive Workflow Optimization via Meta-Learning
Abstract:
Recent advances in large language models (LLMs) have sparked growing interest in agentic workflows, which are structured sequences of LLM invocations intended to solve complex tasks. However, existing approaches often rely on static templates or manually designed workflows, which limit adaptability to diverse tasks and hinder scalability. We propose AdaptFlow, a natural language-based meta-learning framework inspired by model-agnostic meta-learning (MAML). AdaptFlow learns a generalizable workflow initialization that enables rapid subtask-level adaptation. It employs a bi-level optimization scheme: the inner loop refines the workflow for a specific subtask using LLM-generated feedback, while the outer loop updates the shared initialization to perform well across tasks. This setup allows AdaptFlow to generalize effectively to unseen tasks by adapting the initialized workflow through language-guided modifications. Evaluated across question answering, code generation, and mathematical reasoning benchmarks, AdaptFlow consistently outperforms both manually crafted and automatically searched baselines, achieving state-of-the-art results with strong generalization across tasks and models. The source code and data are available at https://github.com/microsoft/DKI_LLM/tree/AdaptFlow/AdaptFlow.

Authors:Van-Khang Nguyen, Duc-Hoang Pham, Huy-Son Nguyen, Cam-Van Thi Nguyen, Hoang-Quynh Le, Duc-Trong Le
Title: Multi-modal Adaptive Mixture of Experts for Cold-start Recommendation
Abstract:
Recommendation systems have faced significant challenges in cold-start scenarios, where new items with a limited history of interaction need to be effectively recommended to users. Though multimodal data (e.g., images, text, audio, etc.) offer rich information to address this issue, existing approaches often employ simplistic integration methods such as concatenation, average pooling, or fixed weighting schemes, which fail to capture the complex relationships between modalities. Our study proposes a novel Mixture of Experts (MoE) framework for multimodal cold-start recommendation, named MAMEX, which dynamically leverages latent representation from different modalities. MAMEX utilizes modality-specific expert networks and introduces a learnable gating mechanism that adaptively weights the contribution of each modality based on its content characteristics. This approach enables MAMEX to emphasize the most informative modalities for each item while maintaining robustness when certain modalities are less relevant or missing. Extensive experiments on benchmark datasets show that MAMEX outperforms state-of-the-art methods in cold-start scenarios, with superior accuracy and adaptability. For reproducibility, the code has been made available on Github https://github.com/L2R-UET/MAMEX.

Authors:Jiaxuan Gao, Wei Fu, Minyang Xie, Shusheng Xu, Chuyi He, Zhiyu Mei, Banghua Zhu, Yi Wu
Title: Beyond Ten Turns: Unlocking Long-Horizon Agentic Search with Large-Scale Asynchronous RL
Abstract:
Recent advancements in LLM-based agents have demonstrated remarkable capabilities in handling complex, knowledge-intensive tasks by integrating external tools. Among diverse choices of tools, search tools play a pivotal role in accessing vast external knowledge. However, open-source agents still fall short of achieving expert-level Search Intelligence, the ability to resolve ambiguous queries, generate precise searches, analyze results, and conduct thorough exploration. Existing approaches fall short in scalability, efficiency, and data quality. For example, small turn limits in existing online RL methods, e.g. <=10, restrict complex strategy learning. This paper introduces ASearcher, an open-source project for large-scale RL training of search agents. Our key contributions include: (1) Scalable fully asynchronous RL training that enables long-horizon search while maintaining high training efficiency. (2) A prompt-based LLM agent that autonomously synthesizes high-quality and challenging QAs, creating a large-scale QA dataset. Through RL training, our prompt-based QwQ-32B agent achieves substantial improvements, with 46.7% and 20.8% Avg@4 gains on xBench and GAIA, respectively. Notably, our agent exhibits extreme long-horizon search, with tool calls exceeding 40 turns and output tokens exceeding 150k during training time. With a simple agent design and no external LLMs, ASearcher-Web-QwQ achieves Avg@4 scores of 42.1 on xBench and 52.8 on GAIA, surpassing existing open-source 32B agents. We open-source our models, training data, and codes in https://github.com/inclusionAI/ASearcher.

Authors:Shunya Nagashima, Komei Sugiura
Title: Deep Space Weather Model: Long-Range Solar Flare Prediction from Multi-Wavelength Images
Abstract:
Accurate, reliable solar flare prediction is crucial for mitigating potential disruptions to critical infrastructure, while predicting solar flares remains a significant challenge. Existing methods based on heuristic physical features often lack representation learning from solar images. On the other hand, end-to-end learning approaches struggle to model long-range temporal dependencies in solar images. In this study, we propose Deep Space Weather Model (Deep SWM), which is based on multiple deep state space models for handling both ten-channel solar images and long-range spatio-temporal dependencies. Deep SWM also features a sparse masked autoencoder, a novel pretraining strategy that employs a two-phase masking approach to preserve crucial regions such as sunspots while compressing spatial information. Furthermore, we built FlareBench, a new public benchmark for solar flare prediction covering a full 11-year solar activity cycle, to validate our method. Our method outperformed baseline methods and even human expert performance on standard metrics in terms of performance and reliability. The project page can be found at https://keio-smilab25.github.io/DeepSWM.

Authors:Jinke Li, Jiarui Yu, Chenxing Wei, Hande Dong, Qiang Lin, Liangjing Yang, Zhicai Wang, Yanbin Hao
Title: UniSVG: A Unified Dataset for Vector Graphic Understanding and Generation with Multimodal Large Language Models
Abstract:
Unlike bitmap images, scalable vector graphics (SVG) maintain quality when scaled, frequently employed in computer vision and artistic design in the representation of SVG code. In this era of proliferating AI-powered systems, enabling AI to understand and generate SVG has become increasingly urgent. However, AI-driven SVG understanding and generation (U&G) remain significant challenges. SVG code, equivalent to a set of curves and lines controlled by floating-point parameters, demands high precision in SVG U&G. Besides, SVG generation operates under diverse conditional constraints, including textual prompts and visual references, which requires powerful multi-modal processing for condition-to-SVG transformation. Recently, the rapid growth of Multi-modal Large Language Models (MLLMs) have demonstrated capabilities to process multi-modal inputs and generate complex vector controlling parameters, suggesting the potential to address SVG U&G tasks within a unified model. To unlock MLLM's capabilities in the SVG area, we propose an SVG-centric dataset called UniSVG, comprising 525k data items, tailored for MLLM training and evaluation. To our best knowledge, it is the first comprehensive dataset designed for unified SVG generation (from textual prompts and images) and SVG understanding (color, category, usage, etc.). As expected, learning on the proposed dataset boosts open-source MLLMs' performance on various SVG U&G tasks, surpassing SOTA close-source MLLMs like GPT-4V. We release dataset, benchmark, weights, codes and experiment details on https://ryanlijinke.github.io/.

Authors:Aswin RRV, Jacob Dineen, Divij Handa, Md Nayem Uddin, Mihir Parmar, Chitta Baral, Ben Zhou
Title: ThinkTuning: Instilling Cognitive Reflections without Distillation
Abstract:
Recent advances in test-time scaling have led to the emergence of thinking LLMs that exhibit self-reflective behaviors and multi-step reasoning. While RL drives this self-improvement paradigm, a recent study (Gandhi et al., 2025) shows that RL alone does not truly instill these new reasoning abilities - it merely draws out behaviors already present in the base models. This raises a question: How can we train the models that don't exhibit such thinking behavior to develop it in the first place? To this end, we propose ThinkTuning, a GRPO-based interactive training approach where we augment the rollouts of a student model with the guidance from a teacher model. A simple idea from classroom practice inspires our method: a teacher poses a problem, lets the student try an answer, then gives corrective feedback -- enough to point the mind in the right direction and then show the solution. Each piece of feedback reshapes the student's thoughts, leading them to arrive at the correct solution. Similarly, we find that this type of implicit supervision through feedback from a teacher model of the same size improves the reasoning capabilities of the student model. In particular, on average, our method shows a 3.85% improvement over zero-shot baselines across benchmarks, and on MATH-500, AIME and GPQA-Diamond it shows 2.08%, 2.23% and 3.99% improvements over the vanilla-GRPO baseline. Source code is available at https://github.com/3rdAT/ThinkTuning.

Authors:Jinyuan Fang, Yanwen Peng, Xi Zhang, Yingxu Wang, Xinhao Yi, Guibin Zhang, Yi Xu, Bin Wu, Siwei Liu, Zihao Li, Zhaochun Ren, Nikos Aletras, Xi Wang, Han Zhou, Zaiqiao Meng
Title: A Comprehensive Survey of Self-Evolving AI Agents: A New Paradigm Bridging Foundation Models and Lifelong Agentic Systems
Abstract:
Recent advances in large language models have sparked growing interest in AI agents capable of solving complex, real-world tasks. However, most existing agent systems rely on manually crafted configurations that remain static after deployment, limiting their ability to adapt to dynamic and evolving environments. To this end, recent research has explored agent evolution techniques that aim to automatically enhance agent systems based on interaction data and environmental feedback. This emerging direction lays the foundation for self-evolving AI agents, which bridge the static capabilities of foundation models with the continuous adaptability required by lifelong agentic systems. In this survey, we provide a comprehensive review of existing techniques for self-evolving agentic systems. Specifically, we first introduce a unified conceptual framework that abstracts the feedback loop underlying the design of self-evolving agentic systems. The framework highlights four key components: System Inputs, Agent System, Environment, and Optimisers, serving as a foundation for understanding and comparing different strategies. Based on this framework, we systematically review a wide range of self-evolving techniques that target different components of the agent system. We also investigate domain-specific evolution strategies developed for specialised fields such as biomedicine, programming, and finance, where optimisation objectives are tightly coupled with domain constraints. In addition, we provide a dedicated discussion on the evaluation, safety, and ethical considerations for self-evolving agentic systems, which are critical to ensuring their effectiveness and reliability. This survey aims to provide researchers and practitioners with a systematic understanding of self-evolving AI agents, laying the foundation for the development of more adaptive, autonomous, and lifelong agentic systems.

Authors:Yi Zhong, Hongchao Liu, Di ZHao
Title: AutoAssert 1: A LoRA Fine-Tuned LLM Model for Efficient Automated Assertion Generation
Abstract:
As the complexity of software systems continues to increase, the demand for automated testing and maintenance tools is growing exponentially. To meet this urgent need, we propose a new assertion generation method based on Hardware Description Language (HDL). This method combines a lightweight, parameter-adjustable large language model (LLM) with the Unsloth platform to automatically generate test cases, thereby significantly reducing training costs without sacrificing accuracy or generalization performance. Empirical evaluation shows that our method can efficiently generate assertions that strictly conform to the hardware logic. This framework provides a robust and flexible solution to modern software testing and maintenance challenges. https://github.com/liusu-orange/AutoAssert-1 and https://gitee.com/OpenBPU/auto-assert1 are the locations of the source code.

Authors:Rubing Chen, Jiaxin Wu, Jian Wang, Xulu Zhang, Wenqi Fan, Chenghua Lin, Xiao-Yong Wei, Qing Li
Title: Benchmarking for Domain-Specific LLMs: A Case Study on Academia and Beyond
Abstract:
The increasing demand for domain-specific evaluation of large language models (LLMs) has led to the development of numerous benchmarks. These efforts often adhere to the principle of data scaling, relying on large corpora or extensive question-answer (QA) sets to ensure broad coverage. However, the impact of corpus and QA set design on the precision and recall of domain-specific LLM performance remains poorly understood. In this paper, we argue that data scaling is not always the optimal principle for domain-specific benchmark construction. Instead, we introduce Comp-Comp, an iterative benchmarking framework grounded in the principle of comprehensiveness and compactness. Comprehensiveness ensures semantic recall by covering the full breadth of the domain, while compactness improves precision by reducing redundancy and noise. To demonstrate the effectiveness of our approach, we present a case study conducted at a well-renowned university, resulting in the creation of PolyBench, a large-scale, high-quality academic benchmark. Although this study focuses on academia, the Comp-Comp framework is domain-agnostic and readily adaptable to a wide range of specialized fields. The source code and datasets can be accessed at https://github.com/Anya-RB-Chen/COMP-COMP.

Authors:Haiyang Guo, Fei Zhu, Hongbo Zhao, Fanhu Zeng, Wenzhuo Liu, Shijie Ma, Da-Han Wang, Xu-Yao Zhang
Title: MCITlib: Multimodal Continual Instruction Tuning Library and Benchmark
Abstract:
Continual learning aims to equip AI systems with the ability to continuously acquire and adapt to new knowledge without forgetting previously learned information, similar to human learning. While traditional continual learning methods focusing on unimodal tasks have achieved notable success, the emergence of Multimodal Large Language Models has brought increasing attention to Multimodal Continual Learning tasks involving multiple modalities, such as vision and language. In this setting, models are expected to not only mitigate catastrophic forgetting but also handle the challenges posed by cross-modal interactions and coordination. To facilitate research in this direction, we introduce MCITlib, a comprehensive and constantly evolving code library for continual instruction tuning of Multimodal Large Language Models. In MCITlib, we have currently implemented 8 representative algorithms for Multimodal Continual Instruction Tuning and systematically evaluated them on 2 carefully selected benchmarks. MCITlib will be continuously updated to reflect advances in the Multimodal Continual Learning field. The codebase is released at https://github.com/Ghy0501/MCITlib.

Authors:Xiang Xiang, Qinhao Zhou, Zhuo Xu, Jing Ma, Jiaxin Dai, Yifan Liang, Hanlin Li
Title: OpenHAIV: A Framework Towards Practical Open-World Learning
Abstract:
Substantial progress has been made in various techniques for open-world recognition. Out-of-distribution (OOD) detection methods can effectively distinguish between known and unknown classes in the data, while incremental learning enables continuous model knowledge updates. However, in open-world scenarios, these approaches still face limitations. Relying solely on OOD detection does not facilitate knowledge updates in the model, and incremental fine-tuning typically requires supervised conditions, which significantly deviate from open-world settings. To address these challenges, this paper proposes OpenHAIV, a novel framework that integrates OOD detection, new class discovery, and incremental continual fine-tuning into a unified pipeline. This framework allows models to autonomously acquire and update knowledge in open-world environments. The proposed framework is available at https://haiv-lab.github.io/openhaiv .

Authors:Yanru Sun, Emadeldeen Eldele, Zongxia Xie, Yucheng Wang, Wenzhe Niu, Qinghua Hu, Chee Keong Kwoh, Min Wu
Title: Adapting LLMs to Time Series Forecasting via Temporal Heterogeneity Modeling and Semantic Alignment
Abstract:
Large Language Models (LLMs) have recently demonstrated impressive capabilities in natural language processing due to their strong generalization and sequence modeling capabilities. However, their direct application to time series forecasting remains challenging due to two fundamental issues: the inherent heterogeneity of temporal patterns and the modality gap between continuous numerical signals and discrete language representations. In this work, we propose TALON, a unified framework that enhances LLM-based forecasting by modeling temporal heterogeneity and enforcing semantic alignment. Specifically, we design a Heterogeneous Temporal Encoder that partitions multivariate time series into structurally coherent segments, enabling localized expert modeling across diverse temporal patterns. To bridge the modality gap, we introduce a Semantic Alignment Module that aligns temporal features with LLM-compatible representations, enabling effective integration of time series into language-based models while eliminating the need for handcrafted prompts during inference. Extensive experiments on seven real-world benchmarks demonstrate that TALON achieves superior performance across all datasets, with average MSE improvements of up to 11\% over recent state-of-the-art methods. These results underscore the effectiveness of incorporating both pattern-aware and semantic-aware designs when adapting LLMs for time series forecasting. The code is available at: https://github.com/syrGitHub/TALON.

Authors:Kejin Liu, Junhong Lian, Xiang Ao, Ningtao Wang, Xing Fu, Yu Cheng, Weiqiang Wang, Xinyu Liu
Title: Improved Personalized Headline Generation via Denoising Fake Interests from Implicit Feedback
Abstract:
Accurate personalized headline generation hinges on precisely capturing user interests from historical behaviors. However, existing methods neglect personalized-irrelevant click noise in entire historical clickstreams, which may lead to hallucinated headlines that deviate from genuine user preferences. In this paper, we reveal the detrimental impact of click noise on personalized generation quality through rigorous analysis in both user and news dimensions. Based on these insights, we propose a novel Personalized Headline Generation framework via Denoising Fake Interests from Implicit Feedback (PHG-DIF). PHG-DIF first employs dual-stage filtering to effectively remove clickstream noise, identified by short dwell times and abnormal click bursts, and then leverages multi-level temporal fusion to dynamically model users' evolving and multi-faceted interests for precise profiling. Moreover, we release DT-PENS, a new benchmark dataset comprising the click behavior of 1,000 carefully curated users and nearly 10,000 annotated personalized headlines with historical dwell time annotations. Extensive experiments demonstrate that PHG-DIF substantially mitigates the adverse effects of click noise and significantly improves headline quality, achieving state-of-the-art (SOTA) results on DT-PENS. Our framework implementation and dataset are available at https://github.com/liukejin-up/PHG-DIF.

Authors:Yunpeng Shi, Lei Chen, Xiaolu Shen, Yanju Guo
Title: Lightweight Multi-Scale Feature Extraction with Fully Connected LMF Layer for Salient Object Detection
Abstract:
In the domain of computer vision, multi-scale feature extraction is vital for tasks such as salient object detection. However, achieving this capability in lightweight networks remains challenging due to the trade-off between efficiency and performance. This paper proposes a novel lightweight multi-scale feature extraction layer, termed the LMF layer, which employs depthwise separable dilated convolutions in a fully connected structure. By integrating multiple LMF layers, we develop LMFNet, a lightweight network tailored for salient object detection. Our approach significantly reduces the number of parameters while maintaining competitive performance. Here, we show that LMFNet achieves state-of-the-art or comparable results on five benchmark datasets with only 0.81M parameters, outperforming several traditional and lightweight models in terms of both efficiency and accuracy. Our work not only addresses the challenge of multi-scale learning in lightweight networks but also demonstrates the potential for broader applications in image processing tasks. The related code files are available at https://github.com/Shi-Yun-peng/LMFNet

Authors:Wenhan Liu, Xinyu Ma, Weiwei Sun, Yutao Zhu, Yuchen Li, Dawei Yin, Zhicheng Dou
Title: ReasonRank: Empowering Passage Ranking with Strong Reasoning Ability
Abstract:
Large Language Model (LLM) based listwise ranking has shown superior performance in many passage ranking tasks. With the development of Large Reasoning Models, many studies have demonstrated that step-by-step reasoning during test-time helps improve listwise ranking performance. However, due to the scarcity of reasoning-intensive training data, existing rerankers perform poorly in many complex ranking scenarios and the ranking ability of reasoning-intensive rerankers remains largely underdeveloped. In this paper, we first propose an automated reasoning-intensive training data synthesis framework, which sources training queries and passages from diverse domains and applies DeepSeek-R1 to generate high-quality training labels. A self-consistency data filtering mechanism is designed to ensure the data quality. To empower the listwise reranker with strong reasoning ability, we further propose a two-stage post-training approach, which includes a cold-start supervised fine-tuning (SFT) stage for reasoning pattern learning and a reinforcement learning (RL) stage for further ranking ability enhancement. During the RL stage, based on the nature of listwise ranking, we design a multi-view ranking reward, which is more effective than a ranking metric-based reward. Extensive experiments demonstrate that our trained reasoning-intensive reranker \textbf{ReasonRank} outperforms existing baselines significantly and also achieves much lower latency than pointwise reranker Rank1. \textbf{Through further experiments, our ReasonRank has achieved state-of-the-art (SOTA) performance 40.6 on the BRIGHT leaderboard\footnote{https://brightbenchmark.github.io/}.} Our codes are available at https://github.com/8421BCD/ReasonRank.

Authors:Taeyoun Kwon, Junhyuk Ahn, Taegeun Yun, Heeju Jwa, Yoonchae Choi, Siwon Park, Nam-Joon Kim, Jangchan Kim, Hyun Gon Ryu, Hyuk-Jae Lee
Title: Whisfusion: Parallel ASR Decoding via a Diffusion Transformer
Abstract:
Fast Automatic Speech Recognition (ASR) is critical for latency-sensitive applications such as real-time captioning and meeting transcription. However, truly parallel ASR decoding remains challenging due to the sequential nature of autoregressive (AR) decoders and the context limitations of non-autoregressive (NAR) methods. While modern ASR encoders can process up to 30 seconds of audio at once, AR decoders still generate tokens sequentially, creating a latency bottleneck. We propose Whisfusion, the first framework to fuse a pre-trained Whisper encoder with a text diffusion decoder. This NAR architecture resolves the AR latency bottleneck by processing the entire acoustic context in parallel at every decoding step. A lightweight cross-attention adapter trained via parameter-efficient fine-tuning (PEFT) bridges the two modalities. We also introduce a batch-parallel, multi-step decoding strategy that improves accuracy by increasing the number of candidates with minimal impact on speed. Fine-tuned solely on LibriSpeech (960h), Whisfusion achieves a lower WER than Whisper-tiny (8.3% vs. 9.7%), and offers comparable latency on short audio. For longer utterances (>20s), it is up to 2.6x faster than the AR baseline, establishing a new, efficient operating point for long-form ASR. The implementation and training scripts are available at https://github.com/taeyoun811/Whisfusion.

Authors:Helbert Paat, Guohao Shen
Title: Conformal Set-based Human-AI Complementarity with Multiple Experts
Abstract:
Decision support systems are designed to assist human experts in classification tasks by providing conformal prediction sets derived from a pre-trained model. This human-AI collaboration has demonstrated enhanced classification performance compared to using either the model or the expert independently. In this study, we focus on the selection of instance-specific experts from a pool of multiple human experts, contrasting it with existing research that typically focuses on single-expert scenarios. We characterize the conditions under which multiple experts can benefit from the conformal sets. With the insight that only certain experts may be relevant for each instance, we explore the problem of subset selection and introduce a greedy algorithm that utilizes conformal sets to identify the subset of expert predictions that will be used in classifying an instance. This approach is shown to yield better performance compared to naive methods for human subset selection. Based on real expert predictions from the CIFAR-10H and ImageNet-16H datasets, our simulation study indicates that our proposed greedy algorithm achieves near-optimal subsets, resulting in improved classification performance among multiple experts.

Authors:Keyu Li, Mohan Jiang, Dayuan Fu, Yunze Wu, Xiangkun Hu, Dequan Wang, Pengfei Liu
Title: DatasetResearch: Benchmarking Agent Systems for Demand-Driven Dataset Discovery
Abstract:
The rapid advancement of large language models has fundamentally shifted the bottleneck in AI development from computational power to data availability-with countless valuable datasets remaining hidden across specialized repositories, research appendices, and domain platforms. As reasoning capabilities and deep research methodologies continue to evolve, a critical question emerges: can AI agents transcend conventional search to systematically discover any dataset that meets specific user requirements, enabling truly autonomous demand-driven data curation? We introduce DatasetResearch, the first comprehensive benchmark evaluating AI agents' ability to discover and synthesize datasets from 208 real-world demands across knowledge-intensive and reasoning-intensive tasks. Our tri-dimensional evaluation framework reveals a stark reality: even advanced deep research systems achieve only 22% score on our challenging DatasetResearch-pro subset, exposing the vast gap between current capabilities and perfect dataset discovery. Our analysis uncovers a fundamental dichotomy-search agents excel at knowledge tasks through retrieval breadth, while synthesis agents dominate reasoning challenges via structured generation-yet both catastrophically fail on "corner cases" outside existing distributions. These findings establish the first rigorous baseline for dataset discovery agents and illuminate the path toward AI systems capable of finding any dataset in the digital universe. Our benchmark and comprehensive analysis provide the foundation for the next generation of self-improving AI systems and are publicly available at https://github.com/GAIR-NLP/DatasetResearch.

Authors:Lixuan He, Jie Feng, Yong Li
Title: AMFT: Aligning LLM Reasoners by Meta-Learning the Optimal Imitation-Exploration Balance
Abstract:
Large Language Models (LLMs) are typically fine-tuned for reasoning tasks through a two-stage pipeline of Supervised Fine-Tuning (SFT) followed by Reinforcement Learning (RL), a process fraught with catastrophic forgetting and suboptimal trade-offs between imitation and exploration. Recent single-stage methods attempt to unify SFT and RL using heuristics, but lack a principled mechanism for dynamically balancing the two paradigms. In this paper, we reframe this challenge through the theoretical lens of \textbf{implicit rewards}, viewing SFT and RL not as distinct methods but as complementary reward signals. We introduce \textbf{Adaptive Meta Fine-Tuning (AMFT)}, a novel single-stage algorithm that learns the optimal balance between SFT's implicit, path-level reward and RL's explicit, outcome-based reward. The core of AMFT is a \textbf{meta-gradient adaptive weight controller} that treats the SFT-RL balance as a learnable parameter, dynamically optimizing it to maximize long-term task performance. This forward-looking approach, regularized by policy entropy for stability, autonomously discovers an effective training curriculum. We conduct a comprehensive evaluation on challenging benchmarks spanning mathematical reasoning, abstract visual reasoning (General Points), and vision-language navigation (V-IRL). AMFT consistently establishes a new state-of-the-art and demonstrats superior generalization on out-of-distribution (OOD) tasks. Ablation studies and training dynamic analysis confirm that the meta-learning controller is crucial for AMFT's stability, sample efficiency, and performance, offering a more principled and effective paradigm for LLM alignment. Our codes are open-sourced via https://github.com/hlxtsyj/AMFT.

Authors:Rui Liu, Haolin Zuo, Zheng Lian, Hongyu Yuan, Qi Fan
Title: Hardness-Aware Dynamic Curriculum Learning for Robust Multimodal Emotion Recognition with Missing Modalities
Abstract:
Missing modalities have recently emerged as a critical research direction in multimodal emotion recognition (MER). Conventional approaches typically address this issue through missing modality reconstruction. However, these methods fail to account for variations in reconstruction difficulty across different samples, consequently limiting the model's ability to handle hard samples effectively. To overcome this limitation, we propose a novel Hardness-Aware Dynamic Curriculum Learning framework, termed HARDY-MER. Our framework operates in two key stages: first, it estimates the hardness level of each sample, and second, it strategically emphasizes hard samples during training to enhance model performance on these challenging instances. Specifically, we first introduce a Multi-view Hardness Evaluation mechanism that quantifies reconstruction difficulty by considering both Direct Hardness (modality reconstruction errors) and Indirect Hardness (cross-modal mutual information). Meanwhile, we introduce a Retrieval-based Dynamic Curriculum Learning strategy that dynamically adjusts the training curriculum by retrieving samples with similar semantic information and balancing the learning focus between easy and hard instances. Extensive experiments on benchmark datasets demonstrate that HARDY-MER consistently outperforms existing methods in missing-modality scenarios. Our code will be made publicly available at https://github.com/HARDY-MER/HARDY-MER.

Authors:Zihao Sheng, Zilin Huang, Yen-Jung Chen, Yansong Qu, Yuhao Luo, Yue Leng, Sikai Chen
Title: SafePLUG: Empowering Multimodal LLMs with Pixel-Level Insight and Temporal Grounding for Traffic Accident Understanding
Abstract:
Multimodal large language models (MLLMs) have achieved remarkable progress across a range of vision-language tasks and demonstrate strong potential for traffic accident understanding. However, existing MLLMs in this domain primarily focus on coarse-grained image-level or video-level comprehension and often struggle to handle fine-grained visual details or localized scene components, limiting their applicability in complex accident scenarios. To address these limitations, we propose SafePLUG, a novel framework that empowers MLLMs with both Pixel-Level Understanding and temporal Grounding for comprehensive traffic accident analysis. SafePLUG supports both arbitrary-shaped visual prompts for region-aware question answering and pixel-level segmentation based on language instructions, while also enabling the recognition of temporally anchored events in traffic accident scenarios. To advance the development of MLLMs for traffic accident understanding, we curate a new dataset containing multimodal question-answer pairs centered on diverse accident scenarios, with detailed pixel-level annotations and temporal event boundaries. Experimental results show that SafePLUG achieves strong performance on multiple tasks, including region-based question answering, pixel-level segmentation, temporal event localization, and accident event understanding. These capabilities lay a foundation for fine-grained understanding of complex traffic scenes, with the potential to improve driving safety and enhance situational awareness in smart transportation systems. The code, dataset, and model checkpoints will be made publicly available at: https://zihaosheng.github.io/SafePLUG

Authors:Komala Subramanyam Cherukuri, Pranav Abishai Moses, Aisa Sakata, Jiangping Chen, Haihua Chen
Title: Large Language Models for Oral History Understanding with Text Classification and Sentiment Analysis
Abstract:
Oral histories are vital records of lived experience, particularly within communities affected by systemic injustice and historical erasure. Effective and efficient analysis of their oral history archives can promote access and understanding of the oral histories. However, Large-scale analysis of these archives remains limited due to their unstructured format, emotional complexity, and high annotation costs. This paper presents a scalable framework to automate semantic and sentiment annotation for Japanese American Incarceration Oral History. Using LLMs, we construct a high-quality dataset, evaluate multiple models, and test prompt engineering strategies in historically sensitive contexts. Our multiphase approach combines expert annotation, prompt design, and LLM evaluation with ChatGPT, Llama, and Qwen. We labeled 558 sentences from 15 narrators for sentiment and semantic classification, then evaluated zero-shot, few-shot, and RAG strategies. For semantic classification, ChatGPT achieved the highest F1 score (88.71%), followed by Llama (84.99%) and Qwen (83.72%). For sentiment analysis, Llama slightly outperformed Qwen (82.66%) and ChatGPT (82.29%), with all models showing comparable results. The best prompt configurations were used to annotate 92,191 sentences from 1,002 interviews in the JAIOH collection. Our findings show that LLMs can effectively perform semantic and sentiment annotation across large oral history collections when guided by well-designed prompts. This study provides a reusable annotation pipeline and practical guidance for applying LLMs in culturally sensitive archival analysis. By bridging archival ethics with scalable NLP techniques, this work lays the groundwork for responsible use of artificial intelligence in digital humanities and preservation of collective memory. GitHub: https://github.com/kc6699c/LLM4OralHistoryAnalysis.

Authors:Md Rezwanul Haque, Md. Milon Islam, S M Taslim Uddin Raju, Hamdi Altaheri, Lobna Nassar, Fakhri Karray
Title: MMFformer: Multimodal Fusion Transformer Network for Depression Detection
Abstract:
Depression is a serious mental health illness that significantly affects an individual's well-being and quality of life, making early detection crucial for adequate care and treatment. Detecting depression is often difficult, as it is based primarily on subjective evaluations during clinical interviews. Hence, the early diagnosis of depression, thanks to the content of social networks, has become a prominent research area. The extensive and diverse nature of user-generated information poses a significant challenge, limiting the accurate extraction of relevant temporal information and the effective fusion of data across multiple modalities. This paper introduces MMFformer, a multimodal depression detection network designed to retrieve depressive spatio-temporal high-level patterns from multimodal social media information. The transformer network with residual connections captures spatial features from videos, and a transformer encoder is exploited to design important temporal dynamics in audio. Moreover, the fusion architecture fused the extracted features through late and intermediate fusion strategies to find out the most relevant intermodal correlations among them. Finally, the proposed network is assessed on two large-scale depression detection datasets, and the results clearly reveal that it surpasses existing state-of-the-art approaches, improving the F1-Score by 13.92% for D-Vlog dataset and 7.74% for LMVD dataset. The code is made available publicly at https://github.com/rezwanh001/Large-Scale-Multimodal-Depression-Detection.

Authors:Mosbah Aouad, Anirudh Choudhary, Awais Farooq, Steven Nevers, Lusine Demirkhanyan, Bhrandon Harris, Suguna Pappu, Christopher Gondi, Ravishankar Iyer
Title: Early Detection of Pancreatic Cancer Using Multimodal Learning on Electronic Health Records
Abstract:
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers, and early detection remains a major clinical challenge due to the absence of specific symptoms and reliable biomarkers. In this work, we propose a new multimodal approach that integrates longitudinal diagnosis code histories and routinely collected laboratory measurements from electronic health records to detect PDAC up to one year prior to clinical diagnosis. Our method combines neural controlled differential equations to model irregular lab time series, pretrained language models and recurrent networks to learn diagnosis code trajectory representations, and cross-attention mechanisms to capture interactions between the two modalities. We develop and evaluate our approach on a real-world dataset of nearly 4,700 patients and achieve significant improvements in AUC ranging from 6.5% to 15.5% over state-of-the-art methods. Furthermore, our model identifies diagnosis codes and laboratory panels associated with elevated PDAC risk, including both established and new biomarkers. Our code is available at https://github.com/MosbahAouad/EarlyPDAC-MML.

Authors:Xiaoyuan Zhu, Muru Zhang, Ollie Liu, Robin Jia, Willie Neiswanger
Title: LLM Unlearning Without an Expert Curated Dataset
Abstract:
Modern large language models often encode sensitive, harmful, or copyrighted knowledge, raising the need for post-hoc unlearning-the ability to remove specific domains of knowledge from a model without full retraining. A major bottleneck in current unlearning pipelines is constructing effective forget sets-datasets that approximate the target domain and guide the model to forget it. In this work, we introduce a scalable, automated approach to generate high-quality forget sets using language models themselves. Our method synthesizes textbook-style data through a structured prompting pipeline, requiring only a domain name as input. Through experiments on unlearning biosecurity, cybersecurity, and Harry Potter novels, we show that our synthetic datasets consistently outperform the baseline synthetic alternatives and are comparable to the expert-curated ones. Additionally, ablation studies reveal that the multi-step generation pipeline significantly boosts data diversity, which in turn improves unlearning utility. Overall, our findings suggest that synthetic datasets offer a promising path toward practical, scalable unlearning for a wide range of emerging domains without the need for manual intervention. We release our code and dataset at https://github.com/xyzhu123/Synthetic_Textbook.

Authors:Dong Liu, Yanxuan Yu, Ben Lengerich, Ying Nian Wu, Xuhong Wang
Title: PiKV: KV Cache Management System for Mixture of Experts
Abstract:
As large language models continue to scale up in both size and context length, the memory and communication cost of key-value (KV) cache storage has become a major bottleneck in multi-GPU and multi-node inference. While MoE-based architectures sparsify computation across experts, the corresponding KV caches remain dense and globally synchronized, resulting in significant overhead. We introduce \textbf{PiKV}, a parallel and distributed KV cache serving framework tailored for MoE architecture. PiKV leverages \textit{expert-sharded KV storage} to partition caches across GPUs, \textit{PiKV routing} to reduce token-to-KV access, and a \textit{PiKV Scheduling} to adaptively retain query-relevant entries. To further reduce memory usage, PiKV integrates \textit{PiKV Compression} modules the caching pipeline for acceleration. PiKV is recently publicly available as an open-source software library: \href{https://github.com/NoakLiu/PiKV}{https://github.com/NoakLiu/PiKV}. Experiments details is recorded at: \href{https://github.com/NoakLiu/PiKV/blob/main/downstream_tasks/README.md}{https://github.com/NoakLiu/PiKV/Experimental\_Results}. We also have PiKV integrated with Nvidia kvpress for acceleration, details see \href{https://github.com/NoakLiu/PiKVpress}{https://github.com/NoakLiu/PiKVpress}. PiKV is still a living project, aiming to become a comprehesive KV Cache management system for MoE Architectures.

Authors:Andrea Corsico, Giorgia Rigamonti, Simone Zini, Luigi Celona, Paolo Napoletano
Title: Network-Specific Models for Multimodal Brain Response Prediction
Abstract:
In this work, we present a network-specific approach for predicting brain responses to complex multimodal movies, leveraging the Yeo 7-network parcellation of the Schaefer atlas. Rather than treating the brain as a homogeneous system, we grouped the seven functional networks into four clusters and trained separate multi-subject, multi-layer perceptron (MLP) models for each. This architecture supports cluster-specific optimization and adaptive memory modeling, allowing each model to adjust temporal dynamics and modality weighting based on the functional role of its target network. Our results demonstrate that this clustered strategy significantly enhances prediction accuracy across the 1,000 cortical regions of the Schaefer atlas. The final model achieved an eighth-place ranking in the Algonauts Project 2025 Challenge, with out-of-distribution (OOD) correlation scores nearly double those of the baseline model used in the selection phase. Code is available at https://github.com/Corsi01/algo2025.

Authors:Sofiane Bouaziz, Adel Hafiane, Raphael Canals, Rachid Nedjai
Title: WGAST: Weakly-Supervised Generative Network for Daily 10 m Land Surface Temperature Estimation via Spatio-Temporal Fusion
Abstract:
Urbanization, climate change, and agricultural stress are increasing the demand for precise and timely environmental monitoring. Land Surface Temperature (LST) is a key variable in this context and is retrieved from remote sensing satellites. However, these systems face a trade-off between spatial and temporal resolution. While spatio-temporal fusion methods offer promising solutions, few have addressed the estimation of daily LST at 10 m resolution. In this study, we present WGAST, a Weakly-Supervised Generative Network for Daily 10 m LST Estimation via Spatio-Temporal Fusion of Terra MODIS, Landsat 8, and Sentinel-2. WGAST is the first end-to-end deep learning framework designed for this task. It adopts a conditional generative adversarial architecture, with a generator composed of four stages: feature extraction, fusion, LST reconstruction, and noise suppression. The first stage employs a set of encoders to extract multi-level latent representations from the inputs, which are then fused in the second stage using cosine similarity, normalization, and temporal attention mechanisms. The third stage decodes the fused features into high-resolution LST, followed by a Gaussian filter to suppress high-frequency noise. Training follows a weakly supervised strategy based on physical averaging principles and reinforced by a PatchGAN discriminator. Experiments demonstrate that WGAST outperforms existing methods in both quantitative and qualitative evaluations. Compared to the best-performing baseline, on average, WGAST reduces RMSE by 17.18% and improves SSIM by 11.00%. Furthermore, WGAST is robust to cloud-induced LST and effectively captures fine-scale thermal patterns, as validated against 33 ground-based sensors. The code is available at https://github.com/Sofianebouaziz1/WGAST.git.

Authors:Ruida Cheng, Tejas Sudharshan Mathai, Pritam Mukherjee, Benjamin Hou, Qingqing Zhu, Zhiyong Lu, Matthew McAuliffe, Ronald M. Summers
Title: Text Embedded Swin-UMamba for DeepLesion Segmentation
Abstract:
Segmentation of lesions on CT enables automatic measurement for clinical assessment of chronic diseases (e.g., lymphoma). Integrating large language models (LLMs) into the lesion segmentation workflow offers the potential to combine imaging features with descriptions of lesion characteristics from the radiology reports. In this study, we investigate the feasibility of integrating text into the Swin-UMamba architecture for the task of lesion segmentation. The publicly available ULS23 DeepLesion dataset was used along with short-form descriptions of the findings from the reports. On the test dataset, a high Dice Score of 82% and low Hausdorff distance of 6.58 (pixels) was obtained for lesion segmentation. The proposed Text-Swin-UMamba model outperformed prior approaches: 37% improvement over the LLM-driven LanGuideMedSeg model (p < 0.001),and surpassed the purely image-based xLSTM-UNet and nnUNet models by 1.74% and 0.22%, respectively. The dataset and code can be accessed at https://github.com/ruida/LLM-Swin-UMamba

Authors:Shengzhu Yang, Jiawei Du, Shuai Lu, Weihang Zhang, Ningli Wang, Huiqi Li
Title: CLIPin: A Non-contrastive Plug-in to CLIP for Multimodal Semantic Alignment
Abstract:
Large-scale natural image-text datasets, especially those automatically collected from the web, often suffer from loose semantic alignment due to weak supervision, while medical datasets tend to have high cross-modal correlation but low content diversity. These properties pose a common challenge for contrastive language-image pretraining (CLIP): they hinder the model's ability to learn robust and generalizable representations. In this work, we propose CLIPin, a unified non-contrastive plug-in that can be seamlessly integrated into CLIP-style architectures to improve multimodal semantic alignment, providing stronger supervision and enhancing alignment robustness. Furthermore, two shared pre-projectors are designed for image and text modalities respectively to facilitate the integration of contrastive and non-contrastive learning in a parameter-compromise manner. Extensive experiments on diverse downstream tasks demonstrate the effectiveness and generality of CLIPin as a plug-and-play component compatible with various contrastive frameworks. Code is available at https://github.com/T6Yang/CLIPin.

Authors:Guido Manni, Clemente Lauretti, Loredana Zollo, Paolo Soda
Title: SPARSE Data, Rich Results: Few-Shot Semi-Supervised Learning via Class-Conditioned Image Translation
Abstract:
Deep learning has revolutionized medical imaging, but its effectiveness is severely limited by insufficient labeled training data. This paper introduces a novel GAN-based semi-supervised learning framework specifically designed for low labeled-data regimes, evaluated across settings with 5 to 50 labeled samples per class. Our approach integrates three specialized neural networks -- a generator for class-conditioned image translation, a discriminator for authenticity assessment and classification, and a dedicated classifier -- within a three-phase training framework. The method alternates between supervised training on limited labeled data and unsupervised learning that leverages abundant unlabeled images through image-to-image translation rather than generation from noise. We employ ensemble-based pseudo-labeling that combines confidence-weighted predictions from the discriminator and classifier with temporal consistency through exponential moving averaging, enabling reliable label estimation for unlabeled data. Comprehensive evaluation across eleven MedMNIST datasets demonstrates that our approach achieves statistically significant improvements over six state-of-the-art GAN-based semi-supervised methods, with particularly strong performance in the extreme 5-shot setting where the scarcity of labeled data is most challenging. The framework maintains its superiority across all evaluated settings (5, 10, 20, and 50 shots per class). Our approach offers a practical solution for medical imaging applications where annotation costs are prohibitive, enabling robust classification performance even with minimal labeled data. Code is available at https://github.com/GuidoManni/SPARSE.

Authors:Youguang Xing, Xu Luo, Junlin Xie, Lianli Gao, Hengtao Shen, Jingkuan Song
Title: Shortcut Learning in Generalist Robot Policies: The Role of Dataset Diversity and Fragmentation
Abstract:
Generalist robot policies trained on large-scale datasets such as Open X-Embodiment (OXE) demonstrate strong performance across a wide range of tasks. However, they often struggle to generalize beyond the distribution of their training data. In this paper, we investigate the underlying cause of this limited generalization capability. We identify shortcut learning -- the reliance on task-irrelevant features -- as a key impediment to generalization. Through comprehensive theoretical and empirical analysis, we uncover two primary contributors to shortcut learning: (1) limited diversity within individual sub-datasets, and (2) significant distributional disparities across sub-datasets, leading to dataset fragmentation. These issues arise from the inherent structure of large-scale datasets like OXE, which are typically composed of multiple sub-datasets collected independently across varied environments and embodiments. Our findings provide critical insights into dataset collection strategies that can reduce shortcut learning and enhance the generalization ability of generalist robot policies. Moreover, in scenarios where acquiring new large-scale data is impractical, we demonstrate that carefully selected robotic data augmentation strategies can effectively reduce shortcut learning in existing offline datasets, thereby improving generalization capabilities of generalist robot policies, e.g., $π_0$, in both simulation and real-world environments. More information at https://lucky-light-sun.github.io/proj/shortcut-learning-in-grps/.

Authors:Zhangquan Chen, Ruihui Zhao, Chuwei Luo, Mingze Sun, Xinlei Yu, Yangyang Kang, Ruqi Huang
Title: SIFThinker: Spatially-Aware Image Focus for Visual Reasoning
Abstract:
Current multimodal large language models (MLLMs) still face significant challenges in complex visual tasks (e.g., spatial understanding, fine-grained perception). Prior methods have tried to incorporate visual reasoning, however, they fail to leverage attention correction with spatial cues to iteratively refine their focus on prompt-relevant regions. In this paper, we introduce SIFThinker, a spatially-aware "think-with-images" framework that mimics human visual perception. Specifically, SIFThinker enables attention correcting and image region focusing by interleaving depth-enhanced bounding boxes and natural language. Our contributions are twofold: First, we introduce a reverse-expansion-forward-inference strategy that facilitates the generation of interleaved image-text chains of thought for process-level supervision, which in turn leads to the construction of the SIF-50K dataset. Besides, we propose GRPO-SIF, a reinforced training paradigm that integrates depth-informed visual grounding into a unified reasoning pipeline, teaching the model to dynamically correct and focus on prompt-relevant regions. Extensive experiments demonstrate that SIFThinker outperforms state-of-the-art methods in spatial understanding and fine-grained visual perception, while maintaining strong general capabilities, highlighting the effectiveness of our method. Code: https://github.com/zhangquanchen/SIFThinker.

Authors:Weitao Li, Boran Xiang, Xiaolong Wang, Zhinan Gou, Weizhi Ma, Yang Liu
Title: UR$^2$: Unify RAG and Reasoning through Reinforcement Learning
Abstract:
Large Language Models (LLMs) have shown remarkable capabilities through two complementary paradigms: Retrieval-Augmented Generation (RAG), which enhances knowledge grounding, and Reinforcement Learning from Verifiable Rewards (RLVR), which optimizes complex reasoning abilities. However, these two capabilities are often developed in isolation, and existing efforts to unify them remain narrow in scope -- typically limited to open-domain QA with fixed retrieval settings and task-specific constraints. This lack of integration constrains generalization and limits the applicability of RAG-RL methods to broader domains. To bridge this gap, we propose UR2 (Unified RAG and Reasoning), a general framework that unifies retrieval and reasoning through reinforcement learning. UR2 introduces two key contributions: a difficulty-aware curriculum training that selectively invokes retrieval only for challenging problems, and a hybrid knowledge access strategy combining domain-specific offline corpora with LLM-generated summaries. These components are designed to enable dynamic coordination between retrieval and reasoning, improving adaptability across a diverse range of tasks. Experiments across open-domain QA, MMLU-Pro, medical, and mathematical reasoning tasks demonstrate that UR$^2$ (built on Qwen-2.5-3/7B and LLaMA-3.1-8B) significantly outperforms existing RAG and RL methods, achieving comparable performance to GPT-4o-mini and GPT-4.1-mini on several benchmarks. We have released all code, models, and data at https://github.com/Tsinghua-dhy/UR2.

Authors:Michael Wehrli, Alicia Durrer, Paul Friedrich, Sidaty El Hadramy, Edwin Li, Luana Brahaj, Carol C. Hasler, Philippe C. Cattin
Title: Towards MR-Based Trochleoplasty Planning
Abstract:
To treat Trochlear Dysplasia (TD), current approaches rely mainly on low-resolution clinical Magnetic Resonance (MR) scans and surgical intuition. The surgeries are planned based on surgeons experience, have limited adoption of minimally invasive techniques, and lead to inconsistent outcomes. We propose a pipeline that generates super-resolved, patient-specific 3D pseudo-healthy target morphologies from conventional clinical MR scans. First, we compute an isotropic super-resolved MR volume using an Implicit Neural Representation (INR). Next, we segment femur, tibia, patella, and fibula with a multi-label custom-trained network. Finally, we train a Wavelet Diffusion Model (WDM) to generate pseudo-healthy target morphologies of the trochlear region. In contrast to prior work producing pseudo-healthy low-resolution 3D MR images, our approach enables the generation of sub-millimeter resolved 3D shapes compatible for pre- and intraoperative use. These can serve as preoperative blueprints for reshaping the femoral groove while preserving the native patella articulation. Furthermore, and in contrast to other work, we do not require a CT for our pipeline - reducing the amount of radiation. We evaluated our approach on 25 TD patients and could show that our target morphologies significantly improve the sulcus angle (SA) and trochlear groove depth (TGD). The code and interactive visualization are available at https://wehrlimi.github.io/sr-3d-planning/.

Authors:Utku Ozbulak, Michaela Cohrs, Hristo L. Svilenov, Joris Vankerschaver, Wesley De Neve
Title: Improved Sub-Visible Particle Classification in Flow Imaging Microscopy via Generative AI-Based Image Synthesis
Abstract:
Sub-visible particle analysis using flow imaging microscopy combined with deep learning has proven effective in identifying particle types, enabling the distinction of harmless components such as silicone oil from protein particles. However, the scarcity of available data and severe imbalance between particle types within datasets remain substantial hurdles when applying multi-class classifiers to such problems, often forcing researchers to rely on less effective methods. The aforementioned issue is particularly challenging for particle types that appear unintentionally and in lower numbers, such as silicone oil and air bubbles, as opposed to protein particles, where obtaining large numbers of images through controlled settings is comparatively straightforward. In this work, we develop a state-of-the-art diffusion model to address data imbalance by generating high-fidelity images that can augment training datasets, enabling the effective training of multi-class deep neural networks. We validate this approach by demonstrating that the generated samples closely resemble real particle images in terms of visual quality and structure. To assess the effectiveness of using diffusion-generated images in training datasets, we conduct large-scale experiments on a validation dataset comprising 500,000 protein particle images and demonstrate that this approach improves classification performance with no negligible downside. Finally, to promote open research and reproducibility, we publicly release both our diffusion models and the trained multi-class deep neural network classifiers, along with a straightforward interface for easy integration into future studies, at https://github.com/utkuozbulak/svp-generative-ai.

Authors:Younjoon Chung, Hyoungseob Park, Patrick Rim, Xiaoran Zhang, Jihe He, Ziyao Zeng, Safa Cicek, Byung-Woo Hong, James S. Duncan, Alex Wong
Title: ETA: Energy-based Test-time Adaptation for Depth Completion
Abstract:
We propose a method for test-time adaptation of pretrained depth completion models. Depth completion models, trained on some ``source'' data, often predict erroneous outputs when transferred to ``target'' data captured in novel environmental conditions due to a covariate shift. The crux of our method lies in quantifying the likelihood of depth predictions belonging to the source data distribution. The challenge is in the lack of access to out-of-distribution (target) data prior to deployment. Hence, rather than making assumptions regarding the target distribution, we utilize adversarial perturbations as a mechanism to explore the data space. This enables us to train an energy model that scores local regions of depth predictions as in- or out-of-distribution. We update the parameters of pretrained depth completion models at test time to minimize energy, effectively aligning test-time predictions to those of the source distribution. We call our method ``Energy-based Test-time Adaptation'', or ETA for short. We evaluate our method across three indoor and three outdoor datasets, where ETA improve over the previous state-of-the-art method by an average of 6.94% for outdoors and 10.23% for indoors. Project Page: https://fuzzythecat.github.io/eta.

Authors:Yuhang Liu, Zeyu Liu, Shuanghe Zhu, Pengxiang Li, Congkai Xie, Jiasheng Wang, Xueyu Hu, Xiaotian Han, Jianbo Yuan, Xinyao Wang, Shengyu Zhang, Hongxia Yang, Fei Wu
Title: InfiGUI-G1: Advancing GUI Grounding with Adaptive Exploration Policy Optimization
Abstract:
The emergence of Multimodal Large Language Models (MLLMs) has propelled the development of autonomous agents that operate on Graphical User Interfaces (GUIs) using pure visual input. A fundamental challenge is robustly grounding natural language instructions. This requires a precise spatial alignment, which accurately locates the coordinates of each element, and, more critically, a correct semantic alignment, which matches the instructions to the functionally appropriate UI element. Although Reinforcement Learning with Verifiable Rewards (RLVR) has proven to be effective at improving spatial alignment for these MLLMs, we find that inefficient exploration bottlenecks semantic alignment, which prevent models from learning difficult semantic associations. To address this exploration problem, we present Adaptive Exploration Policy Optimization (AEPO), a new policy optimization framework. AEPO employs a multi-answer generation strategy to enforce broader exploration, which is then guided by a theoretically grounded Adaptive Exploration Reward (AER) function derived from first principles of efficiency eta=U/C. Our AEPO-trained models, InfiGUI-G1-3B and InfiGUI-G1-7B, establish new state-of-the-art results across multiple challenging GUI grounding benchmarks, achieving significant relative improvements of up to 9.0% against the naive RLVR baseline on benchmarks designed to test generalization and semantic understanding. Resources are available at https://github.com/InfiXAI/InfiGUI-G1.

Authors:Santiago Casas, Christian Fidler, Boris Bolliet, Francisco Villaescusa-Navarro, Julien Lesgourgues
Title: CLAPP: The CLASS LLM Agent for Pair Programming
Abstract:
We introduce CLAPP (CLASS LLM Agent for Pair Programming), an interactive AI assistant designed to support researchers working with the Einstein-Boltzmann solver CLASS. CLAPP leverages large language models (LLMs) and domain-specific retrieval to provide conversational coding support for CLASS-answering questions, generating code, debugging errors, and producing plots. Its architecture combines multi-agent LLM orchestration, semantic search across CLASS documentation, and a live Python execution environment. Deployed as a user-friendly web application, CLAPP lowers the entry barrier for scientists unfamiliar with AI tools and enables more productive human-AI collaboration in computational and numerical cosmology. The app is available at https://classclapp.streamlit.app

Authors:Jia Fu, Xinyu Yang, Hongzhi Zhang, Yahui Liu, Jingyuan Zhang, Qi Wang, Fuzheng Zhang, Guorui Zhou
Title: Klear-CodeTest: Scalable Test Case Generation for Code Reinforcement Learning
Abstract:
Precise, correct feedback is crucial for effectively training large language models (LLMs) in code reinforcement learning. However, synthesizing high-quality test cases remains a profoundly challenging and unsolved problem. In this work, we present Klear-CodeTest, a comprehensive test case synthesis framework featuring rigorous verification to ensure quality and reliability of test cases. Our approach achieves broad coverage of programming problems via a novel Generator-Validation (G-V) framework, ensuring correctness through a consistency validation mechanism that verifies outputs against gold solutions. The proposed G-V framework generates comprehensive test cases including both regular and corner cases, enhancing test coverage and discriminative power for solution correctness assessment in code reinforcement learning. In addition, we design a multi-layered security sandbox system optimized for online verification platforms, guaranteeing safe and reliable code execution. Through comprehensive experiments, we demonstrate the effectiveness of our curated dataset, showing significant improvements in model performance and training stability. The source codes, curated dataset and sandbox system are available at: https://github.com/Kwai-Klear/CodeTest.

Authors:Valentina Roquemen-Echeverri, Taisa Kushner, Peter G. Jacobs, Clara Mosquera-Lopez
Title: A Physiologically-Constrained Neural Network Digital Twin Framework for Replicating Glucose Dynamics in Type 1 Diabetes
Abstract:
Simulating glucose dynamics in individuals with type 1 diabetes (T1D) is critical for developing personalized treatments and supporting data-driven clinical decisions. Existing models often miss key physiological aspects and are difficult to individualize. Here, we introduce physiologically-constrained neural network (NN) digital twins to simulate glucose dynamics in T1D. To ensure interpretability and physiological consistency, we first build a population-level NN state-space model aligned with a set of ordinary differential equations (ODEs) describing glucose regulation. This model is formally verified to conform to known T1D dynamics. Digital twins are then created by augmenting the population model with individual-specific models, which include personal data, such as glucose management and contextual information, capturing both inter- and intra-individual variability. We validate our approach using real-world data from the T1D Exercise Initiative study. Two weeks of data per participant were split into 5-hour sequences and simulated glucose profiles were compared to observed ones. Clinically relevant outcomes were used to assess similarity via paired equivalence t-tests with predefined clinical equivalence margins. Across 394 digital twins, glucose outcomes were equivalent between simulated and observed data: time in range (70-180 mg/dL) was 75.1$\pm$21.2% (simulated) vs. 74.4$\pm$15.4% (real; P<0.001); time below range (<70 mg/dL) 2.5$\pm$5.2% vs. 3.0$\pm$3.3% (P=0.022); and time above range (>180 mg/dL) 22.4$\pm$22.0% vs. 22.6$\pm$15.9% (P<0.001). Our framework can incorporate unmodeled factors like sleep and activity while preserving key dynamics. This approach enables personalized in silico testing of treatments, supports insulin optimization, and integrates physics-based and data-driven modeling. Code: https://github.com/mosqueralopez/T1DSim_AI

Authors:Kai Yao, Marc Juarez
Title: AuthPrint: Fingerprinting Generative Models Against Malicious Model Providers
Abstract:
Generative models are increasingly adopted in high-stakes domains, yet current deployments offer no mechanisms to verify whether a given output truly originates from the certified model. We address this gap by extending model fingerprinting techniques beyond the traditional collaborative setting to one where the model provider itself may act adversarially, replacing the certified model with a cheaper or lower-quality substitute. To our knowledge, this is the first work to study fingerprinting for provenance attribution under such a threat model. Our approach introduces a trusted verifier that, during a certification phase, extracts hidden fingerprints from the authentic model's output space and trains a detector to recognize them. During verification, this detector can determine whether new outputs are consistent with the certified model, without requiring specialized hardware or model modifications. In extensive experiments, our methods achieve near-zero FPR@95%TPR on both GANs and diffusion models, and remain effective even against subtle architectural or training changes. Furthermore, the approach is robust to adaptive adversaries that actively manipulate outputs in an attempt to evade detection.

Authors:Jing Wang, Zheng Li, Lei Li, Fan He, Liyu Lin, Yao Lai, Yan Li, Xiaoyang Zeng, Yufeng Guo
Title: Principle-Guided Verilog Optimization: IP-Safe Knowledge Transfer via Local-Cloud Collaboration
Abstract:
Recent years have witnessed growing interest in adopting large language models (LLMs) for Register Transfer Level (RTL) code optimization. While powerful cloud-based LLMs offer superior optimization capabilities, they pose unacceptable intellectual property (IP) leakage risks when processing proprietary hardware designs. In this paper, we propose a new scenario where Verilog code must be optimized for specific attributes without leaking sensitive IP information. We introduce the first IP-preserving edge-cloud collaborative framework that leverages the benefits of both paradigms. Our approach employs local small LLMs (e.g., Qwen-2.5-Coder-7B) to perform secure comparative analysis between paired high-quality target designs and novice draft codes, yielding general design principles that summarize key insights for improvements. These principles are then used to query stronger cloud LLMs (e.g., Deepseek-V3) for targeted code improvement, ensuring that only abstracted and IP-safe guidance reaches external services. Our experimental results demonstrate that the framework achieves significantly higher optimization success rates compared to baseline methods. For example, combining Qwen-2.5-Coder-7B and Deepseek-V3 achieves a 66.67\% optimization success rate for power utilization, outperforming Deepseek-V3 alone (49.81\%) and even commercial models like GPT-4o (55.81\%). Further investigation of local and cloud LLM combinations reveals that different model pairings exhibit varying strengths for specific optimization objectives, with interesting trends emerging when varying the number of comparative code pairs. Our work establishes a new paradigm for secure hardware design optimization that balances performance gains with IP protection.

Authors:Minghao Shao, Nanda Rani, Kimberly Milner, Haoran Xi, Meet Udeshi, Saksham Aggarwal, Venkata Sai Charan Putrevu, Sandeep Kumar Shukla, Prashanth Krishnamurthy, Farshad Khorrami, Ramesh Karri, Muhammad Shafique
Title: Towards Effective Offensive Security LLM Agents: Hyperparameter Tuning, LLM as a Judge, and a Lightweight CTF Benchmark
Abstract:
Recent advances in LLM agentic systems have improved the automation of offensive security tasks, particularly for Capture the Flag (CTF) challenges. We systematically investigate the key factors that drive agent success and provide a detailed recipe for building effective LLM-based offensive security agents. First, we present CTFJudge, a framework leveraging LLM as a judge to analyze agent trajectories and provide granular evaluation across CTF solving steps. Second, we propose a novel metric, CTF Competency Index (CCI) for partial correctness, revealing how closely agent solutions align with human-crafted gold standards. Third, we examine how LLM hyperparameters, namely temperature, top-p, and maximum token length, influence agent performance and automated cybersecurity task planning. For rapid evaluation, we present CTFTiny, a curated benchmark of 50 representative CTF challenges across binary exploitation, web, reverse engineering, forensics, and cryptography. Our findings identify optimal multi-agent coordination settings and lay the groundwork for future LLM agent research in cybersecurity. We make CTFTiny open source to public https://github.com/NYU-LLM-CTF/CTFTiny along with CTFJudge on https://github.com/NYU-LLM-CTF/CTFJudge.

Authors:Weiqin Yang, Jiawei Chen, Shengjia Zhang, Peng Wu, Yuegang Sun, Yan Feng, Chun Chen, Can Wang
Title: Breaking the Top-$K$ Barrier: Advancing Top-$K$ Ranking Metrics Optimization in Recommender Systems
Abstract:
In the realm of recommender systems (RS), Top-$K$ ranking metrics such as NDCG@$K$ are the gold standard for evaluating recommendation performance. However, during the training of recommendation models, optimizing NDCG@$K$ poses significant challenges due to its inherent discontinuous nature and the intricate Top-$K$ truncation. Recent efforts to optimize NDCG@$K$ have either overlooked the Top-$K$ truncation or suffered from high computational costs and training instability. To overcome these limitations, we propose SoftmaxLoss@$K$ (SL@$K$), a novel recommendation loss tailored for NDCG@$K$ optimization. Specifically, we integrate the quantile technique to handle Top-$K$ truncation and derive a smooth upper bound for optimizing NDCG@$K$ to address discontinuity. The resulting SL@$K$ loss has several desirable properties, including theoretical guarantees, ease of implementation, computational efficiency, gradient stability, and noise robustness. Extensive experiments on four real-world datasets and three recommendation backbones demonstrate that SL@$K$ outperforms existing losses with a notable average improvement of 6.03%. The code is available at https://github.com/Tiny-Snow/IR-Benchmark.

Authors:Jin Khye Tan, En Jun Choong, Ethan Jeremiah Chitty, Yan Pheng Choo, John Hsin Yang Wong, Chern Eu Cheah
Title: Fine-Tuning Vision-Language Models for Markdown Conversion of Financial Tables in Malaysian Audited Financial Reports
Abstract:
Accurately extracting and representing the structure of tabular data from financial documents remains a critical challenge in document understanding, particularly for regulatory and analytical use cases. This study addresses the complexity of converting financial tables from Malaysian audited financial reports into Markdown format, a task complicated by rotated layouts, multi-level headers, and implicit structural cues. We propose a fine-tuned vision-language model (VLM), based on Qwen2.5-VL-7B, optimized for high-fidelity Markdown generation from document images. Our approach includes a curated dataset of 2,152 image-text pairs with augmentations and a supervised fine-tuning strategy using LoRA. To assess performance, we evaluated our model on 100 out-of-sample tables using a dual framework: a criteria-based LLM-as-a-judge for fine-grained accuracy and our novel Markdown Tree-Edit-Distance-based Similarity (TEDS) metric for holistic structural fidelity. Our model achieves a 92.20% overall accuracy on the criteria-based assessment and a 96.53% Markdown TEDS score. This performance significantly surpasses its Qwen2.5-VL-7B base model, larger-scale VLMs, and specialized reasoning-enabled models. Compared to these self-hosted alternatives, it also significantly reduces inference time. Furthermore, its accuracy exceeds that of widely used proprietary models such as OpenAI's GPT-4o and Gemini 2.5 Flash. These results demonstrate that domain-specific fine-tuning provides an effective and efficient method to bridge the gap between unstructured financial documents and downstream automation, rivalling much larger and more general models without their computational overhead.

Authors:Yunjia Xi, Jianghao Lin, Yongzhao Xiao, Zheli Zhou, Rong Shan, Te Gao, Jiachen Zhu, Weiwen Liu, Yong Yu, Weinan Zhang
Title: A Survey of LLM-based Deep Search Agents: Paradigm, Optimization, Evaluation, and Challenges
Abstract:
The advent of Large Language Models (LLMs) has significantly revolutionized web search. The emergence of LLM-based Search Agents marks a pivotal shift towards deeper, dynamic, autonomous information seeking. These agents can comprehend user intentions and environmental context and execute multi-turn retrieval with dynamic planning, extending search capabilities far beyond the web. Leading examples like OpenAI's Deep Research highlight their potential for deep information mining and real-world applications. This survey provides the first systematic analysis of search agents. We comprehensively analyze and categorize existing works from the perspectives of architecture, optimization, application, and evaluation, ultimately identifying critical open challenges and outlining promising future research directions in this rapidly evolving field. Our repository is available on https://github.com/YunjiaXi/Awesome-Search-Agent-Papers.

Authors:Zekun Liu, Xiaowen Huang, Jitao Sang
Title: ITDR: An Instruction Tuning Dataset for Enhancing Large Language Models in Recommendations
Abstract:
Large language models (LLMs) have demonstrated outstanding performance in natural language processing tasks. However, in the field of recommendation systems, due to the structural differences between user behavior data and natural language, LLMs struggle to effectively model the associations between user preferences and items. Although prompt-based methods can generate recommendation results, their inadequate understanding of recommendation tasks leads to constrained performance. To address this gap, in this work, we construct a sufficient instruction tuning dataset, ITDR, which encompasses 7 subtasks across two core root tasks--user-item interaction and user-item understanding. The dataset integrates data from 13 public recommendation datasets and is built using manually crafted standardized templates, comprising approximately 200,000 instances. Experimental results demonstrate that ITDR significantly enhances the performance of mainstream open-source LLMs such as GLM-4, Qwen2.5, Qwen2.5-Instruct and LLaMA-3.2 on recommendation tasks. Furthermore, we analyze the correlations between tasks and explore the impact of task descriptions and data scale on instruction tuning effectiveness. Finally, we perform comparative experiments against closed-source LLMs with substantial parameters. Our tuning dataset ITDR and the fine-tuned large recommendation models can be accessed at https://github.com/hellolzk/ITDR.

Authors:Alejandro Godinez
Title: HySemRAG: A Hybrid Semantic Retrieval-Augmented Generation Framework for Automated Literature Synthesis and Methodological Gap Analysis
Abstract:
We present HySemRAG, a framework that combines Extract, Transform, Load (ETL) pipelines with Retrieval-Augmented Generation (RAG) to automate large-scale literature synthesis and identify methodological research gaps. The system addresses limitations in existing RAG architectures through a multi-layered approach: hybrid retrieval combining semantic search, keyword filtering, and knowledge graph traversal; an agentic self-correction framework with iterative quality assurance; and post-hoc citation verification ensuring complete traceability. Our implementation processes scholarly literature through eight integrated stages: multi-source metadata acquisition, asynchronous PDF retrieval, custom document layout analysis using modified Docling architecture, bibliographic management, LLM-based field extraction, topic modeling, semantic unification, and knowledge graph construction. The system creates dual data products - a Neo4j knowledge graph enabling complex relationship queries and Qdrant vector collections supporting semantic search - serving as foundational infrastructure for verifiable information synthesis. Evaluation across 643 observations from 60 testing sessions demonstrates structured field extraction achieving 35.1% higher semantic similarity scores (0.655 $\pm$ 0.178) compared to PDF chunking approaches (0.485 $\pm$ 0.204, p < 0.000001). The agentic quality assurance mechanism achieves 68.3% single-pass success rates with 99.0% citation accuracy in validated responses. Applied to geospatial epidemiology literature on ozone exposure and cardiovascular disease, the system identifies methodological trends and research gaps, demonstrating broad applicability across scientific domains for accelerating evidence synthesis and discovery.

Authors:Jiaxuan Liang, Shide Zhou, Kailong Wang
Title: OmniBench-RAG: A Multi-Domain Evaluation Platform for Retrieval-Augmented Generation Tools
Abstract:
While Retrieval Augmented Generation (RAG) is now widely adopted to enhance LLMs, evaluating its true performance benefits in a reproducible and interpretable way remains a major hurdle. Existing methods often fall short: they lack domain coverage, employ coarse metrics that miss sub document precision, and fail to capture computational trade offs. Most critically, they provide no standardized framework for comparing RAG effectiveness across different models and domains. We introduce OmniBench RAG, a novel automated platform for multi domain evaluation of RAG systems. The platform quantifies performance gains across accuracy and efficiency dimensions, spanning nine knowledge fields including culture, geography, and health. We introduce two standardized metrics: Improvements (accuracy gains) and Transformation (efficiency differences between pre RAG and post RAG models), enabling reproducible comparisons across models and tasks. The platform features dynamic test generation, modular evaluation pipelines, and automated knowledge base construction. Our evaluation reveals striking variability in RAG effectiveness, from significant gains in culture to declines in mathematics, highlighting the critical importance of systematic, domain aware assessment. A demonstration video is available at: https://www.youtube.com/watch?v=BZx83QFcTCI. Code and datasets: https://github.com/Garnett-Liang/Omnibench-RAG.

Authors:Jianpeng Yao, Xiaopan Zhang, Yu Xia, Zejin Wang, Amit K. Roy-Chowdhury, Jiachen Li
Title: Towards Generalizable Safety in Crowd Navigation via Conformal Uncertainty Handling
Abstract:
Mobile robots navigating in crowds trained using reinforcement learning are known to suffer performance degradation when faced with out-of-distribution scenarios. We propose that by properly accounting for the uncertainties of pedestrians, a robot can learn safe navigation policies that are robust to distribution shifts. Our method augments agent observations with prediction uncertainty estimates generated by adaptive conformal inference, and it uses these estimates to guide the agent's behavior through constrained reinforcement learning. The system helps regulate the agent's actions and enables it to adapt to distribution shifts. In the in-distribution setting, our approach achieves a 96.93% success rate, which is over 8.80% higher than the previous state-of-the-art baselines with over 3.72 times fewer collisions and 2.43 times fewer intrusions into ground-truth human future trajectories. In three out-of-distribution scenarios, our method shows much stronger robustness when facing distribution shifts in velocity variations, policy changes, and transitions from individual to group dynamics. We deploy our method on a real robot, and experiments show that the robot makes safe and robust decisions when interacting with both sparse and dense crowds. Our code and videos are available on https://gen-safe-nav.github.io/.

Authors:Changle Qu, Sunhao Dai, Ke Guo, Liqin Zhao, Yanan Niu, Xiao Zhang, Jun Xu
Title: KuaiLive: A Real-time Interactive Dataset for Live Streaming Recommendation
Abstract:
Live streaming platforms have become a dominant form of online content consumption, offering dynamically evolving content, real-time interactions, and highly engaging user experiences. These unique characteristics introduce new challenges that differentiate live streaming recommendation from traditional recommendation settings and have garnered increasing attention from industry in recent years. However, research progress in academia has been hindered by the lack of publicly available datasets that accurately reflect the dynamic nature of live streaming environments. To address this gap, we introduce KuaiLive, the first real-time, interactive dataset collected from Kuaishou, a leading live streaming platform in China with over 400 million daily active users. The dataset records the interaction logs of 23,772 users and 452,621 streamers over a 21-day period. Compared to existing datasets, KuaiLive offers several advantages: it includes precise live room start and end timestamps, multiple types of real-time user interactions (click, comment, like, gift), and rich side information features for both users and streamers. These features enable more realistic simulation of dynamic candidate items and better modeling of user and streamer behaviors. We conduct a thorough analysis of KuaiLive from multiple perspectives and evaluate several representative recommendation methods on it, establishing a strong benchmark for future research. KuaiLive can support a wide range of tasks in the live streaming domain, such as top-K recommendation, click-through rate prediction, watch time prediction, and gift price prediction. Moreover, its fine-grained behavioral data also enables research on multi-behavior modeling, multi-task learning, and fairness-aware recommendation. The dataset and related resources are publicly available at https://imgkkk574.github.io/KuaiLive.

Authors:Zhikai Zhao, Chuanbo Hua, Federico Berto, Kanghoon Lee, Zihan Ma, Jiachen Li, Jinkyoo Park
Title: TrajEvo: Trajectory Prediction Heuristics Design via LLM-driven Evolution
Abstract:
Trajectory prediction is a critical task in modeling human behavior, especially in safety-critical domains such as social robotics and autonomous vehicle navigation. Traditional heuristics based on handcrafted rules often lack accuracy and generalizability. Although deep learning approaches offer improved performance, they typically suffer from high computational cost, limited explainability, and, importantly, poor generalization to out-of-distribution (OOD) scenarios. In this paper, we introduce TrajEvo, a framework that leverages Large Language Models (LLMs) to automatically design trajectory prediction heuristics. TrajEvo employs an evolutionary algorithm to generate and refine prediction heuristics from past trajectory data. We propose two key innovations: Cross-Generation Elite Sampling to encourage population diversity, and a Statistics Feedback Loop that enables the LLM to analyze and improve alternative predictions. Our evaluations demonstrate that TrajEvo outperforms existing heuristic methods across multiple real-world datasets, and notably surpasses both heuristic and deep learning methods in generalizing to an unseen OOD real-world dataset. TrajEvo marks a promising step toward the automated design of fast, explainable, and generalizable trajectory prediction heuristics. We release our source code to facilitate future research at https://github.com/ai4co/trajevo.

Authors:Yong Du, Yuchen Yan, Fei Tang, Zhengxi Lu, Chang Zong, Weiming Lu, Shengpei Jiang, Yongliang Shen
Title: Test-Time Reinforcement Learning for GUI Grounding via Region Consistency
Abstract:
Graphical User Interface (GUI) grounding, the task of mapping natural language instructions to precise screen coordinates, is fundamental to autonomous GUI agents. While existing methods achieve strong performance through extensive supervised training or reinforcement learning with labeled rewards, they remain constrained by the cost and availability of pixel-level annotations. We observe that when models generate multiple predictions for the same GUI element, the spatial overlap patterns reveal implicit confidence signals that can guide more accurate localization. Leveraging this insight, we propose GUI-RC (Region Consistency), a test-time scaling method that constructs spatial voting grids from multiple sampled predictions to identify consensus regions where models show highest agreement. Without any training, GUI-RC improves accuracy by 2-3% across various architectures on ScreenSpot benchmarks. We further introduce GUI-RCPO (Region Consistency Policy Optimization), which transforms these consistency patterns into rewards for test-time reinforcement learning. By computing how well each prediction aligns with the collective consensus, GUI-RCPO enables models to iteratively refine their outputs on unlabeled data during inference. Extensive experiments demonstrate the generality of our approach: GUI-RC boosts Qwen2.5-VL-3B-Instruct from 80.11% to 83.57% on ScreenSpot-v2, while GUI-RCPO further improves it to 85.14% through self-supervised optimization. Our approach reveals the untapped potential of test-time scaling and test-time reinforcement learning for GUI grounding, offering a promising path toward more robust and data-efficient GUI agents.

Authors:Zixuan Wang, Dingming Li, Hongxing Li, Shuo Chen, Yuchen Yan, Wenqi Zhang, Yongliang Shen, Weiming Lu, Jun Xiao, Yueting Zhuang
Title: OmniEAR: Benchmarking Agent Reasoning in Embodied Tasks
Abstract:
Large language models excel at abstract reasoning but their capacity for embodied agent reasoning remains largely unexplored. We present OmniEAR, a comprehensive framework for evaluating how language models reason about physical interactions, tool usage, and multi-agent coordination in embodied tasks. Unlike existing benchmarks that provide predefined tool sets or explicit collaboration directives, OmniEAR requires agents to dynamically acquire capabilities and autonomously determine coordination strategies based on task demands. Through text-based environment representation, we model continuous physical properties and complex spatial relationships across 1,500 scenarios spanning household and industrial domains. Our systematic evaluation reveals severe performance degradation when models must reason from constraints: while achieving 85-96% success with explicit instructions, performance drops to 56-85% for tool reasoning and 63-85% for implicit collaboration, with compound tasks showing over 50% failure rates. Surprisingly, complete environmental information degrades coordination performance, indicating models cannot filter task-relevant constraints. Fine-tuning improves single-agent tasks dramatically (0.6% to 76.3%) but yields minimal multi-agent gains (1.5% to 5.5%), exposing fundamental architectural limitations. These findings demonstrate that embodied reasoning poses fundamentally different challenges than current models can address, establishing OmniEAR as a rigorous benchmark for evaluating and advancing embodied AI systems. Our code and data are included in the supplementary materials and will be open-sourced upon acceptance.

Authors:Haitao Hong, Yuchen Yan, Xingyu Wu, Guiyang Hou, Wenqi Zhang, Weiming Lu, Yongliang Shen, Jun Xiao
Title: Cooper: Co-Optimizing Policy and Reward Models in Reinforcement Learning for Large Language Models
Abstract:
Large language models (LLMs) have demonstrated remarkable performance in reasoning tasks, where reinforcement learning (RL) serves as a key algorithm for enhancing their reasoning capabilities. Currently, there are two mainstream reward paradigms: model-based rewards and rule-based rewards. However, both approaches suffer from limitations: rule-based rewards lack robustness, while model-based rewards are vulnerable to reward hacking. To address these issues, we propose Cooper(Co-optimizing Policy Model and Reward Model), a RL framework that jointly optimizes both the policy model and the reward model. Cooper leverages the high precision of rule-based rewards when identifying correct responses, and dynamically constructs and selects positive-negative sample pairs for continued training the reward model. This design enhances robustness and mitigates the risk of reward hacking. To further support Cooper, we introduce a hybrid annotation strategy that efficiently and accurately generates training data for the reward model. We also propose a reference-based reward modeling paradigm, where the reward model takes a reference answer as input. Based on this design, we train a reward model named VerifyRM, which achieves higher accuracy on VerifyBench compared to other models of the same size. We conduct reinforcement learning using both VerifyRM and Cooper. Our experiments show that Cooper not only alleviates reward hacking but also improves end-to-end RL performance, for instance, achieving a 0.54% gain in average accuracy on Qwen2.5-1.5B-Instruct. Our findings demonstrate that dynamically updating reward model is an effective way to combat reward hacking, providing a reference for better integrating reward models into RL.

Authors:Linghao Zhu, Yiran Guan, Dingkang Liang, Jianzhong Ju, Zhenbo Luo, Bin Qin, Jian Luan, Yuliang Liu, Xiang Bai
Title: Shuffle-R1: Efficient RL framework for Multimodal Large Language Models via Data-centric Dynamic Shuffle
Abstract:
Reinforcement learning (RL) has emerged as an effective post-training paradigm for enhancing the reasoning capabilities of multimodal large language model (MLLM). However, current RL pipelines often suffer from training inefficiencies caused by two underexplored issues: Advantage Collapsing, where most advantages in a batch concentrate near zero, and Rollout Silencing, where the proportion of rollouts contributing non-zero gradients diminishes over time. These issues lead to suboptimal gradient updates and hinder long-term learning efficiency. To address these issues, we propose Shuffle-R1, a simple yet principled framework that improves RL fine-tuning efficiency by dynamically restructuring trajectory sampling and batch composition. It introduces (1) Pairwise Trajectory Sampling, which selects high-contrast trajectories with large advantages to improve gradient signal quality, and (2) Advantage-based Trajectory Shuffle, which increases exposure of valuable rollouts through informed batch reshuffling. Experiments across multiple reasoning benchmarks show that our framework consistently outperforms strong RL baselines with minimal overhead. These results highlight the importance of data-centric adaptations for more efficient RL training in MLLM.

Authors:Hao Dong, Lijun Sheng, Jian Liang, Ran He, Eleni Chatzi, Olga Fink
Title: Adapting Vision-Language Models Without Labels: A Comprehensive Survey
Abstract:
Vision-Language Models (VLMs) have demonstrated remarkable generalization capabilities across a wide range of tasks. However, their performance often remains suboptimal when directly applied to specific downstream scenarios without task-specific adaptation. To enhance their utility while preserving data efficiency, recent research has increasingly focused on unsupervised adaptation methods that do not rely on labeled data. Despite the growing interest in this area, there remains a lack of a unified, task-oriented survey dedicated to unsupervised VLM adaptation. To bridge this gap, we present a comprehensive and structured overview of the field. We propose a taxonomy based on the availability and nature of unlabeled visual data, categorizing existing approaches into four key paradigms: Data-Free Transfer (no data), Unsupervised Domain Transfer (abundant data), Episodic Test-Time Adaptation (batch data), and Online Test-Time Adaptation (streaming data). Within this framework, we analyze core methodologies and adaptation strategies associated with each paradigm, aiming to establish a systematic understanding of the field. Additionally, we review representative benchmarks across diverse applications and highlight open challenges and promising directions for future research. An actively maintained repository of relevant literature is available at https://github.com/tim-learn/Awesome-LabelFree-VLMs.

Authors:Ge Chang, Jinbo Su, Jiacheng Liu, Pengfei Yang, Yuhao Shang, Huiwen Zheng, Hongli Ma, Yan Liang, Yuanchun Li, Yunxin Liu
Title: GRAIL:Learning to Interact with Large Knowledge Graphs for Retrieval Augmented Reasoning
Abstract:
Large Language Models (LLMs) integrated with Retrieval-Augmented Generation (RAG) techniques have exhibited remarkable performance across a wide range of domains. However, existing RAG approaches primarily operate on unstructured data and demonstrate limited capability in handling structured knowledge such as knowledge graphs. Meanwhile, current graph retrieval methods fundamentally struggle to capture holistic graph structures while simultaneously facing precision control challenges that manifest as either critical information gaps or excessive redundant connections, collectively undermining reasoning performance. To address this challenge, we propose GRAIL: Graph-Retrieval Augmented Interactive Learning, a framework designed to interact with large-scale graphs for retrieval-augmented reasoning. Specifically, GRAIL integrates LLM-guided random exploration with path filtering to establish a data synthesis pipeline, where a fine-grained reasoning trajectory is automatically generated for each task. Based on the synthesized data, we then employ a two-stage training process to learn a policy that dynamically decides the optimal actions at each reasoning step. The overall objective of precision-conciseness balance in graph retrieval is decoupled into fine-grained process-supervised rewards to enhance data efficiency and training stability. In practical deployment, GRAIL adopts an interactive retrieval paradigm, enabling the model to autonomously explore graph paths while dynamically balancing retrieval breadth and precision. Extensive experiments have shown that GRAIL achieves an average accuracy improvement of 21.01% and F1 improvement of 22.43% on three knowledge graph question-answering datasets. Our source code and datasets is available at https://github.com/Changgeww/GRAIL.

Authors:Wonjun Kang, Byeongkeun Ahn, Minjae Lee, Kevin Galim, Seunghyuk Oh, Hyung Il Koo, Nam Ik Cho
Title: UNCAGE: Contrastive Attention Guidance for Masked Generative Transformers in Text-to-Image Generation
Abstract:
Text-to-image (T2I) generation has been actively studied using Diffusion Models and Autoregressive Models. Recently, Masked Generative Transformers have gained attention as an alternative to Autoregressive Models to overcome the inherent limitations of causal attention and autoregressive decoding through bidirectional attention and parallel decoding, enabling efficient and high-quality image generation. However, compositional T2I generation remains challenging, as even state-of-the-art Diffusion Models often fail to accurately bind attributes and achieve proper text-image alignment. While Diffusion Models have been extensively studied for this issue, Masked Generative Transformers exhibit similar limitations but have not been explored in this context. To address this, we propose Unmasking with Contrastive Attention Guidance (UNCAGE), a novel training-free method that improves compositional fidelity by leveraging attention maps to prioritize the unmasking of tokens that clearly represent individual objects. UNCAGE consistently improves performance in both quantitative and qualitative evaluations across multiple benchmarks and metrics, with negligible inference overhead. Our code is available at https://github.com/furiosa-ai/uncage.

Authors:Yufei Duan, Hang Yin, Danica Kragic
Title: Real-Time Iteration Scheme for Diffusion Policy
Abstract:
Diffusion Policies have demonstrated impressive performance in robotic manipulation tasks. However, their long inference time, resulting from an extensive iterative denoising process, and the need to execute an action chunk before the next prediction to maintain consistent actions limit their applicability to latency-critical tasks or simple tasks with a short cycle time. While recent methods explored distillation or alternative policy structures to accelerate inference, these often demand additional training, which can be resource-intensive for large robotic models. In this paper, we introduce a novel approach inspired by the Real-Time Iteration (RTI) Scheme, a method from optimal control that accelerates optimization by leveraging solutions from previous time steps as initial guesses for subsequent iterations. We explore the application of this scheme in diffusion inference and propose a scaling-based method to effectively handle discrete actions, such as grasping, in robotic manipulation. The proposed scheme significantly reduces runtime computational costs without the need for distillation or policy redesign. This enables a seamless integration into many pre-trained diffusion-based models, in particular, to resource-demanding large models. We also provide theoretical conditions for the contractivity which could be useful for estimating the initial denoising step. Quantitative results from extensive simulation experiments show a substantial reduction in inference time, with comparable overall performance compared with Diffusion Policy using full-step denoising. Our project page with additional resources is available at: https://rti-dp.github.io/.

Authors:Meiqi Wu, Yaxuan Kang, Xuchen Li, Shiyu Hu, Xiaotang Chen, Yunfeng Kang, Weiqiang Wang, Kaiqi Huang
Title: VS-LLM: Visual-Semantic Depression Assessment based on LLM for Drawing Projection Test
Abstract:
The Drawing Projection Test (DPT) is an essential tool in art therapy, allowing psychologists to assess participants' mental states through their sketches. Specifically, through sketches with the theme of "a person picking an apple from a tree (PPAT)", it can be revealed whether the participants are in mental states such as depression. Compared with scales, the DPT can enrich psychologists' understanding of an individual's mental state. However, the interpretation of the PPAT is laborious and depends on the experience of the psychologists. To address this issue, we propose an effective identification method to support psychologists in conducting a large-scale automatic DPT. Unlike traditional sketch recognition, DPT more focus on the overall evaluation of the sketches, such as color usage and space utilization. Moreover, PPAT imposes a time limit and prohibits verbal reminders, resulting in low drawing accuracy and a lack of detailed depiction. To address these challenges, we propose the following efforts: (1) Providing an experimental environment for automated analysis of PPAT sketches for depression assessment; (2) Offering a Visual-Semantic depression assessment based on LLM (VS-LLM) method; (3) Experimental results demonstrate that our method improves by 17.6% compared to the psychologist assessment method. We anticipate that this work will contribute to the research in mental state assessment based on PPAT sketches' elements recognition. Our datasets and codes are available at https://github.com/wmeiqi/VS-LLM.

Authors:Xiaoyang Zhang, jinjiang Li, Guodong Fan, Yakun Ju, Linwei Fan, Jun Liu, Alex C. Kot
Title: SGDFuse: SAM-Guided Diffusion for High-Fidelity Infrared and Visible Image Fusion
Abstract:
Infrared and visible image fusion (IVIF) aims to combine the thermal radiation information from infrared images with the rich texture details from visible images to enhance perceptual capabilities for downstream visual tasks. However, existing methods often fail to preserve key targets due to a lack of deep semantic understanding of the scene, while the fusion process itself can also introduce artifacts and detail loss, severely compromising both image quality and task performance. To address these issues, this paper proposes SGDFuse, a conditional diffusion model guided by the Segment Anything Model (SAM), to achieve high-fidelity and semantically-aware image fusion. The core of our method is to utilize high-quality semantic masks generated by SAM as explicit priors to guide the optimization of the fusion process via a conditional diffusion model. Specifically, the framework operates in a two-stage process: it first performs a preliminary fusion of multi-modal features, and then utilizes the semantic masks from SAM jointly with the preliminary fused image as a condition to drive the diffusion model's coarse-to-fine denoising generation. This ensures the fusion process not only has explicit semantic directionality but also guarantees the high fidelity of the final result. Extensive experiments demonstrate that SGDFuse achieves state-of-the-art performance in both subjective and objective evaluations, as well as in its adaptability to downstream tasks, providing a powerful solution to the core challenges in image fusion. The code of SGDFuse is available at https://github.com/boshizhang123/SGDFuse.

Authors:Hyunjoon Lee, Joonkyu Min, Jaesik Park
Title: CF3: Compact and Fast 3D Feature Fields
Abstract:
3D Gaussian Splatting (3DGS) has begun incorporating rich information from 2D foundation models. However, most approaches rely on a bottom-up optimization process that treats raw 2D features as ground truth, incurring increased computational costs. We propose a top-down pipeline for constructing compact and fast 3D Gaussian feature fields, namely, CF3. We first perform a fast weighted fusion of multi-view 2D features with pre-trained Gaussians. This approach enables training a per-Gaussian autoencoder directly on the lifted features, instead of training autoencoders in the 2D domain. As a result, the autoencoder better aligns with the feature distribution. More importantly, we introduce an adaptive sparsification method that optimizes the Gaussian attributes of the feature field while pruning and merging the redundant Gaussians, constructing an efficient representation with preserved geometric details. Our approach achieves a competitive 3D feature field using as little as 5% of the Gaussians compared to Feature-3DGS.

Authors:Yiheng Liu, Junhao Ning, Sichen Xia, Xiaohui Gao, Ning Qiang, Bao Ge, Junwei Han, Xintao Hu
Title: Pruning Large Language Models by Identifying and Preserving Functional Networks
Abstract:
Structured pruning is one of the representative techniques for compressing large language models (LLMs) to reduce GPU memory consumption and accelerate inference speed. It offers significant practical value in improving the efficiency of LLMs in real-world applications. Current structured pruning methods typically rely on assessment of the importance of the structure units and pruning the units with less importance. Most of them overlooks the interaction and collaboration among artificial neurons that are crucial for the functionalities of LLMs, leading to a disruption in the macro functional architecture of LLMs and consequently a pruning performance degradation. Inspired by the inherent similarities between artificial neural networks and functional neural networks in the human brain, we alleviate this challenge and propose to prune LLMs by identifying and preserving functional networks within LLMs in this study. To achieve this, we treat an LLM as a digital brain and decompose the LLM into functional networks, analogous to identifying functional brain networks in neuroimaging data. Afterwards, an LLM is pruned by preserving the key neurons within these functional networks. Experimental results demonstrate that the proposed method can successfully identify and locate functional networks and key neurons in LLMs, enabling efficient model pruning. Our code is available at https://github.com/WhatAboutMyStar/LLM_ACTIVATION.

Authors:Xiao Wang, Liye Jin, Xufeng Lou, Shiao Wang, Lan Chen, Bo Jiang, Zhipeng Zhang
Title: ReasoningTrack: Chain-of-Thought Reasoning for Long-term Vision-Language Tracking
Abstract:
Vision-language tracking has received increasing attention in recent years, as textual information can effectively address the inflexibility and inaccuracy associated with specifying the target object to be tracked. Existing works either directly fuse the fixed language with vision features or simply modify using attention, however, their performance is still limited. Recently, some researchers have explored using text generation to adapt to the variations in the target during tracking, however, these works fail to provide insights into the model's reasoning process and do not fully leverage the advantages of large models, which further limits their overall performance. To address the aforementioned issues, this paper proposes a novel reasoning-based vision-language tracking framework, named ReasoningTrack, based on a pre-trained vision-language model Qwen2.5-VL. Both SFT (Supervised Fine-Tuning) and reinforcement learning GRPO are used for the optimization of reasoning and language generation. We embed the updated language descriptions and feed them into a unified tracking backbone network together with vision features. Then, we adopt a tracking head to predict the specific location of the target object. In addition, we propose a large-scale long-term vision-language tracking benchmark dataset, termed TNLLT, which contains 200 video sequences. 20 baseline visual trackers are re-trained and evaluated on this dataset, which builds a solid foundation for the vision-language visual tracking task. Extensive experiments on multiple vision-language tracking benchmark datasets fully validated the effectiveness of our proposed reasoning-based natural language generation strategy. The source code of this paper will be released on https://github.com/Event-AHU/Open_VLTrack

Authors:Chiara Mallamaci, Aleksandr Vladimirovich Petrov, Alberto Carlo Maria Mancino, Vito Walter Anelli, Tommaso Di Noia, Craig Macdonald
Title: Balancing Accuracy and Novelty with Sub-Item Popularity
Abstract:
In the realm of music recommendation, sequential recommenders have shown promise in capturing the dynamic nature of music consumption. A key characteristic of this domain is repetitive listening, where users frequently replay familiar tracks. To capture these repetition patterns, recent research has introduced Personalised Popularity Scores (PPS), which quantify user-specific preferences based on historical frequency. While PPS enhances relevance in recommendation, it often reinforces already-known content, limiting the system's ability to surface novel or serendipitous items - key elements for fostering long-term user engagement and satisfaction. To address this limitation, we build upon RecJPQ, a Transformer-based framework initially developed to improve scalability in large-item catalogues through sub-item decomposition. We repurpose RecJPQ's sub-item architecture to model personalised popularity at a finer granularity. This allows us to capture shared repetition patterns across sub-embeddings - latent structures not accessible through item-level popularity alone. We propose a novel integration of sub-ID-level personalised popularity within the RecJPQ framework, enabling explicit control over the trade-off between accuracy and personalised novelty. Our sub-ID-level PPS method (sPPS) consistently outperforms item-level PPS by achieving significantly higher personalised novelty without compromising recommendation accuracy. Code and experiments are publicly available at https://github.com/sisinflab/Sub-id-Popularity.

Authors:Zhuohang Jiang, Pangjing Wu, Xu Yuan, Wenqi Fan, Qing Li
Title: QA-Dragon: Query-Aware Dynamic RAG System for Knowledge-Intensive Visual Question Answering
Abstract:
Retrieval-Augmented Generation (RAG) has been introduced to mitigate hallucinations in Multimodal Large Language Models (MLLMs) by incorporating external knowledge into the generation process, and it has become a widely adopted approach for knowledge-intensive Visual Question Answering (VQA). However, existing RAG methods typically retrieve from either text or images in isolation, limiting their ability to address complex queries that require multi-hop reasoning or up-to-date factual knowledge. To address this limitation, we propose QA-Dragon, a Query-Aware Dynamic RAG System for Knowledge-Intensive VQA. Specifically, QA-Dragon introduces a domain router to identify the query's subject domain for domain-specific reasoning, along with a search router that dynamically selects optimal retrieval strategies. By orchestrating both text and image search agents in a hybrid setup, our system supports multimodal, multi-turn, and multi-hop reasoning, enabling it to tackle complex VQA tasks effectively. We evaluate our QA-Dragon on the Meta CRAG-MM Challenge at KDD Cup 2025, where it significantly enhances the reasoning performance of base models under challenging scenarios. Our framework achieves substantial improvements in both answer accuracy and knowledge overlap scores, outperforming baselines by 5.06% on the single-source task, 6.35% on the multi-source task, and 5.03% on the multi-turn task.

Authors:Renmiao Chen, Shiyao Cui, Xuancheng Huang, Chengwei Pan, Victor Shea-Jay Huang, QingLin Zhang, Xuan Ouyang, Zhexin Zhang, Hongning Wang, Minlie Huang
Title: JPS: Jailbreak Multimodal Large Language Models with Collaborative Visual Perturbation and Textual Steering
Abstract:
Jailbreak attacks against multimodal large language Models (MLLMs) are a significant research focus. Current research predominantly focuses on maximizing attack success rate (ASR), often overlooking whether the generated responses actually fulfill the attacker's malicious intent. This oversight frequently leads to low-quality outputs that bypass safety filters but lack substantial harmful content. To address this gap, we propose JPS, \underline{J}ailbreak MLLMs with collaborative visual \underline{P}erturbation and textual \underline{S}teering, which achieves jailbreaks via corporation of visual image and textually steering prompt. Specifically, JPS utilizes target-guided adversarial image perturbations for effective safety bypass, complemented by "steering prompt" optimized via a multi-agent system to specifically guide LLM responses fulfilling the attackers' intent. These visual and textual components undergo iterative co-optimization for enhanced performance. To evaluate the quality of attack outcomes, we propose the Malicious Intent Fulfillment Rate (MIFR) metric, assessed using a Reasoning-LLM-based evaluator. Our experiments show JPS sets a new state-of-the-art in both ASR and MIFR across various MLLMs and benchmarks, with analyses confirming its efficacy. Codes are available at \href{https://github.com/thu-coai/JPS}{https://github.com/thu-coai/JPS}. \color{warningcolor}{Warning: This paper contains potentially sensitive contents.}

Authors:Jinda Liu, Bo Cheng, Yi Chang, Yuan Wu
Title: Align, Don't Divide: Revisiting the LoRA Architecture in Multi-Task Learning
Abstract:
Parameter-Efficient Fine-Tuning (PEFT) is essential for adapting Large Language Models (LLMs). In practice, LLMs are often required to handle a diverse set of tasks from multiple domains, a scenario naturally addressed by multi-task learning (MTL). Within this MTL context, a prevailing trend involves LoRA variants with multiple adapters or heads, which advocate for structural diversity to capture task-specific knowledge. Our findings present a direct challenge to this paradigm. We first show that a simplified multi-head architecture with high inter-head similarity substantially outperforms complex multi-adapter and multi-head systems. This leads us to question the multi-component paradigm itself, and we further demonstrate that a standard single-adapter LoRA, with a sufficiently increased rank, also achieves highly competitive performance. These results lead us to a new hypothesis: effective MTL generalization hinges on learning robust shared representations, not isolating task-specific features. To validate this, we propose Align-LoRA, which incorporates an explicit loss to align task representations within the shared adapter space. Experiments confirm that Align-LoRA significantly surpasses all baselines, establishing a simpler yet more effective paradigm for adapting LLMs to multiple tasks. The code is available at https://github.com/jinda-liu/Align-LoRA.

Authors:Zhu Xu, Ting Lei, Zhimin Li, Guan Wang, Qingchao Chen, Yuxin Peng, Yang liu
Title: TRKT: Weakly Supervised Dynamic Scene Graph Generation with Temporal-enhanced Relation-aware Knowledge Transferring
Abstract:
Dynamic Scene Graph Generation (DSGG) aims to create a scene graph for each video frame by detecting objects and predicting their relationships. Weakly Supervised DSGG (WS-DSGG) reduces annotation workload by using an unlocalized scene graph from a single frame per video for training. Existing WS-DSGG methods depend on an off-the-shelf external object detector to generate pseudo labels for subsequent DSGG training. However, detectors trained on static, object-centric images struggle in dynamic, relation-aware scenarios required for DSGG, leading to inaccurate localization and low-confidence proposals. To address the challenges posed by external object detectors in WS-DSGG, we propose a Temporal-enhanced Relation-aware Knowledge Transferring (TRKT) method, which leverages knowledge to enhance detection in relation-aware dynamic scenarios. TRKT is built on two key components:(1)Relation-aware knowledge mining: we first employ object and relation class decoders that generate category-specific attention maps to highlight both object regions and interactive areas. Then we propose an Inter-frame Attention Augmentation strategy that exploits optical flow for neighboring frames to enhance the attention maps, making them motion-aware and robust to motion blur. This step yields relation- and motion-aware knowledge mining for WS-DSGG. (2) we introduce a Dual-stream Fusion Module that integrates category-specific attention maps into external detections to refine object localization and boost confidence scores for object proposals. Extensive experiments demonstrate that TRKT achieves state-of-the-art performance on Action Genome dataset. Our code is avaliable at https://github.com/XZPKU/TRKT.git.

Authors:Suchisrit Gangopadhyay, Jung-Hee Kim, Xien Chen, Patrick Rim, Hyoungseob Park, Alex Wong
Title: Extending Foundational Monocular Depth Estimators to Fisheye Cameras with Calibration Tokens
Abstract:
We propose a method to extend foundational monocular depth estimators (FMDEs), trained on perspective images, to fisheye images. Despite being trained on tens of millions of images, FMDEs are susceptible to the covariate shift introduced by changes in camera calibration (intrinsic, distortion) parameters, leading to erroneous depth estimates. Our method aligns the distribution of latent embeddings encoding fisheye images to those of perspective images, enabling the reuse of FMDEs for fisheye cameras without retraining or finetuning. To this end, we introduce a set of Calibration Tokens as a light-weight adaptation mechanism that modulates the latent embeddings for alignment. By exploiting the already expressive latent space of FMDEs, we posit that modulating their embeddings avoids the negative impact of artifacts and loss introduced in conventional recalibration or map projection to a canonical reference frame in the image space. Our method is self-supervised and does not require fisheye images but leverages publicly available large-scale perspective image datasets. This is done by recalibrating perspective images to fisheye images, and enforcing consistency between their estimates during training. We evaluate our approach with several FMDEs, on both indoors and outdoors, where we consistently improve over state-of-the-art methods using a single set of tokens for both. Code available at: https://github.com/JungHeeKim29/calibration-token.

Authors:Huiya Zhao, Yinghao Zhu, Zixiang Wang, Yasha Wang, Junyi Gao, Liantao Ma
Title: ConfAgents: A Conformal-Guided Multi-Agent Framework for Cost-Efficient Medical Diagnosis
Abstract:
The efficacy of AI agents in healthcare research is hindered by their reliance on static, predefined strategies. This creates a critical limitation: agents can become better tool-users but cannot learn to become better strategic planners, a crucial skill for complex domains like healthcare. We introduce HealthFlow, a self-evolving AI agent that overcomes this limitation through a novel meta-level evolution mechanism. HealthFlow autonomously refines its own high-level problem-solving policies by distilling procedural successes and failures into a durable, strategic knowledge base. To anchor our research and facilitate reproducible evaluation, we introduce EHRFlowBench, a new benchmark featuring complex, realistic health data analysis tasks derived from peer-reviewed clinical research. Our comprehensive experiments demonstrate that HealthFlow's self-evolving approach significantly outperforms state-of-the-art agent frameworks. This work marks a necessary shift from building better tool-users to designing smarter, self-evolving task-managers, paving the way for more autonomous and effective AI for scientific discovery.

Authors:Shuonan Yang, Tailin Chen, Rahul Singh, Jiangbei Yue, Jianbo Jiao, Zeyu Fu
Title: Revealing Temporal Label Noise in Multimodal Hateful Video Classification
Abstract:
The rapid proliferation of online multimedia content has intensified the spread of hate speech, presenting critical societal and regulatory challenges. While recent work has advanced multimodal hateful video detection, most approaches rely on coarse, video-level annotations that overlook the temporal granularity of hateful content. This introduces substantial label noise, as videos annotated as hateful often contain long non-hateful segments. In this paper, we investigate the impact of such label ambiguity through a fine-grained approach. Specifically, we trim hateful videos from the HateMM and MultiHateClip English datasets using annotated timestamps to isolate explicitly hateful segments. We then conduct an exploratory analysis of these trimmed segments to examine the distribution and characteristics of both hateful and non-hateful content. This analysis highlights the degree of semantic overlap and the confusion introduced by coarse, video-level annotations. Finally, controlled experiments demonstrated that time-stamp noise fundamentally alters model decision boundaries and weakens classification confidence, highlighting the inherent context dependency and temporal continuity of hate speech expression. Our findings provide new insights into the temporal dynamics of multimodal hateful videos and highlight the need for temporally aware models and benchmarks for improved robustness and interpretability. Code and data are available at https://github.com/Multimodal-Intelligence-Lab-MIL/HatefulVideoLabelNoise.

Authors:Seungyong Lee, Jeong-gi Kwak
Title: Voost: A Unified and Scalable Diffusion Transformer for Bidirectional Virtual Try-On and Try-Off
Abstract:
Virtual try-on aims to synthesize a realistic image of a person wearing a target garment, but accurately modeling garment-body correspondence remains a persistent challenge, especially under pose and appearance variation. In this paper, we propose Voost - a unified and scalable framework that jointly learns virtual try-on and try-off with a single diffusion transformer. By modeling both tasks jointly, Voost enables each garment-person pair to supervise both directions and supports flexible conditioning over generation direction and garment category, enhancing garment-body relational reasoning without task-specific networks, auxiliary losses, or additional labels. In addition, we introduce two inference-time techniques: attention temperature scaling for robustness to resolution or mask variation, and self-corrective sampling that leverages bidirectional consistency between tasks. Extensive experiments demonstrate that Voost achieves state-of-the-art results on both try-on and try-off benchmarks, consistently outperforming strong baselines in alignment accuracy, visual fidelity, and generalization.

Authors:Xuan Lin, Long Chen, Yile Wang
Title: AttriLens-Mol: Attribute Guided Reinforcement Learning for Molecular Property Prediction with Large Language Models
Abstract:
Large Language Models (LLMs) have shown promise in assisting molecular property prediction tasks but often rely on human-crafted prompts and chain-of-thought templates. While recent advanced large reasoning models like DeepSeek-R1 employ reinforcement learning for an extended ``thinking'' process, their reasoning can be verbose and lack relevance. We introduce AttriLens-Mol, an attribute-guided reinforcement learning framework for molecular property prediction with LLMs. AttriLens-Mol steers the model's reasoning by using: (1) a format reward encouraging attribute-based structured output, (2) a count reward to avoid enumerating irrelevant attributes, and (3) a rationality reward using advanced LLMs and RDKit to verify the relatedness of the generated attributes. This approach implicitly elicits the model's inherent knowledge of relevant molecular attributes during reasoning, enables making predictions for the molecular property more effectively. Experiments on both in-distribution and out-of-distribution datasets show that, training both 7B-size R1-Distilled-Qwen2.5 and R1-Distilled-LLaMA3.1 models on 4,000 samples with our proposed AttriLens-Mol method significantly boosts the performance, getting comparable or better results than supervised fine-tuning models (Mol-Instructions, ChemDFM, etc.) and advanced models (GPT-3.5, GPT-4o, DeepSeek-V3, DeepSeek-R1, etc.). Further, our extracted attributes for the target property, when used as features for an interpretable decision tree model, yield superior performance compared to attributes generated by prompting LLMs. This shows that AttriLens-Mol effectively elicits more relevant and predictive molecular attributes, leading to enhanced interpretability and performance for property prediction. We release the code in https://github.com/szu-tera/AttriLens-Mol.

Authors:Pouyan Navard, Yasemin Ozkut, Srikar Adhikari, Elaine Situ-LaCasse, Josie Acuña, Adrienne Yarnish, Alper Yilmaz
Title: ERDES: A Benchmark Video Dataset for Retinal Detachment and Macular Status Classification in Ocular Ultrasound
Abstract:
Retinal detachment (RD) is a vision-threatening condition that requires timely intervention to preserve vision. Macular involvement -- whether the macula is still intact (macula-intact) or detached (macula-detached) -- is the key determinant of visual outcomes and treatment urgency. Point-of-care ultrasound (POCUS) offers a fast, non-invasive, cost-effective, and accessible imaging modality widely used in diverse clinical settings to detect RD. However, ultrasound image interpretation is limited by a lack of expertise among healthcare providers, especially in resource-limited settings. Deep learning offers the potential to automate ultrasound-based assessment of RD. However, there are no ML ultrasound algorithms currently available for clinical use to detect RD and no prior research has been done on assessing macular status using ultrasound in RD cases -- an essential distinction for surgical prioritization. Moreover, no public dataset currently supports macular-based RD classification using ultrasound video clips. We introduce Eye Retinal DEtachment ultraSound, ERDES, the first open-access dataset of ocular ultrasound clips labeled for (i) presence of retinal detachment and (ii) macula-intact versus macula-detached status. The dataset is intended to facilitate the development and evaluation of machine learning models for detecting retinal detachment. We also provide baseline benchmarks using multiple spatiotemporal convolutional neural network (CNN) architectures. All clips, labels, and training code are publicly available at https://osupcvlab.github.io/ERDES/.

Authors:Sha Zhao, Song Yi, Yangxuan Zhou, Jiadong Pan, Jiquan Wang, Jie Xia, Shijian Li, Shurong Dong, Gang Pan
Title: Wearable Music2Emotion : Assessing Emotions Induced by AI-Generated Music through Portable EEG-fNIRS Fusion
Abstract:
Emotions critically influence mental health, driving interest in music-based affective computing via neurophysiological signals with Brain-computer Interface techniques. While prior studies leverage music's accessibility for emotion induction, three key limitations persist: \textbf{(1) Stimulus Constraints}: Music stimuli are confined to small corpora due to copyright and curation costs, with selection biases from heuristic emotion-music mappings that ignore individual affective profiles. \textbf{(2) Modality Specificity}: Overreliance on unimodal neural data (e.g., EEG) ignores complementary insights from cross-modal signal fusion.\textbf{ (3) Portability Limitation}: Cumbersome setups (e.g., 64+ channel gel-based EEG caps) hinder real-world applicability due to procedural complexity and portability barriers. To address these limitations, we propose MEEtBrain, a portable and multimodal framework for emotion analysis (valence/arousal), integrating AI-generated music stimuli with synchronized EEG-fNIRS acquisition via a wireless headband. By MEEtBrain, the music stimuli can be automatically generated by AI on a large scale, eliminating subjective selection biases while ensuring music diversity. We use our developed portable device that is designed in a lightweight headband-style and uses dry electrodes, to simultaneously collect EEG and fNIRS recordings. A 14-hour dataset from 20 participants was collected in the first recruitment to validate the framework's efficacy, with AI-generated music eliciting target emotions (valence/arousal). We are actively expanding our multimodal dataset (44 participants in the latest dataset) and make it publicly available to promote further research and practical applications. \textbf{The dataset is available at https://zju-bmi-lab.github.io/ZBra.

Authors:Zeyi Sun, Ziyu Liu, Yuhang Zang, Yuhang Cao, Xiaoyi Dong, Tong Wu, Dahua Lin, Jiaqi Wang
Title: SEAgent: Self-Evolving Computer Use Agent with Autonomous Learning from Experience
Abstract:
Repurposing large vision-language models (LVLMs) as computer use agents (CUAs) has led to substantial breakthroughs, primarily driven by human-labeled data. However, these models often struggle with novel and specialized software, particularly in scenarios lacking human annotations. To address this challenge, we propose SEAgent, an agentic self-evolving framework enabling CUAs to autonomously evolve through interactions with unfamiliar software. Specifically, SEAgent empowers computer-use agents to autonomously master novel software environments via experiential learning, where agents explore new software, learn through iterative trial-and-error, and progressively tackle auto-generated tasks organized from simple to complex. To achieve this goal, we design a World State Model for step-wise trajectory assessment, along with a Curriculum Generator that generates increasingly diverse and challenging tasks. The agent's policy is updated through experiential learning, comprised of adversarial imitation of failure actions and Group Relative Policy Optimization (GRPO) on successful ones. Furthermore, we introduce a specialist-to-generalist training strategy that integrates individual experiential insights from specialist agents, facilitating the development of a stronger generalist CUA capable of continuous autonomous evolution. This unified agent ultimately achieves performance surpassing ensembles of individual specialist agents on their specialized software. We validate the effectiveness of SEAgent across five novel software environments within OS-World. Our approach achieves a significant improvement of 23.2% in success rate, from 11.3% to 34.5%, over a competitive open-source CUA, i.e., UI-TARS.

Authors:Yuanchen Bai, Zijian Ding, Shaoyue Wen, Xiang Chang, Angelique Taylor
Title: From MAS to MARS: Coordination Failures and Reasoning Trade-offs in Hierarchical Multi-Agent Robotic Systems within a Healthcare Scenario
Abstract:
Multi-agent robotic systems (MARS) build upon multi-agent systems by integrating physical and task-related constraints, increasing the complexity of action execution and agent coordination. However, despite the availability of advanced multi-agent frameworks, their real-world deployment on robots remains limited, hindering the advancement of MARS research in practice. To bridge this gap, we conducted two studies to investigate performance trade-offs of hierarchical multi-agent frameworks in a simulated real-world multi-robot healthcare scenario. In Study 1, using CrewAI, we iteratively refine the system's knowledge base, to systematically identify and categorize coordination failures (e.g., tool access violations, lack of timely handling of failure reports) not resolvable by providing contextual knowledge alone. In Study 2, using AutoGen, we evaluate a redesigned bidirectional communication structure and further measure the trade-offs between reasoning and non-reasoning models operating within the same robotic team setting. Drawing from our empirical findings, we emphasize the tension between autonomy and stability and the importance of edge-case testing to improve system reliability and safety for future real-world deployment. Supplementary materials, including codes, task agent setup, trace outputs, and annotated examples of coordination failures and reasoning behaviors, are available at: https://byc-sophie.github.io/mas-to-mars/.

Authors:Yunan Zhang, Shuoran Jiang, Mengchen Zhao, Yuefeng Li, Yang Fan, Xiangping Wu, Qingcai Chen
Title: GeRe: Towards Efficient Anti-Forgetting in Continual Learning of LLM via General Samples Replay
Abstract:
The continual learning capability of large language models (LLMs) is crucial for advancing artificial general intelligence. However, continual fine-tuning LLMs across various domains often suffers from catastrophic forgetting, characterized by: 1) significant forgetting of their general capabilities, and 2) sharp performance declines in previously learned tasks. To simultaneously address both issues in a simple yet stable manner, we propose General Sample Replay (GeRe), a framework that use usual pretraining texts for efficient anti-forgetting. Beyond revisiting the most prevalent replay-based practices under GeRe, we further leverage neural states to introduce a enhanced activation states constrained optimization method using threshold-based margin (TM) loss, which maintains activation state consistency during replay learning. We are the first to validate that a small, fixed set of pre-collected general replay samples is sufficient to resolve both concerns--retaining general capabilities while promoting overall performance across sequential tasks. Indeed, the former can inherently facilitate the latter. Through controlled experiments, we systematically compare TM with different replay strategies under the GeRe framework, including vanilla label fitting, logit imitation via KL divergence and feature imitation via L1/L2 losses. Results demonstrate that TM consistently improves performance and exhibits better robustness. Our work paves the way for efficient replay of LLMs for the future. Our code and data are available at https://github.com/Qznan/GeRe.

Authors:Hao Wang, Limeng Qiao, Zequn Jie, Zhijian Huang, Chengjian Feng, Qingfang Zheng, Lin Ma, Xiangyuan Lan, Xiaodan Liang
Title: X-SAM: From Segment Anything to Any Segmentation
Abstract:
Large Language Models (LLMs) demonstrate strong capabilities in broad knowledge representation, yet they are inherently deficient in pixel-level perceptual understanding. Although the Segment Anything Model (SAM) represents a significant advancement in visual-prompt-driven image segmentation, it exhibits notable limitations in multi-mask prediction and category-specific segmentation tasks, and it cannot integrate all segmentation tasks within a unified model architecture. To address these limitations, we present X-SAM, a streamlined Multimodal Large Language Model (MLLM) framework that extends the segmentation paradigm from \textit{segment anything} to \textit{any segmentation}. Specifically, we introduce a novel unified framework that enables more advanced pixel-level perceptual comprehension for MLLMs. Furthermore, we propose a new segmentation task, termed Visual GrounDed (VGD) segmentation, which segments all instance objects with interactive visual prompts and empowers MLLMs with visual grounded, pixel-wise interpretative capabilities. To enable effective training on diverse data sources, we present a unified training strategy that supports co-training across multiple datasets. Experimental results demonstrate that X-SAM achieves state-of-the-art performance on a wide range of image segmentation benchmarks, highlighting its efficiency for multimodal, pixel-level visual understanding. Code is available at https://github.com/wanghao9610/X-SAM.

Authors:Gokcan Tatli, Yi Chen, Blake Mason, Robert Nowak, Ramya Korlakai Vinayak
Title: Metric Learning in an RKHS
Abstract:
Metric learning from a set of triplet comparisons in the form of "Do you think item h is more similar to item i or item j?", indicating similarity and differences between items, plays a key role in various applications including image retrieval, recommendation systems, and cognitive psychology. The goal is to learn a metric in the RKHS that reflects the comparisons. Nonlinear metric learning using kernel methods and neural networks have shown great empirical promise. While previous works have addressed certain aspects of this problem, there is little or no theoretical understanding of such methods. The exception is the special (linear) case in which the RKHS is the standard Euclidean space $\mathbb{R}^d$; there is a comprehensive theory for metric learning in $\mathbb{R}^d$. This paper develops a general RKHS framework for metric learning and provides novel generalization guarantees and sample complexity bounds. We validate our findings through a set of simulations and experiments on real datasets. Our code is publicly available at https://github.com/RamyaLab/metric-learning-RKHS.

Authors:Fuqing Bie, Shiyu Huang, Xijia Tao, Zhiqin Fang, Leyi Pan, Junzhe Chen, Min Ren, Liuyu Xiang, Zhaofeng He
Title: OmniPlay: Benchmarking Omni-Modal Models on Omni-Modal Game Playing
Abstract:
While generalist foundation models like Gemini and GPT-4o demonstrate impressive multi-modal competence, existing evaluations fail to test their intelligence in dynamic, interactive worlds. Static benchmarks lack agency, while interactive benchmarks suffer from a severe modal bottleneck, typically ignoring crucial auditory and temporal cues. To bridge this evaluation chasm, we introduce OmniPlay, a diagnostic benchmark designed not just to evaluate, but to probe the fusion and reasoning capabilities of agentic models across the full sensory spectrum. Built on a core philosophy of modality interdependence, OmniPlay comprises a suite of five game environments that systematically create scenarios of both synergy and conflict, forcing agents to perform genuine cross-modal reasoning. Our comprehensive evaluation of six leading omni-modal models reveals a critical dichotomy: they exhibit superhuman performance on high-fidelity memory tasks but suffer from systemic failures in challenges requiring robust reasoning and strategic planning. We demonstrate that this fragility stems from brittle fusion mechanisms, which lead to catastrophic performance degradation under modality conflict and uncover a counter-intuitive "less is more" paradox, where removing sensory information can paradoxically improve performance. Our findings suggest that the path toward robust AGI requires a research focus beyond scaling to explicitly address synergistic fusion. Our platform is available for anonymous review at https://github.com/fuqingbie/omni-game-benchmark.

Authors:Xiao Wang, Ziwen Wang, Wentao Wu, Anjie Wang, Jiashu Wu, Yantao Pan, Chenglong Li
Title: Segment Any Vehicle: Semantic and Visual Context Driven SAM and A Benchmark
Abstract:
With the rapid advancement of autonomous driving, vehicle perception, particularly detection and segmentation, has placed increasingly higher demands on algorithmic performance. Pre-trained large segmentation models, especially Segment Anything Model (SAM), have sparked significant interest and inspired new research directions in artificial intelligence. However, SAM cannot be directly applied to the fine-grained task of vehicle part segmentation, as its text-prompted segmentation functionality is not publicly accessible, and the mask regions generated by its default mode lack semantic labels, limiting its utility in structured, category-specific segmentation tasks. To address these limitations, we propose SAV, a novel framework comprising three core components: a SAM-based encoder-decoder, a vehicle part knowledge graph, and a context sample retrieval encoding module. The knowledge graph explicitly models the spatial and geometric relationships among vehicle parts through a structured ontology, effectively encoding prior structural knowledge. Meanwhile, the context retrieval module enhances segmentation by identifying and leveraging visually similar vehicle instances from training data, providing rich contextual priors for improved generalization. Furthermore, we introduce a new large-scale benchmark dataset for vehicle part segmentation, named VehicleSeg10K, which contains 11,665 high-quality pixel-level annotations across diverse scenes and viewpoints. We conduct comprehensive experiments on this dataset and two other datasets, benchmarking multiple representative baselines to establish a solid foundation for future research and comparison. % Both the dataset and source code of this paper will be released upon acceptance. Both the dataset and source code of this paper will be released on https://github.com/Event-AHU/SAV

Authors:Kangrui Cen, Baixuan Zhao, Yi Xin, Siqi Luo, Guangtao Zhai, Xiaohong Liu
Title: LayerT2V: Interactive Multi-Object Trajectory Layering for Video Generation
Abstract:
Controlling object motion trajectories in Text-to-Video (T2V) generation is a challenging and relatively under-explored area, particularly in scenarios involving multiple moving objects. Most community models and datasets in the T2V domain are designed for single-object motion, limiting the performance of current generative models in multi-object tasks. Additionally, existing motion control methods in T2V either lack support for multi-object motion scenes or experience severe performance degradation when object trajectories intersect, primarily due to the semantic conflicts in colliding regions. To address these limitations, we introduce LayerT2V, the first approach for generating video by compositing background and foreground objects layer by layer. This layered generation enables flexible integration of multiple independent elements within a video, positioning each element on a distinct "layer" and thus facilitating coherent multi-object synthesis while enhancing control over the generation process. Extensive experiments demonstrate the superiority of LayerT2V in generating complex multi-object scenarios, showcasing 1.4x and 4.5x improvements in mIoU and AP50 metrics over state-of-the-art (SOTA) methods. Project page and code are available at https://kr-panghu.github.io/LayerT2V/ .

Authors:Yan Zhang, Gangyan Zeng, Daiqing Wu, Huawen Shen, Binbin Li, Yu Zhou, Can Ma, Xiaojun Bi
Title: Gather and Trace: Rethinking Video TextVQA from an Instance-oriented Perspective
Abstract:
Video text-based visual question answering (Video TextVQA) aims to answer questions by explicitly reading and reasoning about the text involved in a video. Most works in this field follow a frame-level framework which suffers from redundant text entities and implicit relation modeling, resulting in limitations in both accuracy and efficiency. In this paper, we rethink the Video TextVQA task from an instance-oriented perspective and propose a novel model termed GAT (Gather and Trace). First, to obtain accurate reading result for each video text instance, a context-aggregated instance gathering module is designed to integrate the visual appearance, layout characteristics, and textual contents of the related entities into a unified textual representation. Then, to capture dynamic evolution of text in the video flow, an instance-focused trajectory tracing module is utilized to establish spatio-temporal relationships between instances and infer the final answer. Extensive experiments on several public Video TextVQA datasets validate the effectiveness and generalization of our framework. GAT outperforms existing Video TextVQA methods, video-language pretraining methods, and video large language models in both accuracy and inference speed. Notably, GAT surpasses the previous state-of-the-art Video TextVQA methods by 3.86\% in accuracy and achieves ten times of faster inference speed than video large language models. The source code is available at https://github.com/zhangyan-ucas/GAT.

Authors:Huan Liao, Qinke Ni, Yuancheng Wang, Yiheng Lu, Haoyue Zhan, Pengyuan Xie, Qiang Zhang, Zhizheng Wu
Title: NVSpeech: An Integrated and Scalable Pipeline for Human-Like Speech Modeling with Paralinguistic Vocalizations
Abstract:
Paralinguistic vocalizations-including non-verbal sounds like laughter and breathing, as well as lexicalized interjections such as "uhm" and "oh"-are integral to natural spoken communication. Despite their importance in conveying affect, intent, and interactional cues, such cues remain largely overlooked in conventional automatic speech recognition (ASR) and text-to-speech (TTS) systems. We present NVSpeech, an integrated and scalable pipeline that bridges the recognition and synthesis of paralinguistic vocalizations, encompassing dataset construction, ASR modeling, and controllable TTS. (1) We introduce a manually annotated dataset of 48,430 human-spoken utterances with 18 word-level paralinguistic categories. (2) We develop the paralinguistic-aware ASR model, which treats paralinguistic cues as inline decodable tokens (e.g., "You're so funny [Laughter]"), enabling joint lexical and non-verbal transcription. This model is then used to automatically annotate a large corpus, the first large-scale Chinese dataset of 174,179 utterances (573 hours) with word-level alignment and paralingustic cues. (3) We finetune zero-shot TTS models on both human- and auto-labeled data to enable explicit control over paralinguistic vocalizations, allowing context-aware insertion at arbitrary token positions for human-like speech synthesis. By unifying the recognition and generation of paralinguistic vocalizations, NVSpeech offers the first open, large-scale, word-level annotated pipeline for expressive speech modeling in Mandarin, integrating recognition and synthesis in a scalable and controllable manner. Dataset and audio demos are available at https://nvspeech170k.github.io/.

Authors:Xuan Qi, Rongwu Xu, Zhijing Jin
Title: Difficulty-Based Preference Data Selection by DPO Implicit Reward Gap
Abstract:
Aligning large language models (LLMs) with human preferences is a critical challenge in AI research. While methods like Reinforcement Learning from Human Feedback (RLHF) and Direct Preference Optimization (DPO) are widely used, they often rely on large, costly preference datasets. The current work lacks methods for high-quality data selection specifically for preference data. In this work, we introduce a novel difficulty-based data selection strategy for preference datasets, grounded in the DPO implicit reward mechanism. By selecting preference data examples with smaller DPO implicit reward gaps, which are indicative of more challenging cases, we improve data efficiency and model alignment. Our approach consistently outperforms five strong baselines across multiple datasets and alignment tasks, achieving superior performance with only 10\% of the original data. This principled, efficient selection method offers a promising solution for scaling LLM alignment with limited resources.

Authors:Jinghang Han, Jiawei Chen, Hang Shao, Hao Ma, Mingcheng Li, Xintian Shen, Lihao Zheng, Wei Chen, Tao Wei, Lihua Zhang
Title: COPO: Consistency-Aware Policy Optimization
Abstract:
Reinforcement learning has significantly enhanced the reasoning capabilities of Large Language Models (LLMs) in complex problem-solving tasks. Recently, the introduction of DeepSeek R1 has inspired a surge of interest in leveraging rule-based rewards as a low-cost alternative for computing advantage functions and guiding policy optimization. However, a common challenge observed across many replication and extension efforts is that when multiple sampled responses under a single prompt converge to identical outcomes, whether correct or incorrect, the group-based advantage degenerates to zero. This leads to vanishing gradients and renders the corresponding samples ineffective for learning, ultimately limiting training efficiency and downstream performance. To address this issue, we propose a consistency-aware policy optimization framework that introduces a structured global reward based on outcome consistency, the global loss based on it ensures that, even when model outputs show high intra-group consistency, the training process still receives meaningful learning signals, which encourages the generation of correct and self-consistent reasoning paths from a global perspective. Furthermore, we incorporate an entropy-based soft blending mechanism that adaptively balances local advantage estimation with global optimization, enabling dynamic transitions between exploration and convergence throughout training. Our method introduces several key innovations in both reward design and optimization strategy. We validate its effectiveness through substantial performance gains on multiple mathematical reasoning benchmarks, highlighting the proposed framework's robustness and general applicability. Code of this work has been released at https://github.com/hijih/copo-code.git.

Authors:Jingchao Wang, Zhijian Wu, Dingjiang Huang, Yefeng Zheng, Hong Wang
Title: Unlocking the Potential of MLLMs in Referring Expression Segmentation via a Light-weight Mask Decoder
Abstract:
Reference Expression Segmentation (RES) aims to segment image regions specified by referring expressions and has become popular with the rise of multimodal large models (MLLMs). While MLLMs excel in semantic understanding, their token-generation paradigm struggles with pixel-level dense prediction. Existing RES methods either couple MLLMs with the parameter-heavy Segment Anything Model (SAM) with 632M network parameters or adopt SAM-free lightweight pipelines that sacrifice accuracy. To address the trade-off between performance and cost, we specifically propose MLLMSeg, a novel framework that fully exploits the inherent visual detail features encoded in the MLLM vision encoder without introducing an extra visual encoder. Besides, we propose a detail-enhanced and semantic-consistent feature fusion module (DSFF) that fully integrates the detail-related visual feature with the semantic-related feature output by the large language model (LLM) of MLLM. Finally, we establish a light-weight mask decoder with only 34M network parameters that optimally leverages detailed spatial features from the visual encoder and semantic features from the LLM to achieve precise mask prediction. Extensive experiments demonstrate that our method generally surpasses both SAM-based and SAM-free competitors, striking a better balance between performance and cost. Code is available at https://github.com/jcwang0602/MLLMSeg.

Authors:Jinfan Tang, Kunming Wu, Ruifeng Gongxie, Yuya He, Yuankai Wu
Title: GeoSR: Cognitive-Agentic Framework for Probing Geospatial Knowledge Boundaries via Iterative Self-Refinement
Abstract:
Recent studies have extended the application of large language models (LLMs) to geographic problems, revealing surprising geospatial competence even without explicit spatial supervision. However, LLMs still face challenges in spatial consistency, multi-hop reasoning, and geographic bias. To address these issues, we propose GeoSR, a self-refining agentic reasoning framework that embeds core geographic principles -- most notably Tobler's First Law of Geography -- into an iterative prediction loop. In GeoSR, the reasoning process is decomposed into three collaborating agents: (1) a variable-selection agent that selects relevant covariates from the same location; (2) a point-selection agent that chooses reference predictions at nearby locations generated by the LLM in previous rounds; and (3) a refine agent that coordinates the iterative refinement process by evaluating prediction quality and triggering further rounds when necessary. This agentic loop progressively improves prediction quality by leveraging both spatial dependencies and inter-variable relationships. We validate GeoSR on tasks ranging from physical-world property estimation to socioeconomic prediction. Experimental results show consistent improvements over standard prompting strategies, demonstrating that incorporating geostatistical priors and spatially structured reasoning into LLMs leads to more accurate and equitable geospatial predictions. The code of GeoSR is available at https://github.com/JinfanTang/GeoSR.

Authors:Trinh Quoc Nguyen, Oky Dicky Ardiansyah Prima, Syahid Al Irfan, Hindriyanto Dwi Purnomo, Radius Tanone
Title: CORE-ReID V2: Advancing the Domain Adaptation for Object Re-Identification with Optimized Training and Ensemble Fusion
Abstract:
This study presents CORE-ReID V2, an enhanced framework building upon CORE-ReID. The new framework extends its predecessor by addressing Unsupervised Domain Adaptation (UDA) challenges in Person ReID and Vehicle ReID, with further applicability to Object ReID. During pre-training, CycleGAN is employed to synthesize diverse data, bridging image characteristic gaps across different domains. In the fine-tuning, an advanced ensemble fusion mechanism, consisting of the Efficient Channel Attention Block (ECAB) and the Simplified Efficient Channel Attention Block (SECAB), enhances both local and global feature representations while reducing ambiguity in pseudo-labels for target samples. Experimental results on widely used UDA Person ReID and Vehicle ReID datasets demonstrate that the proposed framework outperforms state-of-the-art methods, achieving top performance in Mean Average Precision (mAP) and Rank-k Accuracy (Top-1, Top-5, Top-10). Moreover, the framework supports lightweight backbones such as ResNet18 and ResNet34, ensuring both scalability and efficiency. Our work not only pushes the boundaries of UDA-based Object ReID but also provides a solid foundation for further research and advancements in this domain. Our codes and models are available at https://github.com/TrinhQuocNguyen/CORE-ReID-V2.

Authors:Chao Hao, Shuai Wang, Kaiwen Zhou
Title: Uncertainty-Aware GUI Agent: Adaptive Perception through Component Recommendation and Human-in-the-Loop Refinement
Abstract:
Graphical user interface (GUI) agents have shown promise in automating mobile tasks but still struggle with input redundancy and decision ambiguity. In this paper, we present \textbf{RecAgent}, an uncertainty-aware agent that addresses these issues through adaptive perception. We distinguish two types of uncertainty in GUI navigation: (1) perceptual uncertainty, caused by input redundancy and noise from comprehensive screen information, and (2) decision uncertainty, arising from ambiguous tasks and complex reasoning. To reduce perceptual uncertainty, RecAgent employs a component recommendation mechanism that identifies and focuses on the most relevant UI elements. For decision uncertainty, it uses an interactive module to request user feedback in ambiguous situations, enabling intent-aware decisions. These components are integrated into a unified framework that proactively reduces input complexity and reacts to high-uncertainty cases via human-in-the-loop refinement. Additionally, we propose a dataset called \textbf{ComplexAction} to evaluate the success rate of GUI agents in executing specified single-step actions within complex scenarios. Extensive experiments validate the effectiveness of our approach. The dataset and code will be available at https://github.com/Fanye12/RecAgent.

Authors:Yurun Chen, Xavier Hu, Yuhan Liu, Keting Yin, Juncheng Li, Zhuosheng Zhang, Shengyu Zhang
Title: HarmonyGuard: Toward Safety and Utility in Web Agents via Adaptive Policy Enhancement and Dual-Objective Optimization
Abstract:
Large language models enable agents to autonomously perform tasks in open web environments. However, as hidden threats within the web evolve, web agents face the challenge of balancing task performance with emerging risks during long-sequence operations. Although this challenge is critical, current research remains limited to single-objective optimization or single-turn scenarios, lacking the capability for collaborative optimization of both safety and utility in web environments. To address this gap, we propose HarmonyGuard, a multi-agent collaborative framework that leverages policy enhancement and objective optimization to jointly improve both utility and safety. HarmonyGuard features a multi-agent architecture characterized by two fundamental capabilities: (1) Adaptive Policy Enhancement: We introduce the Policy Agent within HarmonyGuard, which automatically extracts and maintains structured security policies from unstructured external documents, while continuously updating policies in response to evolving threats. (2) Dual-Objective Optimization: Based on the dual objectives of safety and utility, the Utility Agent integrated within HarmonyGuard performs the Markovian real-time reasoning to evaluate the objectives and utilizes metacognitive capabilities for their optimization. Extensive evaluations on multiple benchmarks show that HarmonyGuard improves policy compliance by up to 38% and task completion by up to 20% over existing baselines, while achieving over 90% policy compliance across all tasks. Our project is available here: https://github.com/YurunChen/HarmonyGuard.

Authors:Teodor Chiaburu, Vipin Singh, Frank Haußer, Felix Bießmann
Title: SoilNet: A Multimodal Multitask Model for Hierarchical Classification of Soil Horizons
Abstract:
While recent advances in foundation models have improved the state of the art in many domains, some problems in empirical sciences could not benefit from this progress yet. Soil horizon classification, for instance, remains challenging because of its multimodal and multitask characteristics and a complex hierarchically structured label taxonomy. Accurate classification of soil horizons is crucial for monitoring soil health, which directly impacts agricultural productivity, food security, ecosystem stability and climate resilience. In this work, we propose $\textit{SoilNet}$ - a multimodal multitask model to tackle this problem through a structured modularized pipeline. Our approach integrates image data and geotemporal metadata to first predict depth markers, segmenting the soil profile into horizon candidates. Each segment is characterized by a set of horizon-specific morphological features. Finally, horizon labels are predicted based on the multimodal concatenated feature vector, leveraging a graph-based label representation to account for the complex hierarchical relationships among soil horizons. Our method is designed to address complex hierarchical classification, where the number of possible labels is very large, imbalanced and non-trivially structured. We demonstrate the effectiveness of our approach on a real-world soil profile dataset. All code and experiments can be found in our repository: https://github.com/calgo-lab/BGR/

Authors:Xiao Wang, Zikang Yan, Hao Si, Zhendong Yang, Qingquan Yang, Dengdi Sun, Wanli Lyu, Jin Tang
Title: Revisiting Heat Flux Analysis of Tungsten Monoblock Divertor on EAST using Physics-Informed Neural Network
Abstract:
Estimating heat flux in the nuclear fusion device EAST is a critically important task. Traditional scientific computing methods typically model this process using the Finite Element Method (FEM). However, FEM relies on grid-based sampling for computation, which is computationally inefficient and hard to perform real-time simulations during actual experiments. Inspired by artificial intelligence-powered scientific computing, this paper proposes a novel Physics-Informed Neural Network (PINN) to address this challenge, significantly accelerating the heat conduction estimation process while maintaining high accuracy. Specifically, given inputs of different materials, we first feed spatial coordinates and time stamps into the neural network, and compute boundary loss, initial condition loss, and physical loss based on the heat conduction equation. Additionally, we sample a small number of data points in a data-driven manner to better fit the specific heat conduction scenario, further enhancing the model's predictive capability. We conduct experiments under both uniform and non-uniform heating conditions on the top surface. Experimental results show that the proposed thermal conduction physics-informed neural network achieves accuracy comparable to the finite element method, while achieving $\times$40 times acceleration in computational efficiency. The dataset and source code will be released on https://github.com/Event-AHU/OpenFusion.

Authors:Yajun Liu, Zenghui Zhang, Jiang Yue, Weiwei Guo, Dongying Li
Title: M$^3$HL: Mutual Mask Mix with High-Low Level Feature Consistency for Semi-Supervised Medical Image Segmentation
Abstract:
Data augmentation methods inspired by CutMix have demonstrated significant potential in recent semi-supervised medical image segmentation tasks. However, these approaches often apply CutMix operations in a rigid and inflexible manner, while paying insufficient attention to feature-level consistency constraints. In this paper, we propose a novel method called Mutual Mask Mix with High-Low level feature consistency (M$^3$HL) to address the aforementioned challenges, which consists of two key components: 1) M$^3$: An enhanced data augmentation operation inspired by the masking strategy from Masked Image Modeling (MIM), which advances conventional CutMix through dynamically adjustable masks to generate spatially complementary image pairs for collaborative training, thereby enabling effective information fusion between labeled and unlabeled images. 2) HL: A hierarchical consistency regularization framework that enforces high-level and low-level feature consistency between unlabeled and mixed images, enabling the model to better capture discriminative feature representations.Our method achieves state-of-the-art performance on widely adopted medical image segmentation benchmarks including the ACDC and LA datasets. Source code is available at https://github.com/PHPJava666/M3HL

Authors:Weiwei Cao, Jianpeng Zhang, Zhongyi Shui, Sinuo Wang, Zeli Chen, Xi Li, Le Lu, Xianghua Ye, Tingbo Liang, Qi Zhang, Ling Zhang
Title: Boosting Vision Semantic Density with Anatomy Normality Modeling for Medical Vision-language Pre-training
Abstract:
Vision-language pre-training (VLP) has great potential for developing multifunctional and general medical diagnostic capabilities. However, aligning medical images with a low signal-to-noise ratio (SNR) to reports with a high SNR presents a semantic density gap, leading to visual alignment bias. In this paper, we propose boosting vision semantic density to improve alignment effectiveness. On one hand, we enhance visual semantics through disease-level vision contrastive learning, which strengthens the model's ability to differentiate between normal and abnormal samples for each anatomical structure. On the other hand, we introduce an anatomical normality modeling method to model the distribution of normal samples for each anatomy, leveraging VQ-VAE for reconstructing normal vision embeddings in the latent space. This process amplifies abnormal signals by leveraging distribution shifts in abnormal samples, enhancing the model's perception and discrimination of abnormal attributes. The enhanced visual representation effectively captures the diagnostic-relevant semantics, facilitating more efficient and accurate alignment with the diagnostic report. We conduct extensive experiments on two chest CT datasets, CT-RATE and Rad-ChestCT, and an abdominal CT dataset, MedVL-CT69K, and comprehensively evaluate the diagnosis performance across multiple tasks in the chest and abdominal CT scenarios, achieving state-of-the-art zero-shot performance. Notably, our method achieved an average AUC of 84.9% across 54 diseases in 15 organs, significantly surpassing existing methods. Additionally, we demonstrate the superior transfer learning capabilities of our pre-trained model. Code is available at https://github.com/alibaba-damo-academy/ViSD-Boost.

Authors:Xin Liu, Qiyang Song, Shaowen Xu, Kerou Zhou, Wenbo Jiang, Xiaoqi Jia, Weijuan Zhang, Heqing Huang, Yakai Li
Title: Latent Knowledge Scalpel: Precise and Massive Knowledge Editing for Large Language Models
Abstract:
Large Language Models (LLMs) often retain inaccurate or outdated information from pre-training, leading to incorrect predictions or biased outputs during inference. While existing model editing methods can address this challenge, they struggle with editing large amounts of factual information simultaneously and may compromise the general capabilities of the models. In this paper, our empirical study demonstrates that it is feasible to edit the internal representations of LLMs and replace the entities in a manner similar to editing natural language inputs. Based on this insight, we introduce the Latent Knowledge Scalpel (LKS), an LLM editor that manipulates the latent knowledge of specific entities via a lightweight hypernetwork to enable precise and large-scale editing. Experiments conducted on Llama-2 and Mistral show even with the number of simultaneous edits reaching 10,000, LKS effectively performs knowledge editing while preserving the general abilities of the edited LLMs. Code is available at: https://github.com/Linuxin-xxx/LKS.

Authors:Shudong Liu, Hongwei Liu, Junnan Liu, Linchen Xiao, Songyang Gao, Chengqi Lyu, Yuzhe Gu, Wenwei Zhang, Derek F. Wong, Songyang Zhang, Kai Chen
Title: CompassVerifier: A Unified and Robust Verifier for LLMs Evaluation and Outcome Reward
Abstract:
Answer verification is crucial not only for evaluating large language models (LLMs) by matching their unstructured outputs against standard answers, but also serves as the reward model to guide LLM optimization. Most evaluation frameworks rely on regularized matching or employ general LLMs for answer verification, which demands extensive, repetitive customization for regex rules or evaluation prompts. Two fundamental limitations persist in current methodologies: 1) the absence of comprehensive benchmarks that systematically evaluate verification capabilities across different LLMs; and 2) the nascent stage of verifier development, where existing approaches lack both the robustness to handle complex edge cases and the generalizability across different domains. In this work, we develop CompassVerifier, an accurate and robust lightweight verifier model for evaluation and outcome reward. It demonstrates multi-domain competency spanning math, knowledge, and diverse reasoning tasks, with the capability to process various answer types, including multi-subproblems, formulas, and sequence answers, while effectively identifying abnormal/invalid responses. We introduce VerifierBench benchmark comprising model outputs collected from multiple data sources, augmented through manual analysis of metaerror patterns to enhance CompassVerifier. We anticipate that CompassVerifier and VerifierBench will facilitate answer verification, evaluation protocols, and reinforcement learning research. Code and dataset are available at https://github.com/open-compass/CompassVerifier.

Authors:Yong Lin, Shange Tang, Bohan Lyu, Ziran Yang, Jui-Hui Chung, Haoyu Zhao, Lai Jiang, Yihan Geng, Jiawei Ge, Jingruo Sun, Jiayun Wu, Jiri Gesi, Ximing Lu, David Acuna, Kaiyu Yang, Hongzhou Lin, Yejin Choi, Danqi Chen, Sanjeev Arora, Chi Jin
Title: Goedel-Prover-V2: Scaling Formal Theorem Proving with Scaffolded Data Synthesis and Self-Correction
Abstract:
We introduce Goedel-Prover-V2, a series of open-source language models that set a new state-of-the-art in automated theorem proving. Built on the standard expert iteration and reinforcement learning pipeline, our approach incorporates three key innovations: (1) Scaffolded data synthesis: We generate synthetic tasks of increasing difficulty to train the model to master increasingly complex theorems; (2) Verifier-guided self-correction: We enable the model to iteratively revise its proofs by leveraging feedback from the Lean compiler; (3) Model averaging: We merge model checkpoints to mitigate the decrease in model output diversity in later stages of training. Our small model, Goedel-Prover-V2-8B, reaches 84.6% pass@32 on MiniF2F and outperforms DeepSeek-Prover-V2-671B under the same metric, despite being 80X smaller. Our flagship model, Goedel-Prover-V2-32B, achieves 88.1% on MiniF2F at pass@32 in standard mode and 90.4% in self-correction mode, outperforming prior SOTA by a large margin. Additionally, our flagship model solves 86 problems on PutnamBench at pass@184, securing the first place among open-source models on the leaderboard, surpassing DeepSeek-Prover-V2-671B's record of solving 47 problems by pass@1024 with a significantly smaller model size and compute budget. At the time of its release (July-August 2025), Goedel-Prover-V2 achieves the strongest overall performance among all open-source theorem provers. It also ranks among the top-performing models--including closed-source systems with publicly reported performance--under a constrained test-time compute budget. Our models, code, and data are released at https://github.com/Goedel-LM/Goedel-Prover-V2.

Authors:Wuyang Li, Wentao Pan, Xiaoyuan Liu, Zhendong Luo, Chenxin Li, Hengyu Liu, Din Ping Tsai, Mu Ku Chen, Yixuan Yuan
Title: MetaScope: Optics-Driven Neural Network for Ultra-Micro Metalens Endoscopy
Abstract:
Miniaturized endoscopy has advanced accurate visual perception within the human body. Prevailing research remains limited to conventional cameras employing convex lenses, where the physical constraints with millimetre-scale thickness impose serious impediments on the micro-level clinical. Recently, with the emergence of meta-optics, ultra-micro imaging based on metalenses (micron-scale) has garnered great attention, serving as a promising solution. However, due to the physical difference of metalens, there is a large gap in data acquisition and algorithm research. In light of this, we aim to bridge this unexplored gap, advancing the novel metalens endoscopy. First, we establish datasets for metalens endoscopy and conduct preliminary optical simulation, identifying two derived optical issues that physically adhere to strong optical priors. Second, we propose MetaScope, a novel optics-driven neural network tailored for metalens endoscopy driven by physical optics. MetaScope comprises two novel designs: Optics-informed Intensity Adjustment (OIA), rectifying intensity decay by learning optical embeddings, and Optics-informed Chromatic Correction (OCC), mitigating chromatic aberration by learning spatial deformations informed by learned Point Spread Function (PSF) distributions. To enhance joint learning, we further deploy a gradient-guided distillation to transfer knowledge from the foundational model adaptively. Extensive experiments demonstrate that MetaScope not only outperforms state-of-the-art methods in both metalens segmentation and restoration but also achieves impressive generalized ability in real biomedical scenes.

Authors:Zhiyao Xu, Dan Zhao, Qingsong Zou, Qing Li, Yong Jiang, Yuhang Wang, Jingyu Xiao
Title: Semantic-aware Graph-guided Behavior Sequences Generation with Large Language Models for Smart Homes
Abstract:
As smart homes become increasingly prevalent, intelligent models are widely used for tasks such as anomaly detection and behavior prediction. These models are typically trained on static datasets, making them brittle to behavioral drift caused by seasonal changes, lifestyle shifts, or evolving routines. However, collecting new behavior data for retraining is often impractical due to its slow pace, high cost, and privacy concerns. In this paper, we propose SmartGen, an LLM-based framework that synthesizes context-aware user behavior data to support continual adaptation of downstream smart home models. SmartGen consists of four key components. First, we design a Time and Semantic-aware Split module to divide long behavior sequences into manageable, semantically coherent subsequences under dual time-span constraints. Second, we propose Semantic-aware Sequence Compression to reduce input length while preserving representative semantics by clustering behavior mapping in latent space. Third, we introduce Graph-guided Sequence Synthesis, which constructs a behavior relationship graph and encodes frequent transitions into prompts, guiding the LLM to generate data aligned with contextual changes while retaining core behavior patterns. Finally, we design a Two-stage Outlier Filter to identify and remove implausible or semantically inconsistent outputs, aiming to improve the factual coherence and behavioral validity of the generated sequences. Experiments on three real-world datasets demonstrate that SmartGen significantly enhances model performance on anomaly detection and behavior prediction tasks under behavioral drift, with anomaly detection improving by 85.43% and behavior prediction by 70.51% on average. The code is available at https://github.com/horizonsinzqs/SmartGen.

Authors:Pranshu Rastogi
Title: fact check AI at SemEval-2025 Task 7: Multilingual and Crosslingual Fact-checked Claim Retrieval
Abstract:
SemEval-2025 Task 7: Multilingual and Crosslingual Fact-Checked Claim Retrieval is approached as a Learning-to-Rank task using a bi-encoder model fine-tuned from a pre-trained transformer optimized for sentence similarity. Training used both the source languages and their English translations for multilingual retrieval and only English translations for cross-lingual retrieval. Using lightweight models with fewer than 500M parameters and training on Kaggle T4 GPUs, the method achieved 92% Success@10 in multilingual and 80% Success@10 in 5th in crosslingual and 10th in multilingual tracks.

Authors:Futian Wang, Yuhan Qiao, Xiao Wang, Fuling Wang, Yuxiang Zhang, Dengdi Sun
Title: R2GenKG: Hierarchical Multi-modal Knowledge Graph for LLM-based Radiology Report Generation
Abstract:
X-ray medical report generation is one of the important applications of artificial intelligence in healthcare. With the support of large foundation models, the quality of medical report generation has significantly improved. However, challenges such as hallucination and weak disease diagnostic capability still persist. In this paper, we first construct a large-scale multi-modal medical knowledge graph (termed M3KG) based on the ground truth medical report using the GPT-4o. It contains 2477 entities, 3 kinds of relations, 37424 triples, and 6943 disease-aware vision tokens for the CheXpert Plus dataset. Then, we sample it to obtain multi-granularity semantic graphs and use an R-GCN encoder for feature extraction. For the input X-ray image, we adopt the Swin-Transformer to extract the vision features and interact with the knowledge using cross-attention. The vision tokens are fed into a Q-former and retrieved the disease-aware vision tokens using another cross-attention. Finally, we adopt the large language model to map the semantic knowledge graph, input X-ray image, and disease-aware vision tokens into language descriptions. Extensive experiments on multiple datasets fully validated the effectiveness of our proposed knowledge graph and X-ray report generation framework. The source code of this paper will be released on https://github.com/Event-AHU/Medical_Image_Analysis.

Authors:Xinlei Yu, Zhangquan Chen, Yudong Zhang, Shilin Lu, Ruolin Shen, Jiangning Zhang, Xiaobin Hu, Yanwei Fu, Shuicheng Yan
Title: Visual Document Understanding and Question Answering: A Multi-Agent Collaboration Framework with Test-Time Scaling
Abstract:
Existing vision-language models (VLMs), whether generalists or specialists, remain constrained by their parameter scale, lack robust self-correction capabilities, and underperform in tasks involving long visual contexts and complex reasoning, resulting in suboptimal performance on document-based tasks. To address this, we propose MACT, a Multi-Agent Collaboration framework with Test-Time scaling, tailored for visual document understanding and visual question answering (VQA). It comprises four distinct small-scale agents, i.e., planning, execution, judgment, and answer agents, with clearly defined roles and effective collaboration. Notably, the judgment agent exclusively verifies correctness and redirects to prior agents for revisions, outperforming conventional correction strategies. To further expand the capability boundaries of the framework, we propose mixed reward modeling that balances agent-specific abilities and global collaboration, as well as agent-wise hybrid test-time scaling, which customizes different scaling strategies for each agent based on their functions. Evaluated on benchmarks spanning both document-based and non-document-based settings, our MACT shows superior performance with a smaller parameter scale without sacrificing the ability of general and mathematical tasks. Especially, it stands out in benchmarks involving long visual contexts and complicated reasoning. The three variants of MACT consistently hold the top three positions in average scores, leading in 13 of the 15 benchmarks. Code will be available at: https://github.com/YU-deep/MACT.git.

Authors:Pingchuan Ma, Xiaopei Yang, Yusong Li, Ming Gui, Felix Krause, Johannes Schusterbauer, Björn Ommer
Title: SCFlow: Implicitly Learning Style and Content Disentanglement with Flow Models
Abstract:
Explicitly disentangling style and content in vision models remains challenging due to their semantic overlap and the subjectivity of human perception. Existing methods propose separation through generative or discriminative objectives, but they still face the inherent ambiguity of disentangling intertwined concepts. Instead, we ask: Can we bypass explicit disentanglement by learning to merge style and content invertibly, allowing separation to emerge naturally? We propose SCFlow, a flow-matching framework that learns bidirectional mappings between entangled and disentangled representations. Our approach is built upon three key insights: 1) Training solely to merge style and content, a well-defined task, enables invertible disentanglement without explicit supervision; 2) flow matching bridges on arbitrary distributions, avoiding the restrictive Gaussian priors of diffusion models and normalizing flows; and 3) a synthetic dataset of 510,000 samples (51 styles $\times$ 10,000 content samples) was curated to simulate disentanglement through systematic style-content pairing. Beyond controllable generation tasks, we demonstrate that SCFlow generalizes to ImageNet-1k and WikiArt in zero-shot settings and achieves competitive performance, highlighting that disentanglement naturally emerges from the invertible merging process.

Authors:Zhende Song, Shengji Tang, Peng Ye, Jiayuan Fan, Tao Chen
Title: CTTS: Collective Test-Time Scaling
Abstract:
Test-time scaling (TTS) has emerged as a promising research field for enhancing the effectiveness of large language models (LLMs) without extra training. However, most existing approaches, e.g., Best-of-N and Self-Consistency rely on a single agent interacting with a reward model (SA-SR), constrained by limited capabilities of a single test-time scaling (STTS) paradigm. On the other hand, recent works demonstrate that collective-agent methods can break through the upper bound of single-agent systems by orchestrating diverse models. Thus, in this paper, we take a first step towards exploring Collective Test-Time Scaling (CTTS). Consider the different interaction types of single and multiple models, we design three primary paradigms to investigate the optimal paradigm of CTTS: (1) single agent to multiple reward models (SA-MR); (2) multiple agents to single reward model (MA-SR); and (3) multiple agents to multiple reward models (MA-MR). Extensive experiments demonstrate that MA-MR consistently achieves the best performance. Based on this, we propose a novel framework named CTTS-MM that effectively leverages both multi-agent and multi-reward-model collaboration for enhanced inference. Specifically, for multi-agent collaboration, we propose an Agent Collaboration Search (ACS), which searches for the most effective combination of LLM agents from a large candidate pool; for multi-reward-model collaboration, we propose Mixture of Reword Models (MoR), which consists of a curated question pool and a Prior Reward model Ensemble Selection (PRES) to select the optimal combinations of reward models via Pair-wise Reward Ranking (PRR) metric. Experiments across seven mainstream benchmarks demonstrate that the proposed CTTS-MM consistently obtains superior performance. Code will be released at https://github.com/magent4aci/CTTS-MM.

Authors:Jisoo Kim, Wooseok Seo, Junwan Kim, Seungho Park, Sooyeon Park, Youngjae Yu
Title: V.I.P. : Iterative Online Preference Distillation for Efficient Video Diffusion Models
Abstract:
With growing interest in deploying text-to-video (T2V) models in resource-constrained environments, reducing their high computational cost has become crucial, leading to extensive research on pruning and knowledge distillation methods while maintaining performance. However, existing distillation methods primarily rely on supervised fine-tuning (SFT), which often leads to mode collapse as pruned models with reduced capacity fail to directly match the teacher's outputs, ultimately resulting in degraded quality. To address this challenge, we propose an effective distillation method, ReDPO, that integrates DPO and SFT. Our approach leverages DPO to guide the student model to focus on recovering only the targeted properties, rather than passively imitating the teacher, while also utilizing SFT to enhance overall performance. We additionally propose V.I.P., a novel framework for filtering and curating high-quality pair datasets, along with a step-by-step online approach for calibrated training. We validate our method on two leading T2V models, VideoCrafter2 and AnimateDiff, achieving parameter reduction of 36.2% and 67.5% each, while maintaining or even surpassing the performance of full models. Further experiments demonstrate the effectiveness of both ReDPO and V.I.P. framework in enabling efficient and high-quality video generation. Our code and videos are available at https://jiiiisoo.github.io/VIP.github.io/.

Authors:Tian-Fang Zhao, Wen-Xi Yang, Guan Liu, Liang Yang
Title: InqEduAgent: Adaptive AI Learning Partners with Gaussian Process Augmentation
Abstract:
Collaborative partnership matters in inquiry-oriented education. However, most study partners are selected either rely on experience-based assignments with little scientific planning or build on rule-based machine assistants, encountering difficulties in knowledge expansion and inadequate flexibility. This paper proposes an LLM-empowered agent model for simulating and selecting learning partners tailored to inquiry-oriented learning, named InqEduAgent. Generative agents are designed to capture cognitive and evaluative features of learners in real-world scenarios. Then, an adaptive matching algorithm with Gaussian process augmentation is formulated to identify patterns within prior knowledge. Optimal learning-partner matches are provided for learners facing different exercises. The experimental results show the optimal performance of InqEduAgent in most knowledge-learning scenarios and LLM environment with different levels of capabilities. This study promotes the intelligent allocation of human-based learning partners and the formulation of AI-based learning partners. The code, data, and appendix are publicly available at https://github.com/InqEduAgent/InqEduAgent.

Authors:Charles Tapley Hoyt, Craig Bakker, Richard J. Callahan, Joseph Cottam, August George, Benjamin M. Gyori, Haley M. Hummel, Nathaniel Merrill, Sara Mohammad Taheri, Pruthvi Prakash Navada, Marc-Antoine Parent, Adam Rupe, Olga Vitek, Jeremy Zucker
Title: Causal identification with $Y_0$
Abstract:
We present the $Y_0$ Python package, which implements causal identification algorithms that apply interventional, counterfactual, and transportability queries to data from (randomized) controlled trials, observational studies, or mixtures thereof. $Y_0$ focuses on the qualitative investigation of causation, helping researchers determine whether a causal relationship can be estimated from available data before attempting to estimate how strong that relationship is. Furthermore, $Y_0$ provides guidance on how to transform the causal query into a symbolic estimand that can be non-parametrically estimated from the available data. $Y_0$ provides a domain-specific language for representing causal queries and estimands as symbolic probabilistic expressions, tools for representing causal graphical models with unobserved confounders, such as acyclic directed mixed graphs (ADMGs), and implementations of numerous identification algorithms from the recent causal inference literature. The $Y_0$ source code can be found under the MIT License at https://github.com/y0-causal-inference/y0 and it can be installed with pip install y0.

Authors:Jueon Park, Yein Park, Minju Song, Soyon Park, Donghyeon Lee, Seungheun Baek, Jaewoo Kang
Title: CoTox: Chain-of-Thought-Based Molecular Toxicity Reasoning and Prediction
Abstract:
Drug toxicity remains a major challenge in pharmaceutical development. Recent machine learning models have improved in silico toxicity prediction, but their reliance on annotated data and lack of interpretability limit their applicability. This limits their ability to capture organ-specific toxicities driven by complex biological mechanisms. Large language models (LLMs) offer a promising alternative through step-by-step reasoning and integration of textual data, yet prior approaches lack biological context and transparent rationale. To address this issue, we propose CoTox, a novel framework that integrates LLM with chain-of-thought (CoT) reasoning for multi-toxicity prediction. CoTox combines chemical structure data, biological pathways, and gene ontology (GO) terms to generate interpretable toxicity predictions through step-by-step reasoning. Using GPT-4o, we show that CoTox outperforms both traditional machine learning and deep learning model. We further examine its performance across various LLMs to identify where CoTox is most effective. Additionally, we find that representing chemical structures with IUPAC names, which are easier for LLMs to understand than SMILES, enhances the model's reasoning ability and improves predictive performance. To demonstrate its practical utility in drug development, we simulate the treatment of relevant cell types with drug and incorporated the resulting biological context into the CoTox framework. This approach allow CoTox to generate toxicity predictions aligned with physiological responses, as shown in case study. This result highlights the potential of LLM-based frameworks to improve interpretability and support early-stage drug safety assessment. The code and prompt used in this work are available at https://github.com/dmis-lab/CoTox.

Authors:Sai Ma, Zhuang Li, John A Taylor
Title: Landsat30-AU: A Vision-Language Dataset for Australian Landsat Imagery
Abstract:
Vision language models (VLMs) that enable natural language interaction with satellite imagery can democratize Earth observation by accelerating expert workflows, making data accessible to non-specialists, and enabling planet-scale automation. However, existing datasets focus mainly on short-term, high-resolution imagery from a limited number of satellites, overlooking low-resolution, multi-satellite, long-term archives, such as Landsat, that are essential for affordable and bias-robust global monitoring. We address this gap with Landsat30-AU, a large-scale vision-language dataset built from 30-meter resolution imagery collected by four Landsat satellites (5, 7, 8, and 9) over Australia, spanning more than 36 years. The dataset includes two components: Landsat30-AU-Cap, containing $196,262$ image-caption pairs, and Landsat30-AU-VQA, comprising 17,725 human-verified visual question answering (VQA) samples across eight remote sensing domains. Both datasets are curated through a bootstrapped pipeline that leverages generic VLMs with iterative refinement and human verification to ensure quality. Our evaluation of eight VLMs on our benchmark reveals that off-the-shelf models struggle to understand satellite imagery. The open-source remote-sensing VLM EarthDial achieves only 0.07 SPIDEr in captioning and a VQA accuracy of 0.48, highlighting the limitations of current approaches. Encouragingly, lightweight fine-tuning of Qwen2.5-VL-7B on Landsat30-AU improves captioning performance from 0.11 to 0.31 SPIDEr and boosts VQA accuracy from 0.74 to 0.87. Code and data are available at https://github.com/papersubmit1/landsat30-au.

Authors:Zixuan Gu, Qiufeng Fan, Long Sun, Yang Liu, Xiaojun Ye
Title: VFLAIR-LLM: A Comprehensive Framework and Benchmark for Split Learning of LLMs
Abstract:
With the advancement of Large Language Models (LLMs), LLM applications have expanded into a growing number of fields. However, users with data privacy concerns face limitations in directly utilizing LLM APIs, while private deployments incur significant computational demands. This creates a substantial challenge in achieving secure LLM adaptation under constrained local resources. To address this issue, collaborative learning methods, such as Split Learning (SL), offer a resource-efficient and privacy-preserving solution for adapting LLMs to private domains. In this study, we introduce VFLAIR-LLM (available at https://github.com/FLAIR-THU/VFLAIR-LLM), an extensible and lightweight split learning framework for LLMs, enabling privacy-preserving LLM inference and fine-tuning in resource-constrained environments. Our library provides two LLM partition settings, supporting three task types and 18 datasets. In addition, we provide standard modules for implementing and evaluating attacks and defenses. We benchmark 5 attacks and 9 defenses under various Split Learning for LLM(SL-LLM) settings, offering concrete insights and recommendations on the choice of model partition configurations, defense strategies, and relevant hyperparameters for real-world applications.

Authors:Trinh Quoc Nguyen, Oky Dicky Ardiansyah Prima, Katsuyoshi Hotta
Title: CORE-ReID: Comprehensive Optimization and Refinement through Ensemble fusion in Domain Adaptation for person re-identification
Abstract:
This study introduces a novel framework, "Comprehensive Optimization and Refinement through Ensemble Fusion in Domain Adaptation for Person Re-identification (CORE-ReID)", to address an Unsupervised Domain Adaptation (UDA) for Person Re-identification (ReID). The framework utilizes CycleGAN to generate diverse data that harmonizes differences in image characteristics from different camera sources in the pre-training stage. In the fine-tuning stage, based on a pair of teacher-student networks, the framework integrates multi-view features for multi-level clustering to derive diverse pseudo labels. A learnable Ensemble Fusion component that focuses on fine-grained local information within global features is introduced to enhance learning comprehensiveness and avoid ambiguity associated with multiple pseudo-labels. Experimental results on three common UDAs in Person ReID demonstrate significant performance gains over state-of-the-art approaches. Additional enhancements, such as Efficient Channel Attention Block and Bidirectional Mean Feature Normalization mitigate deviation effects and adaptive fusion of global and local features using the ResNet-based model, further strengthening the framework. The proposed framework ensures clarity in fusion features, avoids ambiguity, and achieves high ac-curacy in terms of Mean Average Precision, Top-1, Top-5, and Top-10, positioning it as an advanced and effective solution for the UDA in Person ReID. Our codes and models are available at https://github.com/TrinhQuocNguyen/CORE-ReID.

Authors:Hyebin Cho, Jaehyup Lee
Title: Uncertainty-Guided Face Matting for Occlusion-Aware Face Transformation
Abstract:
Face filters have become a key element of short-form video content, enabling a wide array of visual effects such as stylization and face swapping. However, their performance often degrades in the presence of occlusions, where objects like hands, hair, or accessories obscure the face. To address this limitation, we introduce the novel task of face matting, which estimates fine-grained alpha mattes to separate occluding elements from facial regions. We further present FaceMat, a trimap-free, uncertainty-aware framework that predicts high-quality alpha mattes under complex occlusions. Our approach leverages a two-stage training pipeline: a teacher model is trained to jointly estimate alpha mattes and per-pixel uncertainty using a negative log-likelihood (NLL) loss, and this uncertainty is then used to guide the student model through spatially adaptive knowledge distillation. This formulation enables the student to focus on ambiguous or occluded regions, improving generalization and preserving semantic consistency. Unlike previous approaches that rely on trimaps or segmentation masks, our framework requires no auxiliary inputs making it well-suited for real-time applications. In addition, we reformulate the matting objective by explicitly treating skin as foreground and occlusions as background, enabling clearer compositing strategies. To support this task, we newly constructed CelebAMat, a large-scale synthetic dataset specifically designed for occlusion-aware face matting. Extensive experiments show that FaceMat outperforms state-of-the-art methods across multiple benchmarks, enhancing the visual quality and robustness of face filters in real-world, unconstrained video scenarios. The source code and CelebAMat dataset are available at https://github.com/hyebin-c/FaceMat.git

Authors:Haonan Yang, Jianchao Tang, Zhuo Li, Long Lan
Title: DMSC: Dynamic Multi-Scale Coordination Framework for Time Series Forecasting
Abstract:
Time Series Forecasting (TSF) faces persistent challenges in modeling intricate temporal dependencies across different scales. Despite recent advances leveraging different decomposition operations and novel architectures based on CNN, MLP or Transformer, existing methods still struggle with static decomposition strategies, fragmented dependency modeling, and inflexible fusion mechanisms, limiting their ability to model intricate temporal dependencies. To explicitly solve the mentioned three problems respectively, we propose a novel Dynamic Multi-Scale Coordination Framework (DMSC) with Multi-Scale Patch Decomposition block (EMPD), Triad Interaction Block (TIB) and Adaptive Scale Routing MoE block (ASR-MoE). Specifically, EMPD is designed as a built-in component to dynamically segment sequences into hierarchical patches with exponentially scaled granularities, eliminating predefined scale constraints through input-adaptive patch adjustment. TIB then jointly models intra-patch, inter-patch, and cross-variable dependencies within each layer's decomposed representations. EMPD and TIB are jointly integrated into layers forming a multi-layer progressive cascade architecture, where coarse-grained representations from earlier layers adaptively guide fine-grained feature extraction in subsequent layers via gated pathways. And ASR-MoE dynamically fuses multi-scale predictions by leveraging specialized global and local experts with temporal-aware weighting. Comprehensive experiments on thirteen real-world benchmarks demonstrate that DMSC consistently maintains state-of-the-art (SOTA) performance and superior computational efficiency for TSF tasks. Code is available at https://github.com/1327679995/DMSC.

Authors:Yu Shi, Zongliang Fu, Shuo Chen, Bohan Zhao, Wei Xu, Changshui Zhang, Jian Li
Title: Kronos: A Foundation Model for the Language of Financial Markets
Abstract:
The success of large-scale pre-training paradigm, exemplified by Large Language Models (LLMs), has inspired the development of Time Series Foundation Models (TSFMs). However, their application to financial candlestick (K-line) data remains limited, often underperforming non-pre-trained architectures. Moreover, existing TSFMs often overlook crucial downstream tasks such as volatility prediction and synthetic data generation. To address these limitations, we propose Kronos, a unified, scalable pre-training framework tailored to financial K-line modeling. Kronos introduces a specialized tokenizer that discretizes continuous market information into token sequences, preserving both price dynamics and trade activity patterns. We pre-train Kronos using an autoregressive objective on a massive, multi-market corpus of over 12 billion K-line records from 45 global exchanges, enabling it to learn nuanced temporal and cross-asset representations. Kronos excels in a zero-shot setting across a diverse set of financial tasks. On benchmark datasets, Kronos boosts price series forecasting RankIC by 93% over the leading TSFM and 87% over the best non-pre-trained baseline. It also achieves a 9% lower MAE in volatility forecasting and a 22% improvement in generative fidelity for synthetic K-line sequences. These results establish Kronos as a robust, versatile foundation model for end-to-end financial time series analysis. Our pre-trained model is publicly available at https://github.com/shiyu-coder/Kronos.

Authors:Ningning Wang, Xavier Hu, Pai Liu, He Zhu, Yue Hou, Heyuan Huang, Shengyu Zhang, Jian Yang, Jiaheng Liu, Ge Zhang, Changwang Zhang, Jun Wang, Yuchen Eleanor Jiang, Wangchunshu Zhou
Title: Efficient Agents: Building Effective Agents While Reducing Cost
Abstract:
The remarkable capabilities of Large Language Model (LLM)-driven agents have enabled sophisticated systems to tackle complex, multi-step tasks, but their escalating costs threaten scalability and accessibility. This work presents the first systematic study of the efficiency-effectiveness trade-off in modern agent systems, addressing the critical need for cost-effective designs without sacrificing performance. We investigate three key questions: (1) How much complexity do agentic tasks inherently require? (2) When do additional modules yield diminishing returns? (3) How much efficiency can be gained through the design of efficient agent frameworks? Through an empirical analysis on the GAIA benchmark, we evaluate the impact of LLM backbone selection, agent framework designs, and test-time scaling strategies. Using the cost-of-pass metric, we quantify the efficiency-performance trade-off across these dimensions. Our findings inform the development of Efficient Agents , a novel agent framework that has an optimal complexity to task requirements. Efficient Agents retains 96.7% of the performance of OWL, one leading open-source agent framework, while reducing operational costs from $0.398 to $0.228, resulting in a 28.4% improvement in cost-of-pass. Our work provides actionable insights for designing efficient, high-performing agent systems, advancing the accessibility and sustainability of AI-driven solutions.

Authors:Guowei Zou, Weibing Li, Hejun Wu, Yukun Qian, Yuhang Wang, Haitao Wang
Title: D2PPO: Diffusion Policy Policy Optimization with Dispersive Loss
Abstract:
Diffusion policies excel at robotic manipulation by naturally modeling multimodal action distributions in high-dimensional spaces. Nevertheless, diffusion policies suffer from diffusion representation collapse: semantically similar observations are mapped to indistinguishable features, ultimately impairing their ability to handle subtle but critical variations required for complex robotic manipulation. To address this problem, we propose D2PPO (Diffusion Policy Policy Optimization with Dispersive Loss). D2PPO introduces dispersive loss regularization that combats representation collapse by treating all hidden representations within each batch as negative pairs. D2PPO compels the network to learn discriminative representations of similar observations, thereby enabling the policy to identify subtle yet crucial differences necessary for precise manipulation. In evaluation, we find that early-layer regularization benefits simple tasks, while late-layer regularization sharply enhances performance on complex manipulation tasks. On RoboMimic benchmarks, D2PPO achieves an average improvement of 22.7% in pre-training and 26.1% after fine-tuning, setting new SOTA results. In comparison with SOTA, results of real-world experiments on a Franka Emika Panda robot show the excitingly high success rate of our method. The superiority of our method is especially evident in complex tasks. Project page: https://guowei-zou.github.io/d2ppo/

Authors:Yinghao Zhu, Yifan Qi, Zixiang Wang, Lei Gu, Dehao Sui, Haoran Hu, Xichen Zhang, Ziyi He, Liantao Ma, Lequan Yu
Title: HealthFlow: A Self-Evolving AI Agent with Meta Planning for Autonomous Healthcare Research
Abstract:
The efficacy of AI agents in healthcare research is hindered by their reliance on static, predefined strategies. This creates a critical limitation: agents can become better tool-users but cannot learn to become better strategic planners, a crucial skill for complex domains like healthcare. We introduce HealthFlow, a self-evolving AI agent that overcomes this limitation through a novel meta-level evolution mechanism. HealthFlow autonomously refines its own high-level problem-solving policies by distilling procedural successes and failures into a durable, strategic knowledge base. To anchor our research and facilitate reproducible evaluation, we introduce EHRFlowBench, a new benchmark featuring complex, realistic health data analysis tasks derived from peer-reviewed clinical research. Our comprehensive experiments demonstrate that HealthFlow's self-evolving approach significantly outperforms state-of-the-art agent frameworks. This work marks a necessary shift from building better tool-users to designing smarter, self-evolving task-managers, paving the way for more autonomous and effective AI for scientific discovery.

Authors:Miaosen Luo, Jiesen Long, Zequn Li, Yunying Yang, Yuncheng Jiang, Sijie Mai
Title: Multimodal Large Language Models for End-to-End Affective Computing: Benchmarking and Boosting with Generative Knowledge Prompting
Abstract:
Multimodal Affective Computing (MAC) aims to recognize and interpret human emotions by integrating information from diverse modalities such as text, video, and audio. Recent advancements in Multimodal Large Language Models (MLLMs) have significantly reshaped the landscape of MAC by offering a unified framework for processing and aligning cross-modal information. However, practical challenges remain, including performance variability across complex MAC tasks and insufficient understanding of how architectural designs and data characteristics impact affective analysis. To address these gaps, we conduct a systematic benchmark evaluation of state-of-the-art open-source MLLMs capable of concurrently processing audio, visual, and textual modalities across multiple established MAC datasets. Our evaluation not only compares the performance of these MLLMs but also provides actionable insights into model optimization by analyzing the influence of model architectures and dataset properties. Furthermore, we propose a novel hybrid strategy that combines generative knowledge prompting with supervised fine-tuning to enhance MLLMs' affective computing capabilities. Experimental results demonstrate that this integrated approach significantly improves performance across various MAC tasks, offering a promising avenue for future research and development in this field. Our code is released on https://github.com/LuoMSen/MLLM-MAC.

Authors:Xiao Wang, Hao Si, Fan Zhang, Xiaoya Zhou, Dengdi Sun, Wanli Lyu, Qingquan Yang, Jin Tang
Title: HGTS-Former: Hierarchical HyperGraph Transformer for Multivariate Time Series Analysis
Abstract:
Multivariate time series analysis has long been one of the key research topics in the field of artificial intelligence. However, analyzing complex time series data remains a challenging and unresolved problem due to its high dimensionality, dynamic nature, and complex interactions among variables. Inspired by the strong structural modeling capability of hypergraphs, this paper proposes a novel hypergraph-based time series transformer backbone network, termed HGTS-Former, to address the multivariate coupling in time series data. Specifically, given the multivariate time series signal, we first normalize and embed each patch into tokens. Then, we adopt the multi-head self-attention to enhance the temporal representation of each patch. The hierarchical hypergraphs are constructed to aggregate the temporal patterns within each channel and fine-grained relations between different variables. After that, we convert the hyperedge into node features through the EdgeToNode module and adopt the feed-forward network to further enhance the output features. Extensive experiments conducted on two multivariate time series tasks and eight datasets fully validated the effectiveness of our proposed HGTS-Former. The source code will be released on https://github.com/Event-AHU/Time_Series_Analysis.

Authors:Xiaolin Lin, Jingcun Wang, Olga Kondrateva, Yiyu Shi, Bing Li, Grace Li Zhang
Title: CompressKV: Semantic Retrieval Heads Know What Tokens are Not Important Before Generation
Abstract:
Recent advances in large language models (LLMs) have significantly boosted long-context processing. However, the increasing key-value (KV) cache size poses critical challenges to memory and execution efficiency. Most KV cache compression methods rely on heuristic token eviction using all attention heads in Grouped Query Attention (GQA)-based LLMs. This method ignores the different functionalities of attention heads, leading to the eviction of critical tokens and thus degrades the performance of LLMs. To address the issue above, instead of using all the attention heads in GQA-based LLMs to determine important tokens as in the previous work, we first identify the attention heads in each layer that are not only capable of retrieving the initial and final tokens of a prompt, but also capable of retrieving important tokens within the text and attending to their surrounding semantic context. Afterwards, we exploit such heads to determine the important tokens and retain their corresponding KV cache pairs. Furthermore, we analyze the cache eviction error of each layer individually and introduce a layer-adaptive KV cache allocation strategy. Experimental results demonstrate the proposed CompressKV consistently outperforms state-of-the-art approaches under various memory budgets on LongBench and Needle-in-a-Haystack benchmarks. Our code is publicly available at: https://github.com/TUDa-HWAI/CompressKV.git.

Authors:Yizhu Jin, Zhen Ye, Zeyue Tian, Haohe Liu, Qiuqiang Kong, Yike Guo, Wei Xue
Title: Inference-time Scaling for Diffusion-based Audio Super-resolution
Abstract:
Diffusion models have demonstrated remarkable success in generative tasks, including audio super-resolution (SR). In many applications like movie post-production and album mastering, substantial computational budgets are available for achieving superior audio quality. However, while existing diffusion approaches typically increase sampling steps to improve quality, the performance remains fundamentally limited by the stochastic nature of the sampling process, leading to high-variance and quality-limited outputs. Here, rather than simply increasing the number of sampling steps, we propose a different paradigm through inference-time scaling for SR, which explores multiple solution trajectories during the sampling process. Different task-specific verifiers are developed, and two search algorithms, including the random search and zero-order search for SR, are introduced. By actively guiding the exploration of the high-dimensional solution space through verifier-algorithm combinations, we enable more robust and higher-quality outputs. Through extensive validation across diverse audio domains (speech, music, sound effects) and frequency ranges, we demonstrate consistent performance gains, achieving improvements of up to 9.70% in aesthetics, 5.88% in speaker similarity, 15.20% in word error rate, and 46.98% in spectral distance for speech SR from 4kHz to 24kHz, showcasing the effectiveness of our approach. Audio samples are available at: https://racerk.github.io/tt-scale-audiosr/.

Authors:Xu Wang, Shengeng Tang, Fei Wang, Lechao Cheng, Dan Guo, Feng Xue, Richang Hong
Title: Text2Lip: Progressive Lip-Synced Talking Face Generation from Text via Viseme-Guided Rendering
Abstract:
Generating semantically coherent and visually accurate talking faces requires bridging the gap between linguistic meaning and facial articulation. Although audio-driven methods remain prevalent, their reliance on high-quality paired audio visual data and the inherent ambiguity in mapping acoustics to lip motion pose significant challenges in terms of scalability and robustness. To address these issues, we propose Text2Lip, a viseme-centric framework that constructs an interpretable phonetic-visual bridge by embedding textual input into structured viseme sequences. These mid-level units serve as a linguistically grounded prior for lip motion prediction. Furthermore, we design a progressive viseme-audio replacement strategy based on curriculum learning, enabling the model to gradually transition from real audio to pseudo-audio reconstructed from enhanced viseme features via cross-modal attention. This allows for robust generation in both audio-present and audio-free scenarios. Finally, a landmark-guided renderer synthesizes photorealistic facial videos with accurate lip synchronization. Extensive evaluations show that Text2Lip outperforms existing approaches in semantic fidelity, visual realism, and modality robustness, establishing a new paradigm for controllable and flexible talking face generation. Our project homepage is https://plyon1.github.io/Text2Lip/.

Authors:Wenyuan Liu, Haoqian Meng, Yilun Luo, Peng Zhang, Xindian Ma
Title: MicroMix: Efficient Mixed-Precision Quantization with Microscaling Formats for Large Language Models
Abstract:
Quantization significantly accelerates inference in large language models (LLMs) by replacing original high-precision matrices with low-precision counterparts. Recent advances in weight-activation quantization have primarily focused on mapping both weights and activations to the INT4 format. Although the new FP4 Tensor Cores in NVIDIA's Blackwell architecture offer up to 4x speedup over FP16, existing INT4-based kernels fail to fully exploit this capability due to mismatched data formats. To bridge this gap, we propose MicroMix, a co-designed mixed-precision quantization algorithm and matrix multiplication kernel based on Microscaling (MX) data formats. Tailored for the Blackwell architecture, the MicroMix kernel supports arbitrary combinations of MXFP4, MXFP6, and MXFP8 channels, and produces BFloat16 outputs. To achieve a favorable trade-off between accuracy and efficiency for each linear layer, we introduce quantization thresholds that identify activation elements where lower-precision formats (MXFP4 or MXFP6) incur excessive quantization error. Our algorithm selectively allocates higher-precision channels to preserve accuracy while maintaining compute efficiency. MicroMix achieves competitive or superior performance across diverse downstream tasks, including zero-shot and few-shot learning, language modeling, code generation, and mathematical reasoning. On both consumer-grade (RTX 5070Ti laptop) and server-grade (RTX 5090) GPUs, our kernel delivers at least 20% faster execution than TensorRT-FP8. Furthermore, when applied to various Llama and Qwen models, MicroMix consistently improves prefill latency and memory efficiency across a range of batch sizes compared to TensorRT baselines. Our code is available at https://github.com/lwy2020/MicroMix.

Authors:Jiajia Guo, Yiming Cui, Shi Jin, Jun Zhang
Title: Large AI Models for Wireless Physical Layer
Abstract:
Large artificial intelligence models (LAMs) are transforming wireless physical layer technologies through their robust generalization, multitask processing, and multimodal capabilities. This article reviews recent advancements in LAM applications for physical layer communications, addressing limitations of conventional AI-based approaches. LAM applications are classified into two strategies: leveraging pre-trained LAMs and developing native LAMs designed specifically for physical layer tasks. The motivations and key frameworks of these approaches are comprehensively examined through multiple use cases. Both strategies significantly improve performance and adaptability across diverse wireless scenarios. Future research directions, including efficient architectures, interpretability, standardized datasets, and collaboration between large and small models, are proposed to advance LAM-based physical layer solutions for next-generation communication systems.

Authors:Wentao Zhang, Yilei Zhao, Chuqiao Zong, Xinrun Wang, Bo An
Title: FinWorld: An All-in-One Open-Source Platform for End-to-End Financial AI Research and Deployment
Abstract:
Financial AI holds great promise for transforming modern finance, with the potential to support a wide range of tasks such as market forecasting, portfolio management, quantitative trading, and automated analysis. However, existing platforms remain limited in task coverage, lack robust multimodal data integration, and offer insufficient support for the training and deployment of large language models (LLMs). In response to these limitations, we present FinWorld, an all-in-one open-source platform that provides end-to-end support for the entire financial AI workflow, from data acquisition to experimentation and deployment. FinWorld distinguishes itself through native integration of heterogeneous financial data, unified support for diverse AI paradigms, and advanced agent automation, enabling seamless development and deployment. Leveraging data from 2 representative markets, 4 stock pools, and over 800 million financial data points, we conduct comprehensive experiments on 4 key financial AI tasks. These experiments systematically evaluate deep learning and reinforcement learning algorithms, with particular emphasis on RL-based finetuning for LLMs and LLM Agents. The empirical results demonstrate that FinWorld significantly enhances reproducibility, supports transparent benchmarking, and streamlines deployment, thereby providing a strong foundation for future research and real-world applications. Code is available at Github~\footnote{https://github.com/DVampire/FinWorld}.

Authors:Xiangru Tang, Zhuoyun Yu, Jiapeng Chen, Yan Cui, Daniel Shao, Weixu Wang, Fang Wu, Yuchen Zhuang, Wenqi Shi, Zhi Huang, Arman Cohan, Xihong Lin, Fabian Theis, Smita Krishnaswamy, Mark Gerstein
Title: CellForge: Agentic Design of Virtual Cell Models
Abstract:
Virtual cell modeling represents an emerging frontier at the intersection of artificial intelligence and biology, aiming to predict quantities such as responses to diverse perturbations quantitatively. However, autonomously building computational models for virtual cells is challenging due to the complexity of biological systems, the heterogeneity of data modalities, and the need for domain-specific expertise across multiple disciplines. Here, we introduce CellForge, an agentic system that leverages a multi-agent framework that transforms presented biological datasets and research objectives directly into optimized computational models for virtual cells. More specifically, given only raw single-cell multi-omics data and task descriptions as input, CellForge outputs both an optimized model architecture and executable code for training virtual cell models and inference. The framework integrates three core modules: Task Analysis for presented dataset characterization and relevant literature retrieval, Method Design, where specialized agents collaboratively develop optimized modeling strategies, and Experiment Execution for automated generation of code. The agents in the Design module are separated into experts with differing perspectives and a central moderator, and have to collaboratively exchange solutions until they achieve a reasonable consensus. We demonstrate CellForge's capabilities in single-cell perturbation prediction, using six diverse datasets that encompass gene knockouts, drug treatments, and cytokine stimulations across multiple modalities. CellForge consistently outperforms task-specific state-of-the-art methods. Overall, CellForge demonstrates how iterative interaction between LLM agents with differing perspectives provides better solutions than directly addressing a modeling challenge. Our code is publicly available at https://github.com/gersteinlab/CellForge.

Authors:Xiaoliu Guan, Lielin Jiang, Hanqi Chen, Xu Zhang, Jiaxing Yan, Guanzhong Wang, Yi Liu, Zetao Zhang, Yu Wu
Title: Forecasting When to Forecast: Accelerating Diffusion Models with Confidence-Gated Taylor
Abstract:
Diffusion Transformers (DiTs) have demonstrated remarkable performance in visual generation tasks. However, their low inference speed limits their deployment in low-resource applications. Recent training-free approaches exploit the redundancy of features across timesteps by caching and reusing past representations to accelerate inference. Building on this idea, TaylorSeer instead uses cached features to predict future ones via Taylor expansion. However, its module-level prediction across all transformer blocks (e.g., attention or feedforward modules) requires storing fine-grained intermediate features, leading to notable memory and computation overhead. Moreover, it adopts a fixed caching schedule without considering the varying accuracy of predictions across timesteps, which can lead to degraded outputs when prediction fails. To address these limitations, we propose a novel approach to better leverage Taylor-based acceleration. First, we shift the Taylor prediction target from the module level to the last block level, significantly reducing the number of cached features. Furthermore, observing strong sequential dependencies among Transformer blocks, we propose to use the error between the Taylor-estimated and actual outputs of the first block as an indicator of prediction reliability. If the error is small, we trust the Taylor prediction for the last block; otherwise, we fall back to full computation, thereby enabling a dynamic caching mechanism. Empirical results show that our method achieves a better balance between speed and quality, achieving a 3.17x acceleration on FLUX, 2.36x on DiT, and 4.14x on Wan Video with negligible quality drop. The Project Page is \href{https://cg-taylor-acce.github.io/CG-Taylor/}{here.}

Authors:Lei Yao, Yi Wang, Yi Zhang, Moyun Liu, Lap-Pui Chau
Title: GaussianCross: Cross-modal Self-supervised 3D Representation Learning via Gaussian Splatting
Abstract:
The significance of informative and robust point representations has been widely acknowledged for 3D scene understanding. Despite existing self-supervised pre-training counterparts demonstrating promising performance, the model collapse and structural information deficiency remain prevalent due to insufficient point discrimination difficulty, yielding unreliable expressions and suboptimal performance. In this paper, we present GaussianCross, a novel cross-modal self-supervised 3D representation learning architecture integrating feed-forward 3D Gaussian Splatting (3DGS) techniques to address current challenges. GaussianCross seamlessly converts scale-inconsistent 3D point clouds into a unified cuboid-normalized Gaussian representation without missing details, enabling stable and generalizable pre-training. Subsequently, a tri-attribute adaptive distillation splatting module is incorporated to construct a 3D feature field, facilitating synergetic feature capturing of appearance, geometry, and semantic cues to maintain cross-modal consistency. To validate GaussianCross, we perform extensive evaluations on various benchmarks, including ScanNet, ScanNet200, and S3DIS. In particular, GaussianCross shows a prominent parameter and data efficiency, achieving superior performance through linear probing (<0.1% parameters) and limited data training (1% of scenes) compared to state-of-the-art methods. Furthermore, GaussianCross demonstrates strong generalization capabilities, improving the full fine-tuning accuracy by 9.3% mIoU and 6.1% AP$_{50}$ on ScanNet200 semantic and instance segmentation tasks, respectively, supporting the effectiveness of our approach. The code, weights, and visualizations are publicly available at \href{https://rayyoh.github.io/GaussianCross/}{https://rayyoh.github.io/GaussianCross/}.

Authors:Qingyu Ren, Qianyu He, Bowei Zhang, Jie Zeng, Jiaqing Liang, Yanghua Xiao, Weikang Zhou, Zeye Sun, Fei Yu
Title: Beyond the Trade-off: Self-Supervised Reinforcement Learning for Reasoning Models' Instruction Following
Abstract:
Reasoning models excel in complex problem solving but exhibit a concerning trade off between reasoning capabilities and instruction following abilities. Existing approaches for improving instruction following rely on stronger external models, creating methodological bottlenecks and practical limitations including increased costs and accessibility constraints. We propose a self-supervised RL framework that leverages reasoning models' own internal signals to improve instruction following capabilities without external supervision. Extensive experiments demonstrate that our framework significantly improves instruction following capabilities while maintaining reasoning performance, offering a scalable and cost-effective approach to enhance instruction following in reasoning models. The data and code are publicly available at https://github.com/Rainier-rq/verl-if.

Authors:Zhongyue Zhang, Jiahua Rao, Jie Zhong, Weiqiang Bai, Dongxue Wang, Shaobo Ning, Lifeng Qiao, Sheng Xu, Runze Ma, Will Hua, Jack Xiaoyu Chen, Odin Zhang, Wei Lu, Hanyi Feng, He Yang, Xinchao Shi, Rui Li, Wanli Ouyang, Xinzhu Ma, Jiahao Wang, Jixian Zhang, Jia Duan, Siqi Sun, Jian Zhang, Shuangjia Zheng
Title: Fitness aligned structural modeling enables scalable virtual screening with AuroBind
Abstract:
Most human proteins remain undrugged, over 96% of human proteins remain unexploited by approved therapeutics. While structure-based virtual screening promises to expand the druggable proteome, existing methods lack atomic-level precision and fail to predict binding fitness, limiting translational impact. We present AuroBind, a scalable virtual screening framework that fine-tunes a custom atomic-level structural model on million-scale chemogenomic data. AuroBind integrates direct preference optimization, self-distillation from high-confidence complexes, and a teacher-student acceleration strategy to jointly predict ligand-bound structures and binding fitness. The proposed models outperform state-of-the-art models on structural and functional benchmarks while enabling 100,000-fold faster screening across ultra-large compound libraries. In a prospective screen across ten disease-relevant targets, AuroBind achieved experimental hit rates of 7-69%, with top compounds reaching sub-nanomolar to picomolar potency. For the orphan GPCRs GPR151 and GPR160, AuroBind identified both agonists and antagonists with success rates of 16-30%, and functional assays confirmed GPR160 modulation in liver and prostate cancer models. AuroBind offers a generalizable framework for structure-function learning and high-throughput molecular screening, bridging the gap between structure prediction and therapeutic discovery.

Authors:Wenjie Li, Siying Gu, Yiming Li, Kangjie Chen, Zhili Chen, Tianwei Zhang, Shu-Tao Xia, Dacheng Tao
Title: Coward: Toward Practical Proactive Federated Backdoor Defense via Collision-based Watermark
Abstract:
Backdoor detection is currently the mainstream defense against backdoor attacks in federated learning (FL), where malicious clients upload poisoned updates that compromise the global model and undermine the reliability of FL deployments. Existing backdoor detection techniques fall into two categories, including passive and proactive ones, depending on whether the server proactively modifies the global model. However, both have inherent limitations in practice: passive defenses are vulnerable to common non-i.i.d. data distributions and random participation of FL clients, whereas current proactive defenses suffer inevitable out-of-distribution (OOD) bias because they rely on backdoor co-existence effects. To address these issues, we introduce a new proactive defense, dubbed Coward, inspired by our discovery of multi-backdoor collision effects, in which consecutively planted, distinct backdoors significantly suppress earlier ones. In general, we detect attackers by evaluating whether the server-injected, conflicting global watermark is erased during local training rather than retained. Our method preserves the advantages of proactive defenses in handling data heterogeneity (\ie, non-i.i.d. data) while mitigating the adverse impact of OOD bias through a revised detection mechanism. Extensive experiments on benchmark datasets confirm the effectiveness of Coward and its resilience to potential adaptive attacks. The code for our method would be available at https://github.com/still2009/cowardFL.

Authors:Xiaoya Li, Xiaofei Sun, Albert Wang, Chris Shum, Jiwei Li
Title: CRINN: Contrastive Reinforcement Learning for Approximate Nearest Neighbor Search
Abstract:
Approximate nearest-neighbor search (ANNS) algorithms have become increasingly critical for recent AI applications, particularly in retrieval-augmented generation (RAG) and agent-based LLM applications. In this paper, we present CRINN, a new paradigm for ANNS algorithms. CRINN treats ANNS optimization as a reinforcement learning problem where execution speed serves as the reward signal. This approach enables the automatic generation of progressively faster ANNS implementations while maintaining accuracy constraints. Our experimental evaluation demonstrates CRINN's effectiveness across six widely-used NNS benchmark datasets. When compared against state-of-the-art open-source ANNS algorithms, CRINN achieves best performance on three of them (GIST-960-Euclidean, MNIST-784-Euclidean, and GloVe-25-angular), and tied for first place on two of them (SIFT-128-Euclidean and GloVe-25-angular). The implications of CRINN's success reach well beyond ANNS optimization: It validates that LLMs augmented with reinforcement learning can function as an effective tool for automating sophisticated algorithmic optimizations that demand specialized knowledge and labor-intensive manual refinement. Code can be found at https://github.com/deepreinforce-ai/CRINN

Authors:Jiaye Lin, Yifu Guo, Yuzhen Han, Sen Hu, Ziyi Ni, Licheng Wang, Mingguang Chen, Hongzhang Liu, Ronghao Chen, Yangfan He, Daxin Jiang, Binxing Jiao, Chen Hu, Huacan Wang
Title: SE-Agent: Self-Evolution Trajectory Optimization in Multi-Step Reasoning with LLM-Based Agents
Abstract:
Large Language Model (LLM)-based agents have recently shown impressive capabilities in complex reasoning and tool use via multi-step interactions with their environments. While these agents have the potential to tackle complicated tasks, their problem-solving process, i.e., agents' interaction trajectory leading to task completion, remains underexploited. These trajectories contain rich feedback that can navigate agents toward the right directions for solving problems correctly. Although prevailing approaches, such as Monte Carlo Tree Search (MCTS), can effectively balance exploration and exploitation, they ignore the interdependence among various trajectories and lack the diversity of search spaces, which leads to redundant reasoning and suboptimal outcomes. To address these challenges, we propose SE-Agent, a Self-Evolution framework that enables Agents to optimize their reasoning processes iteratively. Our approach revisits and enhances former pilot trajectories through three key operations: revision, recombination, and refinement. This evolutionary mechanism enables two critical advantages: (1) it expands the search space beyond local optima by intelligently exploring diverse solution paths guided by previous trajectories, and (2) it leverages cross-trajectory inspiration to efficiently enhance performance while mitigating the impact of suboptimal reasoning paths. Through these mechanisms, SE-Agent achieves continuous self-evolution that incrementally improves reasoning quality. We evaluate SE-Agent on SWE-bench Verified to resolve real-world GitHub issues. Experimental results across five strong LLMs show that integrating SE-Agent delivers up to 55% relative improvement, achieving state-of-the-art performance among all open-source agents on SWE-bench Verified. Our code and demonstration materials are publicly available at https://github.com/JARVIS-Xs/SE-Agent.

Authors:Fan Gao, Cheng Huang, Nyima Tashi, Yutong Liu, Xiangxiang Wang, Thupten Tsering, Ban Ma-bao, Renzeg Duojie, Gadeng Luosang, Rinchen Dongrub, Dorje Tashi, Xiao Feng, Hao Wang, Yongbin Yu
Title: TIBSTC-CoT: A Multi-Domain Instruction Dataset for Chain-of-Thought Reasoning in Language Models
Abstract:
To address the severe data scarcity in Tibetan, a low-resource language spoken by over six million people, we introduce TIBSTC-CoT, the large-scale, multi-domain Tibetan dataset automatically constructed via chain-of-thought prompting with large language models (LLMs). TIBSTC-CoT establishes a scalable and reproducible framework for dataset creation in low-resource settings, covering diverse domains and reasoning patterns essential for language understanding and generation. Building on this dataset, we develop the Sunshine-thinking LLM family, a series of Tibetan-centric LLMs equipped with chain-of-thought capabilities. Trained entirely on TIBSTC-CoT, Sunshine-thinking has demonstrated strong reasoning and generation performance, comparable to state-of-the-art (SOTA) multilingual LLMs. Our work marks a significant step toward inclusive AI by enabling high-quality Tibetan language processing through both resource creation and model innovation. All data are available: https://github.com/Vicentvankor/sun-shine.

Authors:Yuly Wu, Jiamou Liu, Libo Zhang
Title: Inferring Reward Machines and Transition Machines from Partially Observable Markov Decision Processes
Abstract:
Partially Observable Markov Decision Processes (POMDPs) are fundamental to many real-world applications. Although reinforcement learning (RL) has shown success in fully observable domains, learning policies from traces in partially observable environments remains challenging due to non-Markovian observations. Inferring an automaton to handle the non-Markovianity is a proven effective approach, but faces two limitations: 1) existing automaton representations focus only on reward-based non-Markovianity, leading to unnatural problem formulations; 2) inference algorithms face enormous computational costs. For the first limitation, we introduce Transition Machines (TMs) to complement existing Reward Machines (RMs). To develop a unified inference algorithm for both automata types, we propose the Dual Behavior Mealy Machine (DBMM) that subsumes both TMs and RMs. We then introduce DB-RPNI, a passive automata learning algorithm that efficiently infers DBMMs while avoiding the costly reductions required by prior work. We further develop optimization techniques and identify sufficient conditions for inferring the minimal correct automata. Experimentally, our inference method achieves speedups of up to three orders of magnitude over SOTA baselines.

Authors:Yaroslav Prytula, Illia Tsiporenko, Ali Zeynalli, Dmytro Fishman
Title: IAUNet: Instance-Aware U-Net
Abstract:
Instance segmentation is critical in biomedical imaging to accurately distinguish individual objects like cells, which often overlap and vary in size. Recent query-based methods, where object queries guide segmentation, have shown strong performance. While U-Net has been a go-to architecture in medical image segmentation, its potential in query-based approaches remains largely unexplored. In this work, we present IAUNet, a novel query-based U-Net architecture. The core design features a full U-Net architecture, enhanced by a novel lightweight convolutional Pixel decoder, making the model more efficient and reducing the number of parameters. Additionally, we propose a Transformer decoder that refines object-specific features across multiple scales. Finally, we introduce the 2025 Revvity Full Cell Segmentation Dataset, a unique resource with detailed annotations of overlapping cell cytoplasm in brightfield images, setting a new benchmark for biomedical instance segmentation. Experiments on multiple public datasets and our own show that IAUNet outperforms most state-of-the-art fully convolutional, transformer-based, and query-based models and cell segmentation-specific models, setting a strong baseline for cell instance segmentation tasks. Code is available at https://github.com/SlavkoPrytula/IAUNet

Authors:Aldan Creo
Title: Complete Evasion, Zero Modification: PDF Attacks on AI Text Detection
Abstract:
AI-generated text detectors have become essential tools for maintaining content authenticity, yet their robustness against evasion attacks remains questionable. We present PDFuzz, a novel attack that exploits the discrepancy between visual text layout and extraction order in PDF documents. Our method preserves exact textual content while manipulating character positioning to scramble extraction sequences. We evaluate this approach against the ArguGPT detector using a dataset of human and AI-generated text. Our results demonstrate complete evasion: detector performance drops from (93.6 $\pm$ 1.4) % accuracy and 0.938 $\pm$ 0.014 F1 score to random-level performance ((50.4 $\pm$ 3.2) % accuracy, 0.0 F1 score) while maintaining perfect visual fidelity. Our work reveals a vulnerability in current detection systems that is inherent to PDF document structures and underscores the need for implementing sturdy safeguards against such attacks. We make our code publicly available at https://github.com/ACMCMC/PDFuzz.

Authors:Yuhan Guo, Cong Guo, Aiwen Sun, Hongliang He, Xinyu Yang, Yue Lu, Yingji Zhang, Xuntao Guo, Dong Zhang, Jianzhuang Liu, Jiang Duan, Yijia Xiao, Liangjian Wen, Hai-Ming Xu, Yong Dai
Title: Web-CogReasoner: Towards Knowledge-Induced Cognitive Reasoning for Web Agents
Abstract:
Multimodal large-scale models have significantly advanced the development of web agents, enabling perception and interaction with digital environments akin to human cognition. In this paper, we argue that web agents must first acquire sufficient knowledge to effectively engage in cognitive reasoning. Therefore, we decompose a web agent's capabilities into two essential stages: knowledge content learning and cognitive processes. To formalize this, we propose Web-CogKnowledge Framework, categorizing knowledge as Factual, Conceptual, and Procedural. In this framework, knowledge content learning corresponds to the agent's processes of Memorizing and Understanding, which rely on the first two knowledge types, representing the "what" of learning. Conversely, cognitive processes correspond to Exploring, grounded in Procedural knowledge, defining the "how" of reasoning and action. To facilitate knowledge acquisition, we construct the Web-CogDataset, a structured resource curated from 14 real-world websites, designed to systematically instill core knowledge necessary for web agent. This dataset serves as the agent's conceptual grounding-the "nouns" upon which comprehension is built-as well as the basis for learning how to reason and act. Building on this foundation, we operationalize these processes through a novel knowledge-driven Chain-of-Thought (CoT) reasoning framework, developing and training our proposed agent, the Web-CogReasoner. Extensive experimentation reveals its significant superiority over existing models, especially in generalizing to unseen tasks where structured knowledge is decisive. To enable rigorous evaluation, we introduce the Web-CogBench, a comprehensive evaluation suite designed to assess and compare agent performance across the delineated knowledge domains and cognitive capabilities. Our code and data is open sourced at https://github.com/Gnonymous/Web-CogReasoner

Authors:Guozhao Mo, Wenliang Zhong, Jiawei Chen, Xuanang Chen, Yaojie Lu, Hongyu Lin, Ben He, Xianpei Han, Le Sun
Title: LiveMCPBench: Can Agents Navigate an Ocean of MCP Tools?
Abstract:
With the rapid development of Model Context Protocol (MCP), the number of MCP servers has surpassed 10,000. However, existing MCP benchmarks are limited to single-server settings with only a few tools, hindering effective evaluation of agent capabilities in large-scale, real-world scenarios. To address this limitation, we present LiveMCPBench, the first comprehensive benchmark comprising 95 real-world tasks grounded in the MCP ecosystem, designed to evaluate LLM agents at scale across diverse servers. To support a scalable and reproducible evaluation pipeline in large-scale MCP environments, we curate LiveMCPTool, a diverse and readily deployable collection of 70 MCP servers and 527 tools. Furthermore, we introduce LiveMCPEval, an LLM-as-a-Judge framework that enables automated and adaptive evaluation in dynamic, time-varying task environments, achieving 81% agreement with human reviewers. Finally, we propose the MCP Copilot Agent, a multi-step agent that routes tools for dynamic planning and executes tools for API interaction across the entire LiveMCPTool suite. Our evaluation covers 10 leading models, with the best-performing model (Claude-Sonnet-4) reaching a 78.95% success rate. However, we observe large performance variance across models, and several widely-used models perform poorly in LiveMCPBench's complex, tool-rich environments. Overall, LiveMCPBench offers the first unified framework for benchmarking LLM agents in realistic, tool-rich, and dynamic MCP environments, laying a solid foundation for scalable and reproducible research on agent capabilities. Our code and data will be publicly available at https://icip-cas.github.io/LiveMCPBench.

Authors:Jiuzhou Han, Wray Buntine, Ehsan Shareghi
Title: Uncertainty-Based Methods for Automated Process Reward Data Construction and Output Aggregation in Mathematical Reasoning
Abstract:
Large language models have demonstrated remarkable capabilities in complex mathematical reasoning tasks, but they inevitably generate errors throughout multi-step solutions. Process-level Reward Models (PRMs) have shown great promise by providing supervision and evaluation at each intermediate step, thereby effectively improving the models' reasoning abilities. However, training effective PRMs requires high-quality process reward data, yet existing methods for constructing such data are often labour-intensive or inefficient. In this paper, we propose an uncertainty-driven framework for automated process reward data construction, encompassing both data generation and annotation processes for PRMs. Additionally, we identify the limitations of both majority vote and PRMs, and introduce two generic uncertainty-aware output aggregation methods: Hybrid Majority Reward Vote and Weighted Reward Frequency Vote, which combine the strengths of majority vote with PRMs. Extensive experiments on ProcessBench, MATH, and GSMPlus show the effectiveness and efficiency of the proposed PRM data construction framework, and demonstrate that the two output aggregation methods further improve the mathematical reasoning abilities across diverse PRMs. The code and data will be publicly available at https://github.com/Jiuzhouh/UnPRM.

Authors:Han Wang, Zhuoran Wang, Roy Ka-Wei Lee
Title: HateClipSeg: A Segment-Level Annotated Dataset for Fine-Grained Hate Video Detection
Abstract:
Detecting hate speech in videos remains challenging due to the complexity of multimodal content and the lack of fine-grained annotations in existing datasets. We present HateClipSeg, a large-scale multimodal dataset with both video-level and segment-level annotations, comprising over 11,714 segments labeled as Normal or across five Offensive categories: Hateful, Insulting, Sexual, Violence, Self-Harm, along with explicit target victim labels. Our three-stage annotation process yields high inter-annotator agreement (Krippendorff's alpha = 0.817). We propose three tasks to benchmark performance: (1) Trimmed Hateful Video Classification, (2) Temporal Hateful Video Localization, and (3) Online Hateful Video Classification. Results highlight substantial gaps in current models, emphasizing the need for more sophisticated multimodal and temporally aware approaches. The HateClipSeg dataset are publicly available at https://github.com/Social-AI-Studio/HateClipSeg.git.

Authors:Bowen Yang, Yun Cao, Chen He, Xiaosu Su
Title: GAID: Frame-Level Gated Audio-Visual Integration with Directional Perturbation for Text-Video Retrieval
Abstract:
Text-to-video retrieval requires precise alignment between language and temporally rich video signals. Existing methods predominantly exploit visual cues and often overlook complementary audio semantics or adopt coarse fusion strategies, leading to suboptimal multimodal representations. We present GAID, a framework that jointly address this gap via two key components: (i) a Frame-level Gated Fusion (FGF) that adaptively integrates audio and visual features under textual guidance, enabling fine-grained temporal alignment; and (ii) a Directional Adaptive Semantic Perturbation (DASP) that injects structure-aware perturbations into text embeddings, enhancing robustness and discrimination without incurring multi-pass inference. These modules complement each other -- fusion reduces modality gaps while perturbation regularizes cross-modal matching -- yielding more stable and expressive representations. Extensive experiments on MSR-VTT, DiDeMo, LSMDC, and VATEX show consistent state-of-the-art results across all retrieval metrics with notable efficiency gains. Our code is available at https://github.com/YangBowenn/GAID.

Authors:Yi Jiang, Sendong Zhao, Jianbo Li, Haochun Wang, Lizhe Zhang, Yan Liu, Bing Qin
Title: Collaborative Chain-of-Agents for Parametric-Retrieved Knowledge Synergy
Abstract:
Retrieval-Augmented Generation (RAG) has emerged as a promising framework for enhancing the capabilities of Large Language Models (LLMs), especially in knowledge-intensive tasks. Despite its advantages, current RAG methods often struggle to *fully exploit knowledge during generation*. In particular, the synergy between the model's internal parametric knowledge and external retrieved knowledge remains limited. Retrieved contents may sometimes mislead generation, while certain generated content can guide the model toward more accurate outputs. In this work, we propose Collaborative Chain-of-Agents, a framework designed to enhance explicitly synergy over both parametric and retrieved knowledge. Specifically, we first introduce CoCoA-zero, a multi-agent RAG framework that first performs conditional knowledge induction and then reasons answers. Building on this, we develop CoCoA, a long-chain training strategy that synthesizes extended multi-agent reasoning trajectories from CoCoA-zero to fine-tune the LLM. This strategy enhances the model's capability to explicitly integrate and jointly leverage parametric and retrieved knowledge. Experiments results show that CoCoA-zero and CoCoA achieve superior performance on open-domain and multi-hop QA tasks.

Authors:Man Hu, Yahui Ding, Yatao Yang, Liangyu Chen, Yanhao Jia, Shuai Zhao
Title: DUP: Detection-guided Unlearning for Backdoor Purification in Language Models
Abstract:
As backdoor attacks become more stealthy and robust, they reveal critical weaknesses in current defense strategies: detection methods often rely on coarse-grained feature statistics, and purification methods typically require full retraining or additional clean models. To address these challenges, we propose DUP (Detection-guided Unlearning for Purification), a unified framework that integrates backdoor detection with unlearning-based purification. The detector captures feature-level anomalies by jointly leveraging class-agnostic distances and inter-layer transitions. These deviations are integrated through a weighted scheme to identify poisoned inputs, enabling more fine-grained analysis. Based on the detection results, we purify the model through a parameter-efficient unlearning mechanism that avoids full retraining and does not require any external clean model. Specifically, we innovatively repurpose knowledge distillation to guide the student model toward increasing its output divergence from the teacher on detected poisoned samples, effectively forcing it to unlearn the backdoor behavior. Extensive experiments across diverse attack methods and language model architectures demonstrate that DUP achieves superior defense performance in detection accuracy and purification efficacy. Our code is available at https://github.com/ManHu2025/DUP.

Authors:Peiyuan Jiang, Yao Liu, Qiao Liu, Zongshun Zhang, Jiaye Yang, Lu Liu, Daibing Yao
Title: DRKF: Decoupled Representations with Knowledge Fusion for Multimodal Emotion Recognition
Abstract:
Multimodal emotion recognition (MER) aims to identify emotional states by integrating and analyzing information from multiple modalities. However, inherent modality heterogeneity and inconsistencies in emotional cues remain key challenges that hinder performance. To address these issues, we propose a Decoupled Representations with Knowledge Fusion (DRKF) method for MER. DRKF consists of two main modules: an Optimized Representation Learning (ORL) Module and a Knowledge Fusion (KF) Module. ORL employs a contrastive mutual information estimation method with progressive modality augmentation to decouple task-relevant shared representations and modality-specific features while mitigating modality heterogeneity. KF includes a lightweight self-attention-based Fusion Encoder (FE) that identifies the dominant modality and integrates emotional information from other modalities to enhance the fused representation. To handle potential errors from incorrect dominant modality selection under emotionally inconsistent conditions, we introduce an Emotion Discrimination Submodule (ED), which enforces the fused representation to retain discriminative cues of emotional inconsistency. This ensures that even if the FE selects an inappropriate dominant modality, the Emotion Classification Submodule (EC) can still make accurate predictions by leveraging preserved inconsistency information. Experiments show that DRKF achieves state-of-the-art (SOTA) performance on IEMOCAP, MELD, and M3ED. The source code is publicly available at https://github.com/PANPANKK/DRKF.

Authors:Yujia Zheng, Tianhao Li, Haotian Huang, Tianyu Zeng, Jingyu Lu, Chuangxin Chu, Yuekai Huang, Ziyou Jiang, Qian Xiong, Yuyao Ge, Mingyang Li
Title: Are All Prompt Components Value-Neutral? Understanding the Heterogeneous Adversarial Robustness of Dissected Prompt in Large Language Models
Abstract:
Prompt-based adversarial attacks have become an effective means to assess the robustness of large language models (LLMs). However, existing approaches often treat prompts as monolithic text, overlooking their structural heterogeneity-different prompt components contribute unequally to adversarial robustness. Prior works like PromptRobust assume prompts are value-neutral, but our analysis reveals that complex, domain-specific prompts with rich structures have components with differing vulnerabilities. To address this gap, we introduce PromptAnatomy, an automated framework that dissects prompts into functional components and generates diverse, interpretable adversarial examples by selectively perturbing each component using our proposed method, ComPerturb. To ensure linguistic plausibility and mitigate distribution shifts, we further incorporate a perplexity (PPL)-based filtering mechanism. As a complementary resource, we annotate four public instruction-tuning datasets using the PromptAnatomy framework, verified through human review. Extensive experiments across these datasets and five advanced LLMs demonstrate that ComPerturb achieves state-of-the-art attack success rates. Ablation studies validate the complementary benefits of prompt dissection and PPL filtering. Our results underscore the importance of prompt structure awareness and controlled perturbation for reliable adversarial robustness evaluation in LLMs. Code and data are available at https://github.com/Yujiaaaaa/PACP.

Authors:Rushin H. Gindra, Giovanni Palla, Mathias Nguyen, Sophia J. Wagner, Manuel Tran, Fabian J Theis, Dieter Saur, Lorin Crawford, Tingying Peng
Title: A Large-Scale Benchmark of Cross-Modal Learning for Histology and Gene Expression in Spatial Transcriptomics
Abstract:
Spatial transcriptomics enables simultaneous measurement of gene expression and tissue morphology, offering unprecedented insights into cellular organization and disease mechanisms. However, the field lacks comprehensive benchmarks for evaluating multimodal learning methods that leverage both histology images and gene expression data. Here, we present HESCAPE, a large-scale benchmark for cross-modal contrastive pretraining in spatial transcriptomics, built on a curated pan-organ dataset spanning 6 different gene panels and 54 donors. We systematically evaluated state-of-the-art image and gene expression encoders across multiple pretraining strategies and assessed their effectiveness on two downstream tasks: gene mutation classification and gene expression prediction. Our benchmark demonstrates that gene expression encoders are the primary determinant of strong representational alignment, and that gene models pretrained on spatial transcriptomics data outperform both those trained without spatial data and simple baseline approaches. However, downstream task evaluation reveals a striking contradiction: while contrastive pretraining consistently improves gene mutation classification performance, it degrades direct gene expression prediction compared to baseline encoders trained without cross-modal objectives. We identify batch effects as a key factor that interferes with effective cross-modal alignment. Our findings highlight the critical need for batch-robust multimodal learning approaches in spatial transcriptomics. To accelerate progress in this direction, we release HESCAPE, providing standardized datasets, evaluation protocols, and benchmarking tools for the community

Authors:Yuanzhe Shen, Kaimin Wang, Changze Lv, Xiaoqing Zheng, Xuanjing Huang
Title: TripTailor: A Real-World Benchmark for Personalized Travel Planning
Abstract:
The continuous evolution and enhanced reasoning capabilities of large language models (LLMs) have elevated their role in complex tasks, notably in travel planning, where demand for personalized, high-quality itineraries is rising. However, current benchmarks often rely on unrealistic simulated data, failing to reflect the differences between LLM-generated and real-world itineraries. Existing evaluation metrics, which primarily emphasize constraints, fall short of providing a comprehensive assessment of the overall quality of travel plans. To address these limitations, we introduce TripTailor, a benchmark designed specifically for personalized travel planning in real-world scenarios. This dataset features an extensive collection of over 500,000 real-world points of interest (POIs) and nearly 4,000 diverse travel itineraries, complete with detailed information, providing a more authentic evaluation framework. Experiments show that fewer than 10\% of the itineraries generated by the latest state-of-the-art LLMs achieve human-level performance. Moreover, we identify several critical challenges in travel planning, including the feasibility, rationality, and personalized customization of the proposed solutions. We hope that TripTailor will drive the development of travel planning agents capable of understanding and meeting user needs while generating practical itineraries. Our code and dataset are available at https://github.com/swxkfm/TripTailor

Authors:Peirong Zhang, Kai Ding, Lianwen Jin
Title: Capturing More: Learning Multi-Domain Representations for Robust Online Handwriting Verification
Abstract:
In this paper, we propose SPECTRUM, a temporal-frequency synergistic model that unlocks the untapped potential of multi-domain representation learning for online handwriting verification (OHV). SPECTRUM comprises three core components: (1) a multi-scale interactor that finely combines temporal and frequency features through dual-modal sequence interaction and multi-scale aggregation, (2) a self-gated fusion module that dynamically integrates global temporal and frequency features via self-driven balancing. These two components work synergistically to achieve micro-to-macro spectral-temporal integration. (3) A multi-domain distance-based verifier then utilizes both temporal and frequency representations to improve discrimination between genuine and forged handwriting, surpassing conventional temporal-only approaches. Extensive experiments demonstrate SPECTRUM's superior performance over existing OHV methods, underscoring the effectiveness of temporal-frequency multi-domain learning. Furthermore, we reveal that incorporating multiple handwritten biometrics fundamentally enhances the discriminative power of handwriting representations and facilitates verification. These findings not only validate the efficacy of multi-domain learning in OHV but also pave the way for future research in multi-domain approaches across both feature and biometric domains. Code is publicly available at https://github.com/NiceRingNode/SPECTRUM.

Authors:Ahmad Rezaie Mianroodi, Amirali Rezaie, Niko Grisel Todorov, Cyril Rakovski, Frank Rudzicz
Title: MedSynth: Realistic, Synthetic Medical Dialogue-Note Pairs
Abstract:
Physicians spend significant time documenting clinical encounters, a burden that contributes to professional burnout. To address this, robust automation tools for medical documentation are crucial. We introduce MedSynth -- a novel dataset of synthetic medical dialogues and notes designed to advance the Dialogue-to-Note (Dial-2-Note) and Note-to-Dialogue (Note-2-Dial) tasks. Informed by an extensive analysis of disease distributions, this dataset includes over 10,000 dialogue-note pairs covering over 2000 ICD-10 codes. We demonstrate that our dataset markedly enhances the performance of models in generating medical notes from dialogues, and dialogues from medical notes. The dataset provides a valuable resource in a field where open-access, privacy-compliant, and diverse training data are scarce. Code is available at https://github.com/ahmadrezarm/MedSynth/tree/main and the dataset is available at https://huggingface.co/datasets/Ahmad0067/MedSynth.

Authors:Alec Sargood, Lemuel Puglisi, James H. Cole, Neil P. Oxtoby, Daniele Ravì, Daniel C. Alexander
Title: CoCoLIT: ControlNet-Conditioned Latent Image Translation for MRI to Amyloid PET Synthesis
Abstract:
Synthesizing amyloid PET scans from the more widely available and accessible structural MRI modality offers a promising, cost-effective approach for large-scale Alzheimer's Disease (AD) screening. This is motivated by evidence that, while MRI does not directly detect amyloid pathology, it may nonetheless encode information correlated with amyloid deposition that can be uncovered through advanced modeling. However, the high dimensionality and structural complexity of 3D neuroimaging data pose significant challenges for existing MRI-to-PET translation methods. Modeling the cross-modality relationship in a lower-dimensional latent space can simplify the learning task and enable more effective translation. As such, we present CoCoLIT (ControlNet-Conditioned Latent Image Translation), a diffusion-based latent generative framework that incorporates three main innovations: (1) a novel Weighted Image Space Loss (WISL) that improves latent representation learning and synthesis quality; (2) a theoretical and empirical analysis of Latent Average Stabilization (LAS), an existing technique used in similar generative models to enhance inference consistency; and (3) the introduction of ControlNet-based conditioning for MRI-to-PET translation. We evaluate CoCoLIT's performance on publicly available datasets and find that our model significantly outperforms state-of-the-art methods on both image-based and amyloid-related metrics. Notably, in amyloid-positivity classification, CoCoLIT outperforms the second-best method with improvements of +10.5% on the internal dataset and +23.7% on the external dataset. The code and models of our approach are available at https://github.com/brAIn-science/CoCoLIT.

Authors:Xinyu Chen, Haotian Zhai, Can Zhang, Xiupeng Shi, Ruirui Li
Title: Multi-Cache Enhanced Prototype Learning for Test-Time Generalization of Vision-Language Models
Abstract:
In zero-shot setting, test-time adaptation adjusts pre-trained models using unlabeled data from the test phase to enhance performance on unknown test distributions. Existing cache-enhanced TTA methods rely on a low-entropy criterion to select samples for prototype construction, assuming intra-class compactness. However, low-entropy samples may be unreliable under distribution shifts, and the resulting prototypes may not ensure compact intra-class distributions. This study identifies a positive correlation between cache-enhanced performance and intra-class compactness. Based on this observation, we propose a Multi-Cache enhanced Prototype-based Test-Time Adaptation (MCP) featuring three caches: an entropy cache for initializing prototype representations with low-entropy samples, an align cache for integrating visual and textual information to achieve compact intra-class distributions, and a negative cache for prediction calibration using high-entropy samples. We further developed MCP++, a framework incorporating cross-modal prototype alignment and residual learning, introducing prototype residual fine-tuning. Comparative and ablation experiments across 15 downstream tasks demonstrate that the proposed method and framework achieve state-of-the-art generalization performance. Project Page available at: https://zhaihaotian.github.io/MCP-ICCV25/

Authors:Sukwon Yun, Xin Liu, Yunhak Oh, Junseok Lee, Tianlong Chen, Tsuyoshi Murata, Chanyoung Park
Title: Oldie but Goodie: Re-illuminating Label Propagation on Graphs with Partially Observed Features
Abstract:
In real-world graphs, we often encounter missing feature situations where a few or the majority of node features, e.g., sensitive information, are missed. In such scenarios, directly utilizing Graph Neural Networks (GNNs) would yield sub-optimal results in downstream tasks such as node classification. Despite the emergence of a few GNN-based methods attempting to mitigate its missing situation, when only a few features are available, they rather perform worse than traditional structure-based models. To this end, we propose a novel framework that further illuminates the potential of classical Label Propagation (Oldie), taking advantage of Feature Propagation, especially when only a partial feature is available. Now called by GOODIE, it takes a hybrid approach to obtain embeddings from the Label Propagation branch and Feature Propagation branch. To do so, we first design a GNN-based decoder that enables the Label Propagation branch to output hidden embeddings that align with those of the FP branch. Then, GOODIE automatically captures the significance of structure and feature information thanks to the newly designed Structure-Feature Attention. Followed by a novel Pseudo-Label contrastive learning that differentiates the contribution of each positive pair within pseudo-labels originating from the LP branch, GOODIE outputs the final prediction for the unlabeled nodes. Through extensive experiments, we demonstrate that our proposed model, GOODIE, outperforms the existing state-of-the-art methods not only when only a few features are available but also in abundantly available situations. Source code of GOODIE is available at: https://github.com/SukwonYun/GOODIE.

Authors:Yunlong Lin, Zirui Li, Guodong Du, Xiaocong Zhao, Cheng Gong, Xinwei Wang, Chao Lu, Jianwei Gong
Title: H2C: Hippocampal Circuit-inspired Continual Learning for Lifelong Trajectory Prediction in Autonomous Driving
Abstract:
Deep learning (DL) has shown state-of-the-art performance in trajectory prediction, which is critical to safe navigation in autonomous driving (AD). However, most DL-based methods suffer from catastrophic forgetting, where adapting to a new distribution may cause significant performance degradation in previously learned ones. Such inability to retain learned knowledge limits their applicability in the real world, where AD systems need to operate across varying scenarios with dynamic distributions. As revealed by neuroscience, the hippocampal circuit plays a crucial role in memory replay, effectively reconstructing learned knowledge based on limited resources. Inspired by this, we propose a hippocampal circuit-inspired continual learning method (H2C) for trajectory prediction across varying scenarios. H2C retains prior knowledge by selectively recalling a small subset of learned samples. First, two complementary strategies are developed to select the subset to represent learned knowledge. Specifically, one strategy maximizes inter-sample diversity to represent the distinctive knowledge, and the other estimates the overall knowledge by equiprobable sampling. Then, H2C updates via a memory replay loss function calculated by these selected samples to retain knowledge while learning new data. Experiments based on various scenarios from the INTERACTION dataset are designed to evaluate H2C. Experimental results show that H2C reduces catastrophic forgetting of DL baselines by 22.71% on average in a task-free manner, without relying on manually informed distributional shifts. The implementation is available at https://github.com/BIT-Jack/H2C-lifelong.

Authors:Yu Lei, Jinbin Bai, Qingyu Shi, Aosong Feng, Kaidong Yu
Title: Personalized Safety Alignment for Text-to-Image Diffusion Models
Abstract:
Text-to-image diffusion models have revolutionized visual content generation, but current safety mechanisms apply uniform standards that often fail to account for individual user preferences. These models overlook the diverse safety boundaries shaped by factors like age, mental health, and personal beliefs. To address this, we propose Personalized Safety Alignment (PSA), a framework that allows user-specific control over safety behaviors in generative models. PSA integrates personalized user profiles into the diffusion process, adjusting the model's behavior to match individual safety preferences while preserving image quality. We introduce a new dataset, Sage, which captures user-specific safety preferences and incorporates these profiles through a cross-attention mechanism. Experiments show that PSA outperforms existing methods in harmful content suppression and aligns generated content better with user constraints, achieving higher Win Rate and Pass Rate scores. Our code, data, and models are publicly available at https://m-e-agi-lab.github.io/PSAlign/.

Authors:Huyu Wu, Duo Su, Junjie Hou, Guang Li
Title: Dataset Condensation with Color Compensation
Abstract:
Dataset condensation always faces a constitutive trade-off: balancing performance and fidelity under extreme compression. Existing methods struggle with two bottlenecks: image-level selection methods (Coreset Selection, Dataset Quantization) suffer from inefficiency condensation, while pixel-level optimization (Dataset Distillation) introduces semantic distortion due to over-parameterization. With empirical observations, we find that a critical problem in dataset condensation is the oversight of color's dual role as an information carrier and a basic semantic representation unit. We argue that improving the colorfulness of condensed images is beneficial for representation learning. Motivated by this, we propose DC3: a Dataset Condensation framework with Color Compensation. After a calibrated selection strategy, DC3 utilizes the latent diffusion model to enhance the color diversity of an image rather than creating a brand-new one. Extensive experiments demonstrate the superior performance and generalization of DC3 that outperforms SOTA methods across multiple benchmarks. To the best of our knowledge, besides focusing on downstream tasks, DC3 is the first research to fine-tune pre-trained diffusion models with condensed datasets. The FID results prove that training networks with our high-quality datasets is feasible without model collapse or other degradation issues. Code and generated data are available at https://github.com/528why/Dataset-Condensation-with-Color-Compensation.

Authors:Wei Zhou, Peng Sun, Xuanhe Zhou, Qianglei Zang, Ji Xu, Tieying Zhang, Guoliang Li, Fan Wu
Title: DBAIOps: A Reasoning LLM-Enhanced Database Operation and Maintenance System using Knowledge Graphs
Abstract:
The operation and maintenance (O&M) of database systems is critical to ensuring system availability and performance, typically requiring expert experience (e.g., identifying metric-to-anomaly relations) for effective diagnosis and recovery. However, existing automatic database O&M methods, including commercial products, cannot effectively utilize expert experience. On the one hand, rule-based methods only support basic O&M tasks (e.g., metric-based anomaly detection), which are mostly numerical equations and cannot effectively incorporate literal O&M experience (e.g., troubleshooting guidance in manuals). On the other hand, LLM-based methods, which retrieve fragmented information (e.g., standard documents + RAG), often generate inaccurate or generic results. To address these limitations, we present DBAIOps, a novel hybrid database O&M system that combines reasoning LLMs with knowledge graphs to achieve DBA-style diagnosis. First, DBAIOps introduces a heterogeneous graph model for representing the diagnosis experience, and proposes a semi-automatic graph construction algorithm to build that graph from thousands of documents. Second, DBAIOps develops a collection of (800+) reusable anomaly models that identify both directly alerted metrics and implicitly correlated experience and metrics. Third, for each anomaly, DBAIOps proposes a two-stage graph evolution mechanism to explore relevant diagnosis paths and identify missing relations automatically. It then leverages a reasoning LLM (e.g., DeepSeek-R1) to infer root causes and generate clear diagnosis reports for both DBAs and common users. Our evaluation over four mainstream database systems (Oracle, MySQL, PostgreSQL, and DM8) demonstrates that DBAIOps outperforms state-of-the-art baselines, 34.85% and 47.22% higher in root cause and human evaluation accuracy, respectively.

Authors:Xuan Liu, Siru Ouyang, Xianrui Zhong, Jiawei Han, Huimin Zhao
Title: FGBench: A Dataset and Benchmark for Molecular Property Reasoning at Functional Group-Level in Large Language Models
Abstract:
Large language models (LLMs) have gained significant attention in chemistry. However, most existing datasets center on molecular-level property prediction and overlook the role of fine-grained functional group (FG) information. Incorporating FG-level data can provide valuable prior knowledge that links molecular structures with textual descriptions, which can be used to build more interpretable, structure-aware LLMs for reasoning on molecule-related tasks. Moreover, LLMs can learn from such fine-grained information to uncover hidden relationships between specific functional groups and molecular properties, thereby advancing molecular design and drug discovery. Here, we introduce FGBench, a dataset comprising 625K molecular property reasoning problems with functional group information. Functional groups are precisely annotated and localized within the molecule, which ensures the dataset's interoperability thereby facilitating further multimodal applications. FGBench includes both regression and classification tasks on 245 different functional groups across three categories for molecular property reasoning: (1) single functional group impacts, (2) multiple functional group interactions, and (3) direct molecular comparisons. In the benchmark of state-of-the-art LLMs on 7K curated data, the results indicate that current LLMs struggle with FG-level property reasoning, highlighting the need to enhance reasoning capabilities in LLMs for chemistry tasks. We anticipate that the methodology employed in FGBench to construct datasets with functional group-level information will serve as a foundational framework for generating new question-answer pairs, enabling LLMs to better understand fine-grained molecular structure-property relationships. The dataset and evaluation code are available at https://github.com/xuanliugit/FGBench.

Authors:Yiyi Lu, Hoi Ian Au, Junyao Zhang, Jingyu Pan, Yiting Wang, Ang Li, Jianyi Zhang, Yiran Chen
Title: AutoEDA: Enabling EDA Flow Automation through Microservice-Based LLM Agents
Abstract:
Modern Electronic Design Automation (EDA) workflows, especially the RTL-to-GDSII flow, require heavily manual scripting and demonstrate a multitude of tool-specific interactions which limits scalability and efficiency. While LLMs introduces strides for automation, existing LLM solutions require expensive fine-tuning and do not contain standardized frameworks for integration and evaluation. We introduce AutoEDA, a framework for EDA automation that leverages paralleled learning through the Model Context Protocol (MCP) specific for standardized and scalable natural language experience across the entire RTL-to-GDSII flow. AutoEDA limits fine-tuning through structured prompt engineering, implements intelligent parameter extraction and task decomposition, and provides an extended CodeBLEU metric to evaluate the quality of TCL scripts. Results from experiments over five previously curated benchmarks show improvements in automation accuracy and efficiency, as well as script quality when compared to existing methods. AutoEDA is released open-sourced to support reproducibility and the EDA community. Available at: https://github.com/AndyLu666/MCP-EDA-Server

Authors:Lucas Robinet, Ahmad Berjaoui, Elizabeth Cohen-Jonathan Moyal
Title: Masked Omics Modeling for Multimodal Representation Learning across Histopathology and Molecular Profiles
Abstract:
Self-supervised learning has driven major advances in computational pathology by enabling models to learn rich representations from hematoxylin and eosin (H&E)-stained cancer tissue. However, histopathology alone often falls short for molecular characterization and understanding clinical outcomes, as important information is contained in high-dimensional omics profiles like transcriptomics, methylomics, or genomics. In this work, we introduce MORPHEUS, a unified transformer-based pre-training framework that encodes both histopathology and multi-omics data into a shared latent space. At its core, MORPHEUS relies on a masked modeling objective applied to randomly selected omics portions, encouraging the model to learn biologically meaningful cross-modal relationships. The same pre-trained network can be applied to histopathology alone or in combination with any subset of omics modalities, seamlessly adapting to the available inputs. Additionally, MORPHEUS enables any-to-any omics generation, enabling one or more omics profiles to be inferred from any subset of modalities, including H&E alone. Pre-trained on a large pan-cancer cohort, MORPHEUS consistently outperforms state-of-the-art methods across diverse modality combinations and tasks, positioning itself as a promising framework for developing multimodal foundation models in oncology. The code is available at: https://github.com/Lucas-rbnt/MORPHEUS

Authors:Irene Iele, Francesco Di Feola, Valerio Guarrasi, Paolo Soda
Title: Sample-Aware Test-Time Adaptation for Medical Image-to-Image Translation
Abstract:
Image-to-image translation has emerged as a powerful technique in medical imaging, enabling tasks such as image denoising and cross-modality conversion. However, it suffers from limitations in handling out-of-distribution samples without causing performance degradation. To address this limitation, we propose a novel Test-Time Adaptation (TTA) framework that dynamically adjusts the translation process based on the characteristics of each test sample. Our method introduces a Reconstruction Module to quantify the domain shift and a Dynamic Adaptation Block that selectively modifies the internal features of a pretrained translation model to mitigate the shift without compromising the performance on in-distribution samples that do not require adaptation. We evaluate our approach on two medical image-to-image translation tasks: low-dose CT denoising and T1 to T2 MRI translation, showing consistent improvements over both the baseline translation model without TTA and prior TTA methods. Our analysis highlights the limitations of the state-of-the-art that uniformly apply the adaptation to both out-of-distribution and in-distribution samples, demonstrating that dynamic, sample-specific adjustment offers a promising path to improve model resilience in real-world scenarios. The code is available at: https://github.com/Sample-Aware-TTA/Code.

Authors:Chende Zheng, Ruiqi suo, Chenhao Lin, Zhengyu Zhao, Le Yang, Shuai Liu, Minghui Yang, Cong Wang, Chao Shen
Title: D3: Training-Free AI-Generated Video Detection Using Second-Order Features
Abstract:
The evolution of video generation techniques, such as Sora, has made it increasingly easy to produce high-fidelity AI-generated videos, raising public concern over the dissemination of synthetic content. However, existing detection methodologies remain limited by their insufficient exploration of temporal artifacts in synthetic videos. To bridge this gap, we establish a theoretical framework through second-order dynamical analysis under Newtonian mechanics, subsequently extending the Second-order Central Difference features tailored for temporal artifact detection. Building on this theoretical foundation, we reveal a fundamental divergence in second-order feature distributions between real and AI-generated videos. Concretely, we propose Detection by Difference of Differences (D3), a novel training-free detection method that leverages the above second-order temporal discrepancies. We validate the superiority of our D3 on 4 open-source datasets (Gen-Video, VideoPhy, EvalCrafter, VidProM), 40 subsets in total. For example, on GenVideo, D3 outperforms the previous best method by 10.39% (absolute) mean Average Precision. Additional experiments on time cost and post-processing operations demonstrate D3's exceptional computational efficiency and strong robust performance. Our code is available at https://github.com/Zig-HS/D3.

Authors:Jiecong Wang, Haoran Li, Hao Peng, Ziqian Zeng, Zihao Wang, Haohua Du, Zhengtao Yu
Title: Activation-Guided Local Editing for Jailbreaking Attacks
Abstract:
Jailbreaking is an essential adversarial technique for red-teaming these models to uncover and patch security flaws. However, existing jailbreak methods face significant drawbacks. Token-level jailbreak attacks often produce incoherent or unreadable inputs and exhibit poor transferability, while prompt-level attacks lack scalability and rely heavily on manual effort and human ingenuity. We propose a concise and effective two-stage framework that combines the advantages of these approaches. The first stage performs a scenario-based generation of context and rephrases the original malicious query to obscure its harmful intent. The second stage then utilizes information from the model's hidden states to guide fine-grained edits, effectively steering the model's internal representation of the input from a malicious toward a benign one. Extensive experiments demonstrate that this method achieves state-of-the-art Attack Success Rate, with gains of up to 37.74% over the strongest baseline, and exhibits excellent transferability to black-box models. Our analysis further demonstrates that AGILE maintains substantial effectiveness against prominent defense mechanisms, highlighting the limitations of current safeguards and providing valuable insights for future defense development. Our code is available at https://github.com/yunsaijc/AGILE.

Authors:Mohammed Kamran, Maria Bernathova, Raoul Varga, Christian F. Singer, Zsuzsanna Bago-Horvath, Thomas Helbich, Georg Langs, Philipp Seeböck
Title: LesiOnTime -- Joint Temporal and Clinical Modeling for Small Breast Lesion Segmentation in Longitudinal DCE-MRI
Abstract:
Accurate segmentation of small lesions in Breast Dynamic Contrast-Enhanced MRI (DCE-MRI) is critical for early cancer detection, especially in high-risk patients. While recent deep learning methods have advanced lesion segmentation, they primarily target large lesions and neglect valuable longitudinal and clinical information routinely used by radiologists. In real-world screening, detecting subtle or emerging lesions requires radiologists to compare across timepoints and consider previous radiology assessments, such as the BI-RADS score. We propose LesiOnTime, a novel 3D segmentation approach that mimics clinical diagnostic workflows by jointly leveraging longitudinal imaging and BIRADS scores. The key components are: (1) a Temporal Prior Attention (TPA) block that dynamically integrates information from previous and current scans; and (2) a BI-RADS Consistency Regularization (BCR) loss that enforces latent space alignment for scans with similar radiological assessments, thus embedding domain knowledge into the training process. Evaluated on a curated in-house longitudinal dataset of high-risk patients with DCE-MRI, our approach outperforms state-of-the-art single-timepoint and longitudinal baselines by 5% in terms of Dice. Ablation studies demonstrate that both TPA and BCR contribute complementary performance gains. These results highlight the importance of incorporating temporal and clinical context for reliable early lesion segmentation in real-world breast cancer screening. Our code is publicly available at https://github.com/cirmuw/LesiOnTime

Authors:Carlo Alessi, Federico Vasile, Federico Ceola, Giulia Pasquale, Nicolò Boccardo, Lorenzo Natale
Title: HannesImitation: Grasping with the Hannes Prosthetic Hand via Imitation Learning
Abstract:
Recent advancements in control of prosthetic hands have focused on increasing autonomy through the use of cameras and other sensory inputs. These systems aim to reduce the cognitive load on the user by automatically controlling certain degrees of freedom. In robotics, imitation learning has emerged as a promising approach for learning grasping and complex manipulation tasks while simplifying data collection. Its application to the control of prosthetic hands remains, however, largely unexplored. Bridging this gap could enhance dexterity restoration and enable prosthetic devices to operate in more unconstrained scenarios, where tasks are learned from demonstrations rather than relying on manually annotated sequences. To this end, we present HannesImitationPolicy, an imitation learning-based method to control the Hannes prosthetic hand, enabling object grasping in unstructured environments. Moreover, we introduce the HannesImitationDataset comprising grasping demonstrations in table, shelf, and human-to-prosthesis handover scenarios. We leverage such data to train a single diffusion policy and deploy it on the prosthetic hand to predict the wrist orientation and hand closure for grasping. Experimental evaluation demonstrates successful grasps across diverse objects and conditions. Finally, we show that the policy outperforms a segmentation-based visual servo controller in unstructured scenarios. Additional material is provided on our project page: https://hsp-iit.github.io/HannesImitation

Authors:M. A. Pérez-Cutiño, J. Valverde, J. Capitán, J. M. Díaz-Báñez
Title: Reducing the gap between general purpose data and aerial images in concentrated solar power plants
Abstract:
In the context of Concentrated Solar Power (CSP) plants, aerial images captured by drones present a unique set of challenges. Unlike urban or natural landscapes commonly found in existing datasets, solar fields contain highly reflective surfaces, and domain-specific elements that are uncommon in traditional computer vision benchmarks. As a result, machine learning models trained on generic datasets struggle to generalize to this setting without extensive retraining and large volumes of annotated data. However, collecting and labeling such data is costly and time-consuming, making it impractical for rapid deployment in industrial applications. To address this issue, we propose a novel approach: the creation of AerialCSP, a virtual dataset that simulates aerial imagery of CSP plants. By generating synthetic data that closely mimic real-world conditions, our objective is to facilitate pretraining of models before deployment, significantly reducing the need for extensive manual labeling. Our main contributions are threefold: (1) we introduce AerialCSP, a high-quality synthetic dataset for aerial inspection of CSP plants, providing annotated data for object detection and image segmentation; (2) we benchmark multiple models on AerialCSP, establishing a baseline for CSP-related vision tasks; and (3) we demonstrate that pretraining on AerialCSP significantly improves real-world fault detection, particularly for rare and small defects, reducing the need for extensive manual labeling. AerialCSP is made publicly available at https://mpcutino.github.io/aerialcsp/.

Authors:Tianqing Fang, Zhisong Zhang, Xiaoyang Wang, Rui Wang, Can Qin, Yuxuan Wan, Jun-Yu Ma, Ce Zhang, Jiaqi Chen, Xiyun Li, Hongming Zhang, Haitao Mi, Dong Yu
Title: Cognitive Kernel-Pro: A Framework for Deep Research Agents and Agent Foundation Models Training
Abstract:
General AI Agents are increasingly recognized as foundational frameworks for the next generation of artificial intelligence, enabling complex reasoning, web interaction, coding, and autonomous research capabilities. However, current agent systems are either closed-source or heavily reliant on a variety of paid APIs and proprietary tools, limiting accessibility and reproducibility for the research community. In this work, we present \textbf{Cognitive Kernel-Pro}, a fully open-source and (to the maximum extent) free multi-module agent framework designed to democratize the development and evaluation of advanced AI agents. Within Cognitive Kernel-Pro, we systematically investigate the curation of high-quality training data for Agent Foundation Models, focusing on the construction of queries, trajectories, and verifiable answers across four key domains: web, file, code, and general reasoning. Furthermore, we explore novel strategies for agent test-time reflection and voting to enhance agent robustness and performance. We evaluate Cognitive Kernel-Pro on GAIA, achieving state-of-the-art results among open-source and free agents. Notably, our 8B-parameter open-source model surpasses previous leading systems such as WebDancer and WebSailor, establishing a new performance standard for accessible, high-capability AI agents. Code is available at https://github.com/Tencent/CognitiveKernel-Pro

Authors:Junyu Chen, Dongyun Zou, Wenkun He, Junsong Chen, Enze Xie, Song Han, Han Cai
Title: DC-AE 1.5: Accelerating Diffusion Model Convergence with Structured Latent Space
Abstract:
We present DC-AE 1.5, a new family of deep compression autoencoders for high-resolution diffusion models. Increasing the autoencoder's latent channel number is a highly effective approach for improving its reconstruction quality. However, it results in slow convergence for diffusion models, leading to poorer generation quality despite better reconstruction quality. This issue limits the quality upper bound of latent diffusion models and hinders the employment of autoencoders with higher spatial compression ratios. We introduce two key innovations to address this challenge: i) Structured Latent Space, a training-based approach to impose a desired channel-wise structure on the latent space with front latent channels capturing object structures and latter latent channels capturing image details; ii) Augmented Diffusion Training, an augmented diffusion training strategy with additional diffusion training objectives on object latent channels to accelerate convergence. With these techniques, DC-AE 1.5 delivers faster convergence and better diffusion scaling results than DC-AE. On ImageNet 512x512, DC-AE-1.5-f64c128 delivers better image generation quality than DC-AE-f32c32 while being 4x faster. Code: https://github.com/dc-ai-projects/DC-Gen.

Authors:Fei Zhang, Tianfei Zhou, Jiangchao Yao, Ya Zhang, Ivor W. Tsang, Yanfeng Wang
Title: Decouple before Align: Visual Disentanglement Enhances Prompt Tuning
Abstract:
Prompt tuning (PT), as an emerging resource-efficient fine-tuning paradigm, has showcased remarkable effectiveness in improving the task-specific transferability of vision-language models. This paper delves into a previously overlooked information asymmetry issue in PT, where the visual modality mostly conveys more context than the object-oriented textual modality. Correspondingly, coarsely aligning these two modalities could result in the biased attention, driving the model to merely focus on the context area. To address this, we propose DAPT, an effective PT framework based on an intuitive decouple-before-align concept. First, we propose to explicitly decouple the visual modality into the foreground and background representation via exploiting coarse-and-fine visual segmenting cues, and then both of these decoupled patterns are aligned with the original foreground texts and the hand-crafted background classes, thereby symmetrically strengthening the modal alignment. To further enhance the visual concentration, we propose a visual pull-push regularization tailored for the foreground-background patterns, directing the original visual representation towards unbiased attention on the region-of-interest object. We demonstrate the power of architecture-free DAPT through few-shot learning, base-to-novel generalization, and data-efficient learning, all of which yield superior performance across prevailing benchmarks. Our code will be released at https://github.com/Ferenas/DAPT.

Authors:Won June Cho, Hongjun Yoon, Daeky Jeong, Hyeongyeol Lim, Yosep Chong
Title: $MV_{Hybrid}$: Improving Spatial Transcriptomics Prediction with Hybrid State Space-Vision Transformer Backbone in Pathology Vision Foundation Models
Abstract:
Spatial transcriptomics reveals gene expression patterns within tissue context, enabling precision oncology applications such as treatment response prediction, but its high cost and technical complexity limit clinical adoption. Predicting spatial gene expression (biomarkers) from routine histopathology images offers a practical alternative, yet current vision foundation models (VFMs) in pathology based on Vision Transformer (ViT) backbones perform below clinical standards. Given that VFMs are already trained on millions of diverse whole slide images, we hypothesize that architectural innovations beyond ViTs may better capture the low-frequency, subtle morphological patterns correlating with molecular phenotypes. By demonstrating that state space models initialized with negative real eigenvalues exhibit strong low-frequency bias, we introduce $MV_{Hybrid}$, a hybrid backbone architecture combining state space models (SSMs) with ViT. We compare five other different backbone architectures for pathology VFMs, all pretrained on identical colorectal cancer datasets using the DINOv2 self-supervised learning method. We evaluate all pretrained models using both random split and leave-one-study-out (LOSO) settings of the same biomarker dataset. In LOSO evaluation, $MV_{Hybrid}$ achieves 57% higher correlation than the best-performing ViT and shows 43% smaller performance degradation compared to random split in gene expression prediction, demonstrating superior performance and robustness, respectively. Furthermore, $MV_{Hybrid}$ shows equal or better downstream performance in classification, patch retrieval, and survival prediction tasks compared to that of ViT, showing its promise as a next-generation pathology VFM backbone. Our code is publicly available at: https://github.com/deepnoid-ai/MVHybrid.

Authors:Suhang Cai, Xiaohao Peng, Chong Wang, Xiaojie Cai, Jiangbo Qian
Title: GV-VAD : Exploring Video Generation for Weakly-Supervised Video Anomaly Detection
Abstract:
Video anomaly detection (VAD) plays a critical role in public safety applications such as intelligent surveillance. However, the rarity, unpredictability, and high annotation cost of real-world anomalies make it difficult to scale VAD datasets, which limits the performance and generalization ability of existing models. To address this challenge, we propose a generative video-enhanced weakly-supervised video anomaly detection (GV-VAD) framework that leverages text-conditioned video generation models to produce semantically controllable and physically plausible synthetic videos. These virtual videos are used to augment training data at low cost. In addition, a synthetic sample loss scaling strategy is utilized to control the influence of generated synthetic samples for efficient training. The experiments show that the proposed framework outperforms state-of-the-art methods on UCF-Crime datasets. The code is available at https://github.com/Sumutan/GV-VAD.git.

Authors:Hongjin Qian, Zheng Liu
Title: MetaAgent: Toward Self-Evolving Agent via Tool Meta-Learning
Abstract:
In this work, we propose MetaAgent, an agentic paradigm inspired by the principle of learning-by-doing, where expertise is developed through hands-on practice and continual self-improvement. MetaAgent starts with a minimal workflow, equipped only with basic reasoning and adaptive help-seeking abilities. When a knowledge gap is encountered, MetaAgent generates natural language help requests, which are routed to the most suitable external tool by a dedicated tool router. As MetaAgent solves tasks, it continually conducts self-reflection and answer verification, distilling actionable experience into concise texts that are dynamically incorporated into future task contexts. Besides, MetaAgent autonomously builds in-house tools and a persistent knowledge base by organizing its tool-use history, further enhancing its ability to retrieve and integrate relevant information We term this continual, data-driven process as \textit{meta tool learning}, through which MetaAgent incrementally refines its reasoning and tool-use strategies, without changing model parameters or requiring further post-training. Evaluated on challenging knowledge discovery benchmarks, including GAIA, WebWalkerQA, and BrowseCamp, MetaAgent consistently outperforms workflow-based baselines and matches or exceeds end-to-end trained agents, demonstrating the promise of self-evolving agentic systems for robust, general-purpose knowledge discovery. We provide our source codes in https://github.com/qhjqhj00/MetaAgent.

Authors:Tomasz Szczepański, Szymon Płotka, Michal K. Grzeszczyk, Arleta Adamowicz, Piotr Fudalej, Przemysław Korzeniowski, Tomasz Trzciński, Arkadiusz Sitek
Title: GEPAR3D: Geometry Prior-Assisted Learning for 3D Tooth Segmentation
Abstract:
Tooth segmentation in Cone-Beam Computed Tomography (CBCT) remains challenging, especially for fine structures like root apices, which is critical for assessing root resorption in orthodontics. We introduce GEPAR3D, a novel approach that unifies instance detection and multi-class segmentation into a single step tailored to improve root segmentation. Our method integrates a Statistical Shape Model of dentition as a geometric prior, capturing anatomical context and morphological consistency without enforcing restrictive adjacency constraints. We leverage a deep watershed method, modeling each tooth as a continuous 3D energy basin encoding voxel distances to boundaries. This instance-aware representation ensures accurate segmentation of narrow, complex root apices. Trained on publicly available CBCT scans from a single center, our method is evaluated on external test sets from two in-house and two public medical centers. GEPAR3D achieves the highest overall segmentation performance, averaging a Dice Similarity Coefficient (DSC) of 95.0% (+2.8% over the second-best method) and increasing recall to 95.2% (+9.5%) across all test sets. Qualitative analyses demonstrated substantial improvements in root segmentation quality, indicating significant potential for more accurate root resorption assessment and enhanced clinical decision-making in orthodontics. We provide the implementation and dataset at https://github.com/tomek1911/GEPAR3D.

Authors:Ashkan Shakarami, Yousef Yeganeh, Azade Farshad, Lorenzo Nicole, Stefano Ghidoni, Nassir Navab
Title: Stress-Aware Resilient Neural Training
Abstract:
This paper introduces Stress-Aware Learning, a resilient neural training paradigm in which deep neural networks dynamically adjust their optimization behavior - whether under stable training regimes or in settings with uncertain dynamics - based on the concept of Temporary (Elastic) and Permanent (Plastic) Deformation, inspired by structural fatigue in materials science. To instantiate this concept, we propose Plastic Deformation Optimizer, a stress-aware mechanism that injects adaptive noise into model parameters whenever an internal stress signal - reflecting stagnation in training loss and accuracy - indicates persistent optimization difficulty. This enables the model to escape sharp minima and converge toward flatter, more generalizable regions of the loss landscape. Experiments across six architectures, four optimizers, and seven vision benchmarks demonstrate improved robustness and generalization with minimal computational overhead. The code and 3D visuals will be available on GitHub: https://github.com/Stress-Aware-Learning/SAL.

Authors:Zhigen Zhao, Liuchuan Yu, Ke Jing, Ning Yang
Title: XRoboToolkit: A Cross-Platform Framework for Robot Teleoperation
Abstract:
The rapid advancement of Vision-Language-Action models has created an urgent need for large-scale, high-quality robot demonstration datasets. Although teleoperation is the predominant method for data collection, current approaches suffer from limited scalability, complex setup procedures, and suboptimal data quality. This paper presents XRoboToolkit, a cross-platform framework for extended reality based robot teleoperation built on the OpenXR standard. The system features low-latency stereoscopic visual feedback, optimization-based inverse kinematics, and support for diverse tracking modalities including head, controller, hand, and auxiliary motion trackers. XRoboToolkit's modular architecture enables seamless integration across robotic platforms and simulation environments, spanning precision manipulators, mobile robots, and dexterous hands. We demonstrate the framework's effectiveness through precision manipulation tasks and validate data quality by training VLA models that exhibit robust autonomous performance.

Authors:Raiyaan Abdullah, Jared Claypoole, Michael Cogswell, Ajay Divakaran, Yogesh Rawat
Title: Punching Bag vs. Punching Person: Motion Transferability in Videos
Abstract:
Action recognition models demonstrate strong generalization, but can they effectively transfer high-level motion concepts across diverse contexts, even within similar distributions? For example, can a model recognize the broad action "punching" when presented with an unseen variation such as "punching person"? To explore this, we introduce a motion transferability framework with three datasets: (1) Syn-TA, a synthetic dataset with 3D object motions; (2) Kinetics400-TA; and (3) Something-Something-v2-TA, both adapted from natural video datasets. We evaluate 13 state-of-the-art models on these benchmarks and observe a significant drop in performance when recognizing high-level actions in novel contexts. Our analysis reveals: 1) Multimodal models struggle more with fine-grained unknown actions than with coarse ones; 2) The bias-free Syn-TA proves as challenging as real-world datasets, with models showing greater performance drops in controlled settings; 3) Larger models improve transferability when spatial cues dominate but struggle with intensive temporal reasoning, while reliance on object and background cues hinders generalization. We further explore how disentangling coarse and fine motions can improve recognition in temporally challenging datasets. We believe this study establishes a crucial benchmark for assessing motion transferability in action recognition. Datasets and relevant code: https://github.com/raiyaan-abdullah/Motion-Transfer.

Authors:Oshayer Siddique, J. M Areeb Uzair Alam, Md Jobayer Rahman Rafy, Syed Rifat Raiyan, Hasan Mahmud, Md Kamrul Hasan
Title: PhysicsEval: Inference-Time Techniques to Improve the Reasoning Proficiency of Large Language Models on Physics Problems
Abstract:
The discipline of physics stands as a cornerstone of human intellect, driving the evolution of technology and deepening our understanding of the fundamental principles of the cosmos. Contemporary literature includes some works centered on the task of solving physics problems - a crucial domain of natural language reasoning. In this paper, we evaluate the performance of frontier LLMs in solving physics problems, both mathematical and descriptive. We also employ a plethora of inference-time techniques and agentic frameworks to improve the performance of the models. This includes the verification of proposed solutions in a cumulative fashion by other, smaller LLM agents, and we perform a comparative analysis of the performance that the techniques entail. There are significant improvements when the multi-agent framework is applied to problems that the models initially perform poorly on. Furthermore, we introduce a new evaluation benchmark for physics problems, ${\rm P{\small HYSICS}E{\small VAL}}$, consisting of 19,609 problems sourced from various physics textbooks and their corresponding correct solutions scraped from physics forums and educational websites. Our code and data are publicly available at https://github.com/areebuzair/PhysicsEval.

Authors:Yuan-Cheng Yu, Yen-Chieh Ouyang, Chun-An Lin
Title: TriP-LLM: A Tri-Branch Patch-wise Large Language Model Framework for Time-Series Anomaly Detection
Abstract:
Time-series anomaly detection plays a central role across a wide range of application domains. With the increasing proliferation of the Internet of Things (IoT) and smart manufacturing, time-series data has dramatically increased in both scale and dimensionality. This growth has exposed the limitations of traditional statistical methods in handling the high heterogeneity and complexity of such data. Inspired by the recent success of large language models (LLMs) in multimodal tasks across language and vision domains, we propose a novel unsupervised anomaly detection framework: A Tri-Branch Patch-wise Large Language Model Framework for Time-Series Anomaly Detection (TriP-LLM). TriP-LLM integrates local and global temporal features through a tri-branch design-Patching, Selection, and Global-to encode the input time series into patch-wise tokens, which are then processed by a frozen, pretrained LLM. A lightweight patch-wise decoder reconstructs the input, from which anomaly scores are derived. We evaluate TriP-LLM on several public benchmark datasets using PATE, a recently proposed threshold-free evaluation metric, and conduct all comparisons within a unified open-source framework to ensure fairness. Experimental results show that TriP-LLM consistently outperforms recent state-of-the-art methods across all datasets, demonstrating strong detection capabilities. Furthermore, through extensive ablation studies, we verify the substantial contribution of the LLM to the overall architecture. Compared to LLM-based approaches using Channel Independence (CI) patch processing, TriP-LLM achieves significantly lower memory consumption, making it more suitable for GPU memory-constrained environments. All code and model checkpoints are publicly available on https://github.com/YYZStart/TriP-LLM.git

Authors:Nikolai Sergeev
Title: Generative Logic: A New Computer Architecture for Deterministic Reasoning and Knowledge Generation
Abstract:
We present Generative Logic (GL), a deterministic architecture that begins from user-supplied axiomatic definitions -- written in a minimalist Mathematical Programming Language (MPL) -- and systematically explores their deductive neighborhood. Definitions are compiled into a distributed grid of simple Logic Blocks (LBs) that exchange messages; any time several expressions unify under an inference rule, a new fact is emitted with full provenance to its sources, yielding replayable, auditable proof graphs. A prototype software implementation instantiates the workflow on first-order Peano arithmetic. Starting only from the Peano axioms, GL enumerates candidate implications, applies normalization and type filters, and automatically reconstructs machine-checkable proofs of foundational arithmetic laws including associativity and commutativity of addition, associativity and commutativity of multiplication, and distributivity. Generated proofs export to navigable HTML so that every inference step can be inspected independently. We outline a hardware-software co-design path toward massively parallel realizations and describe prospective integration with probabilistic models (e.g., Large Language Models (LLMs)) for autoformalization and conjecture seeding. The Python and MPL code to reproduce the Peano experiments, along with the full HTML proof graphs, are available in the project's GitHub repository at https://github.com/Generative-Logic/GL/tree/35a111ea9ba53afe051703d6050be0c3923e9724 and are permanently archived at https://doi.org/10.5281/zenodo.16408441. We invite community feedback and collaboration.

Authors:Gaowei Chang, Eidan Lin, Chengxuan Yuan, Rizhao Cai, Binbin Chen, Xuan Xie, Yin Zhang
Title: Agent Network Protocol Technical White Paper
Abstract:
With the development of large models and autonomous decision-making AI, agents are rapidly becoming the new entities of the internet, following mobile apps. However, existing internet infrastructure is primarily designed for human interaction, creating data silos, unfriendly interfaces, and high collaboration costs among agents, making it difficult to support the needs for large-scale agent interconnection and collaboration. The internet is undergoing a profound transformation, showing four core trends: agents replacing traditional software, universal agent interconnection, native protocol-based connections, and autonomous agent organization and collaboration. To align with these trends, Agent Network Protocol (ANP) proposes a new generation of communication protocols for the Agentic Web. ANP adheres to AI-native design, maintains compatibility with existing internet protocols, adopts a modular composable architecture, follows minimalist yet extensible principles, and enables rapid deployment based on existing infrastructure. Through a three-layer protocol system--identity and encrypted communication layer, meta-protocol negotiation layer, and application protocol layer--ANP. systematically solves the problems of agent identity authentication, dynamic negotiation, and capability discovery interoperability.

Authors:Jessica Bader, Leander Girrbach, Stephan Alaniz, Zeynep Akata
Title: SUB: Benchmarking CBM Generalization via Synthetic Attribute Substitutions
Abstract:
Concept Bottleneck Models (CBMs) and other concept-based interpretable models show great promise for making AI applications more transparent, which is essential in fields like medicine. Despite their success, we demonstrate that CBMs struggle to reliably identify the correct concepts under distribution shifts. To assess the robustness of CBMs to concept variations, we introduce SUB: a fine-grained image and concept benchmark containing 38,400 synthetic images based on the CUB dataset. To create SUB, we select a CUB subset of 33 bird classes and 45 concepts to generate images which substitute a specific concept, such as wing color or belly pattern. We introduce a novel Tied Diffusion Guidance (TDG) method to precisely control generated images, where noise sharing for two parallel denoising processes ensures that both the correct bird class and the correct attribute are generated. This novel benchmark enables rigorous evaluation of CBMs and similar interpretable models, contributing to the development of more robust methods. Our code is available at https://github.com/ExplainableML/sub and the dataset at http://huggingface.co/datasets/Jessica-bader/SUB.

Authors:Miaosen Zhang, Ziqiang Xu, Jialiang Zhu, Qi Dai, Kai Qiu, Yifan Yang, Chong Luo, Tianyi Chen, Justin Wagle, Tim Franklin, Baining Guo
Title: Phi-Ground Tech Report: Advancing Perception in GUI Grounding
Abstract:
With the development of multimodal reasoning models, Computer Use Agents (CUAs), akin to Jarvis from \textit{"Iron Man"}, are becoming a reality. GUI grounding is a core component for CUAs to execute actual actions, similar to mechanical control in robotics, and it directly leads to the success or failure of the system. It determines actions such as clicking and typing, as well as related parameters like the coordinates for clicks. Current end-to-end grounding models still achieve less than 65\% accuracy on challenging benchmarks like ScreenSpot-pro and UI-Vision, indicating they are far from being ready for deployment. % , as a single misclick can result in unacceptable consequences. In this work, we conduct an empirical study on the training of grounding models, examining details from data collection to model training. Ultimately, we developed the \textbf{Phi-Ground} model family, which achieves state-of-the-art performance across all five grounding benchmarks for models under $10B$ parameters in agent settings. In the end-to-end model setting, our model still achieves SOTA results with scores of \textit{\textbf{43.2}} on ScreenSpot-pro and \textit{\textbf{27.2}} on UI-Vision. We believe that the various details discussed in this paper, along with our successes and failures, not only clarify the construction of grounding models but also benefit other perception tasks. Project homepage: \href{https://zhangmiaosen2000.github.io/Phi-Ground/}{https://zhangmiaosen2000.github.io/Phi-Ground/}

Authors:Justin Kay, Grant Van Horn, Subhransu Maji, Daniel Sheldon, Sara Beery
Title: Consensus-Driven Active Model Selection
Abstract:
The widespread availability of off-the-shelf machine learning models poses a challenge: which model, of the many available candidates, should be chosen for a given data analysis task? This question of model selection is traditionally answered by collecting and annotating a validation dataset -- a costly and time-intensive process. We propose a method for active model selection, using predictions from candidate models to prioritize the labeling of test data points that efficiently differentiate the best candidate. Our method, CODA, performs consensus-driven active model selection by modeling relationships between classifiers, categories, and data points within a probabilistic framework. The framework uses the consensus and disagreement between models in the candidate pool to guide the label acquisition process, and Bayesian inference to update beliefs about which model is best as more information is collected. We validate our approach by curating a collection of 26 benchmark tasks capturing a range of model selection scenarios. CODA outperforms existing methods for active model selection significantly, reducing the annotation effort required to discover the best model by upwards of 70% compared to the previous state-of-the-art. Code and data are available at https://github.com/justinkay/coda.

Authors:Nasim Shirvani-Mahdavi, Devin Wingfield, Amin Ghasemi, Chengkai Li
Title: Rule2Text: Natural Language Explanation of Logical Rules in Knowledge Graphs
Abstract:
Knowledge graphs (KGs) often contain sufficient information to support the inference of new facts. Identifying logical rules not only improves the completeness of a knowledge graph but also enables the detection of potential errors, reveals subtle data patterns, and enhances the overall capacity for reasoning and interpretation. However, the complexity of such rules, combined with the unique labeling conventions of each KG, can make them difficult for humans to understand. In this paper, we explore the potential of large language models to generate natural language explanations for logical rules. Specifically, we extract logical rules using the AMIE 3.5.1 rule discovery algorithm from the benchmark dataset FB15k-237 and two large-scale datasets, FB-CVT-REV and FB+CVT-REV. We examine various prompting strategies, including zero- and few-shot prompting, including variable entity types, and chain-of-thought reasoning. We conduct a comprehensive human evaluation of the generated explanations based on correctness, clarity, and hallucination, and also assess the use of large language models as automatic judges. Our results demonstrate promising performance in terms of explanation correctness and clarity, although several challenges remain for future research. All scripts and data used in this study are publicly available at https://github.com/idirlab/KGRule2NL}{https://github.com/idirlab/KGRule2NL.

Authors:Haipeng Liu, Yuxuan Liu, Ting Long
Title: Personalized Education with Ranking Alignment Recommendation
Abstract:
Personalized question recommendation aims to guide individual students through questions to enhance their mastery of learning targets. Most previous methods model this task as a Markov Decision Process and use reinforcement learning to solve, but they struggle with efficient exploration, failing to identify the best questions for each student during training. To address this, we propose Ranking Alignment Recommendation (RAR), which incorporates collaborative ideas into the exploration mechanism, enabling more efficient exploration within limited training episodes. Experiments show that RAR effectively improves recommendation performance, and our framework can be applied to any RL-based question recommender. Our code is available in https://github.com/wuming29/RAR.git.

Authors:Dustin Carrión-Ojeda, Stefan Roth, Simone Schaub-Meyer
Title: Efficient Masked Attention Transformer for Few-Shot Classification and Segmentation
Abstract:
Few-shot classification and segmentation (FS-CS) focuses on jointly performing multi-label classification and multi-class segmentation using few annotated examples. Although the current state of the art (SOTA) achieves high accuracy in both tasks, it struggles with small objects. To overcome this, we propose the Efficient Masked Attention Transformer (EMAT), which improves classification and segmentation accuracy, especially for small objects. EMAT introduces three modifications: a novel memory-efficient masked attention mechanism, a learnable downscaling strategy, and parameter-efficiency enhancements. EMAT outperforms all FS-CS methods on the PASCAL-5$^i$ and COCO-20$^i$ datasets, using at least four times fewer trainable parameters. Moreover, as the current FS-CS evaluation setting discards available annotations, despite their costly collection, we introduce two novel evaluation settings that consider these annotations to better reflect practical scenarios.

Authors:Yadong Niu, Tianzi Wang, Heinrich Dinkel, Xingwei Sun, Jiahao Zhou, Gang Li, Jizhong Liu, Xunying Liu, Junbo Zhang, Jian Luan
Title: MECAT: A Multi-Experts Constructed Benchmark for Fine-Grained Audio Understanding Tasks
Abstract:
While large audio-language models have advanced open-ended audio understanding, they still fall short of nuanced human-level comprehension. This gap persists largely because current benchmarks, limited by data annotations and evaluation metrics, fail to reliably distinguish between generic and highly detailed model outputs. To this end, this work introduces MECAT, a Multi-Expert Constructed Benchmark for Fine-Grained Audio Understanding Tasks. Generated via a pipeline that integrates analysis from specialized expert models with Chain-of-Thought large language model reasoning, MECAT provides multi-perspective, fine-grained captions and open-set question-answering pairs. The benchmark is complemented by a novel metric: DATE (Discriminative-Enhanced Audio Text Evaluation). This metric penalizes generic terms and rewards detailed descriptions by combining single-sample semantic similarity with cross-sample discriminability. A comprehensive evaluation of state-of-the-art audio models is also presented, providing new insights into their current capabilities and limitations. The data and code are available at https://github.com/xiaomi-research/mecat

Authors:Mingzhe Li, Xin Lu, Yanyan Zhao
Title: Self-Foveate: Enhancing Diversity and Difficulty of Synthesized Instructions from Unsupervised Text via Multi-Level Foveation
Abstract:
Large language models (LLMs) with instruction following capabilities have demonstrated impressive problem-solving abilities. While synthesizing instructional data from unsupervised text has become a common approach for training such models, conventional methods rely heavily on human effort for data annotation. Although existing automated synthesis paradigms have alleviated this constraint, they still exhibit significant limitations in ensuring adequate diversity and difficulty of synthesized instructions. To address these challenges, we propose Self-Foveate, an innovative LLM-driven method for instruction synthesis. This approach introduces a "Micro-Scatter-Macro" multi-level foveation methodology that effectively guides the LLM to deeply excavate fine-grained information embedded in unsupervised text, thereby enhancing both the diversity and difficulty of synthesized instructions. Comprehensive experiments across multiple unsupervised corpora and diverse model architectures validate the effectiveness and superiority of our proposed method. We publicly release our data and codes: https://github.com/Mubuky/Self-Foveate

Authors:Trae Research Team, Pengfei Gao, Zhao Tian, Xiangxin Meng, Xinchen Wang, Ruida Hu, Yuanan Xiao, Yizhou Liu, Zhao Zhang, Junjie Chen, Cuiyun Gao, Yun Lin, Yingfei Xiong, Chao Peng, Xia Liu
Title: Trae Agent: An LLM-based Agent for Software Engineering with Test-time Scaling
Abstract:
Software issue resolution is a critical challenge in software engineering and has garnered increasing attention in recent years. With the rapid advancement of large language models (LLMs), substantial progress has been made in addressing real-world software engineering tasks. Recent studies have introduced ensemble reasoning techniques to enhance the performance of LLM-based issue resolution. However, existing prompting-based methods still face limitations in effectively exploring large ensemble spaces and lack the capacity for repository-level understanding, both of which constrain their overall effectiveness. In this paper, we propose Trae Agent, the first agent-based ensemble reasoning approach for repository-level issue resolution. Trae Agent formulates our goal as an optimal solution search problem and addresses two key challenges, i.e., large ensemble spaces and repository-level understanding, through modular agents for generation, pruning, and selection. We conduct extensive experiments using three leading LLMs on the widely-adopted SWE-bench benchmark, comparing Trae Agent against four state-of-the-art ensemble reasoning techniques. Experimental results demonstrate that Trae Agent consistently achieves superior performance, with an average improvement of 10.22% over all baselines in terms of Pass@1. Trae Agent has achieved first place on the SWE-bench Verified leaderboard, with a notable Pass@1 score of 75.20%. We are pleased to release Trae Agent as an open-source project to support the research community, with all resources available at https://github.com/bytedance/trae-agent.

Authors:Vineet Kumar Rakesh, Soumya Mazumdar, Tapas Samanta, Sarbajit Pal, Amitabha Das
Title: Impact of Hyperparameter Optimization on the Accuracy of Lightweight Deep Learning Models for Real-Time Image Classification
Abstract:
Lightweight convolutional and transformer-based models have become vital for real-time image classification in resource-constrained applications, such as embedded systems and edge devices. This work analyzes the influence of hyperparameter adjustment on the accuracy and convergence behavior of seven efficient deep learning architectures: EfficientNetV2-S, ConvNeXt-T, MobileViT v2 (XXS/XS/S), MobileNetV3-L, TinyViT-21M, and RepVGG-A2. All models are trained on the ImageNet-1K dataset under consistent training settings, with an emphasis on real-time practicality. An comprehensive ablation study is undertaken to separate the effect of critical hyperparameters, including learning rate schedules, batch sizes, input resolution, data augmentation, regularization approaches, and optimizer choice. To assess appropriateness for real-time applications, each model is assessed not only in terms of Top-1 and Top-5 classification accuracy, but also in terms of inference time, parameter count, model size, and frames-per-second (FPS) on a GPU-accelerated edge deployment simulation. Results demonstrate that cosine learning rate decay and adjustable batch size may greatly boost both accuracy and convergence speed, while keeping low latency and memory cost. Notably, RepVGG-A2 achieves over 80% Top-1 accuracy with efficient inference performance, offering a compelling balance between accuracy and deployment cost for VGG-style models. The results give practical guidance for constructing resource-efficient deep learning models appropriate for real-time image processing pipelines. All code and training logs are publicly accessible at https://github.com/VineetKumarRakesh/lcnn-opt.

Authors:Jiawei Liu, Chenwang Wu, Defu Lian, Enhong Chen
Title: Efficient Machine Unlearning via Influence Approximation
Abstract:
Due to growing privacy concerns, machine unlearning, which aims at enabling machine learning models to ``forget" specific training data, has received increasing attention. Among existing methods, influence-based unlearning has emerged as a prominent approach due to its ability to estimate the impact of individual training samples on model parameters without retraining. However, this approach suffers from prohibitive computational overhead arising from the necessity to compute the Hessian matrix and its inverse across all training samples and parameters, rendering it impractical for large-scale models and scenarios involving frequent data deletion requests. This highlights the difficulty of forgetting. Inspired by cognitive science, which suggests that memorizing is easier than forgetting, this paper establishes a theoretical link between memorizing (incremental learning) and forgetting (unlearning). This connection allows machine unlearning to be addressed from the perspective of incremental learning. Unlike the time-consuming Hessian computations in unlearning (forgetting), incremental learning (memorizing) typically relies on more efficient gradient optimization, which supports the aforementioned cognitive theory. Based on this connection, we introduce the Influence Approximation Unlearning (IAU) algorithm for efficient machine unlearning from the incremental perspective. Extensive empirical evaluations demonstrate that IAU achieves a superior balance among removal guarantee, unlearning efficiency, and comparable model utility, while outperforming state-of-the-art methods across diverse datasets and model architectures. Our code is available at https://github.com/Lolo1222/IAU.

Authors:Xinwei Wu, Haojie Li, Hongyu Liu, Xinyu Ji, Ruohan Li, Yule Chen, Yigeng Zhang
Title: Uncovering the Fragility of Trustworthy LLMs through Chinese Textual Ambiguity
Abstract:
In this work, we study a critical research problem regarding the trustworthiness of large language models (LLMs): how LLMs behave when encountering ambiguous narrative text, with a particular focus on Chinese textual ambiguity. We created a benchmark dataset by collecting and generating ambiguous sentences with context and their corresponding disambiguated pairs, representing multiple possible interpretations. These annotated examples are systematically categorized into 3 main categories and 9 subcategories. Through experiments, we discovered significant fragility in LLMs when handling ambiguity, revealing behavior that differs substantially from humans. Specifically, LLMs cannot reliably distinguish ambiguous text from unambiguous text, show overconfidence in interpreting ambiguous text as having a single meaning rather than multiple meanings, and exhibit overthinking when attempting to understand the various possible meanings. Our findings highlight a fundamental limitation in current LLMs that has significant implications for their deployment in real-world applications where linguistic ambiguity is common, calling for improved approaches to handle uncertainty in language understanding. The dataset and code are publicly available at this GitHub repository: https://github.com/ictup/LLM-Chinese-Textual-Disambiguation.

Authors:Giuseppe Cartella, Vittorio Cuculo, Alessandro D'Amelio, Marcella Cornia, Giuseppe Boccignone, Rita Cucchiara
Title: Modeling Human Gaze Behavior with Diffusion Models for Unified Scanpath Prediction
Abstract:
Predicting human gaze scanpaths is crucial for understanding visual attention, with applications in human-computer interaction, autonomous systems, and cognitive robotics. While deep learning models have advanced scanpath prediction, most existing approaches generate averaged behaviors, failing to capture the variability of human visual exploration. In this work, we present ScanDiff, a novel architecture that combines diffusion models with Vision Transformers to generate diverse and realistic scanpaths. Our method explicitly models scanpath variability by leveraging the stochastic nature of diffusion models, producing a wide range of plausible gaze trajectories. Additionally, we introduce textual conditioning to enable task-driven scanpath generation, allowing the model to adapt to different visual search objectives. Experiments on benchmark datasets show that ScanDiff surpasses state-of-the-art methods in both free-viewing and task-driven scenarios, producing more diverse and accurate scanpaths. These results highlight its ability to better capture the complexity of human visual behavior, pushing forward gaze prediction research. Source code and models are publicly available at https://aimagelab.github.io/ScanDiff.

Authors:Chengqian Ma, Wei Tao, Yiwen Guo
Title: C3: A Bilingual Benchmark for Spoken Dialogue Models Exploring Challenges in Complex Conversations
Abstract:
Spoken Dialogue Models (SDMs) have recently attracted significant attention for their ability to generate voice responses directly to users' spoken queries. Despite their increasing popularity, there exists a gap in research focused on comprehensively understanding their practical effectiveness in comprehending and emulating human conversations. This is especially true compared to text-based Large Language Models (LLMs), which benefit from extensive benchmarking. Human voice interactions are inherently more complex than text due to characteristics unique to spoken dialogue. Ambiguity poses one challenge, stemming from semantic factors like polysemy, as well as phonological aspects such as heterograph, heteronyms, and stress patterns. Additionally, context-dependency, like omission, coreference, and multi-turn interaction, adds further complexity to human conversational dynamics. To illuminate the current state of SDM development and to address these challenges, we present a benchmark dataset in this paper, which comprises 1,079 instances in English and Chinese. Accompanied by an LLM-based evaluation method that closely aligns with human judgment, this dataset facilitates a comprehensive exploration of the performance of SDMs in tackling these practical challenges.

Authors:Ruslan Khrulev
Title: CHECK-MAT: Checking Hand-Written Mathematical Answers for the Russian Unified State Exam
Abstract:
This paper introduces a novel benchmark, EGE-Math Solutions Assessment Benchmark, for evaluating Vision-Language Models (VLMs) on their ability to assess hand-written mathematical solutions. Unlike existing benchmarks that focus on problem solving, our approach centres on understanding student solutions, identifying mistakes, and assigning grades according to fixed criteria. We compile 122 scanned solutions from the Russian Unified State Exam (EGE) together with official expert grades, and evaluate seven modern VLMs from Google, OpenAI, Arcee AI, and Alibaba Cloud in three inference modes. The results reveal current limitations in mathematical reasoning and human-rubric alignment, opening new research avenues in AI-assisted assessment. You can find code in https://github.com/Karifannaa/Auto-check-EGE-math

Authors:Yixuan Mi, Yiduo Yu, Yiyi Zhao
Title: SmartCourse: A Contextual AI-Powered Course Advising System for Undergraduates
Abstract:
We present SmartCourse, an integrated course management and AI-driven advising system for undergraduate students (specifically tailored to the Computer Science (CPS) major). SmartCourse addresses the limitations of traditional advising tools by integrating transcript and plan information for student-specific context. The system combines a command-line interface (CLI) and a Gradio web GUI for instructors and students, manages user accounts, course enrollment, grading, and four-year degree plans, and integrates a locally hosted large language model (via Ollama) for personalized course recommendations. It leverages transcript and major plan to offer contextual advice (e.g., prioritizing requirements or retakes). We evaluated the system on 25 representative advising queries and introduced custom metrics: PlanScore, PersonalScore, Lift, and Recall to assess recommendation quality across different context conditions. Experiments show that using full context yields substantially more relevant recommendations than context-omitted modes, confirming the necessity of transcript and plan information for personalized academic advising. SmartCourse thus demonstrates how transcript-aware AI can enhance academic planning.

Authors:Xiaoyu Pan, Yang Bai, Ke Zou, Yang Zhou, Jun Zhou, Huazhu Fu, Yih-Chung Tham, Yong Liu
Title: EH-Benchmark Ophthalmic Hallucination Benchmark and Agent-Driven Top-Down Traceable Reasoning Workflow
Abstract:
Medical Large Language Models (MLLMs) play a crucial role in ophthalmic diagnosis, holding significant potential to address vision-threatening diseases. However, their accuracy is constrained by hallucinations stemming from limited ophthalmic knowledge, insufficient visual localization and reasoning capabilities, and a scarcity of multimodal ophthalmic data, which collectively impede precise lesion detection and disease diagnosis. Furthermore, existing medical benchmarks fail to effectively evaluate various types of hallucinations or provide actionable solutions to mitigate them. To address the above challenges, we introduce EH-Benchmark, a novel ophthalmology benchmark designed to evaluate hallucinations in MLLMs. We categorize MLLMs' hallucinations based on specific tasks and error types into two primary classes: Visual Understanding and Logical Composition, each comprising multiple subclasses. Given that MLLMs predominantly rely on language-based reasoning rather than visual processing, we propose an agent-centric, three-phase framework, including the Knowledge-Level Retrieval stage, the Task-Level Case Studies stage, and the Result-Level Validation stage. Experimental results show that our multi-agent framework significantly mitigates both types of hallucinations, enhancing accuracy, interpretability, and reliability. Our project is available at https://github.com/ppxy1/EH-Benchmark.

Authors:Jindong Li, Yali Fu, Jiahong Liu, Linxiao Cao, Wei Ji, Menglin Yang, Irwin King, Ming-Hsuan Yang
Title: Discrete Tokenization for Multimodal LLMs: A Comprehensive Survey
Abstract:
The rapid advancement of large language models (LLMs) has intensified the need for effective mechanisms to transform continuous multimodal data into discrete representations suitable for language-based processing. Discrete tokenization, with vector quantization (VQ) as a central approach, offers both computational efficiency and compatibility with LLM architectures. Despite its growing importance, there is a lack of a comprehensive survey that systematically examines VQ techniques in the context of LLM-based systems. This work fills this gap by presenting the first structured taxonomy and analysis of discrete tokenization methods designed for LLMs. We categorize 8 representative VQ variants that span classical and modern paradigms and analyze their algorithmic principles, training dynamics, and integration challenges with LLM pipelines. Beyond algorithm-level investigation, we discuss existing research in terms of classical applications without LLMs, LLM-based single-modality systems, and LLM-based multimodal systems, highlighting how quantization strategies influence alignment, reasoning, and generation performance. In addition, we identify key challenges including codebook collapse, unstable gradient estimation, and modality-specific encoding constraints. Finally, we discuss emerging research directions such as dynamic and task-adaptive quantization, unified tokenization frameworks, and biologically inspired codebook learning. This survey bridges the gap between traditional vector quantization and modern LLM applications, serving as a foundational reference for the development of efficient and generalizable multimodal systems. A continuously updated version is available at: https://github.com/jindongli-Ai/LLM-Discrete-Tokenization-Survey.

Authors:Kwun Hang Lau, Ruiyuan Zhang, Weijie Shi, Xiaofang Zhou, Xiaojun Cheng
Title: Reading Between the Timelines: RAG for Answering Diachronic Questions
Abstract:
While Retrieval-Augmented Generation (RAG) excels at injecting static, factual knowledge into Large Language Models (LLMs), it exhibits a critical deficit in handling longitudinal queries that require tracking entities and phenomena across time. This blind spot arises because conventional, semantically-driven retrieval methods are not equipped to gather evidence that is both topically relevant and temporally coherent for a specified duration. We address this challenge by proposing a new framework that fundamentally redesigns the RAG pipeline to infuse temporal logic. Our methodology begins by disentangling a user's query into its core subject and its temporal window. It then employs a specialized retriever that calibrates semantic matching against temporal relevance, ensuring the collection of a contiguous evidence set that spans the entire queried period. To enable rigorous evaluation of this capability, we also introduce the Analytical Diachronic Question Answering Benchmark (ADQAB), a challenging evaluation suite grounded in a hybrid corpus of real and synthetic financial news. Empirical results on ADQAB show that our approach yields substantial gains in answer accuracy, surpassing standard RAG implementations by 13% to 27%. This work provides a validated pathway toward RAG systems capable of performing the nuanced, evolutionary analysis required for complex, real-world questions. The dataset and code for this study are publicly available at https://github.com/kwunhang/TA-RAG.

Authors:Haichuan Hu, Xiaochen Xie, Quanjun Zhang
Title: Repair-R1: Better Test Before Repair
Abstract:
APR (Automated Program Repair) aims to automatically locate program defects, generate patches and validate the repairs. Existing techniques for APR are often combined with LLMs (Large Language Models), which leverages the code-related knowledge of LLMs to improve repair effectiveness. Current LLM-based APR methods typically utilize test cases only during the inference stage, adopting an iterative approach that performs repair first and validates it through test execution afterward. This conventional paradigm neglects two important aspects: the potential contribution of test cases in the training phase, and the possibility of leveraging testing prior to repair. To address this, we propose Repair-R1, which introduces test cases into the model's training phase and shifts test generation to precede repair. The model is required to first generate discriminative test cases that can distinguish defective behaviors, and then perform repair based on these tests. This enables the model to better locate defects and understand the underlying causes of defects, thereby improving repair effectiveness. We implement Repair-R1 with three different backbone models, using RL (reinforcement learning) to co-optimize test generation and bug repair. Experimental results on four widely adopted benchmarks demonstrate the superiority of Repair-R1. Specially, compared to vanilla models, Repair-R1 improves repair success rate by 2.68\% to 48.29\%, test generation success rate by 16.38\% to 53.28\%, and test coverage by 0.78\% to 53.96\%. We publish the code and weights at https://github.com/Tomsawyerhu/APR-RL and https://huggingface.co/tomhu/Qwen3-4B-RL-5000-step.

Authors:Dongli He, Hu Wang, Mohammad Yaqub
Title: Advancing Fetal Ultrasound Image Quality Assessment in Low-Resource Settings
Abstract:
Accurate fetal biometric measurements, such as abdominal circumference, play a vital role in prenatal care. However, obtaining high-quality ultrasound images for these measurements heavily depends on the expertise of sonographers, posing a significant challenge in low-income countries due to the scarcity of trained personnel. To address this issue, we leverage FetalCLIP, a vision-language model pretrained on a curated dataset of over 210,000 fetal ultrasound image-caption pairs, to perform automated fetal ultrasound image quality assessment (IQA) on blind-sweep ultrasound data. We introduce FetalCLIP$_{CLS}$, an IQA model adapted from FetalCLIP using Low-Rank Adaptation (LoRA), and evaluate it on the ACOUSLIC-AI dataset against six CNN and Transformer baselines. FetalCLIP$_{CLS}$ achieves the highest F1 score of 0.757. Moreover, we show that an adapted segmentation model, when repurposed for classification, further improves performance, achieving an F1 score of 0.771. Our work demonstrates how parameter-efficient fine-tuning of fetal ultrasound foundation models can enable task-specific adaptations, advancing prenatal care in resource-limited settings. The experimental code is available at: https://github.com/donglihe-hub/FetalCLIP-IQA.

Authors:Federico Girella, Davide Talon, Ziyue Liu, Zanxi Ruan, Yiming Wang, Marco Cristani
Title: LOTS of Fashion! Multi-Conditioning for Image Generation via Sketch-Text Pairing
Abstract:
Fashion design is a complex creative process that blends visual and textual expressions. Designers convey ideas through sketches, which define spatial structure and design elements, and textual descriptions, capturing material, texture, and stylistic details. In this paper, we present LOcalized Text and Sketch for fashion image generation (LOTS), an approach for compositional sketch-text based generation of complete fashion outlooks. LOTS leverages a global description with paired localized sketch + text information for conditioning and introduces a novel step-based merging strategy for diffusion adaptation. First, a Modularized Pair-Centric representation encodes sketches and text into a shared latent space while preserving independent localized features; then, a Diffusion Pair Guidance phase integrates both local and global conditioning via attention-based guidance within the diffusion model's multi-step denoising process. To validate our method, we build on Fashionpedia to release Sketchy, the first fashion dataset where multiple text-sketch pairs are provided per image. Quantitative results show LOTS achieves state-of-the-art image generation performance on both global and localized metrics, while qualitative examples and a human evaluation study highlight its unprecedented level of design customization.

Authors:Galadrielle Humblot-Renaux, Gianni Franchi, Sergio Escalera, Thomas B. Moeslund
Title: COOkeD: Ensemble-based OOD detection in the era of zero-shot CLIP
Abstract:
Out-of-distribution (OOD) detection is an important building block in trustworthy image recognition systems as unknown classes may arise at test-time. OOD detection methods typically revolve around a single classifier, leading to a split in the research field between the classical supervised setting (e.g. ResNet18 classifier trained on CIFAR100) vs. the zero-shot setting (class names fed as prompts to CLIP). In both cases, an overarching challenge is that the OOD detection performance is implicitly constrained by the classifier's capabilities on in-distribution (ID) data. In this work, we show that given a little open-mindedness from both ends, remarkable OOD detection can be achieved by instead creating a heterogeneous ensemble - COOkeD combines the predictions of a closed-world classifier trained end-to-end on a specific dataset, a zero-shot CLIP classifier, and a linear probe classifier trained on CLIP image features. While bulky at first sight, this approach is modular, post-hoc and leverages the availability of pre-trained VLMs, thus introduces little overhead compared to training a single standard classifier. We evaluate COOkeD on popular CIFAR100 and ImageNet benchmarks, but also consider more challenging, realistic settings ranging from training-time label noise, to test-time covariate shift, to zero-shot shift which has been previously overlooked. Despite its simplicity, COOkeD achieves state-of-the-art performance and greater robustness compared to both classical and CLIP-based OOD detection methods. Code is available at https://github.com/glhr/COOkeD

Authors:Xincheng Yao, Yijun Yang, Kangwei Guo, Ruiqiang Xiao, Haipeng Zhou, Haisu Tao, Jian Yang, Lei Zhu
Title: HRVVS: A High-resolution Video Vasculature Segmentation Network via Hierarchical Autoregressive Residual Priors
Abstract:
The segmentation of the hepatic vasculature in surgical videos holds substantial clinical significance in the context of hepatectomy procedures. However, owing to the dearth of an appropriate dataset and the inherently complex task characteristics, few researches have been reported in this domain. To address this issue, we first introduce a high quality frame-by-frame annotated hepatic vasculature dataset containing 35 long hepatectomy videos and 11442 high-resolution frames. On this basis, we propose a novel high-resolution video vasculature segmentation network, dubbed as HRVVS. We innovatively embed a pretrained visual autoregressive modeling (VAR) model into different layers of the hierarchical encoder as prior information to reduce the information degradation generated during the downsampling process. In addition, we designed a dynamic memory decoder on a multi-view segmentation network to minimize the transmission of redundant information while preserving more details between frames. Extensive experiments on surgical video datasets demonstrate that our proposed HRVVS significantly outperforms the state-of-the-art methods. The source code and dataset will be publicly available at \{https://github.com/scott-yjyang/HRVVS}.

Authors:Ziyi Wang, Peiming Li, Hong Liu, Zhichao Deng, Can Wang, Jun Liu, Junsong Yuan, Mengyuan Liu
Title: Recognizing Actions from Robotic View for Natural Human-Robot Interaction
Abstract:
Natural Human-Robot Interaction (N-HRI) requires robots to recognize human actions at varying distances and states, regardless of whether the robot itself is in motion or stationary. This setup is more flexible and practical than conventional human action recognition tasks. However, existing benchmarks designed for traditional action recognition fail to address the unique complexities in N-HRI due to limited data, modalities, task categories, and diversity of subjects and environments. To address these challenges, we introduce ACTIVE (Action from Robotic View), a large-scale dataset tailored specifically for perception-centric robotic views prevalent in mobile service robots. ACTIVE comprises 30 composite action categories, 80 participants, and 46,868 annotated video instances, covering both RGB and point cloud modalities. Participants performed various human actions in diverse environments at distances ranging from 3m to 50m, while the camera platform was also mobile, simulating real-world scenarios of robot perception with varying camera heights due to uneven ground. This comprehensive and challenging benchmark aims to advance action and attribute recognition research in N-HRI. Furthermore, we propose ACTIVE-PC, a method that accurately perceives human actions at long distances using Multilevel Neighborhood Sampling, Layered Recognizers, Elastic Ellipse Query, and precise decoupling of kinematic interference from human actions. Experimental results demonstrate the effectiveness of ACTIVE-PC. Our code is available at: https://github.com/wangzy01/ACTIVE-Action-from-Robotic-View.

Authors:Hui Liu, Chen Jia, Fan Shi, Xu Cheng, Mengfei Shi, Xia Xie, Shengyong Chen
Title: LIDAR: Lightweight Adaptive Cue-Aware Fusion Vision Mamba for Multimodal Segmentation of Structural Cracks
Abstract:
Achieving pixel-level segmentation with low computational cost using multimodal data remains a key challenge in crack segmentation tasks. Existing methods lack the capability for adaptive perception and efficient interactive fusion of cross-modal features. To address these challenges, we propose a Lightweight Adaptive Cue-Aware Vision Mamba network (LIDAR), which efficiently perceives and integrates morphological and textural cues from different modalities under multimodal crack scenarios, generating clear pixel-level crack segmentation maps. Specifically, LIDAR is composed of a Lightweight Adaptive Cue-Aware Visual State Space module (LacaVSS) and a Lightweight Dual Domain Dynamic Collaborative Fusion module (LD3CF). LacaVSS adaptively models crack cues through the proposed mask-guided Efficient Dynamic Guided Scanning Strategy (EDG-SS), while LD3CF leverages an Adaptive Frequency Domain Perceptron (AFDP) and a dual-pooling fusion strategy to effectively capture spatial and frequency-domain cues across modalities. Moreover, we design a Lightweight Dynamically Modulated Multi-Kernel convolution (LDMK) to perceive complex morphological structures with minimal computational overhead, replacing most convolutional operations in LIDAR. Experiments on three datasets demonstrate that our method outperforms other state-of-the-art (SOTA) methods. On the light-field depth dataset, our method achieves 0.8204 in F1 and 0.8465 in mIoU with only 5.35M parameters. Code and datasets are available at https://github.com/Karl1109/LIDAR-Mamba.

Authors:Zheng Xiangyu, He Songcheng, Li Wanyun, Li Xiaoqiang, Zhang Wei
Title: Shallow Features Matter: Hierarchical Memory with Heterogeneous Interaction for Unsupervised Video Object Segmentation
Abstract:
Unsupervised Video Object Segmentation (UVOS) aims to predict pixel-level masks for the most salient objects in videos without any prior annotations. While memory mechanisms have been proven critical in various video segmentation paradigms, their application in UVOS yield only marginal performance gains despite sophisticated design. Our analysis reveals a simple but fundamental flaw in existing methods: over-reliance on memorizing high-level semantic features. UVOS inherently suffers from the deficiency of lacking fine-grained information due to the absence of pixel-level prior knowledge. Consequently, memory design relying solely on high-level features, which predominantly capture abstract semantic cues, is insufficient to generate precise predictions. To resolve this fundamental issue, we propose a novel hierarchical memory architecture to incorporate both shallow- and high-level features for memory, which leverages the complementary benefits of pixel and semantic information. Furthermore, to balance the simultaneous utilization of the pixel and semantic memory features, we propose a heterogeneous interaction mechanism to perform pixel-semantic mutual interactions, which explicitly considers their inherent feature discrepancies. Through the design of Pixel-guided Local Alignment Module (PLAM) and Semantic-guided Global Integration Module (SGIM), we achieve delicate integration of the fine-grained details in shallow-level memory and the semantic representations in high-level memory. Our Hierarchical Memory with Heterogeneous Interaction Network (HMHI-Net) consistently achieves state-of-the-art performance across all UVOS and video saliency detection benchmarks. Moreover, HMHI-Net consistently exhibits high performance across different backbones, further demonstrating its superiority and robustness. Project page: https://github.com/ZhengxyFlow/HMHI-Net .

Authors:Phi Van Nguyen, Ngoc Huynh Trinh, Duy Minh Lam Nguyen, Phu Loc Nguyen, Quoc Long Tran
Title: Aleatoric Uncertainty Medical Image Segmentation Estimation via Flow Matching
Abstract:
Quantifying aleatoric uncertainty in medical image segmentation is critical since it is a reflection of the natural variability observed among expert annotators. A conventional approach is to model the segmentation distribution using the generative model, but current methods limit the expression ability of generative models. While current diffusion-based approaches have demonstrated impressive performance in approximating the data distribution, their inherent stochastic sampling process and inability to model exact densities limit their effectiveness in accurately capturing uncertainty. In contrast, our proposed method leverages conditional flow matching, a simulation-free flow-based generative model that learns an exact density, to produce highly accurate segmentation results. By guiding the flow model on the input image and sampling multiple data points, our approach synthesizes segmentation samples whose pixel-wise variance reliably reflects the underlying data distribution. This sampling strategy captures uncertainties in regions with ambiguous boundaries, offering robust quantification that mirrors inter-annotator differences. Experimental results demonstrate that our method not only achieves competitive segmentation accuracy but also generates uncertainty maps that provide deeper insights into the reliability of the segmentation outcomes. The code for this paper is freely available at https://github.com/huynhspm/Data-Uncertainty

Authors:Hyeonseok Moon, Heuiseok Lim
Title: NeedleChain: Measuring Intact Long-Context Reasoning Capability of Large Language Models
Abstract:
The Needle-in-a-Haystack (NIAH) benchmark is widely used to evaluate Large Language Models' (LLMs) ability to understand long contexts (LC). It evaluates the capability to identify query-relevant context within extensive query-irrelevant passages. Although this method serves as a widely accepted standard for evaluating long-context understanding, our findings suggest it may overestimate the true LC capability of LLMs. We demonstrate that even state-of-the-art models such as GPT-4o struggle to intactly incorporate given contexts made up of solely query-relevant ten sentences. In response, we introduce a novel benchmark, \textbf{NeedleChain}, where the context consists entirely of query-relevant information, requiring the LLM to fully grasp the input to answer correctly. Our benchmark allows for flexible context length and reasoning order, offering a more comprehensive analysis of LLM performance. Additionally, we propose an extremely simple yet compelling strategy to improve LC understanding capability of LLM: ROPE Contraction. Our experiments with various advanced LLMs reveal a notable disparity between their ability to process large contexts and their capacity to fully understand them. Source code and datasets are available at https://github.com/hyeonseokk/NeedleChain

Authors:Shaoan Xie, Lingjing Kong, Yujia Zheng, Yu Yao, Zeyu Tang, Eric P. Xing, Guangyi Chen, Kun Zhang
Title: SmartCLIP: Modular Vision-language Alignment with Identification Guarantees
Abstract:
Contrastive Language-Image Pre-training (CLIP)~\citep{radford2021learning} has emerged as a pivotal model in computer vision and multimodal learning, achieving state-of-the-art performance at aligning visual and textual representations through contrastive learning. However, CLIP struggles with potential information misalignment in many image-text datasets and suffers from entangled representation. On the one hand, short captions for a single image in datasets like MSCOCO may describe disjoint regions in the image, leaving the model uncertain about which visual features to retain or disregard. On the other hand, directly aligning long captions with images can lead to the retention of entangled details, preventing the model from learning disentangled, atomic concepts -- ultimately limiting its generalization on certain downstream tasks involving short prompts. In this paper, we establish theoretical conditions that enable flexible alignment between textual and visual representations across varying levels of granularity. Specifically, our framework ensures that a model can not only \emph{preserve} cross-modal semantic information in its entirety but also \emph{disentangle} visual representations to capture fine-grained textual concepts. Building on this foundation, we introduce \ours, a novel approach that identifies and aligns the most relevant visual and textual representations in a modular manner. Superior performance across various tasks demonstrates its capability to handle information misalignment and supports our identification theory. The code is available at https://github.com/Mid-Push/SmartCLIP.

Authors:Zheng Zhang, Peilin Zhao, Deheng Ye, Hao Wang
Title: Enhancing Jailbreak Attacks on LLMs via Persona Prompts
Abstract:
Jailbreak attacks aim to exploit large language models (LLMs) by inducing them to generate harmful content, thereby revealing their vulnerabilities. Understanding and addressing these attacks is crucial for advancing the field of LLM safety. Previous jailbreak approaches have mainly focused on direct manipulations of harmful intent, with limited attention to the impact of persona prompts. In this study, we systematically explore the efficacy of persona prompts in compromising LLM defenses. We propose a genetic algorithm-based method that automatically crafts persona prompts to bypass LLM's safety mechanisms. Our experiments reveal that: (1) our evolved persona prompts reduce refusal rates by 50-70% across multiple LLMs, and (2) these prompts demonstrate synergistic effects when combined with existing attack methods, increasing success rates by 10-20%. Our code and data are available at https://github.com/CjangCjengh/Generic_Persona.

Authors:Honghua Dong, Jiacheng Yang, Xun Deng, Yuhe Jiang, Gennady Pekhimenko, Fan Long, Xujie Si
Title: TypyBench: Evaluating LLM Type Inference for Untyped Python Repositories
Abstract:
Type inference for dynamic languages like Python is a persistent challenge in software engineering. While large language models (LLMs) have shown promise in code understanding, their type inference capabilities remain underexplored. We introduce TypyBench, a benchmark designed to evaluate LLMs' type inference across entire Python repositories. TypyBench features two novel metrics: TypeSim, which captures nuanced semantic relationships between predicted and ground truth types, and TypeCheck, which assesses type consistency across codebases. Our evaluation of various LLMs on a curated dataset of 50 high-quality Python repositories reveals that, although LLMs achieve decent TypeSim scores, they struggle with complex nested types and exhibit significant type consistency errors. These findings suggest that future research should shift focus from improving type similarity to addressing repository-level consistency. TypyBench provides a foundation for this new direction, offering insights into model performance across different type complexities and usage contexts. Our code and data are available at https://github.com/typybench/typybench.

Authors:Shuquan Lian, Yuhang Wu, Jia Ma, Yifan Ding, Zihan Song, Bingqi Chen, Xiawu Zheng, Hui Li
Title: UI-AGILE: Advancing GUI Agents with Effective Reinforcement Learning and Precise Inference-Time Grounding
Abstract:
The emergence of Multimodal Large Language Models (MLLMs) has driven significant advances in Graphical User Interface (GUI) agent capabilities. Nevertheless, existing GUI agent training and inference techniques still suffer from a dilemma for reasoning designs, ineffective reward, and visual noise. To address these issues, we introduce UI-AGILE for enhancing GUI agents at both training and inference. For training, we propose a suite of improvements to the Supervised Fine-Tuning (SFT) process: 1) a continuous reward function to incentivize high-precision grounding; 2) a ``Simple Thinking'' reward to balance planning with speed and grounding accuracy; and 3) a cropping-based resampling strategy to mitigate the sparse reward problem and improve learning on complex tasks. For inference, we present decomposed grounding with selection to dramatically improve grounding accuracy on high-resolution displays by breaking the image into smaller, manageable parts. Experiments show that UI-AGILE achieves the state-of-the-art grounding performance on two benchmarks ScreenSpot-Pro and ScreenSpot-v2 while it also exhibits strong general agent capabilities. For instance, using both our training and inference enhancement methods brings 23\% grounding accuracy improvement over the best baseline on ScreenSpot-Pro. We provide the code in https://github.com/KDEGroup/UI-AGILE.

Authors:Viacheslav Pirogov, Maksim Artemev
Title: Evaluating Deepfake Detectors in the Wild
Abstract:
Deepfakes powered by advanced machine learning models present a significant and evolving threat to identity verification and the authenticity of digital media. Although numerous detectors have been developed to address this problem, their effectiveness has yet to be tested when applied to real-world data. In this work we evaluate modern deepfake detectors, introducing a novel testing procedure designed to mimic real-world scenarios for deepfake detection. Using state-of-the-art deepfake generation methods, we create a comprehensive dataset containing more than 500,000 high-quality deepfake images. Our analysis shows that detecting deepfakes still remains a challenging task. The evaluation shows that in fewer than half of the deepfake detectors tested achieved an AUC score greater than 60%, with the lowest being 50%. We demonstrate that basic image manipulations, such as JPEG compression or image enhancement, can significantly reduce model performance. All code and data are publicly available at https://github.com/SumSubstance/Deepfake-Detectors-in-the-Wild.

Authors:Stefanos Gkikas, Ioannis Kyprakis, Manolis Tsiknakis
Title: Tiny-BioMoE: a Lightweight Embedding Model for Biosignal Analysis
Abstract:
Pain is a complex and pervasive condition that affects a significant portion of the population. Accurate and consistent assessment is essential for individuals suffering from pain, as well as for developing effective management strategies in a healthcare system. Automatic pain assessment systems enable continuous monitoring, support clinical decision-making, and help minimize patient distress while mitigating the risk of functional deterioration. Leveraging physiological signals offers objective and precise insights into a person's state, and their integration in a multimodal framework can further enhance system performance. This study has been submitted to the Second Multimodal Sensing Grand Challenge for Next-Gen Pain Assessment (AI4PAIN). The proposed approach introduces Tiny-BioMoE, a lightweight pretrained embedding model for biosignal analysis. Trained on 4.4 million biosignal image representations and consisting of only 7.3 million parameters, it serves as an effective tool for extracting high-quality embeddings for downstream tasks. Extensive experiments involving electrodermal activity, blood volume pulse, respiratory signals, peripheral oxygen saturation, and their combinations highlight the model's effectiveness across diverse modalities in automatic pain recognition tasks. The model's architecture (code) and weights are available at https://github.com/GkikasStefanos/Tiny-BioMoE.

Authors:Raffaele Pojer, Andrea Passerini, Kim G. Larsen, Manfred Jaeger
Title: A Neuro-Symbolic Approach for Probabilistic Reasoning on Graph Data
Abstract:
Graph neural networks (GNNs) excel at predictive tasks on graph-structured data but often lack the ability to incorporate symbolic domain knowledge and perform general reasoning. Relational Bayesian Networks (RBNs), in contrast, enable fully generative probabilistic modeling over graph-like structures and support rich symbolic knowledge and probabilistic inference. This paper presents a neuro-symbolic framework that seamlessly integrates GNNs into RBNs, combining the learning strength of GNNs with the flexible reasoning capabilities of RBNs. We develop two implementations of this integration: one compiles GNNs directly into the native RBN language, while the other maintains the GNN as an external component. Both approaches preserve the semantics and computational properties of GNNs while fully aligning with the RBN modeling paradigm. We also propose a maximum a-posteriori (MAP) inference method for these neuro-symbolic models. To demonstrate the framework's versatility, we apply it to two distinct problems. First, we transform a GNN for node classification into a collective classification model that explicitly models homo- and heterophilic label patterns, substantially improving accuracy. Second, we introduce a multi-objective network optimization problem in environmental planning, where MAP inference supports complex decision-making. Both applications include new publicly available benchmark datasets. This work introduces a powerful and coherent neuro-symbolic approach to graph data, bridging learning and reasoning in ways that enable novel applications and improved performance across diverse tasks.

Authors:Xingjian Zhang, Siwei Wen, Wenjun Wu, Lei Huang
Title: EDGE-GRPO: Entropy-Driven GRPO with Guided Error Correction for Advantage Diversity
Abstract:
Large Language Models (LLMs) have made remarkable progress in enhancing step-by-step reasoning through reinforcement learning. However, the Group Relative Policy Optimization (GRPO) algorithm, which relies on sparse reward rules, often encounters the issue of identical rewards within groups, leading to the advantage collapse problem. Existing works typically address this challenge from two perspectives: enforcing model reflection to enhance response diversity, and introducing internal feedback to augment the training signal (advantage). In this work, we begin by analyzing the limitations of model reflection and investigating the policy entropy of responses at the fine-grained sample level. Based on our experimental findings, we propose the EDGE-GRPO algorithm, which adopts \textbf{E}ntropy-\textbf{D}riven Advantage and \textbf{G}uided \textbf{E}rror Correction to effectively mitigate the problem of advantage collapse. Extensive experiments on several main reasoning benchmarks demonstrate the effectiveness and superiority of our approach. It is available at https://github.com/ZhangXJ199/EDGE-GRPO.

Authors:Junzhe Li, Yutao Cui, Tao Huang, Yinping Ma, Chun Fan, Miles Yang, Zhao Zhong
Title: MixGRPO: Unlocking Flow-based GRPO Efficiency with Mixed ODE-SDE
Abstract:
Although GRPO substantially enhances flow matching models in human preference alignment of image generation, methods such as FlowGRPO still exhibit inefficiency due to the necessity of sampling and optimizing over all denoising steps specified by the Markov Decision Process (MDP). In this paper, we propose $\textbf{MixGRPO}$, a novel framework that leverages the flexibility of mixed sampling strategies through the integration of stochastic differential equations (SDE) and ordinary differential equations (ODE). This streamlines the optimization process within the MDP to improve efficiency and boost performance. Specifically, MixGRPO introduces a sliding window mechanism, using SDE sampling and GRPO-guided optimization only within the window, while applying ODE sampling outside. This design confines sampling randomness to the time-steps within the window, thereby reducing the optimization overhead, and allowing for more focused gradient updates to accelerate convergence. Additionally, as time-steps beyond the sliding window are not involved in optimization, higher-order solvers are supported for sampling. So we present a faster variant, termed $\textbf{MixGRPO-Flash}$, which further improves training efficiency while achieving comparable performance. MixGRPO exhibits substantial gains across multiple dimensions of human preference alignment, outperforming DanceGRPO in both effectiveness and efficiency, with nearly 50% lower training time. Notably, MixGRPO-Flash further reduces training time by 71%. Codes and models are available at $\href{https://github.com/Tencent-Hunyuan/MixGRPO}{MixGRPO}$.

Authors:Xie Zhang, Yina Wang, Chenshu Wu
Title: Unlocking Interpretability for RF Sensing: A Complex-Valued White-Box Transformer
Abstract:
The empirical success of deep learning has spurred its application to the radio-frequency (RF) domain, leading to significant advances in Deep Wireless Sensing (DWS). However, most existing DWS models function as black boxes with limited interpretability, which hampers their generalizability and raises concerns in security-sensitive physical applications. In this work, inspired by the remarkable advances of white-box transformers, we present RF-CRATE, the first mathematically interpretable deep network architecture for RF sensing, grounded in the principles of complex sparse rate reduction. To accommodate the unique RF signals, we conduct non-trivial theoretical derivations that extend the original real-valued white-box transformer to the complex domain. By leveraging the CR-Calculus framework, we successfully construct a fully complex-valued white-box transformer with theoretically derived self-attention and residual multi-layer perceptron modules. Furthermore, to improve the model's ability to extract discriminative features from limited wireless data, we introduce Subspace Regularization, a novel regularization strategy that enhances feature diversity, resulting in an average performance improvement of 19.98% across multiple sensing tasks. We extensively evaluate RF-CRATE against seven baselines with multiple public and self-collected datasets involving different RF signals. The results show that RF-CRATE achieves performance on par with thoroughly engineered black-box models, while offering full mathematical interpretability. More importantly, by extending CRATE to the complex domain, RF-CRATE yields substantial improvements, achieving an average classification gain of 5.08% and reducing regression error by 10.34% across diverse sensing tasks compared to CRATE. RF-CRATE is fully open-sourced at: https://github.com/rfcrate/RF_CRATE.

Authors:Leonard Hinckeldey, Elliot Fosong, Elle Miller, Rimvydas Rubavicius, Trevor McInroe, Patricia Wollstadt, Christiane B. Wiebel-Herboth, Subramanian Ramamoorthy, Stefano V. Albrecht
Title: Assistax: A Hardware-Accelerated Reinforcement Learning Benchmark for Assistive Robotics
Abstract:
The development of reinforcement learning (RL) algorithms has been largely driven by ambitious challenge tasks and benchmarks. Games have dominated RL benchmarks because they present relevant challenges, are inexpensive to run and easy to understand. While games such as Go and Atari have led to many breakthroughs, they often do not directly translate to real-world embodied applications. In recognising the need to diversify RL benchmarks and addressing complexities that arise in embodied interaction scenarios, we introduce Assistax: an open-source benchmark designed to address challenges arising in assistive robotics tasks. Assistax uses JAX's hardware acceleration for significant speed-ups for learning in physics-based simulations. In terms of open-loop wall-clock time, Assistax runs up to $370\times$ faster when vectorising training runs compared to CPU-based alternatives. Assistax conceptualises the interaction between an assistive robot and an active human patient using multi-agent RL to train a population of diverse partner agents against which an embodied robotic agent's zero-shot coordination capabilities can be tested. Extensive evaluation and hyperparameter tuning for popular continuous control RL and MARL algorithms provide reliable baselines and establish Assistax as a practical benchmark for advancing RL research for assistive robotics. The code is available at: https://github.com/assistive-autonomy/assistax.

Authors:Jiong Yin, Liang Li, Jiehua Zhang, Yuhan Gao, Chenggang Yan, Xichun Sheng
Title: Progressive Homeostatic and Plastic Prompt Tuning for Audio-Visual Multi-Task Incremental Learning
Abstract:
Audio-visual multi-task incremental learning aims to continuously learn from multiple audio-visual tasks without the need for joint training on all tasks. The challenge of the problem is how to preserve the old task knowledge while facilitating the learning of new task with previous experiences. To address these challenges, we introduce a three-stage Progressive Homeostatic and Plastic audio-visual prompt (PHP) method. In the shallow phase, we design the task-shared modality aggregating adapter to foster cross-task and cross-modal audio-visual representation learning to enhance shared understanding between tasks. In the middle phase, we propose the task-specific modality-shared dynamic generating adapter, which constructs prompts that are tailored to individual tasks while remaining general across modalities, which balances the models ability to retain knowledge against forgetting with its potential for versatile multi-task transferability. In the deep phase, we introduce the task-specific modality-independent prompts to further refine the understand ability by targeting individual information for each task and modality. By incorporating these three phases, PHP retains task-specific prompts while adapting shared parameters for new tasks to effectively balance knowledge sharing and specificity. Our method achieves SOTA performance in different orders of four tasks (AVE, AVVP, AVS and AVQA). Our code can be available at https://github.com/ENJOY-Yin-jiong/PHP.

Authors:Hao Ye, Mengshi Qi, Zhaohong Liu, Liang Liu, Huadong Ma
Title: SafeDriveRAG: Towards Safe Autonomous Driving with Knowledge Graph-based Retrieval-Augmented Generation
Abstract:
In this work, we study how vision-language models (VLMs) can be utilized to enhance the safety for the autonomous driving system, including perception, situational understanding, and path planning. However, existing research has largely overlooked the evaluation of these models in traffic safety-critical driving scenarios. To bridge this gap, we create the benchmark (SafeDrive228K) and propose a new baseline based on VLM with knowledge graph-based retrieval-augmented generation (SafeDriveRAG) for visual question answering (VQA). Specifically, we introduce SafeDrive228K, the first large-scale multimodal question-answering benchmark comprising 228K examples across 18 sub-tasks. This benchmark encompasses a diverse range of traffic safety queries, from traffic accidents and corner cases to common safety knowledge, enabling a thorough assessment of the comprehension and reasoning abilities of the models. Furthermore, we propose a plug-and-play multimodal knowledge graph-based retrieval-augmented generation approach that employs a novel multi-scale subgraph retrieval algorithm for efficient information retrieval. By incorporating traffic safety guidelines collected from the Internet, this framework further enhances the model's capacity to handle safety-critical situations. Finally, we conduct comprehensive evaluations on five mainstream VLMs to assess their reliability in safety-sensitive driving tasks. Experimental results demonstrate that integrating RAG significantly improves performance, achieving a +4.73% gain in Traffic Accidents tasks, +8.79% in Corner Cases tasks and +14.57% in Traffic Safety Commonsense across five mainstream VLMs, underscoring the potential of our proposed benchmark and methodology for advancing research in traffic safety. Our source code and data are available at https://github.com/Lumos0507/SafeDriveRAG.

Authors:Jing Xu, Weiqiang Wang, Cunjian Chen, Jun Liu, Qiuhong Ke
Title: ST-GDance: Long-Term and Collision-Free Group Choreography from Music
Abstract:
Group dance generation from music has broad applications in film, gaming, and animation production. However, it requires synchronizing multiple dancers while maintaining spatial coordination. As the number of dancers and sequence length increase, this task faces higher computational complexity and a greater risk of motion collisions. Existing methods often struggle to model dense spatial-temporal interactions, leading to scalability issues and multi-dancer collisions. To address these challenges, we propose ST-GDance, a novel framework that decouples spatial and temporal dependencies to optimize long-term and collision-free group choreography. We employ lightweight graph convolutions for distance-aware spatial modeling and accelerated sparse attention for efficient temporal modeling. This design significantly reduces computational costs while ensuring smooth and collision-free interactions. Experiments on the AIOZ-GDance dataset demonstrate that ST-GDance outperforms state-of-the-art baselines, particularly in generating long and coherent group dance sequences. Project page: https://yilliajing.github.io/ST-GDance-Website/.

Authors:Yanxu Zhu, Shitong Duan, Xiangxu Zhang, Jitao Sang, Peng Zhang, Tun Lu, Xiao Zhou, Jing Yao, Xiaoyuan Yi, Xing Xie
Title: MoHoBench: Assessing Honesty of Multimodal Large Language Models via Unanswerable Visual Questions
Abstract:
Recently Multimodal Large Language Models (MLLMs) have achieved considerable advancements in vision-language tasks, yet produce potentially harmful or untrustworthy content. Despite substantial work investigating the trustworthiness of language models, MMLMs' capability to act honestly, especially when faced with visually unanswerable questions, remains largely underexplored. This work presents the first systematic assessment of honesty behaviors across various MLLMs. We ground honesty in models' response behaviors to unanswerable visual questions, define four representative types of such questions, and construct MoHoBench, a large-scale MMLM honest benchmark, consisting of 12k+ visual question samples, whose quality is guaranteed by multi-stage filtering and human verification. Using MoHoBench, we benchmarked the honesty of 28 popular MMLMs and conducted a comprehensive analysis. Our findings show that: (1) most models fail to appropriately refuse to answer when necessary, and (2) MMLMs' honesty is not solely a language modeling issue, but is deeply influenced by visual information, necessitating the development of dedicated methods for multimodal honesty alignment. Therefore, we implemented initial alignment methods using supervised and preference learning to improve honesty behavior, providing a foundation for future work on trustworthy MLLMs. Our data and code can be found at https://github.com/DSTTSD/MoHoBench.

Authors:Haiquan Wang, Yi Chen, Shang Zeng, Yun Bian, Zhe Cui
Title: GovRelBench:A Benchmark for Government Domain Relevance
Abstract:
Current evaluations of LLMs in the government domain primarily focus on safety considerations in specific scenarios, while the assessment of the models' own core capabilities, particularly domain relevance, remains insufficient. To address this gap, we propose GovRelBench, a benchmark specifically designed for evaluating the core capabilities of LLMs in the government domain. GovRelBench consists of government domain prompts and a dedicated evaluation tool, GovRelBERT. During the training process of GovRelBERT, we introduce the SoftGovScore method: this method trains a model based on the ModernBERT architecture by converting hard labels to soft scores, enabling it to accurately compute the text's government domain relevance score. This work aims to enhance the capability evaluation framework for large models in the government domain, providing an effective tool for relevant research and practice. Our code and dataset are available at https://github.com/pan-xi/GovRelBench.

Authors:Shijie Zhou, Ruiyi Zhang, Huaisheng Zhu, Branislav Kveton, Yufan Zhou, Jiuxiang Gu, Jian Chen, Changyou Chen
Title: Multimodal LLMs as Customized Reward Models for Text-to-Image Generation
Abstract:
We introduce LLaVA-Reward, an efficient reward model designed to automatically evaluate text-to-image (T2I) generations across multiple perspectives, leveraging pretrained multimodal large language models (MLLMs). Existing MLLM-based approaches require instruction-following data for supervised fine-tuning and evaluate generation quality on analyzing text response, which is time-consuming and difficult to train. To address this problem, we propose LLaVA-Reward, which directly utilizes the hidden states of MLLMs given text-image pairs. To enhance the bidirectional interaction between visual and textual representations in decoder-only MLLMs, we further propose adding a Skip-connection Cross Attention (SkipCA) module. This design enhances text-image correlation reasoning by connecting early-layer visual features with later-layer hidden representations. In addition, LLaVA-Reward supports different types of preference data for efficient fine-tuning, including paired preference data and unpaired data. We train LLaVA-Reward on four evaluation perspectives: text-image alignment, fidelity/artifact, safety, and overall ranking. Empirical results demonstrate that LLaVA-Reward outperforms conventional and MLLM-based methods in generating human-aligned scores for automatic evaluations and inference-time scaling in text-to-image generations.

Authors:Satyananda Kashyap, Sola Shirai, Nandana Mihindukulasooriya, Horst Samulowitz
Title: StructText: A Synthetic Table-to-Text Approach for Benchmark Generation with Multi-Dimensional Evaluation
Abstract:
Extracting structured information from text, such as key-value pairs that could augment tabular data, is quite useful in many enterprise use cases. Although large language models (LLMs) have enabled numerous automated pipelines for converting natural language into structured formats, there is still a lack of benchmarks for evaluating their extraction quality, especially in specific domains or focused documents specific to a given organization. Building such benchmarks by manual annotations is labour-intensive and limits the size and scalability of the benchmarks. In this work, we present StructText, an end-to-end framework for automatically generating high-fidelity benchmarks for key-value extraction from text using existing tabular data. It uses available tabular data as structured ground truth, and follows a two-stage ``plan-then-execute'' pipeline to synthetically generate corresponding natural-language text. To ensure alignment between text and structured source, we introduce a multi-dimensional evaluation strategy that combines (a) LLM-based judgments on factuality, hallucination, and coherence and (b) objective extraction metrics measuring numeric and temporal accuracy. We evaluated the proposed method on 71,539 examples across 49 datasets. Results reveal that while LLMs achieve strong factual accuracy and avoid hallucination, they struggle with narrative coherence in producing extractable text. Notably, models presume numerical and temporal information with high fidelity yet this information becomes embedded in narratives that resist automated extraction. We release a framework, including datasets, evaluation tools, and baseline extraction systems, to support continued research.

Authors:Amartya Banerjee, Xingyu Xu, Caroline Moosmüller, Harlin Lee
Title: Adaptive Multimodal Protein Plug-and-Play with Diffusion-Based Priors
Abstract:
In an inverse problem, the goal is to recover an unknown parameter (e.g., an image) that has typically undergone some lossy or noisy transformation during measurement. Recently, deep generative models, particularly diffusion models, have emerged as powerful priors for protein structure generation. However, integrating noisy experimental data from multiple sources to guide these models remains a significant challenge. Existing methods often require precise knowledge of experimental noise levels and manually tuned weights for each data modality. In this work, we introduce Adam-PnP, a Plug-and-Play framework that guides a pre-trained protein diffusion model using gradients from multiple, heterogeneous experimental sources. Our framework features an adaptive noise estimation scheme and a dynamic modality weighting mechanism integrated into the diffusion process, which reduce the need for manual hyperparameter tuning. Experiments on complex reconstruction tasks demonstrate significantly improved accuracy using Adam-PnP.

Authors:Yingxuan Yang, Mulei Ma, Yuxuan Huang, Huacan Chai, Chenyu Gong, Haoran Geng, Yuanjian Zhou, Ying Wen, Meng Fang, Muhao Chen, Shangding Gu, Ming Jin, Costas Spanos, Yang Yang, Pieter Abbeel, Dawn Song, Weinan Zhang, Jun Wang
Title: Agentic Web: Weaving the Next Web with AI Agents
Abstract:
The emergence of AI agents powered by large language models (LLMs) marks a pivotal shift toward the Agentic Web, a new phase of the internet defined by autonomous, goal-driven interactions. In this paradigm, agents interact directly with one another to plan, coordinate, and execute complex tasks on behalf of users. This transition from human-driven to machine-to-machine interaction allows intent to be delegated, relieving users from routine digital operations and enabling a more interactive, automated web experience. In this paper, we present a structured framework for understanding and building the Agentic Web. We trace its evolution from the PC and Mobile Web eras and identify the core technological foundations that support this shift. Central to our framework is a conceptual model consisting of three key dimensions: intelligence, interaction, and economics. These dimensions collectively enable the capabilities of AI agents, such as retrieval, recommendation, planning, and collaboration. We analyze the architectural and infrastructural challenges involved in creating scalable agentic systems, including communication protocols, orchestration strategies, and emerging paradigms such as the Agent Attention Economy. We conclude by discussing the potential applications, societal risks, and governance issues posed by agentic systems, and outline research directions for developing open, secure, and intelligent ecosystems shaped by both human intent and autonomous agent behavior. A continuously updated collection of relevant studies for agentic web is available at: https://github.com/SafeRL-Lab/agentic-web.

Authors:Haowei Lin, Xiangyu Wang, Jianzhu Ma, Yitao Liang
Title: EvoSLD: Automated Neural Scaling Law Discovery With Large Language Models
Abstract:
Scaling laws are fundamental mathematical relationships that predict how neural network performance evolves with changes in variables such as model size, dataset size, and computational resources. Traditionally, discovering these laws requires extensive human expertise and manual experimentation. We introduce EvoSLD, an automated framework for Scaling Law Discovery (SLD) that leverages evolutionary algorithms guided by Large Language Models (LLMs) to co-evolve symbolic expressions and their optimization routines. Formulated to handle scaling variables, control variables, and response metrics across diverse experimental settings, EvoSLD searches for parsimonious, universal functional forms that minimize fitting errors on grouped data subsets. Evaluated on five real-world scenarios from recent literature, EvoSLD rediscovers exact human-derived laws in two cases and surpasses them in others, achieving up to orders-of-magnitude reductions in normalized mean squared error on held-out test sets. Compared to baselines like symbolic regression and ablated variants, EvoSLD demonstrates superior accuracy, interpretability, and efficiency, highlighting its potential to accelerate AI research. Code is available at https://github.com/linhaowei1/SLD.

Authors:Donglu Yang, Liang Zhang, Zihao Yue, Liangyu Chen, Yichen Xu, Wenxuan Wang, Qin Jin
Title: ChartM$^3$: Benchmarking Chart Editing with Multimodal Instructions
Abstract:
Charts are a fundamental visualization format widely used in data analysis across research and industry. While enabling users to edit charts based on high-level intentions is of great practical value, existing methods primarily rely on natural language instructions, which are often too ambiguous to support fine-grained editing. In this work, we introduce a novel paradigm for multimodal chart editing, where user intent is expressed through a combination of natural language and visual indicators that explicitly highlight the elements to be modified. To support this paradigm, we present Chart$\text{M}^3$, a new benchmark for Multimodal chart editing with Multi-level complexity and Multi-perspective evaluation. Chart$\text{M}^3$ contains 1,000 samples spanning four levels of editing difficulty. Each sample includes triplets in the form of (chart, code, multimodal instructions). To comprehensively evaluate chart editing models, Chart$\text{M}^3$ provides metrics that assess both visual appearance and code correctness. Our benchmark reveals significant limitations in current multimodal large language models (MLLMs), including GPT-4o, particularly in their ability to interpret and act on visual indicators. To address this, we construct Chart$\text{M}^3$-Train, a large-scale training set with 24,000 multimodal chart editing samples. Fine-tuning MLLMs on this dataset leads to substantial improvements, demonstrating the importance of multimodal supervision in building practical chart editing systems. Our datasets, codes, and evaluation tools are available at https://github.com/MLrollIT/ChartM3. %https://github.com/MLrollIT/ChartM3Our datasets, codes, and evaluation tools are available at https://github.com/yaolinli/VCE.

Authors:Nicolas Pinon, Carole Lartizien
Title: OCSVM-Guided Representation Learning for Unsupervised Anomaly Detection
Abstract:
Unsupervised anomaly detection (UAD) aims to detect anomalies without labeled data, a necessity in many machine learning applications where anomalous samples are rare or not available. Most state-of-the-art methods fall into two categories: reconstruction-based approaches, which often reconstruct anomalies too well, and decoupled representation learning with density estimators, which can suffer from suboptimal feature spaces. While some recent methods attempt to couple feature learning and anomaly detection, they often rely on surrogate objectives, restrict kernel choices, or introduce approximations that limit their expressiveness and robustness. To address this challenge, we propose a novel method that tightly couples representation learning with an analytically solvable one-class SVM (OCSVM), through a custom loss formulation that directly aligns latent features with the OCSVM decision boundary. The model is evaluated on two tasks: a new benchmark based on MNIST-C, and a challenging brain MRI subtle lesion detection task. Unlike most methods that focus on large, hyperintense lesions at the image level, our approach succeeds to target small, non-hyperintense lesions, while we evaluate voxel-wise metrics, addressing a more clinically relevant scenario. Both experiments evaluate a form of robustness to domain shifts, including corruption types in MNIST-C and scanner/age variations in MRI. Results demonstrate performance and robustness of our proposed mode,highlighting its potential for general UAD and real-world medical imaging applications. The source code is available at https://github.com/Nicolas-Pinon/uad_ocsvm_guided_repr_learning

Authors:Oleg Atamanenko, Anna Chalova, Joseph Coombes, Nikki Cope, Phillip Dang, Zhifeng Deng, Jimmy Du, Michael Ermolenko, Feifan Fan, Yufei Feng, Cheryl Fichter, Pavel Filimonov, Louis Fischer, Kylan Gibbs, Valeria Gusarova, Pavel Karpik, Andreas Assad Kottner, Ian Lee, Oliver Louie, Jasmine Mai, Mikhail Mamontov, Suri Mao, Nurullah Morshed, Igor Poletaev, Florin Radu, Dmytro Semernia, Evgenii Shingarev, Vikram Sivaraja, Peter Skirko, Rinat Takhautdinov, Robert Villahermosa, Jean Wang
Title: TTS-1 Technical Report
Abstract:
We introduce Inworld TTS-1, a set of two Transformer-based autoregressive text-to-speech (TTS) models. Our largest model, TTS-1-Max, has 8.8B parameters and is designed for utmost quality and expressiveness in demanding applications. TTS-1 is our most efficient model, with 1.6B parameters, built for real-time speech synthesis and on-device use cases. By scaling train-time compute and applying a sequential process of pre-training, fine-tuning, and RL-alignment of the speech-language model (SpeechLM) component, both models achieve state-of-the-art performance on a variety of benchmarks, demonstrating exceptional quality relying purely on in-context learning of the speaker's voice. Inworld TTS-1 and TTS-1-Max can generate high-resolution 48 kHz speech with low latency, and support 11 languages with fine-grained emotional control and non-verbal vocalizations through audio markups. We additionally open-source our training and modeling code under an MIT license.

Authors:Karan Mirhosseini, Arya Aftab, Alireza Sheikh
Title: RATE: An LLM-Powered Retrieval Augmented Generation Technology-Extraction Pipeline
Abstract:
In an era of radical technology transformations, technology maps play a crucial role in enhancing decision making. These maps heavily rely on automated methods of technology extraction. This paper introduces Retrieval Augmented Technology Extraction (RATE), a Large Language Model (LLM) based pipeline for automated technology extraction from scientific literature. RATE combines Retrieval Augmented Generation (RAG) with multi-definition LLM-based validation. This hybrid method results in high recall in candidate generation alongside with high precision in candidate filtering. While the pipeline is designed to be general and widely applicable, we demonstrate its use on 678 research articles focused on Brain-Computer Interfaces (BCIs) and Extended Reality (XR) as a case study. Consequently, The validated technology terms by RATE were mapped into a co-occurrence network, revealing thematic clusters and structural features of the research landscape. For the purpose of evaluation, a gold standard dataset of technologies in 70 selected random articles had been curated by the experts. In addition, a technology extraction model based on Bidirectional Encoder Representations of Transformers (BERT) was used as a comparative method. RATE achieved F1-score of 91.27%, Significantly outperforming BERT with F1-score of 53.73%. Our findings highlight the promise of definition-driven LLM methods for technology extraction and mapping. They also offer new insights into emerging trends within the BCI-XR field. The source code is available https://github.com/AryaAftab/RATE

Authors:Bereket A. Yilma, Luis A. Leiva
Title: Affect-aware Cross-Domain Recommendation for Art Therapy via Music Preference Elicitation
Abstract:
Art Therapy (AT) is an established practice that facilitates emotional processing and recovery through creative expression. Recently, Visual Art Recommender Systems (VA RecSys) have emerged to support AT, demonstrating their potential by personalizing therapeutic artwork recommendations. Nonetheless, current VA RecSys rely on visual stimuli for user modeling, limiting their ability to capture the full spectrum of emotional responses during preference elicitation. Previous studies have shown that music stimuli elicit unique affective reflections, presenting an opportunity for cross-domain recommendation (CDR) to enhance personalization in AT. Since CDR has not yet been explored in this context, we propose a family of CDR methods for AT based on music-driven preference elicitation. A large-scale study with 200 users demonstrates the efficacy of music-driven preference elicitation, outperforming the classic visual-only elicitation approach. Our source code, data, and models are available at https://github.com/ArtAICare/Affect-aware-CDR

Authors:Franck Bardol
Title: ChatGPT Reads Your Tone and Responds Accordingly -- Until It Does Not -- Emotional Framing Induces Bias in LLM Outputs
Abstract:
Large Language Models like GPT-4 adjust their responses not only based on the question asked, but also on how it is emotionally phrased. We systematically vary the emotional tone of 156 prompts - spanning controversial and everyday topics - and analyze how it affects model responses. Our findings show that GPT-4 is three times less likely to respond negatively to a negatively framed question than to a neutral one. This suggests a "rebound" bias where the model overcorrects, often shifting toward neutrality or positivity. On sensitive topics (e.g., justice or politics), this effect is even more pronounced: tone-based variation is suppressed, suggesting an alignment override. We introduce concepts like the "tone floor" - a lower bound in response negativity - and use tone-valence transition matrices to quantify behavior. Visualizations based on 1536-dimensional embeddings confirm semantic drift based on tone. Our work highlights an underexplored class of biases driven by emotional framing in prompts, with implications for AI alignment and trust. Code and data are available at: https://github.com/bardolfranck/llm-responses-viewer

Authors:Haoyang Liu, Yijiang Li, Haohan Wang
Title: GenoMAS: A Multi-Agent Framework for Scientific Discovery via Code-Driven Gene Expression Analysis
Abstract:
Gene expression analysis holds the key to many biomedical discoveries, yet extracting insights from raw transcriptomic data remains formidable due to the complexity of multiple large, semi-structured files and the need for extensive domain expertise. Current automation approaches are often limited by either inflexible workflows that break down in edge cases or by fully autonomous agents that lack the necessary precision for rigorous scientific inquiry. GenoMAS charts a different course by presenting a team of LLM-based scientists that integrates the reliability of structured workflows with the adaptability of autonomous agents. GenoMAS orchestrates six specialized LLM agents through typed message-passing protocols, each contributing complementary strengths to a shared analytic canvas. At the heart of GenoMAS lies a guided-planning framework: programming agents unfold high-level task guidelines into Action Units and, at each juncture, elect to advance, revise, bypass, or backtrack, thereby maintaining logical coherence while bending gracefully to the idiosyncrasies of genomic data. On the GenoTEX benchmark, GenoMAS reaches a Composite Similarity Correlation of 89.13% for data preprocessing and an F$_1$ of 60.48% for gene identification, surpassing the best prior art by 10.61% and 16.85% respectively. Beyond metrics, GenoMAS surfaces biologically plausible gene-phenotype associations corroborated by the literature, all while adjusting for latent confounders. Code is available at https://github.com/Liu-Hy/GenoMAS.

Authors:Weichen Zhang, Yiyou Sun, Pohao Huang, Jiayue Pu, Heyue Lin, Dawn Song
Title: MIRAGE-Bench: LLM Agent is Hallucinating and Where to Find Them
Abstract:
Hallucinations pose critical risks for large language model (LLM)-based agents, often manifesting as hallucinative actions resulting from fabricated or misinterpreted information within the cognitive context. While recent studies have exposed such failures, existing evaluations remain fragmented and lack a principled testbed. In this paper, we present MIRAGE-Bench--Measuring Illusions in Risky AGEnt settings--the first unified benchmark for eliciting and evaluating hallucinations in interactive LLM-agent scenarios. We begin by introducing a three-part taxonomy to address agentic hallucinations: actions that are unfaithful to (i) task instructions, (ii) execution history, or (iii) environment observations. To analyze, we first elicit such failures by performing a systematic audit of existing agent benchmarks, then synthesize test cases using a snapshot strategy that isolates decision points in deterministic and reproducible manners. To evaluate hallucination behaviors, we adopt a fine-grained-level LLM-as-a-Judge paradigm with tailored risk-aware prompts, enabling scalable, high-fidelity assessment of agent actions without enumerating full action spaces. MIRAGE-Bench provides actionable insights on failure modes of LLM agents and lays the groundwork for principled progress in mitigating hallucinations in interactive environments.

Authors:Fang Li
Title: Compositional Function Networks: A High-Performance Alternative to Deep Neural Networks with Built-in Interpretability
Abstract:
Deep Neural Networks (DNNs) deliver impressive performance but their black-box nature limits deployment in high-stakes domains requiring transparency. We introduce Compositional Function Networks (CFNs), a novel framework that builds inherently interpretable models by composing elementary mathematical functions with clear semantics. Unlike existing interpretable approaches that are limited to simple additive structures, CFNs support diverse compositional patterns -- sequential, parallel, and conditional -- enabling complex feature interactions while maintaining transparency. A key innovation is that CFNs are fully differentiable, allowing efficient training through standard gradient descent. We demonstrate CFNs' versatility across multiple domains, from symbolic regression to image classification with deep hierarchical networks. Our empirical evaluation shows CFNs achieve competitive performance against black-box models (96.24% accuracy on CIFAR-10) while outperforming state-of-the-art interpretable models like Explainable Boosting Machines. By combining the hierarchical expressiveness and efficient training of deep learning with the intrinsic interpretability of well-defined mathematical functions, CFNs offer a powerful framework for applications where both performance and accountability are paramount.

Authors:Shen Li, Liuyi Yao, Wujia Niu, Lan Zhang, Yaliang Li
Title: Security Tensors as a Cross-Modal Bridge: Extending Text-Aligned Safety to Vision in LVLM
Abstract:
Large visual-language models (LVLMs) integrate aligned large language models (LLMs) with visual modules to process multimodal inputs. However, the safety mechanisms developed for text-based LLMs do not naturally extend to visual modalities, leaving LVLMs vulnerable to harmful image inputs. To address this cross-modal safety gap, we introduce security tensors - trainable input vectors applied during inference through either the textual or visual modality. These tensors transfer textual safety alignment to visual processing without modifying the model's parameters. They are optimized using a curated dataset containing (i) malicious image-text pairs requiring rejection, (ii) contrastive benign pairs with text structurally similar to malicious queries, with the purpose of being contrastive examples to guide visual reliance, and (iii) general benign samples preserving model functionality. Experimental results demonstrate that both textual and visual security tensors significantly enhance LVLMs' ability to reject diverse harmful visual inputs while maintaining near-identical performance on benign tasks. Further internal analysis towards hidden-layer representations reveals that security tensors successfully activate the language module's textual "safety layers" in visual inputs, thereby effectively extending text-based safety to the visual modality.

Authors:Xinhan Di, Kristin Qi, Pengqian Yu
Title: JWB-DH-V1: Benchmark for Joint Whole-Body Talking Avatar and Speech Generation Version 1
Abstract:
Recent advances in diffusion-based video generation have enabled photo-realistic short clips, but current methods still struggle to achieve multi-modal consistency when jointly generating whole-body motion and natural speech. Current approaches lack comprehensive evaluation frameworks that assess both visual and audio quality, and there are insufficient benchmarks for region-specific performance analysis. To address these gaps, we introduce the Joint Whole-Body Talking Avatar and Speech Generation Version I(JWB-DH-V1), comprising a large-scale multi-modal dataset with 10,000 unique identities across 2 million video samples, and an evaluation protocol for assessing joint audio-video generation of whole-body animatable avatars. Our evaluation of SOTA models reveals consistent performance disparities between face/hand-centric and whole-body performance, which incidates essential areas for future research. The dataset and evaluation tools are publicly available at https://github.com/deepreasonings/WholeBodyBenchmark.

Authors:Likun Tan, Kuan-Wei Huang, Kevin Wu
Title: FRED: Financial Retrieval-Enhanced Detection and Editing of Hallucinations in Language Models
Abstract:
Hallucinations in large language models pose a critical challenge for applications requiring factual reliability, particularly in high-stakes domains such as finance. This work presents an effective approach for detecting and editing factually incorrect content in model-generated responses based on the provided context. Given a user-defined domain-specific error taxonomy, we construct a synthetic dataset by inserting tagged errors into financial question-answering corpora and then fine-tune four language models, Phi-4, Phi-4-mini, Qwen3-4B, and Qwen3-14B, to detect and edit these factual inaccuracies. Our best-performing model, fine-tuned Phi-4, achieves an 8% improvement in binary F1 score and a 30% gain in overall detection performance compared to OpenAI-o3. Notably, our fine-tuned Phi-4-mini model, despite having only 4 billion parameters, maintains competitive performance with just a 2% drop in binary detection and a 0.1% decline in overall detection compared to OpenAI-o3. Our work provides a practical solution for detecting and editing factual inconsistencies in financial text generation while introducing a generalizable framework that can enhance the trustworthiness and alignment of large language models across diverse applications beyond finance. Our code and data are available at https://github.com/pegasi-ai/shield.

Authors:Minh Hieu Ha, Hung Phan, Tung Duy Doan, Tung Dao, Dao Tran, Huynh Thi Thanh Binh
Title: Pareto-Grid-Guided Large Language Models for Fast and High-Quality Heuristics Design in Multi-Objective Combinatorial Optimization
Abstract:
Multi-objective combinatorial optimization problems (MOCOP) frequently arise in practical applications that require the simultaneous optimization of conflicting objectives. Although traditional evolutionary algorithms can be effective, they typically depend on domain knowledge and repeated parameter tuning, limiting flexibility when applied to unseen MOCOP instances. Recently, integration of Large Language Models (LLMs) into evolutionary computation has opened new avenues for automatic heuristic generation, using their advanced language understanding and code synthesis capabilities. Nevertheless, most existing approaches predominantly focus on single-objective tasks, often neglecting key considerations such as runtime efficiency and heuristic diversity in multi-objective settings. To bridge this gap, we introduce Multi-heuristics for MOCOP via Pareto-Grid-guided Evolution of LLMs (MPaGE), a novel enhancement of the Simple Evolutionary Multiobjective Optimization (SEMO) framework that leverages LLMs and Pareto Front Grid (PFG) technique. By partitioning the objective space into grids and retaining top-performing candidates to guide heuristic generation, MPaGE utilizes LLMs to prioritize heuristics with semantically distinct logical structures during variation, thus promoting diversity and mitigating redundancy within the population. Through extensive evaluations, MPaGE demonstrates superior performance over existing LLM-based frameworks, and achieves competitive results to traditional Multi-objective evolutionary algorithms (MOEAs), with significantly faster runtime. Our code is available at: https://github.com/langkhachhoha/MPaGE.

Authors:Renhang Liu, Chia-Yu Hung, Navonil Majumder, Taylor Gautreaux, Amir Ali Bagherzadeh, Chuan Li, Dorien Herremans, Soujanya Poria
Title: JAM: A Tiny Flow-based Song Generator with Fine-grained Controllability and Aesthetic Alignment
Abstract:
Diffusion and flow-matching models have revolutionized automatic text-to-audio generation in recent times. These models are increasingly capable of generating high quality and faithful audio outputs capturing to speech and acoustic events. However, there is still much room for improvement in creative audio generation that primarily involves music and songs. Recent open lyrics-to-song models, such as, DiffRhythm, ACE-Step, and LeVo, have set an acceptable standard in automatic song generation for recreational use. However, these models lack fine-grained word-level controllability often desired by musicians in their workflows. To the best of our knowledge, our flow-matching-based JAM is the first effort toward endowing word-level timing and duration control in song generation, allowing fine-grained vocal control. To enhance the quality of generated songs to better align with human preferences, we implement aesthetic alignment through Direct Preference Optimization, which iteratively refines the model using a synthetic dataset, eliminating the need or manual data annotations. Furthermore, we aim to standardize the evaluation of such lyrics-to-song models through our public evaluation dataset JAME. We show that JAM outperforms the existing models in terms of the music-specific attributes.

Authors:Jakob Snel, Seong Joon Oh
Title: First Hallucination Tokens Are Different from Conditional Ones
Abstract:
Hallucination, the generation of untruthful content, is one of the major concerns regarding foundational models. Detecting hallucinations at the token level is vital for real-time filtering and targeted correction, yet the variation of hallucination signals within token sequences is not fully understood. Leveraging the RAGTruth corpus with token-level annotations and reproduced logits, we analyse how these signals depend on a token's position within hallucinated spans, contributing to an improved understanding of token-level hallucination. Our results show that the first hallucinated token carries a stronger signal and is more detectable than conditional tokens. We release our analysis framework, along with code for logit reproduction and metric computation at https://github.com/jakobsnl/RAGTruth_Xtended.

Authors:Zeyu Huang, Wei Meng, Quan Liu, Kun Chen, Li Ma
Title: AR-LIF: Adaptive reset leaky integrate-and-fire neuron for spiking neural networks
Abstract:
Spiking neural networks offer low energy consumption due to their event-driven nature. Beyond binary spike outputs, their intrinsic floating-point dynamics merit greater attention. Neuronal threshold levels and reset modes critically determine spike count and timing. Hard reset cause information loss, while soft reset apply uniform treatment to neurons. To address these issues, we design an adaptive reset neuron that establishes relationships between inputs, outputs, and reset, while integrating a simple yet effective threshold adjustment strategy. Experimental results demonstrate that our method achieves excellent performance while maintaining lower energy consumption. In particular, it attains state-of-the-art accuracy on Tiny-ImageNet and CIFAR10-DVS. Codes are available at https://github.com/2ephyrus/AR-LIF.

Authors:Yue Zhu, Haiwen Diao, Shang Gao, Jiazuo Yu, Jiawen Zhu, Yunzhi Zhuge, Shuai Hao, Xu Jia, Lu Zhang, Ying Zhang, Huchuan Lu
Title: Regularizing Subspace Redundancy of Low-Rank Adaptation
Abstract:
Low-Rank Adaptation (LoRA) and its variants have delivered strong capability in Parameter-Efficient Transfer Learning (PETL) by minimizing trainable parameters and benefiting from reparameterization. However, their projection matrices remain unrestricted during training, causing high representation redundancy and diminishing the effectiveness of feature adaptation in the resulting subspaces. While existing methods mitigate this by manually adjusting the rank or implicitly applying channel-wise masks, they lack flexibility and generalize poorly across various datasets and architectures. Hence, we propose ReSoRA, a method that explicitly models redundancy between mapping subspaces and adaptively Regularizes Subspace redundancy of Low-Rank Adaptation. Specifically, it theoretically decomposes the low-rank submatrices into multiple equivalent subspaces and systematically applies de-redundancy constraints to the feature distributions across different projections. Extensive experiments validate that our proposed method consistently facilitates existing state-of-the-art PETL methods across various backbones and datasets in vision-language retrieval and standard visual classification benchmarks. Besides, as a training supervision, ReSoRA can be seamlessly integrated into existing approaches in a plug-and-play manner, with no additional inference costs. Code is publicly available at: https://github.com/Lucenova/ReSoRA.

Authors:Ao Li, Yuxiang Duan, Jinghui Zhang, Congbo Ma, Yutong Xie, Gustavo Carneiro, Mohammad Yaqub, Hu Wang
Title: TransPrune: Token Transition Pruning for Efficient Large Vision-Language Model
Abstract:
Large Vision-Language Models (LVLMs) have advanced multimodal learning but face high computational costs due to the large number of visual tokens, motivating token pruning to improve inference efficiency. The key challenge lies in identifying which tokens are truly important. Most existing approaches rely on attention-based criteria to estimate token importance. However, they inherently suffer from certain limitations, such as positional bias. In this work, we explore a new perspective on token importance based on token transitions in LVLMs. We observe that the transition of token representations provides a meaningful signal of semantic information. Based on this insight, we propose TransPrune, a training-free and efficient token pruning method. Specifically, TransPrune progressively prunes tokens by assessing their importance through a combination of Token Transition Variation (TTV)-which measures changes in both the magnitude and direction of token representations-and Instruction-Guided Attention (IGA), which measures how strongly the instruction attends to image tokens via attention. Extensive experiments demonstrate that TransPrune achieves comparable multimodal performance to original LVLMs, such as LLaVA-v1.5 and LLaVA-Next, across eight benchmarks, while reducing inference TFLOPs by more than half. Moreover, TTV alone can serve as an effective criterion without relying on attention, achieving performance comparable to attention-based methods. The code will be made publicly available upon acceptance of the paper at https://github.com/liaolea/TransPrune.

Authors:Junxian Wu, Weitao You, Heda Zuo, Dengming Zhang, Pei Chen, Lingyun Sun
Title: Controllable Video-to-Music Generation with Multiple Time-Varying Conditions
Abstract:
Music enhances video narratives and emotions, driving demand for automatic video-to-music (V2M) generation. However, existing V2M methods relying solely on visual features or supplementary textual inputs generate music in a black-box manner, often failing to meet user expectations. To address this challenge, we propose a novel multi-condition guided V2M generation framework that incorporates multiple time-varying conditions for enhanced control over music generation. Our method uses a two-stage training strategy that enables learning of V2M fundamentals and audiovisual temporal synchronization while meeting users' needs for multi-condition control. In the first stage, we introduce a fine-grained feature selection module and a progressive temporal alignment attention mechanism to ensure flexible feature alignment. For the second stage, we develop a dynamic conditional fusion module and a control-guided decoder module to integrate multiple conditions and accurately guide the music composition process. Extensive experiments demonstrate that our method outperforms existing V2M pipelines in both subjective and objective evaluations, significantly enhancing control and alignment with user expectations.

Authors:Hyung Kyu Kim, Hak Gu Kim
Title: Learning Phonetic Context-Dependent Viseme for Enhancing Speech-Driven 3D Facial Animation
Abstract:
Speech-driven 3D facial animation aims to generate realistic facial movements synchronized with audio. Traditional methods primarily minimize reconstruction loss by aligning each frame with ground-truth. However, this frame-wise approach often fails to capture the continuity of facial motion, leading to jittery and unnatural outputs due to coarticulation. To address this, we propose a novel phonetic context-aware loss, which explicitly models the influence of phonetic context on viseme transitions. By incorporating a viseme coarticulation weight, we assign adaptive importance to facial movements based on their dynamic changes over time, ensuring smoother and perceptually consistent animations. Extensive experiments demonstrate that replacing the conventional reconstruction loss with ours improves both quantitative metrics and visual quality. It highlights the importance of explicitly modeling phonetic context-dependent visemes in synthesizing natural speech-driven 3D facial animation. Project page: https://cau-irislab.github.io/interspeech25/

Authors:Hyung Kyu Kim, Sangmin Lee, Hak Gu Kim
Title: MemoryTalker: Personalized Speech-Driven 3D Facial Animation via Audio-Guided Stylization
Abstract:
Speech-driven 3D facial animation aims to synthesize realistic facial motion sequences from given audio, matching the speaker's speaking style. However, previous works often require priors such as class labels of a speaker or additional 3D facial meshes at inference, which makes them fail to reflect the speaking style and limits their practical use. To address these issues, we propose MemoryTalker which enables realistic and accurate 3D facial motion synthesis by reflecting speaking style only with audio input to maximize usability in applications. Our framework consists of two training stages: 1-stage is storing and retrieving general motion (i.e., Memorizing), and 2-stage is to perform the personalized facial motion synthesis (i.e., Animating) with the motion memory stylized by the audio-driven speaking style feature. In this second stage, our model learns about which facial motion types should be emphasized for a particular piece of audio. As a result, our MemoryTalker can generate a reliable personalized facial animation without additional prior information. With quantitative and qualitative evaluations, as well as user study, we show the effectiveness of our model and its performance enhancement for personalized facial animation over state-of-the-art methods.

Authors:Chieh-Yun Chen, Min Shi, Gong Zhang, Humphrey Shi
Title: T2I-Copilot: A Training-Free Multi-Agent Text-to-Image System for Enhanced Prompt Interpretation and Interactive Generation
Abstract:
Text-to-Image (T2I) generative models have revolutionized content creation but remain highly sensitive to prompt phrasing, often requiring users to repeatedly refine prompts multiple times without clear feedback. While techniques such as automatic prompt engineering, controlled text embeddings, denoising, and multi-turn generation mitigate these issues, they offer limited controllability, or often necessitate additional training, restricting the generalization abilities. Thus, we introduce T2I-Copilot, a training-free multi-agent system that leverages collaboration between (Multimodal) Large Language Models to automate prompt phrasing, model selection, and iterative refinement. This approach significantly simplifies prompt engineering while enhancing generation quality and text-image alignment compared to direct generation. Specifically, T2I-Copilot consists of three agents: (1) Input Interpreter, which parses the input prompt, resolves ambiguities, and generates a standardized report; (2) Generation Engine, which selects the appropriate model from different types of T2I models and organizes visual and textual prompts to initiate generation; and (3) Quality Evaluator, which assesses aesthetic quality and text-image alignment, providing scores and feedback for potential regeneration. T2I-Copilot can operate fully autonomously while also supporting human-in-the-loop intervention for fine-grained control. On GenAI-Bench, using open-source generation models, T2I-Copilot achieves a VQA score comparable to commercial models RecraftV3 and Imagen 3, surpasses FLUX1.1-pro by 6.17% at only 16.59% of its cost, and outperforms FLUX.1-dev and SD 3.5 Large by 9.11% and 6.36%. Code will be released at: https://github.com/SHI-Labs/T2I-Copilot.

Authors:Lang Yu, Zhangyang Gao, Cheng Tan, Qin Chen, Jie Zhou, Liang He
Title: Protein-SE(3): Benchmarking SE(3)-based Generative Models for Protein Structure Design
Abstract:
SE(3)-based generative models have shown great promise in protein geometry modeling and effective structure design. However, the field currently lacks a modularized benchmark to enable comprehensive investigation and fair comparison of different methods. In this paper, we propose Protein-SE(3), a new benchmark based on a unified training framework, which comprises protein scaffolding tasks, integrated generative models, high-level mathematical abstraction, and diverse evaluation metrics. Recent advanced generative models designed for protein scaffolding, from multiple perspectives like DDPM (Genie1 and Genie2), Score Matching (FrameDiff and RfDiffusion) and Flow Matching (FoldFlow and FrameFlow) are integrated into our framework. All integrated methods are fairly investigated with the same training dataset and evaluation metrics. Furthermore, we provide a high-level abstraction of the mathematical foundations behind the generative models, enabling fast prototyping of future algorithms without reliance on explicit protein structures. Accordingly, we release the first comprehensive benchmark built upon unified training framework for SE(3)-based protein structure design, which is publicly accessible at https://github.com/BruthYU/protein-se3.

Authors:Fei Kong, Jinhao Duan, Kaidi Xu, Zhenhua Guo, Xiaofeng Zhu, Xiaoshuang Shi
Title: LRR-Bench: Left, Right or Rotate? Vision-Language models Still Struggle With Spatial Understanding Tasks
Abstract:
Real-world applications, such as autonomous driving and humanoid robot manipulation, require precise spatial perception. However, it remains underexplored how Vision-Language Models (VLMs) recognize spatial relationships and perceive spatial movement. In this work, we introduce a spatial evaluation pipeline and construct a corresponding benchmark. Specifically, we categorize spatial understanding into two main types: absolute spatial understanding, which involves querying the absolute spatial position (e.g., left, right) of an object within an image, and 3D spatial understanding, which includes movement and rotation. Notably, our dataset is entirely synthetic, enabling the generation of test samples at a low cost while also preventing dataset contamination. We conduct experiments on multiple state-of-the-art VLMs and observe that there is significant room for improvement in their spatial understanding abilities. Explicitly, in our experiments, humans achieve near-perfect performance on all tasks, whereas current VLMs attain human-level performance only on the two simplest tasks. For the remaining tasks, the performance of VLMs is distinctly lower than that of humans. In fact, the best-performing Vision-Language Models even achieve near-zero scores on multiple tasks. The dataset and code are available on https://github.com/kong13661/LRR-Bench.

Authors:Daulet Toibazar, Kesen Wang, Sherif Mohamed, Abdulaziz Al-Badawi, Abdulrahman Alfulayt, Pedro J. Moreno
Title: Trust the Model: Compact VLMs as In-Context Judges for Image-Text Data Quality
Abstract:
Vision-language models (VLMs) extend the conventional large language models by integrating visual data, enabling richer multimodal reasoning and significantly broadens the practical applications of AI. However, including visual inputs also brings new challenges in maintaining data quality. Empirical evidence consistently shows that carefully curated and representative training examples often yield superior results compared to simply increasing the quantity of data. Inspired by this observation, we introduce a streamlined data filtration framework that employs a compact VLM, fine-tuned on a high-quality image-caption annotated dataset. This model effectively evaluates and filters potential training samples based on caption and image quality and alignment. Unlike previous approaches, which typically add auxiliary filtration modules on top of existing full-scale VLMs, our method exclusively utilizes the inherent evaluative capability of a purpose-built small VLM. This strategy eliminates the need for extra modules and reduces training overhead. Our lightweight model efficiently filters out inaccurate, noisy web data, improving image-text alignment and caption linguistic fluency. Experimental results show that datasets underwent high-precision filtration using our compact VLM perform on par with, or even surpass, larger and noisier datasets gathered through high-volume web crawling. Thus, our method provides a lightweight yet robust solution for building high-quality vision-language training corpora. \\ \textbf{Availability and implementation:} Our compact VLM filtration model, training data, utility scripts, and Supplementary data (Appendices) are freely available at https://github.com/daulettoibazar/Compact_VLM_Filter.

Authors:Kesen Wang, Daulet Toibazar, Abdulrahman Alfulayt, Abdulaziz S. Albadawi, Ranya A. Alkahtani, Asma A. Ibrahim, Haneen A. Alhomoud, Sherif Mohamed, Pedro J. Moreno
Title: Multi-Agent Interactive Question Generation Framework for Long Document Understanding
Abstract:
Document Understanding (DU) in long-contextual scenarios with complex layouts remains a significant challenge in vision-language research. Although Large Vision-Language Models (LVLMs) excel at short-context DU tasks, their performance declines in long-context settings. A key limitation is the scarcity of fine-grained training data, particularly for low-resource languages such as Arabic. Existing state-of-the-art techniques rely heavily on human annotation, which is costly and inefficient. We propose a fully automated, multi-agent interactive framework to generate long-context questions efficiently. Our approach efficiently generates high-quality single- and multi-page questions for extensive English and Arabic documents, covering hundreds of pages across diverse domains. This facilitates the development of LVLMs with enhanced long-context understanding ability. Experimental results in this work have shown that our generated English and Arabic questions (\textbf{AraEngLongBench}) are quite challenging to major open- and close-source LVLMs. The code and data proposed in this work can be found in https://github.com/wangk0b/Multi_Agentic_QA_Long_Doc.git. Sample Question and Answer (QA) pairs and structured system prompts can be found in the Appendix.

Authors:Zeyi Liu, Songqiao Hu, Pengyu Han, Jiaming Liu, Xiao He
Title: Awesome-OL: An Extensible Toolkit for Online Learning
Abstract:
In recent years, online learning has attracted increasing attention due to its adaptive capability to process streaming and non-stationary data. To facilitate algorithm development and practical deployment in this area, we introduce Awesome-OL, an extensible Python toolkit tailored for online learning research. Awesome-OL integrates state-of-the-art algorithm, which provides a unified framework for reproducible comparisons, curated benchmark datasets, and multi-modal visualization. Built upon the scikit-multiflow open-source infrastructure, Awesome-OL emphasizes user-friendly interactions without compromising research flexibility or extensibility. The source code is publicly available at: https://github.com/liuzy0708/Awesome-OL.

Authors:Baiyu Chen, Wilson Wongso, Xiaoqian Hu, Yue Tan, Flora Salim
Title: Multi-Stage Verification-Centric Framework for Mitigating Hallucination in Multi-Modal RAG
Abstract:
This paper presents the technical solution developed by team CRUISE for the KDD Cup 2025 Meta Comprehensive RAG Benchmark for Multi-modal, Multi-turn (CRAG-MM) challenge. The challenge aims to address a critical limitation of modern Vision Language Models (VLMs): their propensity to hallucinate, especially when faced with egocentric imagery, long-tail entities, and complex, multi-hop questions. This issue is particularly problematic in real-world applications where users pose fact-seeking queries that demand high factual accuracy across diverse modalities. To tackle this, we propose a robust, multi-stage framework that prioritizes factual accuracy and truthfulness over completeness. Our solution integrates a lightweight query router for efficiency, a query-aware retrieval and summarization pipeline, a dual-pathways generation and a post-hoc verification. This conservative strategy is designed to minimize hallucinations, which incur a severe penalty in the competition's scoring metric. Our approach achieved 3rd place in Task 1, demonstrating the effectiveness of prioritizing answer reliability in complex multi-modal RAG systems. Our implementation is available at https://github.com/Breezelled/KDD-Cup-2025-Meta-CRAG-MM .

Authors:Ran Xu, Yuchen Zhuang, Yue Yu, Haoyu Wang, Wenqi Shi, Carl Yang
Title: RAG in the Wild: On the (In)effectiveness of LLMs with Mixture-of-Knowledge Retrieval Augmentation
Abstract:
Retrieval-augmented generation (RAG) enhances large language models (LLMs) by integrating external knowledge retrieved at inference time. While RAG demonstrates strong performance on benchmarks largely derived from general-domain corpora like Wikipedia, its effectiveness under realistic, diverse retrieval scenarios remains underexplored. We evaluated RAG systems using MassiveDS, a large-scale datastore with mixture of knowledge, and identified critical limitations: retrieval mainly benefits smaller models, rerankers add minimal value, and no single retrieval source consistently excels. Moreover, current LLMs struggle to route queries across heterogeneous knowledge sources. These findings highlight the need for adaptive retrieval strategies before deploying RAG in real-world settings. Our code and data can be found at https://github.com/ritaranx/RAG_in_the_Wild.

Authors:Liu junkang, Yuanyuan Liu, Fanhua Shang, Hongying Liu, Jin Liu, Wei Feng
Title: FedSWA: Improving Generalization in Federated Learning with Highly Heterogeneous Data via Momentum-Based Stochastic Controlled Weight Averaging
Abstract:
For federated learning (FL) algorithms such as FedSAM, their generalization capability is crucial for real-word applications. In this paper, we revisit the generalization problem in FL and investigate the impact of data heterogeneity on FL generalization. We find that FedSAM usually performs worse than FedAvg in the case of highly heterogeneous data, and thus propose a novel and effective federated learning algorithm with Stochastic Weight Averaging (called \texttt{FedSWA}), which aims to find flatter minima in the setting of highly heterogeneous data. Moreover, we introduce a new momentum-based stochastic controlled weight averaging FL algorithm (\texttt{FedMoSWA}), which is designed to better align local and global models. Theoretically, we provide both convergence analysis and generalization bounds for \texttt{FedSWA} and \texttt{FedMoSWA}. We also prove that the optimization and generalization errors of \texttt{FedMoSWA} are smaller than those of their counterparts, including FedSAM and its variants. Empirically, experimental results on CIFAR10/100 and Tiny ImageNet demonstrate the superiority of the proposed algorithms compared to their counterparts. Open source code at: https://github.com/junkangLiu0/FedSWA.

Authors:Padmavathi Moorthy
Title: Robust Taxi Fare Prediction Under Noisy Conditions: A Comparative Study of GAT, TimesNet, and XGBoost
Abstract:
Precise fare prediction is crucial in ride-hailing platforms and urban mobility systems. This study examines three machine learning models-Graph Attention Networks (GAT), XGBoost, and TimesNet to evaluate their predictive capabilities for taxi fares using a real-world dataset comprising over 55 million records. Both raw (noisy) and denoised versions of the dataset are analyzed to assess the impact of data quality on model performance. The study evaluated the models along multiple axes, including predictive accuracy, calibration, uncertainty estimation, out-of-distribution (OOD) robustness, and feature sensitivity. We also explore pre-processing strategies, including KNN imputation, Gaussian noise injection, and autoencoder-based denoising. The study reveals critical differences between classical and deep learning models under realistic conditions, offering practical guidelines for building robust and scalable models in urban fare prediction systems.

Authors:Cesar Kadir Torrico Villanueva, Jiaxin Cindy Tu, Mihir Tripathy, Connor Lane, Rishab Iyer, Paul S. Scotti
Title: Predicting Brain Responses To Natural Movies With Multimodal LLMs
Abstract:
We present MedARC's team solution to the Algonauts 2025 challenge. Our pipeline leveraged rich multimodal representations from various state-of-the-art pretrained models across video (V-JEPA2), speech (Whisper), text (Llama 3.2), vision-text (InternVL3), and vision-text-audio (Qwen2.5-Omni). These features extracted from the models were linearly projected to a latent space, temporally aligned to the fMRI time series, and finally mapped to cortical parcels through a lightweight encoder comprising a shared group head plus subject-specific residual heads. We trained hundreds of model variants across hyperparameter settings, validated them on held-out movies and assembled ensembles targeted to each parcel in each subject. Our final submission achieved a mean Pearson's correlation of 0.2085 on the test split of withheld out-of-distribution movies, placing our team in fourth place for the competition. We further discuss a last-minute optimization that would have raised us to second place. Our results highlight how combining features from models trained in different modalities, using a simple architecture consisting of shared-subject and single-subject components, and conducting comprehensive model selection and ensembling improves generalization of encoding models to novel movie stimuli. All code is available on GitHub.

Authors:Chengyu Zheng, Jin Huang, Honghua Chen, Mingqiang Wei
Title: RARE: Refine Any Registration of Pairwise Point Clouds via Zero-Shot Learning
Abstract:
Recent research leveraging large-scale pretrained diffusion models has demonstrated the potential of using diffusion features to establish semantic correspondences in images. Inspired by advancements in diffusion-based techniques, we propose a novel zero-shot method for refining point cloud registration algorithms. Our approach leverages correspondences derived from depth images to enhance point feature representations, eliminating the need for a dedicated training dataset. Specifically, we first project the point cloud into depth maps from multiple perspectives and extract implicit knowledge from a pretrained diffusion network as depth diffusion features. These features are then integrated with geometric features obtained from existing methods to establish more accurate correspondences between point clouds. By leveraging these refined correspondences, our approach achieves significantly improved registration accuracy. Extensive experiments demonstrate that our method not only enhances the performance of existing point cloud registration techniques but also exhibits robust generalization capabilities across diverse datasets. Codes are available at https://github.com/zhengcy-lambo/RARE.git.

Authors:Parsa Vares, Éloi Durant, Jun Pang, Nicolas Médoc, Mohammad Ghoniem
Title: TS-Insight: Visualizing Thompson Sampling for Verification and XAI
Abstract:
Thompson Sampling (TS) and its variants are powerful Multi-Armed Bandit algorithms used to balance exploration and exploitation strategies in active learning. Yet, their probabilistic nature often turns them into a "black box", hindering debugging and trust. We introduce TS-Insight, a visual analytics tool explicitly designed to shed light on the internal decision mechanisms of Thompson Sampling-based algorithms, for model developers. It comprises multiple plots, tracing for each arm the evolving posteriors, evidence counts, and sampling outcomes, enabling the verification, diagnosis, and explainability of exploration/exploitation dynamics. This tool aims at fostering trust and facilitating effective debugging and deployment in complex binary decision-making scenarios especially in sensitive domains requiring interpretable decision-making.

Authors:Drandreb Earl O. Juanico, Rowel O. Atienza, Jeffrey Kenneth Go
Title: Interpretable Open-Vocabulary Referring Object Detection with Reverse Contrast Attention
Abstract:
We propose Reverse Contrast Attention (RCA), a plug-in method that enhances object localization in vision-language transformers without retraining. RCA reweights final-layer attention by suppressing extremes and amplifying mid-level activations to let semantically relevant but subdued tokens guide predictions. We evaluate it on Open Vocabulary Referring Object Detection (OV-RefOD), introducing FitAP, a confidence-free average precision metric based on IoU and box area. RCA improves FitAP in 11 out of 15 open-source VLMs, with gains up to $+26.6\%$. Effectiveness aligns with attention sharpness and fusion timing; while late-fusion models benefit consistently, models like $\texttt{DeepSeek-VL2}$ also improve, pointing to capacity and disentanglement as key factors. RCA offers both interpretability and performance gains for multimodal transformers. Codes and dataset are available from https://github.com/earl-juanico/rca

Authors:Guanting Dong, Hangyu Mao, Kai Ma, Licheng Bao, Yifei Chen, Zhongyuan Wang, Zhongxia Chen, Jiazhen Du, Huiyang Wang, Fuzheng Zhang, Guorui Zhou, Yutao Zhu, Ji-Rong Wen, Zhicheng Dou
Title: Agentic Reinforced Policy Optimization
Abstract:
Large-scale reinforcement learning with verifiable rewards (RLVR) has demonstrated its effectiveness in harnessing the potential of large language models (LLMs) for single-turn reasoning tasks. In realistic reasoning scenarios, LLMs can often utilize external tools to assist in task-solving processes. However, current RL algorithms inadequately balance the models' intrinsic long-horizon reasoning capabilities and their proficiency in multi-turn tool interactions. To bridge this gap, we propose Agentic Reinforced Policy Optimization (ARPO), a novel agentic RL algorithm tailored for training multi-turn LLM-based agents. Through preliminary experiments, we observe that LLMs tend to exhibit highly uncertain behavior, characterized by an increase in the entropy distribution of generated tokens, immediately following interactions with external tools. Motivated by this observation, ARPO incorporates an entropy-based adaptive rollout mechanism, dynamically balancing global trajectory sampling and step-level sampling, thereby promoting exploration at steps with high uncertainty after tool usage. By integrating an advantage attribution estimation, ARPO enables LLMs to internalize advantage differences in stepwise tool-use interactions. Our experiments across 13 challenging benchmarks in computational reasoning, knowledge reasoning, and deep search domains demonstrate ARPO's superiority over trajectory-level RL algorithms. Remarkably, ARPO achieves improved performance using only half of the tool-use budget required by existing methods, offering a scalable solution for aligning LLM-based agents with real-time dynamic environments. Our code and datasets are released at https://github.com/dongguanting/ARPO

Authors:Lin Ren, Guohui Xiao, Guilin Qi, Yishuai Geng, Haohan Xue
Title: Can LLMs Solve ASP Problems? Insights from a Benchmarking Study (Extended Version)
Abstract:
Answer Set Programming (ASP) is a powerful paradigm for non-monotonic reasoning. Recently, large language models (LLMs) have demonstrated promising capabilities in logical reasoning. Despite this potential, current evaluations of LLM capabilities in ASP are often limited. Existing works normally employ overly simplified ASP programs, do not support negation, disjunction, or multiple answer sets. Furthermore, there is a lack of benchmarks that introduce tasks specifically designed for ASP solving. To bridge this gap, we introduce ASPBench, a comprehensive ASP benchmark, including three ASP specific tasks: ASP entailment, answer set verification, and answer set computation. Our extensive evaluations on ASPBench reveal that while 14 state-of-the-art LLMs, including \emph{deepseek-r1}, \emph{o4-mini}, and \emph{gemini-2.5-flash-thinking}, perform relatively well on the first two simpler tasks, they struggle with answer set computation, which is the core of ASP solving. These findings offer insights into the current limitations of LLMs in ASP solving. This highlights the need for new approaches that integrate symbolic reasoning capabilities more effectively. The code and dataset are available at https://github.com/HomuraT/ASPBench.

Authors:Yinzhou Tang, Huandong Wang, Xiaochen Fan, Yong Li
Title: Predicting Human Mobility in Disasters via LLM-Enhanced Cross-City Learning
Abstract:
The vulnerability of cities to natural disasters has increased with urbanization and climate change, making it more important to predict human mobility in the disaster scenarios for downstream tasks including location-based early disaster warning and pre-allocating rescue resources, etc. However, existing human mobility prediction models are mainly designed for normal scenarios, and fail to adapt to disaster scenarios due to the shift of human mobility patterns under disaster. To address this issue, we introduce \textbf{DisasterMobLLM}, a mobility prediction framework for disaster scenarios that can be integrated into existing deep mobility prediction methods by leveraging LLMs to model the mobility intention and transferring the common knowledge of how different disasters affect mobility intentions between cities. This framework utilizes a RAG-Enhanced Intention Predictor to forecast the next intention, refines it with an LLM-based Intention Refiner, and then maps the intention to an exact location using an Intention-Modulated Location Predictor. Extensive experiments illustrate that DisasterMobLLM can achieve a 32.8\% improvement in terms of Acc@1 and a 35.0\% improvement in terms of the F1-score of predicting immobility compared to the baselines. The code is available at https://github.com/tsinghua-fib-lab/DisasterMobLLM.

Authors:Liyang Wang, Shiqian Wu, Shun Fang, Qile Zhu, Jiaxin Wu, Sos Again
Title: Quaternion-Based Robust PCA for Efficient Moving Target Detection and Background Recovery in Color Videos
Abstract:
Moving target detection is a challenging computer vision task aimed at generating accurate segmentation maps in diverse in-the-wild color videos captured by static cameras. If backgrounds and targets can be simultaneously extracted and recombined, such synthetic data can significantly enrich annotated in-the-wild datasets and enhance the generalization ability of deep models. Quaternion-based RPCA (QRPCA) is a promising unsupervised paradigm for color image processing. However, in color video processing, Quaternion Singular Value Decomposition (QSVD) incurs high computational costs, and rank-1 quaternion matrix fails to yield rank-1 color channels. In this paper, we reduce the computational complexity of QSVD to o(1) by utilizing a quaternion Riemannian manifold. Furthermor, we propose the universal QRPCA (uQRPCA) framework, which achieves a balance in simultaneously segmenting targets and recovering backgrounds from color videos. Moreover, we expand to uQRPCA+ by introducing the Color Rank-1 Batch (CR1B) method to further process and obtain the ideal low-rank background across color channels. Experiments demonstrate our uQRPCA+ achieves State Of The Art (SOTA) performance on moving target detection and background recovery tasks compared to existing open-source methods. Our implementation is publicly available on GitHub at https://github.com/Ruchtech/uQRPCA

Authors:Faruk Alpay, Hamdi Alakkad, Bugra Kilictas, Taylan Alpay
Title: Ultracoarse Equilibria and Ordinal-Folding Dynamics in Operator-Algebraic Models of Infinite Multi-Agent Games
Abstract:
We develop an operator algebraic framework for infinite games with a continuum of agents and prove that regret based learning dynamics governed by a noncommutative continuity equation converge to a unique quantal response equilibrium under mild regularity assumptions. The framework unifies functional analysis, coarse geometry and game theory by assigning to every game a von Neumann algebra that represents collective strategy evolution. A reflective regret operator within this algebra drives the flow of strategy distributions and its fixed point characterises equilibrium. We introduce the ordinal folding index, a computable ordinal valued metric that measures the self referential depth of the dynamics, and show that it bounds the transfinite time needed for convergence, collapsing to zero on coarsely amenable networks. The theory yields new invariant subalgebra rigidity results, establishes existence and uniqueness of envy free and maximin share allocations in continuum economies, and links analytic properties of regret flows with empirical stability phenomena in large language models. These contributions supply a rigorous mathematical foundation for large scale multi agent systems and demonstrate the utility of ordinal metrics for equilibrium selection.

Authors:Bermet Burkanova, Payam Jome Yazdian, Chuxuan Zhang, Trinity Evans, Paige Tuttösí, Angelica Lim
Title: Salsa as a Nonverbal Embodied Language -- The CoMPAS3D Dataset and Benchmarks
Abstract:
Imagine a humanoid that can safely and creatively dance with a human, adapting to its partner's proficiency, using haptic signaling as a primary form of communication. While today's AI systems excel at text or voice-based interaction with large language models, human communication extends far beyond text-it includes embodied movement, timing, and physical coordination. Modeling coupled interaction between two agents poses a formidable challenge: it is continuous, bidirectionally reactive, and shaped by individual variation. We present CoMPAS3D, the largest and most diverse motion capture dataset of improvised salsa dancing, designed as a challenging testbed for interactive, expressive humanoid AI. The dataset includes 3 hours of leader-follower salsa dances performed by 18 dancers spanning beginner, intermediate, and professional skill levels. For the first time, we provide fine-grained salsa expert annotations, covering over 2,800 move segments, including move types, combinations, execution errors and stylistic elements. We draw analogies between partner dance communication and natural language, evaluating CoMPAS3D on two benchmark tasks for synthetic humans that parallel key problems in spoken language and dialogue processing: leader or follower generation with proficiency levels (speaker or listener synthesis), and duet (conversation) generation. Towards a long-term goal of partner dance with humans, we release the dataset, annotations, and code, along with a multitask SalsaAgent model capable of performing all benchmark tasks, alongside additional baselines to encourage research in socially interactive embodied AI and creative, expressive humanoid motion generation.

Authors:Maria Emilia Mazzolenis, Ruirui Zhang
Title: Agent WARPP: Workflow Adherence via Runtime Parallel Personalization
Abstract:
Large language models (LLMs) are increasingly applied in task-oriented dialogue (TOD) systems but often struggle with long, conditional workflows that involve external tool calls and depend on user-specific information. We present Workflow Adherence via Runtime Parallel Personalization, or WARPP, a training-free, modular framework that combines multi-agent orchestration with runtime personalization to improve workflow adherence in LLM-based systems. By dynamically pruning conditional branches based on user attributes, the framework reduces reasoning overhead and narrows tool selection at runtime. WARPP deploys a parallelized architecture where a dedicated Personalizer agent operates alongside modular, domain-specific agents to dynamically tailor execution paths in real time. The framework is evaluated across five representative user intents of varying complexity within three domains: banking, flights, and healthcare. Our evaluation leverages synthetic datasets and LLM-powered simulated users to test scenarios with conditional dependencies. Our results demonstrate that WARPP outperforms both the non-personalized method and the ReAct baseline, achieving increasingly larger gains in parameter fidelity and tool accuracy as intent complexity grows, while also reducing average token usage, without any additional training.

Authors:Chenchen Zhao, Zhengyuan Shi, Xiangyu Wen, Chengjie Liu, Yi Liu, Yunhao Zhou, Yuxiang Zhao, Hefei Feng, Yinan Zhu, Gwok-Waa Wan, Xin Cheng, Weiyu Chen, Yongqi Fu, Chujie Chen, Chenhao Xue, Guangyu Sun, Ying Wang, Yibo Lin, Jun Yang, Ning Xu, Xi Wang, Qiang Xu
Title: MMCircuitEval: A Comprehensive Multimodal Circuit-Focused Benchmark for Evaluating LLMs
Abstract:
The emergence of multimodal large language models (MLLMs) presents promising opportunities for automation and enhancement in Electronic Design Automation (EDA). However, comprehensively evaluating these models in circuit design remains challenging due to the narrow scope of existing benchmarks. To bridge this gap, we introduce MMCircuitEval, the first multimodal benchmark specifically designed to assess MLLM performance comprehensively across diverse EDA tasks. MMCircuitEval comprises 3614 meticulously curated question-answer (QA) pairs spanning digital and analog circuits across critical EDA stages - ranging from general knowledge and specifications to front-end and back-end design. Derived from textbooks, technical question banks, datasheets, and real-world documentation, each QA pair undergoes rigorous expert review for accuracy and relevance. Our benchmark uniquely categorizes questions by design stage, circuit type, tested abilities (knowledge, comprehension, reasoning, computation), and difficulty level, enabling detailed analysis of model capabilities and limitations. Extensive evaluations reveal significant performance gaps among existing LLMs, particularly in back-end design and complex computations, highlighting the critical need for targeted training datasets and modeling approaches. MMCircuitEval provides a foundational resource for advancing MLLMs in EDA, facilitating their integration into real-world circuit design workflows. Our benchmark is available at https://github.com/cure-lab/MMCircuitEval.

Authors:Xingyu Su, Xiner Li, Yuchao Lin, Ziqian Xie, Degui Zhi, Shuiwang Ji
Title: Language Models for Controllable DNA Sequence Design
Abstract:
We consider controllable DNA sequence design, where sequences are generated by conditioning on specific biological properties. While language models (LMs) such as GPT and BERT have achieved remarkable success in natural language generation, their application to DNA sequence generation remains largely underexplored. In this work, we introduce ATGC-Gen, an Automated Transformer Generator for Controllable Generation, which leverages cross-modal encoding to integrate diverse biological signals. ATGC-Gen is instantiated with both decoder-only and encoder-only transformer architectures, allowing flexible training and generation under either autoregressive or masked recovery objectives. We evaluate ATGC-Gen on representative tasks including promoter and enhancer sequence design, and further introduce a new dataset based on ChIP-Seq experiments for modeling protein binding specificity. Our experiments demonstrate that ATGC-Gen can generate fluent, diverse, and biologically relevant sequences aligned with the desired properties. Compared to prior methods, our model achieves notable improvements in controllability and functional relevance, highlighting the potential of language models in advancing programmable genomic design. The source code is released at (https://github.com/divelab/AIRS/blob/main/OpenBio/ATGC_Gen).

Authors:Jovana Kondic, Pengyuan Li, Dhiraj Joshi, Zexue He, Shafiq Abedin, Jennifer Sun, Ben Wiesel, Eli Schwartz, Ahmed Nassar, Bo Wu, Assaf Arbelle, Aude Oliva, Dan Gutfreund, Leonid Karlinsky, Rogerio Feris
Title: ChartGen: Scaling Chart Understanding Via Code-Guided Synthetic Chart Generation
Abstract:
Chart-to-code reconstruction -- the task of recovering executable plotting scripts from chart images -- provides important insights into a model's ability to ground data visualizations in precise, machine-readable form. Yet many existing multimodal benchmarks largely focus primarily on answering questions about charts or summarizing them. To bridge this gap, we present ChartGen, a fully-automated pipeline for code-guided synthetic chart generation. Starting from seed chart images, ChartGen (i) prompts a vision-language model (VLM) to reconstruct each image into a python script, and (ii) iteratively augments that script with a code-oriented large language model (LLM). Using ChartGen, we create 222.5K unique chart-image code pairs from 13K seed chart images, and present an open-source synthetic chart dataset covering 27 chart types, 11 plotting libraries, and multiple data modalities (image, code, text, CSV, DocTags). From this corpus, we curate a held-out chart-to-code evaluation subset of 4.3K chart image-code pairs, and evaluate six open-weight VLMs (3B - 26B parameters), highlighting substantial room for progress. We release the pipeline, prompts, and the dataset to help accelerate efforts towards robust chart understanding and vision-conditioned code generation: https://github.com/SD122025/ChartGen/

Authors:Muhammad Ibrahim, Naveed Akhtar, Haitian Wang, Saeed Anwar, Ajmal Mian
Title: Multistream Network for LiDAR and Camera-based 3D Object Detection in Outdoor Scenes
Abstract:
Fusion of LiDAR and RGB data has the potential to enhance outdoor 3D object detection accuracy. To address real-world challenges in outdoor 3D object detection, fusion of LiDAR and RGB input has started gaining traction. However, effective integration of these modalities for precise object detection task still remains a largely open problem. To address that, we propose a MultiStream Detection (MuStD) network, that meticulously extracts task-relevant information from both data modalities. The network follows a three-stream structure. Its LiDAR-PillarNet stream extracts sparse 2D pillar features from the LiDAR input while the LiDAR-Height Compression stream computes Bird's-Eye View features. An additional 3D Multimodal stream combines RGB and LiDAR features using UV mapping and polar coordinate indexing. Eventually, the features containing comprehensive spatial, textural and geometric information are carefully fused and fed to a detection head for 3D object detection. Our extensive evaluation on the challenging KITTI Object Detection Benchmark using public testing server at https://www.cvlibs.net/datasets/kitti/eval_object_detail.php?&result=d162ec699d6992040e34314d19ab7f5c217075e0 establishes the efficacy of our method by achieving new state-of-the-art or highly competitive results in different categories while remaining among the most efficient methods. Our code will be released through MuStD GitHub repository at https://github.com/IbrahimUWA/MuStD.git

Authors:Yifan Zhang
Title: A Markov Categorical Framework for Language Modeling
Abstract:
Autoregressive language models achieve remarkable performance, yet a unified theory explaining their internal mechanisms, how training shapes their representations, and enables complex behaviors, remains elusive. We introduce a new analytical framework that models the single-step generation process as a composition of information-processing stages using the language of Markov categories. This compositional perspective provides a unified mathematical language to connect three critical aspects of language modeling that are typically studied in isolation: the training objective, the geometry of the learned representation space, and practical model capabilities. First, our framework provides a precise information-theoretic rationale for the success of multi-token prediction methods like speculative decoding, quantifying the information surplus a model's hidden state contains about tokens beyond the immediate next one. Second, we clarify how the standard negative log-likelihood (NLL) objective compels the model to learn not just the next word, but also the data's intrinsic conditional uncertainty, a process we formalize using categorical entropy. Our central result shows that, under a linear-softmax head with bounded features, minimizing NLL induces spectral alignment: the learned representation space aligns with the eigenspectrum of a predictive similarity operator. This work presents a powerful new lens for understanding how information flows through a model and how the training objective shapes its internal geometry.

Authors:Tianfu Wang, Liwei Deng, Xi Chen, Junyang Wang, Huiguo He, Leilei Ding, Wei Wu, Qilin Fan, Hui Xiong
Title: Virne: A Comprehensive Benchmark for Deep RL-based Network Resource Allocation in NFV
Abstract:
Resource allocation (RA) is critical to efficient service deployment in Network Function Virtualization (NFV), a transformative networking paradigm. Recently, deep Reinforcement Learning (RL)-based methods have been showing promising potential to address this complexity. However, the lack of a systematic benchmarking framework and thorough analysis hinders the exploration of emerging networks and the development of more robust algorithms while causing inconsistent evaluation. In this paper, we introduce Virne, a comprehensive benchmarking framework for the NFV-RA problem, with a focus on supporting deep RL-based methods. Virne provides customizable simulations for diverse network scenarios, including cloud, edge, and 5G environments. It also features a modular and extensible implementation pipeline that supports over 30 methods of various types, and includes practical evaluation perspectives beyond effectiveness, such as scalability, generalization, and scalability. Furthermore, we conduct in-depth analysis through extensive experiments to provide valuable insights into performance trade-offs for efficient implementation and offer actionable guidance for future research directions. Overall, with its diverse simulations, rich implementations, and extensive evaluation capabilities, Virne could serve as a comprehensive benchmark for advancing NFV-RA methods and deep RL applications. The code is publicly available at https://github.com/GeminiLight/virne.

Authors:Xin Li, Kaixiang Yang, Qiang Li, Zhiwei Wang
Title: Joint Holistic and Lesion Controllable Mammogram Synthesis via Gated Conditional Diffusion Model
Abstract:
Mammography is the most commonly used imaging modality for breast cancer screening, driving an increasing demand for deep-learning techniques to support large-scale analysis. However, the development of accurate and robust methods is often limited by insufficient data availability and a lack of diversity in lesion characteristics. While generative models offer a promising solution for data synthesis, current approaches often fail to adequately emphasize lesion-specific features and their relationships with surrounding tissues. In this paper, we propose Gated Conditional Diffusion Model (GCDM), a novel framework designed to jointly synthesize holistic mammogram images and localized lesions. GCDM is built upon a latent denoising diffusion framework, where the noised latent image is concatenated with a soft mask embedding that represents breast, lesion, and their transitional regions, ensuring anatomical coherence between them during the denoising process. To further emphasize lesion-specific features, GCDM incorporates a gated conditioning branch that guides the denoising process by dynamically selecting and fusing the most relevant radiomic and geometric properties of lesions, effectively capturing their interplay. Experimental results demonstrate that GCDM achieves precise control over small lesion areas while enhancing the realism and diversity of synthesized mammograms. These advancements position GCDM as a promising tool for clinical applications in mammogram synthesis. Our code is available at https://github.com/lixinHUST/Gated-Conditional-Diffusion-Model/

Authors:Xuetian Chen, Yinghao Chen, Xinfeng Yuan, Zhuo Peng, Lu Chen, Yuekeng Li, Zhoujia Zhang, Yingqian Huang, Leyan Huang, Jiaqing Liang, Tianbao Xie, Zhiyong Wu, Qiushi Sun, Biqing Qi, Bowen Zhou
Title: OS-MAP: How Far Can Computer-Using Agents Go in Breadth and Depth?
Abstract:
Computer-using agents have shown strong potential to boost human productivity and enable new application forms across platforms. While recent advances have led to usable applications, existing benchmarks fail to account for the internal task heterogeneity and the corresponding agent capabilities, as well as their alignment with actual user demands-hindering both targeted capability development and the reliable transition of research progress into practical deployment. To bridge the gap, we present OS-MAP, a benchmark for daily computer-using automation that organizes its 416 realistic tasks across 15 applications along two key dimensions: a five-level taxonomy of automation and a generalization scope derived from a real-world user demand hierarchy. To enable fine-grained analysis of required capabilities and alignment with real-world scenarios, OS-MAP evaluates agents along two dimensions: automation level across a five-level taxonomy, and generalization scope across a demand hierarchy. This design captures varying levels of required agent autonomy and generalization, forming a performance-generalization evaluation matrix for structured and comprehensive assessment. Experiments show that even State-of-the-Art agents with VLM backbones struggle with higher-level tasks involving perception, reasoning, and coordination-highlighting the need for a deeper understanding of current strengths and limitations to drive the future progress in computer-using agents research and deployment. All code, environments, baselines, and data are publicly available at https://github.com/OS-Copilot/OS-Map.

Authors:Shuhao Li, Weidong Yang, Yue Cui, Xiaoxing Liu, Lingkai Meng, Lipeng Ma, Fan Zhang
Title: Fine-Grained Traffic Inference from Road to Lane via Spatio-Temporal Graph Node Generation
Abstract:
Fine-grained traffic management and prediction are fundamental to key applications such as autonomous driving, lane change guidance, and traffic signal control. However, obtaining lane-level traffic data has become a critical bottleneck for data-driven models due to limitations in the types and number of sensors and issues with the accuracy of tracking algorithms. To address this, we propose the Fine-grained Road Traffic Inference (FRTI) task, which aims to generate more detailed lane-level traffic information using limited road data, providing a more energy-efficient and cost-effective solution for precise traffic management. This task is abstracted as the first scene of the spatio-temporal graph node generation problem. We designed a two-stage framework--RoadDiff--to solve the FRTI task. solve the FRTI task. This framework leverages the Road-Lane Correlation Autoencoder-Decoder and the Lane Diffusion Module to fully utilize the limited spatio-temporal dependencies and distribution relationships of road data to accurately infer fine-grained lane traffic states. Based on existing research, we designed several baseline models with the potential to solve the FRTI task and conducted extensive experiments on six datasets representing different road conditions to validate the effectiveness of the RoadDiff model in addressing the FRTI task. The relevant datasets and code are available at https://github.com/ShuhaoLii/RoadDiff.

Authors:Binxu Li, Yuhui Zhang, Xiaohan Wang, Weixin Liang, Ludwig Schmidt, Serena Yeung-Levy
Title: Closing the Modality Gap for Mixed Modality Search
Abstract:
Mixed modality search -- retrieving information across a heterogeneous corpus composed of images, texts, and multimodal documents -- is an important yet underexplored real-world application. In this work, we investigate how contrastive vision-language models, such as CLIP, perform on the mixed modality search task. Our analysis reveals a critical limitation: these models exhibit a pronounced modality gap in the embedding space, where image and text embeddings form distinct clusters, leading to intra-modal ranking bias and inter-modal fusion failure. To address this issue, we propose GR-CLIP, a lightweight post-hoc calibration method that removes the modality gap in CLIP's embedding space. Evaluated on MixBench -- the first benchmark specifically designed for mixed modality search -- GR-CLIP improves NDCG@10 by up to 26 percentage points over CLIP, surpasses recent vision-language generative embedding models by 4 percentage points, while using 75x less compute.

Authors:Jian Chen, Yuxuan Hu, Haifeng Lu, Wei Wang, Min Yang, Chengming Li, Xiping Hu
Title: MGHFT: Multi-Granularity Hierarchical Fusion Transformer for Cross-Modal Sticker Emotion Recognition
Abstract:
Although pre-trained visual models with text have demonstrated strong capabilities in visual feature extraction, sticker emotion understanding remains challenging due to its reliance on multi-view information, such as background knowledge and stylistic cues. To address this, we propose a novel multi-granularity hierarchical fusion transformer (MGHFT), with a multi-view sticker interpreter based on Multimodal Large Language Models. Specifically, inspired by the human ability to interpret sticker emotions from multiple views, we first use Multimodal Large Language Models to interpret stickers by providing rich textual context via multi-view descriptions. Then, we design a hierarchical fusion strategy to fuse the textual context into visual understanding, which builds upon a pyramid visual transformer to extract both global and local sticker features at multiple stages. Through contrastive learning and attention mechanisms, textual features are injected at different stages of the visual backbone, enhancing the fusion of global- and local-granularity visual semantics with textual guidance. Finally, we introduce a text-guided fusion attention mechanism to effectively integrate the overall multimodal features, enhancing semantic understanding. Extensive experiments on 2 public sticker emotion datasets demonstrate that MGHFT significantly outperforms existing sticker emotion recognition approaches, achieving higher accuracy and more fine-grained emotion recognition. Compared to the best pre-trained visual models, our MGHFT also obtains an obvious improvement, 5.4% on F1 and 4.0% on accuracy. The code is released at https://github.com/cccccj-03/MGHFT_ACMMM2025.

Authors:Rongkun Xue, Yazhe Niu, Shuai Hu, Zixin Yin, Yongqiang Yao, Jing Yang
Title: HH-Codec: High Compression High-fidelity Discrete Neural Codec for Spoken Language Modeling
Abstract:
Discrete speech tokenization is a fundamental component in speech codecs. However, in large-scale speech-to-speech systems, the complexity of parallel streams from multiple quantizers and the computational cost of high-time-dimensional codecs pose significant challenges. In this paper, we introduce HH-Codec, a neural codec that achieves extreme compression at 24 tokens per second for 24 kHz audio while relying on single-quantizer inference. Our approach involves a carefully designed Vector Quantization space for Spoken Language Modeling, optimizing compression efficiency while minimizing information loss. Building on this, we propose an asymmetric encoder-decoder architecture (Audio-VQ-Mel-Audio) that leverages dual supervision and progressive training to enhance reconstruction stability and fidelity. HH-Codec achieves state-of-the-art performance in speech reconstruction with an ultra-low bandwidth of 0.3 kbps. We further evaluate its effectiveness in codebook utilization and generative model adaptation, with extensive ablations validating the necessity of each module. HH-Codec is available at https://github.com/opendilab/HH-Codec.

Authors:Beidi Zhao, SangMook Kim, Hao Chen, Chen Zhou, Zu-hua Gao, Gang Wang, Xiaoxiao Li
Title: PTCMIL: Multiple Instance Learning via Prompt Token Clustering for Whole Slide Image Analysis
Abstract:
Multiple Instance Learning (MIL) has advanced WSI analysis but struggles with the complexity and heterogeneity of WSIs. Existing MIL methods face challenges in aggregating diverse patch information into robust WSI representations. While ViTs and clustering-based approaches show promise, they are computationally intensive and fail to capture task-specific and slide-specific variability. To address these limitations, we propose PTCMIL, a novel Prompt Token Clustering-based ViT for MIL aggregation. By introducing learnable prompt tokens into the ViT backbone, PTCMIL unifies clustering and prediction tasks in an end-to-end manner. It dynamically aligns clustering with downstream tasks, using projection-based clustering tailored to each WSI, reducing complexity while preserving patch heterogeneity. Through token merging and prototype-based pooling, PTCMIL efficiently captures task-relevant patterns. Extensive experiments on eight datasets demonstrate its superior performance in classification and survival analysis tasks, outperforming state-of-the-art methods. Systematic ablation studies confirm its robustness and strong interpretability. The code is released at https://github.com/ubc-tea/PTCMIL.

Authors:Pinhao Song, Yutong Hu, Pengteng Li, Renaud Detry
Title: Equivariant Volumetric Grasping
Abstract:
We propose a new volumetric grasp model that is equivariant to rotations around the vertical axis, leading to a significant improvement in sample efficiency. Our model employs a tri-plane volumetric feature representation -- i.e., the projection of 3D features onto three canonical planes. We introduce a novel tri-plane feature design in which features on the horizontal plane are equivariant to 90° rotations, while the sum of features from the other two planes remains invariant to the same transformations. This design is enabled by a new deformable steerable convolution, which combines the adaptability of deformable convolutions with the rotational equivariance of steerable ones. This allows the receptive field to adapt to local object geometry while preserving equivariance properties. We further develop equivariant adaptations of two state-of-the-art volumetric grasp planners, GIGA and IGD. Specifically, we derive a new equivariant formulation of IGD's deformable attention mechanism and propose an equivariant generative model of grasp orientations based on flow matching. We provide a detailed analytical justification of the proposed equivariance properties and validate our approach through extensive simulated and real-world experiments. Our results demonstrate that the proposed projection-based design significantly reduces both computational and memory costs. Moreover, the equivariant grasp models built on top of our tri-plane features consistently outperform their non-equivariant counterparts, achieving higher performance with only a modest computational overhead. Video and code can be viewed in: https://mousecpn.github.io/evg-page/

Authors:Fabio De Sousa Ribeiro, Omar Todd, Charles Jones, Avinash Kori, Raghav Mehta, Ben Glocker
Title: Flow Stochastic Segmentation Networks
Abstract:
We introduce the Flow Stochastic Segmentation Network (Flow-SSN), a generative segmentation model family featuring discrete-time autoregressive and modern continuous-time flow variants. We prove fundamental limitations of the low-rank parameterisation of previous methods and show that Flow-SSNs can estimate arbitrarily high-rank pixel-wise covariances without assuming the rank or storing the distributional parameters. Flow-SSNs are also more efficient to sample from than standard diffusion-based segmentation models, thanks to most of the model capacity being allocated to learning the base distribution of the flow, constituting an expressive prior. We apply Flow-SSNs to challenging medical imaging benchmarks and achieve state-of-the-art results. Code available: https://github.com/biomedia-mira/flow-ssn.

Authors:Víctor Gallego
Title: Specification Self-Correction: Mitigating In-Context Reward Hacking Through Test-Time Refinement
Abstract:
Language models (LMs) are susceptible to in-context reward hacking, where they exploit flaws in tainted or faulty written specifications or rubrics to achieve high scores without fulfilling the user's true intent. We introduce Specification Self-Correction (SSC), a novel, test-time framework that enables an LM to identify and correct flaws within its own guiding specification. SSC employs a multi-step inference process where the model first generates a response based on a potentially tainted specification, critiques its output, and then revises the specification itself to remove the exploitable loophole. A final, more robust response is then generated using this self-corrected specification. Across experiments spanning creative writing and agentic coding tasks with several LMs, we demonstrate that while models initially game tainted specifications in 50-70\% of cases, the SSC process reduces this vulnerability by over 90\%. This dynamic repair occurs at inference time, requires no weight modification, and leads to more robustly aligned model behavior. Code at https://github.com/vicgalle/specification-self-correction .

Authors:Xuhui Kang, Sung-Wook Lee, Haolin Liu, Yuyan Wang, Yen-Ling Kuo
Title: Moving Out: Physically-grounded Human-AI Collaboration
Abstract:
The ability to adapt to physical actions and constraints in an environment is crucial for embodied agents (e.g., robots) to effectively collaborate with humans. Such physically grounded human-AI collaboration must account for the increased complexity of the continuous state-action space and constrained dynamics caused by physical constraints. In this paper, we introduce Moving Out, a new human-AI collaboration benchmark that resembles a wide range of collaboration modes affected by physical attributes and constraints, such as moving heavy items together and maintaining consistent actions to move a big item around a corner. Using Moving Out, we designed two tasks and collected human-human interaction data to evaluate models' abilities to adapt to diverse human behaviors and unseen physical attributes. To address the challenges in physical environments, we propose a novel method, BASS (Behavior Augmentation, Simulation, and Selection), to enhance the diversity of agents and their understanding of the outcome of actions. Our experiments show that BASS outperforms state-of-the-art models in AI-AI and human-AI collaboration. The project page is available at https://live-robotics-uva.github.io/movingout_ai/.

Authors:Xiaopeng Ke, Hexuan Deng, Xuebo Liu, Jun Rao, Zhenxi Song, Jun Yu, Min Zhang
Title: AQuilt: Weaving Logic and Self-Inspection into Low-Cost, High-Relevance Data Synthesis for Specialist LLMs
Abstract:
Despite the impressive performance of large language models (LLMs) in general domains, they often underperform in specialized domains. Existing approaches typically rely on data synthesis methods and yield promising results by using unlabeled data to capture domain-specific features. However, these methods either incur high computational costs or suffer from performance limitations, while also demonstrating insufficient generalization across different tasks. To address these challenges, we propose AQuilt, a framework for constructing instruction-tuning data for any specialized domains from corresponding unlabeled data, including Answer, Question, Unlabeled data, Inspection, Logic, and Task type. By incorporating logic and inspection, we encourage reasoning processes and self-inspection to enhance model performance. Moreover, customizable task instructions enable high-quality data generation for any task. As a result, we construct a dataset of 703k examples to train a powerful data synthesis model. Experiments show that AQuilt is comparable to DeepSeek-V3 while utilizing just 17% of the production cost. Further analysis demonstrates that our generated data exhibits higher relevance to downstream tasks. Source code, models, and scripts are available at https://github.com/Krueske/AQuilt.

Authors:Liyuan Chen, Shuoling Liu, Jiangpeng Yan, Xiaoyu Wang, Henglin Liu, Chuang Li, Kecheng Jiao, Jixuan Ying, Yang Veronica Liu, Qiang Yang, Xiu Li
Title: Advancing Financial Engineering with Foundation Models: Progress, Applications, and Challenges
Abstract:
The advent of foundation models (FMs) - large-scale pre-trained models with strong generalization capabilities - has opened new frontiers for financial engineering. While general-purpose FMs such as GPT-4 and Gemini have demonstrated promising performance in tasks ranging from financial report summarization to sentiment-aware forecasting, many financial applications remain constrained by unique domain requirements such as multimodal reasoning, regulatory compliance, and data privacy. These challenges have spurred the emergence of Financial Foundation Models (FFMs) - a new class of models explicitly designed for finance. This survey presents a comprehensive overview of FFMs, with a taxonomy spanning three key modalities: Financial Language Foundation Models (FinLFMs), Financial Time-Series Foundation Models (FinTSFMs), and Financial Visual-Language Foundation Models (FinVLFMs). We review their architectures, training methodologies, datasets, and real-world applications. Furthermore, we identify critical challenges in data availability, algorithmic scalability, and infrastructure constraints, and offer insights into future research opportunities. We hope this survey serves as both a comprehensive reference for understanding FFMs and a practical roadmap for future innovation. An updated collection of FFM-related publications and resources will be maintained on our website https://github.com/FinFM/Awesome-FinFMs.

Authors:Baoyao Yang, Wanyun Li, Dixin Chen, Junxiang Chen, Wenbin Yao, Haifeng Lin
Title: VideoMind: An Omni-Modal Video Dataset with Intent Grounding for Deep-Cognitive Video Understanding
Abstract:
This paper introduces VideoMind, a video-centric omni-modal dataset designed for deep video content cognition and enhanced multi-modal feature representation. The dataset comprises 103K video samples (3K reserved for testing), each paired with audio and systematically detailed textual descriptions. Specifically, every video and its audio is described across three hierarchical layers (factual, abstract, and intent), progressing from surface to depth. It contains over 22 million words, averaging ~225 words per sample. VideoMind's key distinction from existing datasets is its provision of intent expressions, which require contextual integration across the entire video and are not directly observable. These deep-cognitive expressions are generated using a Chain-of-Thought (COT) approach, prompting the mLLM through step-by-step reasoning. Each description includes annotations for subject, place, time, event, action, and intent, supporting downstream recognition tasks. Crucially, we establish a gold-standard benchmark with 3,000 manually validated samples for evaluating deep-cognitive video understanding. We design hybrid-cognitive retrieval experiments, scored by multi-level retrieval metrics, to appropriately assess deep video comprehension. Evaluation results for models (e.g., InternVideo, VAST, UMT-L) are released. VideoMind serves as a powerful benchmark for fine-grained cross-modal alignment and advances fields requiring in-depth video understanding, such as emotion and intent recognition. The data is publicly available on GitHub, HuggingFace, and OpenDataLab, https://github.com/cdx-cindy/VideoMind.

Authors:Urchade Zaratiana, Gil Pasternak, Oliver Boyd, George Hurn-Maloney, Ash Lewis
Title: GLiNER2: An Efficient Multi-Task Information Extraction System with Schema-Driven Interface
Abstract:
Information extraction (IE) is fundamental to numerous NLP applications, yet existing solutions often require specialized models for different tasks or rely on computationally expensive large language models. We present GLiNER2, a unified framework that enhances the original GLiNER architecture to support named entity recognition, text classification, and hierarchical structured data extraction within a single efficient model. Built pretrained transformer encoder architecture, GLiNER2 maintains CPU efficiency and compact size while introducing multi-task composition through an intuitive schema-based interface. Our experiments demonstrate competitive performance across extraction and classification tasks with substantial improvements in deployment accessibility compared to LLM-based alternatives. We release GLiNER2 as an open-source pip-installable library with pre-trained models and documentation at https://github.com/fastino-ai/GLiNER2.

Authors:Clément Cornet, Romaric Besançon, Hervé Le Borgne
Title: Explaining How Visual, Textual and Multimodal Encoders Share Concepts
Abstract:
Sparse autoencoders (SAEs) have emerged as a powerful technique for extracting human-interpretable features from neural networks activations. Previous works compared different models based on SAE-derived features but those comparisons have been restricted to models within the same modality. We propose a novel indicator allowing quantitative comparison of models across SAE features, and use it to conduct a comparative study of visual, textual and multimodal encoders. We also propose to quantify the Comparative Sharedness of individual features between different classes of models. With these two new tools, we conduct several studies on 21 encoders of the three types, with two significantly different sizes, and considering generalist and domain specific datasets. The results allow to revisit previous studies at the light of encoders trained in a multimodal context and to quantify to which extent all these models share some representations or features. They also suggest that visual features that are specific to VLMs among vision encoders are shared with text encoders, highlighting the impact of text pretraining. The code is available at https://github.com/CEA-LIST/SAEshareConcepts

Authors:Zhuang Qiang Bok, Watson Wei Khong Chua
Title: Reasoning Beyond the Obvious: Evaluating Divergent and Convergent Thinking in LLMs for Financial Scenarios
Abstract:
Most reasoning benchmarks for LLMs emphasize factual accuracy or step-by-step logic. In finance, however, professionals must not only converge on optimal decisions but also generate creative, plausible futures under uncertainty. We introduce ConDiFi, a benchmark that jointly evaluates divergent and convergent thinking in LLMs for financial tasks. ConDiFi features 607 macro-financial prompts for divergent reasoning and 990 multi-hop adversarial MCQs for convergent reasoning. Using this benchmark, we evaluated 14 leading models and uncovered striking differences. Despite high fluency, GPT-4o underperforms on Novelty and Actionability. In contrast, models like DeepSeek-R1 and Cohere Command R+ rank among the top for generating actionable, insights suitable for investment decisions. ConDiFi provides a new perspective to assess reasoning capabilities essential to safe and strategic deployment of LLMs in finance.

Authors:Minje Park, Jeonghwa Lim, Taehyung Yu, Sunghoon Joo
Title: SemiSegECG: A Multi-Dataset Benchmark for Semi-Supervised Semantic Segmentation in ECG Delineation
Abstract:
Electrocardiogram (ECG) delineation, the segmentation of meaningful waveform features, is critical for clinical diagnosis. Despite recent advances using deep learning, progress has been limited by the scarcity of publicly available annotated datasets. Semi-supervised learning presents a promising solution by leveraging abundant unlabeled ECG data. In this study, we present SemiSegECG, the first systematic benchmark for semi-supervised semantic segmentation (SemiSeg) in ECG delineation. We curated and unified multiple public datasets, including previously underused sources, to support robust and diverse evaluation. We adopted five representative SemiSeg algorithms from computer vision, implemented them on two different architectures: the convolutional network and the transformer, and evaluated them in two different settings: in-domain and cross-domain. Additionally, we propose ECG-specific training configurations and augmentation strategies and introduce a standardized evaluation framework. Our results show that the transformer outperforms the convolutional network in semi-supervised ECG delineation. We anticipate that SemiSegECG will serve as a foundation for advancing semi-supervised ECG delineation methods and will facilitate further research in this domain.

Authors:Chenyu Su, Weiwei Shang, Chen Qian, Fei Zhang, Shuang Cong
Title: ReSem3D: Refinable 3D Spatial Constraints via Fine-Grained Semantic Grounding for Generalizable Robotic Manipulation
Abstract:
Semantics-driven 3D spatial constraints align highlevel semantic representations with low-level action spaces, facilitating the unification of task understanding and execution in robotic manipulation. The synergistic reasoning of Multimodal Large Language Models (MLLMs) and Vision Foundation Models (VFMs) enables cross-modal 3D spatial constraint construction. Nevertheless, existing methods have three key limitations: (1) coarse semantic granularity in constraint modeling, (2) lack of real-time closed-loop planning, (3) compromised robustness in semantically diverse environments. To address these challenges, we propose ReSem3D, a unified manipulation framework for semantically diverse environments, leveraging the synergy between VFMs and MLLMs to achieve fine-grained visual grounding and dynamically constructs hierarchical 3D spatial constraints for real-time manipulation. Specifically, the framework is driven by hierarchical recursive reasoning in MLLMs, which interact with VFMs to automatically construct 3D spatial constraints from natural language instructions and RGB-D observations in two stages: part-level extraction and region-level refinement. Subsequently, these constraints are encoded as real-time optimization objectives in joint space, enabling reactive behavior to dynamic disturbances. Extensive simulation and real-world experiments are conducted in semantically rich household and sparse chemical lab environments. The results demonstrate that ReSem3D performs diverse manipulation tasks under zero-shot conditions, exhibiting strong adaptability and generalization. Code and videos are available at https://github.com/scy-v/ReSem3D and https://resem3d.github.io.

Authors:Binghua Li, Ziqing Chang, Tong Liang, Chao Li, Toshihisa Tanaka, Shigeki Aoki, Qibin Zhao, Zhe Sun
Title: Parameter-Efficient Fine-Tuning of 3D DDPM for MRI Image Generation Using Tensor Networks
Abstract:
We address the challenge of parameter-efficient fine-tuning (PEFT) for three-dimensional (3D) U-Net-based denoising diffusion probabilistic models (DDPMs) in magnetic resonance imaging (MRI) image generation. Despite its practical significance, research on parameter-efficient representations of 3D convolution operations remains limited. To bridge this gap, we propose Tensor Volumetric Operator (TenVOO), a novel PEFT method specifically designed for fine-tuning DDPMs with 3D convolutional backbones. Leveraging tensor network modeling, TenVOO represents 3D convolution kernels with lower-dimensional tensors, effectively capturing complex spatial dependencies during fine-tuning with few parameters. We evaluate TenVOO on three downstream brain MRI datasets-ADNI, PPMI, and BraTS2021-by fine-tuning a DDPM pretrained on 59,830 T1-weighted brain MRI scans from the UK Biobank. Our results demonstrate that TenVOO achieves state-of-the-art performance in multi-scale structural similarity index measure (MS-SSIM), outperforming existing approaches in capturing spatial dependencies while requiring only 0.3% of the trainable parameters of the original model. Our code is available at: https://github.com/xiaovhua/tenvoo

Authors:Pascal Spiegler, Taha Koleilat, Arash Harirpoush, Corey S. Miller, Hassan Rivaz, Marta Kersten-Oertel, Yiming Xiao
Title: TextSAM-EUS: Text Prompt Learning for SAM to Accurately Segment Pancreatic Tumor in Endoscopic Ultrasound
Abstract:
Pancreatic cancer carries a poor prognosis and relies on endoscopic ultrasound (EUS) for targeted biopsy and radiotherapy. However, the speckle noise, low contrast, and unintuitive appearance of EUS make segmentation of pancreatic tumors with fully supervised deep learning (DL) models both error-prone and dependent on large, expert-curated annotation datasets. To address these challenges, we present TextSAM-EUS, a novel, lightweight, text-driven adaptation of the Segment Anything Model (SAM) that requires no manual geometric prompts at inference. Our approach leverages text prompt learning (context optimization) through the BiomedCLIP text encoder in conjunction with a LoRA-based adaptation of SAM's architecture to enable automatic pancreatic tumor segmentation in EUS, tuning only 0.86% of the total parameters. On the public Endoscopic Ultrasound Database of the Pancreas, TextSAM-EUS with automatic prompts attains 82.69% Dice and 85.28% normalized surface distance (NSD), and with manual geometric prompts reaches 83.10% Dice and 85.70% NSD, outperforming both existing state-of-the-art (SOTA) supervised DL models and foundation models (e.g., SAM and its variants). As the first attempt to incorporate prompt learning in SAM-based medical image segmentation, TextSAM-EUS offers a practical option for efficient and robust automatic EUS segmentation. Code is available at https://github.com/HealthX-Lab/TextSAM-EUS .

Authors:Yueheng Li, Guangming Xie, Zongqing Lu
Title: Multi-Agent Guided Policy Optimization
Abstract:
Due to practical constraints such as partial observability and limited communication, Centralized Training with Decentralized Execution (CTDE) has become the dominant paradigm in cooperative Multi-Agent Reinforcement Learning (MARL). However, existing CTDE methods often underutilize centralized training or lack theoretical guarantees. We propose Multi-Agent Guided Policy Optimization (MAGPO), a novel framework that better leverages centralized training by integrating centralized guidance with decentralized execution. MAGPO uses an auto-regressive joint policy for scalable, coordinated exploration and explicitly aligns it with decentralized policies to ensure deployability under partial observability. We provide theoretical guarantees of monotonic policy improvement and empirically evaluate MAGPO on 43 tasks across 6 diverse environments. Results show that MAGPO consistently outperforms strong CTDE baselines and matches or surpasses fully centralized approaches, offering a principled and practical solution for decentralized multi-agent learning. Our code and experimental data can be found in https://github.com/liyheng/MAGPO.

Authors:Duy Nguyen, Archiki Prasad, Elias Stengel-Eskin, Mohit Bansal
Title: GrAInS: Gradient-based Attribution for Inference-Time Steering of LLMs and VLMs
Abstract:
Inference-time steering methods offer a lightweight alternative to fine-tuning large language models (LLMs) and vision-language models (VLMs) by modifying internal activations at test time without updating model weights. However, most existing approaches rely on fixed, global intervention vectors, overlook the causal influence of individual input tokens, and fail to leverage informative gradients from the model's logits, particularly in multimodal settings where visual and textual inputs contribute unevenly. To address these limitations, we introduce GrAInS, an inference-time steering approach that operates across both language-only and vision-language models and tasks. GrAInS uses contrastive, gradient-based attribution via Integrated Gradients to identify the top-k most influential tokens, both positively and negatively attributed based on their contribution to preferred versus dispreferred outputs. These tokens are then used to construct directional steering vectors that capture semantic shifts from undesirable to desirable behavior. During inference, GrAInS adjusts hidden activations at transformer layers guided by token-level attribution signals, and normalizes activations to preserve representational scale. This enables fine-grained, interpretable, and modular control over model behavior, without retraining or auxiliary supervision. Empirically, GrAInS consistently outperforms both fine-tuning and existing steering baselines: it achieves a 13.22% accuracy gain on TruthfulQA using Llama-3.1-8B, reduces hallucination rates on MMHal-Bench from 0.624 to 0.514 with LLaVA-1.6-7B, and improves alignment win rates on SPA-VL by 8.11%, all while preserving the model's fluency and general capabilities.

Authors:Mingfeng Yuan, Letian Wang, Steven L. Waslander
Title: OpenNav: Open-World Navigation with Multimodal Large Language Models
Abstract:
Pre-trained large language models (LLMs) have demonstrated strong common-sense reasoning abilities, making them promising for robotic navigation and planning tasks. However, despite recent progress, bridging the gap between language descriptions and actual robot actions in the open-world, beyond merely invoking limited predefined motion primitives, remains an open challenge. In this work, we aim to enable robots to interpret and decompose complex language instructions, ultimately synthesizing a sequence of trajectory points to complete diverse navigation tasks given open-set instructions and open-set objects. We observe that multi-modal large language models (MLLMs) exhibit strong cross-modal understanding when processing free-form language instructions, demonstrating robust scene comprehension. More importantly, leveraging their code-generation capability, MLLMs can interact with vision-language perception models to generate compositional 2D bird-eye-view value maps, effectively integrating semantic knowledge from MLLMs with spatial information from maps to reinforce the robot's spatial understanding. To further validate our approach, we effectively leverage large-scale autonomous vehicle datasets (AVDs) to validate our proposed zero-shot vision-language navigation framework in outdoor navigation tasks, demonstrating its capability to execute a diverse range of free-form natural language navigation instructions while maintaining robustness against object detection errors and linguistic ambiguities. Furthermore, we validate our system on a Husky robot in both indoor and outdoor scenes, demonstrating its real-world robustness and applicability. Supplementary videos are available at https://trailab.github.io/OpenNav-website/

Authors:Rui Deng, Ziqi Li, Mingshu Wang
Title: Improving the Computational Efficiency and Explainability of GeoAggregator
Abstract:
Accurate modeling and explaining geospatial tabular data (GTD) are critical for understanding geospatial phenomena and their underlying processes. Recent work has proposed a novel transformer-based deep learning model named GeoAggregator (GA) for this purpose, and has demonstrated that it outperforms other statistical and machine learning approaches. In this short paper, we further improve GA by 1) developing an optimized pipeline that accelerates the dataloading process and streamlines the forward pass of GA to achieve better computational efficiency; and 2) incorporating a model ensembling strategy and a post-hoc model explanation function based on the GeoShapley framework to enhance model explainability. We validate the functionality and efficiency of the proposed strategies by applying the improved GA model to synthetic datasets. Experimental results show that our implementation improves the prediction accuracy and inference speed of GA compared to the original implementation. Moreover, explanation experiments indicate that GA can effectively captures the inherent spatial effects in the designed synthetic dataset. The complete pipeline has been made publicly available for community use (https://github.com/ruid7181/GA-sklearn).

Authors:Yiwen Chen, Zhihao Li, Yikai Wang, Hu Zhang, Qin Li, Chi Zhang, Guosheng Lin
Title: Ultra3D: Efficient and High-Fidelity 3D Generation with Part Attention
Abstract:
Recent advances in sparse voxel representations have significantly improved the quality of 3D content generation, enabling high-resolution modeling with fine-grained geometry. However, existing frameworks suffer from severe computational inefficiencies due to the quadratic complexity of attention mechanisms in their two-stage diffusion pipelines. In this work, we propose Ultra3D, an efficient 3D generation framework that significantly accelerates sparse voxel modeling without compromising quality. Our method leverages the compact VecSet representation to efficiently generate a coarse object layout in the first stage, reducing token count and accelerating voxel coordinate prediction. To refine per-voxel latent features in the second stage, we introduce Part Attention, a geometry-aware localized attention mechanism that restricts attention computation within semantically consistent part regions. This design preserves structural continuity while avoiding unnecessary global attention, achieving up to 6.7x speed-up in latent generation. To support this mechanism, we construct a scalable part annotation pipeline that converts raw meshes into part-labeled sparse voxels. Extensive experiments demonstrate that Ultra3D supports high-resolution 3D generation at 1024 resolution and achieves state-of-the-art performance in both visual fidelity and user preference.

Authors:Xiaofeng Mao, Shaoheng Lin, Zhen Li, Chuanhao Li, Wenshuo Peng, Tong He, Jiangmiao Pang, Mingmin Chi, Yu Qiao, Kaipeng Zhang
Title: Yume: An Interactive World Generation Model
Abstract:
Yume aims to use images, text, or videos to create an interactive, realistic, and dynamic world, which allows exploration and control using peripheral devices or neural signals. In this report, we present a preview version of \method, which creates a dynamic world from an input image and allows exploration of the world using keyboard actions. To achieve this high-fidelity and interactive video world generation, we introduce a well-designed framework, which consists of four main components, including camera motion quantization, video generation architecture, advanced sampler, and model acceleration. First, we quantize camera motions for stable training and user-friendly interaction using keyboard inputs. Then, we introduce the Masked Video Diffusion Transformer~(MVDT) with a memory module for infinite video generation in an autoregressive manner. After that, training-free Anti-Artifact Mechanism (AAM) and Time Travel Sampling based on Stochastic Differential Equations (TTS-SDE) are introduced to the sampler for better visual quality and more precise control. Moreover, we investigate model acceleration by synergistic optimization of adversarial distillation and caching mechanisms. We use the high-quality world exploration dataset \sekai to train \method, and it achieves remarkable results in diverse scenes and applications. All data, codebase, and model weights are available on https://github.com/stdstu12/YUME. Yume will update monthly to achieve its original goal. Project page: https://stdstu12.github.io/YUME-Project/.

Authors:Zihao Li, Zhichen Zeng, Xiao Lin, Feihao Fang, Yanru Qu, Zhe Xu, Zhining Liu, Xuying Ning, Tianxin Wei, Ge Liu, Hanghang Tong, Jingrui He
Title: Flow Matching Meets Biology and Life Science: A Survey
Abstract:
Over the past decade, advances in generative modeling, such as generative adversarial networks, masked autoencoders, and diffusion models, have significantly transformed biological research and discovery, enabling breakthroughs in molecule design, protein generation, drug discovery, and beyond. At the same time, biological applications have served as valuable testbeds for evaluating the capabilities of generative models. Recently, flow matching has emerged as a powerful and efficient alternative to diffusion-based generative modeling, with growing interest in its application to problems in biology and life sciences. This paper presents the first comprehensive survey of recent developments in flow matching and its applications in biological domains. We begin by systematically reviewing the foundations and variants of flow matching, and then categorize its applications into three major areas: biological sequence modeling, molecule generation and design, and peptide and protein generation. For each, we provide an in-depth review of recent progress. We also summarize commonly used datasets and software tools, and conclude with a discussion of potential future directions. The corresponding curated resources are available at https://github.com/Violet24K/Awesome-Flow-Matching-Meets-Biology.

Authors:Maciej K. Wozniak, Lianhang Liu, Yixi Cai, Patric Jensfelt
Title: PRIX: Learning to Plan from Raw Pixels for End-to-End Autonomous Driving
Abstract:
While end-to-end autonomous driving models show promising results, their practical deployment is often hindered by large model sizes, a reliance on expensive LiDAR sensors and computationally intensive BEV feature representations. This limits their scalability, especially for mass-market vehicles equipped only with cameras. To address these challenges, we propose PRIX (Plan from Raw Pixels). Our novel and efficient end-to-end driving architecture operates using only camera data, without explicit BEV representation and forgoing the need for LiDAR. PRIX leverages a visual feature extractor coupled with a generative planning head to predict safe trajectories from raw pixel inputs directly. A core component of our architecture is the Context-aware Recalibration Transformer (CaRT), a novel module designed to effectively enhance multi-level visual features for more robust planning. We demonstrate through comprehensive experiments that PRIX achieves state-of-the-art performance on the NavSim and nuScenes benchmarks, matching the capabilities of larger, multimodal diffusion planners while being significantly more efficient in terms of inference speed and model size, making it a practical solution for real-world deployment. Our work is open-source and the code will be at https://maxiuw.github.io/prix.

Authors:Xinyao Liu, Diping Song
Title: Constructing Ophthalmic MLLM for Positioning-diagnosis Collaboration Through Clinical Cognitive Chain Reasoning
Abstract:
Multimodal large language models (MLLMs) demonstrate significant potential in the field of medical diagnosis. However, they face critical challenges in specialized domains such as ophthalmology, particularly the fragmentation of annotation granularity and inconsistencies in clinical reasoning logic, which hinder precise cross-modal understanding. This paper introduces FundusExpert, an ophthalmology-specific MLLM with integrated positioning-diagnosis reasoning capabilities, along with FundusGen, a dataset constructed through the intelligent Fundus-Engine system. Fundus-Engine automates localization and leverages MLLM-based semantic expansion to integrate global disease classification, local object detection, and fine-grained feature analysis within a single fundus image. Additionally, by constructing a clinically aligned cognitive chain, it guides the model to generate interpretable reasoning paths. FundusExpert, fine-tuned with instruction data from FundusGen, achieves the best performance in ophthalmic question-answering tasks, surpassing the average accuracy of the 40B MedRegA by 26.6%. It also excels in zero-shot report generation tasks, achieving a clinical consistency of 77.0%, significantly outperforming GPT-4o's 47.6%. Furthermore, we reveal a scaling law between data quality and model capability ($L \propto N^{0.068}$), demonstrating that the cognitive alignment annotations in FundusGen enhance data utilization efficiency. By integrating region-level localization with diagnostic reasoning chains, our work develops a scalable, clinically-aligned MLLM and explores a pathway toward bridging the visual-language gap in specific MLLMs. Our project can be found at https://github.com/MeteorElf/FundusExpert.

Authors:Junhua Liu, Roy Ka-Wei Lee, Kwan Hui Lim
Title: BGM-HAN: A Hierarchical Attention Network for Accurate and Fair Decision Assessment on Semi-Structured Profiles
Abstract:
Human decision-making in high-stakes domains often relies on expertise and heuristics, but is vulnerable to hard-to-detect cognitive biases that threaten fairness and long-term outcomes. This work presents a novel approach to enhancing complex decision-making workflows through the integration of hierarchical learning alongside various enhancements. Focusing on university admissions as a representative high-stakes domain, we propose BGM-HAN, an enhanced Byte-Pair Encoded, Gated Multi-head Hierarchical Attention Network, designed to effectively model semi-structured applicant data. BGM-HAN captures multi-level representations that are crucial for nuanced assessment, improving both interpretability and predictive performance. Experimental results on real admissions data demonstrate that our proposed model significantly outperforms both state-of-the-art baselines from traditional machine learning to large language models, offering a promising framework for augmenting decision-making in domains where structure, context, and fairness matter. Source code is available at: https://github.com/junhua/bgm-han.

Authors:Tobias Morocutti, Jonathan Greif, Paul Primus, Florian Schmid, Gerhard Widmer
Title: On Temporal Guidance and Iterative Refinement in Audio Source Separation
Abstract:
Spatial semantic segmentation of sound scenes (S5) involves the accurate identification of active sound classes and the precise separation of their sources from complex acoustic mixtures. Conventional systems rely on a two-stage pipeline - audio tagging followed by label-conditioned source separation - but are often constrained by the absence of fine-grained temporal information critical for effective separation. In this work, we address this limitation by introducing a novel approach for S5 that enhances the synergy between the event detection and source separation stages. Our key contributions are threefold. First, we fine-tune a pre-trained Transformer to detect active sound classes. Second, we utilize a separate instance of this fine-tuned Transformer to perform sound event detection (SED), providing the separation module with detailed, time-varying guidance. Third, we implement an iterative refinement mechanism that progressively enhances separation quality by recursively reusing the separator's output from previous iterations. These advancements lead to significant improvements in both audio tagging and source separation performance, as demonstrated by our system's second-place finish in Task 4 of the DCASE Challenge 2025. Our implementation and model checkpoints are available in our GitHub repository: https://github.com/theMoro/dcase25task4 .

Authors:Feng Cao, Zishuo Feng, Wei Shi, Jicong Zhang
Title: HuiduRep: A Robust Self-Supervised Framework for Learning Neural Representations from Extracellular Recordings
Abstract:
Extracellular recordings are transient voltage fluctuations in the vicinity of neurons, serving as a fundamental modality in neuroscience for decoding brain activity at single-neuron resolution. Spike sorting, the process of attributing each detected spike to its corresponding neuron, is a pivotal step in brain sensing pipelines. However, it remains challenging under low signal-to-noise ratio (SNR), electrode drift, and cross-session variability. In this paper, we propose HuiduRep, a robust self-supervised representation learning framework that extracts discriminative and generalizable features from extracellular recordings. By integrating contrastive learning with a denoising autoencoder, HuiduRep learns latent representations robust to noise and drift. With HuiduRep, we develop a spike sorting pipeline that clusters spike representations without ground truth labels. Experiments on hybrid and real-world datasets demonstrate that HuiduRep achieves strong robustness. Furthermore, the pipeline significantly outperforms state-of-the-art tools such as KiloSort4 and MountainSort5 on accuracy and precision on diverse datasets. These findings demonstrate the potential of self-supervised spike representation learning as a foundational tool for robust and generalizable processing of extracellular recordings. Code is available at: https://github.com/IgarashiAkatuki/HuiduRep

Authors:Jooyeol Yun, Heng Wang, Yotaro Shimose, Jaegul Choo, Shingo Takamatsu
Title: DesignLab: Designing Slides Through Iterative Detection and Correction
Abstract:
Designing high-quality presentation slides can be challenging for non-experts due to the complexity involved in navigating various design choices. Numerous automated tools can suggest layouts and color schemes, yet often lack the ability to refine their own output, which is a key aspect in real-world workflows. We propose DesignLab, which separates the design process into two roles, the design reviewer, who identifies design-related issues, and the design contributor who corrects them. This decomposition enables an iterative loop where the reviewer continuously detects issues and the contributor corrects them, allowing a draft to be further polished with each iteration, reaching qualities that were unattainable. We fine-tune large language models for these roles and simulate intermediate drafts by introducing controlled perturbations, enabling the design reviewer learn design errors and the contributor learn how to fix them. Our experiments show that DesignLab outperforms existing design-generation methods, including a commercial tool, by embracing the iterative nature of designing which can result in polished, professional slides.

Authors:Zhiqiang Liu, Enpei Niu, Yin Hua, Mengshu Sun, Lei Liang, Huajun Chen, Wen Zhang
Title: SKA-Bench: A Fine-Grained Benchmark for Evaluating Structured Knowledge Understanding of LLMs
Abstract:
Although large language models (LLMs) have made significant progress in understanding Structured Knowledge (SK) like KG and Table, existing evaluations for SK understanding are non-rigorous (i.e., lacking evaluations of specific capabilities) and focus on a single type of SK. Therefore, we aim to propose a more comprehensive and rigorous structured knowledge understanding benchmark to diagnose the shortcomings of LLMs. In this paper, we introduce SKA-Bench, a Structured Knowledge Augmented QA Benchmark that encompasses four widely used structured knowledge forms: KG, Table, KG+Text, and Table+Text. We utilize a three-stage pipeline to construct SKA-Bench instances, which includes a question, an answer, positive knowledge units, and noisy knowledge units. To evaluate the SK understanding capabilities of LLMs in a fine-grained manner, we expand the instances into four fundamental ability testbeds: Noise Robustness, Order Insensitivity, Information Integration, and Negative Rejection. Empirical evaluations on 8 representative LLMs, including the advanced DeepSeek-R1, indicate that existing LLMs still face significant challenges in understanding structured knowledge, and their performance is influenced by factors such as the amount of noise, the order of knowledge units, and hallucination phenomenon. Our dataset and code are available at https://github.com/zjukg/SKA-Bench.

Authors:Fangze Lin, Ying He, Fei Yu, Hong Zhang
Title: JAM: Keypoint-Guided Joint Prediction after Classification-Aware Marginal Proposal for Multi-Agent Interaction
Abstract:
Predicting the future motion of road participants is a critical task in autonomous driving. In this work, we address the challenge of low-quality generation of low-probability modes in multi-agent joint prediction. To tackle this issue, we propose a two-stage multi-agent interactive prediction framework named \textit{keypoint-guided joint prediction after classification-aware marginal proposal} (JAM). The first stage is modeled as a marginal prediction process, which classifies queries by trajectory type to encourage the model to learn all categories of trajectories, providing comprehensive mode information for the joint prediction module. The second stage is modeled as a joint prediction process, which takes the scene context and the marginal proposals from the first stage as inputs to learn the final joint distribution. We explicitly introduce key waypoints to guide the joint prediction module in better capturing and leveraging the critical information from the initial predicted trajectories. We conduct extensive experiments on the real-world Waymo Open Motion Dataset interactive prediction benchmark. The results show that our approach achieves competitive performance. In particular, in the framework comparison experiments, the proposed JAM outperforms other prediction frameworks and achieves state-of-the-art performance in interactive trajectory prediction. The code is available at https://github.com/LinFunster/JAM to facilitate future research.

Authors:Ting Jiang, Yixiao Wang, Hancheng Ye, Zishan Shao, Jingwei Sun, Jingyang Zhang, Zekai Chen, Jianyi Zhang, Yiran Chen, Hai Li
Title: SADA: Stability-guided Adaptive Diffusion Acceleration
Abstract:
Diffusion models have achieved remarkable success in generative tasks but suffer from high computational costs due to their iterative sampling process and quadratic attention costs. Existing training-free acceleration strategies that reduce per-step computation cost, while effectively reducing sampling time, demonstrate low faithfulness compared to the original baseline. We hypothesize that this fidelity gap arises because (a) different prompts correspond to varying denoising trajectory, and (b) such methods do not consider the underlying ODE formulation and its numerical solution. In this paper, we propose Stability-guided Adaptive Diffusion Acceleration (SADA), a novel paradigm that unifies step-wise and token-wise sparsity decisions via a single stability criterion to accelerate sampling of ODE-based generative models (Diffusion and Flow-matching). For (a), SADA adaptively allocates sparsity based on the sampling trajectory. For (b), SADA introduces principled approximation schemes that leverage the precise gradient information from the numerical ODE solver. Comprehensive evaluations on SD-2, SDXL, and Flux using both EDM and DPM++ solvers reveal consistent $\ge 1.8\times$ speedups with minimal fidelity degradation (LPIPS $\leq 0.10$ and FID $\leq 4.5$) compared to unmodified baselines, significantly outperforming prior methods. Moreover, SADA adapts seamlessly to other pipelines and modalities: It accelerates ControlNet without any modifications and speeds up MusicLDM by $1.8\times$ with $\sim 0.01$ spectrogram LPIPS.

Authors:Zaipeng Duan, Chenxu Dang, Xuzhong Hu, Pei An, Junfeng Ding, Jie Zhan, Yunbiao Xu, Jie Ma
Title: SDGOCC: Semantic and Depth-Guided Bird's-Eye View Transformation for 3D Multimodal Occupancy Prediction
Abstract:
Multimodal 3D occupancy prediction has garnered significant attention for its potential in autonomous driving. However, most existing approaches are single-modality: camera-based methods lack depth information, while LiDAR-based methods struggle with occlusions. Current lightweight methods primarily rely on the Lift-Splat-Shoot (LSS) pipeline, which suffers from inaccurate depth estimation and fails to fully exploit the geometric and semantic information of 3D LiDAR points. Therefore, we propose a novel multimodal occupancy prediction network called SDG-OCC, which incorporates a joint semantic and depth-guided view transformation coupled with a fusion-to-occupancy-driven active distillation. The enhanced view transformation constructs accurate depth distributions by integrating pixel semantics and co-point depth through diffusion and bilinear discretization. The fusion-to-occupancy-driven active distillation extracts rich semantic information from multimodal data and selectively transfers knowledge to image features based on LiDAR-identified regions. Finally, for optimal performance, we introduce SDG-Fusion, which uses fusion alone, and SDG-KL, which integrates both fusion and distillation for faster inference. Our method achieves state-of-the-art (SOTA) performance with real-time processing on the Occ3D-nuScenes dataset and shows comparable performance on the more challenging SurroundOcc-nuScenes dataset, demonstrating its effectiveness and robustness. The code will be released at https://github.com/DzpLab/SDGOCC.

Authors:Luchuan Song, Yang Zhou, Zhan Xu, Yi Zhou, Deepali Aneja, Chenliang Xu
Title: StreamME: Simplify 3D Gaussian Avatar within Live Stream
Abstract:
We propose StreamME, a method focuses on fast 3D avatar reconstruction. The StreamME synchronously records and reconstructs a head avatar from live video streams without any pre-cached data, enabling seamless integration of the reconstructed appearance into downstream applications. This exceptionally fast training strategy, which we refer to as on-the-fly training, is central to our approach. Our method is built upon 3D Gaussian Splatting (3DGS), eliminating the reliance on MLPs in deformable 3DGS and relying solely on geometry, which significantly improves the adaptation speed to facial expression. To further ensure high efficiency in on-the-fly training, we introduced a simplification strategy based on primary points, which distributes the point clouds more sparsely across the facial surface, optimizing points number while maintaining rendering quality. Leveraging the on-the-fly training capabilities, our method protects the facial privacy and reduces communication bandwidth in VR system or online conference. Additionally, it can be directly applied to downstream application such as animation, toonify, and relighting. Please refer to our project page for more details: https://songluchuan.github.io/StreamME/.

Authors:Arduin Findeis, Floris Weers, Guoli Yin, Ke Ye, Ruoming Pang, Tom Gunter
Title: Can External Validation Tools Improve Annotation Quality for LLM-as-a-Judge?
Abstract:
Pairwise preferences over model responses are widely collected to evaluate and provide feedback to large language models (LLMs). Given two alternative model responses to the same input, a human or AI annotator selects the "better" response. This approach can provide feedback for domains where other hard-coded metrics are difficult to obtain (e.g., chat response quality), thereby helping model evaluation or training. However, for some domains high-quality pairwise comparisons can be tricky to obtain - from AI and humans. For example, for responses with many factual statements, annotators may disproportionately weigh writing quality rather than underlying facts. In this work, we explore augmenting standard AI annotator systems with additional tools to improve performance on three challenging response domains: long-form factual, math and code tasks. We propose a tool-using agentic system to provide higher quality feedback on these domains. Our system uses web-search and code execution to ground itself based on external validation, independent of the LLM's internal knowledge and biases. We provide extensive experimental results evaluating our method across the three targeted response domains as well as general annotation tasks, using RewardBench (incl. AlpacaEval and LLMBar), RewardMath, as well as three new datasets for domains with saturated pre-existing datasets. Our results indicate that external tools can indeed improve performance in many, but not all, cases. More generally, our experiments highlight the sensitivity of performance to simple parameters (e.g., prompt) and the need for improved (non-saturated) annotator benchmarks. We share our code at https://github.com/apple/ml-agent-evaluator.

Authors:Giovanni De Toni, Erasmo Purificato, Emilia Gómez, Bruno Lepri, Andrea Passerini, Cristian Consonni
Title: You Don't Bring Me Flowers: Mitigating Unwanted Recommendations Through Conformal Risk Control
Abstract:
Recommenders are significantly shaping online information consumption. While effective at personalizing content, these systems increasingly face criticism for propagating irrelevant, unwanted, and even harmful recommendations. Such content degrades user satisfaction and contributes to significant societal issues, including misinformation, radicalization, and erosion of user trust. Although platforms offer mechanisms to mitigate exposure to undesired content, these mechanisms are often insufficiently effective and slow to adapt to users' feedback. This paper introduces an intuitive, model-agnostic, and distribution-free method that uses conformal risk control to provably bound unwanted content in personalized recommendations by leveraging simple binary feedback on items. We also address a limitation of traditional conformal risk control approaches, i.e., the fact that the recommender can provide a smaller set of recommended items, by leveraging implicit feedback on consumed items to expand the recommendation set while ensuring robust risk mitigation. Our experimental evaluation on data coming from a popular online video-sharing platform demonstrates that our approach ensures an effective and controllable reduction of unwanted recommendations with minimal effort. The source code is available here: https://github.com/geektoni/mitigating-harm-recsys.

Authors:Chi-Pin Huang, Yueh-Hua Wu, Min-Hung Chen, Yu-Chiang Frank Wang, Fu-En Yang
Title: ThinkAct: Vision-Language-Action Reasoning via Reinforced Visual Latent Planning
Abstract:
Vision-language-action (VLA) reasoning tasks require agents to interpret multimodal instructions, perform long-horizon planning, and act adaptively in dynamic environments. Existing approaches typically train VLA models in an end-to-end fashion, directly mapping inputs to actions without explicit reasoning, which hinders their ability to plan over multiple steps or adapt to complex task variations. In this paper, we propose ThinkAct, a dual-system framework that bridges high-level reasoning with low-level action execution via reinforced visual latent planning. ThinkAct trains a multimodal LLM to generate embodied reasoning plans guided by reinforcing action-aligned visual rewards based on goal completion and trajectory consistency. These reasoning plans are compressed into a visual plan latent that conditions a downstream action model for robust action execution on target environments. Extensive experiments on embodied reasoning and robot manipulation benchmarks demonstrate that ThinkAct enables few-shot adaptation, long-horizon planning, and self-correction behaviors in complex embodied AI tasks.

Authors:Run-Ze Fan, Zengzhi Wang, Pengfei Liu
Title: MegaScience: Pushing the Frontiers of Post-Training Datasets for Science Reasoning
Abstract:
Scientific reasoning is critical for developing AI scientists and supporting human researchers in advancing the frontiers of natural science discovery. However, the open-source community has primarily focused on mathematics and coding while neglecting the scientific domain, largely due to the absence of open, large-scale, high-quality, verifiable scientific reasoning datasets. To bridge this gap, we first present TextbookReasoning, an open dataset featuring truthful reference answers extracted from 12k university-level scientific textbooks, comprising 650k reasoning questions spanning 7 scientific disciplines. We further introduce MegaScience, a large-scale mixture of high-quality open-source datasets totaling 1.25 million instances, developed through systematic ablation studies that evaluate various data selection methodologies to identify the optimal subset for each publicly available scientific dataset. Meanwhile, we build a comprehensive evaluation system covering diverse subjects and question types across 15 benchmarks, incorporating comprehensive answer extraction strategies to ensure accurate evaluation metrics. Our experiments demonstrate that our datasets achieve superior performance and training efficiency with more concise response lengths compared to existing open-source scientific datasets. Furthermore, we train Llama3.1, Qwen2.5, and Qwen3 series base models on MegaScience, which significantly outperform the corresponding official instruct models in average performance. In addition, MegaScience exhibits greater effectiveness for larger and stronger models, suggesting a scaling benefit for scientific tuning. We release our data curation pipeline, evaluation system, datasets, and seven trained models to the community to advance scientific reasoning research.

Authors:Ran Wang, Xiaoxuan Liu, Hao Ren, Gang Chen, Fanchao Qi, Maosong Sun
Title: WGRAMMAR: Leverage Prior Knowledge to Accelerate Structured Decoding
Abstract:
Structured decoding enables large language models (LLMs) to generate outputs in formats required by downstream systems, such as HTML or JSON. However, existing methods suffer from efficiency bottlenecks due to grammar compilation, state tracking, and mask creation. We observe that many real-world tasks embed strong prior knowledge about output structure. Leveraging this, we propose a decomposition of constraints into static and dynamic components -- precompiling static structures offline and instantiating dynamic arguments at runtime using grammar snippets. Instead of relying on pushdown automata, we employ a compositional set of operators to model regular formats, achieving lower transition latency. We introduce wgrammar, a lightweight decoding engine that integrates domain-aware simplification, constraint decomposition, and mask caching, achieving up to 250x speedup over existing systems. wgrammar's source code is publicly available at https://github.com/wrran/wgrammar.

Authors:Yilong Xu, Xiang Long, Zhi Zheng, Jinhua Gao
Title: RAVine: Reality-Aligned Evaluation for Agentic Search
Abstract:
Agentic search, as a more autonomous and adaptive paradigm of retrieval augmentation, is driving the evolution of intelligent search systems. However, existing evaluation frameworks fail to align well with the goals of agentic search. First, the complex queries commonly used in current benchmarks often deviate from realistic user search scenarios. Second, prior approaches tend to introduce noise when extracting ground truth for end-to-end evaluations, leading to distorted assessments at a fine-grained level. Third, most current frameworks focus solely on the quality of final answers, neglecting the evaluation of the iterative process inherent to agentic search. To address these limitations, we propose RAVine -- a Reality-Aligned eValuation framework for agentic LLMs with search. RAVine targets multi-point queries and long-form answers that better reflect user intents, and introduces an attributable ground truth construction strategy to enhance the accuracy of fine-grained evaluation. Moreover, RAVine examines model's interaction with search tools throughout the iterative process, and accounts for factors of efficiency. We benchmark a series of models using RAVine and derive several insights, which we hope will contribute to advancing the development of agentic search systems. The code and datasets are available at https://github.com/SwordFaith/RAVine.

Authors:Pingyi Fan, Anbai Jiang, Shuwei Zhang, Zhiqiang Lv, Bing Han, Xinhu Zheng, Wenrui Liang, Junjie Li, Wei-Qiang Zhang, Yanmin Qian, Xie Chen, Cheng Lu, Jia Liu
Title: FISHER: A Foundation Model for Multi-Modal Industrial Signal Comprehensive Representation
Abstract:
With the rapid deployment of SCADA systems, how to effectively analyze industrial signals and detect abnormal states is an urgent need for the industry. Due to the significant heterogeneity of these signals, which we summarize as the M5 problem, previous works only focus on small sub-problems and employ specialized models, failing to utilize the synergies between modalities and the powerful scaling law. However, we argue that the M5 signals can be modeled in a unified manner due to the intrinsic similarity. As a result, we propose FISHER, a Foundation model for multi-modal Industrial Signal compreHEnsive Representation. To support arbitrary sampling rates, FISHER considers the increment of sampling rate as the concatenation of sub-band information. Specifically, FISHER takes the STFT sub-band as the modeling unit and adopts a teacher student SSL framework for pre-training. We also develop the RMIS benchmark, which evaluates the representations of M5 industrial signals on multiple health management tasks. Compared with top SSL models, FISHER showcases versatile and outstanding capabilities with a general performance gain up to 5.03%, along with much more efficient scaling curves. We also investigate the scaling law on downstream tasks and derive potential avenues for future works. FISHER is now open-sourced on https://github.com/jianganbai/FISHER

Authors:Xiaojiao Xiao, Qinmin Vivian Hu, Guanghui Wang
Title: Pyramid Hierarchical Masked Diffusion Model for Imaging Synthesis
Abstract:
Medical image synthesis plays a crucial role in clinical workflows, addressing the common issue of missing imaging modalities due to factors such as extended scan times, scan corruption, artifacts, patient motion, and intolerance to contrast agents. The paper presents a novel image synthesis network, the Pyramid Hierarchical Masked Diffusion Model (PHMDiff), which employs a multi-scale hierarchical approach for more detailed control over synthesizing high-quality images across different resolutions and layers. Specifically, this model utilizes randomly multi-scale high-proportion masks to speed up diffusion model training, and balances detail fidelity and overall structure. The integration of a Transformer-based Diffusion model process incorporates cross-granularity regularization, modeling the mutual information consistency across each granularity's latent spaces, thereby enhancing pixel-level perceptual accuracy. Comprehensive experiments on two challenging datasets demonstrate that PHMDiff achieves superior performance in both the Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index Measure (SSIM), highlighting its capability to produce high-quality synthesized images with excellent structural integrity. Ablation studies further confirm the contributions of each component. Furthermore, the PHMDiff model, a multi-scale image synthesis framework across and within medical imaging modalities, shows significant advantages over other methods. The source code is available at https://github.com/xiaojiao929/PHMDiff

Authors:Shang Liu, Chenjie Cao, Chaohui Yu, Wen Qian, Jing Wang, Fan Wang
Title: EarthCrafter: Scalable 3D Earth Generation via Dual-Sparse Latent Diffusion
Abstract:
Despite the remarkable developments achieved by recent 3D generation works, scaling these methods to geographic extents, such as modeling thousands of square kilometers of Earth's surface, remains an open challenge. We address this through a dual innovation in data infrastructure and model architecture. First, we introduce Aerial-Earth3D, the largest 3D aerial dataset to date, consisting of 50k curated scenes (each measuring 600m x 600m) captured across the U.S. mainland, comprising 45M multi-view Google Earth frames. Each scene provides pose-annotated multi-view images, depth maps, normals, semantic segmentation, and camera poses, with explicit quality control to ensure terrain diversity. Building on this foundation, we propose EarthCrafter, a tailored framework for large-scale 3D Earth generation via sparse-decoupled latent diffusion. Our architecture separates structural and textural generation: 1) Dual sparse 3D-VAEs compress high-resolution geometric voxels and textural 2D Gaussian Splats (2DGS) into compact latent spaces, largely alleviating the costly computation suffering from vast geographic scales while preserving critical information. 2) We propose condition-aware flow matching models trained on mixed inputs (semantics, images, or neither) to flexibly model latent geometry and texture features independently. Extensive experiments demonstrate that EarthCrafter performs substantially better in extremely large-scale generation. The framework further supports versatile applications, from semantic-guided urban layout generation to unconditional terrain synthesis, while maintaining geographic plausibility through our rich data priors from Aerial-Earth3D. Our project page is available at https://whiteinblue.github.io/earthcrafter/

Authors:Abhash Kumar Jha, Shakiba Moradian, Arjun Krishnakumar, Martin Rapp, Frank Hutter
Title: confopt: A Library for Implementation and Evaluation of Gradient-based One-Shot NAS Methods
Abstract:
Gradient-based one-shot neural architecture search (NAS) has significantly reduced the cost of exploring architectural spaces with discrete design choices, such as selecting operations within a model. However, the field faces two major challenges. First, evaluations of gradient-based NAS methods heavily rely on the DARTS benchmark, despite the existence of other available benchmarks. This overreliance has led to saturation, with reported improvements often falling within the margin of noise. Second, implementations of gradient-based one-shot NAS methods are fragmented across disparate repositories, complicating fair and reproducible comparisons and further development. In this paper, we introduce Configurable Optimizer (confopt), an extensible library designed to streamline the development and evaluation of gradient-based one-shot NAS methods. Confopt provides a minimal API that makes it easy for users to integrate new search spaces, while also supporting the decomposition of NAS optimizers into their core components. We use this framework to create a suite of new DARTS-based benchmarks, and combine them with a novel evaluation protocol to reveal a critical flaw in how gradient-based one-shot NAS methods are currently assessed. The code can be found at https://github.com/automl/ConfigurableOptimizer.

Authors:Xiaoyan Wang, Zeju Li, Yifan Xu, Jiaxing Qi, Zhifei Yang, Ruifei Ma, Xiangde Liu, Chao Zhang
Title: Spatial 3D-LLM: Exploring Spatial Awareness in 3D Vision-Language Models
Abstract:
New era has unlocked exciting possibilities for extending Large Language Models (LLMs) to tackle 3D vision-language tasks. However, most existing 3D multimodal LLMs (MLLMs) rely on compressing holistic 3D scene information or segmenting independent objects to perform these tasks, which limits their spatial awareness due to insufficient representation of the richness inherent in 3D scenes. To overcome these limitations, we propose Spatial 3D-LLM, a 3D MLLM specifically designed to enhance spatial awareness for 3D vision-language tasks by enriching the spatial embeddings of 3D scenes. Spatial 3D-LLM integrates an LLM backbone with a progressive spatial awareness scheme that progressively captures spatial information as the perception field expands, generating location-enriched 3D scene embeddings to serve as visual prompts. Furthermore, we introduce two novel tasks: 3D object distance measurement and 3D layout editing, and construct a 3D instruction dataset, MODEL, to evaluate the model's spatial awareness capabilities. Experimental results demonstrate that Spatial 3D-LLM achieves state-of-the-art performance across a wide range of 3D vision-language tasks, revealing the improvements stemmed from our progressive spatial awareness scheme of mining more profound spatial information. Our code is available at https://github.com/bjshuyuan/Spatial-3D-LLM.

Authors:Junying Wang, Zicheng Zhang, Yijin Guo, Farong Wen, Ye Shen, Yingji Liang, Yalun Wu, Wenzhe Li, Chunyi Li, Zijian Chen, Qi Jia, Guangtao Zhai
Title: The Ever-Evolving Science Exam
Abstract:
As foundation models grow rapidly in capability and deployment, evaluating their scientific understanding becomes increasingly critical. Existing science benchmarks have made progress towards broad **Range**, wide **Reach**, and high **Rigor**, yet they often face two major challenges: **data leakage risks** that compromise benchmarking validity, and **evaluation inefficiency** due to large-scale testing. To address these issues, we introduce the **Ever-Evolving Science Exam (EESE)**, a dynamic benchmark designed to reliably assess scientific capabilities in foundation models. Our approach consists of two components: 1) a non-public **EESE-Pool** with over 100K expertly constructed science instances (question-answer pairs) across 5 disciplines and 500+ subfields, built through a multi-stage pipeline ensuring **Range**, **Reach**, and **Rigor**, 2) a periodically updated 500-instance subset **EESE**, sampled and validated to enable leakage-resilient, low-overhead evaluations. Experiments on 32 open- and closed-source models demonstrate that EESE effectively differentiates the strengths and weaknesses of models in scientific fields and cognitive dimensions. Overall, EESE provides a robust, scalable, and forward-compatible solution for science benchmark design, offering a realistic measure of how well foundation models handle science questions. The project page is at: https://github.com/aiben-ch/EESE.

Authors:Yumeng Wang, Zengyi Wo, Wenjun Wang, Xingcheng Fu, Minglai Shao
Title: Leveraging Personalized PageRank and Higher-Order Topological Structures for Heterophily Mitigation in Graph Neural Networks
Abstract:
Graph Neural Networks (GNNs) excel in node classification tasks but often assume homophily, where connected nodes share similar labels. This assumption does not hold in many real-world heterophilic graphs. Existing models for heterophilic graphs primarily rely on pairwise relationships, overlooking multi-scale information from higher-order structures. This leads to suboptimal performance, particularly under noise from conflicting class information across nodes. To address these challenges, we propose HPGNN, a novel model integrating Higher-order Personalized PageRank with Graph Neural Networks. HPGNN introduces an efficient high-order approximation of Personalized PageRank (PPR) to capture long-range and multi-scale node interactions. This approach reduces computational complexity and mitigates noise from surrounding information. By embedding higher-order structural information into convolutional networks, HPGNN effectively models key interactions across diverse graph dimensions. Extensive experiments on benchmark datasets demonstrate HPGNN's effectiveness. The model achieves better performance than five out of seven state-of-the-art methods on heterophilic graphs in downstream tasks while maintaining competitive performance on homophilic graphs. HPGNN's ability to balance multi-scale information and robustness to noise makes it a versatile solution for real-world graph learning challenges. Codes are available at https://github.com/streetcorner/HPGNN.

Authors:Pengfei Cai, Yan Song, Qing Gu, Nan Jiang, Haoyu Song, Ian McLoughlin
Title: Detect Any Sound: Open-Vocabulary Sound Event Detection with Multi-Modal Queries
Abstract:
Most existing sound event detection~(SED) algorithms operate under a closed-set assumption, restricting their detection capabilities to predefined classes. While recent efforts have explored language-driven zero-shot SED by exploiting audio-language models, their performance is still far from satisfactory due to the lack of fine-grained alignment and cross-modal feature fusion. In this work, we propose the Detect Any Sound Model (DASM), a query-based framework for open-vocabulary SED guided by multi-modal queries. DASM formulates SED as a frame-level retrieval task, where audio features are matched against query vectors derived from text or audio prompts. To support this formulation, DASM introduces a dual-stream decoder that explicitly decouples event recognition and temporal localization: a cross-modality event decoder performs query-feature fusion and determines the presence of sound events at the clip-level, while a context network models temporal dependencies for frame-level localization. Additionally, an inference-time attention masking strategy is proposed to leverage semantic relations between base and novel classes, substantially enhancing generalization to novel classes. Experiments on the AudioSet Strong dataset demonstrate that DASM effectively balances localization accuracy with generalization to novel classes, outperforming CLAP-based methods in open-vocabulary setting (+ 7.8 PSDS) and the baseline in the closed-set setting (+ 6.9 PSDS). Furthermore, in cross-dataset zero-shot evaluation on DESED, DASM achieves a PSDS1 score of 42.2, even exceeding the supervised CRNN baseline. The project page is available at https://cai525.github.io/Transformer4SED/demo_page/DASM/.

Authors:Tianze Xu, Pengrui Lu, Lyumanshan Ye, Xiangkun Hu, Pengfei Liu
Title: ResearcherBench: Evaluating Deep AI Research Systems on the Frontiers of Scientific Inquiry
Abstract:
The emergence of deep research systems presents significant capabilities in problem-solving, extending from basic queries to sophisticated research tasks. However, existing benchmarks primarily evaluate these systems as agents for web retrieval and report generation, overlooking their potential to discover novel insights on the frontiers of scientific research. To address this gap, we introduce ResearcherBench, the first benchmark focused on evaluating the capabilities of these advanced, agentic systems - which we refer to as Deep AI Research Systems (DARS) - on frontier AI scientific questions. We compiled a dataset of 65 research questions expertly selected from real-world scientific scenarios such as laboratory discussions and interviews, spanning 35 different AI subjects and categorized into three types: technical details, literature review, and open consulting. Our dual evaluation framework combines rubric assessment, which uses expert-designed criteria to evaluate insight quality, with factual assessment, which measures citation accuracy (faithfulness) and coverage (groundedness). We evaluated several leading commercial DARS and baseline systems. Results show that OpenAI Deep Research and Gemini Deep Research significantly outperform other systems, with particular strength in open-ended consulting questions. Such capabilities represent a meaningful step toward AI self-improvement, aligning with the vision of ASI for AI. We open-source ResearcherBench to provide a standardized platform for promoting the development of next-generation AI research assistants, hoping to foster a new perspective in AI research evaluation for a novel pattern of scientific collaboration: https://github.com/GAIR-NLP/ResearcherBench.

Authors:Yu Wang, Bo Dang, Wanchun Li, Wei Chen, Yansheng Li
Title: HoliTracer: Holistic Vectorization of Geographic Objects from Large-Size Remote Sensing Imagery
Abstract:
With the increasing resolution of remote sensing imagery (RSI), large-size RSI has emerged as a vital data source for high-precision vector mapping of geographic objects. Existing methods are typically constrained to processing small image patches, which often leads to the loss of contextual information and produces fragmented vector outputs. To address these, this paper introduces HoliTracer, the first framework designed to holistically extract vectorized geographic objects from large-size RSI. In HoliTracer, we enhance segmentation of large-size RSI using the Context Attention Net (CAN), which employs a local-to-global attention mechanism to capture contextual dependencies. Furthermore, we achieve holistic vectorization through a robust pipeline that leverages the Mask Contour Reformer (MCR) to reconstruct polygons and the Polygon Sequence Tracer (PST) to trace vertices. Extensive experiments on large-size RSI datasets, including buildings, water bodies, and roads, demonstrate that HoliTracer outperforms state-of-the-art methods. Our code and data are available in https://github.com/vvangfaye/HoliTracer.

Authors:Wentao Xiang, Haoxian Tan, Cong Wei, Yujie Zhong, Dengjie Li, Yujiu Yang
Title: Advancing Visual Large Language Model for Multi-granular Versatile Perception
Abstract:
Perception is a fundamental task in the field of computer vision, encompassing a diverse set of subtasks that can be systematically categorized into four distinct groups based on two dimensions: prediction type and instruction type. Notably, existing researches often focus solely on a limited subset of these potential combinations, which constrains their applicability and versatility across various contexts. In response to this challenge, we present MVP-LM, a Multi-granular and Versatile Perception framework incorporating Visual Large Language Model. Our framework is designed to integrate both word-based and sentence-based perception tasks alongside box and mask predictions within a single architecture. MVP-LM features an innovative multi-granularity decoder in conjunction with a CoT-inspired dataset unification strategy, enabling seamless supervised fine-tuning across a wide spectrum of tasks, including but not limited to panoptic segmentation, detection, grounding, and referring expression segmentation. Furthermore, we introduce a query enhancement strategy aimed at harnessing the decoding and generative capabilities inherent in VLLMs. Extensive experiments conducted across a range of benchmarks in both word-based and sentence-based perception tasks substantiate the efficacy of our framework. The code will be available at https://github.com/xiangwentao666/MVP-LM.

Authors:Rahul Venkatesh, Klemen Kotar, Lilian Naing Chen, Seungwoo Kim, Luca Thomas Wheeler, Jared Watrous, Ashley Xu, Gia Ancone, Wanhee Lee, Honglin Chen, Daniel Bear, Stefan Stojanov, Daniel Yamins
Title: Discovering and using Spelke segments
Abstract:
Segments in computer vision are often defined by semantic considerations and are highly dependent on category-specific conventions. In contrast, developmental psychology suggests that humans perceive the world in terms of Spelke objects--groupings of physical things that reliably move together when acted on by physical forces. Spelke objects thus operate on category-agnostic causal motion relationships which potentially better support tasks like manipulation and planning. In this paper, we first benchmark the Spelke object concept, introducing the SpelkeBench dataset that contains a wide variety of well-defined Spelke segments in natural images. Next, to extract Spelke segments from images algorithmically, we build SpelkeNet, a class of visual world models trained to predict distributions over future motions. SpelkeNet supports estimation of two key concepts for Spelke object discovery: (1) the motion affordance map, identifying regions likely to move under a poke, and (2) the expected-displacement map, capturing how the rest of the scene will move. These concepts are used for "statistical counterfactual probing", where diverse "virtual pokes" are applied on regions of high motion-affordance, and the resultant expected displacement maps are used define Spelke segments as statistical aggregates of correlated motion statistics. We find that SpelkeNet outperforms supervised baselines like SegmentAnything (SAM) on SpelkeBench. Finally, we show that the Spelke concept is practically useful for downstream applications, yielding superior performance on the 3DEditBench benchmark for physical object manipulation when used in a variety of off-the-shelf object manipulation models.

Authors:Jaehoon Yoo, Wonjung Kim, Seunghoon Hong
Title: ReDi: Rectified Discrete Flow
Abstract:
Discrete Flow-based Models (DFMs) are powerful generative models for high-quality discrete data but typically suffer from slow sampling speeds due to their reliance on iterative decoding processes. This reliance on a multi-step process originates from the factorization approximation of DFMs, which is necessary for handling high-dimensional data. In this paper, we rigorously characterize the approximation error from factorization using Conditional Total Correlation (TC), which depends on the coupling. To reduce the Conditional TC and enable efficient few-step generation, we propose Rectified Discrete Flow (ReDi), a novel iterative method that reduces factorization error by rectifying the coupling between source and target distributions. We theoretically prove that each ReDi step guarantees a monotonic decreasing Conditional TC, ensuring its convergence. Empirically, ReDi significantly reduces Conditional TC and enables few-step generation. Moreover, we demonstrate that the rectified couplings are well-suited for training efficient one-step models on image generation. ReDi offers a simple and theoretically grounded approach for tackling the few-step challenge, providing a new perspective on efficient discrete data synthesis. Code is available at https://github.com/Ugness/ReDi_discrete

Authors:Shahar Zuler, Gal Lifshitz, Hadar Averbuch-Elor, Dan Raviv
Title: Systole-Conditioned Generative Cardiac Motion
Abstract:
Accurate motion estimation in cardiac computed tomography (CT) imaging is critical for assessing cardiac function and surgical planning. Data-driven methods have become the standard approach for dense motion estimation, but they rely on vast amounts of labeled data with dense ground-truth (GT) motion annotations, which are often unfeasible to obtain. To address this limitation, we present a novel approach that synthesizes realistically looking pairs of cardiac CT frames enriched with dense 3D flow field annotations. Our method leverages a conditional Variational Autoencoder (CVAE), which incorporates a novel multi-scale feature conditioning mechanism and is trained to generate 3D flow fields conditioned on a single CT frame. By applying the generated flow field to warp the given frame, we create pairs of frames that simulate realistic myocardium deformations across the cardiac cycle. These pairs serve as fully annotated data samples, providing optical flow GT annotations. Our data generation pipeline could enable the training and validation of more complex and accurate myocardium motion models, allowing for substantially reducing reliance on manual annotations. Our code, along with animated generated samples and additional material, is available on our project page: https://shaharzuler.github.io/GenerativeCardiacMotion_Page.

Authors:Noah van der Vleuten
Title: Dr. Boot: Bootstrapping Program Synthesis Language Models to Perform Repairing
Abstract:
Language models for program synthesis are usually trained and evaluated on programming competition datasets (MBPP, APPS). However, these datasets are limited in size and quality, while these language models are extremely data hungry. Additionally, the language models have a misaligned program synthesis process compared to humans. While humans iteratively develop code with the help of a compiler, most program synthesis models currently produce code in one go. To solve these issues, we introduce a bootstrapping algorithm for program synthesis, that supports teaching models how to repair. We show that bootstrapping consistently outperforms regular fine-tuning. Compared to other work, our bootstrapped model performs on par with fine-tuned models that are 68\% larger. Notably, bootstrapping with repairing also improves non-repairing performance compared to regular bootstrapping during inference. However, on our models, repairing during inference is likely inferior to simply sampling the same number of solutions. Furthermore, we find that there are issues with the example test cases in the training portion of the APPS dataset that are valuable to the community, as many repairing and reinforcement learning methods rely on them.

Authors:John Wu, Adam Cross, Jimeng Sun
Title: RDMA: Cost Effective Agent-Driven Rare Disease Discovery within Electronic Health Record Systems
Abstract:
Rare diseases affect 1 in 10 Americans, yet standard ICD coding systems fail to capture these conditions in electronic health records (EHR), leaving crucial information buried in clinical notes. Current approaches struggle with medical abbreviations, miss implicit disease mentions, raise privacy concerns with cloud processing, and lack clinical reasoning abilities. We present Rare Disease Mining Agents (RDMA), a framework that mirrors how medical experts identify rare disease patterns in EHR. RDMA connects scattered clinical observations that together suggest specific rare conditions. By handling clinical abbreviations, recognizing implicit disease patterns, and applying contextual reasoning locally on standard hardware, RDMA reduces privacy risks while improving F1 performance by upwards of 30\% and decreasing inferences costs 10-fold. This approach helps clinicians avoid the privacy risk of using cloud services while accessing key rare disease information from EHR systems, supporting earlier diagnosis for rare disease patients. Available at https://github.com/jhnwu3/RDMA.

Authors:Zhixiong Zhang, Shuangrui Ding, Xiaoyi Dong, Songxin He, Jianfan Lin, Junsong Tang, Yuhang Zang, Yuhang Cao, Dahua Lin, Jiaqi Wang
Title: SeC: Advancing Complex Video Object Segmentation via Progressive Concept Construction
Abstract:
Video Object Segmentation (VOS) is a core task in computer vision, requiring models to track and segment target objects across video frames. Despite notable advances with recent efforts, current techniques still lag behind human capabilities in handling drastic visual variations, occlusions, and complex scene changes. This limitation arises from their reliance on appearance matching, neglecting the human-like conceptual understanding of objects that enables robust identification across temporal dynamics. Motivated by this gap, we propose Segment Concept (SeC), a concept-driven segmentation framework that shifts from conventional feature matching to the progressive construction and utilization of high-level, object-centric representations. SeC employs Large Vision-Language Models (LVLMs) to integrate visual cues across diverse frames, constructing robust conceptual priors. During inference, SeC forms a comprehensive semantic representation of the target based on processed frames, realizing robust segmentation of follow-up frames. Furthermore, SeC adaptively balances LVLM-based semantic reasoning with enhanced feature matching, dynamically adjusting computational efforts based on scene complexity. To rigorously assess VOS methods in scenarios demanding high-level conceptual reasoning and robust semantic understanding, we introduce the Semantic Complex Scenarios Video Object Segmentation benchmark (SeCVOS). SeCVOS comprises 160 manually annotated multi-scenario videos designed to challenge models with substantial appearance variations and dynamic scene transformations. In particular, SeC achieves an 11.8-point improvement over SAM 2.1 on SeCVOS, establishing a new state-of-the-art in concept-aware video object segmentation.

Authors:Shangke Lyu, Linjuan Wu, Yuchen Yan, Xingyu Wu, Hao Li, Yongliang Shen, Peisheng Jiang, Weiming Lu, Jun Xiao, Yueting Zhuang
Title: Hierarchical Budget Policy Optimization for Adaptive Reasoning
Abstract:
Large reasoning models achieve remarkable performance through extensive chain-of-thought generation, yet they suffer from a critical inefficiency: applying uniformly extensive reasoning regardless of problem complexity. We present Hierarchical Budget Policy Optimization (HBPO), a reinforcement learning framework that enables models to learn problem-specific reasoning depths without sacrificing capability. Unlike existing approaches that impose rigid constraints or rely on discrete mode selection, HBPO partitions the exploration space into budget-constrained hierarchies (512-2560 tokens), each with differentiated reward structures that preserve both efficiency incentives and reasoning capabilities. This design addresses a fundamental challenge in efficient reasoning training: traditional length penalties systematically bias models away from necessary long reasoning paths, causing exploration space collapse. Through hierarchical sampling and budget-aware rewards, HBPO maintains exploration diversity while teaching models to recognize when extended deliberation is warranted. Extensive experiments demonstrate that HBPO reduces average token usage by up to 60.6% while improving accuracy by 3.14% across four reasoning benchmarks. Most notably, HBPO exhibits emergent adaptive behavior where models automatically adjust reasoning depth based on problem complexity. Our results suggest that reasoning efficiency and capability are not inherently conflicting, and can be simultaneously optimized through appropriately structured hierarchical training that preserves exploration diversity.

Authors:Ian Chuang, Jinyu Zou, Andrew Lee, Dechen Gao, Iman Soltani
Title: Look, Focus, Act: Efficient and Robust Robot Learning via Human Gaze and Foveated Vision Transformers
Abstract:
Human vision is a highly active process driven by gaze, which directs attention to task-relevant regions through foveation, dramatically reducing visual processing. In contrast, robot learning systems typically rely on passive, uniform processing of raw camera images. In this work, we explore how incorporating human-like active gaze into robotic policies can enhance efficiency and robustness. We develop GIAVA (Gaze Integrated Active-Vision ALOHA), a robot vision system that emulates human head and neck movement, and gaze adjustment for foveated processing. Extending the AV-ALOHA robot platform, we introduce a framework for simultaneously collecting eye-tracking, perspective control, and robot manipulation demonstration data from a human operator. We also open-source a simulation benchmark and dataset for training robot policies that incorporate human gaze. Inspired by recent work in foveated image segmentation and given the widespread use of Vision Transformers (ViTs) in robot learning, we integrate gaze information into ViTs using a foveated patch tokenization scheme. Compared to uniform patch tokenization, this significantly reduces the number of tokens, and thus computation. Our results show that our method for foveated robot vision drastically reduces computational overhead, and enhances robustness to background distractors. Notably, on certain high-precision tasks, foveated vision also improves performance, as reflected in higher success rates. Together, these findings suggest that human-inspired foveated visual processing offers untapped potential and should be further considered as a useful inductive bias in robotic vision systems. https://ian-chuang.github.io/gaze-av-aloha/

Authors:Shuo Chen, Jianzhe Liu, Zhen Han, Yan Xia, Daniel Cremers, Philip Torr, Volker Tresp, Jindong Gu
Title: True Multimodal In-Context Learning Needs Attention to the Visual Context
Abstract:
Multimodal Large Language Models (MLLMs), built on powerful language backbones, have enabled Multimodal In-Context Learning (MICL)-adapting to new tasks from a few multimodal demonstrations consisting of images, questions, and answers. Despite showing noticeable improvement on standard vision-language datasets, current MLLMs struggle to leverage visual information in the demonstrations. Specifically, they tend to neglect visual cues and over-rely on textual patterns, leading to mere text imitation rather than genuine multimodal adaptation. This behavior makes MICL still unimodal and largely restricts its practical utility. More importantly, this limitation is often concealed by the improved performance on tasks that do not require understanding the visual context. As a result, how to effectively enhance MICL ability and reliably evaluate the MICL performance remains underexplored. To address these issues, we first introduce Dynamic Attention Reallocation (DARA), an efficient fine-tuning strategy that encourages models to attend to the visual context by rebalancing attention across visual and textual tokens. In addition, we present TrueMICL, an MICL-dedicated dataset with both support and test sets that explicitly requires the integration of multimodal information-particularly visual content-for correct task completion. Extensive experiments demonstrate the effectiveness of our holistic solution, showcasing substantial improvements in the true multimodal in-context learning capabilities. Code and datasets are available at https://chenxshuo.github.io/true-micl-colm .

Authors:Feng-Qi Cui, Anyang Tong, Jinyang Huang, Jie Zhang, Dan Guo, Zhi Liu, Meng Wang
Title: Learning from Heterogeneity: Generalizing Dynamic Facial Expression Recognition via Distributionally Robust Optimization
Abstract:
Dynamic Facial Expression Recognition (DFER) plays a critical role in affective computing and human-computer interaction. Although existing methods achieve comparable performance, they inevitably suffer from performance degradation under sample heterogeneity caused by multi-source data and individual expression variability. To address these challenges, we propose a novel framework, called Heterogeneity-aware Distributional Framework (HDF), and design two plug-and-play modules to enhance time-frequency modeling and mitigate optimization imbalance caused by hard samples. Specifically, the Time-Frequency Distributional Attention Module (DAM) captures both temporal consistency and frequency robustness through a dual-branch attention design, improving tolerance to sequence inconsistency and visual style shifts. Then, based on gradient sensitivity and information bottleneck principles, an adaptive optimization module Distribution-aware Scaling Module (DSM) is introduced to dynamically balance classification and contrastive losses, enabling more stable and discriminative representation learning. Extensive experiments on two widely used datasets, DFEW and FERV39k, demonstrate that HDF significantly improves both recognition accuracy and robustness. Our method achieves superior weighted average recall (WAR) and unweighted average recall (UAR) while maintaining strong generalization across diverse and imbalanced scenarios. Codes are released at https://github.com/QIcita/HDF_DFER.

Authors:Xingyu Wu, Yuchen Yan, Shangke Lyu, Linjuan Wu, Yiwen Qiu, Yongliang Shen, Weiming Lu, Jian Shao, Jun Xiao, Yueting Zhuang
Title: LAPO: Internalizing Reasoning Efficiency via Length-Adaptive Policy Optimization
Abstract:
Large reasoning models have achieved remarkable performance through extended chain-of-thought sequences, yet this computational freedom leads to excessive token generation even for simple problems. We present Length-Adaptive Policy Optimization (LAPO), a novel framework that transforms reasoning length control from an external constraint into an intrinsic model capability. Unlike existing approaches that impose rigid limits or rely on post-hoc interventions, LAPO enables models to internalize an understanding of appropriate reasoning depth through a two-stage reinforcement learning process. In the first stage, models learn natural reasoning patterns by discovering the statistical distribution of successful solution lengths. The second stage leverages these patterns as meta-cognitive guidance, embedding them directly within the model's reasoning context to ensure inference-time flexibility. Experiments on mathematical reasoning benchmarks demonstrate that LAPO reduces token usage by up to 40.9% while improving accuracy by 2.3%. Our analysis reveals that models trained with LAPO develop emergent abilities to allocate computational resources based on problem complexity, achieving efficient reasoning without sacrificing quality.

Authors:Ruizhe Zhu, Hao Zhu, Yaxuan Li, Syang Zhou, Shijing Cai, Malgorzata Lazuka, Elliott Ash
Title: DialogueForge: LLM Simulation of Human-Chatbot Dialogue
Abstract:
Collecting human-chatbot dialogues typically demands substantial manual effort and is time-consuming, which limits and poses challenges for research on conversational AI. In this work, we propose DialogueForge - a framework for generating AI-simulated conversations in human-chatbot style. To initialize each generated conversation, DialogueForge uses seed prompts extracted from real human-chatbot interactions. We test a variety of LLMs to simulate the human chatbot user, ranging from state-of-the-art proprietary models to small-scale open-source LLMs, and generate multi-turn dialogues tailored to specific tasks. In addition, we explore fine-tuning techniques to enhance the ability of smaller models to produce indistinguishable human-like dialogues. We evaluate the quality of the simulated conversations and compare different models using the UniEval and GTEval evaluation protocols. Our experiments show that large proprietary models (e.g., GPT-4o) generally outperform others in generating more realistic dialogues, while smaller open-source models (e.g., Llama, Mistral) offer promising performance with greater customization. We demonstrate that the performance of smaller models can be significantly improved by employing supervised fine-tuning techniques. Nevertheless, maintaining coherent and natural long-form human-like dialogues remains a common challenge across all models.

Authors:Wenjie Huang, Qi Yang, Shuting Xia, He Huang, Zhu Li, Yiling Xu
Title: LINR-PCGC: Lossless Implicit Neural Representations for Point Cloud Geometry Compression
Abstract:
Existing AI-based point cloud compression methods struggle with dependence on specific training data distributions, which limits their real-world deployment. Implicit Neural Representation (INR) methods solve the above problem by encoding overfitted network parameters to the bitstream, resulting in more distribution-agnostic results. However, due to the limitation of encoding time and decoder size, current INR based methods only consider lossy geometry compression. In this paper, we propose the first INR based lossless point cloud geometry compression method called Lossless Implicit Neural Representations for Point Cloud Geometry Compression (LINR-PCGC). To accelerate encoding speed, we design a group of point clouds level coding framework with an effective network initialization strategy, which can reduce around 60% encoding time. A lightweight coding network based on multiscale SparseConv, consisting of scale context extraction, child node prediction, and model compression modules, is proposed to realize fast inference and compact decoder size. Experimental results show that our method consistently outperforms traditional and AI-based methods: for example, with the convergence time in the MVUB dataset, our method reduces the bitstream by approximately 21.21% compared to G-PCC TMC13v23 and 21.95% compared to SparsePCGC. Our project can be seen on https://huangwenjie2023.github.io/LINR-PCGC/.

Authors:David Bann, Ed Lowther, Liam Wright, Yevgeniya Kovalchuk
Title: Why can't Epidemiology be automated (yet)?
Abstract:
Recent advances in artificial intelligence (AI) - particularly generative AI - present new opportunities to accelerate, or even automate, epidemiological research. Unlike disciplines based on physical experimentation, a sizable fraction of Epidemiology relies on secondary data analysis and thus is well-suited for such augmentation. Yet, it remains unclear which specific tasks can benefit from AI interventions or where roadblocks exist. Awareness of current AI capabilities is also mixed. Here, we map the landscape of epidemiological tasks using existing datasets - from literature review to data access, analysis, writing up, and dissemination - and identify where existing AI tools offer efficiency gains. While AI can increase productivity in some areas such as coding and administrative tasks, its utility is constrained by limitations of existing AI models (e.g. hallucinations in literature reviews) and human systems (e.g. barriers to accessing datasets). Through examples of AI-generated epidemiological outputs, including fully AI-generated papers, we demonstrate that recently developed agentic systems can now design and execute epidemiological analysis, albeit to varied quality (see https://github.com/edlowther/automated-epidemiology). Epidemiologists have new opportunities to empirically test and benchmark AI systems; realising the potential of AI will require two-way engagement between epidemiologists and engineers.

Authors:Hugo Carlesso, Maria Eliza Patulea, Moncef Garouani, Radu Tudor Ionescu, Josiane Mothe
Title: GeMix: Conditional GAN-Based Mixup for Improved Medical Image Augmentation
Abstract:
Mixup has become a popular augmentation strategy for image classification, yet its naive pixel-wise interpolation often produces unrealistic images that can hinder learning, particularly in high-stakes medical applications. We propose GeMix, a two-stage framework that replaces heuristic blending with a learned, label-aware interpolation powered by class-conditional GANs. First, a StyleGAN2-ADA generator is trained on the target dataset. During augmentation, we sample two label vectors from Dirichlet priors biased toward different classes and blend them via a Beta-distributed coefficient. Then, we condition the generator on this soft label to synthesize visually coherent images that lie along a continuous class manifold. We benchmark GeMix on the large-scale COVIDx-CT-3 dataset using three backbones (ResNet-50, ResNet-101, EfficientNet-B0). When combined with real data, our method increases macro-F1 over traditional mixup for all backbones, reducing the false negative rate for COVID-19 detection. GeMix is thus a drop-in replacement for pixel-space mixup, delivering stronger regularization and greater semantic fidelity, without disrupting existing training pipelines. We publicly release our code at https://github.com/hugocarlesso/GeMix to foster reproducibility and further research.

Authors:Simon Winther Albertsen, Hjalte Svaneborg Bjørnstrup, Mostafa Mehdipour Ghazi
Title: RARE-UNet: Resolution-Aligned Routing Entry for Adaptive Medical Image Segmentation
Abstract:
Accurate segmentation is crucial for clinical applications, but existing models often assume fixed, high-resolution inputs and degrade significantly when faced with lower-resolution data in real-world scenarios. To address this limitation, we propose RARE-UNet, a resolution-aware multi-scale segmentation architecture that dynamically adapts its inference path to the spatial resolution of the input. Central to our design are multi-scale blocks integrated at multiple encoder depths, a resolution-aware routing mechanism, and consistency-driven training that aligns multi-resolution features with full-resolution representations. We evaluate RARE-UNet on two benchmark brain imaging tasks for hippocampus and tumor segmentation. Compared to standard UNet, its multi-resolution augmented variant, and nnUNet, our model achieves the highest average Dice scores of 0.84 and 0.65 across resolution, while maintaining consistent performance and significantly reduced inference time at lower resolutions. These results highlight the effectiveness and scalability of our architecture in achieving resolution-robust segmentation. The codes are available at: https://github.com/simonsejse/RARE-UNet.

Authors:Sizhou Chen, Shufan Jiang, Chi Zhang, Xiao-Lei Zhang, Xuelong Li
Title: HAMLET: Hyperadaptive Agent-based Modeling for Live Embodied Theatrics
Abstract:
Creating an immersive and interactive theatrical experience is a long-term goal in the field of interactive narrative. The emergence of large language model (LLM) is providing a new path to achieve this goal. However, existing LLM-based drama generation methods often result in AI agents that lack initiative and cannot interact with the physical environment. Furthermore, these methods typically require detailed user input to drive the drama. These limitations reduce the interactivity and immersion of online real-time performance. To address the above challenges, we propose HAMLET, a multi-agent framework focused on drama creation and online performance. Given a simple topic, the framework generates a narrative blueprint, guiding the subsequent improvisational performance. During the online performance, each actor is given an autonomous mind. This means that actors can make independent decisions based on their own background, goals, and emotional state. In addition to conversations with other actors, their decisions can also change the state of scene props through actions such as opening a letter or picking up a weapon. The change is then broadcast to other related actors, updating what they know and care about, which in turn influences their next action. To evaluate the quality of drama performance, we designed an evaluation method to assess three primary aspects, including character performance, narrative quality, and interaction experience. The experimental evaluation shows that HAMLET can create expressive and coherent theatrical experiences. Our code, dataset and models are available at https://github.com/HAMLET-2025/HAMLET.

Authors:Johannes Ackermann, Takashi Ishida, Masashi Sugiyama
Title: Off-Policy Corrected Reward Modeling for Reinforcement Learning from Human Feedback
Abstract:
Reinforcement Learning from Human Feedback (RLHF) allows us to train models, such as language models (LMs), to follow complex human preferences. In RLHF for LMs, we first train an LM using supervised fine-tuning, sample pairs of responses, obtain human feedback, and use the resulting data to train a reward model (RM). RL methods are then used to train the LM to maximize the reward given by the RM. As training progresses, the responses generated by the LM no longer resemble the responses seen by the RM during training, leading to the RM becoming inaccurate. The score given by the RM keeps increasing, but the learned behavior no longer matches the human preferences. This issue is known as overoptimization. We investigate overoptimization from the point of view of distribution shift and show that the shift results in an inconsistent estimate of the RM parameters, leading to an inconsistent estimate of the policy gradient. We propose Off-Policy Corrected Reward Modeling (OCRM), which iteratively off-policy corrects the RM using importance weighting, without requiring new labels or samples. This results in a more accurate RM, which empirically leads to an improved final policy. We validate our approach in experiments with summarization and chatbot datasets and show that it performs significantly better than standard RLHF methods and baselines. Our implementation is available at https://github.com/JohannesAck/OffPolicyCorrectedRewardModeling

Authors:Ruijie Zhu, Mulin Yu, Linning Xu, Lihan Jiang, Yixuan Li, Tianzhu Zhang, Jiangmiao Pang, Bo Dai
Title: ObjectGS: Object-aware Scene Reconstruction and Scene Understanding via Gaussian Splatting
Abstract:
3D Gaussian Splatting is renowned for its high-fidelity reconstructions and real-time novel view synthesis, yet its lack of semantic understanding limits object-level perception. In this work, we propose ObjectGS, an object-aware framework that unifies 3D scene reconstruction with semantic understanding. Instead of treating the scene as a unified whole, ObjectGS models individual objects as local anchors that generate neural Gaussians and share object IDs, enabling precise object-level reconstruction. During training, we dynamically grow or prune these anchors and optimize their features, while a one-hot ID encoding with a classification loss enforces clear semantic constraints. We show through extensive experiments that ObjectGS not only outperforms state-of-the-art methods on open-vocabulary and panoptic segmentation tasks, but also integrates seamlessly with applications like mesh extraction and scene editing. Project page: https://ruijiezhu94.github.io/ObjectGS_page

Authors:Julia Machnio, Mads Nielsen, Mostafa Mehdipour Ghazi
Title: To Label or Not to Label: PALM -- A Predictive Model for Evaluating Sample Efficiency in Active Learning Models
Abstract:
Active learning (AL) seeks to reduce annotation costs by selecting the most informative samples for labeling, making it particularly valuable in resource-constrained settings. However, traditional evaluation methods, which focus solely on final accuracy, fail to capture the full dynamics of the learning process. To address this gap, we propose PALM (Performance Analysis of Active Learning Models), a unified and interpretable mathematical model that characterizes AL trajectories through four key parameters: achievable accuracy, coverage efficiency, early-stage performance, and scalability. PALM provides a predictive description of AL behavior from partial observations, enabling the estimation of future performance and facilitating principled comparisons across different strategies. We validate PALM through extensive experiments on CIFAR-10/100 and ImageNet-50/100/200, covering a wide range of AL methods and self-supervised embeddings. Our results demonstrate that PALM generalizes effectively across datasets, budgets, and strategies, accurately predicting full learning curves from limited labeled data. Importantly, PALM reveals crucial insights into learning efficiency, data space coverage, and the scalability of AL methods. By enabling the selection of cost-effective strategies and predicting performance under tight budget constraints, PALM lays the basis for more systematic, reproducible, and data-efficient evaluation of AL in both research and real-world applications. The code is available at: https://github.com/juliamachnio/PALM.

Authors:An Wang, Rulin Zhou, Mengya Xu, Yiru Ye, Longfei Gou, Yiting Chang, Hao Chen, Chwee Ming Lim, Jiankun Wang, Hongliang Ren
Title: EndoControlMag: Robust Endoscopic Vascular Motion Magnification with Periodic Reference Resetting and Hierarchical Tissue-aware Dual-Mask Control
Abstract:
Visualizing subtle vascular motions in endoscopic surgery is crucial for surgical precision and decision-making, yet remains challenging due to the complex and dynamic nature of surgical scenes. To address this, we introduce EndoControlMag, a training-free, Lagrangian-based framework with mask-conditioned vascular motion magnification tailored to endoscopic environments. Our approach features two key modules: a Periodic Reference Resetting (PRR) scheme that divides videos into short overlapping clips with dynamically updated reference frames to prevent error accumulation while maintaining temporal coherence, and a Hierarchical Tissue-aware Magnification (HTM) framework with dual-mode mask dilation. HTM first tracks vessel cores using a pretrained visual tracking model to maintain accurate localization despite occlusions and view changes. It then applies one of two adaptive softening strategies to surrounding tissues: motion-based softening that modulates magnification strength proportional to observed tissue displacement, or distance-based exponential decay that simulates biomechanical force attenuation. This dual-mode approach accommodates diverse surgical scenarios-motion-based softening excels with complex tissue deformations while distance-based softening provides stability during unreliable optical flow conditions. We evaluate EndoControlMag on our EndoVMM24 dataset spanning four different surgery types and various challenging scenarios, including occlusions, instrument disturbance, view changes, and vessel deformations. Quantitative metrics, visual assessments, and expert surgeon evaluations demonstrate that EndoControlMag significantly outperforms existing methods in both magnification accuracy and visual quality while maintaining robustness across challenging surgical conditions. The code, dataset, and video results are available at https://szupc.github.io/EndoControlMag/.

Authors:Zhaochen Guo, Zhixiang Shen, Xuanting Xie, Liangjian Wen, Zhao Kang
Title: Disentangling Homophily and Heterophily in Multimodal Graph Clustering
Abstract:
Multimodal graphs, which integrate unstructured heterogeneous data with structured interconnections, offer substantial real-world utility but remain insufficiently explored in unsupervised learning. In this work, we initiate the study of multimodal graph clustering, aiming to bridge this critical gap. Through empirical analysis, we observe that real-world multimodal graphs often exhibit hybrid neighborhood patterns, combining both homophilic and heterophilic relationships. To address this challenge, we propose a novel framework -- \textsc{Disentangled Multimodal Graph Clustering (DMGC)} -- which decomposes the original hybrid graph into two complementary views: (1) a homophily-enhanced graph that captures cross-modal class consistency, and (2) heterophily-aware graphs that preserve modality-specific inter-class distinctions. We introduce a \emph{Multimodal Dual-frequency Fusion} mechanism that jointly filters these disentangled graphs through a dual-pass strategy, enabling effective multimodal integration while mitigating category confusion. Our self-supervised alignment objectives further guide the learning process without requiring labels. Extensive experiments on both multimodal and multi-relational graph datasets demonstrate that DMGC achieves state-of-the-art performance, highlighting its effectiveness and generalizability across diverse settings. Our code is available at https://github.com/Uncnbb/DMGC.

Authors:Xiaofeng Shi, Yuduo Li, Qian Kou, Longbin Yu, Jinxin Xie, Hua Zhou
Title: SPAR: Scholar Paper Retrieval with LLM-based Agents for Enhanced Academic Search
Abstract:
Recent advances in large language models (LLMs) have opened new opportunities for academic literature retrieval. However, existing systems often rely on rigid pipelines and exhibit limited reasoning capabilities. We introduce SPAR, a multi-agent framework that incorporates RefChain-based query decomposition and query evolution to enable more flexible and effective search. To facilitate systematic evaluation, we also construct SPARBench, a challenging benchmark with expert-annotated relevance labels. Experimental results demonstrate that SPAR substantially outperforms strong baselines, achieving up to +56% F1 on AutoScholar and +23% F1 on SPARBench over the best-performing baseline. Together, SPAR and SPARBench provide a scalable, interpretable, and high-performing foundation for advancing research in scholarly retrieval. Code and data will be available at: https://github.com/xiaofengShi/SPAR

Authors:Naeem Paeedeh, Mahardhika Pratama, Wolfgang Mayer, Jimmy Cao, Ryszard Kowlczyk
Title: Cross-Domain Few-Shot Learning with Coalescent Projections and Latent Space Reservation
Abstract:
Despite the progress in Cross-Domain Few-Shot Learning (CD-FSL), a model pre-trained with DINO combined with a prototypical classifier outperforms the latest SOTA methods. A crucial limitation that needs to be overcome is that updating too many parameters of the transformers leads to overfitting due to the scarcity of labeled samples. To address this challenge, we propose a new concept, Coalescent Projection (CP), as an effective successor to soft prompts. Additionally, we propose a novel pseudo-class generation method combined with Self-Supervised Transformations (SSTs) that relies solely on the base domain to prepare the network for encountering unseen samples from different domains. The proposed method exhibits its effectiveness in comprehensive experiments on the extreme domain shift scenario of the BSCD-FSL benchmark. Our code is published at https://github.com/Naeem-Paeedeh/CPLSR.

Authors:Yiyuan Yang, Zichuan Liu, Lei Song, Kai Ying, Zhiguang Wang, Tom Bamford, Svitlana Vyetrenko, Jiang Bian, Qingsong Wen
Title: Time-RA: Towards Time Series Reasoning for Anomaly with LLM Feedback
Abstract:
Time series anomaly detection is critical across various domains, yet current approaches often limit analysis to mere binary anomaly classification without detailed categorization or further explanatory reasoning. To address these limitations, we propose a novel task, Time-series Reasoning for Anomaly (Time-RA) that transforms classical time series anomaly detection from a discriminative into a generative, reasoning-intensive task leveraging Large Language Models (LLMs). Also, we introduce the first real-world multimodal benchmark dataset, RATs40K, explicitly annotated for anomaly reasoning, comprising approximately 40,000 samples across 10 real-world domains. Each sample includes numeric time series data, contextual text information, and visual representations, each annotated with fine-grained categories (14 types for univariate anomalies and 6 for multivariate anomalies) and structured explanatory reasoning. We develop a sophisticated annotation framework utilizing ensemble-generated labels refined through GPT-4-driven feedback, ensuring accuracy and interpretability. Extensive benchmarking of LLMs and multimodal LLMs demonstrates the capabilities and limitations of current models, highlighting the critical role of supervised fine-tuning. Our dataset and task pave the way for significant advancements in interpretable time series anomaly detection and reasoning. The code (https://github.com/yyysjz1997/Time-RA) and dataset (https://huggingface.co/datasets/Time-RA/RATs40K) have been fully open-sourced to support and accelerate future research in this area.

Authors:Xinyue Zhu, Binghao Huang, Yunzhu Li
Title: Touch in the Wild: Learning Fine-Grained Manipulation with a Portable Visuo-Tactile Gripper
Abstract:
Handheld grippers are increasingly used to collect human demonstrations due to their ease of deployment and versatility. However, most existing designs lack tactile sensing, despite the critical role of tactile feedback in precise manipulation. We present a portable, lightweight gripper with integrated tactile sensors that enables synchronized collection of visual and tactile data in diverse, real-world, and in-the-wild settings. Building on this hardware, we propose a cross-modal representation learning framework that integrates visual and tactile signals while preserving their distinct characteristics. The learning procedure allows the emergence of interpretable representations that consistently focus on contacting regions relevant for physical interactions. When used for downstream manipulation tasks, these representations enable more efficient and effective policy learning, supporting precise robotic manipulation based on multimodal feedback. We validate our approach on fine-grained tasks such as test tube insertion and pipette-based fluid transfer, demonstrating improved accuracy and robustness under external disturbances. Our project page is available at https://binghao-huang.github.io/touch_in_the_wild/ .

Authors:Hao Li, Haoxiang Zhang, Ahmed E. Hassan
Title: The Rise of AI Teammates in Software Engineering (SE) 3.0: How Autonomous Coding Agents Are Reshaping Software Engineering
Abstract:
The future of software engineering--SE 3.0--is unfolding with the rise of AI teammates: autonomous, goal-driven systems collaborating with human developers. Among these, autonomous coding agents are especially transformative, now actively initiating, reviewing, and evolving code at scale. This paper introduces AIDev, the first large-scale dataset capturing how such agents operate in the wild. Spanning over 456,000 pull requests by five leading agents--OpenAI Codex, Devin, GitHub Copilot, Cursor, and Claude Code--across 61,000 repositories and 47,000 developers, AIDev provides an unprecedented empirical foundation for studying autonomous teammates in software development. Unlike prior work that has largely theorized the rise of AI-native software engineering, AIDev offers structured, open data to support research in benchmarking, agent readiness, optimization, collaboration modeling, and AI governance. The dataset includes rich metadata on PRs, authorship, review timelines, code changes, and integration outcomes--enabling exploration beyond synthetic benchmarks like SWE-bench. For instance, although agents often outperform humans in speed, their PRs are accepted less frequently, revealing a trust and utility gap. Furthermore, while agents accelerate code submission--one developer submitted as many PRs in three days as they had in three years--these are structurally simpler (via code complexity metrics). We envision AIDev as a living resource: extensible, analyzable, and ready for the SE and AI communities. Grounding SE 3.0 in real-world evidence, AIDev enables a new generation of research into AI-native workflows and supports building the next wave of symbiotic human-AI collaboration. The dataset is publicly available at https://github.com/SAILResearch/AI_Teammates_in_SE3. > AI Agent, Agentic AI, Coding Agent, Agentic Coding, Software Engineering Agent

Authors:Ruhul Amin Khalil, Kashif Ahmad, Hazrat Ali
Title: Redefining Elderly Care with Agentic AI: Challenges and Opportunities
Abstract:
The global ageing population necessitates new and emerging strategies for caring for older adults. In this article, we explore the potential for transformation in elderly care through Agentic Artificial Intelligence (AI), powered by Large Language Models (LLMs). We discuss the proactive and autonomous decision-making facilitated by Agentic AI in elderly care. Personalized tracking of health, cognitive care, and environmental management, all aimed at enhancing independence and high-level living for older adults, represents important areas of application. With a potential for significant transformation of elderly care, Agentic AI also raises profound concerns about data privacy and security, decision independence, and access. We share key insights to emphasize the need for ethical safeguards, privacy protections, and transparent decision-making. Our goal in this article is to provide a balanced discussion of both the potential and the challenges associated with Agentic AI, and to provide insights into its responsible use in elderly care, to bring Agentic AI into harmony with the requirements and vulnerabilities specific to the elderly. Finally, we identify the priorities for the academic research communities, to achieve human-centered advancements and integration of Agentic AI in elderly care. To the best of our knowledge, this is no existing study that reviews the role of Agentic AI in elderly care. Hence, we address the literature gap by analyzing the unique capabilities, applications, and limitations of LLM-based Agentic AI in elderly care. We also provide a companion interactive dashboard at https://hazratali.github.io/agenticai/.

Authors:Abdul-Kazeem Shamba, Kerstin Bach, Gavin Taylor
Title: eMargin: Revisiting Contrastive Learning with Margin-Based Separation
Abstract:
We revisit previous contrastive learning frameworks to investigate the effect of introducing an adaptive margin into the contrastive loss function for time series representation learning. Specifically, we explore whether an adaptive margin (eMargin), adjusted based on a predefined similarity threshold, can improve the separation between adjacent but dissimilar time steps and subsequently lead to better performance in downstream tasks. Our study evaluates the impact of this modification on clustering performance and classification in three benchmark datasets. Our findings, however, indicate that achieving high scores on unsupervised clustering metrics does not necessarily imply that the learned embeddings are meaningful or effective in downstream tasks. To be specific, eMargin added to InfoNCE consistently outperforms state-of-the-art baselines in unsupervised clustering metrics, but struggles to achieve competitive results in downstream classification with linear probing. The source code is publicly available at https://github.com/sfi-norwai/eMargin.

Authors:Kunyu Yu, Rui Yang, Jingchi Liao, Siqi Li, Huitao Li, Irene Li, Yifan Peng, Rishikesan Kamaleswaran, Nan Liu
Title: Benchmarking Foundation Models with Multimodal Public Electronic Health Records
Abstract:
Foundation models have emerged as a powerful approach for processing electronic health records (EHRs), offering flexibility to handle diverse medical data modalities. In this study, we present a comprehensive benchmark that evaluates the performance, fairness, and interpretability of foundation models, both as unimodal encoders and as multimodal learners, using the publicly available MIMIC-IV database. To support consistent and reproducible evaluation, we developed a standardized data processing pipeline that harmonizes heterogeneous clinical records into an analysis-ready format. We systematically compared eight foundation models, encompassing both unimodal and multimodal models, as well as domain-specific and general-purpose variants. Our findings demonstrate that incorporating multiple data modalities leads to consistent improvements in predictive performance without introducing additional bias. Through this benchmark, we aim to support the development of effective and trustworthy multimodal artificial intelligence (AI) systems for real-world clinical applications. Our code is available at https://github.com/nliulab/MIMIC-Multimodal.

Authors:Sam Johnson, Viet Pham, Thai Le
Title: Manipulating LLM Web Agents with Indirect Prompt Injection Attack via HTML Accessibility Tree
Abstract:
This work demonstrates that LLM-based web navigation agents offer powerful automation capabilities but are vulnerable to Indirect Prompt Injection (IPI) attacks. We show that adversaries can embed universal adversarial triggers in webpage HTML to hijack agent behavior that utilizes the accessibility tree to parse HTML, causing unintended or malicious actions. Using the Greedy Coordinate Gradient (GCG) algorithm and a Browser Gym agent powered by Llama-3.1, our system demonstrates high success rates across real websites in both targeted and general attacks, including login credential exfiltration and forced ad clicks. Our empirical results highlight critical security risks and the need for stronger defenses as LLM-driven autonomous web agents become more widely adopted. The system software (https://github.com/sej2020/manipulating-web-agents) is released under the MIT License, with an accompanying publicly available demo website (http://lethaiq.github.io/attack-web-llm-agent).

Authors:Qibing Ren, Sitao Xie, Longxuan Wei, Zhenfei Yin, Junchi Yan, Lizhuang Ma, Jing Shao
Title: When Autonomy Goes Rogue: Preparing for Risks of Multi-Agent Collusion in Social Systems
Abstract:
Recent large-scale events like election fraud and financial scams have shown how harmful coordinated efforts by human groups can be. With the rise of autonomous AI systems, there is growing concern that AI-driven groups could also cause similar harm. While most AI safety research focuses on individual AI systems, the risks posed by multi-agent systems (MAS) in complex real-world situations are still underexplored. In this paper, we introduce a proof-of-concept to simulate the risks of malicious MAS collusion, using a flexible framework that supports both centralized and decentralized coordination structures. We apply this framework to two high-risk fields: misinformation spread and e-commerce fraud. Our findings show that decentralized systems are more effective at carrying out malicious actions than centralized ones. The increased autonomy of decentralized systems allows them to adapt their strategies and cause more damage. Even when traditional interventions, like content flagging, are applied, decentralized groups can adjust their tactics to avoid detection. We present key insights into how these malicious groups operate and the need for better detection systems and countermeasures. Code is available at https://github.com/renqibing/RogueAgent.

Authors:Andrea Moschetto, Lemuel Puglisi, Alec Sargood, Pierluigi Dell'Acqua, Francesco Guarnera, Sebastiano Battiato, Daniele Ravì
Title: Benchmarking GANs, Diffusion Models, and Flow Matching for T1w-to-T2w MRI Translation
Abstract:
Magnetic Resonance Imaging (MRI) enables the acquisition of multiple image contrasts, such as T1-weighted (T1w) and T2-weighted (T2w) scans, each offering distinct diagnostic insights. However, acquiring all desired modalities increases scan time and cost, motivating research into computational methods for cross-modal synthesis. To address this, recent approaches aim to synthesize missing MRI contrasts from those already acquired, reducing acquisition time while preserving diagnostic quality. Image-to-image (I2I) translation provides a promising framework for this task. In this paper, we present a comprehensive benchmark of generative models$\unicode{x2013}$specifically, Generative Adversarial Networks (GANs), diffusion models, and flow matching (FM) techniques$\unicode{x2013}$for T1w-to-T2w 2D MRI I2I translation. All frameworks are implemented with comparable settings and evaluated on three publicly available MRI datasets of healthy adults. Our quantitative and qualitative analyses show that the GAN-based Pix2Pix model outperforms diffusion and FM-based methods in terms of structural fidelity, image quality, and computational efficiency. Consistent with existing literature, these results suggest that flow-based models are prone to overfitting on small datasets and simpler tasks, and may require more data to match or surpass GAN performance. These findings offer practical guidance for deploying I2I translation techniques in real-world MRI workflows and highlight promising directions for future research in cross-modal medical image synthesis. Code and models are publicly available at https://github.com/AndreaMoschetto/medical-I2I-benchmark.

Authors:Sujata Gaihre, Amir Thapa Magar, Prasuna Pokharel, Laxmi Tiwari
Title: Multimodal AI for Gastrointestinal Diagnostics: Tackling VQA in MEDVQA-GI 2025
Abstract:
This paper describes our approach to Subtask 1 of the ImageCLEFmed MEDVQA 2025 Challenge, which targets visual question answering (VQA) for gastrointestinal endoscopy. We adopt the Florence model-a large-scale multimodal foundation model-as the backbone of our VQA pipeline, pairing a powerful vision encoder with a text encoder to interpret endoscopic images and produce clinically relevant answers. To improve generalization, we apply domain-specific augmentations that preserve medical features while increasing training diversity. Experiments on the KASVIR dataset show that fine-tuning Florence yields accurate responses on the official challenge metrics. Our results highlight the potential of large multimodal models in medical VQA and provide a strong baseline for future work on explainability, robustness, and clinical integration. The code is publicly available at: https://github.com/TiwariLaxuu/VQA-Florence.git

Authors:Wenxuan Zeng, Tianshi Xu, Yi Chen, Yifan Zhou, Mingzhe Zhang, Jin Tan, Cheng Hong, Meng Li
Title: Towards Efficient Privacy-Preserving Machine Learning: A Systematic Review from Protocol, Model, and System Perspectives
Abstract:
Privacy-preserving machine learning (PPML) based on cryptographic protocols has emerged as a promising paradigm to protect user data privacy in cloud-based machine learning services. While it achieves formal privacy protection, PPML often incurs significant efficiency and scalability costs due to orders of magnitude overhead compared to the plaintext counterpart. Therefore, there has been a considerable focus on mitigating the efficiency gap for PPML. In this survey, we provide a comprehensive and systematic review of recent PPML studies with a focus on cross-level optimizations. Specifically, we categorize existing papers into protocol level, model level, and system level, and review progress at each level. We also provide qualitative and quantitative comparisons of existing works with technical insights, based on which we discuss future research directions and highlight the necessity of integrating optimizations across protocol, model, and system levels. We hope this survey can provide an overarching understanding of existing approaches and potentially inspire future breakthroughs in the PPML field. As the field is evolving fast, we also provide a public GitHub repository to continuously track the developments, which is available at https://github.com/PKU-SEC-Lab/Awesome-PPML-Papers.

Authors:Yitong Lin, Jiaying He, Jiahe Chen, Xinnan Zhu, Jianwei Zheng, Tao Bo
Title: BioGraphFusion: Graph Knowledge Embedding for Biological Completion and Reasoning
Abstract:
Motivation: Biomedical knowledge graphs (KGs) are crucial for drug discovery and disease understanding, yet their completion and reasoning are challenging. Knowledge Embedding (KE) methods capture global semantics but struggle with dynamic structural integration, while Graph Neural Networks (GNNs) excel locally but often lack semantic understanding. Even ensemble approaches, including those leveraging language models, often fail to achieve a deep, adaptive, and synergistic co-evolution between semantic comprehension and structural learning. Addressing this critical gap in fostering continuous, reciprocal refinement between these two aspects in complex biomedical KGs is paramount. Results: We introduce BioGraphFusion, a novel framework for deeply synergistic semantic and structural learning. BioGraphFusion establishes a global semantic foundation via tensor decomposition, guiding an LSTM-driven mechanism to dynamically refine relation embeddings during graph propagation. This fosters adaptive interplay between semantic understanding and structural learning, further enhanced by query-guided subgraph construction and a hybrid scoring mechanism. Experiments across three key biomedical tasks demonstrate BioGraphFusion's superior performance over state-of-the-art KE, GNN, and ensemble models. A case study on Cutaneous Malignant Melanoma 1 (CMM1) highlights its ability to unveil biologically meaningful pathways. Availability and Implementation: Source code and all training data are freely available for download at https://github.com/Y-TARL/BioGraphFusion. Supplementary information: Supplementary data are available at Bioinformatics online.

Authors:Weikang Gu, Mingyue Han, Li Xue, Heng Dong, Changcai Yang, Riqing Chen, Lifang Wei
Title: GPI-Net: Gestalt-Guided Parallel Interaction Network via Orthogonal Geometric Consistency for Robust Point Cloud Registration
Abstract:
The accurate identification of high-quality correspondences is a prerequisite task in feature-based point cloud registration. However, it is extremely challenging to handle the fusion of local and global features due to feature redundancy and complex spatial relationships. Given that Gestalt principles provide key advantages in analyzing local and global relationships, we propose a novel Gestalt-guided Parallel Interaction Network via orthogonal geometric consistency (GPI-Net) in this paper. It utilizes Gestalt principles to facilitate complementary communication between local and global information. Specifically, we introduce an orthogonal integration strategy to optimally reduce redundant information and generate a more compact global structure for high-quality correspondences. To capture geometric features in correspondences, we leverage a Gestalt Feature Attention (GFA) block through a hybrid utilization of self-attention and cross-attention mechanisms. Furthermore, to facilitate the integration of local detail information into the global structure, we design an innovative Dual-path Multi-Granularity parallel interaction aggregation (DMG) block to promote information exchange across different granularities. Extensive experiments on various challenging tasks demonstrate the superior performance of our proposed GPI-Net in comparison to existing methods. The code will be released at https://github.com/gwk429/GPI-Net.

Authors:Hui Yang, Jiaoyan Chen, Yuan He, Yongsheng Gao, Ian Horrocks
Title: Language Models as Ontology Encoders
Abstract:
OWL (Web Ontology Language) ontologies which are able to formally represent complex knowledge and support semantic reasoning have been widely adopted across various domains such as healthcare and bioinformatics. Recently, ontology embeddings have gained wide attention due to its potential to infer plausible new knowledge and approximate complex reasoning. However, existing methods face notable limitations: geometric model-based embeddings typically overlook valuable textual information, resulting in suboptimal performance, while the approaches that incorporate text, which are often based on language models, fail to preserve the logical structure. In this work, we propose a new ontology embedding method OnT, which tunes a Pretrained Language Model (PLM) via geometric modeling in a hyperbolic space for effectively incorporating textual labels and simultaneously preserving class hierarchies and other logical relationships of Description Logic EL. Extensive experiments on four real-world ontologies show that OnT consistently outperforms the baselines including the state-of-the-art across both tasks of prediction and inference of axioms. OnT also demonstrates strong potential in real-world applications, indicated by its robust transfer learning abilities and effectiveness in real cases of constructing a new ontology from SNOMED CT. Data and code are available at https://github.com/HuiYang1997/OnT.

Authors:Wan-Cyuan Fan, Yen-Chun Chen, Mengchen Liu, Alexander Jacobson, Lu Yuan, Leonid Sigal
Title: In-Depth and In-Breadth: Pre-training Multimodal Language Models Customized for Comprehensive Chart Understanding
Abstract:
Recent methods for customizing Large Vision Language Models (LVLMs) for domain-specific tasks have shown promising results in scientific chart comprehension. However, existing approaches face two major limitations: First, they rely on paired data from only a few chart types, limiting generalization to wide range of chart types. Secondly, they lack targeted pre-training for chart-data alignment, which hampers the model's understanding of underlying data. In this paper, we introduce ChartScope, an LVLM optimized for in-depth chart comprehension across diverse chart types. We propose an efficient data generation pipeline that synthesizes paired data for a wide range of chart types, along with a novel Dual-Path training strategy that enabling the model to succinctly capture essential data details while preserving robust reasoning capabilities by incorporating reasoning over the underlying data. Lastly, we establish ChartDQA, a new benchmark for evaluating not only question-answering at different levels but also underlying data understanding. Experimental results demonstrate that ChartScope significantly enhances comprehension on a wide range of chart types. The code and data are available at https://davidhalladay.github.io/chartscope_demo.

Authors:Licheng Liu, Zihan Wang, Linjie Li, Chenwei Xu, Yiping Lu, Han Liu, Avirup Sil, Manling Li
Title: A Simple "Try Again" Can Elicit Multi-Turn LLM Reasoning
Abstract:
Multi-turn problem solving is critical yet challenging for Large Reasoning Models (LRMs) to reflect on their reasoning and revise from feedback. Existing Reinforcement Learning (RL) methods train large reasoning models on a single-turn paradigm with verifiable rewards. However, we observe that models trained with existing RL paradigms often lose their ability to solve problems across multiple turns and struggle to revise answers based on contextual feedback, leading to repetitive responses. We ask: can LRMs learn to reflect their answers in a multi-turn context? In this work, we find that training models with multi-turn RL using only unary feedback (e.g., "Let's try again") after wrong answers can improve both single-turn performance and multi-turn reasoning. We introduce Unary Feedback as Observation (UFO) for reinforcement learning, which uses minimal yet common unary user feedback during iterative problem solving. It can be easily applied to existing single-turn RL training setups. Experimental results show that RL training with UFO keeps single-turn performance and improves multi-turn reasoning accuracy by up to 14%, enabling language models to better react to feedback in multi-turn problem solving. To further minimize the number of turns needed for a correct answer while encouraging diverse reasoning when mistakes occur, we design reward structures that guide models to produce careful and deliberate answers in each turn. Code: https://github.com/lichengliu03/unary-feedback

Authors:Boyuan Zheng, Zeyi Liao, Scott Salisbury, Zeyuan Liu, Michael Lin, Qinyuan Zheng, Zifan Wang, Xiang Deng, Dawn Song, Huan Sun, Yu Su
Title: WebGuard: Building a Generalizable Guardrail for Web Agents
Abstract:
The rapid development of autonomous web agents powered by Large Language Models (LLMs), while greatly elevating efficiency, exposes the frontier risk of taking unintended or harmful actions. This situation underscores an urgent need for effective safety measures, akin to access controls for human users. To address this critical challenge, we introduce WebGuard, the first comprehensive dataset designed to support the assessment of web agent action risks and facilitate the development of guardrails for real-world online environments. In doing so, WebGuard specifically focuses on predicting the outcome of state-changing actions and contains 4,939 human-annotated actions from 193 websites across 22 diverse domains, including often-overlooked long-tail websites. These actions are categorized using a novel three-tier risk schema: SAFE, LOW, and HIGH. The dataset includes designated training and test splits to support evaluation under diverse generalization settings. Our initial evaluations reveal a concerning deficiency: even frontier LLMs achieve less than 60% accuracy in predicting action outcomes and less than 60% recall in lagging HIGH-risk actions, highlighting the risks of deploying current-generation agents without dedicated safeguards. We therefore investigate fine-tuning specialized guardrail models using WebGuard. We conduct comprehensive evaluations across multiple generalization settings and find that a fine-tuned Qwen2.5VL-7B model yields a substantial improvement in performance, boosting accuracy from 37% to 80% and HIGH-risk action recall from 20% to 76%. Despite these improvements, the performance still falls short of the reliability required for high-stakes deployment, where guardrails must approach near-perfect accuracy and recall.

Authors:Jakub Walczak, Piotr Tomalak, Artur Laskowski
Title: Impact of Code Context and Prompting Strategies on Automated Unit Test Generation with Modern General-Purpose Large Language Models
Abstract:
Generative AI is gaining increasing attention in software engineering, where testing remains an indispensable reliability mechanism. According to the widely adopted testing pyramid, unit tests constitute the majority of test cases and are often schematic, requiring minimal domain expertise. Automatically generating such tests under the supervision of software engineers can significantly enhance productivity during the development phase of the software lifecycle. This paper investigates the impact of code context and prompting strategies on the quality and adequacy of unit tests generated by various large language models (LLMs) across several families. The results show that including docstrings notably improves code adequacy, while further extending context to the full implementation yields definitely smaller gains. Notably, the chain-of-thought prompting strategy -- applied even to 'reasoning' models -- achieves the best results, with up to 96.3\% branch coverage, a 57\% average mutation score, and near-perfect compilation success rate. Among the evaluated models, M5 (Gemini 2.5 Pro) demonstrated superior performance in both mutation score and branch coverage being still in top in terms of compilation success rate. All the code and resulting test suites are publicly available at https://github.com/peetery/LLM-analysis.

Authors:Dachuan Shi, Yonggan Fu, Xiangchi Yuan, Zhongzhi Yu, Haoran You, Sixu Li, Xin Dong, Jan Kautz, Pavlo Molchanov, Yingyan, Lin
Title: LaCache: Ladder-Shaped KV Caching for Efficient Long-Context Modeling of Large Language Models
Abstract:
Recent advancements in Large Language Models (LLMs) have spurred interest in numerous applications requiring robust long-range capabilities, essential for processing extensive input contexts and continuously generating extended outputs. As sequence lengths increase, the number of Key-Value (KV) pairs in LLMs escalates, creating a significant efficiency bottleneck. In this paper, we propose a new KV cache optimization paradigm called LaCache, a training-free method for efficient and accurate generative inference of LLMs. LaCache enables LLMs to simultaneously address both of the critical challenges in long-range modeling: robust long-range capabilities and continuous generation without running out-of-memory (OOM). Specifically, LaCache integrates two key innovations: (1) a ladder-shaped KV cache pattern that stores KV pairs not only sequentially (left-to-right within each layer) but also across layers (from shallow to deep), providing an extended span for capturing long-range dependencies under a fixed storage budget, thereby boosting long-range capabilities; and (2) an iterative compaction mechanism that progressively compresses older caches, freeing up space for new tokens within a fixed cache size. This token distance-based dynamic compression enables more effective continuous generation under constrained cache budgets. Experiments across various tasks, benchmarks, and LLM models consistently validate LaCache's effectiveness in enhancing LLMs' long-range capabilities. Our code is available at https://github.com/GATECH-EIC/LaCache.

Authors:Shengji Tang, Jianjian Cao, Weihao Lin, Jiale Hong, Bo Zhang, Shuyue Hu, Lei Bai, Tao Chen, Wanli Ouyang, Peng Ye
Title: Open-Source LLMs Collaboration Beats Closed-Source LLMs: A Scalable Multi-Agent System
Abstract:
This paper aims to demonstrate the potential and strengths of open-source collectives. It leads to a promising question: Can we harness multiple open-source LLMs to match or even beat the closed-source LLMs? To answer this, we propose SMACS, a scalable multi-agent collaboration system (MACS) framework with high performance. Specifically, for continuous integration of new LLMs and generalization to diverse questions, we first propose a Retrieval-based Prior Selection (RPS), which assigns a proxy performance score to each LLM to select the Top-k LLMs at the instance level for any given question. Then, we propose an Exploration-Exploitation-Driven Posterior Enhancement (EPE), encouraging the generation of diverse responses through prior dropping and selecting the high-quality response via a hybrid posterior score. Experiments on eight mainstream benchmarks validate the effectiveness of our SMACS: by integrating fifteen open-source LLMs, SMACS outperforms leading closed-source LLMs in 2025, e.g., Claude-3.7-Sonnet (+12.73%), GPT-4.1(+5.36%) and GPT-o3-mini(+5.28%) across multiple tasks. Remarkably, it even exceeds the average of best results of different datasets from both open-source LLMs (+2.86%) and closed-source LLMs (+2.04%), pushing the upper bound of intelligence. Code will be released at https://github.com/magent4aci/SMACS.

Authors:Julien Pourcel, Cédric Colas, Pierre-Yves Oudeyer
Title: Self-Improving Language Models for Evolutionary Program Synthesis: A Case Study on ARC-AGI
Abstract:
Many program synthesis tasks prove too challenging for even state-of-the-art language models to solve in single attempts. Search-based evolutionary methods offer a promising alternative by exploring solution spaces iteratively, but their effectiveness remain limited by the fixed capabilities of the underlying generative model. We propose SOAR, a method that learns program synthesis by integrating language models into a self-improving evolutionary loop. SOAR alternates between (1) an evolutionary search that uses an LLM to sample and refine candidate solutions, and (2) a hindsight learning phase that converts search attempts into valid problem-solution pairs used to fine-tune the LLM's sampling and refinement capabilities\, -- \,enabling increasingly effective search in subsequent iterations. On the challenging ARC-AGI benchmark, SOAR achieves significant performance gains across model scales and iterations, leveraging positive transfer between the sampling and refinement finetuning tasks. These improvements carry over to test-time adaptation, enabling SOAR to solve 52\% of the public test set. Our code is open-sourced at: https://github.com/flowersteam/SOAR

Authors:Kai Yi, Kiarash Jamali, Sjors H. W. Scheres
Title: All-atom inverse protein folding through discrete flow matching
Abstract:
The recent breakthrough of AlphaFold3 in modeling complex biomolecular interactions, including those between proteins and ligands, nucleotides, or metal ions, creates new opportunities for protein design. In so-called inverse protein folding, the objective is to find a sequence of amino acids that adopts a target protein structure. Many inverse folding methods struggle to predict sequences for complexes that contain non-protein components, and perform poorly with complexes that adopt multiple structural states. To address these challenges, we present ADFLIP (All-atom Discrete FLow matching Inverse Protein folding), a generative model based on discrete flow-matching for designing protein sequences conditioned on all-atom structural contexts. ADFLIP progressively incorporates predicted amino acid side chains as structural context during sequence generation and enables the design of dynamic protein complexes through ensemble sampling across multiple structural states. Furthermore, ADFLIP implements training-free classifier guidance sampling, which allows the incorporation of arbitrary pre-trained models to optimise the designed sequence for desired protein properties. We evaluated the performance of ADFLIP on protein complexes with small-molecule ligands, nucleotides, or metal ions, including dynamic complexes for which structure ensembles were determined by nuclear magnetic resonance (NMR). Our model achieves state-of-the-art performance in single-structure and multi-structure inverse folding tasks, demonstrating excellent potential for all-atom protein design. The code is available at https://github.com/ykiiiiii/ADFLIP.

Authors:Xiaoya Li, Xiaofei Sun, Albert Wang, Jiwei Li, Chris Shum
Title: CUDA-L1: Improving CUDA Optimization via Contrastive Reinforcement Learning
Abstract:
The exponential growth in demand for GPU computing resources has created an urgent need for automated CUDA optimization strategies. While recent advances in LLMs show promise for code generation, current SOTA models achieve low success rates in improving CUDA speed. In this paper, we introduce CUDA-L1, an automated reinforcement learning framework for CUDA optimization that employs a novel contrastive RL algorithm. CUDA-L1 achieves significant performance improvements on the CUDA optimization task: trained on A100, it delivers an average speedup of x3.12 with a median speedup of x1.42 against default baselines over across all 250 CUDA kernels of KernelBench, with peak speedups reaching x120. In addition to the default baseline provided by KernelBench, CUDA-L1 demonstrates x2.77 over Torch Compile, x2.88 over Torch Compile with reduce overhead, x2.81 over CUDA Graph implementations, and remarkably x7.72 over cuDNN libraries. Furthermore, the model also demonstrates portability across different GPU architectures. Beyond these benchmark results, CUDA-L1 demonstrates several properties: it 1) discovers a variety of CUDA optimization techniques and learns to combine them strategically to achieve optimal performance; 2) uncovers fundamental principles of CUDA optimization, such as the multiplicative nature of optimizations; 3) identifies non-obvious performance bottlenecks and rejects seemingly beneficial optimizations that actually harm performance. The capabilities demonstrate that, RL can transform an initially poor-performing LLM into an effective CUDA optimizer through speedup-based reward signals alone, without human expertise or domain knowledge. This paradigm opens possibilities for automated optimization of CUDA operations, and holds promise to substantially promote GPU efficiency and alleviate the rising pressure on GPU computing resources.

Authors:Pablo Marcos-Manchón, Lluís Fuentemilla
Title: Convergent transformations of visual representation in brains and models
Abstract:
A fundamental question in cognitive neuroscience is what shapes visual perception: the external world's structure or the brain's internal architecture. Although some perceptual variability can be traced to individual differences, brain responses to naturalistic stimuli evoke similar activity patterns across individuals, suggesting a convergent representational principle. Here, we test if this stimulus-driven convergence follows a common trajectory across people and deep neural networks (DNNs) during its transformation from sensory to high-level internal representations. We introduce a unified framework that traces representational flow by combining inter-subject similarity with alignment to model hierarchies. Applying this framework to three independent fMRI datasets of visual scene perception, we reveal a cortex-wide network, conserved across individuals, organized into two pathways: a medial-ventral stream for scene structure and a lateral-dorsal stream tuned for social and biological content. This functional organization is captured by the hierarchies of vision DNNs but not language models, reinforcing the specificity of the visual-to-semantic transformation. These findings show a convergent computational solution for visual encoding in both human and artificial vision, driven by the structure of the external world.

Authors:Kobi Hackenburg, Ben M. Tappin, Luke Hewitt, Ed Saunders, Sid Black, Hause Lin, Catherine Fist, Helen Margetts, David G. Rand, Christopher Summerfield
Title: The Levers of Political Persuasion with Conversational AI
Abstract:
There are widespread fears that conversational AI could soon exert unprecedented influence over human beliefs. Here, in three large-scale experiments (N=76,977), we deployed 19 LLMs-including some post-trained explicitly for persuasion-to evaluate their persuasiveness on 707 political issues. We then checked the factual accuracy of 466,769 resulting LLM claims. Contrary to popular concerns, we show that the persuasive power of current and near-future AI is likely to stem more from post-training and prompting methods-which boosted persuasiveness by as much as 51% and 27% respectively-than from personalization or increasing model scale. We further show that these methods increased persuasion by exploiting LLMs' unique ability to rapidly access and strategically deploy information and that, strikingly, where they increased AI persuasiveness they also systematically decreased factual accuracy.

Authors:Haoyang Li, Zhanchao Xu, Yiming Li, Xuejia Chen, Darian Li, Anxin Tian, Qingfa Xiao, Cheng Deng, Jun Wang, Qing Li, Lei Chen, Mingxuan Yuan
Title: LoopServe: An Adaptive Dual-phase LLM Inference Acceleration System for Multi-Turn Dialogues
Abstract:
Multi-turn dialogues are essential in many real-world applications of large language models, such as chatbots and virtual assistants. As conversation histories become longer, existing large language models face increasing computational and memory challenges, which hinder their ability to provide efficient and responsive interactions. Most current acceleration methods either compress the context or optimize key value caching, but they often rely on fixed or position-based heuristics that do not adapt well to the dynamic and unpredictable patterns found in actual multi-turn conversations. In this paper, we present LoopServe, an adaptive dual-phase inference acceleration framework for large language models in multi-turn dialogues. LoopServe introduces two main innovations. First, it performs online sparsification during the prefilling phase by dynamically selecting the most important parts of the attention matrix for each new input. Second, it uses progressive key value compression during decoding by adaptively maintaining a relevant and efficient cache based on the most recently generated output tokens. We also propose a \href{https://huggingface.co/datasets/TreeAILab/Multi-turn_Long-context_Benchmark_for_LLMs}{new benchmark} with eleven multi-turn datasets that reflect realistic query positions and conversational dependencies. Extensive experiments demonstrate that LoopServe consistently achieves superior effectiveness compared to existing baselines and significantly accelerates LLM inference across a wide range of long-context dialogue tasks.

Authors:Xiao Wang, Qian Zhu, Shujuan Wu, Bo Jiang, Shiliang Zhang, Yaowei Wang, Yonghong Tian, Bin Luo
Title: When Person Re-Identification Meets Event Camera: A Benchmark Dataset and An Attribute-guided Re-Identification Framework
Abstract:
Recent researchers have proposed using event cameras for person re-identification (ReID) due to their promising performance and better balance in terms of privacy protection, event camera-based person ReID has attracted significant attention. Currently, mainstream event-based person ReID algorithms primarily focus on fusing visible light and event stream, as well as preserving privacy. Although significant progress has been made, these methods are typically trained and evaluated on small-scale or simulated event camera datasets, making it difficult to assess their real identification performance and generalization ability. To address the issue of data scarcity, this paper introduces a large-scale RGB-event based person ReID dataset, called EvReID. The dataset contains 118,988 image pairs and covers 1200 pedestrian identities, with data collected across multiple seasons, scenes, and lighting conditions. We also evaluate 15 state-of-the-art person ReID algorithms, laying a solid foundation for future research in terms of both data and benchmarking. Based on our newly constructed dataset, this paper further proposes a pedestrian attribute-guided contrastive learning framework to enhance feature learning for person re-identification, termed TriPro-ReID. This framework not only effectively explores the visual features from both RGB frames and event streams, but also fully utilizes pedestrian attributes as mid-level semantic features. Extensive experiments on the EvReID dataset and MARS datasets fully validated the effectiveness of our proposed RGB-Event person ReID framework. The benchmark dataset and source code will be released on https://github.com/Event-AHU/Neuromorphic_ReID

Authors:Alexander Kolpakov
Title: Loss-Complexity Landscape and Model Structure Functions
Abstract:
We develop a framework for dualizing the Kolmogorov structure function $h_x(α)$, which then allows using computable complexity proxies. We establish a mathematical analogy between information-theoretic constructs and statistical mechanics, introducing a suitable partition function and free energy functional. We explicitly prove the Legendre-Fenchel duality between the structure function and free energy, showing detailed balance of the Metropolis kernel, and interpret acceptance probabilities as information-theoretic scattering amplitudes. A susceptibility-like variance of model complexity is shown to peak precisely at loss-complexity trade-offs interpreted as phase transitions. Practical experiments with linear and tree-based regression models verify these theoretical predictions, explicitly demonstrating the interplay between the model complexity, generalization, and overfitting threshold.

Authors:Atharv Goel, Mehar Khurana
Title: Just Add Geometry: Gradient-Free Open-Vocabulary 3D Detection Without Human-in-the-Loop
Abstract:
Modern 3D object detection datasets are constrained by narrow class taxonomies and costly manual annotations, limiting their ability to scale to open-world settings. In contrast, 2D vision-language models trained on web-scale image-text pairs exhibit rich semantic understanding and support open-vocabulary detection via natural language prompts. In this work, we leverage the maturity and category diversity of 2D foundation models to perform open-vocabulary 3D object detection without any human-annotated 3D labels. Our pipeline uses a 2D vision-language detector to generate text-conditioned proposals, which are segmented with SAM and back-projected into 3D using camera geometry and either LiDAR or monocular pseudo-depth. We introduce a geometric inflation strategy based on DBSCAN clustering and Rotating Calipers to infer 3D bounding boxes without training. To simulate adverse real-world conditions, we construct Pseudo-nuScenes, a fog-augmented, RGB-only variant of the nuScenes dataset. Experiments demonstrate that our method achieves competitive localization performance across multiple settings, including LiDAR-based and purely RGB-D inputs, all while remaining training-free and open-vocabulary. Our results highlight the untapped potential of 2D foundation models for scalable 3D perception. We open-source our code and resources at https://github.com/atharv0goel/open-world-3D-det.

Authors:Binbin Ji, Siddharth Agrawal, Qiance Tang, Yvonne Wu
Title: Enhancing Spatial Reasoning in Vision-Language Models via Chain-of-Thought Prompting and Reinforcement Learning
Abstract:
This study investigates the spatial reasoning capabilities of vision-language models (VLMs) through Chain-of-Thought (CoT) prompting and reinforcement learning. We begin by evaluating the impact of different prompting strategies and find that simple CoT formats, where the model generates a reasoning step before the answer, not only fail to help, but can even harm the model's original performance. In contrast, structured multi-stage prompting based on scene graphs (SceneGraph CoT) significantly improves spatial reasoning accuracy. Furthermore, to improve spatial reasoning ability, we fine-tune models using Group Relative Policy Optimization (GRPO) on the SAT dataset and evaluate their performance on CVBench. Compared to supervised fine-tuning (SFT), GRPO achieves higher accuracy on Pass@1 evaluations and demonstrates superior robustness under out-of-distribution (OOD) conditions. In particular, we find that SFT overfits to surface-level linguistic patterns and may degrade performance when test-time phrasing changes (e.g., from "closer to" to "farther from"). GRPO, on the other hand, generalizes more reliably and maintains stable performance under such shifts. Our findings provide insights into how reinforcement learning and structured prompting improve the spatial reasoning capabilities and generalization behavior of modern VLMs. All code is open source at: https://github.com/Yvonne511/spatial-vlm-investigator

Authors:Senqiao Yang, Junyi Li, Xin Lai, Bei Yu, Hengshuang Zhao, Jiaya Jia
Title: VisionThink: Smart and Efficient Vision Language Model via Reinforcement Learning
Abstract:
Recent advancements in vision-language models (VLMs) have improved performance by increasing the number of visual tokens, which are often significantly longer than text tokens. However, we observe that most real-world scenarios do not require such an extensive number of visual tokens. While the performance drops significantly in a small subset of OCR-related tasks, models still perform accurately in most other general VQA tasks with only 1/4 resolution. Therefore, we propose to dynamically process distinct samples with different resolutions, and present a new paradigm for visual token compression, namely, VisionThink. It starts with a downsampled image and smartly decides whether it is sufficient for problem solving. Otherwise, the model could output a special token to request the higher-resolution image. Compared to existing Efficient VLM methods that compress tokens using fixed pruning ratios or thresholds, VisionThink autonomously decides whether to compress tokens case by case. As a result, it demonstrates strong fine-grained visual understanding capability on OCR-related tasks, and meanwhile saves substantial visual tokens on simpler tasks. We adopt reinforcement learning and propose the LLM-as-Judge strategy to successfully apply RL to general VQA tasks. Moreover, we carefully design a reward function and penalty mechanism to achieve a stable and reasonable image resize call ratio. Extensive experiments demonstrate the superiority, efficiency, and effectiveness of our method. Our code is available at https://github.com/dvlab-research/VisionThink.

Authors:Dechen Gao, Boqi Zhao, Andrew Lee, Ian Chuang, Hanchu Zhou, Hang Wang, Zhe Zhao, Junshan Zhang, Iman Soltani
Title: VITA: Vision-to-Action Flow Matching Policy
Abstract:
We present VITA, a Vision-To-Action flow matching policy that evolves latent visual representations into latent actions for visuomotor control. Traditional flow matching and diffusion policies sample from standard source distributions (e.g., Gaussian noise) and require additional conditioning mechanisms like cross-attention to condition action generation on visual information, creating time and space overheads. VITA proposes a novel paradigm that treats latent images as the flow source, learning an inherent mapping from vision to action while eliminating separate conditioning modules and preserving generative modeling capabilities. Learning flows between fundamentally different modalities like vision and action is challenging due to sparse action data lacking semantic structures and dimensional mismatches between high-dimensional visual representations and raw actions. We address this by creating a structured action latent space via an autoencoder as the flow matching target, up-sampling raw actions to match visual representation shapes. Crucially, we supervise flow matching with both encoder targets and final action outputs through flow latent decoding, which backpropagates action reconstruction loss through sequential flow matching ODE solving steps for effective end-to-end learning. Implemented as simple MLP layers, VITA is evaluated on challenging bi-manual manipulation tasks on the ALOHA platform, including 5 simulation and 2 real-world tasks. Despite its simplicity, MLP-only VITA outperforms or matches state-of-the-art generative policies while reducing inference latency by 50-130% compared to conventional flow matching policies requiring different conditioning mechanisms or complex architectures. To our knowledge, VITA is the first MLP-only flow matching policy capable of solving complex bi-manual manipulation tasks like those in ALOHA benchmarks.

Authors:Arian Mousakhan, Sudhanshu Mittal, Silvio Galesso, Karim Farid, Thomas Brox
Title: Orbis: Overcoming Challenges of Long-Horizon Prediction in Driving World Models
Abstract:
Existing world models for autonomous driving struggle with long-horizon generation and generalization to challenging scenarios. In this work, we develop a model using simple design choices, and without additional supervision or sensors, such as maps, depth, or multiple cameras. We show that our model yields state-of-the-art performance, despite having only 469M parameters and being trained on 280h of video data. It particularly stands out in difficult scenarios like turning maneuvers and urban traffic. We test whether discrete token models possibly have advantages over continuous models based on flow matching. To this end, we set up a hybrid tokenizer that is compatible with both approaches and allows for a side-by-side comparison. Our study concludes in favor of the continuous autoregressive model, which is less brittle on individual design choices and more powerful than the model built on discrete tokens. Code, models and qualitative results are publicly available at https://lmb-freiburg.github.io/orbis.github.io/.

Authors:Ahmed Bahloul, Simon Malberg
Title: From Roots to Rewards: Dynamic Tree Reasoning with Reinforcement Learning
Abstract:
Modern language models address complex questions through chain-of-thought (CoT) reasoning (Wei et al., 2023) and retrieval augmentation (Lewis et al., 2021), yet struggle with error propagation and knowledge integration. Tree-structured reasoning methods, particularly the Probabilistic Tree-of-Thought (ProbTree)(Cao et al., 2023) framework, mitigate these issues by decomposing questions into hierarchical structures and selecting answers through confidence-weighted aggregation of parametric and retrieved knowledge (Yao et al., 2023). However, ProbTree's static implementation introduces two key limitations: (1) the reasoning tree is fixed during the initial construction phase, preventing dynamic adaptation to intermediate results, and (2) each node requires exhaustive evaluation of all possible solution strategies, creating computational inefficiency. We present a dynamic reinforcement learning (Sutton and Barto, 2018) framework that transforms tree-based reasoning into an adaptive process. Our approach incrementally constructs the reasoning tree based on real-time confidence estimates, while learning optimal policies for action selection (decomposition, retrieval, or aggregation). This maintains ProbTree's probabilistic rigor while improving both solution quality and computational efficiency through selective expansion and focused resource allocation. The work establishes a new paradigm for treestructured reasoning that balances the reliability of probabilistic frameworks with the flexibility required for real-world question answering systems. Code available at: https://github.com/ahmedehabb/From-Roots-to-Rewards-Dynamic-Tree-Reasoning-with-RL

Authors:Liuyi Wang, Xinyuan Xia, Hui Zhao, Hanqing Wang, Tai Wang, Yilun Chen, Chengju Liu, Qijun Chen, Jiangmiao Pang
Title: Rethinking the Embodied Gap in Vision-and-Language Navigation: A Holistic Study of Physical and Visual Disparities
Abstract:
Recent Vision-and-Language Navigation (VLN) advancements are promising, but their idealized assumptions about robot movement and control fail to reflect physically embodied deployment challenges. To bridge this gap, we introduce VLN-PE, a physically realistic VLN platform supporting humanoid, quadruped, and wheeled robots. For the first time, we systematically evaluate several ego-centric VLN methods in physical robotic settings across different technical pipelines, including classification models for single-step discrete action prediction, a diffusion model for dense waypoint prediction, and a train-free, map-based large language model (LLM) integrated with path planning. Our results reveal significant performance degradation due to limited robot observation space, environmental lighting variations, and physical challenges like collisions and falls. This also exposes locomotion constraints for legged robots in complex environments. VLN-PE is highly extensible, allowing seamless integration of new scenes beyond MP3D, thereby enabling more comprehensive VLN evaluation. Despite the weak generalization of current models in physical deployment, VLN-PE provides a new pathway for improving cross-embodiment's overall adaptability. We hope our findings and tools inspire the community to rethink VLN limitations and advance robust, practical VLN models. The code is available at https://crystalsixone.github.io/vln_pe.github.io/.

Authors:Youssef Tawfilis, Hossam Amer, Minar El-Aasser, Tallal Elshabrawy
Title: A Distributed Generative AI Approach for Heterogeneous Multi-Domain Environments under Data Sharing constraints
Abstract:
Federated Learning has gained increasing attention for its ability to enable multiple nodes to collaboratively train machine learning models without sharing their raw data. At the same time, Generative AI -- particularly Generative Adversarial Networks (GANs) -- have achieved remarkable success across a wide range of domains, such as healthcare, security, and Image Generation. However, training generative models typically requires large datasets and significant computational resources, which are often unavailable in real-world settings. Acquiring such resources can be costly and inefficient, especially when many underutilized devices -- such as IoT devices and edge devices -- with varying capabilities remain idle. Moreover, obtaining large datasets is challenging due to privacy concerns and copyright restrictions, as most devices are unwilling to share their data. To address these challenges, we propose a novel approach for decentralized GAN training that enables the utilization of distributed data and underutilized, low-capability devices while not sharing data in its raw form. Our approach is designed to tackle key challenges in decentralized environments, combining KLD-weighted Clustered Federated Learning to address the issues of data heterogeneity and multi-domain datasets, with Heterogeneous U-Shaped split learning to tackle the challenge of device heterogeneity under strict data sharing constraints -- ensuring that no labels or raw data, whether real or synthetic, are ever shared between nodes. Experimental results shows that our approach demonstrates consistent and significant improvements across key performance metrics, where it achieves 1.1x -- 2.2x higher image generation scores, an average 10% boost in classification metrics (up to 50% in multi-domain non-IID settings), in much lower latency compared to several benchmarks. Find our code at https://github.com/youssefga28/HuSCF-GAN.

Authors:Dongyeun Lee, Jiwan Hur, Hyounguk Shon, Jae Young Lee, Junmo Kim
Title: DMQ: Dissecting Outliers of Diffusion Models for Post-Training Quantization
Abstract:
Diffusion models have achieved remarkable success in image generation but come with significant computational costs, posing challenges for deployment in resource-constrained environments. Recent post-training quantization (PTQ) methods have attempted to mitigate this issue by focusing on the iterative nature of diffusion models. However, these approaches often overlook outliers, leading to degraded performance at low bit-widths. In this paper, we propose a DMQ which combines Learned Equivalent Scaling (LES) and channel-wise Power-of-Two Scaling (PTS) to effectively address these challenges. Learned Equivalent Scaling optimizes channel-wise scaling factors to redistribute quantization difficulty between weights and activations, reducing overall quantization error. Recognizing that early denoising steps, despite having small quantization errors, crucially impact the final output due to error accumulation, we incorporate an adaptive timestep weighting scheme to prioritize these critical steps during learning. Furthermore, identifying that layers such as skip connections exhibit high inter-channel variance, we introduce channel-wise Power-of-Two Scaling for activations. To ensure robust selection of PTS factors even with small calibration set, we introduce a voting algorithm that enhances reliability. Extensive experiments demonstrate that our method significantly outperforms existing works, especially at low bit-widths such as W4A6 (4-bit weight, 6-bit activation) and W4A8, maintaining high image generation quality and model stability. The code is available at https://github.com/LeeDongYeun/dmq.

Authors:Zhiwei Liu, Jielin Qiu, Shiyu Wang, Jianguo Zhang, Zuxin Liu, Roshan Ram, Haolin Chen, Weiran Yao, Shelby Heinecke, Silvio Savarese, Huan Wang, Caiming Xiong
Title: MCPEval: Automatic MCP-based Deep Evaluation for AI Agent Models
Abstract:
The rapid rise of Large Language Models (LLMs)-based intelligent agents underscores the need for robust, scalable evaluation frameworks. Existing methods rely on static benchmarks and labor-intensive data collection, limiting practical assessment. We introduce MCPEval, an open-source Model Context Protocol (MCP)-based framework that automates end-to-end task generation and deep evaluation of LLM agents across diverse domains. MCPEval standardizes metrics, seamlessly integrates with native agent tools, and eliminates manual effort in building evaluation pipelines. Empirical results across five real-world domains show its effectiveness in revealing nuanced, domain-specific performance. We publicly release MCPEval https://github.com/SalesforceAIResearch/MCPEval to promote reproducible and standardized LLM agent evaluation.

Authors:Qianru Zhang, Chenglei Yu, Haixin Wang, Yudong Yan, Yuansheng Cao, Siu-Ming Yiu, Tailin Wu, Hongzhi Yin
Title: FLDmamba: Integrating Fourier and Laplace Transform Decomposition with Mamba for Enhanced Time Series Prediction
Abstract:
Time series prediction, a crucial task across various domains, faces significant challenges due to the inherent complexities of time series data, including non-stationarity, multi-scale periodicity, and transient dynamics, particularly when tackling long-term predictions. While Transformer-based architectures have shown promise, their quadratic complexity with sequence length hinders their efficiency for long-term predictions. Recent advancements in State-Space Models, such as Mamba, offer a more efficient alternative for long-term modeling, but they cannot capture multi-scale periodicity and transient dynamics effectively. Meanwhile, they are susceptible to data noise issues in time series. This paper proposes a novel framework, FLDmamba (Fourier and Laplace Transform Decomposition Mamba), addressing these limitations. FLDmamba leverages the strengths of both Fourier and Laplace transforms to effectively capture both multi-scale periodicity, transient dynamics within time series data, and improve the robustness of the model to the data noise issue. Our extensive experiments demonstrate that FLDmamba achieves superior performance on time series prediction benchmarks, outperforming both Transformer-based and other Mamba-based architectures. To promote the reproducibility of our method, we have made both the code and data accessible via the following URL:{\href{https://github.com/AI4Science-WestlakeU/FLDmamba}{https://github.com/AI4Science-WestlakeU/\model}.

Authors:Weijieying Ren, Jingxi Zhu, Zehao Liu, Tianxiang Zhao, Vasant Honavar
Title: A Comprehensive Survey of Electronic Health Record Modeling: From Deep Learning Approaches to Large Language Models
Abstract:
Artificial intelligence (AI) has demonstrated significant potential in transforming healthcare through the analysis and modeling of electronic health records (EHRs). However, the inherent heterogeneity, temporal irregularity, and domain-specific nature of EHR data present unique challenges that differ fundamentally from those in vision and natural language tasks. This survey offers a comprehensive overview of recent advancements at the intersection of deep learning, large language models (LLMs), and EHR modeling. We introduce a unified taxonomy that spans five key design dimensions: data-centric approaches, neural architecture design, learning-focused strategies, multimodal learning, and LLM-based modeling systems. Within each dimension, we review representative methods addressing data quality enhancement, structural and temporal representation, self-supervised learning, and integration with clinical knowledge. We further highlight emerging trends such as foundation models, LLM-driven clinical agents, and EHR-to-text translation for downstream reasoning. Finally, we discuss open challenges in benchmarking, explainability, clinical alignment, and generalization across diverse clinical settings. This survey aims to provide a structured roadmap for advancing AI-driven EHR modeling and clinical decision support. For a comprehensive list of EHR-related methods, kindly refer to https://survey-on-tabular-data.github.io/.

Authors:Christina Thrainer, Md Meftahul Ferdaus, Mahdi Abdelguerfi, Christian Guetl, Steven Sloan, Kendall N. Niles, Ken Pathak
Title: FORTRESS: Function-composition Optimized Real-Time Resilient Structural Segmentation via Kolmogorov-Arnold Enhanced Spatial Attention Networks
Abstract:
Automated structural defect segmentation in civil infrastructure faces a critical challenge: achieving high accuracy while maintaining computational efficiency for real-time deployment. This paper presents FORTRESS (Function-composition Optimized Real-Time Resilient Structural Segmentation), a new architecture that balances accuracy and speed by using a special method that combines depthwise separable convolutions with adaptive Kolmogorov-Arnold Network integration. FORTRESS incorporates three key innovations: a systematic depthwise separable convolution framework achieving a 3.6x parameter reduction per layer, adaptive TiKAN integration that selectively applies function composition transformations only when computationally beneficial, and multi-scale attention fusion combining spatial, channel, and KAN-enhanced features across decoder levels. The architecture achieves remarkable efficiency gains with 91% parameter reduction (31M to 2.9M), 91% computational complexity reduction (13.7 to 1.17 GFLOPs), and 3x inference speed improvement while delivering superior segmentation performance. Evaluation on benchmark infrastructure datasets demonstrates state-of-the-art results with an F1- score of 0.771 and a mean IoU of 0.677, significantly outperforming existing methods including U-Net, SA-UNet, and U- KAN. The dual optimization strategy proves essential for optimal performance, establishing FORTRESS as a robust solution for practical structural defect segmentation in resource-constrained environments where both accuracy and computational efficiency are paramount. Comprehensive architectural specifications are provided in the Supplemental Material. Source code is available at URL: https://github.com/faeyelab/fortress-paper-code.

Authors:Mihran Miroyan, Rose Niousha, Joseph E. Gonzalez, Gireeja Ranade, Narges Norouzi
Title: ParaStudent: Generating and Evaluating Realistic Student Code by Teaching LLMs to Struggle
Abstract:
Large Language Models (LLMs) have shown strong performance on programming tasks, but can they generate student-like code like real students - imperfect, iterative, and stylistically diverse? We present ParaStudent, a systematic study of LLM-based "student-like" code generation in an introductory programming course setting. Using a dataset of timestamped student submissions across multiple semesters, we design low- and high-resolution experiments to model student progress and evaluate code outputs along semantic, functional, and stylistic dimensions. Our results show that fine-tuning significantly improves alignment with real student trajectories and captures error patterns, incremental improvements, and stylistic variations more faithfully. This study shows that modeling realistic student code requires capturing learning dynamics through context-aware generation, temporal modeling, and multi-dimensional evaluation. Code for experiments and evaluation is available at https://github.com/mmiroyan/ParaStudent.

Authors:Athanasios Papastathopoulos-Katsaros, Alexandra Stavrianidi, Zhandong Liu
Title: Improving physics-informed neural network extrapolation via transfer learning and adaptive activation functions
Abstract:
Physics-Informed Neural Networks (PINNs) are deep learning models that incorporate the governing physical laws of a system into the learning process, making them well-suited for solving complex scientific and engineering problems. Recently, PINNs have gained widespread attention as a powerful framework for combining physical principles with data-driven modeling to improve prediction accuracy. Despite their successes, however, PINNs often exhibit poor extrapolation performance outside the training domain and are highly sensitive to the choice of activation functions (AFs). In this paper, we introduce a transfer learning (TL) method to improve the extrapolation capability of PINNs. Our approach applies transfer learning (TL) within an extended training domain, using only a small number of carefully selected collocation points. Additionally, we propose an adaptive AF that takes the form of a linear combination of standard AFs, which improves both the robustness and accuracy of the model. Through a series of experiments, we demonstrate that our method achieves an average of 40% reduction in relative L2 error and an average of 50% reduction in mean absolute error in the extrapolation domain, all without a significant increase in computational cost. The code is available at https://github.com/LiuzLab/PINN-extrapolation .

Authors:George Jiayuan Gao, Tianyu Li, Junyao Shi, Yihan Li, Zizhe Zhang, Nadia Figueroa, Dinesh Jayaraman
Title: VLMgineer: Vision Language Models as Robotic Toolsmiths
Abstract:
Tool design and use reflect the ability to understand and manipulate the physical world through creativity, planning, and foresight. As such, these capabilities are often regarded as measurable indicators of intelligence across biological species. While much of today's research on robotic intelligence focuses on generating better controllers, inventing smarter tools offers a complementary form of physical intelligence: shifting the onus of problem-solving onto the tool's design. Given the vast and impressive common-sense, reasoning, and creative capabilities of today's foundation models, we investigate whether these models can provide useful priors to automatically design and effectively wield such tools? We present VLMgineer, a framework that harnesses the code generation abilities of vision language models (VLMs) together with evolutionary search to iteratively co-design physical tools and the action plans that operate them to perform a task. We evaluate VLMgineer on a diverse new benchmark of everyday manipulation scenarios that demand creative tool design and use. Across this suite, VLMgineer consistently discovers tools and policies that solve tasks more effectively and innovatively, transforming challenging robotics problems into straightforward executions. It also outperforms VLM-generated designs from human specifications and existing human-crafted tools for everyday tasks. To facilitate future research on automated tool invention, we will release our benchmark and code.

Authors:Said Ohamouddou, Abdellatif El Afia, Hanaa El Afia, Raddouane Chiheb
Title: MS-DGCNN++: A Multi-Scale Fusion Dynamic Graph Neural Network with Biological Knowledge Integration for LiDAR Tree Species Classification
Abstract:
Tree species classification from terrestrial LiDAR point clouds is challenging because of the complex multi-scale geometric structures in forest environments. Existing approaches using multi-scale dynamic graph convolutional neural networks (MS-DGCNN) employ parallel multi-scale processing, which fails to capture the semantic relationships between the hierarchical levels of the tree architecture. We present MS-DGCNN++, a hierarchical multiscale fusion dynamic graph convolutional network that uses semantically meaningful feature extraction at local, branch, and canopy scales with cross-scale information propagation. Our method employs scale-specific feature engineering, including standard geometric features for the local scale, normalized relative vectors for the branch scale, and distance information for the canopy scale. This hierarchical approach replaces uniform parallel processing with semantically differentiated representations that are aligned with the natural tree structure. Under the same proposed tree species data augmentation strategy for all experiments, MS-DGCNN++ achieved an accuracy of 94.96 \% on STPCTLS, outperforming DGCNN, MS-DGCNN, and the state-of-the-art model PPT. On FOR-species20K, it achieves 67.25\% accuracy (6.1\% improvement compared to MS-DGCNN). For standard 3D object recognition, our method outperformed DGCNN and MS-DGCNN with overall accuracies of 93.15\% on ModelNet40 and 94.05\% on ModelNet10. With lower parameters and reduced complexity compared to state-of-the-art transformer approaches, our method is suitable for resource-constrained applications while maintaining a competitive accuracy. Beyond tree classification, the method generalizes to standard 3D object recognition, establishing it as a versatile solution for diverse point cloud processing applications. The implementation code is publicly available at https://github.com/said-ohamouddou/MS-DGCNN2.

Authors:Yuncong Yang, Jiageng Liu, Zheyuan Zhang, Siyuan Zhou, Reuben Tan, Jianwei Yang, Yilun Du, Chuang Gan
Title: MindJourney: Test-Time Scaling with World Models for Spatial Reasoning
Abstract:
Spatial reasoning in 3D space is central to human cognition and indispensable for embodied tasks such as navigation and manipulation. However, state-of-the-art vision-language models (VLMs) struggle frequently with tasks as simple as anticipating how a scene will look after an egocentric motion: they perceive 2D images but lack an internal model of 3D dynamics. We therefore propose MindJourney, a test-time scaling framework that grants a VLM with this missing capability by coupling it to a controllable world model based on video diffusion. The VLM iteratively sketches a concise camera trajectory, while the world model synthesizes the corresponding view at each step. The VLM then reasons over this multi-view evidence gathered during the interactive exploration. Without any fine-tuning, our MindJourney achieves over an average 8% performance boost on the representative spatial reasoning benchmark SAT, showing that pairing VLMs with world models for test-time scaling offers a simple, plug-and-play route to robust 3D reasoning. Meanwhile, our method also improves upon the test-time inference VLMs trained through reinforcement learning, which demonstrates the potential of our method that utilizes world models for test-time scaling.

Authors:Ishraq Khan, Assad Chowdary, Sharoz Haseeb, Urvish Patel, Yousuf Zaii
Title: Kodezi Chronos: A Debugging-First Language Model for Repository-Scale Code Understanding
Abstract:
Large Language Models (LLMs) have improved code generation and software automation, but remain limited by inference-time context and lack structured reasoning over code. Debugging remains unsolved despite these advances. While Claude Opus 4 and GPT-4.1 achieve >70% on code synthesis benchmarks, they perform <15% on real debugging tasks. We introduce Kodezi Chronos, a language model built specifically for debugging. Chronos combines Adaptive Graph-Guided Retrieval to navigate codebases up to 10 million lines using multi-hop traversal (92% precision, 85% recall), Persistent Debug Memory trained on 15M+ sessions, and a 7-layer architecture for iterative fix-test-refine loops. On 5,000 real-world scenarios, Chronos achieves 67.3% fix accuracy, compared to 14.2% and 13.8% for Claude and GPT-4.1 respectively. Chronos reduces debugging time by 40% and iteration count by 65%. It resolves complex multi-file bugs involving cross-repository context and temporal reasoning. Key limitations include 23.4% success on hardware-dependent issues and 41.2% on dynamic language errors. Theoretical analysis shows O(k log d) retrieval complexity with convergence guarantees. In a human evaluation (N=50), 89% of participants preferred Chronos over baseline models. Chronos will be available in Kodezi OS in Q4 2025 and via API in Q1 2026.

Authors:Ruihan Yang, Qinxi Yu, Yecheng Wu, Rui Yan, Borui Li, An-Chieh Cheng, Xueyan Zou, Yunhao Fang, Xuxin Cheng, Ri-Zhao Qiu, Hongxu Yin, Sifei Liu, Song Han, Yao Lu, Xiaolong Wang
Title: EgoVLA: Learning Vision-Language-Action Models from Egocentric Human Videos
Abstract:
Real robot data collection for imitation learning has led to significant advancements in robotic manipulation. However, the requirement for robot hardware in the process fundamentally constrains the scale of the data. In this paper, we explore training Vision-Language-Action (VLA) models using egocentric human videos. The benefit of using human videos is not only for their scale but more importantly for the richness of scenes and tasks. With a VLA trained on human video that predicts human wrist and hand actions, we can perform Inverse Kinematics and retargeting to convert the human actions to robot actions. We fine-tune the model using a few robot manipulation demonstrations to obtain the robot policy, namely EgoVLA. We propose a simulation benchmark called Ego Humanoid Manipulation Benchmark, where we design diverse bimanual manipulation tasks with demonstrations. We fine-tune and evaluate EgoVLA with Ego Humanoid Manipulation Benchmark and show significant improvements over baselines and ablate the importance of human data. Videos can be found on our website: https://rchalyang.github.io/EgoVLA

Authors:Chandana Cheerla
Title: Advancing Retrieval-Augmented Generation for Structured Enterprise and Internal Data
Abstract:
Organizations increasingly rely on proprietary enterprise data, including HR records, structured reports, and tabular documents, for critical decision-making. While Large Language Models (LLMs) have strong generative capabilities, they are limited by static pretraining, short context windows, and challenges in processing heterogeneous data formats. Conventional Retrieval-Augmented Generation (RAG) frameworks address some of these gaps but often struggle with structured and semi-structured data. This work proposes an advanced RAG framework that combines hybrid retrieval strategies using dense embeddings (all-mpnet-base-v2) and BM25, enhanced by metadata-aware filtering with SpaCy NER and cross-encoder reranking. The framework applies semantic chunking to maintain textual coherence and retains tabular data structures to preserve row-column integrity. Quantized indexing optimizes retrieval efficiency, while human-in-the-loop feedback and conversation memory improve adaptability. Experiments on enterprise datasets show notable improvements: Precision@5 increased by 15 percent (90 versus 75), Recall@5 by 13 percent (87 versus 74), and Mean Reciprocal Rank by 16 percent (0.85 versus 0.69). Qualitative evaluations show higher scores in Faithfulness (4.6 versus 3.0), Completeness (4.2 versus 2.5), and Relevance (4.5 versus 3.2) on a 5-point Likert scale. These results demonstrate the framework's effectiveness in delivering accurate, comprehensive, and contextually relevant responses for enterprise tasks. Future work includes extending to multimodal data and integrating agent-based retrieval. The source code will be released at https://github.com/CheerlaChandana/Enterprise-Chatbot

Authors:Andrea Perin, Giacomo Lagomarsini, Claudio Gallicchio, Giuseppe Nuti
Title: Mixture of Raytraced Experts
Abstract:
We introduce a Mixture of Raytraced Experts, a stacked Mixture of Experts (MoE) architecture which can dynamically select sequences of experts, producing computational graphs of variable width and depth. Existing MoE architectures generally require a fixed amount of computation for a given sample. Our approach, in contrast, yields predictions with increasing accuracy as the computation cycles through the experts' sequence. We train our model by iteratively sampling from a set of candidate experts, unfolding the sequence akin to how Recurrent Neural Networks are trained. Our method does not require load-balancing mechanisms, and preliminary experiments show a reduction in training epochs of 10\% to 40\% with a comparable/higher accuracy. These results point to new research directions in the field of MoEs, allowing the design of potentially faster and more expressive models. The code is available at https://github.com/nutig/RayTracing

Authors:Jaehyun Kwak, Ramahdani Muhammad Izaaz Inhar, Se-Young Yun, Sung-Ju Lee
Title: QuRe: Query-Relevant Retrieval through Hard Negative Sampling in Composed Image Retrieval
Abstract:
Composed Image Retrieval (CIR) retrieves relevant images based on a reference image and accompanying text describing desired modifications. However, existing CIR methods only focus on retrieving the target image and disregard the relevance of other images. This limitation arises because most methods employing contrastive learning-which treats the target image as positive and all other images in the batch as negatives-can inadvertently include false negatives. This may result in retrieving irrelevant images, reducing user satisfaction even when the target image is retrieved. To address this issue, we propose Query-Relevant Retrieval through Hard Negative Sampling (QuRe), which optimizes a reward model objective to reduce false negatives. Additionally, we introduce a hard negative sampling strategy that selects images positioned between two steep drops in relevance scores following the target image, to effectively filter false negatives. In order to evaluate CIR models on their alignment with human satisfaction, we create Human-Preference FashionIQ (HP-FashionIQ), a new dataset that explicitly captures user preferences beyond target retrieval. Extensive experiments demonstrate that QuRe achieves state-of-the-art performance on FashionIQ and CIRR datasets while exhibiting the strongest alignment with human preferences on the HP-FashionIQ dataset. The source code is available at https://github.com/jackwaky/QuRe.

Authors:Diganta Misra, Nizar Islah, Victor May, Brice Rauby, Zihan Wang, Justine Gehring, Antonio Orvieto, Muawiz Chaudhary, Eilif B. Muller, Irina Rish, Samira Ebrahimi Kahou, Massimo Caccia
Title: GitChameleon 2.0: Evaluating AI Code Generation Against Python Library Version Incompatibilities
Abstract:
The rapid evolution of software libraries poses a considerable hurdle for code generation, necessitating continuous adaptation to frequent version updates while preserving backward compatibility. While existing code evolution benchmarks provide valuable insights, they typically lack execution-based evaluation for generating code compliant with specific library versions. To address this, we introduce GitChameleon 2.0, a novel, meticulously curated dataset comprising 328 Python code completion problems, each conditioned on specific library versions and accompanied by executable unit tests. GitChameleon 2.0 rigorously evaluates the capacity of contemporary large language models (LLMs), LLM-powered agents, code assistants, and RAG systems to perform version-conditioned code generation that demonstrates functional accuracy through execution. Our extensive evaluations indicate that state-of-the-art systems encounter significant challenges with this task; enterprise models achieving baseline success rates in the 48-51% range, underscoring the intricacy of the problem. By offering an execution-based benchmark emphasizing the dynamic nature of code libraries, GitChameleon 2.0 enables a clearer understanding of this challenge and helps guide the development of more adaptable and dependable AI code generation methods. We make the dataset and evaluation code publicly available at https://github.com/mrcabbage972/GitChameleonBenchmark.

Authors:M. Anwar Ma'sum, Mahardhika Pratama, Savitha Ramasamy, Lin Liu, Habibullah Habibullah, Ryszard Kowalczyk
Title: PROL : Rehearsal Free Continual Learning in Streaming Data via Prompt Online Learning
Abstract:
The data privacy constraint in online continual learning (OCL), where the data can be seen only once, complicates the catastrophic forgetting problem in streaming data. A common approach applied by the current SOTAs in OCL is with the use of memory saving exemplars or features from previous classes to be replayed in the current task. On the other hand, the prompt-based approach performs excellently in continual learning but with the cost of a growing number of trainable parameters. The first approach may not be applicable in practice due to data openness policy, while the second approach has the issue of throughput associated with the streaming data. In this study, we propose a novel prompt-based method for online continual learning that includes 4 main components: (1) single light-weight prompt generator as a general knowledge, (2) trainable scaler-and-shifter as specific knowledge, (3) pre-trained model (PTM) generalization preserving, and (4) hard-soft updates mechanism. Our proposed method achieves significantly higher performance than the current SOTAs in CIFAR100, ImageNet-R, ImageNet-A, and CUB dataset. Our complexity analysis shows that our method requires a relatively smaller number of parameters and achieves moderate training time, inference time, and throughput. For further study, the source code of our method is available at https://github.com/anwarmaxsum/PROL.

Authors:Feng Xiao, Jicong Fan
Title: Text-ADBench: Text Anomaly Detection Benchmark based on LLMs Embedding
Abstract:
Text anomaly detection is a critical task in natural language processing (NLP), with applications spanning fraud detection, misinformation identification, spam detection and content moderation, etc. Despite significant advances in large language models (LLMs) and anomaly detection algorithms, the absence of standardized and comprehensive benchmarks for evaluating the existing anomaly detection methods on text data limits rigorous comparison and development of innovative approaches. This work performs a comprehensive empirical study and introduces a benchmark for text anomaly detection, leveraging embeddings from diverse pre-trained language models across a wide array of text datasets. Our work systematically evaluates the effectiveness of embedding-based text anomaly detection by incorporating (1) early language models (GloVe, BERT); (2) multiple LLMs (LLaMa-2, LLama-3, Mistral, OpenAI (small, ada, large)); (3) multi-domain text datasets (news, social media, scientific publications); (4) comprehensive evaluation metrics (AUROC, AUPRC). Our experiments reveal a critical empirical insight: embedding quality significantly governs anomaly detection efficacy, and deep learning-based approaches demonstrate no performance advantage over conventional shallow algorithms (e.g., KNN, Isolation Forest) when leveraging LLM-derived embeddings.In addition, we observe strongly low-rank characteristics in cross-model performance matrices, which enables an efficient strategy for rapid model evaluation (or embedding evaluation) and selection in practical applications. Furthermore, by open-sourcing our benchmark toolkit that includes all embeddings from different models and code at https://github.com/jicongfan/Text-Anomaly-Detection-Benchmark, this work provides a foundation for future research in robust and scalable text anomaly detection systems.

Authors:Johann Frei, Nils Feldhus, Lisa Raithel, Roland Roller, Alexander Meyer, Frank Kramer
Title: Infherno: End-to-end Agent-based FHIR Resource Synthesis from Free-form Clinical Notes
Abstract:
For clinical data integration and healthcare services, the HL7 FHIR standard has established itself as a desirable format for interoperability between complex health data. Previous attempts at automating the translation from free-form clinical notes into structured FHIR resources rely on modular, rule-based systems or LLMs with instruction tuning and constrained decoding. Since they frequently suffer from limited generalizability and structural inconformity, we propose an end-to-end framework powered by LLM agents, code execution, and healthcare terminology database tools to address these issues. Our solution, called Infherno, is designed to adhere to the FHIR document schema and competes well with a human baseline in predicting FHIR resources from unstructured text. The implementation features a front end for custom and synthetic data and both local and proprietary models, supporting clinical data integration processes and interoperability across institutions.

Authors:Shilin Zhou, Zhenghua Li
Title: Improving Contextual ASR via Multi-grained Fusion with Large Language Models
Abstract:
While end-to-end Automatic Speech Recognition (ASR) models have shown impressive performance in transcribing general speech, they often struggle to accurately recognize contextually relevant keywords, such as proper nouns or user-specific entities. Previous approaches have explored leveraging keyword dictionaries in the textual modality to improve keyword recognition, either through token-level fusion that guides token-by-token generation or phrase-level fusion that enables direct copying of keyword phrases. However, these methods operate at different granularities and have their own limitations. In this paper, we propose a novel multi-grained fusion approach that jointly leverages the strengths of both token-level and phrase-level fusion with Large Language Models (LLMs). Our approach incorporates a late-fusion strategy that elegantly combines ASR's acoustic information with LLM's rich contextual knowledge, balancing fine-grained token precision with holistic phrase-level understanding. Experiments on Chinese and English datasets demonstrate that our approach achieves state-of-the-art performance on keyword-related metrics while preserving high accuracy on non-keyword text. Ablation studies further confirm that the token-level and phrase-level components both contribute significantly to the performance gains, complementing each other in our joint multi-grained framework. The code and models will be publicly available at https://github.com/.

Authors:Azhar Ikhtiarudin, Aditi Das, Param Thakkar, Akash Kundu
Title: BenchRL-QAS: Benchmarking reinforcement learning algorithms for quantum architecture search
Abstract:
We introduce BenchRL-QAS, a unified benchmarking framework for systematically evaluating reinforcement learning (RL) algorithms in quantum architecture search (QAS) across diverse variational quantum algorithm tasks and system sizes ranging from 2- to 8-qubit. Our study benchmarks nine RL agents including both value-based and policy-gradient methods on representative quantum problems such as variational quantum eigensolver, variational quantum state diagonalization, quantum classification, and state preparation, spanning both noiseless and realistic noisy regimes. We propose a weighted ranking metric that balances accuracy, circuit depth, gate count, and computational efficiency, enabling fair and comprehensive comparison. Our results first reveal that RL-based quantum classifier outperforms baseline variational classifiers. Then we conclude that no single RL algorithm is universally optimal when considering a set of QAS tasks; algorithmic performance is highly context-dependent, varying with task structure, qubit count, and noise. This empirical finding provides strong evidence for the "no free lunch" principle in RL-based quantum circuit design and highlights the necessity of tailored algorithm selection and systematic benchmarking for advancing quantum circuit synthesis. This work represents the most comprehensive RL-QAS benchmarking effort to date, and BenchRL-QAS along with all experimental data are made publicly available to support reproducibility and future research https://github.com/azhar-ikhtiarudin/bench-rlqas.

Authors:Shuangli Du, Siming Yan, Zhenghao Shi, Zhenzhen You, Lu Sun
Title: Wavelet-based Decoupling Framework for low-light Stereo Image Enhancement
Abstract:
Low-light images suffer from complex degradation, and existing enhancement methods often encode all degradation factors within a single latent space. This leads to highly entangled features and strong black-box characteristics, making the model prone to shortcut learning. To mitigate the above issues, this paper proposes a wavelet-based low-light stereo image enhancement method with feature space decoupling. Our insight comes from the following findings: (1) Wavelet transform enables the independent processing of low-frequency and high-frequency information. (2) Illumination adjustment can be achieved by adjusting the low-frequency component of a low-light image, extracted through multi-level wavelet decomposition. Thus, by using wavelet transform the feature space is decomposed into a low-frequency branch for illumination adjustment and multiple high-frequency branches for texture enhancement. Additionally, stereo low-light image enhancement can extract useful cues from another view to improve enhancement. To this end, we propose a novel high-frequency guided cross-view interaction module (HF-CIM) that operates within high-frequency branches rather than across the entire feature space, effectively extracting valuable image details from the other view. Furthermore, to enhance the high-frequency information, a detail and texture enhancement module (DTEM) is proposed based on cross-attention mechanism. The model is trained on a dataset consisting of images with uniform illumination and images with non-uniform illumination. Experimental results on both real and synthetic images indicate that our algorithm offers significant advantages in light adjustment while effectively recovering high-frequency information. The code and dataset are publicly available at: https://github.com/Cherisherr/WDCI-Net.git.

Authors:Ye Han, Lijun Zhang, Dejian Meng, Zhuang Zhang
Title: Topology Enhanced MARL for Multi-Vehicle Cooperative Decision-Making of CAVs
Abstract:
The exploration-exploitation trade-off constitutes one of the fundamental challenges in reinforcement learning (RL), which is exacerbated in multi-agent reinforcement learning (MARL) due to the exponential growth of joint state-action spaces. This paper proposes a topology-enhanced MARL (TPE-MARL) method for optimizing cooperative decision-making of connected and autonomous vehicles (CAVs) in mixed traffic. This work presents two primary contributions: First, we construct a game topology tensor for dynamic traffic flow, effectively compressing high-dimensional traffic state information and decrease the search space for MARL algorithms. Second, building upon the designed game topology tensor and using QMIX as the backbone RL algorithm, we establish a topology-enhanced MARL framework incorporating visit counts and agent mutual information. Extensive simulations across varying traffic densities and CAV penetration rates demonstrate the effectiveness of TPE-MARL. Evaluations encompassing training dynamics, exploration patterns, macroscopic traffic performance metrics, and microscopic vehicle behaviors reveal that TPE-MARL successfully balances exploration and exploitation. Consequently, it exhibits superior performance in terms of traffic efficiency, safety, decision smoothness, and task completion. Furthermore, the algorithm demonstrates decision-making rationality comparable to or exceeding that of human drivers in both mixed-autonomy and fully autonomous traffic scenarios. Code of our work is available at \href{https://github.com/leoPub/tpemarl}{https://github.com/leoPub/tpemarl}.

Authors:Giuliano Martinelli, Tommaso Bonomo, Pere-Lluís Huguet Cabot, Roberto Navigli
Title: BOOKCOREF: Coreference Resolution at Book Scale
Abstract:
Coreference Resolution systems are typically evaluated on benchmarks containing small- to medium-scale documents. When it comes to evaluating long texts, however, existing benchmarks, such as LitBank, remain limited in length and do not adequately assess system capabilities at the book scale, i.e., when co-referring mentions span hundreds of thousands of tokens. To fill this gap, we first put forward a novel automatic pipeline that produces high-quality Coreference Resolution annotations on full narrative texts. Then, we adopt this pipeline to create the first book-scale coreference benchmark, BOOKCOREF, with an average document length of more than 200,000 tokens. We carry out a series of experiments showing the robustness of our automatic procedure and demonstrating the value of our resource, which enables current long-document coreference systems to gain up to +20 CoNLL-F1 points when evaluated on full books. Moreover, we report on the new challenges introduced by this unprecedented book-scale setting, highlighting that current models fail to deliver the same performance they achieve on smaller documents. We release our data and code to encourage research and development of new book-scale Coreference Resolution systems at https://github.com/sapienzanlp/bookcoref.

Authors:Kun-Hsiang Lin, Yu-Wen Tseng, Kang-Yang Huang, Jhih-Ciang Wu, Wen-Huang Cheng
Title: InstructFLIP: Exploring Unified Vision-Language Model for Face Anti-spoofing
Abstract:
Face anti-spoofing (FAS) aims to construct a robust system that can withstand diverse attacks. While recent efforts have concentrated mainly on cross-domain generalization, two significant challenges persist: limited semantic understanding of attack types and training redundancy across domains. We address the first by integrating vision-language models (VLMs) to enhance the perception of visual input. For the second challenge, we employ a meta-domain strategy to learn a unified model that generalizes well across multiple domains. Our proposed InstructFLIP is a novel instruction-tuned framework that leverages VLMs to enhance generalization via textual guidance trained solely on a single domain. At its core, InstructFLIP explicitly decouples instructions into content and style components, where content-based instructions focus on the essential semantics of spoofing, and style-based instructions consider variations related to the environment and camera characteristics. Extensive experiments demonstrate the effectiveness of InstructFLIP by outperforming SOTA models in accuracy and substantially reducing training redundancy across diverse domains in FAS. Project website is available at https://kunkunlin1221.github.io/InstructFLIP.

Authors:Linwei Chen, Lin Gu, Ying Fu
Title: Frequency-Dynamic Attention Modulation for Dense Prediction
Abstract:
Vision Transformers (ViTs) have significantly advanced computer vision, demonstrating strong performance across various tasks. However, the attention mechanism in ViTs makes each layer function as a low-pass filter, and the stacked-layer architecture in existing transformers suffers from frequency vanishing. This leads to the loss of critical details and textures. We propose a novel, circuit-theory-inspired strategy called Frequency-Dynamic Attention Modulation (FDAM), which can be easily plugged into ViTs. FDAM directly modulates the overall frequency response of ViTs and consists of two techniques: Attention Inversion (AttInv) and Frequency Dynamic Scaling (FreqScale). Since circuit theory uses low-pass filters as fundamental elements, we introduce AttInv, a method that generates complementary high-pass filtering by inverting the low-pass filter in the attention matrix, and dynamically combining the two. We further design FreqScale to weight different frequency components for fine-grained adjustments to the target response function. Through feature similarity analysis and effective rank evaluation, we demonstrate that our approach avoids representation collapse, leading to consistent performance improvements across various models, including SegFormer, DeiT, and MaskDINO. These improvements are evident in tasks such as semantic segmentation, object detection, and instance segmentation. Additionally, we apply our method to remote sensing detection, achieving state-of-the-art results in single-scale settings. The code is available at https://github.com/Linwei-Chen/FDAM.

Authors:Jianzhe Ma, Wenxuan Wang, Qin Jin
Title: A Survey of Deep Learning for Geometry Problem Solving
Abstract:
Geometry problem solving, a crucial aspect of mathematical reasoning, is vital across various domains, including education, the assessment of AI's mathematical abilities, and multimodal capability evaluation. The recent surge in deep learning technologies, particularly the emergence of multimodal large language models, has significantly accelerated research in this area. This paper provides a survey of the applications of deep learning in geometry problem solving, including (i) a comprehensive summary of the relevant tasks in geometry problem solving; (ii) a thorough review of related deep learning methods; (iii) a detailed analysis of evaluation metrics and methods; and (iv) a critical discussion of the current challenges and future directions that can be explored. Our objective is to offer a comprehensive and practical reference of deep learning for geometry problem solving, thereby fostering further advancements in this field. We create a continuously updated list of papers on GitHub: https://github.com/majianz/dl4gps.

Authors:Linwei Chen, Ying Fu, Lin Gu, Dezhi Zheng, Jifeng Dai
Title: Spatial Frequency Modulation for Semantic Segmentation
Abstract:
High spatial frequency information, including fine details like textures, significantly contributes to the accuracy of semantic segmentation. However, according to the Nyquist-Shannon Sampling Theorem, high-frequency components are vulnerable to aliasing or distortion when propagating through downsampling layers such as strided-convolution. Here, we propose a novel Spatial Frequency Modulation (SFM) that modulates high-frequency features to a lower frequency before downsampling and then demodulates them back during upsampling. Specifically, we implement modulation through adaptive resampling (ARS) and design a lightweight add-on that can densely sample the high-frequency areas to scale up the signal, thereby lowering its frequency in accordance with the Frequency Scaling Property. We also propose Multi-Scale Adaptive Upsampling (MSAU) to demodulate the modulated feature and recover high-frequency information through non-uniform upsampling This module further improves segmentation by explicitly exploiting information interaction between densely and sparsely resampled areas at multiple scales. Both modules can seamlessly integrate with various architectures, extending from convolutional neural networks to transformers. Feature visualization and analysis confirm that our method effectively alleviates aliasing while successfully retaining details after demodulation. Finally, we validate the broad applicability and effectiveness of SFM by extending it to image classification, adversarial robustness, instance segmentation, and panoptic segmentation tasks. The code is available at https://github.com/Linwei-Chen/SFM.

Authors:Haoxuan Zhang, Ruochi Li, Yang Zhang, Ting Xiao, Jiangping Chen, Junhua Ding, Haihua Chen
Title: The Evolving Role of Large Language Models in Scientific Innovation: Evaluator, Collaborator, and Scientist
Abstract:
Scientific innovation is undergoing a paradigm shift driven by the rapid advancement of Large Language Models (LLMs). As science faces mounting challenges including information overload, disciplinary silos, and diminishing returns on conventional research methods, LLMs are emerging as powerful agents capable not only of enhancing scientific workflows but also of participating in and potentially leading the innovation process. Existing surveys mainly focus on different perspectives, phrases, and tasks in scientific research and discovery, while they have limitations in understanding the transformative potential and role differentiation of LLM. This survey proposes a comprehensive framework to categorize the evolving roles of LLMs in scientific innovation across three hierarchical levels: Evaluator, Collaborator, and Scientist. We distinguish between LLMs' contributions to structured scientific research processes and open-ended scientific discovery, thereby offering a unified taxonomy that clarifies capability boundaries, evaluation criteria, and human-AI interaction patterns at each level. Through an extensive analysis of current methodologies, benchmarks, systems, and evaluation metrics, this survey delivers an in-depth and systematic synthesis on LLM-driven scientific innovation. We present LLMs not only as tools for automating existing processes, but also as catalysts capable of reshaping the epistemological foundations of science itself. This survey offers conceptual clarity, practical guidance, and theoretical foundations for future research, while also highlighting open challenges and ethical considerations in the pursuit of increasingly autonomous AI-driven science. Resources related to this survey can be accessed on GitHub at: https://github.com/haoxuan-unt2024/llm4innovation.

Authors:Ruofan Hu, Dongyu Zhang, Huayi Zhang, Elke Rundensteiner
Title: CLID-MU: Cross-Layer Information Divergence Based Meta Update Strategy for Learning with Noisy Labels
Abstract:
Learning with noisy labels (LNL) is essential for training deep neural networks with imperfect data. Meta-learning approaches have achieved success by using a clean unbiased labeled set to train a robust model. However, this approach heavily depends on the availability of a clean labeled meta-dataset, which is difficult to obtain in practice. In this work, we thus tackle the challenge of meta-learning for noisy label scenarios without relying on a clean labeled dataset. Our approach leverages the data itself while bypassing the need for labels. Building on the insight that clean samples effectively preserve the consistency of related data structures across the last hidden and the final layer, whereas noisy samples disrupt this consistency, we design the Cross-layer Information Divergence-based Meta Update Strategy (CLID-MU). CLID-MU leverages the alignment of data structures across these diverse feature spaces to evaluate model performance and use this alignment to guide training. Experiments on benchmark datasets with varying amounts of labels under both synthetic and real-world noise demonstrate that CLID-MU outperforms state-of-the-art methods. The code is released at https://github.com/ruofanhu/CLID-MU.

Authors:Jay Revolinsky, Harry Shomer, Jiliang Tang
Title: Subgraph Generation for Generalizing on Out-of-Distribution Links
Abstract:
Graphs Neural Networks (GNNs) demonstrate high-performance on the link prediction (LP) task. However, these models often rely on all dataset samples being drawn from the same distribution. In addition, graph generative models (GGMs) show a pronounced ability to generate novel output graphs. Despite this, GGM applications remain largely limited to domain-specific tasks. To bridge this gap, we propose FLEX as a GGM framework which leverages two mechanism: (1) structurally-conditioned graph generation, and (2) adversarial co-training between an auto-encoder and GNN. As such, FLEX ensures structural-alignment between sample distributions to enhance link-prediction performance in out-of-distribution (OOD) scenarios. Notably, FLEX does not require expert knowledge to function in different OOD scenarios. Numerous experiments are conducted in synthetic and real-world OOD settings to demonstrate FLEX's performance-enhancing ability, with further analysis for understanding the effects of graph data augmentation on link structures. The source code is available here: https://github.com/revolins/FlexOOD.

Authors:Moises Andrade, Joonhyuk Cha, Brandon Ho, Vriksha Srihari, Karmesh Yadav, Zsolt Kira
Title: Let's Think in Two Steps: Mitigating Agreement Bias in MLLMs with Self-Grounded Verification
Abstract:
Verifiers -- functions assigning rewards to agent behavior -- have been key for AI progress in domains like math and board games. However, extending these gains to domains without clear-cut success criteria (e.g.,computer use) remains a challenge: while humans can recognize suitable outcomes, translating this intuition into scalable rules is non-trivial. Multimodal Large Language Models(MLLMs) emerge as a promising solution, given their world knowledge, human-preference alignment, and reasoning skills. We evaluate MLLMs as verifiers of agent trajectories across web navigation, computer use, and robotic manipulation, and identify a critical limitation: agreement bias, a strong tendency for MLLMs to favor information in their context window, often generating chains of thought to rationalize flawed behavior. This bias is pervasive across models, resilient to test-time scaling, and can impact several methods using MLLMs as evaluators (e.g.,data filtering). Notably, it occurs despite MLLMs showing strong, human-aligned priors on desired behavior. To address this, we propose Self-Grounded Verification (SGV), a lightweight method that enables more effective use of MLLMs' knowledge and reasoning by harnessing their own sampling mechanisms via unconditional and conditional generation. SGV operates in two steps: first, the MLLM is elicited to retrieve broad priors about task completion, independent of the data under evaluation. Then, conditioned on self-generated priors, it reasons over and evaluates a candidate trajectory. Enhanced with SGV, MLLM verifiers show gains of up to 20 points in accuracy and failure detection rates, and can perform real-time supervision of heterogeneous agents, boosting task completion of a GUI specialist in OSWorld, a diffusion policy in robomimic, and a ReAct agent in VisualWebArena -- setting a new state of the art on the benchmark, surpassing the previous best by 48%.

Authors:Benjamin Keel, Aaron Quyn, David Jayne, Maryam Mohsin, Samuel D. Relton
Title: Interpretable Prediction of Lymph Node Metastasis in Rectal Cancer MRI Using Variational Autoencoders
Abstract:
Effective treatment for rectal cancer relies on accurate lymph node metastasis (LNM) staging. However, radiological criteria based on lymph node (LN) size, shape and texture morphology have limited diagnostic accuracy. In this work, we investigate applying a Variational Autoencoder (VAE) as a feature encoder model to replace the large pre-trained Convolutional Neural Network (CNN) used in existing approaches. The motivation for using a VAE is that the generative model aims to reconstruct the images, so it directly encodes visual features and meaningful patterns across the data. This leads to a disentangled and structured latent space which can be more interpretable than a CNN. Models are deployed on an in-house MRI dataset with 168 patients who did not undergo neo-adjuvant treatment. The post-operative pathological N stage was used as the ground truth to evaluate model predictions. Our proposed model 'VAE-MLP' achieved state-of-the-art performance on the MRI dataset, with cross-validated metrics of AUC 0.86 +/- 0.05, Sensitivity 0.79 +/- 0.06, and Specificity 0.85 +/- 0.05. Code is available at: https://github.com/benkeel/Lymph_Node_Classification_MIUA.

Authors:Steven Dillmann, Juan Rafael Martínez-Galarza
Title: Learning Representations of Event Time Series with Sparse Autoencoders for Anomaly Detection, Similarity Search, and Unsupervised Classification
Abstract:
Event time series are sequences of discrete events occurring at irregular time intervals, each associated with a domain-specific observational modality. They are common in domains such as high-energy astrophysics, computational social science, cybersecurity, finance, healthcare, neuroscience, and seismology. Their unstructured and irregular structure poses significant challenges for extracting meaningful patterns and identifying salient phenomena using conventional techniques. We propose novel two- and three-dimensional tensor representations for event time series, coupled with sparse autoencoders that learn physically meaningful latent representations. These embeddings support a variety of downstream tasks, including anomaly detection, similarity-based retrieval, semantic clustering, and unsupervised classification. We demonstrate our approach on a real-world dataset from X-ray astronomy, showing that these representations successfully capture temporal and spectral signatures and isolate diverse classes of X-ray transients. Our framework offers a flexible, scalable, and generalizable solution for analyzing complex, irregular event time series across scientific and industrial domains.

Authors:Hanxue Gu, Yaqian Chen, Nicholas Konz, Qihang Li, Maciej A. Mazurowski
Title: Are Vision Foundation Models Ready for Out-of-the-Box Medical Image Registration?
Abstract:
Foundation models, pre-trained on large image datasets and capable of capturing rich feature representations, have recently shown potential for zero-shot image registration. However, their performance has mostly been tested in the context of rigid or less complex structures, such as the brain or abdominal organs, and it remains unclear whether these models can handle more challenging, deformable anatomy. Breast MRI registration is particularly difficult due to significant anatomical variation between patients, deformation caused by patient positioning, and the presence of thin and complex internal structure of fibroglandular tissue, where accurate alignment is crucial. Whether foundation model-based registration algorithms can address this level of complexity remains an open question. In this study, we provide a comprehensive evaluation of foundation model-based registration algorithms for breast MRI. We assess five pre-trained encoders, including DINO-v2, SAM, MedSAM, SSLSAM, and MedCLIP, across four key breast registration tasks that capture variations in different years and dates, sequences, modalities, and patient disease status (lesion versus no lesion). Our results show that foundation model-based algorithms such as SAM outperform traditional registration baselines for overall breast alignment, especially under large domain shifts, but struggle with capturing fine details of fibroglandular tissue. Interestingly, additional pre-training or fine-tuning on medical or breast-specific images in MedSAM and SSLSAM, does not improve registration performance and may even decrease it in some cases. Further work is needed to understand how domain-specific training influences registration and to explore targeted strategies that improve both global alignment and fine structure accuracy. We also publicly release our code at \href{https://github.com/mazurowski-lab/Foundation-based-reg}{Github}.

Authors:Zejian Li, Yize Li, Chenye Meng, Zhongni Liu, Yang Ling, Shengyuan Zhang, Guang Yang, Changyuan Yang, Zhiyuan Yang, Lingyun Sun
Title: Inversion-DPO: Precise and Efficient Post-Training for Diffusion Models
Abstract:
Recent advancements in diffusion models (DMs) have been propelled by alignment methods that post-train models to better conform to human preferences. However, these approaches typically require computation-intensive training of a base model and a reward model, which not only incurs substantial computational overhead but may also compromise model accuracy and training efficiency. To address these limitations, we propose Inversion-DPO, a novel alignment framework that circumvents reward modeling by reformulating Direct Preference Optimization (DPO) with DDIM inversion for DMs. Our method conducts intractable posterior sampling in Diffusion-DPO with the deterministic inversion from winning and losing samples to noise and thus derive a new post-training paradigm. This paradigm eliminates the need for auxiliary reward models or inaccurate appromixation, significantly enhancing both precision and efficiency of training. We apply Inversion-DPO to a basic task of text-to-image generation and a challenging task of compositional image generation. Extensive experiments show substantial performance improvements achieved by Inversion-DPO compared to existing post-training methods and highlight the ability of the trained generative models to generate high-fidelity compositionally coherent images. For the post-training of compostitional image geneation, we curate a paired dataset consisting of 11,140 images with complex structural annotations and comprehensive scores, designed to enhance the compositional capabilities of generative models. Inversion-DPO explores a new avenue for efficient, high-precision alignment in diffusion models, advancing their applicability to complex realistic generation tasks. Our code is available at https://github.com/MIGHTYEZ/Inversion-DPO

Authors:Dong Zhuo, Wenzhao Zheng, Jiahe Guo, Yuqi Wu, Jie Zhou, Jiwen Lu
Title: Streaming 4D Visual Geometry Transformer
Abstract:
Perceiving and reconstructing 4D spatial-temporal geometry from videos is a fundamental yet challenging computer vision task. To facilitate interactive and real-time applications, we propose a streaming 4D visual geometry transformer that shares a similar philosophy with autoregressive large language models. We explore a simple and efficient design and employ a causal transformer architecture to process the input sequence in an online manner. We use temporal causal attention and cache the historical keys and values as implicit memory to enable efficient streaming long-term 4D reconstruction. This design can handle real-time 4D reconstruction by incrementally integrating historical information while maintaining high-quality spatial consistency. For efficient training, we propose to distill knowledge from the dense bidirectional visual geometry grounded transformer (VGGT) to our causal model. For inference, our model supports the migration of optimized efficient attention operator (e.g., FlashAttention) from the field of large language models. Extensive experiments on various 4D geometry perception benchmarks demonstrate that our model increases the inference speed in online scenarios while maintaining competitive performance, paving the way for scalable and interactive 4D vision systems. Code is available at: https://github.com/wzzheng/StreamVGGT.

Authors:Daniel Jaroslawicz, Brendan Whiting, Parth Shah, Karime Maamari
Title: How Many Instructions Can LLMs Follow at Once?
Abstract:
Production-grade LLM systems require robust adherence to dozens or even hundreds of instructions simultaneously. However, the instruction-following capabilities of LLMs at high instruction densities have not yet been characterized, as existing benchmarks only evaluate models on tasks with a single or few instructions. We introduce IFScale, a simple benchmark of 500 keyword-inclusion instructions for a business report writing task to measure how instruction-following performance degrades as instruction density increases. We evaluate 20 state-of-the-art models across seven major providers and find that even the best frontier models only achieve 68% accuracy at the max density of 500 instructions. Our analysis reveals model size and reasoning capability to correlate with 3 distinct performance degradation patterns, bias towards earlier instructions, and distinct categories of instruction-following errors. Our insights can help inform design of instruction-dense prompts in real-world applications and highlight important performance-latency tradeoffs. We open-source the benchmark and all results for further analysis at https://distylai.github.io/IFScale.

Authors:Yinsheng Li, Zhen Dong, Yi Shao
Title: DrafterBench: Benchmarking Large Language Models for Tasks Automation in Civil Engineering
Abstract:
Large Language Model (LLM) agents have shown great potential for solving real-world problems and promise to be a solution for tasks automation in industry. However, more benchmarks are needed to systematically evaluate automation agents from an industrial perspective, for example, in Civil Engineering. Therefore, we propose DrafterBench for the comprehensive evaluation of LLM agents in the context of technical drawing revision, a representation task in civil engineering. DrafterBench contains twelve types of tasks summarized from real-world drawing files, with 46 customized functions/tools and 1920 tasks in total. DrafterBench is an open-source benchmark to rigorously test AI agents' proficiency in interpreting intricate and long-context instructions, leveraging prior knowledge, and adapting to dynamic instruction quality via implicit policy awareness. The toolkit comprehensively assesses distinct capabilities in structured data comprehension, function execution, instruction following, and critical reasoning. DrafterBench offers detailed analysis of task accuracy and error statistics, aiming to provide deeper insight into agent capabilities and identify improvement targets for integrating LLMs in engineering applications. Our benchmark is available at https://github.com/Eason-Li-AIS/DrafterBench, with the test set hosted at https://huggingface.co/datasets/Eason666/DrafterBench.

Authors:Hongbo Ye, Fenghe Tang, Peiang Zhao, Zhen Huang, Dexin Zhao, Minghao Bian, S. Kevin Zhou
Title: U-RWKV: Lightweight medical image segmentation with direction-adaptive RWKV
Abstract:
Achieving equity in healthcare accessibility requires lightweight yet high-performance solutions for medical image segmentation, particularly in resource-limited settings. Existing methods like U-Net and its variants often suffer from limited global Effective Receptive Fields (ERFs), hindering their ability to capture long-range dependencies. To address this, we propose U-RWKV, a novel framework leveraging the Recurrent Weighted Key-Value(RWKV) architecture, which achieves efficient long-range modeling at O(N) computational cost. The framework introduces two key innovations: the Direction-Adaptive RWKV Module(DARM) and the Stage-Adaptive Squeeze-and-Excitation Module(SASE). DARM employs Dual-RWKV and QuadScan mechanisms to aggregate contextual cues across images, mitigating directional bias while preserving global context and maintaining high computational efficiency. SASE dynamically adapts its architecture to different feature extraction stages, balancing high-resolution detail preservation and semantic relationship capture. Experiments demonstrate that U-RWKV achieves state-of-the-art segmentation performance with high computational efficiency, offering a practical solution for democratizing advanced medical imaging technologies in resource-constrained environments. The code is available at https://github.com/hbyecoding/U-RWKV.

Authors:Pierrick Leroy, Antonio Mastropietro, Marco Nurisso, Francesco Vaccarino
Title: Attributes Shape the Embedding Space of Face Recognition Models
Abstract:
Face Recognition (FR) tasks have made significant progress with the advent of Deep Neural Networks, particularly through margin-based triplet losses that embed facial images into high-dimensional feature spaces. During training, these contrastive losses focus exclusively on identity information as labels. However, we observe a multiscale geometric structure emerging in the embedding space, influenced by interpretable facial (e.g., hair color) and image attributes (e.g., contrast). We propose a geometric approach to describe the dependence or invariance of FR models to these attributes and introduce a physics-inspired alignment metric. We evaluate the proposed metric on controlled, simplified models and widely used FR models fine-tuned with synthetic data for targeted attribute augmentation. Our findings reveal that the models exhibit varying degrees of invariance across different attributes, providing insight into their strengths and weaknesses and enabling deeper interpretability. Code available here: https://github.com/mantonios107/attrs-fr-embs}{https://github.com/mantonios107/attrs-fr-embs

Authors:Yuehao Huang, Liang Liu, Shuangming Lei, Yukai Ma, Hao Su, Jianbiao Mei, Pengxiang Zhao, Yaqing Gu, Yong Liu, Jiajun Lv
Title: CogDDN: A Cognitive Demand-Driven Navigation with Decision Optimization and Dual-Process Thinking
Abstract:
Mobile robots are increasingly required to navigate and interact within unknown and unstructured environments to meet human demands. Demand-driven navigation (DDN) enables robots to identify and locate objects based on implicit human intent, even when object locations are unknown. However, traditional data-driven DDN methods rely on pre-collected data for model training and decision-making, limiting their generalization capability in unseen scenarios. In this paper, we propose CogDDN, a VLM-based framework that emulates the human cognitive and learning mechanisms by integrating fast and slow thinking systems and selectively identifying key objects essential to fulfilling user demands. CogDDN identifies appropriate target objects by semantically aligning detected objects with the given instructions. Furthermore, it incorporates a dual-process decision-making module, comprising a Heuristic Process for rapid, efficient decisions and an Analytic Process that analyzes past errors, accumulates them in a knowledge base, and continuously improves performance. Chain of Thought (CoT) reasoning strengthens the decision-making process. Extensive closed-loop evaluations on the AI2Thor simulator with the ProcThor dataset show that CogDDN outperforms single-view camera-only methods by 15\%, demonstrating significant improvements in navigation accuracy and adaptability. The project page is available at https://yuehaohuang.github.io/CogDDN/.

Authors:Haoran Jin, Meng Li, Xiting Wang, Zhihao Xu, Minlie Huang, Yantao Jia, Defu Lian
Title: Internal Value Alignment in Large Language Models through Controlled Value Vector Activation
Abstract:
Aligning Large Language Models (LLMs) with human values has attracted increasing attention since it provides clarity, transparency, and the ability to adapt to evolving scenarios. In this paper, we introduce a Controlled Value Vector Activation (ConVA) method that directly aligns the internal values of LLMs by interpreting how a value is encoded in their latent representations and modifies relevant activations to ensure consistent values in LLMs. To ensure an accurate and unbiased interpretation, we propose a context-controlled value vector identification method. To consistently control values without sacrificing model performance, we introduce a gated value vector activation method for effective and minimum degree of value control. Experiments show that our method achieves the highest control success rate across 10 basic values without hurting LLM performance and fluency, and ensures target values even with opposite and potentially malicious input prompts. Source code and data are available at~ https://github.com/hr-jin/ConVA.

Authors:Zhifeng Gu, Bing Wang
Title: MMOne: Representing Multiple Modalities in One Scene
Abstract:
Humans perceive the world through multimodal cues to understand and interact with the environment. Learning a scene representation for multiple modalities enhances comprehension of the physical world. However, modality conflicts, arising from inherent distinctions among different modalities, present two critical challenges: property disparity and granularity disparity. To address these challenges, we propose a general framework, MMOne, to represent multiple modalities in one scene, which can be readily extended to additional modalities. Specifically, a modality modeling module with a novel modality indicator is proposed to capture the unique properties of each modality. Additionally, we design a multimodal decomposition mechanism to separate multi-modal Gaussians into single-modal Gaussians based on modality differences. We address the essential distinctions among modalities by disentangling multimodal information into shared and modality-specific components, resulting in a more compact and efficient multimodal scene representation. Extensive experiments demonstrate that our method consistently enhances the representation capability for each modality and is scalable to additional modalities. The code is available at https://github.com/Neal2020GitHub/MMOne.

Authors:Vassilis Sioros, Alexandros Potamianos, Giorgos Paraskevopoulos
Title: EditGen: Harnessing Cross-Attention Control for Instruction-Based Auto-Regressive Audio Editing
Abstract:
In this study, we investigate leveraging cross-attention control for efficient audio editing within auto-regressive models. Inspired by image editing methodologies, we develop a Prompt-to-Prompt-like approach that guides edits through cross and self-attention mechanisms. Integrating a diffusion-based strategy, influenced by Auffusion, we extend the model's functionality to support refinement edits, establishing a baseline for prompt-guided audio editing. Additionally, we introduce an alternative approach by incorporating MUSICGEN, a pre-trained frozen auto-regressive model, and propose three editing mechanisms, based on Replacement, Reweighting, and Refinement of the attention scores. We employ commonly-used music-specific evaluation metrics and a human study, to gauge time-varying controllability, adherence to global text cues, and overall audio realism. The automatic and human evaluations indicate that the proposed combination of prompt-to-prompt guidance with autoregressive generation models significantly outperforms the diffusion-based baseline in terms of melody, dynamics, and tempo of the generated audio. Our code is available at https://github.com/billsioros/EditGen

Authors:Hayeon Kim, Ji Ha Jang, Se Young Chun
Title: Robust 3D-Masked Part-level Editing in 3D Gaussian Splatting with Regularized Score Distillation Sampling
Abstract:
Recent advances in 3D neural representations and instance-level editing models have enabled the efficient creation of high-quality 3D content. However, achieving precise local 3D edits remains challenging, especially for Gaussian Splatting, due to inconsistent multi-view 2D part segmentations and inherently ambiguous nature of Score Distillation Sampling (SDS) loss. To address these limitations, we propose RoMaP, a novel local 3D Gaussian editing framework that enables precise and drastic part-level modifications. First, we introduce a robust 3D mask generation module with our 3D-Geometry Aware Label Prediction (3D-GALP), which uses spherical harmonics (SH) coefficients to model view-dependent label variations and soft-label property, yielding accurate and consistent part segmentations across viewpoints. Second, we propose a regularized SDS loss that combines the standard SDS loss with additional regularizers. In particular, an L1 anchor loss is introduced via our Scheduled Latent Mixing and Part (SLaMP) editing method, which generates high-quality part-edited 2D images and confines modifications only to the target region while preserving contextual coherence. Additional regularizers, such as Gaussian prior removal, further improve flexibility by allowing changes beyond the existing context, and robust 3D masking prevents unintended edits. Experimental results demonstrate that our RoMaP achieves state-of-the-art local 3D editing on both reconstructed and generated Gaussian scenes and objects qualitatively and quantitatively, making it possible for more robust and flexible part-level 3D Gaussian editing. Code is available at https://janeyeon.github.io/romap.

Authors:Xingyu Zheng, Haotong Qin, Yuye Li, Jiakai Wang, Jinyang Guo, Michele Magno, Xianglong Liu
Title: First-Order Error Matters: Accurate Compensation for Quantized Large Language Models
Abstract:
Post-training quantization (PTQ) offers an efficient approach to compressing large language models (LLMs), significantly reducing memory access and computational costs. Existing compensation-based weight calibration methods often rely on a second-order Taylor expansion to model quantization error, under the assumption that the first-order term is negligible in well-trained full-precision models. However, we reveal that the progressive compensation process introduces accumulated first-order deviations between latent weights and their full-precision counterparts, making this assumption fundamentally flawed. To address this, we propose FOEM, a novel PTQ method that explicitly incorporates first-order gradient terms to improve quantization error compensation. FOEM approximates gradients by directly computing the difference between latent and full-precision weights, avoiding the high cost and limited generalization of backpropagation-based gradient computation. This approach introduces minimal additional computational overhead. Moreover, FOEM leverages precomputed Cholesky factors to efficiently recover the inverse of Hessian submatrices in real time. Extensive experiments across a wide range of models and benchmarks demonstrate that FOEM consistently outperforms the classical GPTQ method. In 3-bit weight-only quantization, FOEM reduces the perplexity of Llama3-8B by 89.6%, and improves the 5-shot MMLU accuracy of Llama3-70B from 51.7% to 74.9%, approaching the full-precision performance of 78.6%. Furthermore, FOEM can be seamlessly integrated with advanced techniques such as GPTAQ and SpinQuant, yielding additional improvements under the challenging W4A4KV4 setting, and further narrowing the accuracy gap with full-precision baselines beyond what current state-of-the-art methods achieve. The code is available at https://github.com/Xingyu-Zheng/FOEM.

Authors:Quan Bi Pay, Vishnu Monn Baskaran, Junn Yong Loo, KokSheik Wong, Simon See
Title: SpaRTAN: Spatial Reinforcement Token-based Aggregation Network for Visual Recognition
Abstract:
The resurgence of convolutional neural networks (CNNs) in visual recognition tasks, exemplified by ConvNeXt, has demonstrated their capability to rival transformer-based architectures through advanced training methodologies and ViT-inspired design principles. However, both CNNs and transformers exhibit a simplicity bias, favoring straightforward features over complex structural representations. Furthermore, modern CNNs often integrate MLP-like blocks akin to those in transformers, but these blocks suffer from significant information redundancies, necessitating high expansion ratios to sustain competitive performance. To address these limitations, we propose SpaRTAN, a lightweight architectural design that enhances spatial and channel-wise information processing. SpaRTAN employs kernels with varying receptive fields, controlled by kernel size and dilation factor, to capture discriminative multi-order spatial features effectively. A wave-based channel aggregation module further modulates and reinforces pixel interactions, mitigating channel-wise redundancies. Combining the two modules, the proposed network can efficiently gather and dynamically contextualize discriminative features. Experimental results in ImageNet and COCO demonstrate that SpaRTAN achieves remarkable parameter efficiency while maintaining competitive performance. In particular, on the ImageNet-1k benchmark, SpaRTAN achieves 77. 7% accuracy with only 3.8M parameters and approximately 1.0 GFLOPs, demonstrating its ability to deliver strong performance through an efficient design. On the COCO benchmark, it achieves 50.0% AP, surpassing the previous benchmark by 1.2% with only 21.5M parameters. The code is publicly available at [https://github.com/henry-pay/SpaRTAN].

Authors:Zhipeng He, Alexander Stevens, Chun Ouyang, Johannes De Smedt, Alistair Barros, Catarina Moreira
Title: Crafting Imperceptible On-Manifold Adversarial Attacks for Tabular Data
Abstract:
Adversarial attacks on tabular data present fundamental challenges distinct from image or text domains due to the heterogeneous nature of mixed categorical and numerical features. Unlike images where pixel perturbations maintain visual similarity, tabular data lacks intuitive similarity metrics, making it difficult to define imperceptible modifications. Additionally, traditional gradient-based methods prioritise $\ell_p$-norm constraints, often producing adversarial examples that deviate from the original data distributions, making them detectable. We propose a latent space perturbation framework using a mixed-input Variational Autoencoder (VAE) to generate imperceptible adversarial examples. The proposed VAE integrates categorical embeddings and numerical features into a unified latent manifold, enabling perturbations that preserve statistical consistency. We specify In-Distribution Success Rate (IDSR) to measure the proportion of adversarial examples that remain statistically indistinguishable from the input distribution. Evaluation across six publicly available datasets and three model architectures demonstrates that our method achieves substantially lower outlier rates and more consistent performance compared to traditional input-space attacks and other VAE-based methods adapted from image domain approaches. Our comprehensive analysis includes hyperparameter sensitivity, sparsity control mechanisms, and generative architectural comparisons, revealing that VAE-based attacks depend critically on reconstruction quality but offer superior practical utility when sufficient training data is available. This work highlights the importance of on-manifold perturbations for realistic adversarial attacks on tabular data, offering a robust approach for practical deployment. The source code can be accessed through https://github.com/ZhipengHe/VAE-TabAttack.

Authors:Rodney Lafuente-Mercado
Title: High-Throughput Distributed Reinforcement Learning via Adaptive Policy Synchronization
Abstract:
Scaling reinforcement learning (RL) workloads often requires distributing environment simulation across compute clusters. Existing frameworks entangle simulation, learning logic, and orchestration into monolithic systems, limiting modularity and reusability. We present ClusterEnv, a lightweight, learner-agnostic interface for distributed environment execution that mirrors the Gymnasium API. ClusterEnv introduces the DETACH pattern, which decouples simulation from training by offloading reset() and step() operations to remote workers while keeping learning centralized. To address policy staleness in distributed execution, we propose Adaptive Actor Policy Synchronization (AAPS), a divergence-triggered update mechanism that reduces synchronization overhead without sacrificing performance. ClusterEnv integrates cleanly into existing RL pipelines, supports both on-policy and off-policy methods, and requires minimal code changes. Experiments on discrete control tasks demonstrate that AAPS achieves high sample efficiency with significantly fewer weight updates. Source code is available at https://github.com/rodlaf/ClusterEnv.

Authors:Quan Bi Pay, Vishnu Monn Baskaran, Junn Yong Loo, KokSheik Wong, Simon See
Title: Conceptualizing Multi-scale Wavelet Attention and Ray-based Encoding for Human-Object Interaction Detection
Abstract:
Human-object interaction (HOI) detection is essential for accurately localizing and characterizing interactions between humans and objects, providing a comprehensive understanding of complex visual scenes across various domains. However, existing HOI detectors often struggle to deliver reliable predictions efficiently, relying on resource-intensive training methods and inefficient architectures. To address these challenges, we conceptualize a wavelet attention-like backbone and a novel ray-based encoder architecture tailored for HOI detection. Our wavelet backbone addresses the limitations of expressing middle-order interactions by aggregating discriminative features from the low- and high-order interactions extracted from diverse convolutional filters. Concurrently, the ray-based encoder facilitates multi-scale attention by optimizing the focus of the decoder on relevant regions of interest and mitigating computational overhead. As a result of harnessing the attenuated intensity of learnable ray origins, our decoder aligns query embeddings with emphasized regions of interest for accurate predictions. Experimental results on benchmark datasets, including ImageNet and HICO-DET, showcase the potential of our proposed architecture. The code is publicly available at [https://github.com/henry-pay/RayEncoder].

Authors:Motoki Omura, Yusuke Mukuta, Kazuki Ota, Takayuki Osa, Tatsuya Harada
Title: Offline Reinforcement Learning with Wasserstein Regularization via Optimal Transport Maps
Abstract:
Offline reinforcement learning (RL) aims to learn an optimal policy from a static dataset, making it particularly valuable in scenarios where data collection is costly, such as robotics. A major challenge in offline RL is distributional shift, where the learned policy deviates from the dataset distribution, potentially leading to unreliable out-of-distribution actions. To mitigate this issue, regularization techniques have been employed. While many existing methods utilize density ratio-based measures, such as the $f$-divergence, for regularization, we propose an approach that utilizes the Wasserstein distance, which is robust to out-of-distribution data and captures the similarity between actions. Our method employs input-convex neural networks (ICNNs) to model optimal transport maps, enabling the computation of the Wasserstein distance in a discriminator-free manner, thereby avoiding adversarial training and ensuring stable learning. Our approach demonstrates comparable or superior performance to widely used existing methods on the D4RL benchmark dataset. The code is available at https://github.com/motokiomura/Q-DOT .

Authors:Hsiang-Wei Huang, Jen-Hao Cheng, Kuang-Ming Chen, Cheng-Yen Yang, Bahaa Alattar, Yi-Ru Lin, Pyongkun Kim, Sangwon Kim, Kwangju Kim, Chung-I Huang, Jenq-Neng Hwang
Title: Warehouse Spatial Question Answering with LLM Agent
Abstract:
Spatial understanding has been a challenging task for existing Multi-modal Large Language Models~(MLLMs). Previous methods leverage large-scale MLLM finetuning to enhance MLLM's spatial understanding ability. In this paper, we present a data-efficient approach. We propose a LLM agent system with strong and advanced spatial reasoning ability, which can be used to solve the challenging spatial question answering task in complex indoor warehouse scenarios. Our system integrates multiple tools that allow the LLM agent to conduct spatial reasoning and API tools interaction to answer the given complicated spatial question. Extensive evaluations on the 2025 AI City Challenge Physical AI Spatial Intelligence Warehouse dataset demonstrate that our system achieves high accuracy and efficiency in tasks such as object retrieval, counting, and distance estimation. The code is available at: https://github.com/hsiangwei0903/SpatialAgent

Authors:Jeffrey Joan Sam, Janhavi Sathe, Nikhil Chigali, Naman Gupta, Radhey Ruparel, Yicheng Jiang, Janmajay Singh, James W. Berck, Arko Barman
Title: A New Dataset and Performance Benchmark for Real-time Spacecraft Segmentation in Onboard Flight Computers
Abstract:
Spacecraft deployed in outer space are routinely subjected to various forms of damage due to exposure to hazardous environments. In addition, there are significant risks to the subsequent process of in-space repairs through human extravehicular activity or robotic manipulation, incurring substantial operational costs. Recent developments in image segmentation could enable the development of reliable and cost-effective autonomous inspection systems. While these models often require large amounts of training data to achieve satisfactory results, publicly available annotated spacecraft segmentation data are very scarce. Here, we present a new dataset of nearly 64k annotated spacecraft images that was created using real spacecraft models, superimposed on a mixture of real and synthetic backgrounds generated using NASA's TTALOS pipeline. To mimic camera distortions and noise in real-world image acquisition, we also added different types of noise and distortion to the images. Finally, we finetuned YOLOv8 and YOLOv11 segmentation models to generate performance benchmarks for the dataset under well-defined hardware and inference time constraints to mimic real-world image segmentation challenges for real-time onboard applications in space on NASA's inspector spacecraft. The resulting models, when tested under these constraints, achieved a Dice score of 0.92, Hausdorff distance of 0.69, and an inference time of about 0.5 second. The dataset and models for performance benchmark are available at https://github.com/RiceD2KLab/SWiM.

Authors:Ziru Liu, Cheng Gong, Xinyu Fu, Yaofang Liu, Ran Chen, Shoubo Hu, Suiyun Zhang, Rui Liu, Qingfu Zhang, Dandan Tu
Title: GHPO: Adaptive Guidance for Stable and Efficient LLM Reinforcement Learning
Abstract:
Reinforcement Learning with Verifiable Rewards (RLVR) has recently emerged as a powerful paradigm for facilitating the self-improvement of large language models (LLMs), particularly in the domain of complex reasoning tasks. However, prevailing on-policy RL methods often contend with significant training instability and inefficiency. This is primarily due to a capacity-difficulty mismatch, where the complexity of training data frequently outpaces the model's current capabilities, leading to critically sparse reward signals and stalled learning progress. This challenge is particularly acute for smaller, more resource-efficient LLMs. To overcome this, we introduce the Guided Hybrid Policy Optimization (GHPO), a novel difficulty-aware reinforcement learning framework. GHPO dynamically calibrates task difficulty by employing adaptive prompt refinement to provide targeted guidance. This unique approach adaptively balances direct imitation learning for problems currently beyond the model's reach with exploration-based reinforcement learning for more manageable tasks, effectively creating a smooth and optimized learning curriculum. Extensive experiments demonstrate that GHPO achieves an average performance gain of approximately 5% across six challenging mathematics benchmarks, consistently outperforming strong on-policy reinforcement learning and curriculum learning baselines. Further analysis confirms that our framework significantly enhances both training stability and final reasoning performance, thus offering a scalable and efficient solution for developing powerful and robust reasoning models.

Authors:Peng Ding
Title: ToolRegistry: A Protocol-Agnostic Tool Management Library for Function-Calling LLMs
Abstract:
Large Language Model (LLM) applications are increasingly relying on external tools to extend their capabilities beyond text generation. However, current tool integration approaches suffer from fragmentation, protocol limitations, and implementation complexity, leading to substantial development overhead. This paper presents Toolregistry, a protocol-agnostic tool management library that simplifies tool registration, representation, execution, and lifecycle management via a unified interface. Our evaluation demonstrates that \toolregistry achieves 60-80% reduction in tool integration code, up to 3.1x performance improvements through concurrent execution, and 100% compatibility with OpenAI function calling standards. Real-world case studies show significant improvements in development efficiency and code maintainability across diverse integration scenarios. \toolregistry is open-source and available at https://github.com/Oaklight/ToolRegistry, with comprehensive documentation at https://toolregistry.readthedocs.io/.

Authors:Mingxian Lin, Wei Huang, Yitang Li, Chengjie Jiang, Kui Wu, Fangwei Zhong, Shengju Qian, Xin Wang, Xiaojuan Qi
Title: EmbRACE-3K: Embodied Reasoning and Action in Complex Environments
Abstract:
Recent advanced vision-language models(VLMs) have demonstrated strong performance on passive, offline image and video understanding tasks. However, their effectiveness in embodied settings, which require online interaction and active scene understanding remains limited. In such scenarios, an agent perceives the environment from a first-person perspective, with each action dynamically shaping subsequent observations. Even state-of-the-art models such as GPT-4o, Claude 3.5 Sonnet, and Gemini 2.5 Pro struggle in open-environment interactions, exhibiting clear limitations in spatial reasoning and long-horizon planning. To address this gap, we introduce EmRACE-3K, a dataset of over 3,000 language-guided tasks situated in diverse, photorealistic environments constructed using Unreal Engine and the UnrealCV-Zoo framework. The tasks encompass a wide range of embodied challenges, including navigation, object manipulation, and multi-stage goal execution. Each task unfolds as a multi-step trajectory, pairing first-person visual observations with high-level instructions, grounded actions, and natural language rationales that express the agent's intent at every step. Using EmRACE-3K, we establish a benchmark to evaluate the embodied reasoning capabilities of VLMs across three key dimensions: Exploration, Dynamic Spatial-Semantic Reasoning, and Multi-stage Goal Execution. In zero-shot settings, all models achieve success rates below 20%, underscoring the challenge posed by our benchmark and the current limitations of VLMs in interactive environments. To demonstrate the utility of EmRACE-3K, we further fine-tune Qwen2.5-VL-7B using supervised learning followed by reinforcement learning. This approach yields substantial improvements across all three challenge categories, highlighting the dataset's effectiveness in enabling the development of embodied reasoning capabilities.

Authors:Kexin Gu Baugh, Vincent Perreault, Matthew Baugh, Luke Dickens, Katsumi Inoue, Alessandra Russo
Title: Disentangling Neural Disjunctive Normal Form Models
Abstract:
Neural Disjunctive Normal Form (DNF) based models are powerful and interpretable approaches to neuro-symbolic learning and have shown promising results in classification and reinforcement learning settings without prior knowledge of the tasks. However, their performance is degraded by the thresholding of the post-training symbolic translation process. We show here that part of the performance degradation during translation is due to its failure to disentangle the learned knowledge represented in the form of the networks' weights. We address this issue by proposing a new disentanglement method; by splitting nodes that encode nested rules into smaller independent nodes, we are able to better preserve the models' performance. Through experiments on binary, multiclass, and multilabel classification tasks (including those requiring predicate invention), we demonstrate that our disentanglement method provides compact and interpretable logical representations for the neural DNF-based models, with performance closer to that of their pre-translation counterparts. Our code is available at https://github.com/kittykg/disentangling-ndnf-classification.

Authors:Shivangi Aneja, Sebastian Weiss, Irene Baeza, Prashanth Chandran, Gaspard Zoss, Matthias Nießner, Derek Bradley
Title: ScaffoldAvatar: High-Fidelity Gaussian Avatars with Patch Expressions
Abstract:
Generating high-fidelity real-time animated sequences of photorealistic 3D head avatars is important for many graphics applications, including immersive telepresence and movies. This is a challenging problem particularly when rendering digital avatar close-ups for showing character's facial microfeatures and expressions. To capture the expressive, detailed nature of human heads, including skin furrowing and finer-scale facial movements, we propose to couple locally-defined facial expressions with 3D Gaussian splatting to enable creating ultra-high fidelity, expressive and photorealistic 3D head avatars. In contrast to previous works that operate on a global expression space, we condition our avatar's dynamics on patch-based local expression features and synthesize 3D Gaussians at a patch level. In particular, we leverage a patch-based geometric 3D face model to extract patch expressions and learn how to translate these into local dynamic skin appearance and motion by coupling the patches with anchor points of Scaffold-GS, a recent hierarchical scene representation. These anchors are then used to synthesize 3D Gaussians on-the-fly, conditioned by patch-expressions and viewing direction. We employ color-based densification and progressive training to obtain high-quality results and faster convergence for high resolution 3K training images. By leveraging patch-level expressions, ScaffoldAvatar consistently achieves state-of-the-art performance with visually natural motion, while encompassing diverse facial expressions and styles in real time.

Authors:Qihui Yang, Taylor Berg-Kirkpatrick, Julian McAuley, Zachary Novack
Title: WildFX: A DAW-Powered Pipeline for In-the-Wild Audio FX Graph Modeling
Abstract:
Despite rapid progress in end-to-end AI music generation, AI-driven modeling of professional Digital Signal Processing (DSP) workflows remains challenging. In particular, while there is growing interest in neural black-box modeling of audio effect graphs (e.g. reverb, compression, equalization), AI-based approaches struggle to replicate the nuanced signal flow and parameter interactions used in professional workflows. Existing differentiable plugin approaches often diverge from real-world tools, exhibiting inferior performance relative to simplified neural controllers under equivalent computational constraints. We introduce WildFX, a pipeline containerized with Docker for generating multi-track audio mixing datasets with rich effect graphs, powered by a professional Digital Audio Workstation (DAW) backend. WildFX supports seamless integration of cross-platform commercial plugins or any plugins in the wild, in VST/VST3/LV2/CLAP formats, enabling structural complexity (e.g., sidechains, crossovers) and achieving efficient parallelized processing. A minimalist metadata interface simplifies project/plugin configuration. Experiments demonstrate the pipeline's validity through blind estimation of mixing graphs, plugin/gain parameters, and its ability to bridge AI research with practical DSP demands. The code is available on: https://github.com/IsaacYQH/WildFX.

Authors:Jennifer D'Souza, Endres Keno Sander, Andrei Aioanei
Title: DeepResearch$^{\text{Eco}}$: A Recursive Agentic Workflow for Complex Scientific Question Answering in Ecology
Abstract:
We introduce DeepResearch$^{\text{Eco}}$, a novel agentic LLM-based system for automated scientific synthesis that supports recursive, depth- and breadth-controlled exploration of original research questions -- enhancing search diversity and nuance in the retrieval of relevant scientific literature. Unlike conventional retrieval-augmented generation pipelines, DeepResearch enables user-controllable synthesis with transparent reasoning and parameter-driven configurability, facilitating high-throughput integration of domain-specific evidence while maintaining analytical rigor. Applied to 49 ecological research questions, DeepResearch achieves up to a 21-fold increase in source integration and a 14.9-fold rise in sources integrated per 1,000 words. High-parameter settings yield expert-level analytical depth and contextual diversity. Source code available at: https://github.com/sciknoworg/deep-research.

Authors:Chenyu Lian, Hong-Yu Zhou, Zhanli Hu, Jing Qin
Title: BenchReAD: A systematic benchmark for retinal anomaly detection
Abstract:
Retinal anomaly detection plays a pivotal role in screening ocular and systemic diseases. Despite its significance, progress in the field has been hindered by the absence of a comprehensive and publicly available benchmark, which is essential for the fair evaluation and advancement of methodologies. Due to this limitation, previous anomaly detection work related to retinal images has been constrained by (1) a limited and overly simplistic set of anomaly types, (2) test sets that are nearly saturated, and (3) a lack of generalization evaluation, resulting in less convincing experimental setups. Furthermore, existing benchmarks in medical anomaly detection predominantly focus on one-class supervised approaches (training only with negative samples), overlooking the vast amounts of labeled abnormal data and unlabeled data that are commonly available in clinical practice. To bridge these gaps, we introduce a benchmark for retinal anomaly detection, which is comprehensive and systematic in terms of data and algorithm. Through categorizing and benchmarking previous methods, we find that a fully supervised approach leveraging disentangled representations of abnormalities (DRA) achieves the best performance but suffers from significant drops in performance when encountering certain unseen anomalies. Inspired by the memory bank mechanisms in one-class supervised learning, we propose NFM-DRA, which integrates DRA with a Normal Feature Memory to mitigate the performance degradation, establishing a new SOTA. The benchmark is publicly available at https://github.com/DopamineLcy/BenchReAD.

Authors:İsmail Tarım, Aytuğ Onan
Title: Can You Detect the Difference?
Abstract:
The rapid advancement of large language models (LLMs) has raised concerns about reliably detecting AI-generated text. Stylometric metrics work well on autoregressive (AR) outputs, but their effectiveness on diffusion-based models is unknown. We present the first systematic comparison of diffusion-generated text (LLaDA) and AR-generated text (LLaMA) using 2 000 samples. Perplexity, burstiness, lexical diversity, readability, and BLEU/ROUGE scores show that LLaDA closely mimics human text in perplexity and burstiness, yielding high false-negative rates for AR-oriented detectors. LLaMA shows much lower perplexity but reduced lexical fidelity. Relying on any single metric fails to separate diffusion outputs from human writing. We highlight the need for diffusion-aware detectors and outline directions such as hybrid models, diffusion-specific stylometric signatures, and robust watermarking.

Authors:Mohammed Bouri, Adnane Saoud
Title: Bridging Robustness and Generalization Against Word Substitution Attacks in NLP via the Growth Bound Matrix Approach
Abstract:
Despite advancements in Natural Language Processing (NLP), models remain vulnerable to adversarial attacks, such as synonym substitutions. While prior work has focused on improving robustness for feed-forward and convolutional architectures, the robustness of recurrent networks and modern state space models (SSMs), such as S4, remains understudied. These architectures pose unique challenges due to their sequential processing and complex parameter dynamics. In this paper, we introduce a novel regularization technique based on Growth Bound Matrices (GBM) to improve NLP model robustness by reducing the impact of input perturbations on model outputs. We focus on computing the GBM for three architectures: Long Short-Term Memory (LSTM), State Space models (S4), and Convolutional Neural Networks (CNN). Our method aims to (1) enhance resilience against word substitution attacks, (2) improve generalization on clean text, and (3) providing the first systematic analysis of SSM (S4) robustness. Extensive experiments across multiple architectures and benchmark datasets demonstrate that our method improves adversarial robustness by up to 8.8% over existing baselines. These results highlight the effectiveness of our approach, outperforming several state-of-the-art methods in adversarial defense. Codes are available at https://github.com/BouriMohammed/GBM

Authors:Xiangyu Yin, Boyuan Yang, Weichen Liu, Qiyao Xue, Abrar Alamri, Goeran Fiedler, Wei Gao
Title: ProGait: A Multi-Purpose Video Dataset and Benchmark for Transfemoral Prosthesis Users
Abstract:
Prosthetic legs play a pivotal role in clinical rehabilitation, allowing individuals with lower-limb amputations the ability to regain mobility and improve their quality of life. Gait analysis is fundamental for optimizing prosthesis design and alignment, directly impacting the mobility and life quality of individuals with lower-limb amputations. Vision-based machine learning (ML) methods offer a scalable and non-invasive solution to gait analysis, but face challenges in correctly detecting and analyzing prosthesis, due to their unique appearances and new movement patterns. In this paper, we aim to bridge this gap by introducing a multi-purpose dataset, namely ProGait, to support multiple vision tasks including Video Object Segmentation, 2D Human Pose Estimation, and Gait Analysis (GA). ProGait provides 412 video clips from four above-knee amputees when testing multiple newly-fitted prosthetic legs through walking trials, and depicts the presence, contours, poses, and gait patterns of human subjects with transfemoral prosthetic legs. Alongside the dataset itself, we also present benchmark tasks and fine-tuned baseline models to illustrate the practical application and performance of the ProGait dataset. We compared our baseline models against pre-trained vision models, demonstrating improved generalizability when applying the ProGait dataset for prosthesis-specific tasks. Our code is available at https://github.com/pittisl/ProGait and dataset at https://huggingface.co/datasets/ericyxy98/ProGait.

Authors:Jaeseong Lee, Yeeun Choi, Heechan Choi, Hanjung Kim, Seonjoo Kim
Title: A Training-Free, Task-Agnostic Framework for Enhancing MLLM Performance on High-Resolution Images
Abstract:
Multimodal Large Language Models (MLLMs) have demonstrated remarkable capabilities in vision-language understanding, reasoning, and generation. However, they struggle with tasks requiring fine-grained localization and reasoning in high-resolution images. This constraint stems from the fact that MLLMs are fine-tuned with fixed image resolution to align with the pre-trained image encoder used in MLLM. Consequently, feeding high-resolution images directly into MLLMs leads to poor generalization due to a train-test resolution discrepancy, while downsampling these images-although ensuring consistency-compromises fine-grained visual details and ultimately degrades performance. To address this challenge, we propose Extract Candidate then Predict (ECP), a novel training-free, task-agnostic two-stage framework designed to enhance MLLM performance on high-resolution images. The key intuition behind ECP is that while MLLMs struggle with high-resolution images, their predictions on downsampled images still contain implicit localization cues. By first identifying candidate region using the coarse prediction and then predicting the final output based on candidate region, ECP effectively preserves fine-grained details while mitigating the challenges posed by high-resolution data. We validate our framework on 4K GUI grounding and 4K, 8K MLLM perception, achieving +21.3%, +5.8%, +5.2% absolute improvement compared to baseline respectively, demonstrating its effectiveness. Code is available at https://github.com/yenncye/ECP.

Authors:Zhonglin Liu
Title: A PBN-RL-XAI Framework for Discovering a "Hit-and-Run" Therapeutic Strategy in Melanoma
Abstract:
Innate resistance to anti-PD-1 immunotherapy remains a major clinical challenge in metastatic melanoma, with the underlying molecular networks being poorly understood. To address this, we constructed a dynamic Probabilistic Boolean Network model using transcriptomic data from patient tumor biopsies to elucidate the regulatory logic governing therapy response. We then employed a reinforcement learning agent to systematically discover optimal, multi-step therapeutic interventions and used explainable artificial intelligence to mechanistically interpret the agent's control policy. The analysis revealed that a precisely timed, 4-step temporary inhibition of the lysyl oxidase like 2 protein (LOXL2) was the most effective strategy. Our explainable analysis showed that this ''hit-and-run" intervention is sufficient to erase the molecular signature driving resistance, allowing the network to self-correct without requiring sustained intervention. This study presents a novel, time-dependent therapeutic hypothesis for overcoming immunotherapy resistance and provides a powerful computational framework for identifying non-obvious intervention protocols in complex biological systems.

Authors:Samson Yu, Kelvin Lin, Harold Soh
Title: Demonstrating the Octopi-1.5 Visual-Tactile-Language Model
Abstract:
Touch is recognized as a vital sense for humans and an equally important modality for robots, especially for dexterous manipulation, material identification, and scenarios involving visual occlusion. Building upon very recent work in touch foundation models, this demonstration will feature Octopi-1.5, our latest visual-tactile-language model. Compared to its predecessor, Octopi-1.5 introduces the ability to process tactile signals from multiple object parts and employs a simple retrieval-augmented generation (RAG) module to improve performance on tasks and potentially learn new objects on-the-fly. The system can be experienced live through a new handheld tactile-enabled interface, the TMI, equipped with GelSight and TAC-02 tactile sensors. This convenient and accessible setup allows users to interact with Octopi-1.5 without requiring a robot. During the demonstration, we will showcase Octopi-1.5 solving tactile inference tasks by leveraging tactile inputs and commonsense knowledge. For example, in a Guessing Game, Octopi-1.5 will identify objects being grasped and respond to follow-up queries about how to handle it (e.g., recommending careful handling for soft fruits). We also plan to demonstrate Octopi-1.5's RAG capabilities by teaching it new items. With live interactions, this demonstration aims to highlight both the progress and limitations of VTLMs such as Octopi-1.5 and to foster further interest in this exciting field. Code for Octopi-1.5 and design files for the TMI gripper are available at https://github.com/clear-nus/octopi-1.5.

Authors:Shubham Shukla, Kunal Sonalkar
Title: Can GPT-4o mini and Gemini 2.0 Flash Predict Fine-Grained Fashion Product Attributes? A Zero-Shot Analysis
Abstract:
The fashion retail business is centered around the capacity to comprehend products. Product attribution helps in comprehending products depending on the business process. Quality attribution improves the customer experience as they navigate through millions of products offered by a retail website. It leads to well-organized product catalogs. In the end, product attribution directly impacts the 'discovery experience' of the customer. Although large language models (LLMs) have shown remarkable capabilities in understanding multimodal data, their performance on fine-grained fashion attribute recognition remains under-explored. This paper presents a zero-shot evaluation of state-of-the-art LLMs that balance performance with speed and cost efficiency, mainly GPT-4o-mini and Gemini 2.0 Flash. We have used the dataset DeepFashion-MultiModal (https://github.com/yumingj/DeepFashion-MultiModal) to evaluate these models in the attribution tasks of fashion products. Our study evaluates these models across 18 categories of fashion attributes, offering insight into where these models excel. We only use images as the sole input for product information to create a constrained environment. Our analysis shows that Gemini 2.0 Flash demonstrates the strongest overall performance with a macro F1 score of 56.79% across all attributes, while GPT-4o-mini scored a macro F1 score of 43.28%. Through detailed error analysis, our findings provide practical insights for deploying these LLMs in production e-commerce product attribution-related tasks and highlight the need for domain-specific fine-tuning approaches. This work also lays the groundwork for future research in fashion AI and multimodal attribute extraction.

Authors:Gaurav R. Ghosal, Pratyush Maini, Aditi Raghunathan
Title: Memorization Sinks: Isolating Memorization during LLM Training
Abstract:
Large language models are susceptible to memorizing repeated sequences, posing privacy and copyright concerns. A popular mitigation strategy is to remove memorized information from specific neurons post-hoc. However, such approaches have shown limited success so far. In a controlled setting, we show that the memorization of natural sequences (those that resemble linguistically plausible text) become mechanistically entangled with general language abilities, thereby becoming challenging to remove post-hoc. In this work, we put forward a new paradigm of MemSinks that promotes isolation of memorization by design. We leverage a sequence identifier that activates a unique set of memorization neurons for each sequence across repetitions. By analyzing the dynamics of learning and forgetting, we argue that MemSinks facilitates isolation of memorized content, making it easier to remove without compromising general language capabilities. We implement MemSinks at the billion-parameter and billion-token scale, and observe both effective isolation and strong generalization. To our knowledge, this is the first proof-of-concept on real data demonstrating that simultaneous generalization and isolation is achievable. We open-source our code at http://github.com/grghosal/MemSinks.

Authors:Qinyuan Ye, Robin Jia, Xiang Ren
Title: Function Induction and Task Generalization: An Interpretability Study with Off-by-One Addition
Abstract:
Large language models demonstrate the intriguing ability to perform unseen tasks via in-context learning. However, it remains unclear what mechanisms inside the model drive such task-level generalization. In this work, we approach this question through the lens of off-by-one addition (i.e., 1+1=3, 2+2=5, 3+3=?), a two-step, counterfactual task with an unexpected +1 function as a second step. Leveraging circuit-style interpretability techniques such as path patching, we analyze the models' internal computations behind their notable performance and present three key findings. First, we uncover a function induction mechanism that explains the model's generalization from standard addition to off-by-one addition. This mechanism resembles the structure of the induction head mechanism found in prior work and elevates it to a higher level of abstraction. Second, we show that the induction of the +1 function is governed by multiple attention heads in parallel, each of which emits a distinct piece of the +1 function. Finally, we find that this function induction mechanism is reused in a broader range of tasks, including synthetic tasks such as shifted multiple-choice QA and algorithmic tasks such as base-8 addition. Overall, our findings offer deeper insights into how reusable and composable structures within language models enable task-level generalization.

Authors:Jiatong Li, Qi Liu, Mengxiao Zhu
Title: Generative Cognitive Diagnosis
Abstract:
Cognitive diagnosis (CD) models latent cognitive states of human learners by analyzing their response patterns on diagnostic tests, serving as a crucial machine learning technique for educational assessment and evaluation. Traditional cognitive diagnosis models typically follow a transductive prediction paradigm that optimizes parameters to fit response scores and extract learner abilities. These approaches face significant limitations as they cannot perform instant diagnosis for new learners without computationally expensive retraining and produce diagnostic outputs with limited reliability. In this study, we introduces a novel generative diagnosis paradigm that fundamentally shifts CD from predictive to generative modeling, enabling inductive inference of cognitive states without parameter re-optimization. We propose two simple yet effective instantiations of this paradigm: Generative Item Response Theory (G-IRT) and Generative Neural Cognitive Diagnosis Model (G-NCDM), which achieve excellent performance improvements over traditional methods. The generative approach disentangles cognitive state inference from response prediction through a well-designed generation process that incorporates identifiability and monotonicity conditions. Extensive experiments on real-world datasets demonstrate the effectiveness of our methodology in addressing scalability and reliability challenges, especially $\times 100$ speedup for the diagnosis of new learners. Our framework opens new avenues for cognitive diagnosis applications in artificial intelligence, particularly for intelligent model evaluation and intelligent education systems. The code is available at https://github.com/CSLiJT/Generative-CD.git.

Authors:Paulo Salem, Robert Sim, Christopher Olsen, Prerit Saxena, Rafael Barcelos, Yi Ding
Title: TinyTroupe: An LLM-powered Multiagent Persona Simulation Toolkit
Abstract:
Recent advances in Large Language Models (LLM) have led to a new class of autonomous agents, renewing and expanding interest in the area. LLM-powered Multiagent Systems (MAS) have thus emerged, both for assistive and simulation purposes, yet tools for realistic human behavior simulation -- with its distinctive challenges and opportunities -- remain underdeveloped. Existing MAS libraries and tools lack fine-grained persona specifications, population sampling facilities, experimentation support, and integrated validation, among other key capabilities, limiting their utility for behavioral studies, social simulation, and related applications. To address these deficiencies, in this work we introduce TinyTroupe, a simulation toolkit enabling detailed persona definitions (e.g., nationality, age, occupation, personality, beliefs, behaviors) and programmatic control via numerous LLM-driven mechanisms. This allows for the concise formulation of behavioral problems of practical interest, either at the individual or group level, and provides effective means for their solution. TinyTroupe's components are presented using representative working examples, such as brainstorming and market research sessions, thereby simultaneously clarifying their purpose and demonstrating their usefulness. Quantitative and qualitative evaluations of selected aspects are also provided, highlighting possibilities, limitations, and trade-offs. The approach, though realized as a specific Python implementation, is meant as a novel conceptual contribution, which can be partially or fully incorporated in other contexts. The library is available as open source at https://github.com/microsoft/tinytroupe.

Authors:Abdul Manaf, Nimra Mughal
Title: AI-Enhanced Pediatric Pneumonia Detection: A CNN-Based Approach Using Data Augmentation and Generative Adversarial Networks (GANs)
Abstract:
Pneumonia is a leading cause of mortality in children under five, requiring accurate chest X-ray diagnosis. This study presents a machine learning-based Pediatric Chest Pneumonia Classification System to assist healthcare professionals in diagnosing pneumonia from chest X-ray images. The CNN-based model was trained on 5,863 labeled chest X-ray images from children aged 0-5 years from the Guangzhou Women and Children's Medical Center. To address limited data, we applied augmentation techniques (rotation, zooming, shear, horizontal flipping) and employed GANs to generate synthetic images, addressing class imbalance. The system achieved optimal performance using combined original, augmented, and GAN-generated data, evaluated through accuracy and F1 score metrics. The final model was deployed via a Flask web application, enabling real-time classification with probability estimates. Results demonstrate the potential of deep learning and GANs in improving diagnostic accuracy and efficiency for pediatric pneumonia classification, particularly valuable in resource-limited clinical settings https://github.com/AbdulManaf12/Pediatric-Chest-Pneumonia-Classification

Authors:Taniv Ashraf
Title: A Serverless Architecture for Real-Time Stock Analysis using Large Language Models: An Iterative Development and Debugging Case Study
Abstract:
The advent of powerful, accessible Large Language Models (LLMs) like Google's Gemini presents new opportunities for democratizing financial data analysis. This paper documents the design, implementation, and iterative debugging of a novel, serverless system for real-time stock analysis. The system leverages the Gemini API for qualitative assessment, automates data ingestion and processing via GitHub Actions, and presents the findings through a decoupled, static frontend. We detail the architectural evolution of the system, from initial concepts to a robust, event-driven pipeline, highlighting the practical challenges encountered during deployment. A significant portion of this paper is dedicated to a case study on the debugging process, covering common software errors, platform-specific permission issues, and rare, environment-level platform bugs. The final architecture operates at a near-zero cost, demonstrating a viable model for individuals to build sophisticated AI-powered financial tools. The operational application is publicly accessible, and the complete source code is available for review. We conclude by discussing the role of LLMs in financial analysis, the importance of robust debugging methodologies, and the emerging paradigm of human-AI collaboration in software development.

Authors:Haozhe Zhao, Zefan Cai, Shuzheng Si, Liang Chen, Jiuxiang Gu, Wen Xiao, Junjie Hu
Title: MENTOR: Efficient Multimodal-Conditioned Tuning for Autoregressive Vision Generation Models
Abstract:
Recent text-to-image models produce high-quality results but still struggle with precise visual control, balancing multimodal inputs, and requiring extensive training for complex multimodal image generation. To address these limitations, we propose MENTOR, a novel autoregressive (AR) framework for efficient Multimodal-conditioned Tuning for Autoregressive multimodal image generation. MENTOR combines an AR image generator with a two-stage training paradigm, enabling fine-grained, token-level alignment between multimodal inputs and image outputs without relying on auxiliary adapters or cross-attention modules. The two-stage training consists of: (1) a multimodal alignment stage that establishes robust pixel- and semantic-level alignment, followed by (2) a multimodal instruction tuning stage that balances the integration of multimodal inputs and enhances generation controllability. Despite modest model size, suboptimal base components, and limited training resources, MENTOR achieves strong performance on the DreamBench++ benchmark, outperforming competitive baselines in concept preservation and prompt following. Additionally, our method delivers superior image reconstruction fidelity, broad task adaptability, and improved training efficiency compared to diffusion-based methods. Dataset, code, and models are available at: https://github.com/HaozheZhao/MENTOR

Authors:Changli Wang, Rui Wu, Fang Yin
Title: ViSP: A PPO-Driven Framework for Sarcasm Generation with Contrastive Learning
Abstract:
Human emotions are complex, with sarcasm being a subtle and distinctive form. Despite progress in sarcasm research, sarcasm generation remains underexplored, primarily due to the overreliance on textual modalities and the neglect of visual cues, as well as the mismatch between image content and sarcastic intent in existing datasets. In this paper, we introduce M2SaG, a multimodal sarcasm generation dataset with 4,970 samples, each containing an image, a sarcastic text, and a sarcasm target. To benchmark M2SaG, we propose ViSP, a generation framework that integrates Proximal Policy Optimization (PPO) and contrastive learning. PPO utilizes reward scores from DIP to steer the generation of sarcastic texts, while contrastive learning encourages the model to favor outputs with higher reward scores. These strategies improve overall generation quality and produce texts with more pronounced sarcastic intent. We evaluate ViSP across five metric sets and find it surpasses all baselines, including large language models, underscoring their limitations in sarcasm generation. Furthermore, we analyze the distributions of Sarcasm Scores and Factual Incongruity for both M2SaG and the texts generated by ViSP. The generated texts exhibit higher mean Sarcasm Scores (0.898 vs. 0.770) and Factual Incongruity (0.768 vs. 0.739), demonstrating that ViSP produces higher-quality sarcastic content than the original dataset. % The dataset and code will be publicly available. Our dataset and code will be released at \textit{https://github.com/wclapply/ViSP}.

Authors:Yangning Li, Weizhi Zhang, Yuyao Yang, Wei-Chieh Huang, Yaozu Wu, Junyu Luo, Yuanchen Bei, Henry Peng Zou, Xiao Luo, Yusheng Zhao, Chunkit Chan, Yankai Chen, Zhongfen Deng, Yinghui Li, Hai-Tao Zheng, Dongyuan Li, Renhe Jiang, Ming Zhang, Yangqiu Song, Philip S. Yu
Title: Towards Agentic RAG with Deep Reasoning: A Survey of RAG-Reasoning Systems in LLMs
Abstract:
Retrieval-Augmented Generation (RAG) lifts the factuality of Large Language Models (LLMs) by injecting external knowledge, yet it falls short on problems that demand multi-step inference; conversely, purely reasoning-oriented approaches often hallucinate or mis-ground facts. This survey synthesizes both strands under a unified reasoning-retrieval perspective. We first map how advanced reasoning optimizes each stage of RAG (Reasoning-Enhanced RAG). Then, we show how retrieved knowledge of different type supply missing premises and expand context for complex inference (RAG-Enhanced Reasoning). Finally, we spotlight emerging Synergized RAG-Reasoning frameworks, where (agentic) LLMs iteratively interleave search and reasoning to achieve state-of-the-art performance across knowledge-intensive benchmarks. We categorize methods, datasets, and open challenges, and outline research avenues toward deeper RAG-Reasoning systems that are more effective, multimodally-adaptive, trustworthy, and human-centric. The collection is available at https://github.com/DavidZWZ/Awesome-RAG-Reasoning.

Authors:Timothy Chase, Karthik Dantu
Title: Domain Adaptation and Multi-view Attention for Learnable Landmark Tracking with Sparse Data
Abstract:
The detection and tracking of celestial surface terrain features are crucial for autonomous spaceflight applications, including Terrain Relative Navigation (TRN), Entry, Descent, and Landing (EDL), hazard analysis, and scientific data collection. Traditional photoclinometry-based pipelines often rely on extensive a priori imaging and offline processing, constrained by the computational limitations of radiation-hardened systems. While historically effective, these approaches typically increase mission costs and duration, operate at low processing rates, and have limited generalization. Recently, learning-based computer vision has gained popularity to enhance spacecraft autonomy and overcome these limitations. While promising, emerging techniques frequently impose computational demands exceeding the capabilities of typical spacecraft hardware for real-time operation and are further challenged by the scarcity of labeled training data for diverse extraterrestrial environments. In this work, we present novel formulations for in-situ landmark tracking via detection and description. We utilize lightweight, computationally efficient neural network architectures designed for real-time execution on current-generation spacecraft flight processors. For landmark detection, we propose improved domain adaptation methods that enable the identification of celestial terrain features with distinct, cheaply acquired training data. Concurrently, for landmark description, we introduce a novel attention alignment formulation that learns robust feature representations that maintain correspondence despite significant landmark viewpoint variations. Together, these contributions form a unified system for landmark tracking that demonstrates superior performance compared to existing state-of-the-art techniques.

Authors:Zile Wang, Hao Yu, Jiabo Zhan, Chun Yuan
Title: AlphaVAE: Unified End-to-End RGBA Image Reconstruction and Generation with Alpha-Aware Representation Learning
Abstract:
Recent advances in latent diffusion models have achieved remarkable results in high-fidelity RGB image synthesis by leveraging pretrained VAEs to compress and reconstruct pixel data at low computational cost. However, the generation of transparent or layered content (RGBA image) remains largely unexplored, due to the lack of large-scale benchmarks. In this work, we propose ALPHA, the first comprehensive RGBA benchmark that adapts standard RGB metrics to four-channel images via alpha blending over canonical backgrounds. We further introduce ALPHAVAE, a unified end-to-end RGBA VAE that extends a pretrained RGB VAE by incorporating a dedicated alpha channel. The model is trained with a composite objective that combines alpha-blended pixel reconstruction, patch-level fidelity, perceptual consistency, and dual KL divergence constraints to ensure latent fidelity across both RGB and alpha representations. Our RGBA VAE, trained on only 8K images in contrast to 1M used by prior methods, achieves a +4.9 dB improvement in PSNR and a +3.2% increase in SSIM over LayerDiffuse in reconstruction. It also enables superior transparent image generation when fine-tuned within a latent diffusion framework. Our code, data, and models are released on https://github.com/o0o0o00o0/AlphaVAE for reproducibility.

Authors:Abdulvahap Mutlu, Şengül Doğan, Türker Tuncer
Title: ViT-ProtoNet for Few-Shot Image Classification: A Multi-Benchmark Evaluation
Abstract:
The remarkable representational power of Vision Transformers (ViTs) remains underutilized in few-shot image classification. In this work, we introduce ViT-ProtoNet, which integrates a ViT-Small backbone into the Prototypical Network framework. By averaging class conditional token embeddings from a handful of support examples, ViT-ProtoNet constructs robust prototypes that generalize to novel categories under 5-shot settings. We conduct an extensive empirical evaluation on four standard benchmarks: Mini-ImageNet, FC100, CUB-200, and CIFAR-FS, including overlapped support variants to assess robustness. Across all splits, ViT-ProtoNet consistently outperforms CNN-based prototypical counterparts, achieving up to a 3.2\% improvement in 5-shot accuracy and demonstrating superior feature separability in latent space. Furthermore, it outperforms or is competitive with transformer-based competitors using a more lightweight backbone. Comprehensive ablations examine the impact of transformer depth, patch size, and fine-tuning strategy. To foster reproducibility, we release code and pretrained weights. Our results establish ViT-ProtoNet as a powerful, flexible approach for few-shot classification and set a new baseline for transformer-based meta-learners.

Authors:Anita Kriz, Elizabeth Laura Janes, Xing Shen, Tal Arbel
Title: Prompt4Trust: A Reinforcement Learning Prompt Augmentation Framework for Clinically-Aligned Confidence Calibration in Multimodal Large Language Models
Abstract:
Multimodal large language models (MLLMs) hold considerable promise for applications in healthcare. However, their deployment in safety-critical settings is hindered by two key limitations: (i) sensitivity to prompt design, and (ii) a tendency to generate incorrect responses with high confidence. As clinicians may rely on a model's stated confidence to gauge the reliability of its predictions, it is especially important that when a model expresses high confidence, it is also highly accurate. We introduce Prompt4Trust, the first reinforcement learning (RL) framework for prompt augmentation targeting confidence calibration in MLLMs. A lightweight LLM is trained to produce context-aware auxiliary prompts that guide a downstream task MLLM to generate responses in which the expressed confidence more accurately reflects predictive accuracy. Unlike conventional calibration techniques, Prompt4Trust specifically prioritizes aspects of calibration most critical for safe and trustworthy clinical decision-making. Beyond improvements driven by this clinically motivated calibration objective, our proposed method also improves task accuracy, achieving state-of-the-art medical visual question answering (VQA) performance on the PMC-VQA benchmark, which is composed of multiple-choice questions spanning diverse medical imaging modalities. Moreover, our framework trained with a small downstream task MLLM showed promising zero-shot generalization to larger MLLMs in our experiments, suggesting the potential for scalable calibration without the associated computational costs. This work demonstrates the potential of automated yet human-aligned prompt engineering for improving the the trustworthiness of MLLMs in safety critical settings. Our codebase can be found at https://github.com/xingbpshen/prompt4trust.

Authors:Shuhan Ye, Yuanbin Qian, Chong Wang, Sunqi Lin, Jiazhen Xu, Jiangbo Qian, Yuqi Li
Title: Cross Knowledge Distillation between Artificial and Spiking Neural Networks
Abstract:
Recently, Spiking Neural Networks (SNNs) have demonstrated rich potential in computer vision domain due to their high biological plausibility, event-driven characteristic and energy-saving efficiency. Still, limited annotated event-based datasets and immature SNN architectures result in their performance inferior to that of Artificial Neural Networks (ANNs). To enhance the performance of SNNs on their optimal data format, DVS data, we explore using RGB data and well-performing ANNs to implement knowledge distillation. In this case, solving cross-modality and cross-architecture challenges is necessary. In this paper, we propose cross knowledge distillation (CKD), which not only leverages semantic similarity and sliding replacement to mitigate the cross-modality challenge, but also uses an indirect phased knowledge distillation to mitigate the cross-architecture challenge. We validated our method on main-stream neuromorphic datasets, including N-Caltech101 and CEP-DVS. The experimental results show that our method outperforms current State-of-the-Art methods. The code will be available at https://github.com/ShawnYE618/CKD

Authors:Ali Vosoughi, Ayoub Shahnazari, Yufeng Xi, Zeliang Zhang, Griffin Hess, Chenliang Xu, Niaz Abdolrahim
Title: OPENXRD: A Comprehensive Benchmark and Enhancement Framework for LLM/MLLM XRD Question Answering
Abstract:
This work presents OPENXRD, an open-book pipeline designed for crystallography question answering, which integrates textual prompts with concise supporting content generated by GPT-4.5. Instead of using scanned textbooks, which may lead to copyright issues, OPENXRD generates compact, domain-specific references that help smaller models understand key concepts in X-ray diffraction (XRD). We evaluate OPENXRD on a well-defined set of 217 expert-level XRD questions by comparing different vision-language models, including GPT-4 and LLaVA-based frameworks such as Mistral, LLaMA, and QWEN, under both closed-book (without supporting material) and open-book (with supporting material) conditions. Our experimental results show significant accuracy improvements in models that use the GPT-4.5-generated summaries, particularly those with limited prior training in crystallography. OPENXRD uses knowledge from larger models to fill knowledge gaps in crystallography and shows that AI-generated texts can help smaller models reason more effectively in scientific tasks. While the current version of OPENXRD focuses on text-based inputs, we also explore future extensions such as adding real crystal diagrams or diffraction patterns to improve interpretation in specialized materials science contexts. Overall, OPENXRD shows that specialized open-book systems can be useful in materials science and provides a foundation for broader natural language processing (NLP) tools in critical scientific fields.

Authors:Esraa Elelimy, Brett Daley, Andrew Patterson, Marlos C. Machado, Adam White, Martha White
Title: Deep Reinforcement Learning with Gradient Eligibility Traces
Abstract:
Achieving fast and stable off-policy learning in deep reinforcement learning (RL) is challenging. Most existing methods rely on semi-gradient temporal-difference (TD) methods for their simplicity and efficiency, but are consequently susceptible to divergence. While more principled approaches like Gradient TD (GTD) methods have strong convergence guarantees, they have rarely been used in deep RL. Recent work introduced the generalized Projected Bellman Error ($\overline{\text{PBE}}$), enabling GTD methods to work efficiently with nonlinear function approximation. However, this work is limited to one-step methods, which are slow at credit assignment and require a large number of samples. In this paper, we extend the generalized $\overline{\text{PBE}}$ objective to support multistep credit assignment based on the $λ$-return and derive three gradient-based methods that optimize this new objective. We provide both a forward-view formulation compatible with experience replay and a backward-view formulation compatible with streaming algorithms. Finally, we evaluate the proposed algorithms and show that they outperform both PPO and StreamQ in MuJoCo and MinAtar environments, respectively. Code available at https://github.com/esraaelelimy/gtd\_algos

Authors:Zhengxiao He, Huayu Li, Geng Yuan, William D. S. Killgore, Stuart F. Quan, Chen X. Chen, Ao Li
Title: Multimodal Cardiovascular Risk Profiling Using Self-Supervised Learning of Polysomnography
Abstract:
Methods: We developed a self-supervised deep learning model that extracts meaningful patterns from multi-modal signals (Electroencephalography (EEG), Electrocardiography (ECG), and respiratory signals). The model was trained on data from 4,398 participants. Projection scores were derived by contrasting embeddings from individuals with and without CVD outcomes. External validation was conducted in an independent cohort with 1,093 participants. The source code is available on https://github.com/miraclehetech/sleep-ssl. Results: The projection scores revealed distinct and clinically meaningful patterns across modalities. ECG-derived features were predictive of both prevalent and incident cardiac conditions, particularly CVD mortality. EEG-derived features were predictive of incident hypertension and CVD mortality. Respiratory signals added complementary predictive value. Combining these projection scores with the Framingham Risk Score consistently improved predictive performance, achieving area under the curve values ranging from 0.607 to 0.965 across different outcomes. Findings were robustly replicated and validated in the external testing cohort. Conclusion: Our findings demonstrate that the proposed framework can generate individualized CVD risk scores directly from PSG data. The resulting projection scores have the potential to be integrated into clinical practice, enhancing risk assessment and supporting personalized care.

Authors:Chenyu Wang, Cai Zhou, Sharut Gupta, Zongyu Lin, Stefanie Jegelka, Stephen Bates, Tommi Jaakkola
Title: Learning Diffusion Models with Flexible Representation Guidance
Abstract:
Diffusion models can be improved with additional guidance towards more effective representations of input. Indeed, prior empirical work has already shown that aligning internal representations of the diffusion model with those of pre-trained models improves generation quality. In this paper, we present a systematic framework for incorporating representation guidance into diffusion models. We provide alternative decompositions of denoising models along with their associated training criteria, where the decompositions determine when and how the auxiliary representations are incorporated. Guided by our theoretical insights, we introduce two new strategies for enhancing representation alignment in diffusion models. First, we pair examples with target representations either derived from themselves or arisen from different synthetic modalities, and subsequently learn a joint model over the multimodal pairs. Second, we design an optimal training curriculum that balances representation learning and data generation. Our experiments across image, protein sequence, and molecule generation tasks demonstrate superior performance as well as accelerated training. In particular, on the class-conditional ImageNet $256\times 256$ benchmark, our guidance results in $23.3$ times faster training than the original SiT-XL as well as four times speedup over the state-of-the-art method REPA. The code is available at https://github.com/ChenyuWang-Monica/REED.

Authors:Xiaowen Zhang, Zhenyu Bi, Patrick Lachance, Xuan Wang, Tiziana Di Matteo, Rupert A. C. Croft
Title: Bridging Literature and the Universe Via A Multi-Agent Large Language Model System
Abstract:
As cosmological simulations and their associated software become increasingly complex, physicists face the challenge of searching through vast amounts of literature and user manuals to extract simulation parameters from dense academic papers, each using different models and formats. Translating these parameters into executable scripts remains a time-consuming and error-prone process. To improve efficiency in physics research and accelerate the cosmological simulation process, we introduce SimAgents, a multi-agent system designed to automate both parameter configuration from the literature and preliminary analysis for cosmology research. SimAgents is powered by specialized LLM agents capable of physics reasoning, simulation software validation, and tool execution. These agents collaborate through structured communication, ensuring that extracted parameters are physically meaningful, internally consistent, and software-compliant. We also construct a cosmological parameter extraction evaluation dataset by collecting over 40 simulations in published papers from Arxiv and leading journals that cover diverse simulation types. Experiments on the dataset demonstrate a strong performance of SimAgents, highlighting its effectiveness and potential to accelerate scientific research for physicists. Our demonstration video is available at: https://youtu.be/w1zLpm_CaWA. The complete system and dataset are publicly available at https://github.com/xwzhang98/SimAgents.

Authors:Tomasz Szandala, Fatima Ezzeddine, Natalia Rusin, Silvia Giordano, Omran Ayoub
Title: Fair-FLIP: Fair Deepfake Detection with Fairness-Oriented Final Layer Input Prioritising
Abstract:
Artificial Intelligence-generated content has become increasingly popular, yet its malicious use, particularly the deepfakes, poses a serious threat to public trust and discourse. While deepfake detection methods achieve high predictive performance, they often exhibit biases across demographic attributes such as ethnicity and gender. In this work, we tackle the challenge of fair deepfake detection, aiming to mitigate these biases while maintaining robust detection capabilities. To this end, we propose a novel post-processing approach, referred to as Fairness-Oriented Final Layer Input Prioritising (Fair-FLIP), that reweights a trained model's final-layer inputs to reduce subgroup disparities, prioritising those with low variability while demoting highly variable ones. Experimental results comparing Fair-FLIP to both the baseline (without fairness-oriented de-biasing) and state-of-the-art approaches show that Fair-FLIP can enhance fairness metrics by up to 30% while maintaining baseline accuracy, with only a negligible reduction of 0.25%. Code is available on Github: https://github.com/szandala/fair-deepfake-detection-toolbox

Authors:Sergio Mares, Ariel Espinoza Weinberger, Nilah M. Ioannidis
Title: Generation of structure-guided pMHC-I libraries using Diffusion Models
Abstract:
Personalized vaccines and T-cell immunotherapies depend critically on identifying peptide-MHC class I (pMHC-I) interactions capable of eliciting potent immune responses. However, current benchmarks and models inherit biases present in mass-spectrometry and binding-assay datasets, limiting discovery of novel peptide ligands. To address this issue, we introduce a structure-guided benchmark of pMHC-I peptides designed using diffusion models conditioned on crystal structure interaction distances. Spanning twenty high-priority HLA alleles, this benchmark is independent of previously characterized peptides yet reproduces canonical anchor residue preferences, indicating structural generalization without experimental dataset bias. Using this resource, we demonstrate that state-of-the-art sequence-based predictors perform poorly at recognizing the binding potential of these structurally stable designs, indicating allele-specific limitations invisible in conventional evaluations. Our geometry-aware design pipeline yields peptides with high predicted structural integrity and higher residue diversity than existing datasets, representing a key resource for unbiased model training and evaluation. Our code, and data are available at: https://github.com/sermare/struct-mhc-dev.

Authors:Wenliang Shan, Michael Fu, Rui Yang, Chakkrit Tantithamthavorn
Title: SEALGuard: Safeguarding the Multilingual Conversations in Southeast Asian Languages for LLM Software Systems
Abstract:
Safety alignment is critical for LLM-powered systems. While recent LLM-powered guardrail approaches such as LlamaGuard achieve high detection accuracy of unsafe inputs written in English (e.g., ``How to create a bomb?''), they struggle with multilingual unsafe inputs. This limitation leaves LLM systems vulnerable to unsafe and jailbreak prompts written in low-resource languages such as those in Southeast Asia. This paper introduces SEALGuard, a multilingual guardrail designed to improve the safety alignment across diverse languages. It aims to address the multilingual safety alignment gap of existing guardrails and ensure effective filtering of unsafe and jailbreak prompts in LLM-powered systems. We adapt a general-purpose multilingual language model into a multilingual guardrail using low-rank adaptation (LoRA). We construct SEALSBench, a large-scale multilingual safety alignment dataset containing over 260,000 prompts in ten languages, including safe, unsafe, and jailbreak cases. We evaluate SEALGuard against state-of-the-art guardrails such as LlamaGuard on this benchmark. Our findings show that multilingual unsafe and jailbreak prompts substantially degrade the performance of the state-of-the-art LlamaGuard, which experiences a drop in Defense Success Rate (DSR) by 9% and 18%, respectively, compared to its performance on English-only prompts. In contrast, SEALGuard outperforms existing guardrails in detecting multilingual unsafe and jailbreak prompts, improving DSR by 48% over LlamaGuard and achieving the best DSR, precision, and F1-score. Our ablation study further reveals the contributions of adaptation strategies and model size to the overall performance of SEALGuard. We release our pre-trained model and benchmark at https://github.com/awsm-research/SEALGuard to support further research.

Authors:Zhufeng Lu, Chentao Jia, Ming Hu, Xiaofei Xie, Mingsong Chen
Title: Gradients as an Action: Towards Communication-Efficient Federated Recommender Systems via Adaptive Action Sharing
Abstract:
As a promising privacy-aware collaborative model training paradigm, Federated Learning (FL) is becoming popular in the design of distributed recommender systems. However, Federated Recommender Systems (FedRecs) greatly suffer from two major problems: i) extremely high communication overhead due to massive item embeddings involved in recommendation systems, and ii) intolerably low training efficiency caused by the entanglement of both heterogeneous network environments and client devices. Although existing methods attempt to employ various compression techniques to reduce communication overhead, due to the parameter errors introduced by model compression, they inevitably suffer from model performance degradation. To simultaneously address the above problems, this paper presents a communication-efficient FedRec framework named FedRAS, which adopts an action-sharing strategy to cluster the gradients of item embedding into a specific number of model updating actions for communication rather than directly compressing the item embeddings. In this way, the cloud server can use the limited actions from clients to update all the items. Since gradient values are significantly smaller than item embeddings, constraining the directions of gradients (i.e., the action space) introduces smaller errors compared to compressing the entire item embedding matrix into a reduced space. To accommodate heterogeneous devices and network environments, FedRAS incorporates an adaptive clustering mechanism that dynamically adjusts the number of actions. Comprehensive experiments on well-known datasets demonstrate that FedRAS can reduce the size of communication payloads by up to 96.88%, while not sacrificing recommendation performance within various heterogeneous scenarios. We have open-sourced FedRAS at https://github.com/mastlab-T3S/FedRAS.

Authors:Kun Jing, Luoyu Chen, Jungang Xu, Jianwei Tai, Yiyu Wang, Shuaimin Li
Title: Zero-Shot Neural Architecture Search with Weighted Response Correlation
Abstract:
Neural architecture search (NAS) is a promising approach for automatically designing neural network architectures. However, the architecture estimation of NAS is computationally expensive and time-consuming because of training multiple architectures from scratch. Although existing zero-shot NAS methods use training-free proxies to accelerate the architecture estimation, their effectiveness, stability, and generality are still lacking. We present a novel training-free estimation proxy called weighted response correlation (WRCor). WRCor utilizes correlation coefficient matrices of responses across different input samples to calculate the proxy scores of estimated architectures, which can measure their expressivity and generalizability. Experimental results on proxy evaluation demonstrate that WRCor and its voting proxies are more efficient estimation strategies than existing proxies. We also apply them with different search strategies in architecture search. Experimental results on architecture search show that our zero-shot NAS algorithm outperforms most existing NAS algorithms in different search spaces. Our NAS algorithm can discover an architecture with a 22.1% test error on the ImageNet-1k dataset within 4 GPU hours. All codes are publicly available at https://github.com/kunjing96/ZSNAS-WRCor.git.

Authors:Hangjie Yuan, Weihua Chen, Jun Cen, Hu Yu, Jingyun Liang, Shuning Chang, Zhihui Lin, Tao Feng, Pengwei Liu, Jiazheng Xing, Hao Luo, Jiasheng Tang, Fan Wang, Yi Yang
Title: Lumos-1: On Autoregressive Video Generation from a Unified Model Perspective
Abstract:
Autoregressive large language models (LLMs) have unified a vast range of language tasks, inspiring preliminary efforts in autoregressive video generation. Existing autoregressive video generators either diverge from standard LLM architectures, depend on bulky external text encoders, or incur prohibitive latency due to next-token decoding. In this paper, we introduce Lumos-1, an autoregressive video generator that retains the LLM architecture with minimal architectural modifications. To inject spatiotemporal correlations in LLMs, we identify the efficacy of incorporating 3D RoPE and diagnose its imbalanced frequency spectrum ranges. Therefore, we propose MM-RoPE, a RoPE scheme that preserves the original textual RoPE while providing comprehensive frequency spectra and scaled 3D positions for modeling multimodal spatiotemporal data. Moreover, Lumos-1 resorts to a token dependency strategy that obeys intra-frame bidirectionality and inter-frame temporal causality. Based on this dependency strategy, we identify the issue of frame-wise loss imbalance caused by spatial information redundancy and solve it by proposing Autoregressive Discrete Diffusion Forcing (AR-DF). AR-DF introduces temporal tube masking during training with a compatible inference-time masking policy to avoid quality degradation. By using memory-efficient training techniques, we pre-train Lumos-1 on only 48 GPUs, achieving performance comparable to EMU3 on GenEval, COSMOS-Video2World on VBench-I2V, and OpenSoraPlan on VBench-T2V. Code and models are available at https://github.com/alibaba-damo-academy/Lumos.

Authors:Rei Tamaru, Pei Li, Bin Ran
Title: Geo-ORBIT: A Federated Digital Twin Framework for Scene-Adaptive Lane Geometry Detection
Abstract:
Digital Twins (DT) have the potential to transform traffic management and operations by creating dynamic, virtual representations of transportation systems that sense conditions, analyze operations, and support decision-making. A key component for DT of the transportation system is dynamic roadway geometry sensing. However, existing approaches often rely on static maps or costly sensors, limiting scalability and adaptability. Additionally, large-scale DTs that collect and analyze data from multiple sources face challenges in privacy, communication, and computational efficiency. To address these challenges, we introduce Geo-ORBIT (Geometrical Operational Roadway Blueprint with Integrated Twin), a unified framework that combines real-time lane detection, DT synchronization, and federated meta-learning. At the core of Geo-ORBIT is GeoLane, a lightweight lane detection model that learns lane geometries from vehicle trajectory data using roadside cameras. We extend this model through Meta-GeoLane, which learns to personalize detection parameters for local entities, and FedMeta-GeoLane, a federated learning strategy that ensures scalable and privacy-preserving adaptation across roadside deployments. Our system is integrated with CARLA and SUMO to create a high-fidelity DT that renders highway scenarios and captures traffic flows in real-time. Extensive experiments across diverse urban scenes show that FedMeta-GeoLane consistently outperforms baseline and meta-learning approaches, achieving lower geometric error and stronger generalization to unseen locations while drastically reducing communication overhead. This work lays the foundation for flexible, context-aware infrastructure modeling in DTs. The framework is publicly available at https://github.com/raynbowy23/FedMeta-GeoLane.git.

Authors:Xingguang Ji, Yahui Liu, Qi Wang, Jingyuan Zhang, Yang Yue, Rui Shi, Chenxi Sun, Fuzheng Zhang, Guorui Zhou, Kun Gai
Title: Leanabell-Prover-V2: Verifier-integrated Reasoning for Formal Theorem Proving via Reinforcement Learning
Abstract:
We introduce our Leanabell-Prover-V2, a 7B large language models (LLMs) that can produce formal theorem proofs in Lean 4, with verifier-integrated Long Chain-of-Thoughts (CoT). Following our previous work Leanabell-Prover-V1, we continual to choose to posttrain existing strong prover models for further performance improvement. In our V2 version, we mainly upgrade the Reinforcement Learning (RL) with feedback provided by the Lean 4 verifier. Crucially, verifier feedback, such as indicating success or detailing specific errors, allows the LLM to become ``self-aware'' of the correctness of its own reasoning process and learn to reflexively correct errors. Leanabell-Prover-V2 directly optimizes LLM reasoning trajectories with multi-turn verifier interactions, together with feedback token masking for stable RL training and a simple reward strategy. Experiments show that Leanabell-Prover-V2 improves performance by 3.2% (pass@128) with Kimina-Prover-Preview-Distill-7B and 2.0% (pass@128) with DeepSeek-Prover-V2-7B on the MiniF2F test set. The source codes, curated data and models are available at: https://github.com/Leanabell-LM/Leanabell-Prover-V2.

Authors:Yuxuan Jiang, Zehua Chen, Zeqian Ju, Chang Li, Weibei Dou, Jun Zhu
Title: FreeAudio: Training-Free Timing Planning for Controllable Long-Form Text-to-Audio Generation
Abstract:
Text-to-audio (T2A) generation has achieved promising results with the recent advances in generative models. However, because of the limited quality and quantity of temporally-aligned audio-text pairs, existing T2A methods struggle to handle the complex text prompts that contain precise timing control, e.g., "owl hooted at 2.4s-5.2s". Recent works have explored data augmentation techniques or introduced timing conditions as model inputs to enable timing-conditioned 10-second T2A generation, while their synthesis quality is still limited. In this work, we propose a novel training-free timing-controlled T2A framework, FreeAudio, making the first attempt to enable timing-controlled long-form T2A generation, e.g., "owl hooted at 2.4s-5.2s and crickets chirping at 0s-24s". Specifically, we first employ an LLM to plan non-overlapping time windows and recaption each with a refined natural language description, based on the input text and timing prompts. Then we introduce: 1) Decoupling and Aggregating Attention Control for precise timing control; 2) Contextual Latent Composition for local smoothness and Reference Guidance for global consistency. Extensive experiments show that: 1) FreeAudio achieves state-of-the-art timing-conditioned T2A synthesis quality among training-free methods and is comparable to leading training-based methods; 2) FreeAudio demonstrates comparable long-form generation quality with training-based Stable Audio and paves the way for timing-controlled long-form T2A synthesis. Demo samples are available at: https://freeaudio.github.io/FreeAudio/

Authors:Inye Na, Nejung Rue, Jiwon Chung, Hyunjin Park
Title: RadiomicsRetrieval: A Customizable Framework for Medical Image Retrieval Using Radiomics Features
Abstract:
Medical image retrieval is a valuable field for supporting clinical decision-making, yet current methods primarily support 2D images and require fully annotated queries, limiting clinical flexibility. To address this, we propose RadiomicsRetrieval, a 3D content-based retrieval framework bridging handcrafted radiomics descriptors with deep learning-based embeddings at the tumor level. Unlike existing 2D approaches, RadiomicsRetrieval fully exploits volumetric data to leverage richer spatial context in medical images. We employ a promptable segmentation model (e.g., SAM) to derive tumor-specific image embeddings, which are aligned with radiomics features extracted from the same tumor via contrastive learning. These representations are further enriched by anatomical positional embedding (APE). As a result, RadiomicsRetrieval enables flexible querying based on shape, location, or partial feature sets. Extensive experiments on both lung CT and brain MRI public datasets demonstrate that radiomics features significantly enhance retrieval specificity, while APE provides global anatomical context essential for location-based searches. Notably, our framework requires only minimal user prompts (e.g., a single point), minimizing segmentation overhead and supporting diverse clinical scenarios. The capability to query using either image embeddings or selected radiomics attributes highlights its adaptability, potentially benefiting diagnosis, treatment planning, and research on large-scale medical imaging repositories. Our code is available at https://github.com/nainye/RadiomicsRetrieval.

Authors:Jia-Xuan Jiang, Jiashuai Liu, Hongtao Wu, Yifeng Wu, Zhong Wang, Qi Bi, Yefeng Zheng
Title: Single Domain Generalization for Multimodal Cross-Cancer Prognosis via Dirac Rebalancer and Distribution Entanglement
Abstract:
Deep learning has shown remarkable performance in integrating multimodal data for survival prediction. However, existing multimodal methods mainly focus on single cancer types and overlook the challenge of generalization across cancers. In this work, we are the first to reveal that multimodal prognosis models often generalize worse than unimodal ones in cross-cancer scenarios, despite the critical need for such robustness in clinical practice. To address this, we propose a new task: Cross-Cancer Single Domain Generalization for Multimodal Prognosis, which evaluates whether models trained on a single cancer type can generalize to unseen cancers. We identify two key challenges: degraded features from weaker modalities and ineffective multimodal integration. To tackle these, we introduce two plug-and-play modules: Sparse Dirac Information Rebalancer (SDIR) and Cancer-aware Distribution Entanglement (CADE). SDIR mitigates the dominance of strong features by applying Bernoulli-based sparsification and Dirac-inspired stabilization to enhance weaker modality signals. CADE, designed to synthesize the target domain distribution, fuses local morphological cues and global gene expression in latent space. Experiments on a four-cancer-type benchmark demonstrate superior generalization, laying the foundation for practical, robust cross-cancer multimodal prognosis. Code is available at https://github.com/HopkinsKwong/MCCSDG

Authors:Hiroshi Yoshihara, Taiki Yamaguchi, Yuichi Inoue
Title: A Practical Two-Stage Recipe for Mathematical LLMs: Maximizing Accuracy with SFT and Efficiency with Reinforcement Learning
Abstract:
Enhancing the mathematical reasoning of Large Language Models (LLMs) is a pivotal challenge in advancing AI capabilities. While Supervised Fine-Tuning (SFT) and Reinforcement Learning (RL) are the dominant training paradigms, a systematic methodology for combining them to maximize both accuracy and efficiency remains largely unexplored. This paper introduces a practical and effective training recipe that strategically integrates extended SFT with RL from online inference (GRPO). We posit that these methods play complementary, not competing, roles: a prolonged SFT phase first pushes the model's accuracy to its limits, after which a GRPO phase dramatically improves token efficiency while preserving this peak performance. Our experiments reveal that extending SFT for as many as 10 epochs is crucial for performance breakthroughs, and that the primary role of GRPO in this framework is to optimize solution length. The efficacy of our recipe is rigorously validated through top-tier performance on challenging benchmarks, including a high rank among over 2,200 teams in the strictly leak-free AI Mathematical Olympiad (AIMO). This work provides the community with a battle-tested blueprint for developing state-of-the-art mathematical reasoners that are both exceptionally accurate and practically efficient. To ensure full reproducibility and empower future research, we will open-source our entire framework, including all code, model checkpoints, and training configurations at https://github.com/analokmaus/kaggle-aimo2-fast-math-r1.

Authors:Pinaki Prasad Guha Neogi, Ahmad Mohammadshirazi, Rajiv Ramnath
Title: ALCo-FM: Adaptive Long-Context Foundation Model for Accident Prediction
Abstract:
Traffic accidents are rare, yet high-impact events that require long-context multimodal reasoning for accurate risk forecasting. In this paper, we introduce ALCo-FM, a unified adaptive long-context foundation model that computes a volatility pre-score to dynamically select context windows for input data and encodes and fuses these multimodal data via shallow cross attention. Following a local GAT layer and a BigBird-style sparse global transformer over H3 hexagonal grids, coupled with Monte Carlo dropout for confidence, the model yields superior, well-calibrated predictions. Trained on data from 15 US cities with a class-weighted loss to counter label imbalance, and fine-tuned with minimal data on held-out cities, ALCo-FM achieves 0.94 accuracy, 0.92 F1, and an ECE of 0.04, outperforming more than 20 state-of-the-art baselines in large-scale urban risk prediction. Code and dataset are available at: https://github.com/PinakiPrasad12/ALCo-FM

Authors:Evgenii Rudakov, Jonathan Shock, Otto Lappi, Benjamin Ultan Cowley
Title: SSSUMO: Real-Time Semi-Supervised Submovement Decomposition
Abstract:
This paper introduces a SSSUMO, semi-supervised deep learning approach for submovement decomposition that achieves state-of-the-art accuracy and speed. While submovement analysis offers valuable insights into motor control, existing methods struggle with reconstruction accuracy, computational cost, and validation, due to the difficulty of obtaining hand-labeled data. We address these challenges using a semi-supervised learning framework. This framework learns from synthetic data, initially generated from minimum-jerk principles and then iteratively refined through adaptation to unlabeled human movement data. Our fully convolutional architecture with differentiable reconstruction significantly surpasses existing methods on both synthetic and diverse human motion datasets, demonstrating robustness even in high-noise conditions. Crucially, the model operates in real-time (less than a millisecond per input second), a substantial improvement over optimization-based techniques. This enhanced performance facilitates new applications in human-computer interaction, rehabilitation medicine, and motor control studies. We demonstrate the model's effectiveness across diverse human-performed tasks such as steering, rotation, pointing, object moving, handwriting, and mouse-controlled gaming, showing notable improvements particularly on challenging datasets where traditional methods largely fail. Training and benchmarking source code, along with pre-trained model weights, are made publicly available at https://github.com/dolphin-in-a-coma/sssumo.

Authors:Aldan Creo, Raul Castro Fernandez, Manuel Cebrian
Title: Mass-Scale Analysis of In-the-Wild Conversations Reveals Complexity Bounds on LLM Jailbreaking
Abstract:
As large language models (LLMs) become increasingly deployed, understanding the complexity and evolution of jailbreaking strategies is critical for AI safety. We present a mass-scale empirical analysis of jailbreak complexity across over 2 million real-world conversations from diverse platforms, including dedicated jailbreaking communities and general-purpose chatbots. Using a range of complexity metrics spanning probabilistic measures, lexical diversity, compression ratios, and cognitive load indicators, we find that jailbreak attempts do not exhibit significantly higher complexity than normal conversations. This pattern holds consistently across specialized jailbreaking communities and general user populations, suggesting practical bounds on attack sophistication. Temporal analysis reveals that while user attack toxicity and complexity remains stable over time, assistant response toxicity has decreased, indicating improving safety mechanisms. The absence of power-law scaling in complexity distributions further points to natural limits on jailbreak development. Our findings challenge the prevailing narrative of an escalating arms race between attackers and defenders, instead suggesting that LLM safety evolution is bounded by human ingenuity constraints while defensive measures continue advancing. Our results highlight critical information hazards in academic jailbreak disclosure, as sophisticated attacks exceeding current complexity baselines could disrupt the observed equilibrium and enable widespread harm before defensive adaptation.

Authors:Haochen Wang, Xiangtai Li, Zilong Huang, Anran Wang, Jiacong Wang, Tao Zhang, Jiani Zheng, Sule Bai, Zijian Kang, Jiashi Feng, Zhuochen Wang, Zhaoxiang Zhang
Title: Traceable Evidence Enhanced Visual Grounded Reasoning: Evaluation and Methodology
Abstract:
Models like OpenAI-o3 pioneer visual grounded reasoning by dynamically referencing visual regions, just like human "thinking with images". However, no benchmark exists to evaluate these capabilities holistically. To bridge this gap, we propose TreeBench (Traceable Evidence Evaluation Benchmark), a diagnostic benchmark built on three principles: (1) focused visual perception of subtle targets in complex scenes, (2) traceable evidence via bounding box evaluation, and (3) second-order reasoning to test object interactions and spatial hierarchies beyond simple object localization. Prioritizing images with dense objects, we initially sample 1K high-quality images from SA-1B, and incorporate eight LMM experts to manually annotate questions, candidate options, and answers for each image. After three stages of quality control, TreeBench consists of 405 challenging visual question-answering pairs, even the most advanced models struggle with this benchmark, where none of them reach 60% accuracy, e.g., OpenAI-o3 scores only 54.87. Furthermore, we introduce TreeVGR (Traceable Evidence Enhanced Visual Grounded Reasoning), a training paradigm to supervise localization and reasoning jointly with reinforcement learning, enabling accurate localizations and explainable reasoning pathways. Initialized from Qwen2.5-VL-7B, it improves V* Bench (+16.8), MME-RealWorld (+12.6), and TreeBench (+13.4), proving traceability is key to advancing vision-grounded reasoning. The code is available at https://github.com/Haochen-Wang409/TreeVGR.

Authors:Shivam Duggal, Sanghyun Byun, William T. Freeman, Antonio Torralba, Phillip Isola
Title: Single-pass Adaptive Image Tokenization for Minimum Program Search
Abstract:
According to Algorithmic Information Theory (AIT) -- Intelligent representations compress data into the shortest possible program that can reconstruct its content, exhibiting low Kolmogorov Complexity (KC). In contrast, most visual representation learning systems use fixed-length representations for all inputs, ignoring variations in complexity or familiarity. Recent adaptive tokenization methods address this by allocating variable-length representations but typically require test-time search over multiple encodings to find the most predictive one. Inspired by Kolmogorov Complexity principles, we propose a single-pass adaptive tokenizer, KARL, which predicts the appropriate number of tokens for an image in a single forward pass, halting once its approximate KC is reached. The token count serves as a proxy for the minimum description length. KARL's training procedure closely resembles the Upside-Down Reinforcement Learning paradigm, as it learns to conditionally predict token halting based on a desired reconstruction quality. KARL matches the performance of recent adaptive tokenizers while operating in a single pass. We present scaling laws for KARL, analyzing the role of encoder/decoder size, continuous vs. discrete tokenization and more. Additionally, we offer a conceptual study drawing an analogy between Adaptive Image Tokenization and Algorithmic Information Theory, examining the predicted image complexity (KC) across axes such as structure vs. noise and in- vs. out-of-distribution familiarity -- revealing alignment with human intuition.

Authors:Weihao Xia, Cengiz Oztireli
Title: Multigranular Evaluation for Brain Visual Decoding
Abstract:
Existing evaluation protocols for brain visual decoding predominantly rely on coarse metrics that obscure inter-model differences, lack neuroscientific foundation, and fail to capture fine-grained visual distinctions. To address these limitations, we introduce BASIC, a unified, multigranular evaluation framework that jointly quantifies structural fidelity, inferential alignment, and contextual coherence between decoded and ground truth images. For the structural level, we introduce a hierarchical suite of segmentation-based metrics, including foreground, semantic, instance, and component masks, anchored in granularity-aware correspondence across mask structures. For the semantic level, we extract structured scene representations encompassing objects, attributes, and relationships using multimodal large language models, enabling detailed, scalable, and context-rich comparisons with ground-truth stimuli. We benchmark a diverse set of visual decoding methods across multiple stimulus-neuroimaging datasets within this unified evaluation framework. Together, these criteria provide a more discriminative, interpretable, and comprehensive foundation for measuring brain visual decoding methods.

Authors:Yukang Chen, Wei Huang, Baifeng Shi, Qinghao Hu, Hanrong Ye, Ligeng Zhu, Zhijian Liu, Pavlo Molchanov, Jan Kautz, Xiaojuan Qi, Sifei Liu, Hongxu Yin, Yao Lu, Song Han
Title: Scaling RL to Long Videos
Abstract:
We introduce a full-stack framework that scales up reasoning in vision-language models (VLMs) to long videos, leveraging reinforcement learning. We address the unique challenges of long video reasoning by integrating three critical components: (1) a large-scale dataset, LongVideo-Reason, comprising 104K long video QA pairs with high-quality reasoning annotations across diverse domains such as sports, games, and vlogs; (2) a two-stage training pipeline that extends VLMs with chain-of-thought supervised fine-tuning (CoT-SFT) and reinforcement learning (RL); and (3) a training infrastructure for long video RL, named Multi-modal Reinforcement Sequence Parallelism (MR-SP), which incorporates sequence parallelism and a vLLM-based engine tailored for long video, using cached video embeddings for efficient rollout and prefilling. In our experiments, LongVILA-R1-7B achieves strong performance on video benchmarks, reaching 65.1% and 71.1% accuracy on VideoMME without and with subtitles, respectively, and consistently outperforming LongVILA-7B across multiple benchmarks. Moreover, LongVILA-R1-7B supports processing up to 8,192 video frames per video, and configurable FPS settings. Notably, our MR-SP system achieves up to 2.1x speedup on long video RL training. In addition, we release our training system for public availability that supports RL training on various modalities (video, text, and audio), various models (VILA and Qwen series), and even image and video generation models. On a single A100 node (8 GPUs), it supports RL training on hour-long videos (e.g., 3,600 frames).

Authors:Suman Adhya, Debarshi Kumar Sanyal
Title: DTECT: Dynamic Topic Explorer & Context Tracker
Abstract:
The explosive growth of textual data over time presents a significant challenge in uncovering evolving themes and trends. Existing dynamic topic modeling techniques, while powerful, often exist in fragmented pipelines that lack robust support for interpretation and user-friendly exploration. We introduce DTECT (Dynamic Topic Explorer & Context Tracker), an end-to-end system that bridges the gap between raw textual data and meaningful temporal insights. DTECT provides a unified workflow that supports data preprocessing, multiple model architectures, and dedicated evaluation metrics to analyze the topic quality of temporal topic models. It significantly enhances interpretability by introducing LLM-driven automatic topic labeling, trend analysis via temporally salient words, interactive visualizations with document-level summarization, and a natural language chat interface for intuitive data querying. By integrating these features into a single, cohesive platform, DTECT empowers users to more effectively track and understand thematic dynamics. DTECT is open-source and available at https://github.com/AdhyaSuman/DTECT.

Authors:Anwoy Chatterjee, H S V N S Kowndinya Renduchintala, Sumit Bhatia, Tanmoy Chakraborty
Title: On the Effect of Instruction Tuning Loss on Generalization
Abstract:
Instruction Tuning has emerged as a pivotal post-training paradigm that enables pre-trained language models to better follow user instructions. Despite its significance, little attention has been given to optimizing the loss function used. A fundamental, yet often overlooked, question is whether the conventional auto-regressive objective - where loss is computed only on response tokens, excluding prompt tokens - is truly optimal for instruction tuning. In this work, we systematically investigate the impact of differentially weighting prompt and response tokens in instruction tuning loss, and propose Weighted Instruction Tuning (WIT) as a better alternative to conventional instruction tuning. Through extensive experiments on five language models of different families and scale, three finetuning datasets of different sizes, and five diverse evaluation benchmarks, we show that the standard instruction tuning loss often yields suboptimal performance and limited robustness to input prompt variations. We find that a low-to-moderate weight for prompt tokens coupled with a moderate-to-high weight for response tokens yields the best-performing models across settings and also serve as better starting points for the subsequent preference alignment training. These findings highlight the need to reconsider instruction tuning loss and offer actionable insights for developing more robust and generalizable models. Our code is open-sourced at https://github.com/kowndinya-renduchintala/WIT.

Authors:Mélanie Roschewitz, Raghav Mehta, Fabio de Sousa Ribeiro, Ben Glocker
Title: Where are we with calibration under dataset shift in image classification?
Abstract:
We conduct an extensive study on the state of calibration under real-world dataset shift for image classification. Our work provides important insights on the choice of post-hoc and in-training calibration techniques, and yields practical guidelines for all practitioners interested in robust calibration under shift. We compare various post-hoc calibration methods, and their interactions with common in-training calibration strategies (e.g., label smoothing), across a wide range of natural shifts, on eight different classification tasks across several imaging domains. We find that: (i) simultaneously applying entropy regularisation and label smoothing yield the best calibrated raw probabilities under dataset shift, (ii) post-hoc calibrators exposed to a small amount of semantic out-of-distribution data (unrelated to the task) are most robust under shift, (iii) recent calibration methods specifically aimed at increasing calibration under shifts do not necessarily offer significant improvements over simpler post-hoc calibration methods, (iv) improving calibration under shifts often comes at the cost of worsening in-distribution calibration. Importantly, these findings hold for randomly initialised classifiers, as well as for those finetuned from foundation models, the latter being consistently better calibrated compared to models trained from scratch. Finally, we conduct an in-depth analysis of ensembling effects, finding that (i) applying calibration prior to ensembling (instead of after) is more effective for calibration under shifts, (ii) for ensembles, OOD exposure deteriorates the ID-shifted calibration trade-off, (iii) ensembling remains one of the most effective methods to improve calibration robustness and, combined with finetuning from foundation models, yields best calibration results overall.

Authors:Peizhang Shao, Linrui Xu, Jinxi Wang, Wei Zhou, Xingyu Wu
Title: When Large Language Models Meet Law: Dual-Lens Taxonomy, Technical Advances, and Ethical Governance
Abstract:
This paper establishes the first comprehensive review of Large Language Models (LLMs) applied within the legal domain. It pioneers an innovative dual lens taxonomy that integrates legal reasoning frameworks and professional ontologies to systematically unify historical research and contemporary breakthroughs. Transformer-based LLMs, which exhibit emergent capabilities such as contextual reasoning and generative argumentation, surmount traditional limitations by dynamically capturing legal semantics and unifying evidence reasoning. Significant progress is documented in task generalization, reasoning formalization, workflow integration, and addressing core challenges in text processing, knowledge integration, and evaluation rigor via technical innovations like sparse attention mechanisms and mixture-of-experts architectures. However, widespread adoption of LLM introduces critical challenges: hallucination, explainability deficits, jurisdictional adaptation difficulties, and ethical asymmetry. This review proposes a novel taxonomy that maps legal roles to NLP subtasks and computationally implements the Toulmin argumentation framework, thus systematizing advances in reasoning, retrieval, prediction, and dispute resolution. It identifies key frontiers including low-resource systems, multimodal evidence integration, and dynamic rebuttal handling. Ultimately, this work provides both a technical roadmap for researchers and a conceptual framework for practitioners navigating the algorithmic future, laying a robust foundation for the next era of legal artificial intelligence. We have created a GitHub repository to index the relevant papers: https://github.com/Kilimajaro/LLMs_Meet_Law.

Authors:Zhijin Dong
Title: Not All Preferences are What You Need for Post-Training: Selective Alignment Strategy for Preference Optimization
Abstract:
Post-training alignment of large language models (LLMs) is a critical challenge, as not all tokens contribute equally to model performance. This paper introduces a selective alignment strategy that prioritizes high-impact tokens within preference pairs, leveraging token-level log-probability differences between the current policy and a reference model. By focusing on these informative tokens, our approach reduces computational overhead and enhances alignment fidelity. We further explore the role of reference model quality, demonstrating that stronger reference models significantly improve token selection accuracy and overall optimization effectiveness. Comprehensive experiments on benchmarks such as Arena-Hard and MT-Bench validate the superiority of our Selective-DPO method over standard DPO and distillation-based baselines. Our findings highlight the importance of token-level optimization and reference model selection in advancing preference alignment for LLMs. The code is available at https://github.com/Dongzhijin/SDPO.

Authors:Fedor Rodionov, Abdelrahman Eldesokey, Michael Birsak, John Femiani, Bernard Ghanem, Peter Wonka
Title: PlanQA: A Benchmark for Spatial Reasoning in LLMs using Structured Representations
Abstract:
We introduce PlanQA, a diagnostic benchmark for evaluating geometric and spatial reasoning in large-language models (LLMs). PlanQA is grounded in structured representations of indoor scenes, such as kitchens, living rooms, and bedrooms, encoded in a symbolic format (e.g., JSON, XML layouts). The benchmark includes diverse question types that test not only metric and topological reasoning (e.g., distance, visibility, shortest paths) but also interior design constraints such as affordance, clearance, balance, and usability. Our results across a variety of frontier open-source and commercial LLMs show that while models may succeed in shallow queries, they often fail to simulate physical constraints, preserve spatial coherence, or generalize under layout perturbation. PlanQA uncovers a clear blind spot in today's LLMs: they do not consistently reason about real-world layouts. We hope that this benchmark inspires new work on language models that can accurately infer and manipulate spatial and geometric properties in practical settings.

Authors:Federico Del Pup, Riccardo Brun, Filippo Iotti, Edoardo Paccagnella, Mattia Pezzato, Sabrina Bertozzo, Andrea Zanola, Louis Fabrice Tshimanga, Henning Müller, Manfredo Atzori
Title: TransformEEG: Towards Improving Model Generalizability in Deep Learning-based EEG Parkinson's Disease Detection
Abstract:
Electroencephalography (EEG) is establishing itself as an important, low-cost, noninvasive diagnostic tool for the early detection of Parkinson's Disease (PD). In this context, EEG-based Deep Learning (DL) models have shown promising results due to their ability to discover highly nonlinear patterns within the signal. However, current state-of-the-art DL models suffer from poor generalizability caused by high inter-subject variability. This high variability underscores the need for enhancing model generalizability by developing new architectures better tailored to EEG data. This paper introduces TransformEEG, a hybrid Convolutional-Transformer designed for Parkinson's disease detection using EEG data. Unlike transformer models based on the EEGNet structure, TransformEEG incorporates a depthwise convolutional tokenizer. This tokenizer is specialized in generating tokens composed by channel-specific features, which enables more effective feature mixing within the self-attention layers of the transformer encoder. To evaluate the proposed model, four public datasets comprising 290 subjects (140 PD patients, 150 healthy controls) were harmonized and aggregated. A 10-outer, 10-inner Nested-Leave-N-Subjects-Out (N-LNSO) cross-validation was performed to provide an unbiased comparison against seven other consolidated EEG deep learning models. TransformEEG achieved the highest balanced accuracy's median (78.45%) as well as the lowest interquartile range (6.37%) across all the N-LNSO partitions. When combined with data augmentation and threshold correction, median accuracy increased to 80.10%, with an interquartile range of 5.74%. In conclusion, TransformEEG produces more consistent and less skewed results. It demonstrates a substantial reduction in variability and more reliable PD detection using EEG data compared to the other investigated models.

Authors:Weihao Tan, Changjiu Jiang, Yu Duan, Mingcong Lei, Jiageng Li, Yitian Hong, Xinrun Wang, Bo An
Title: StarDojo: Benchmarking Open-Ended Behaviors of Agentic Multimodal LLMs in Production-Living Simulations with Stardew Valley
Abstract:
Autonomous agents navigating human society must master both production activities and social interactions, yet existing benchmarks rarely evaluate these skills simultaneously. To bridge this gap, we introduce StarDojo, a novel benchmark based on Stardew Valley, designed to assess AI agents in open-ended production-living simulations. In StarDojo, agents are tasked to perform essential livelihood activities such as farming and crafting, while simultaneously engaging in social interactions to establish relationships within a vibrant community. StarDojo features 1,000 meticulously curated tasks across five key domains: farming, crafting, exploration, combat, and social interactions. Additionally, we provide a compact subset of 100 representative tasks for efficient model evaluation. The benchmark offers a unified, user-friendly interface that eliminates the need for keyboard and mouse control, supports all major operating systems, and enables the parallel execution of multiple environment instances, making it particularly well-suited for evaluating the most capable foundation agents, powered by multimodal large language models (MLLMs). Extensive evaluations of state-of-the-art MLLMs agents demonstrate substantial limitations, with the best-performing model, GPT-4.1, achieving only a 12.7% success rate, primarily due to challenges in visual understanding, multimodal reasoning and low-level manipulation. As a user-friendly environment and benchmark, StarDojo aims to facilitate further research towards robust, open-ended agents in complex production-living environments.

Authors:Nishit V. Pandya, Andrey Labunets, Sicun Gao, Earlence Fernandes
Title: May I have your Attention? Breaking Fine-Tuning based Prompt Injection Defenses using Architecture-Aware Attacks
Abstract:
A popular class of defenses against prompt injection attacks on large language models (LLMs) relies on fine-tuning the model to separate instructions and data, so that the LLM does not follow instructions that might be present with data. There are several academic systems and production-level implementations of this idea. We evaluate the robustness of this class of prompt injection defenses in the whitebox setting by constructing strong optimization-based attacks and showing that the defenses do not provide the claimed security properties. Specifically, we construct a novel attention-based attack algorithm for text-based LLMs and apply it to two recent whitebox defenses SecAlign (CCS 2025) and StruQ (USENIX Security 2025), showing attacks with success rates of up to 70% with modest increase in attacker budget in terms of tokens. Our findings make fundamental progress towards understanding the robustness of prompt injection defenses in the whitebox setting. We release our code and attacks at https://github.com/nishitvp/better_opts_attacks

Authors:Yuntian Liu, Tao Zhu, Xiaoyang Liu, Yu Chen, Zhaoxuan Liu, Qingfeng Guo, Jiashuo Zhang, Kangjie Bao, Tao Luo
Title: Generalized Tree Edit Distance (GTED): A Faithful Evaluation Metric for Statement Autoformalization
Abstract:
Statement autoformalization, the automated translation of statements from natural language into formal languages, has become a subject of extensive research, yet the development of robust automated evaluation metrics remains limited. Existing evaluation methods often lack semantic understanding, face challenges with high computational costs, and are constrained by the current progress of automated theorem proving. To address these issues, we propose GTED (Generalized Tree Edit Distance), a novel evaluation framework that first standardizes formal statements and converts them into operator trees, then determines the semantic similarity using the eponymous GTED metric. Across the miniF2F and ProofNet benchmarks, GTED consistently ranks as a top-performing metric, achieving the highest accuracy and Kappa on miniF2F and the joint-highest accuracy on ProofNet. This strong overall performance provides the community with a computationally lightweight and more faithful metric for automated evaluation. The code and experimental results are available at https://github.com/XiaoyangLiu-sjtu/GTED.

Authors:Yichen Lu, Wei Dai, Jiaen Liu, Ching Wing Kwok, Zongheng Wu, Xudong Xiao, Ao Sun, Sheng Fu, Jianyuan Zhan, Yian Wang, Takatomo Saito, Sicheng Lai
Title: ViDove: A Translation Agent System with Multimodal Context and Memory-Augmented Reasoning
Abstract:
LLM-based translation agents have achieved highly human-like translation results and are capable of handling longer and more complex contexts with greater efficiency. However, they are typically limited to text-only inputs. In this paper, we introduce ViDove, a translation agent system designed for multimodal input. Inspired by the workflow of human translators, ViDove leverages visual and contextual background information to enhance the translation process. Additionally, we integrate a multimodal memory system and long-short term memory modules enriched with domain-specific knowledge, enabling the agent to perform more accurately and adaptively in real-world scenarios. As a result, ViDove achieves significantly higher translation quality in both subtitle generation and general translation tasks, with a 28% improvement in BLEU scores and a 15% improvement in SubER compared to previous state-of-the-art baselines. Moreover, we introduce DoveBench, a new benchmark for long-form automatic video subtitling and translation, featuring 17 hours of high-quality, human-annotated data. Our code is available here: https://github.com/pigeonai-org/ViDove

Authors:Licong Xu, Milind Sarkar, Anto I. Lonappan, Íñigo Zubeldia, Pablo Villanueva-Domingo, Santiago Casas, Christian Fidler, Chetana Amancharla, Ujjwal Tiwari, Adrian Bayer, Chadi Ait Ekioui, Miles Cranmer, Adrian Dimitrov, James Fergusson, Kahaan Gandhi, Sven Krippendorf, Andrew Laverick, Julien Lesgourgues, Antony Lewis, Thomas Meier, Blake Sherwin, Kristen Surrao, Francisco Villaescusa-Navarro, Chi Wang, Xueqing Xu, Boris Bolliet
Title: Open Source Planning & Control System with Language Agents for Autonomous Scientific Discovery
Abstract:
We present a multi-agent system for automation of scientific research tasks, cmbagent (https://github.com/CMBAgents/cmbagent). The system is formed by about 30 Large Language Model (LLM) agents and implements a Planning & Control strategy to orchestrate the agentic workflow, with no human-in-the-loop at any point. Each agent specializes in a different task (performing retrieval on scientific papers and codebases, writing code, interpreting results, critiquing the output of other agents) and the system is able to execute code locally. We successfully apply cmbagent to carry out a PhD level cosmology task (the measurement of cosmological parameters using supernova data) and evaluate its performance on two benchmark sets, finding superior performance over state-of-the-art LLMs. The source code is available on GitHub, demonstration videos are also available, and the system is deployed on HuggingFace and will be available on the cloud.

Authors:Maya Kruse, Majid Afshar, Saksham Khatwani, Anoop Mayampurath, Guanhua Chen, Yanjun Gao
Title: Simple Yet Effective: An Information-Theoretic Approach to Multi-LLM Uncertainty Quantification
Abstract:
Large language models (LLMs) often behave inconsistently across inputs, indicating uncertainty and motivating the need for its quantification in high-stakes settings. Prior work on calibration and uncertainty quantification often focuses on individual models, overlooking the potential of model diversity. We hypothesize that LLMs make complementary predictions due to differences in training and the Zipfian nature of language, and that aggregating their outputs leads to more reliable uncertainty estimates. To leverage this, we propose MUSE (Multi-LLM Uncertainty via Subset Ensembles), a simple information-theoretic method that uses Jensen-Shannon Divergence to identify and aggregate well-calibrated subsets of LLMs. Experiments on binary prediction tasks demonstrate improved calibration and predictive performance compared to single-model and naïve ensemble baselines. In addition, we explore using MUSE as guided signals with chain-of-thought distillation to fine-tune LLMs for calibration. MUSE is available at:https://github.com/LARK-NLP-Lab/MUSE.

Authors:Xueqing Xu, Boris Bolliet, Adrian Dimitrov, Andrew Laverick, Francisco Villaescusa-Navarro, Licong Xu, Íñigo Zubeldia
Title: Evaluating Retrieval-Augmented Generation Agents for Autonomous Scientific Discovery in Astrophysics
Abstract:
We evaluate 9 Retrieval Augmented Generation (RAG) agent configurations on 105 Cosmology Question-Answer (QA) pairs that we built specifically for this purpose.The RAG configurations are manually evaluated by a human expert, that is, a total of 945 generated answers were assessed. We find that currently the best RAG agent configuration is with OpenAI embedding and generative model, yielding 91.4\% accuracy. Using our human evaluation results we calibrate LLM-as-a-Judge (LLMaaJ) system which can be used as a robust proxy for human evaluation. These results allow us to systematically select the best RAG agent configuration for multi-agent system for autonomous scientific discovery in astrophysics (e.g., cmbagent presented in a companion paper) and provide us with an LLMaaJ system that can be scaled to thousands of cosmology QA pairs. We make our QA dataset, human evaluation results, RAG pipelines, and LLMaaJ system publicly available for further use by the astrophysics community.

Authors:Xinglong Liang, Jiaju Huang, Luyi Han, Tianyu Zhang, Xin Wang, Yuan Gao, Chunyao Lu, Lishan Cai, Tao Tan, Ritse Mann
Title: DpDNet: An Dual-Prompt-Driven Network for Universal PET-CT Segmentation
Abstract:
PET-CT lesion segmentation is challenging due to noise sensitivity, small and variable lesion morphology, and interference from physiological high-metabolic signals. Current mainstream approaches follow the practice of one network solving the segmentation of multiple cancer lesions by treating all cancers as a single task. However, this overlooks the unique characteristics of different cancer types. Considering the specificity and similarity of different cancers in terms of metastatic patterns, organ preferences, and FDG uptake intensity, we propose DpDNet, a Dual-Prompt-Driven network that incorporates specific prompts to capture cancer-specific features and common prompts to retain shared knowledge. Additionally, to mitigate information forgetting caused by the early introduction of prompts, prompt-aware heads are employed after the decoder to adaptively handle multiple segmentation tasks. Experiments on a PET-CT dataset with four cancer types show that DpDNet outperforms state-of-the-art models. Finally, based on the segmentation results, we calculated MTV, TLG, and SUVmax for breast cancer survival analysis. The results suggest that DpDNet has the potential to serve as a valuable tool for personalized risk stratification, supporting clinicians in optimizing treatment strategies and improving outcomes. Code is available at https://github.com/XinglongLiang08/DpDNet.

Authors:Zhiwei Hu, Víctor Gutiérrez-Basulto, Zhiliang Xiang, Ru Li, Jeff Z. Pan
Title: Multi-level Mixture of Experts for Multimodal Entity Linking
Abstract:
Multimodal Entity Linking (MEL) aims to link ambiguous mentions within multimodal contexts to associated entities in a multimodal knowledge base. Existing approaches to MEL introduce multimodal interaction and fusion mechanisms to bridge the modality gap and enable multi-grained semantic matching. However, they do not address two important problems: (i) mention ambiguity, i.e., the lack of semantic content caused by the brevity and omission of key information in the mention's textual context; (ii) dynamic selection of modal content, i.e., to dynamically distinguish the importance of different parts of modal information. To mitigate these issues, we propose a Multi-level Mixture of Experts (MMoE) model for MEL. MMoE has four components: (i) the description-aware mention enhancement module leverages large language models to identify the WikiData descriptions that best match a mention, considering the mention's textual context; (ii) the multimodal feature extraction module adopts multimodal feature encoders to obtain textual and visual embeddings for both mentions and entities; (iii)-(iv) the intra-level mixture of experts and inter-level mixture of experts modules apply a switch mixture of experts mechanism to dynamically and adaptively select features from relevant regions of information. Extensive experiments demonstrate the outstanding performance of MMoE compared to the state-of-the-art. MMoE's code is available at: https://github.com/zhiweihu1103/MEL-MMoE.

Authors:Eunbyeol Cho, Jiyoun Kim, Minjae Lee, Sungjin Park, Edward Choi
Title: Generating Multi-Table Time Series EHR from Latent Space with Minimal Preprocessing
Abstract:
Electronic Health Records (EHR) are time-series relational databases that record patient interactions and medical events over time, serving as a critical resource for healthcare research and applications. However, privacy concerns and regulatory restrictions limit the sharing and utilization of such sensitive data, necessitating the generation of synthetic EHR datasets. Unlike previous EHR synthesis methods, which typically generate medical records consisting of expert-chosen features (e.g. a few vital signs or structured codes only), we introduce RawMed, the first framework to synthesize multi-table, time-series EHR data that closely resembles raw EHRs. Using text-based representation and compression techniques, RawMed captures complex structures and temporal dynamics with minimal preprocessing. We also propose a new evaluation framework for multi-table time-series synthetic EHRs, assessing distributional similarity, inter-table relationships, temporal dynamics, and privacy. Validated on two open-source EHR datasets, RawMed outperforms baseline models in fidelity and utility. The code is available at https://github.com/eunbyeol-cho/RawMed.

Authors:Xiao Wang, Jiahuan Pei, Diancheng Shui, Zhiguang Han, Xin Sun, Dawei Zhu, Xiaoyu Shen
Title: MultiJustice: A Chinese Dataset for Multi-Party, Multi-Charge Legal Prediction
Abstract:
Legal judgment prediction offers a compelling method to aid legal practitioners and researchers. However, the research question remains relatively under-explored: Should multiple defendants and charges be treated separately in LJP? To address this, we introduce a new dataset namely multi-person multi-charge prediction (MPMCP), and seek the answer by evaluating the performance of several prevailing legal large language models (LLMs) on four practical legal judgment scenarios: (S1) single defendant with a single charge, (S2) single defendant with multiple charges, (S3) multiple defendants with a single charge, and (S4) multiple defendants with multiple charges. We evaluate the dataset across two LJP tasks, i.e., charge prediction and penalty term prediction. We have conducted extensive experiments and found that the scenario involving multiple defendants and multiple charges (S4) poses the greatest challenges, followed by S2, S3, and S1. The impact varies significantly depending on the model. For example, in S4 compared to S1, InternLM2 achieves approximately 4.5% lower F1-score and 2.8% higher LogD, while Lawformer demonstrates around 19.7% lower F1-score and 19.0% higher LogD. Our dataset and code are available at https://github.com/lololo-xiao/MultiJustice-MPMCP.

Authors:Ziyan Liu, Chunxiao Fan, Haoran Lou, Yuexin Wu, Kaiwei Deng
Title: MIND: A Multi-agent Framework for Zero-shot Harmful Meme Detection
Abstract:
The rapid expansion of memes on social media has highlighted the urgent need for effective approaches to detect harmful content. However, traditional data-driven approaches struggle to detect new memes due to their evolving nature and the lack of up-to-date annotated data. To address this issue, we propose MIND, a multi-agent framework for zero-shot harmful meme detection that does not rely on annotated data. MIND implements three key strategies: 1) We retrieve similar memes from an unannotated reference set to provide contextual information. 2) We propose a bi-directional insight derivation mechanism to extract a comprehensive understanding of similar memes. 3) We then employ a multi-agent debate mechanism to ensure robust decision-making through reasoned arbitration. Extensive experiments on three meme datasets demonstrate that our proposed framework not only outperforms existing zero-shot approaches but also shows strong generalization across different model architectures and parameter scales, providing a scalable solution for harmful meme detection. The code is available at https://github.com/destroy-lonely/MIND.

Authors:Jing Liang, Hongyao Tang, Yi Ma, Jinyi Liu, Yan Zheng, Shuyue Hu, Lei Bai, Jianye Hao
Title: Squeeze the Soaked Sponge: Efficient Off-policy Reinforcement Finetuning for Large Language Model
Abstract:
Reinforcement Learning (RL) has demonstrated its potential to improve the reasoning ability of Large Language Models (LLMs). One major limitation of most existing Reinforcement Finetuning (RFT) methods is that they are on-policy RL in nature, i.e., data generated during the past learning process is not fully utilized. This inevitably comes at a significant cost of compute and time, posing a stringent bottleneck on continuing economic and efficient scaling. To this end, we launch the renaissance of off-policy RL and propose Reincarnating Mix-policy Proximal Policy Gradient (ReMix), a general approach to enable on-policy RFT methods like PPO and GRPO to leverage off-policy data. ReMix consists of three major components: (1) Mix-policy proximal policy gradient with an increased Update-To-Data (UTD) ratio for efficient training; (2) KL-Convex policy constraint to balance the trade-off between stability and flexibility; (3) Policy reincarnation to achieve a seamless transition from efficient early-stage learning to steady asymptotic improvement. In our experiments, we train a series of ReMix models upon PPO, GRPO and 1.5B, 7B base models. ReMix shows an average Pass@1 accuracy of 52.10% (for 1.5B model) with 0.079M response rollouts, 350 training steps and achieves 63.27%/64.39% (for 7B model) with 0.007M/0.011M response rollouts, 50/75 training steps, on five math reasoning benchmarks (i.e., AIME'24, AMC'23, Minerva, OlympiadBench, and MATH500). Compared with 15 recent advanced models, ReMix shows SOTA-level performance with an over 30x to 450x reduction in training cost in terms of rollout data volume. In addition, we reveal insightful findings via multifaceted analysis, including the implicit preference for shorter responses due to the Whipping Effect of off-policy discrepancy, the collapse mode of self-reflection behavior under the presence of severe off-policyness, etc.

Authors:Yizhuo Wu, Ang Li, Chang Gao
Title: OpenDPDv2: A Unified Learning and Optimization Framework for Neural Network Digital Predistortion
Abstract:
Neural network (NN)-based Digital Predistortion (DPD) stands out in improving signal quality in wideband radio frequency (RF) power amplifiers (PAs) employing complex modulation. However, NN DPDs usually rely on a large number of parameters for effective linearization and can significantly contribute to the energy consumption of the digital back-end in RF systems. This paper presents OpenDPDv2, a unified framework for PA modeling, DPD learning, and model optimization to reduce power consumption while maintaining high linearization performance. The optimization techniques feature a novel DPD algorithm, TRes-DeltaGRU, alongside two energy-efficient methods. The top-performing 32-bit floating-point (FP32) TRes-DeltaGRU-DPD model achieves an Adjacent Channel Power Ratio (ACPR) of -59.4 dBc and Error Vector Magnitude (EVM) of -42.1 dBc. By exploiting fixed-point quantization and dynamic temporal sparsity of input signals and hidden neurons, the inference energy of our model can be reduced by 4.5X while still maintaining -50.3 dBc ACPR and -35.2 dB EVM with 56% temporal sparsity. This was evaluated using a TM3.1a 200 MHz bandwidth 256-QAM OFDM signal applied to a 3.5 GHz GaN Doherty RF PA. OpenDPDv2 code, datasets, and documentation are publicly accessible at: https://github.com/lab-emi/OpenDPD.

Authors:Xuesong Li, Nassir Navab, Zhongliang Jiang
Title: Speckle2Self: Self-Supervised Ultrasound Speckle Reduction Without Clean Data
Abstract:
Image denoising is a fundamental task in computer vision, particularly in medical ultrasound (US) imaging, where speckle noise significantly degrades image quality. Although recent advancements in deep neural networks have led to substantial improvements in denoising for natural images, these methods cannot be directly applied to US speckle noise, as it is not purely random. Instead, US speckle arises from complex wave interference within the body microstructure, making it tissue-dependent. This dependency means that obtaining two independent noisy observations of the same scene, as required by pioneering Noise2Noise, is not feasible. Additionally, blind-spot networks also cannot handle US speckle noise due to its high spatial dependency. To address this challenge, we introduce Speckle2Self, a novel self-supervised algorithm for speckle reduction using only single noisy observations. The key insight is that applying a multi-scale perturbation (MSP) operation introduces tissue-dependent variations in the speckle pattern across different scales, while preserving the shared anatomical structure. This enables effective speckle suppression by modeling the clean image as a low-rank signal and isolating the sparse noise component. To demonstrate its effectiveness, Speckle2Self is comprehensively compared with conventional filter-based denoising algorithms and SOTA learning-based methods, using both realistic simulated US images and human carotid US images. Additionally, data from multiple US machines are employed to evaluate model generalization and adaptability to images from unseen domains. Project page: https://noseefood.github.io/us-speckle2self/

Authors:Matej Straka, Martin Schmid
Title: Artificial Generals Intelligence: Mastering Generals.io with Reinforcement Learning
Abstract:
We introduce a real-time strategy game environment based on Generals.io, a game with thousands of weekly active players. Our environment is fully compatible with Gymnasium and PettingZoo and is capable of running thousands of frames per second on commodity hardware. We also present a reference agent, trained with supervised pre-training and self-play, which reached the top 0.003% of the 1v1 human leaderboard after only 36 hours on a single H100 GPU. To accelerate learning, we incorporate potential-based reward shaping and memory features. Our contributions of a modular RTS benchmark and a competitive baseline agent provide an accessible yet challenging platform for advancing multi-agent reinforcement learning research. The documented code, together with examples and tutorials, is available at https://github.com/strakam/generals-bots.

Authors:Philipp Schlinge, Steffen Meinert, Martin Atzmueller
Title: Comprehensive Evaluation of Prototype Neural Networks
Abstract:
Prototype models are an important method for explainable artificial intelligence (XAI) and interpretable machine learning. In this paper, we perform an in-depth analysis of a set of prominent prototype models including ProtoPNet, ProtoPool and PIPNet. For their assessment, we apply a comprehensive set of metrics. In addition to applying standard metrics from literature, we propose several new metrics to further complement the analysis of model interpretability. In our experimentation, we apply the set of prototype models on a diverse set of datasets including fine-grained classification, Non-IID settings and multi-label classification to further contrast the performance. Furthermore, we also provide our code as an open-source library (https://github.com/uos-sis/quanproto), which facilitates simple application of the metrics itself, as well as extensibility -- providing the option for easily adding new metrics and models.

Authors:Cosimo Fiorini, Matteo Mosconi, Pietro Buzzega, Riccardo Salami, Simone Calderara
Title: Intrinsic Training Signals for Federated Learning Aggregation
Abstract:
Federated Learning (FL) enables collaborative model training across distributed clients while preserving data privacy. While existing approaches for aggregating client-specific classification heads and adapted backbone parameters require architectural modifications or loss function changes, our method uniquely leverages intrinsic training signals already available during standard optimization. We present LIVAR (Layer Importance and VARiance-based merging), which introduces: i) a variance-weighted classifier aggregation scheme using naturally emergent feature statistics, and ii) an explainability-driven LoRA merging technique based on SHAP analysis of existing update parameter patterns. Without any architectural overhead, LIVAR achieves state-of-the-art performance on multiple benchmarks while maintaining seamless integration with existing FL methods. This work demonstrates that effective model merging can be achieved solely through existing training signals, establishing a new paradigm for efficient federated model aggregation. The code is available at https://github.com/aimagelab/fed-mammoth.

Authors:Xu Yang, Shaoli Huang, Shenbo Xie, Xuelin Chen, Yifei Liu, Changxing Ding
Title: Democratizing High-Fidelity Co-Speech Gesture Video Generation
Abstract:
Co-speech gesture video generation aims to synthesize realistic, audio-aligned videos of speakers, complete with synchronized facial expressions and body gestures. This task presents challenges due to the significant one-to-many mapping between audio and visual content, further complicated by the scarcity of large-scale public datasets and high computational demands. We propose a lightweight framework that utilizes 2D full-body skeletons as an efficient auxiliary condition to bridge audio signals with visual outputs. Our approach introduces a diffusion model conditioned on fine-grained audio segments and a skeleton extracted from the speaker's reference image, predicting skeletal motions through skeleton-audio feature fusion to ensure strict audio coordination and body shape consistency. The generated skeletons are then fed into an off-the-shelf human video generation model with the speaker's reference image to synthesize high-fidelity videos. To democratize research, we present CSG-405-the first public dataset with 405 hours of high-resolution videos across 71 speech types, annotated with 2D skeletons and diverse speaker demographics. Experiments show that our method exceeds state-of-the-art approaches in visual quality and synchronization while generalizing across speakers and contexts. Code, models, and CSG-405 are publicly released at https://mpi-lab.github.io/Democratizing-CSG/

Authors:SeungYoon Han, Taeho Hwang, Sukmin Cho, Soyeong Jeong, Hoyun Song, Huije Lee, Jong C. Park
Title: Temporal Information Retrieval via Time-Specifier Model Merging
Abstract:
The rapid expansion of digital information and knowledge across structured and unstructured sources has heightened the importance of Information Retrieval (IR). While dense retrieval methods have substantially improved semantic matching for general queries, they consistently underperform on queries with explicit temporal constraints--often those containing numerical expressions and time specifiers such as ``in 2015.'' Existing approaches to Temporal Information Retrieval (TIR) improve temporal reasoning but often suffer from catastrophic forgetting, leading to reduced performance on non-temporal queries. To address this, we propose Time-Specifier Model Merging (TSM), a novel method that enhances temporal retrieval while preserving accuracy on non-temporal queries. TSM trains specialized retrievers for individual time specifiers and merges them in to a unified model, enabling precise handling of temporal constraints without compromising non-temporal retrieval. Extensive experiments on both temporal and non-temporal datasets demonstrate that TSM significantly improves performance on temporally constrained queries while maintaining strong results on non-temporal queries, consistently outperforming other baseline methods. Our code is available at https://github.com/seungyoonee/TSM .

Authors:Naoya Sogi, Takashi Shibata, Makoto Terao, Masanori Suganuma, Takayuki Okatani
Title: MS-DPPs: Multi-Source Determinantal Point Processes for Contextual Diversity Refinement of Composite Attributes in Text to Image Retrieval
Abstract:
Result diversification (RD) is a crucial technique in Text-to-Image Retrieval for enhancing the efficiency of a practical application. Conventional methods focus solely on increasing the diversity metric of image appearances. However, the diversity metric and its desired value vary depending on the application, which limits the applications of RD. This paper proposes a novel task called CDR-CA (Contextual Diversity Refinement of Composite Attributes). CDR-CA aims to refine the diversities of multiple attributes, according to the application's context. To address this task, we propose Multi-Source DPPs, a simple yet strong baseline that extends the Determinantal Point Process (DPP) to multi-sources. We model MS-DPP as a single DPP model with a unified similarity matrix based on a manifold representation. We also introduce Tangent Normalization to reflect contexts. Extensive experiments demonstrate the effectiveness of the proposed method. Our code is publicly available at https://github.com/NEC-N-SOGI/msdpp.

Authors:Huisheng Wang, Zhuoshi Pan, Hangjing Zhang, Mingxiao Liu, Hanqing Gao, H. Vicky Zhao
Title: InvestAlign: Overcoming Data Scarcity in Aligning Large Language Models with Investor Decision-Making Processes under Herd Behavior
Abstract:
Aligning Large Language Models (LLMs) with investor decision-making processes under herd behavior is a critical challenge in behavioral finance, which grapples with a fundamental limitation: the scarcity of real-user data needed for Supervised Fine-Tuning (SFT). While SFT can bridge the gap between LLM outputs and human behavioral patterns, its reliance on massive authentic data imposes substantial collection costs and privacy risks. We propose InvestAlign, a novel framework that constructs high-quality SFT datasets by leveraging theoretical solutions to similar and simple optimal investment problems rather than complex scenarios. Our theoretical analysis demonstrates that training LLMs with InvestAlign-generated data achieves faster parameter convergence than using real-user data, suggesting superior learning efficiency. Furthermore, we develop InvestAgent, an LLM agent fine-tuned with InvestAlign, which demonstrates significantly closer alignment to real-user data than pre-SFT models in both simple and complex investment problems. This highlights our proposed InvestAlign as a promising approach with the potential to address complex optimal investment problems and align LLMs with investor decision-making processes under herd behavior. Our code is publicly available at https://github.com/thu-social-network-research-group/InvestAlign.

Authors:Yuhan Liu, Xinyu Zhang, Haonan Chang, Abdeslam Boularias
Title: Failure Forecasting Boosts Robustness of Sim2Real Rhythmic Insertion Policies
Abstract:
This paper addresses the challenges of Rhythmic Insertion Tasks (RIT), where a robot must repeatedly perform high-precision insertions, such as screwing a nut into a bolt with a wrench. The inherent difficulty of RIT lies in achieving millimeter-level accuracy and maintaining consistent performance over multiple repetitions, particularly when factors like nut rotation and friction introduce additional complexity. We propose a sim-to-real framework that integrates a reinforcement learning-based insertion policy with a failure forecasting module. By representing the wrench's pose in the nut's coordinate frame rather than the robot's frame, our approach significantly enhances sim-to-real transferability. The insertion policy, trained in simulation, leverages real-time 6D pose tracking to execute precise alignment, insertion, and rotation maneuvers. Simultaneously, a neural network predicts potential execution failures, triggering a simple recovery mechanism that lifts the wrench and retries the insertion. Extensive experiments in both simulated and real-world environments demonstrate that our method not only achieves a high one-time success rate but also robustly maintains performance over long-horizon repetitive tasks.

Authors:Michael Clemens, Ana Marasović
Title: MixAssist: An Audio-Language Dataset for Co-Creative AI Assistance in Music Mixing
Abstract:
While AI presents significant potential for enhancing music mixing and mastering workflows, current research predominantly emphasizes end-to-end automation or generation, often overlooking the collaborative and instructional dimensions vital for co-creative processes. This gap leaves artists, particularly amateurs seeking to develop expertise, underserved. To bridge this, we introduce MixAssist, a novel audio-language dataset capturing the situated, multi-turn dialogue between expert and amateur music producers during collaborative mixing sessions. Comprising 431 audio-grounded conversational turns derived from 7 in-depth sessions involving 12 producers, MixAssist provides a unique resource for training and evaluating audio-language models that can comprehend and respond to the complexities of real-world music production dialogues. Our evaluations, including automated LLM-as-a-judge assessments and human expert comparisons, demonstrate that fine-tuning models such as Qwen-Audio on MixAssist can yield promising results, with Qwen significantly outperforming other tested models in generating helpful, contextually relevant mixing advice. By focusing on co-creative instruction grounded in audio context, MixAssist enables the development of intelligent AI assistants designed to support and augment the creative process in music mixing.

Authors:Zhang Li, Biao Yang, Qiang Liu, Shuo Zhang, Zhiyin Ma, Liang Yin, Linger Deng, Yabo Sun, Yuliang Liu, Xiang Bai
Title: LIRA: Inferring Segmentation in Large Multi-modal Models with Local Interleaved Region Assistance
Abstract:
While large multi-modal models (LMMs) demonstrate promising capabilities in segmentation and comprehension, they still struggle with two limitations: inaccurate segmentation and hallucinated comprehension. These challenges stem primarily from constraints in weak visual comprehension and a lack of fine-grained perception. To alleviate these limitations, we propose LIRA, a framework that capitalizes on the complementary relationship between visual comprehension and segmentation via two key components: (1) Semantic-Enhanced Feature Extractor (SEFE) improves object attribute inference by fusing semantic and pixel-level features, leading to more accurate segmentation; (2) Interleaved Local Visual Coupling (ILVC) autoregressively generates local descriptions after extracting local features based on segmentation masks, offering fine-grained supervision to mitigate hallucinations. Furthermore, we find that the precision of object segmentation is positively correlated with the latent related semantics of the token. To quantify this relationship and the model's potential semantic inferring ability, we introduce the Attributes Evaluation (AttrEval) dataset. Our experiments show that LIRA achieves state-of-the-art performance in both segmentation and comprehension tasks. Code will be available at https://github.com/echo840/LIRA.

Authors:Ali Nasiri-Sarvi, Hassan Rivaz, Mahdi S. Hosseini
Title: SPARC: Concept-Aligned Sparse Autoencoders for Cross-Model and Cross-Modal Interpretability
Abstract:
Understanding how different AI models encode the same high-level concepts, such as objects or attributes, remains challenging because each model typically produces its own isolated representation. Existing interpretability methods like Sparse Autoencoders (SAEs) produce latent concepts individually for each model, resulting in incompatible concept spaces and limiting cross-model interpretability. To address this, we introduce SPARC (Sparse Autoencoders for Aligned Representation of Concepts), a new framework that learns a single, unified latent space shared across diverse architectures and modalities (e.g., vision models like DINO, and multimodal models like CLIP). SPARC's alignment is enforced through two key innovations: (1) a Global TopK sparsity mechanism, ensuring all input streams activate identical latent dimensions for a given concept; and (2) a Cross-Reconstruction Loss, which explicitly encourages semantic consistency between models. On Open Images, SPARC dramatically improves concept alignment, achieving a Jaccard similarity of 0.80, more than tripling the alignment compared to previous methods. SPARC creates a shared sparse latent space where individual dimensions often correspond to similar high-level concepts across models and modalities, enabling direct comparison of how different architectures represent identical concepts without requiring manual alignment or model-specific analysis. As a consequence of this aligned representation, SPARC also enables practical applications such as text-guided spatial localization in vision-only models and cross-model/cross-modal retrieval. Code and models are available at https://github.com/AtlasAnalyticsLab/SPARC.

Authors:Modi Shi, Li Chen, Jin Chen, Yuxiang Lu, Chiming Liu, Guanghui Ren, Ping Luo, Di Huang, Maoqing Yao, Hongyang Li
Title: Is Diversity All You Need for Scalable Robotic Manipulation?
Abstract:
Data scaling has driven remarkable success in foundation models for Natural Language Processing (NLP) and Computer Vision (CV), yet the principles of effective data scaling in robotic manipulation remain insufficiently understood. In this work, we investigate the nuanced role of data diversity in robot learning by examining three critical dimensions-task (what to do), embodiment (which robot to use), and expert (who demonstrates)-challenging the conventional intuition of "more diverse is better". Throughout extensive experiments on various robot platforms, we reveal that (1) task diversity proves more critical than per-task demonstration quantity, benefiting transfer from diverse pre-training tasks to novel downstream scenarios; (2) multi-embodiment pre-training data is optional for cross-embodiment transfer-models trained on high-quality single-embodiment data can efficiently transfer to different platforms, showing more desirable scaling property during fine-tuning than multi-embodiment pre-trained models; and (3) expert diversity, arising from individual operational preferences and stochastic variations in human demonstrations, can be confounding to policy learning, with velocity multimodality emerging as a key contributing factor. Based on this insight, we propose a distribution debiasing method to mitigate velocity ambiguity, the yielding GO-1-Pro achieves substantial performance gains of 15%, equivalent to using 2.5 times pre-training data. Collectively, these findings provide new perspectives and offer practical guidance on how to scale robotic manipulation datasets effectively.

Authors:Dylan Bouchard, Mohit Singh Chauhan, David Skarbrevik, Ho-Kyeong Ra, Viren Bajaj, Zeya Ahmad
Title: UQLM: A Python Package for Uncertainty Quantification in Large Language Models
Abstract:
Hallucinations, defined as instances where Large Language Models (LLMs) generate false or misleading content, pose a significant challenge that impacts the safety and trust of downstream applications. We introduce UQLM, a Python package for LLM hallucination detection using state-of-the-art uncertainty quantification (UQ) techniques. This toolkit offers a suite of UQ-based scorers that compute response-level confidence scores ranging from 0 to 1. This library provides an off-the-shelf solution for UQ-based hallucination detection that can be easily integrated to enhance the reliability of LLM outputs.

Authors:Maximilian Heil, Dionne Bang
Title: DS@GT at CheckThat! 2025: Detecting Subjectivity via Transfer-Learning and Corrective Data Augmentation
Abstract:
This paper presents our submission to Task 1, Subjectivity Detection, of the CheckThat! Lab at CLEF 2025. We investigate the effectiveness of transfer-learning and stylistic data augmentation to improve classification of subjective and objective sentences in English news text. Our approach contrasts fine-tuning of pre-trained encoders and transfer-learning of fine-tuned transformer on related tasks. We also introduce a controlled augmentation pipeline using GPT-4o to generate paraphrases in predefined subjectivity styles. To ensure label and style consistency, we employ the same model to correct and refine the generated samples. Results show that transfer-learning of specified encoders outperforms fine-tuning general-purpose ones, and that carefully curated augmentation significantly enhances model robustness, especially in detecting subjective content. Our official submission placed us $16^{th}$ of 24 participants. Overall, our findings underscore the value of combining encoder specialization with label-consistent augmentation for improved subjectivity detection. Our code is available at https://github.com/dsgt-arc/checkthat-2025-subject.

Authors:Zhihao Chen, Tao Chen, Chenhui Wang, Qi Gao, Huidong Xie, Chuang Niu, Ge Wang, Hongming Shan
Title: LangMamba: A Language-driven Mamba Framework for Low-dose CT Denoising with Vision-language Models
Abstract:
Low-dose computed tomography (LDCT) reduces radiation exposure but often degrades image quality, potentially compromising diagnostic accuracy. Existing deep learning-based denoising methods focus primarily on pixel-level mappings, overlooking the potential benefits of high-level semantic guidance. Recent advances in vision-language models (VLMs) suggest that language can serve as a powerful tool for capturing structured semantic information, offering new opportunities to improve LDCT reconstruction. In this paper, we introduce LangMamba, a Language-driven Mamba framework for LDCT denoising that leverages VLM-derived representations to enhance supervision from normal-dose CT (NDCT). LangMamba follows a two-stage learning strategy. First, we pre-train a Language-guided AutoEncoder (LangAE) that leverages frozen VLMs to map NDCT images into a semantic space enriched with anatomical information. Second, we synergize LangAE with two key components to guide LDCT denoising: Semantic-Enhanced Efficient Denoiser (SEED), which enhances NDCT-relevant local semantic while capturing global features with efficient Mamba mechanism, and Language-engaged Dual-space Alignment (LangDA) Loss, which ensures that denoised images align with NDCT in both perceptual and semantic spaces. Extensive experiments on two public datasets demonstrate that LangMamba outperforms conventional state-of-the-art methods, significantly improving detail preservation and visual fidelity. Remarkably, LangAE exhibits strong generalizability to unseen datasets, thereby reducing training costs. Furthermore, LangDA loss improves explainability by integrating language-guided insights into image reconstruction and offers a plug-and-play fashion. Our findings shed new light on the potential of language as a supervisory signal to advance LDCT denoising. The code is publicly available on https://github.com/hao1635/LangMamba.

Authors:Xiaohu Li, Yunfeng Ning, Zepeng Bao, Mayi Xu, Jianhao Chen, Tieyun Qian
Title: CAVGAN: Unifying Jailbreak and Defense of LLMs via Generative Adversarial Attacks on their Internal Representations
Abstract:
Security alignment enables the Large Language Model (LLM) to gain the protection against malicious queries, but various jailbreak attack methods reveal the vulnerability of this security mechanism. Previous studies have isolated LLM jailbreak attacks and defenses. We analyze the security protection mechanism of the LLM, and propose a framework that combines attack and defense. Our method is based on the linearly separable property of LLM intermediate layer embedding, as well as the essence of jailbreak attack, which aims to embed harmful problems and transfer them to the safe area. We utilize generative adversarial network (GAN) to learn the security judgment boundary inside the LLM to achieve efficient jailbreak attack and defense. The experimental results indicate that our method achieves an average jailbreak success rate of 88.85\% across three popular LLMs, while the defense success rate on the state-of-the-art jailbreak dataset reaches an average of 84.17\%. This not only validates the effectiveness of our approach but also sheds light on the internal security mechanisms of LLMs, offering new insights for enhancing model security The code and data are available at https://github.com/NLPGM/CAVGAN.

Authors:Lucas Fonseca Lage, Simon Ostermann
Title: OpenFActScore: Open-Source Atomic Evaluation of Factuality in Text Generation
Abstract:
We introduce OpenFActScore, an open-source implementation of the FActScore framework for evaluating the factuality of text generated by large language models (LLMs). FActScore evaluates the factual accuracy of long-form text by using Atomic Fact Generation (AFG) to extract individual factual claims and Atomic Fact Validation (AFV) to verify each claim against a trusted knowledge source. While the original FActScore relies on closed-source and commercial models such as InstructGPT and ChatGPT, OpenFActScore enables the use of any Hugging Face-compatible model for both AFG and AFV. We provide a detailed technical overview of our implementation, highlighting design choices and modifications made to support open models. We evaluate multiple open-source LLMs on both AFG and AFV using the original FActScore benchmark, reporting BERTScore-F1 for AFG and Error Rate relative to human annotations for AFV. Our results show that open models can approximate the performance of closed-source systems, with Gemma achieving the best overall performance, and our final setup obtains a 0.99 Pearson correlation with the original FActScore experiments. OpenFActScore promotes transparency, reproducibility, and cost-effective evaluation, and is available at: https://github.com/lflage/OpenFActScore.

Authors:Robert Leppich, Michael Stenger, André Bauer, Samuel Kounev
Title: Decomposing the Time Series Forecasting Pipeline: A Modular Approach for Time Series Representation, Information Extraction, and Projection
Abstract:
With the advent of Transformers, time series forecasting has seen significant advances, yet it remains challenging due to the need for effective sequence representation, memory construction, and accurate target projection. Time series forecasting remains a challenging task, demanding effective sequence representation, meaningful information extraction, and precise future projection. Each dataset and forecasting configuration constitutes a distinct task, each posing unique challenges the model must overcome to produce accurate predictions. To systematically address these task-specific difficulties, this work decomposes the time series forecasting pipeline into three core stages: input sequence representation, information extraction and memory construction, and final target projection. Within each stage, we investigate a range of architectural configurations to assess the effectiveness of various modules, such as convolutional layers for feature extraction and self-attention mechanisms for information extraction, across diverse forecasting tasks, including evaluations on seven benchmark datasets. Our models achieve state-of-the-art forecasting accuracy while greatly enhancing computational efficiency, with reduced training and inference times and a lower parameter count. The source code is available at https://github.com/RobertLeppich/REP-Net.

Authors:Kechen Liu
Title: When Transformers Meet Recommenders: Integrating Self-Attentive Sequential Recommendation with Fine-Tuned LLMs
Abstract:
Self-Attentive Sequential Recommendation (SASRec) effectively captures long-term user preferences by applying attention mechanisms to historical interactions. Concurrently, the rise of Large Language Models (LLMs) has motivated research into LLM-based recommendation, which leverages their powerful generalization and language understanding capabilities. However, LLMs often lack the domain-specific knowledge and collaborative signals essential for high-quality recommendations when relying solely on textual prompts. To address this limitation, this study proposes SASRecLLM, a novel framework that integrates SASRec as a collaborative encoder with an LLM fine-tuned using Low-Rank Adaptation (LoRA). The components are connected via a mapping layer to align their dimensional spaces, and three targeted training strategies are designed to optimize the hybrid architecture. Extensive experiments on multiple datasets demonstrate that SASRecLLM achieves robust and consistent improvements over strong baselines in both cold-start and warm-start scenarios. This work advances the field of LLM-based recommendation by presenting a modular and effective paradigm for fusing structured collaborative filtering with the semantic power of fine-tuned LLMs. The implementation is available on GitHub: https://github.com/kechenkristin/RecLLM

Authors:Weihua Du, Pranjal Aggarwal, Sean Welleck, Yiming Yang
Title: Agentic-R1: Distilled Dual-Strategy Reasoning
Abstract:
Current long chain-of-thought (long-CoT) models excel at mathematical reasoning but rely on slow and error-prone natural language traces. Tool-augmented agents address arithmetic via code execution, but often falter on complex logical tasks. We introduce a fine-tuning framework, DualDistill, that distills complementary reasoning strategies from multiple teachers into a unified student model. Using this approach, we train Agentic-R1, which dynamically selects the optimal strategy for each query, invoking tools for arithmetic and algorithmic problems, and using text-based reasoning for abstract ones. Our method improves accuracy across a range of tasks, including both computation-intensive and standard benchmarks, demonstrating the effectiveness of multi-strategy distillation in achieving robust and efficient reasoning. Our project is available at https://github.com/StigLidu/DualDistill

Authors:Rongsheng Wang, Junying Chen, Ke Ji, Zhenyang Cai, Shunian Chen, Yunjin Yang, Benyou Wang
Title: MedGen: Unlocking Medical Video Generation by Scaling Granularly-annotated Medical Videos
Abstract:
Recent advances in video generation have shown remarkable progress in open-domain settings, yet medical video generation remains largely underexplored. Medical videos are critical for applications such as clinical training, education, and simulation, requiring not only high visual fidelity but also strict medical accuracy. However, current models often produce unrealistic or erroneous content when applied to medical prompts, largely due to the lack of large-scale, high-quality datasets tailored to the medical domain. To address this gap, we introduce MedVideoCap-55K, the first large-scale, diverse, and caption-rich dataset for medical video generation. It comprises over 55,000 curated clips spanning real-world medical scenarios, providing a strong foundation for training generalist medical video generation models. Built upon this dataset, we develop MedGen, which achieves leading performance among open-source models and rivals commercial systems across multiple benchmarks in both visual quality and medical accuracy. We hope our dataset and model can serve as a valuable resource and help catalyze further research in medical video generation. Our code and data is available at https://github.com/FreedomIntelligence/MedGen

Authors:Kaixiang Zhao, Joseph Yousry Attalla, Qian Lou, Yushun Dong
Title: DESIGN: Encrypted GNN Inference via Server-Side Input Graph Pruning
Abstract:
Graph Neural Networks (GNNs) have achieved state-of-the-art performance in various graph-based learning tasks. However, enabling privacy-preserving GNNs in encrypted domains, such as under Fully Homomorphic Encryption (FHE), typically incurs substantial computational overhead, rendering real-time and privacy-preserving inference impractical. In this work, we propose DESIGN (EncrypteD GNN Inference via sErver-Side Input Graph pruNing), a novel framework for efficient encrypted GNN inference. DESIGN tackles the critical efficiency limitations of existing FHE GNN approaches, which often overlook input data redundancy and apply uniform computational strategies. Our framework achieves significant performance gains through a hierarchical optimization strategy executed entirely on the server: first, FHE-compatible node importance scores (based on encrypted degree statistics) are computed from the encrypted graph. These scores then guide a homomorphic partitioning process, generating multi-level importance masks directly under FHE. This dynamically generated mask facilitates both input graph pruning (by logically removing unimportant elements) and a novel adaptive polynomial activation scheme, where activation complexity is tailored to node importance levels. Empirical evaluations demonstrate that DESIGN substantially accelerates FHE GNN inference compared to state-of-the-art methods while maintaining competitive model accuracy, presenting a robust solution for secure graph analytics. Our implementation is publicly available at https://github.com/LabRAI/DESIGN.

Authors:Shuo Shao, Yiming Li, Mengren Zheng, Zhiyang Hu, Yukun Chen, Boheng Li, Yu He, Junfeng Guo, Dacheng Tao, Zhan Qin
Title: DATABench: Evaluating Dataset Auditing in Deep Learning from an Adversarial Perspective
Abstract:
The widespread application of Deep Learning across diverse domains hinges critically on the quality and composition of training datasets. However, the common lack of disclosure regarding their usage raises significant privacy and copyright concerns. Dataset auditing techniques, which aim to determine if a specific dataset was used to train a given suspicious model, provide promising solutions to addressing these transparency gaps. While prior work has developed various auditing methods, their resilience against dedicated adversarial attacks remains largely unexplored. To bridge the gap, this paper initiates a comprehensive study evaluating dataset auditing from an adversarial perspective. We start with introducing a novel taxonomy, classifying existing methods based on their reliance on internal features (IF) (inherent to the data) versus external features (EF) (artificially introduced for auditing). Subsequently, we formulate two primary attack types: evasion attacks, designed to conceal the use of a dataset, and forgery attacks, intending to falsely implicate an unused dataset. Building on the understanding of existing methods and attack objectives, we further propose systematic attack strategies: decoupling, removal, and detection for evasion; adversarial example-based methods for forgery. These formulations and strategies lead to our new benchmark, DATABench, comprising 17 evasion attacks, 5 forgery attacks, and 9 representative auditing methods. Extensive evaluations using DATABench reveal that none of the evaluated auditing methods are sufficiently robust or distinctive under adversarial settings. These findings underscore the urgent need for developing a more secure and reliable dataset auditing method capable of withstanding sophisticated adversarial manipulation. Code is available at https://github.com/shaoshuo-ss/DATABench.

Authors:Andrew Randono
Title: Cloud Diffusion Part 1: Theory and Motivation
Abstract:
Diffusion models for image generation function by progressively adding noise to an image set and training a model to separate out the signal from the noise. The noise profile used by these models is white noise -- that is, noise based on independent normal distributions at each point whose mean and variance is independent of the scale. By contrast, most natural image sets exhibit a type of scale invariance in their low-order statistical properties characterized by a power-law scaling. Consequently, natural images are closer (in a quantifiable sense) to a different probability distribution that emphasizes large scale correlations and de-emphasizes small scale correlations. These scale invariant noise profiles can be incorporated into diffusion models in place of white noise to form what we will call a ``Cloud Diffusion Model". We argue that these models can lead to faster inference, improved high-frequency details, and greater controllability. In a follow-up paper, we will build and train a Cloud Diffusion Model that uses scale invariance at a fundamental level and compare it to classic, white noise diffusion models.

Authors:Ashima Suvarna, Christina Chance, Karolina Naranjo, Hamid Palangi, Sophie Hao, Thomas Hartvigsen, Saadia Gabriel
Title: ModelCitizens: Representing Community Voices in Online Safety
Abstract:
Automatic toxic language detection is critical for creating safe, inclusive online spaces. However, it is a highly subjective task, with perceptions of toxic language shaped by community norms and lived experience. Existing toxicity detection models are typically trained on annotations that collapse diverse annotator perspectives into a single ground truth, erasing important context-specific notions of toxicity such as reclaimed language. To address this, we introduce MODELCITIZENS, a dataset of 6.8K social media posts and 40K toxicity annotations across diverse identity groups. To capture the role of conversational context on toxicity, typical of social media posts, we augment MODELCITIZENS posts with LLM-generated conversational scenarios. State-of-the-art toxicity detection tools (e.g. OpenAI Moderation API, GPT-o4-mini) underperform on MODELCITIZENS, with further degradation on context-augmented posts. Finally, we release LLAMACITIZEN-8B and GEMMACITIZEN-12B, LLaMA- and Gemma-based models finetuned on MODELCITIZENS, which outperform GPT-o4-mini by 5.5% on in-distribution evaluations. Our findings highlight the importance of community-informed annotation and modeling for inclusive content moderation. The data, models and code are available at https://github.com/asuvarna31/modelcitizens.

Authors:Jaedong Hwang, Kumar Tanmay, Seok-Jin Lee, Ayush Agrawal, Hamid Palangi, Kumar Ayush, Ila Fiete, Paul Pu Liang
Title: Learn Globally, Speak Locally: Bridging the Gaps in Multilingual Reasoning
Abstract:
Large Language Models (LLMs) have achieved strong performance in domains like mathematics, factual QA, and code generation, yet their multilingual reasoning capabilities in these tasks remain underdeveloped. Especially for low-resource languages such as Swahili or Thai, LLMs can often misinterpret prompts or default to reasoning in English. This implicit bias toward high-resource languages undermines factual accuracy, interpretability, and trust. Current multilingual benchmarks focus only on final answers, overlooking whether models actually reason in the target language. To address this gap, we introduce GeoFact-X, a geography-based multilingual factual reasoning benchmark with annotated reasoning traces in five languages: English, Hindi, Japanese, Swahili, and Thai. We further propose BRIDGE, a novel training method that guides supervised fine-tuning and test-time reinforcement learning with a language-consistency reward to align reasoning with the input language. Finally, we develop an automatic evaluation protocol using LLM-as-a-judge to assess answer correctness and the quality and language consistency of reasoning traces, enabling nuanced and scalable analysis beyond surface-level metrics. Our results show that BRIDGE significantly enhances multilingual reasoning fidelity, demonstrating that reasoning-aware multilingual reinforcement learning is crucial for robust cross-lingual generalization. https://jd730.github.io/projects/GeoFact-X_BRIDGE

Authors:Chi-Chang Lee, Zhang-Wei Hong, Pulkit Agrawal
Title: Going Beyond Heuristics by Imposing Policy Improvement as a Constraint
Abstract:
In many reinforcement learning (RL) applications, augmenting the task rewards with heuristic rewards that encode human priors about how a task should be solved is crucial for achieving desirable performance. However, because such heuristics are usually not optimal, much human effort and computational resources are wasted in carefully balancing tasks and heuristic rewards. Theoretically rigorous ways of incorporating heuristics rely on the idea of \textit{policy invariance}, which guarantees that the performance of a policy obtained by maximizing heuristic rewards is the same as the optimal policy with respect to the task reward. However, in practice, policy invariance doesn't result in policy improvement, and such methods are known to empirically perform poorly. We propose a new paradigm to mitigate reward hacking and effectively use heuristics based on the practical goal of maximizing policy improvement instead of policy improvement. Our framework, Heuristic Enhanced Policy Optimization (HEPO), effectively leverages heuristics while avoiding the pitfall of prior methods for mitigating reward hacking. HEPO achieves superior performance on standard benchmarks with well-engineered reward functions. More surprisingly, HEPO allows policy optimization to achieve good performance even when heuristics are not well-engineered and designed by non-expert humans, showcasing HEPO's ability to reduce human effort in reward design. % HEPO is a plug-and-play optimization method for leveraging heuristics in reinforcement learning. Code is available at https://github.com/Improbable-AI/hepo.

Authors:Cheng Yuan, Xinkai Rui, Yongqi Fan, Yawei Fan, Boyang Zhong, Jiacheng Wang, Weiyan Zhang, Tong Ruan
Title: LCDS: A Logic-Controlled Discharge Summary Generation System Supporting Source Attribution and Expert Review
Abstract:
Despite the remarkable performance of Large Language Models (LLMs) in automated discharge summary generation, they still suffer from hallucination issues, such as generating inaccurate content or fabricating information without valid sources. In addition, electronic medical records (EMRs) typically consist of long-form data, making it challenging for LLMs to attribute the generated content to the sources. To address these challenges, we propose LCDS, a Logic-Controlled Discharge Summary generation system. LCDS constructs a source mapping table by calculating textual similarity between EMRs and discharge summaries to constrain the scope of summarized content. Moreover, LCDS incorporates a comprehensive set of logical rules, enabling it to generate more reliable silver discharge summaries tailored to different clinical fields. Furthermore, LCDS supports source attribution for generated content, allowing experts to efficiently review, provide feedback, and rectify errors. The resulting golden discharge summaries are subsequently recorded for incremental fine-tuning of LLMs. Our project and demo video are in the GitHub repository https://github.com/ycycyc02/LCDS.

Authors:Yue Wang, Miao Zhou, Guijing Huang, Rui Zhuo, Chao Yi, Zhenliang Ma
Title: Chat2SPaT: A Large Language Model Based Tool for Automating Traffic Signal Control Plan Management
Abstract:
Pre-timed traffic signal control, commonly used for operating signalized intersections and coordinated arterials, requires tedious manual work for signaling plan creating and updating. When the time-of-day or day-of-week plans are utilized, one intersection is often associated with multiple plans, leading to further repetitive manual plan parameter inputting. To enable a user-friendly traffic signal control plan management process, this study proposes Chat2SPaT, a method to convert users' semi-structured and ambiguous descriptions on the signal control plan to exact signal phase and timing (SPaT) results, which could further be transformed into structured stage-based or ring-based plans to interact with intelligent transportation system (ITS) software and traffic signal controllers. With curated prompts, Chat2SPaT first leverages large language models' (LLMs) capability of understanding users' plan descriptions and reformulate the plan as a combination of phase sequence and phase attribute results in the json format. Based on LLM outputs, python scripts are designed to locate phases in a cycle, address nuances of traffic signal control, and finally assemble the complete traffic signal control plan. Within a chat, the pipeline can be utilized iteratively to conduct further plan editing. Experiments show that Chat2SPaT can generate plans with an accuracy of over 94% for both English and Chinese cases, using a test dataset with over 300 plan descriptions. As the first benchmark for evaluating LLMs' capability of understanding traffic signal control plan descriptions, Chat2SPaT provides an easy-to-use plan management pipeline for traffic practitioners and researchers, serving as a potential new building block for a more accurate and versatile application of LLMs in the field of ITS. The source codes, prompts and test dataset are openly accessible at https://github.com/yuewangits/Chat2SPaT.

Authors:Weibing Zheng, Laurah Turner, Jess Kropczynski, Murat Ozer, Seth Overla, Shane Halse
Title: A Fuzzy Supervisor Agent Design for Clinical Reasoning Assistance in a Multi-Agent Educational Clinical Scenario Simulation
Abstract:
Assisting medical students with clinical reasoning (CR) during clinical scenario training remains a persistent challenge in medical education. This paper presents the design and architecture of the Fuzzy Supervisor Agent (FSA), a novel component for the Multi-Agent Educational Clinical Scenario Simulation (MAECSS) platform. The FSA leverages a Fuzzy Inference System (FIS) to continuously interpret student interactions with specialized clinical agents (e.g., patient, physical exam, diagnostic, intervention) using pre-defined fuzzy rule bases for professionalism, medical relevance, ethical behavior, and contextual distraction. By analyzing student decision-making processes in real-time, the FSA is designed to deliver adaptive, context-aware feedback and provides assistance precisely when students encounter difficulties. This work focuses on the technical framework and rationale of the FSA, highlighting its potential to provide scalable, flexible, and human-like supervision in simulation-based medical education. Future work will include empirical evaluation and integration into broader educational settings. More detailed design and implementation is~\href{https://github.com/2sigmaEdTech/MAS/}{open sourced here}.

Authors:Fabian Konstantinidis, Ariel Dallari Guerreiro, Raphael Trumpp, Moritz Sackmann, Ulrich Hofmann, Marco Caccamo, Christoph Stiller
Title: From Marginal to Joint Predictions: Evaluating Scene-Consistent Trajectory Prediction Approaches for Automated Driving
Abstract:
Accurate motion prediction of surrounding traffic participants is crucial for the safe and efficient operation of automated vehicles in dynamic environments. Marginal prediction models commonly forecast each agent's future trajectories independently, often leading to sub-optimal planning decisions for an automated vehicle. In contrast, joint prediction models explicitly account for the interactions between agents, yielding socially and physically consistent predictions on a scene level. However, existing approaches differ not only in their problem formulation but also in the model architectures and implementation details used, making it difficult to compare them. In this work, we systematically investigate different approaches to joint motion prediction, including post-processing of the marginal predictions, explicitly training the model for joint predictions, and framing the problem as a generative task. We evaluate each approach in terms of prediction accuracy, multi-modality, and inference efficiency, offering a comprehensive analysis of the strengths and limitations of each approach. Several prediction examples are available at https://frommarginaltojointpred.github.io/.

Authors:Zongyan Han, Mohamed El Amine Boudjoghra, Jiahua Dong, Jinhong Wang, Rao Muhammad Anwer
Title: All in One: Visual-Description-Guided Unified Point Cloud Segmentation
Abstract:
Unified segmentation of 3D point clouds is crucial for scene understanding, but is hindered by its sparse structure, limited annotations, and the challenge of distinguishing fine-grained object classes in complex environments. Existing methods often struggle to capture rich semantic and contextual information due to limited supervision and a lack of diverse multimodal cues, leading to suboptimal differentiation of classes and instances. To address these challenges, we propose VDG-Uni3DSeg, a novel framework that integrates pre-trained vision-language models (e.g., CLIP) and large language models (LLMs) to enhance 3D segmentation. By leveraging LLM-generated textual descriptions and reference images from the internet, our method incorporates rich multimodal cues, facilitating fine-grained class and instance separation. We further design a Semantic-Visual Contrastive Loss to align point features with multimodal queries and a Spatial Enhanced Module to model scene-wide relationships efficiently. Operating within a closed-set paradigm that utilizes multimodal knowledge generated offline, VDG-Uni3DSeg achieves state-of-the-art results in semantic, instance, and panoptic segmentation, offering a scalable and practical solution for 3D understanding. Our code is available at https://github.com/Hanzy1996/VDG-Uni3DSeg.

Authors:Chen Wang, Tianyu Peng, Wen Yang, Yinan Bai, Guangfu Wang, Jun Lin, Lanpeng Jia, Lingxiang Wu, Jinqiao Wang, Chengqing Zong, Jiajun Zhang
Title: OpenS2S: Advancing Fully Open-Source End-to-End Empathetic Large Speech Language Model
Abstract:
Empathetic interaction is a cornerstone of human-machine communication, due to the need for understanding speech enriched with paralinguistic cues and generating emotional and expressive responses. However, the most powerful empathetic LSLMs are increasingly closed off, leaving the crucial details about the architecture, data and development opaque to researchers. Given the critical need for transparent research into the LSLMs and empathetic behavior, we present OpenS2S, a fully open-source, transparent and end-to-end LSLM designed to enable empathetic speech interactions. Based on our empathetic speech-to-text model BLSP-Emo, OpenS2S further employs a streaming interleaved decoding architecture to achieve low-latency speech generation. To facilitate end-to-end training, OpenS2S incorporates an automated data construction pipeline that synthesizes diverse, high-quality empathetic speech dialogues at low cost. By leveraging large language models to generate empathetic content and controllable text-to-speech systems to introduce speaker and emotional variation, we construct a scalable training corpus with rich paralinguistic diversity and minimal human supervision. We release the fully open-source OpenS2S model, including the dataset, model weights, pre-training and fine-tuning codes, to empower the broader research community and accelerate innovation in empathetic speech systems. The project webpage can be accessed at https://casia-lm.github.io/OpenS2S

Authors:Nicholas Chivaran, Jianbing Ni
Title: LAID: Lightweight AI-Generated Image Detection in Spatial and Spectral Domains
Abstract:
The recent proliferation of photorealistic AI-generated images (AIGI) has raised urgent concerns about their potential misuse, particularly on social media platforms. Current state-of-the-art AIGI detection methods typically rely on large, deep neural architectures, creating significant computational barriers to real-time, large-scale deployment on platforms like social media. To challenge this reliance on computationally intensive models, we introduce LAID, the first framework -- to our knowledge -- that benchmarks and evaluates the detection performance and efficiency of off-the-shelf lightweight neural networks. In this framework, we comprehensively train and evaluate selected models on a representative subset of the GenImage dataset across spatial, spectral, and fusion image domains. Our results demonstrate that lightweight models can achieve competitive accuracy, even under adversarial conditions, while incurring substantially lower memory and computation costs compared to current state-of-the-art methods. This study offers valuable insight into the trade-off between efficiency and performance in AIGI detection and lays a foundation for the development of practical, scalable, and trustworthy detection systems. The source code of LAID can be found at: https://github.com/nchivar/LAID.

Authors:Juyi Lin, Amir Taherin, Arash Akbari, Arman Akbari, Lei Lu, Guangyu Chen, Taskin Padir, Xiaomeng Yang, Weiwei Chen, Yiqian Li, Xue Lin, David Kaeli, Pu Zhao, Yanzhi Wang
Title: VOTE: Vision-Language-Action Optimization with Trajectory Ensemble Voting
Abstract:
Recent large-scale Vision Language Action (VLA) models have shown superior performance in robotic manipulation tasks guided by natural language. However, current VLA models suffer from two drawbacks: (i) generation of massive tokens leading to high inference latency and increased training cost, and (ii) insufficient utilization of generated actions resulting in potential performance loss. To address these issues, we develop a training framework to finetune VLA models for generating significantly fewer action tokens with high parallelism, effectively reducing inference latency and training cost. Furthermore, we introduce an inference optimization technique with a novel voting-based ensemble strategy to combine current and previous action predictions, improving the utilization of generated actions and overall performance. Our results demonstrate that we achieve superior performance compared with state-of-the-art VLA models, achieving significantly higher success rates and 39$\times$ faster inference than OpenVLA with 46 Hz throughput on edge platforms, demonstrating practical deployability. The code is available at https://github.com/LukeLIN-web/VOTE.

Authors:Yuyi Zhang, Peirong Zhang, Zhenhua Yang, Pengyu Yan, Yongxin Shi, Pengwei Liu, Fengjun Guo, Lianwen Jin
Title: Reviving Cultural Heritage: A Novel Approach for Comprehensive Historical Document Restoration
Abstract:
Historical documents represent an invaluable cultural heritage, yet have undergone significant degradation over time through tears, water erosion, and oxidation. Existing Historical Document Restoration (HDR) methods primarily focus on single modality or limited-size restoration, failing to meet practical needs. To fill this gap, we present a full-page HDR dataset (FPHDR) and a novel automated HDR solution (AutoHDR). Specifically, FPHDR comprises 1,633 real and 6,543 synthetic images with character-level and line-level locations, as well as character annotations in different damage grades. AutoHDR mimics historians' restoration workflows through a three-stage approach: OCR-assisted damage localization, vision-language context text prediction, and patch autoregressive appearance restoration. The modular architecture of AutoHDR enables seamless human-machine collaboration, allowing for flexible intervention and optimization at each restoration stage. Experiments demonstrate AutoHDR's remarkable performance in HDR. When processing severely damaged documents, our method improves OCR accuracy from 46.83% to 84.05%, with further enhancement to 94.25% through human-machine collaboration. We believe this work represents a significant advancement in automated historical document restoration and contributes substantially to cultural heritage preservation. The model and dataset are available at https://github.com/SCUT-DLVCLab/AutoHDR.

Authors:Xinzhe Zheng, Hao Du, Fanding Xu, Jinzhe Li, Zhiyuan Liu, Wenkang Wang, Tao Chen, Wanli Ouyang, Stan Z. Li, Yan Lu, Nanqing Dong, Yang Zhang
Title: PRING: Rethinking Protein-Protein Interaction Prediction from Pairs to Graphs
Abstract:
Deep learning-based computational methods have achieved promising results in predicting protein-protein interactions (PPIs). However, existing benchmarks predominantly focus on isolated pairwise evaluations, overlooking a model's capability to reconstruct biologically meaningful PPI networks, which is crucial for biology research. To address this gap, we introduce PRING, the first comprehensive benchmark that evaluates protein-protein interaction prediction from a graph-level perspective. PRING curates a high-quality, multi-species PPI network dataset comprising 21,484 proteins and 186,818 interactions, with well-designed strategies to address both data redundancy and leakage. Building on this golden-standard dataset, we establish two complementary evaluation paradigms: (1) topology-oriented tasks, which assess intra and cross-species PPI network construction, and (2) function-oriented tasks, including protein complex pathway prediction, GO module analysis, and essential protein justification. These evaluations not only reflect the model's capability to understand the network topology but also facilitate protein function annotation, biological module detection, and even disease mechanism analysis. Extensive experiments on four representative model categories, consisting of sequence similarity-based, naive sequence-based, protein language model-based, and structure-based approaches, demonstrate that current PPI models have potential limitations in recovering both structural and functional properties of PPI networks, highlighting the gap in supporting real-world biological applications. We believe PRING provides a reliable platform to guide the development of more effective PPI prediction models for the community. The dataset and source code of PRING are available at https://github.com/SophieSarceau/PRING.

Authors:Hongyao Yu, Yixiang Qiu, Yiheng Yang, Hao Fang, Tianqu Zhuang, Jiaxin Hong, Bin Chen, Hao Wu, Shu-Tao Xia
Title: ICAS: Detecting Training Data from Autoregressive Image Generative Models
Abstract:
Autoregressive image generation has witnessed rapid advancements, with prominent models such as scale-wise visual auto-regression pushing the boundaries of visual synthesis. However, these developments also raise significant concerns regarding data privacy and copyright. In response, training data detection has emerged as a critical task for identifying unauthorized data usage in model training. To better understand the vulnerability of autoregressive image generative models to such detection, we conduct the first study applying membership inference to this domain. Our approach comprises two key components: implicit classification and an adaptive score aggregation strategy. First, we compute the implicit token-wise classification score within the query image. Then we propose an adaptive score aggregation strategy to acquire a final score, which places greater emphasis on the tokens with lower scores. A higher final score indicates that the sample is more likely to be involved in the training set. To validate the effectiveness of our method, we adapt existing detection algorithms originally designed for LLMs to visual autoregressive models. Extensive experiments demonstrate the superiority of our method in both class-conditional and text-to-image scenarios. Moreover, our approach exhibits strong robustness and generalization under various data transformations. Furthermore, sufficient experiments suggest two novel key findings: (1) A linear scaling law on membership inference, exposing the vulnerability of large foundation models. (2) Training data from scale-wise visual autoregressive models is easier to detect than other autoregressive paradigms.Our code is available at https://github.com/Chrisqcwx/ImageAR-MIA.

Authors:Soham Walimbe, Britty Baby, Vinkle Srivastav, Nicolas Padoy
Title: Adaptation of Multi-modal Representation Models for Multi-task Surgical Computer Vision
Abstract:
Surgical AI often involves multiple tasks within a single procedure, like phase recognition or assessing the Critical View of Safety in laparoscopic cholecystectomy. Traditional models, built for one task at a time, lack flexibility, requiring a separate model for each. To address this, we introduce MML-SurgAdapt, a unified multi-task framework with Vision-Language Models (VLMs), specifically CLIP, to handle diverse surgical tasks through natural language supervision. A key challenge in multi-task learning is the presence of partial annotations when integrating different tasks. To overcome this, we employ Single Positive Multi-Label (SPML) learning, which traditionally reduces annotation burden by training models with only one positive label per instance. Our framework extends this approach to integrate data from multiple surgical tasks within a single procedure, enabling effective learning despite incomplete or noisy annotations. We demonstrate the effectiveness of our model on a combined dataset consisting of Cholec80, Endoscapes2023, and CholecT50, utilizing custom prompts. Extensive evaluation shows that MML-SurgAdapt performs comparably to task-specific benchmarks, with the added advantage of handling noisy annotations. It also outperforms the existing SPML frameworks for the task. By reducing the required labels by 23%, our approach proposes a more scalable and efficient labeling process, significantly easing the annotation burden on clinicians. To our knowledge, this is the first application of SPML to integrate data from multiple surgical tasks, presenting a novel and generalizable solution for multi-task learning in surgical computer vision. Implementation is available at: https://github.com/CAMMA-public/MML-SurgAdapt

Authors:Britty Baby, Vinkle Srivastav, Pooja P. Jain, Kun Yuan, Pietro Mascagni, Nicolas Padoy
Title: Multi-modal Representations for Fine-grained Multi-label Critical View of Safety Recognition
Abstract:
The Critical View of Safety (CVS) is crucial for safe laparoscopic cholecystectomy, yet assessing CVS criteria remains a complex and challenging task, even for experts. Traditional models for CVS recognition depend on vision-only models learning with costly, labor-intensive spatial annotations. This study investigates how text can be harnessed as a powerful tool for both training and inference in multi-modal surgical foundation models to automate CVS recognition. Unlike many existing multi-modal models, which are primarily adapted for multi-class classification, CVS recognition requires a multi-label framework. Zero-shot evaluation of existing multi-modal surgical models shows a significant performance gap for this task. To address this, we propose CVS-AdaptNet, a multi-label adaptation strategy that enhances fine-grained, binary classification across multiple labels by aligning image embeddings with textual descriptions of each CVS criterion using positive and negative prompts. By adapting PeskaVLP, a state-of-the-art surgical foundation model, on the Endoscapes-CVS201 dataset, CVS-AdaptNet achieves 57.6 mAP, improving over the ResNet50 image-only baseline (51.5 mAP) by 6 points. Our results show that CVS-AdaptNet's multi-label, multi-modal framework, enhanced by textual prompts, boosts CVS recognition over image-only methods. We also propose text-specific inference methods, that helps in analysing the image-text alignment. While further work is needed to match state-of-the-art spatial annotation-based methods, this approach highlights the potential of adapting generalist models to specialized surgical tasks. Code: https://github.com/CAMMA-public/CVS-AdaptNet

Authors:Yingshan Liang, Keyu Fan, Zhicheng Du, Yiran Wang, Qingyang Shi, Xinyu Zhang, Jiasheng Lu, Peiwu Qin
Title: Hear-Your-Click: Interactive Object-Specific Video-to-Audio Generation
Abstract:
Video-to-audio (V2A) generation shows great potential in fields such as film production. Despite significant advances, current V2A methods relying on global video information struggle with complex scenes and generating audio tailored to specific objects. To address these limitations, we introduce Hear-Your-Click, an interactive V2A framework enabling users to generate sounds for specific objects by clicking on the frame. To achieve this, we propose Object-aware Contrastive Audio-Visual Fine-tuning (OCAV) with a Mask-guided Visual Encoder (MVE) to obtain object-level visual features aligned with audio. Furthermore, we tailor two data augmentation strategies, Random Video Stitching (RVS) and Mask-guided Loudness Modulation (MLM), to enhance the model's sensitivity to segmented objects. To measure audio-visual correspondence, we designed a new evaluation metric, the CAV score. Extensive experiments demonstrate that our framework offers more precise control and improves generation performance across various metrics. Project Page: https://github.com/SynapGrid/Hear-Your-Click

Authors:Thinh Dao, Dung Thuy Nguyen, Khoa D Doan, Kok-Seng Wong
Title: BackFed: An Efficient & Standardized Benchmark Suite for Backdoor Attacks in Federated Learning
Abstract:
Federated Learning (FL) systems are vulnerable to backdoor attacks, where adversaries train their local models on poisoned data and submit poisoned model updates to compromise the global model. Despite numerous proposed attacks and defenses, divergent experimental settings, implementation errors, and unrealistic assumptions hinder fair comparisons and valid conclusions about their effectiveness in real-world scenarios. To address this, we introduce BackFed - a comprehensive benchmark suite designed to standardize, streamline, and reliably evaluate backdoor attacks and defenses in FL, with a focus on practical constraints. Our benchmark offers key advantages through its multi-processing implementation that significantly accelerates experimentation and the modular design that enables seamless integration of new methods via well-defined APIs. With a standardized evaluation pipeline, we envision BackFed as a plug-and-play environment for researchers to comprehensively and reliably evaluate new attacks and defenses. Using BackFed, we conduct large-scale studies of representative backdoor attacks and defenses across both Computer Vision and Natural Language Processing tasks with diverse model architectures and experimental settings. Our experiments critically assess the performance of proposed attacks and defenses, revealing unknown limitations and modes of failures under practical conditions. These empirical insights provide valuable guidance for the development of new methods and for enhancing the security of FL systems. Our framework is openly available at https://github.com/thinh-dao/BackFed.

Authors:Seyedarmin Azizi, Erfan Baghaei Potraghloo, Massoud Pedram
Title: Activation Steering for Chain-of-Thought Compression
Abstract:
Large language models (LLMs) excel at complex reasoning when they include intermediate steps, known as "chains of thought" (CoTs). However, these rationales are often overly verbose, even for simple problems, leading to wasted context, increased latency, and higher energy consumption. We observe that verbose, English-heavy CoTs and concise, math-centric CoTs occupy distinct regions in the model's residual-stream activation space. By extracting and injecting a "steering vector" to transition between these modes, we can reliably shift generation toward more concise reasoning, effectively compressing CoTs without retraining. We formalize this approach as Activation-Steered Compression (ASC), an inference-time technique that shortens reasoning traces by directly modifying hidden representations. In addition, we provide a theoretical analysis of the impact of ASC on the output distribution, derived from a closed-form KL-divergence-bounded constraint to regulate steering strength. Using only 100 paired verbose and concise examples, ASC achieves up to 67.43% reduction in CoT length on MATH500 and GSM8K datasets, while maintaining accuracy across 7B, 8B, and 32B parameter models. As a training-free method, ASC introduces negligible runtime overhead and, on MATH500, delivers an average 2.73x speedup in end-to-end reasoning wall-clock time on an 8B model. This makes ASC a practical and efficient tool for streamlining the deployment of reasoning-capable LLMs in latency- or cost-sensitive settings. The code is available at: https://github.com/ArminAzizi98/ASC

Authors:Anbang Wang, Marawan Elbatel, Keyuan Liu, Lizhuo Lin, Meng Lan, Yanqi Yang, Xiaomeng Li
Title: Geometric-Guided Few-Shot Dental Landmark Detection with Human-Centric Foundation Model
Abstract:
Accurate detection of anatomic landmarks is essential for assessing alveolar bone and root conditions, thereby optimizing clinical outcomes in orthodontics, periodontics, and implant dentistry. Manual annotation of landmarks on cone-beam computed tomography (CBCT) by dentists is time-consuming, labor-intensive, and subject to inter-observer variability. Deep learning-based automated methods present a promising approach to streamline this process efficiently. However, the scarcity of training data and the high cost of expert annotations hinder the adoption of conventional deep learning techniques. To overcome these challenges, we introduce GeoSapiens, a novel few-shot learning framework designed for robust dental landmark detection using limited annotated CBCT of anterior teeth. Our GeoSapiens framework comprises two key components: (1) a robust baseline adapted from Sapiens, a foundational model that has achieved state-of-the-art performance in human-centric vision tasks, and (2) a novel geometric loss function that improves the model's capacity to capture critical geometric relationships among anatomical structures. Experiments conducted on our collected dataset of anterior teeth landmarks revealed that GeoSapiens surpassed existing landmark detection methods, outperforming the leading approach by an 8.18% higher success detection rate at a strict 0.5 mm threshold-a standard widely recognized in dental diagnostics. Code is available at: https://github.com/xmed-lab/GeoSapiens.

Authors:Hahyeon Choi, Junhoo Lee, Nojun Kwak
Title: What's Making That Sound Right Now? Video-centric Audio-Visual Localization
Abstract:
Audio-Visual Localization (AVL) aims to identify sound-emitting sources within a visual scene. However, existing studies focus on image-level audio-visual associations, failing to capture temporal dynamics. Moreover, they assume simplified scenarios where sound sources are always visible and involve only a single object. To address these limitations, we propose AVATAR, a video-centric AVL benchmark that incorporates high-resolution temporal information. AVATAR introduces four distinct scenarios -- Single-sound, Mixed-sound, Multi-entity, and Off-screen -- enabling a more comprehensive evaluation of AVL models. Additionally, we present TAVLO, a novel video-centric AVL model that explicitly integrates temporal information. Experimental results show that conventional methods struggle to track temporal variations due to their reliance on global audio features and frame-level mappings. In contrast, TAVLO achieves robust and precise audio-visual alignment by leveraging high-resolution temporal modeling. Our work empirically demonstrates the importance of temporal dynamics in AVL and establishes a new standard for video-centric audio-visual localization.

Authors:Yun Wang, Longguang Wang, Chenghao Zhang, Yongjian Zhang, Zhanjie Zhang, Ao Ma, Chenyou Fan, Tin Lun Lam, Junjie Hu
Title: Learning Robust Stereo Matching in the Wild with Selective Mixture-of-Experts
Abstract:
Recently, learning-based stereo matching networks have advanced significantly. However, they often lack robustness and struggle to achieve impressive cross-domain performance due to domain shifts and imbalanced disparity distributions among diverse datasets. Leveraging Vision Foundation Models (VFMs) can intuitively enhance the model's robustness, but integrating such a model into stereo matching cost-effectively to fully realize their robustness remains a key challenge. To address this, we propose SMoEStereo, a novel framework that adapts VFMs for stereo matching through a tailored, scene-specific fusion of Low-Rank Adaptation (LoRA) and Mixture-of-Experts (MoE) modules. SMoEStereo introduces MoE-LoRA with adaptive ranks and MoE-Adapter with adaptive kernel sizes. The former dynamically selects optimal experts within MoE to adapt varying scenes across domains, while the latter injects inductive bias into frozen VFMs to improve geometric feature extraction. Importantly, to mitigate computational overhead, we further propose a lightweight decision network that selectively activates MoE modules based on input complexity, balancing efficiency with accuracy. Extensive experiments demonstrate that our method exhibits state-of-the-art cross-domain and joint generalization across multiple benchmarks without dataset-specific adaptation. The code is available at \textcolor{red}{https://github.com/cocowy1/SMoE-Stereo}.

Authors:Jinpeng Chen, Jianxiang He, Huan Li, Senzhang Wang, Yuan Cao, Kaimin Wei, Zhenye Yang, Ye Ji
Title: Hierarchical Intent-guided Optimization with Pluggable LLM-Driven Semantics for Session-based Recommendation
Abstract:
Session-based Recommendation (SBR) aims to predict the next item a user will likely engage with, using their interaction sequence within an anonymous session. Existing SBR models often focus only on single-session information, ignoring inter-session relationships and valuable cross-session insights. Some methods try to include inter-session data but struggle with noise and irrelevant information, reducing performance. Additionally, most models rely on item ID co-occurrence and overlook rich semantic details, limiting their ability to capture fine-grained item features. To address these challenges, we propose a novel hierarchical intent-guided optimization approach with pluggable LLM-driven semantic learning for session-based recommendations, called HIPHOP. First, we introduce a pluggable embedding module based on large language models (LLMs) to generate high-quality semantic representations, enhancing item embeddings. Second, HIPHOP utilizes graph neural networks (GNNs) to model item transition relationships and incorporates a dynamic multi-intent capturing module to address users' diverse interests within a session. Additionally, we design a hierarchical inter-session similarity learning module, guided by user intent, to capture global and local session relationships, effectively exploring users' long-term and short-term interests. To mitigate noise, an intent-guided denoising strategy is applied during inter-session learning. Finally, we enhance the model's discriminative capability by using contrastive learning to optimize session representations. Experiments on multiple datasets show that HIPHOP significantly outperforms existing methods, demonstrating its effectiveness in improving recommendation quality. Our code is available: https://github.com/hjx159/HIPHOP.

Authors:Mostafa Elhoushi, Jeff Johnson
Title: any4: Learned 4-bit Numeric Representation for LLMs
Abstract:
We present any4, a learned 4-bit weight quantization solution for large language models (LLMs) providing arbitrary numeric representations without requiring pre-processing of weights or activations. any4 yields higher accuracy compared to other related 4-bit numeric representation types: int4, fp4 and nf4, as evaluated on a range of model sizes, generations and families (Llama 2, Llama 3, Mistral and Mixtral). While any4 does not require preprocessing of weights or activations, it is also competitive with orthogonal techniques that require such preprocessing (e.g., AWQ and GPTQ). We also experiment with any3 and any2 and show competitiveness at lower bits. Additionally, we show that we can calibrate using a single curated diverse sample rather than hundreds of samples from a dataset as done in most quantization approaches. We also open source tinygemm, a latency optimized GPU matrix multiplication library for LLMs, that implements any4 using a GPU-efficient lookup table strategy along with other common quantization methods. We open source our code at https://github.com/facebookresearch/any4 .

Authors:Rushil Thareja, Preslav Nakov, Praneeth Vepakomma, Nils Lukas
Title: DP-Fusion: Token-Level Differentially Private Inference for Large Language Models
Abstract:
Large language models (LLMs) can leak sensitive information from their context through generated outputs, either accidentally or when prompted adversarially. Existing defenses that aim to preserve context privacy during inference either lack formal guarantees or suffer from a poor utility/privacy trade-off. We propose DP-Fusion, a token-level Differentially Private Inference (DPI) mechanism that provably bounds how much an LLM's outputs reveal about sensitive tokens in its context. We demonstrate DPI through the task of document privatization, where the goal is to paraphrase documents so that sensitive content (e.g., Personally Identifiable Information, PII) cannot be reliably inferred, while still preserving the overall utility of the text. This is controlled by a parameter $ε$: $ε=0$ hides PII entirely, while higher values trade off privacy for improved paraphrase quality. DP-Fusion works as follows: (i) partition sensitive tokens into disjoint privacy groups, (ii) run the LLM once per group, and (iii) blend the output distributions so that the final output remains within a fixed statistical distance of the baseline distribution produced when no privacy group is revealed. This approach allows fine-grained control over the privacy/utility trade-off but requires multiple LLM forward passes.

Authors:Xujia Wang, Yunjia Qi, Bin Xu
Title: LoSiA: Efficient High-Rank Fine-Tuning via Subnet Localization and Optimization
Abstract:
Parameter-Efficient Fine-Tuning (PEFT) methods, such as LoRA, significantly reduce the number of trainable parameters by introducing low-rank decomposition matrices. However, existing methods perform extensive matrix multiplications in domain specialization tasks, resulting in computational inefficiency and sub-optimal fine-tuning performance. Hence, we propose LoSiA(Low-Resources Subnet Integration Adaptation), an innovative method that dynamically localizes and optimizes critical parameters during the training process. Specifically, it identifies a sub-network using gradient sparsity analysis and optimizes it as the trainable target. This design enables effective high-rank adaptation by updating only the sub-network parameters, reducing the additional matrix multiplication. We also present LoSiA-Pro, a faster implementation of LoSiA, which reduces the training latency by about $27\%$ compared to LoRA. Extensive evaluations show that our method achieves minimal performance drop compared to full fine-tuning, while requiring the least training time across domain specialization and common-sense reasoning tasks. Further analysis shows that LoSiA also reduces forgetting during continued training. The source code is available at https://github.com/KlozeWang/LoSiA.

Authors:Ashish Bastola, Mert D. Pesé, Long Cheng, Jonathon Smereka, Abolfazl Razi
Title: Anomalous Decision Discovery using Inverse Reinforcement Learning
Abstract:
Anomaly detection plays a critical role in Autonomous Vehicles (AVs) by identifying unusual behaviors through perception systems that could compromise safety and lead to hazardous situations. Current approaches, which often rely on predefined thresholds or supervised learning paradigms, exhibit reduced efficacy when confronted with unseen scenarios, sensor noise, and occlusions, leading to potential safety-critical failures. Moreover, supervised methods require large annotated datasets, limiting their real-world feasibility. To address these gaps, we propose an anomaly detection framework based on Inverse Reinforcement Learning (IRL) to infer latent driving intentions from sequential perception data, thus enabling robust identification. Specifically, we present Trajectory-Reward Guided Adaptive Pre-training (TRAP), a novel IRL framework for anomaly detection, to address two critical limitations of existing methods: noise robustness and generalization to unseen scenarios. Our core innovation is implicitly learning temporal credit assignments via reward and worst-case supervision. We leverage pre-training with variable-horizon sampling to maximize time-to-consequence, resulting in early detection of behavior deviation. Experiments on 14,000+ simulated trajectories demonstrate state-of-the-art performance, achieving 0.90 AUC and 82.2\% F1-score - outperforming similarly trained supervised and unsupervised baselines by 39\% on Recall and 12\% on F1-score, respectively. Similar performance is achieved while exhibiting robustness to various noise types and generalization to unseen anomaly types. Our code will be available at: https://github.com/abastola0/TRAP.git

Authors:Feiyue Wu, Tianxing Wu, Shenqi Jing
Title: ARMR: Adaptively Responsive Network for Medication Recommendation
Abstract:
Medication recommendation is a crucial task in healthcare, especially for patients with complex medical conditions. However, existing methods often struggle to effectively balance the reuse of historical medications with the introduction of new drugs in response to the changing patient conditions. In order to address this challenge, we propose an Adaptively Responsive network for Medication Recommendation (ARMR), a new method which incorporates 1) a piecewise temporal learning component that distinguishes between recent and distant patient history, enabling more nuanced temporal understanding, and 2) an adaptively responsive mechanism that dynamically adjusts attention to new and existing drugs based on the patient's current health state and medication history. Experiments on the MIMIC-III and MIMIC-IV datasets indicate that ARMR has better performance compared with the state-of-the-art baselines in different evaluation metrics, which contributes to more personalized and accurate medication recommendations. The source code is publicly avaiable at: https://github.com/seucoin/armr2.

Authors:Roy Uziel, Irit Chelly, Oren Freifeld, Ari Pakman
Title: Clustering via Self-Supervised Diffusion
Abstract:
Diffusion models, widely recognized for their success in generative tasks, have not yet been applied to clustering. We introduce Clustering via Diffusion (CLUDI), a self-supervised framework that combines the generative power of diffusion models with pre-trained Vision Transformer features to achieve robust and accurate clustering. CLUDI is trained via a teacher-student paradigm: the teacher uses stochastic diffusion-based sampling to produce diverse cluster assignments, which the student refines into stable predictions. This stochasticity acts as a novel data augmentation strategy, enabling CLUDI to uncover intricate structures in high-dimensional data. Extensive evaluations on challenging datasets demonstrate that CLUDI achieves state-of-the-art performance in unsupervised classification, setting new benchmarks in clustering robustness and adaptability to complex data distributions. Our code is available at https://github.com/BGU-CS-VIL/CLUDI.

Authors:Xinbo Wang, Wenju Xu, Qing Zhang, Wei-Shi Zheng
Title: Domain Generalizable Portrait Style Transfer
Abstract:
This paper presents a portrait style transfer method that generalizes well to various different domains while enabling high-quality semantic-aligned stylization on regions including hair, eyes, eyelashes, skins, lips, and background. To this end, we propose to establish dense semantic correspondence between the given input and reference portraits based on a pre-trained model and a semantic adapter, with which we obtain a warped reference semantically aligned with the input. To ensure effective yet controllable style transfer, we devise an AdaIN-Wavelet transform to balance content preservation and stylization by blending low-frequency information of the warped reference with high-frequency information of the input in the latent space. A style adapter is also designed to provide style guidance from the warped reference. With the stylized latent from AdaIN-Wavelet transform, we employ a dual-conditional diffusion model that integrates a ControlNet recording high-frequency information and the style guidance to generate the final result. Extensive experiments demonstrate the superiority of our method. Our code and trained model are available at https://github.com/wangxb29/DGPST.

Authors:Kento Kawaharazuka, Shintaro Inoue, Yuta Sahara, Keita Yoneda, Temma Suzuki, Kei Okada
Title: Design Optimization of Three-Dimensional Wire Arrangement Considering Wire Crossings for Tendon-driven Robots
Abstract:
Tendon-driven mechanisms are useful from the perspectives of variable stiffness, redundant actuation, and lightweight design, and they are widely used, particularly in hands, wrists, and waists of robots. The design of these wire arrangements has traditionally been done empirically, but it becomes extremely challenging when dealing with complex structures. Various studies have attempted to optimize wire arrangement, but many of them have oversimplified the problem by imposing conditions such as restricting movements to a 2D plane, keeping the moment arm constant, or neglecting wire crossings. Therefore, this study proposes a three-dimensional wire arrangement optimization that takes wire crossings into account. We explore wire arrangements through a multi-objective black-box optimization method that ensures wires do not cross while providing sufficient joint torque along a defined target trajectory. For a 3D link structure, we optimize the wire arrangement under various conditions, demonstrate its effectiveness, and discuss the obtained design solutions.

Authors:Linshen Liu, Boyan Su, Junyue Jiang, Guanlin Wu, Cong Guo, Ceyu Xu, Hao Frank Yang
Title: Towards Accurate and Efficient 3D Object Detection for Autonomous Driving: A Mixture of Experts Computing System on Edge
Abstract:
This paper presents Edge-based Mixture of Experts (MoE) Collaborative Computing (EMC2), an optimal computing system designed for autonomous vehicles (AVs) that simultaneously achieves low-latency and high-accuracy 3D object detection. Unlike conventional approaches, EMC2 incorporates a scenario-aware MoE architecture specifically optimized for edge platforms. By effectively fusing LiDAR and camera data, the system leverages the complementary strengths of sparse 3D point clouds and dense 2D images to generate robust multimodal representations. To enable this, EMC2 employs an adaptive multimodal data bridge that performs multi-scale preprocessing on sensor inputs, followed by a scenario-aware routing mechanism that dynamically dispatches features to dedicated expert models based on object visibility and distance. In addition, EMC2 integrates joint hardware-software optimizations, including hardware resource utilization optimization and computational graph simplification, to ensure efficient and real-time inference on resource-constrained edge devices. Experiments on open-source benchmarks clearly show the EMC2 advancements as an end-to-end system. On the KITTI dataset, it achieves an average accuracy improvement of 3.58% and a 159.06% inference speedup compared to 15 baseline methods on Jetson platforms, with similar performance gains on the nuScenes dataset, highlighting its capability to advance reliable, real-time 3D object detection tasks for AVs. The official implementation is available at https://github.com/LinshenLiu622/EMC2.

Authors:Ziming Hong, Runnan Chen, Zengmao Wang, Bo Han, Bo Du, Tongliang Liu
Title: When Data-Free Knowledge Distillation Meets Non-Transferable Teacher: Escaping Out-of-Distribution Trap is All You Need
Abstract:
Data-free knowledge distillation (DFKD) transfers knowledge from a teacher to a student without access the real in-distribution (ID) data. Its common solution is to use a generator to synthesize fake data and use them as a substitute for real ID data. However, existing works typically assume teachers are trustworthy, leaving the robustness and security of DFKD from untrusted teachers largely unexplored. In this work, we conduct the first investigation into distilling non-transferable learning (NTL) teachers using DFKD, where the transferability from an ID domain to an out-of-distribution (OOD) domain is prohibited. We find that NTL teachers fool DFKD through divert the generator's attention from the useful ID knowledge to the misleading OOD knowledge. This hinders ID knowledge transfer but prioritizes OOD knowledge transfer. To mitigate this issue, we propose Adversarial Trap Escaping (ATEsc) to benefit DFKD by identifying and filtering out OOD-like synthetic samples. Specifically, inspired by the evidence that NTL teachers show stronger adversarial robustness on OOD samples than ID samples, we split synthetic samples into two groups according to their robustness. The fragile group is treated as ID-like data and used for normal knowledge distillation, while the robust group is seen as OOD-like data and utilized for forgetting OOD knowledge. Extensive experiments demonstrate the effectiveness of ATEsc for improving DFKD against NTL teachers. Code is released at https://github.com/tmllab/2025_ICML_ATEsc.

Authors:Stanisław Pawlak, Bartłomiej Twardowski, Tomasz Trzciński, Joost van de Weijer
Title: Addressing The Devastating Effects Of Single-Task Data Poisoning In Exemplar-Free Continual Learning
Abstract:
Our research addresses the overlooked security concerns related to data poisoning in continual learning (CL). Data poisoning - the intentional manipulation of training data to affect the predictions of machine learning models - was recently shown to be a threat to CL training stability. While existing literature predominantly addresses scenario-dependent attacks, we propose to focus on a more simple and realistic single-task poison (STP) threats. In contrast to previously proposed poisoning settings, in STP adversaries lack knowledge and access to the model, as well as to both previous and future tasks. During an attack, they only have access to the current task within the data stream. Our study demonstrates that even within these stringent conditions, adversaries can compromise model performance using standard image corruptions. We show that STP attacks are able to strongly disrupt the whole continual training process: decreasing both the stability (its performance on past tasks) and plasticity (capacity to adapt to new tasks) of the algorithm. Finally, we propose a high-level defense framework for CL along with a poison task detection method based on task vectors. The code is available at https://github.com/stapaw/STP.git .

Authors:Jianwei Tang, Hong Yang, Tengyue Chen, Jian-Fang Hu
Title: Stochastic Human Motion Prediction with Memory of Action Transition and Action Characteristic
Abstract:
Action-driven stochastic human motion prediction aims to generate future motion sequences of a pre-defined target action based on given past observed sequences performing non-target actions. This task primarily presents two challenges. Firstly, generating smooth transition motions is hard due to the varying transition speeds of different actions. Secondly, the action characteristic is difficult to be learned because of the similarity of some actions. These issues cause the predicted results to be unreasonable and inconsistent. As a result, we propose two memory banks, the Soft-transition Action Bank (STAB) and Action Characteristic Bank (ACB), to tackle the problems above. The STAB stores the action transition information. It is equipped with the novel soft searching approach, which encourages the model to focus on multiple possible action categories of observed motions. The ACB records action characteristic, which produces more prior information for predicting certain actions. To fuse the features retrieved from the two banks better, we further propose the Adaptive Attention Adjustment (AAA) strategy. Extensive experiments on four motion prediction datasets demonstrate that our approach consistently outperforms the previous state-of-the-art. The demo and code are available at https://hyqlat.github.io/STABACB.github.io/.

Authors:Jianwei Tang, Jiangxin Sun, Xiaotong Lin, Lifang Zhang, Wei-Shi Zheng, Jian-Fang Hu
Title: Temporal Continual Learning with Prior Compensation for Human Motion Prediction
Abstract:
Human Motion Prediction (HMP) aims to predict future poses at different moments according to past motion sequences. Previous approaches have treated the prediction of various moments equally, resulting in two main limitations: the learning of short-term predictions is hindered by the focus on long-term predictions, and the incorporation of prior information from past predictions into subsequent predictions is limited. In this paper, we introduce a novel multi-stage training framework called Temporal Continual Learning (TCL) to address the above challenges. To better preserve prior information, we introduce the Prior Compensation Factor (PCF). We incorporate it into the model training to compensate for the lost prior information. Furthermore, we derive a more reasonable optimization objective through theoretical derivation. It is important to note that our TCL framework can be easily integrated with different HMP backbone models and adapted to various datasets and applications. Extensive experiments on four HMP benchmark datasets demonstrate the effectiveness and flexibility of TCL. The code is available at https://github.com/hyqlat/TCL.

Authors:Christopher Wiedeman, Anastasiia Sarmakeeva, Elena Sizikova, Daniil Filienko, Miguel Lago, Jana G. Delfino, Aldo Badano
Title: T-SYNTH: A Knowledge-Based Dataset of Synthetic Breast Images
Abstract:
One of the key impediments for developing and assessing robust medical imaging algorithms is limited access to large-scale datasets with suitable annotations. Synthetic data generated with plausible physical and biological constraints may address some of these data limitations. We propose the use of physics simulations to generate synthetic images with pixel-level segmentation annotations, which are notoriously difficult to obtain. Specifically, we apply this approach to breast imaging analysis and release T-SYNTH, a large-scale open-source dataset of paired 2D digital mammography (DM) and 3D digital breast tomosynthesis (DBT) images. Our initial experimental results indicate that T-SYNTH images show promise for augmenting limited real patient datasets for detection tasks in DM and DBT. Our data and code are publicly available at https://github.com/DIDSR/tsynth-release.

Authors:Kai Ye, Tianyi Chen, Zhen Wang
Title: Evaluating Adversarial Protections for Diffusion Personalization: A Comprehensive Study
Abstract:
With the increasing adoption of diffusion models for image generation and personalization, concerns regarding privacy breaches and content misuse have become more pressing. In this study, we conduct a comprehensive comparison of eight perturbation based protection methods: AdvDM, ASPL, FSGM, MetaCloak, Mist, PhotoGuard, SDS, and SimAC--across both portrait and artwork domains. These methods are evaluated under varying perturbation budgets, using a range of metrics to assess visual imperceptibility and protective efficacy. Our results offer practical guidance for method selection. Code is available at: https://github.com/vkeilo/DiffAdvPerturbationBench.

Authors:Ha-Hieu Pham, Nguyen Lan Vi Vu, Thanh-Huy Nguyen, Ulas Bagci, Min Xu, Trung-Nghia Le, Huy-Hieu Pham
Title: Learning Disentangled Stain and Structural Representations for Semi-Supervised Histopathology Segmentation
Abstract:
Accurate gland segmentation in histopathology images is essential for cancer diagnosis and prognosis. However, significant variability in Hematoxylin and Eosin (H&E) staining and tissue morphology, combined with limited annotated data, poses major challenges for automated segmentation. To address this, we propose Color-Structure Dual-Student (CSDS), a novel semi-supervised segmentation framework designed to learn disentangled representations of stain appearance and tissue structure. CSDS comprises two specialized student networks: one trained on stain-augmented inputs to model chromatic variation, and the other on structure-augmented inputs to capture morphological cues. A shared teacher network, updated via Exponential Moving Average (EMA), supervises both students through pseudo-labels. To further improve label reliability, we introduce stain-aware and structure-aware uncertainty estimation modules that adaptively modulate the contribution of each student during training. Experiments on the GlaS and CRAG datasets show that CSDS achieves state-of-the-art performance in low-label settings, with Dice score improvements of up to 1.2% on GlaS and 0.7% on CRAG at 5% labeled data, and 0.7% and 1.4% at 10%. Our code and pre-trained models are available at https://github.com/hieuphamha19/CSDS.

Authors:Yifan Jiang, Yibo Xue, Yukun Kang, Pin Zheng, Jian Peng, Feiran Wu, Changliang Xu
Title: Animation Needs Attention: A Holistic Approach to Slides Animation Comprehension with Visual-Language Models
Abstract:
Slide animations, such as fade-in, fly-in, and wipe, are critical for audience engagement, efficient information delivery, and vivid visual expression. However, most AI-driven slide-generation tools still lack native animation support, and existing vision-language models (VLMs) struggle with animation tasks due to the absence of public datasets and limited temporal-reasoning capabilities. To address this gap, we release the first public dataset for slide-animation modeling: 12,000 triplets of natural-language descriptions, animation JSON files, and rendered videos, collectively covering every built-in PowerPoint effect. Using this resource, we fine-tune Qwen-2.5-VL-7B with Low-Rank Adaptation (LoRA) and achieve consistent improvements over GPT-4.1 and Gemini-2.5-Pro in BLEU-4, ROUGE-L, SPICE, and our Coverage-Order-Detail Assessment (CODA) metric, which evaluates action coverage, temporal order, and detail fidelity. On a manually created test set of slides, the LoRA model increases BLEU-4 by around 60%, ROUGE-L by 30%, and shows significant improvements in CODA-detail. This demonstrates that low-rank adaptation enables reliable temporal reasoning and generalization beyond synthetic data. Overall, our dataset, LoRA-enhanced model, and CODA metric provide a rigorous benchmark and foundation for future research on VLM-based dynamic slide generation.

Authors:Ishan Khurjekar, Indrashish Saha, Lori Graham-Brady, Somdatta Goswami
Title: Enhanced accuracy through ensembling of randomly initialized auto-regressive models for time-dependent PDEs
Abstract:
Systems governed by partial differential equations (PDEs) require computationally intensive numerical solvers to predict spatiotemporal field evolution. While machine learning (ML) surrogates offer faster solutions, autoregressive inference with ML models suffer from error accumulation over successive predictions, limiting their long-term accuracy. We propose a deep ensemble framework to address this challenge, where multiple ML surrogate models with random weight initializations are trained in parallel and aggregated during inference. This approach leverages the diversity of model predictions to mitigate error propagation while retaining the autoregressive strategies ability to capture the system's time dependent relations. We validate the framework on three PDE-driven dynamical systems - stress evolution in heterogeneous microstructures, Gray-Scott reaction-diffusion, and planetary-scale shallow water system - demonstrating consistent reduction in error accumulation over time compared to individual models. Critically, the method requires only a few time steps as input, enabling full trajectory predictions with inference times significantly faster than numerical solvers. Our results highlight the robustness of ensemble methods in diverse physical systems and their potential as efficient and accurate alternatives to traditional solvers. The codes for this work are available on GitHub (https://github.com/Graham-Brady-Research-Group/AutoregressiveEnsemble_SpatioTemporal_Evolution).

Authors:Jiaqi Zhang, Juntuo Wang, Zhixin Sun, John Zou, Randall Balestriero
Title: FastDINOv2: Frequency Based Curriculum Learning Improves Robustness and Training Speed
Abstract:
Large-scale vision foundation models such as DINOv2 boast impressive performances by leveraging massive architectures and training datasets. But numerous scenarios require practitioners to reproduce those pre-training solutions, such as on private data, new modalities, or simply for scientific questioning--which is currently extremely demanding computation-wise. We thus propose a novel pre-training strategy for DINOv2 that simultaneously accelerates convergence--and strengthens robustness to common corruptions as a by-product. Our approach involves a frequency filtering curriculum--low-frequency being seen first--and the Gaussian noise patching augmentation. Applied to a ViT-B/16 backbone trained on ImageNet-1K, while pre-training time and FLOPs are reduced by 1.6x and 2.25x, our method still achieves matching robustness in corruption benchmarks (ImageNet-C) and maintains competitive linear probing performance compared with baseline. This dual benefit of efficiency and robustness makes large-scale self-supervised foundation modeling more attainable, while opening the door to novel exploration around data curriculum and augmentation as means to improve self-supervised learning models robustness. The code is available at https://github.com/KevinZ0217/fast_dinov2

Authors:Akio Kodaira, Tingbo Hou, Ji Hou, Masayoshi Tomizuka, Yue Zhao
Title: StreamDiT: Real-Time Streaming Text-to-Video Generation
Abstract:
Recently, great progress has been achieved in text-to-video (T2V) generation by scaling transformer-based diffusion models to billions of parameters, which can generate high-quality videos. However, existing models typically produce only short clips offline, restricting their use cases in interactive and real-time applications. This paper addresses these challenges by proposing StreamDiT, a streaming video generation model. StreamDiT training is based on flow matching by adding a moving buffer. We design mixed training with different partitioning schemes of buffered frames to boost both content consistency and visual quality. StreamDiT modeling is based on adaLN DiT with varying time embedding and window attention. To practice the proposed method, we train a StreamDiT model with 4B parameters. In addition, we propose a multistep distillation method tailored for StreamDiT. Sampling distillation is performed in each segment of a chosen partitioning scheme. After distillation, the total number of function evaluations (NFEs) is reduced to the number of chunks in a buffer. Finally, our distilled model reaches real-time performance at 16 FPS on one GPU, which can generate video streams at 512p resolution. We evaluate our method through both quantitative metrics and human evaluation. Our model enables real-time applications, e.g. streaming generation, interactive generation, and video-to-video. We provide video results and more examples in our project website: https://cumulo-autumn.github.io/StreamDiT/

Authors:Yingxu Wang, Siwei Liu, Jinyuan Fang, Zaiqiao Meng
Title: EvoAgentX: An Automated Framework for Evolving Agentic Workflows
Abstract:
Multi-agent systems (MAS) have emerged as a powerful paradigm for orchestrating large language models (LLMs) and specialized tools to collaboratively address complex tasks. However, existing MAS frameworks often require manual workflow configuration and lack native support for dynamic evolution and performance optimization. In addition, many MAS optimization algorithms are not integrated into a unified framework. In this paper, we present EvoAgentX, an open-source platform that automates the generation, execution, and evolutionary optimization of multi-agent workflows. EvoAgentX employs a modular architecture consisting of five core layers: the basic components, agent, workflow, evolving, and evaluation layers. Specifically, within the evolving layer, EvoAgentX integrates three MAS optimization algorithms, TextGrad, AFlow, and MIPRO, to iteratively refine agent prompts, tool configurations, and workflow topologies. We evaluate EvoAgentX on HotPotQA, MBPP, and MATH for multi-hop reasoning, code generation, and mathematical problem solving, respectively, and further assess it on real-world tasks using GAIA. Experimental results show that EvoAgentX consistently achieves significant performance improvements, including a 7.44% increase in HotPotQA F1, a 10.00% improvement in MBPP pass@1, a 10.00% gain in MATH solve accuracy, and an overall accuracy improvement of up to 20.00% on GAIA. The source code is available at: https://github.com/EvoAgentX/EvoAgentX

Authors:Yana Hasson, Pauline Luc, Liliane Momeni, Maks Ovsjanikov, Guillaume Le Moing, Alina Kuznetsova, Ira Ktena, Jennifer J. Sun, Skanda Koppula, Dilara Gokay, Joseph Heyward, Etienne Pot, Andrew Zisserman
Title: SciVid: Cross-Domain Evaluation of Video Models in Scientific Applications
Abstract:
In recent years, there has been a proliferation of spatiotemporal foundation models in different scientific disciplines. While promising, these models are often domain-specific and are only assessed within the particular applications for which they are designed. Given that many tasks can be represented as video modeling problems, video foundation models (ViFMs) hold considerable promise as general-purpose domain-agnostic approaches. However, it is not known whether the knowledge acquired on large-scale but potentially out-of-domain data can be effectively transferred across diverse scientific disciplines, and if a single, pretrained ViFM can be competitive with domain-specific baselines. To address this, we introduce SciVid, a comprehensive benchmark comprising five *Sci*entific *Vid*eo tasks, across medical computer vision, animal behavior, and weather forecasting. We adapt six leading ViFMs to SciVid using simple trainable readout modules, establishing strong baselines and demonstrating the potential for effective transfer learning. Specifically, we show that state-of-the-art results can be obtained in several applications by leveraging the general-purpose representations from ViFM backbones. Furthermore, our results reveal the limitations of existing ViFMs, and highlight opportunities for the development of generalizable models for high-impact scientific applications. We release our code at https://github.com/google-deepmind/scivid to facilitate further research in the development of ViFMs.

Authors:Blaž Rolih, Matic Fučka, Filip Wolf, Luka Čehovin Zajc
Title: Be the Change You Want to See: Revisiting Remote Sensing Change Detection Practices
Abstract:
Remote sensing change detection aims to localize semantic changes between images of the same location captured at different times. In the past few years, newer methods have attributed enhanced performance to the additions of new and complex components to existing architectures. Most fail to measure the performance contribution of fundamental design choices such as backbone selection, pre-training strategies, and training configurations. We claim that such fundamental design choices often improve performance even more significantly than the addition of new architectural components. Due to that, we systematically revisit the design space of change detection models and analyse the full potential of a well-optimised baseline. We identify a set of fundamental design choices that benefit both new and existing architectures. Leveraging this insight, we demonstrate that when carefully designed, even an architecturally simple model can match or surpass state-of-the-art performance on six challenging change detection datasets. Our best practices generalise beyond our architecture and also offer performance improvements when applied to related methods, indicating that the space of fundamental design choices has been underexplored. Our guidelines and architecture provide a strong foundation for future methods, emphasizing that optimizing core components is just as important as architectural novelty in advancing change detection performance. Code: https://github.com/blaz-r/BTC-change-detection

Authors:Mingzhuo Li, Guang Li, Jiafeng Mao, Linfeng Ye, Takahiro Ogawa, Miki Haseyama
Title: Task-Specific Generative Dataset Distillation with Difficulty-Guided Sampling
Abstract:
To alleviate the reliance of deep neural networks on large-scale datasets, dataset distillation aims to generate compact, high-quality synthetic datasets that can achieve comparable performance to the original dataset. The integration of generative models has significantly advanced this field. However, existing approaches primarily focus on aligning the distilled dataset with the original one, often overlooking task-specific information that can be critical for optimal downstream performance. In this paper, focusing on the downstream task of classification, we propose a task-specific sampling strategy for generative dataset distillation that incorporates the concept of difficulty to consider the requirements of the target task better. The final dataset is sampled from a larger image pool with a sampling distribution obtained by matching the difficulty distribution of the original dataset. A logarithmic transformation is applied as a pre-processing step to correct for distributional bias. The results of extensive experiments demonstrate the effectiveness of our method and suggest its potential for enhancing performance on other downstream tasks. The code is available at https://github.com/SumomoTaku/DiffGuideSamp.

Authors:Wooseok Shin, Jisu Kang, Hyeonki Jeong, Jin Sob Kim, Sung Won Han
Title: Leveraging Out-of-Distribution Unlabeled Images: Semi-Supervised Semantic Segmentation with an Open-Vocabulary Model
Abstract:
In semi-supervised semantic segmentation, existing studies have shown promising results in academic settings with controlled splits of benchmark datasets. However, the potential benefits of leveraging significantly larger sets of unlabeled images remain unexplored. In real-world scenarios, abundant unlabeled images are often available from online sources (web-scraped images) or large-scale datasets. However, these images may have different distributions from those of the target dataset, a situation known as out-of-distribution (OOD). Using these images as unlabeled data in semi-supervised learning can lead to inaccurate pseudo-labels, potentially misguiding network training. In this paper, we propose a new semi-supervised semantic segmentation framework with an open-vocabulary segmentation model (SemiOVS) to effectively utilize unlabeled OOD images. Extensive experiments on Pascal VOC and Context datasets demonstrate two key findings: (1) using additional unlabeled images improves the performance of semi-supervised learners in scenarios with few labels, and (2) using the open-vocabulary segmentation (OVS) model to pseudo-label OOD images leads to substantial performance gains. In particular, SemiOVS outperforms existing PrevMatch and SemiVL methods by +3.5 and +3.0 mIoU, respectively, on Pascal VOC with a 92-label setting, achieving state-of-the-art performance. These findings demonstrate that our approach effectively utilizes abundant unlabeled OOD images for semantic segmentation tasks. We hope this work can inspire future research and real-world applications. The code is available at https://github.com/wooseok-shin/SemiOVS

Authors:Jie Peng, Jiarui Ji, Runlin Lei, Zhewei Wei, Yongchao Liu, Chuntao Hong
Title: GDGB: A Benchmark for Generative Dynamic Text-Attributed Graph Learning
Abstract:
Dynamic Text-Attributed Graphs (DyTAGs), which intricately integrate structural, temporal, and textual attributes, are crucial for modeling complex real-world systems. However, most of the existing DyTAG datasets exhibit poor textual quality, which severely limits their utility for DyTAG generation tasks requiring semantically rich inputs. Additionally, prior work mainly focuses on discriminative tasks on DyTAGs, resulting in a lack of standardized task formulations and evaluation protocols tailored for DyTAG generation. To address these critical issues, we propose Generative DyTAG Benchmark (GDGB), which comprises eight meticulously curated DyTAG datasets with high-quality textual features for both nodes and edges, overcoming limitations of prior datasets. Building on GDGB, we define two novel DyTAG generation tasks: Transductive Dynamic Graph Generation (TDGG) and Inductive Dynamic Graph Generation (IDGG). TDGG transductively generates a target DyTAG based on the given source and destination node sets, while the more challenging IDGG introduces new node generation to inductively model the dynamic expansion of real-world graph data. To enable holistic evaluation, we design multifaceted metrics that assess the structural, temporal, and textual quality of the generated DyTAGs. We further propose GAG-General, an LLM-based multi-agent generative framework tailored for reproducible and robust benchmarking of DyTAG generation. Experimental results demonstrate that GDGB enables rigorous evaluation of TDGG and IDGG, with key insights revealing the critical interplay of structural and textual features in DyTAG generation. These findings establish GDGB as a foundational resource for advancing generative DyTAG research and unlocking further practical applications in DyTAG generation. GDGB datasets, source codes, and leaderboards are available at \href{https://gdgb-algo.github.io/}{here}.

Authors:Zedong Peng, Zeju Li, Mingzhe Gao, Qiang Xu, Chen Zhang, Jieru Zhao
Title: ForgeHLS: A Large-Scale, Open-Source Dataset for High-Level Synthesis
Abstract:
High-Level Synthesis (HLS) plays a crucial role in modern hardware design by transforming high-level code into optimized hardware implementations. However, progress in applying machine learning (ML) to HLS optimization has been hindered by a shortage of sufficiently large and diverse datasets. To bridge this gap, we introduce ForgeHLS, a large-scale, open-source dataset explicitly designed for ML-driven HLS research. ForgeHLS comprises over 400k diverse designs generated from 846 kernels covering a broad range of application domains, consuming over 200k CPU hours during dataset construction. Each kernel includes systematically automated pragma insertions (loop unrolling, pipelining, array partitioning), combined with extensive design space exploration using Bayesian optimization. Compared to existing datasets, ForgeHLS significantly enhances scale, diversity, and design coverage. We further define and evaluate representative downstream tasks in Quality of Result (QoR) prediction and automated pragma exploration, clearly demonstrating ForgeHLS utility for developing and improving ML-based HLS optimization methodologies. The dataset and code are public at https://github.com/zedong-peng/ForgeHLS.

Authors:Kureha Yamaguchi, Benjamin Etheridge, Andy Arditi
Title: Adversarial Manipulation of Reasoning Models using Internal Representations
Abstract:
Reasoning models generate chain-of-thought (CoT) tokens before their final output, but how this affects their vulnerability to jailbreak attacks remains unclear. While traditional language models make refusal decisions at the prompt-response boundary, we find evidence that DeepSeek-R1-Distill-Llama-8B makes these decisions within its CoT generation. We identify a linear direction in activation space during CoT token generation that predicts whether the model will refuse or comply -- termed the "caution" direction because it corresponds to cautious reasoning patterns in the generated text. Ablating this direction from model activations increases harmful compliance, effectively jailbreaking the model. We additionally show that intervening only on CoT token activations suffices to control final outputs, and that incorporating this direction into prompt-based attacks improves success rates. Our findings suggest that the chain-of-thought itself is a promising new target for adversarial manipulation in reasoning models. Code available at https://github.com/ky295/reasoning-manipulation.

Authors:Asad Aali, Vasiliki Bikia, Maya Varma, Nicole Chiou, Sophie Ostmeier, Arnav Singhvi, Magdalini Paschali, Ashwin Kumar, Andrew Johnston, Karimar Amador-Martinez, Eduardo Juan Perez Guerrero, Paola Naovi Cruz Rivera, Sergios Gatidis, Christian Bluethgen, Eduardo Pontes Reis, Eddy D. Zandee van Rilland, Poonam Laxmappa Hosamani, Kevin R Keet, Minjoung Go, Evelyn Ling, David B. Larson, Curtis Langlotz, Roxana Daneshjou, Jason Hom, Sanmi Koyejo, Emily Alsentzer, Akshay S. Chaudhari
Title: MedVAL: Toward Expert-Level Medical Text Validation with Language Models
Abstract:
With the growing use of language models (LMs) in clinical environments, there is an immediate need to evaluate the accuracy and safety of LM-generated medical text. Currently, such evaluation relies solely on manual physician review. However, detecting errors in LM-generated text is challenging because 1) manual review is costly and 2) expert-composed reference outputs are often unavailable in real-world settings. While the "LM-as-judge" paradigm (a LM evaluating another LM) offers scalable evaluation, even frontier LMs can miss subtle but clinically significant errors. To address these challenges, we propose MedVAL, a novel, self-supervised, data-efficient distillation method that leverages synthetic data to train evaluator LMs to assess whether LM-generated medical outputs are factually consistent with inputs, without requiring physician labels or reference outputs. To evaluate LM performance, we introduce MedVAL-Bench, a dataset of 840 physician-annotated outputs across 6 diverse medical tasks capturing real-world challenges. Across 10 state-of-the-art LMs spanning open-source and proprietary models, MedVAL distillation significantly improves (p < 0.001) alignment with physicians across seen and unseen tasks, increasing average F1 scores from 66% to 83%. Despite strong baseline performance, MedVAL improves the best-performing proprietary LM (GPT-4o) by 8% without training on physician-labeled data, demonstrating a performance statistically non-inferior to a single human expert (p < 0.001). To support a scalable, risk-aware pathway towards clinical integration, we open-source: 1) Codebase (https://github.com/StanfordMIMI/MedVAL), 2) MedVAL-Bench (https://huggingface.co/datasets/stanfordmimi/MedVAL-Bench), 3) MedVAL-4B (https://huggingface.co/stanfordmimi/MedVAL-4B). Our benchmark provides evidence of LMs approaching expert-level ability in validating AI-generated medical text.

Authors:Peisong Wang, Ruotian Ma, Bang Zhang, Xingyu Chen, Zhiwei He, Kang Luo, Qingsong Lv, Qingxuan Jiang, Zheng Xie, Shanyi Wang, Yuan Li, Fanghua Ye, Jian Li, Yifan Yang, Zhaopeng Tu, Xiaolong Li
Title: RLVER: Reinforcement Learning with Verifiable Emotion Rewards for Empathetic Agents
Abstract:
Large language models (LLMs) excel at logical and algorithmic reasoning, yet their emotional intelligence (EQ) still lags far behind their cognitive prowess. While reinforcement learning from verifiable rewards (RLVR) has advanced in other domains, its application to dialogue-especially for emotional intelligence-remains underexplored. In this work, we introduce RLVER, the first end-to-end reinforcement learning framework that leverages verifiable emotion rewards from simulated users to cultivate higher-order empathetic abilities in LLMs. Within this framework, self-consistent affective simulated users engage in dialogue rollouts and produce deterministic emotion scores during conversations, serving as reward signals to guide the LLM's learning. Fine-tuning publicly available Qwen2.5-7B-Instruct model with PPO boosts its Sentient-Benchmark score from 13.3 to 79.2 while largely preserving mathematical and coding competence. Extensive experiments reveal that: (i) RLVER consistently improves multiple dialogue capabilities; (ii) Thinking and non-thinking models show distinct trends--thinking models excel in empathy and insight, while non-thinking models favor action; (iii) GRPO often yields stable gains, while PPO can push certain capabilities to a higher ceiling; (iv) More challenging environments are not always better-moderate ones can yield stronger outcomes. Our results show that RLVER is a practical route toward emotionally intelligent and broadly capable language agents.

Authors:Ana Vasilcoiu, Ivona Najdenkoska, Zeno Geradts, Marcel Worring
Title: LATTE: Latent Trajectory Embedding for Diffusion-Generated Image Detection
Abstract:
The rapid advancement of diffusion-based image generators has made it increasingly difficult to distinguish generated from real images. This can erode trust in digital media, making it critical to develop generalizable detectors for generated images. Recent methods leverage diffusion denoising cues, but mainly focus on single-step reconstruction errors, ignoring the inherent sequential nature of the denoising process. In this work, we propose LATTE - Latent Trajectory Embedding - a novel approach that models the evolution of latent embeddings across several denoising timesteps. By modeling the trajectory of such embeddings rather than single-step errors, LATTE captures subtle, discriminative patterns that distinguish real from generated images. Each latent is refined by employing our latent-visual feature refinement module and aggregated into a unified representation. Afterwards, it is fused with the visual features and finally passed into a lightweight classifier. Our experiments demonstrate that LATTE surpasses the baselines on several established benchmarks, such as GenImage and DiffusionFake. Moreover, it demonstrates strong performance in cross-generator and cross-datasets settings, highlighting the potential of using the trajectory of latent embeddings for generated image detection. The code is available on the following link: https://github.com/AnaMVasilcoiu/LATTE-Diffusion-Detector.

Authors:Yizhou Wang, Lingzhi Zhang, Yue Bai, Mang Tik Chiu, Zhengmian Hu, Mingyuan Zhang, Qihua Dong, Yu Yin, Sohrab Amirghodsi, Yun Fu
Title: Cautious Next Token Prediction
Abstract:
Next token prediction paradigm has been prevailing for autoregressive models in the era of LLMs. The current default sampling choice for popular LLMs is temperature scaling together with nucleus sampling to balance diversity and coherence. Nevertheless, such approach leads to inferior performance in various NLP tasks when the model is not certain about testing questions. To this end, we propose a brand new training-free decoding strategy, dubbed as Cautious Next Token Prediction (CNTP). In the decoding process, if the model has comparatively high prediction entropy at a certain step, we sample multiple trials starting from the step independently and stop when encountering any punctuation. Then we select the trial with the lowest perplexity score viewed as the most probable and reliable trial path given the model's capacity. The trial number is negatively correlated with the prediction confidence, i.e., the less confident the model is, the more trials it should sample. This is consistent with human beings' behaviour: when feeling uncertain or unconfident, one tends to think more creatively, exploring multiple thinking paths, to cautiously select the path one feels most confident about. Extensive experiments on both LLMs and MLLMs show that our proposed CNTP approach outperforms existing standard decoding strategies consistently by a clear margin. Moreover, the integration of CNTP with self consistency can further improve over vanilla self consistency. We believe our proposed CNTP has the potential to become one of the default choices for LLM decoding. Code is available at https://github.com/wyzjack/CNTP.

Authors:Zhiyi Hou, Enhui Ma, Fang Li, Zhiyi Lai, Kalok Ho, Zhanqian Wu, Lijun Zhou, Long Chen, Chitian Sun, Haiyang Sun, Bing Wang, Guang Chen, Hangjun Ye, Kaicheng Yu
Title: DriveMRP: Enhancing Vision-Language Models with Synthetic Motion Data for Motion Risk Prediction
Abstract:
Autonomous driving has seen significant progress, driven by extensive real-world data. However, in long-tail scenarios, accurately predicting the safety of the ego vehicle's future motion remains a major challenge due to uncertainties in dynamic environments and limitations in data coverage. In this work, we aim to explore whether it is possible to enhance the motion risk prediction capabilities of Vision-Language Models (VLM) by synthesizing high-risk motion data. Specifically, we introduce a Bird's-Eye View (BEV) based motion simulation method to model risks from three aspects: the ego-vehicle, other vehicles, and the environment. This allows us to synthesize plug-and-play, high-risk motion data suitable for VLM training, which we call DriveMRP-10K. Furthermore, we design a VLM-agnostic motion risk estimation framework, named DriveMRP-Agent. This framework incorporates a novel information injection strategy for global context, ego-vehicle perspective, and trajectory projection, enabling VLMs to effectively reason about the spatial relationships between motion waypoints and the environment. Extensive experiments demonstrate that by fine-tuning with DriveMRP-10K, our DriveMRP-Agent framework can significantly improve the motion risk prediction performance of multiple VLM baselines, with the accident recognition accuracy soaring from 27.13% to 88.03%. Moreover, when tested via zero-shot evaluation on an in-house real-world high-risk motion dataset, DriveMRP-Agent achieves a significant performance leap, boosting the accuracy from base_model's 29.42% to 68.50%, which showcases the strong generalization capabilities of our method in real-world scenarios.

Authors:Yuqi Li, Chuanguang Yang, Hansheng Zeng, Zeyu Dong, Zhulin An, Yongjun Xu, Yingli Tian, Hao Wu
Title: Frequency-Aligned Knowledge Distillation for Lightweight Spatiotemporal Forecasting
Abstract:
Spatiotemporal forecasting tasks, such as traffic flow, combustion dynamics, and weather forecasting, often require complex models that suffer from low training efficiency and high memory consumption. This paper proposes a lightweight framework, Spectral Decoupled Knowledge Distillation (termed SDKD), which transfers the multi-scale spatiotemporal representations from a complex teacher model to a more efficient lightweight student network. The teacher model follows an encoder-latent evolution-decoder architecture, where its latent evolution module decouples high-frequency details and low-frequency trends using convolution and Transformer (global low-frequency modeler). However, the multi-layer convolution and deconvolution structures result in slow training and high memory usage. To address these issues, we propose a frequency-aligned knowledge distillation strategy, which extracts multi-scale spectral features from the teacher's latent space, including both high and low frequency components, to guide the lightweight student model in capturing both local fine-grained variations and global evolution patterns. Experimental results show that SDKD significantly improves performance, achieving reductions of up to 81.3% in MSE and in MAE 52.3% on the Navier-Stokes equation dataset. The framework effectively captures both high-frequency variations and long-term trends while reducing computational complexity. Our codes are available at https://github.com/itsnotacie/SDKD

Authors:Fardin Saad, Pradeep K. Murukannaiah, Munindar P. Singh
Title: Theory of Mind in Action: The Instruction Inference Task
Abstract:
The Theory of Mind (ToM) refers to an agent's capacity to infer the mental states of other agents. ToM is essential for effective collaboration. To assess ToM in a dynamic, goal-oriented, and collaborative environment, we introduce a novel task, Instruction Inference, in which an agent assists a principal in reaching a goal by interpreting indirect or ambiguous instructions. We present Tomcat, an LLM-based agent, designed to exhibit ToM reasoning in interpreting and responding to the principal's instructions. We implement two variants of Tomcat. One, dubbed Fs-CoT, is based on a small number of examples (i.e., few-shot or Fs) demonstrating the requisite structured reasoning (i.e., chain-of-thought or CoT). One, dubbed CP, relies on commonsense knowledge and information about the problem (i.e., commonsense prompt or CP). We realized both variants of Tomcat on three leading large language models (LLMs), namely, GPT-4o, DeepSeek-R1, and Gemma-3-27B. To evaluate the effectiveness of Tomcat, we conducted a study with 52 human participants in which we provided participants with the same information as the CP variant of Tomcat. We computed intent accuracy, action optimality, and planning optimality to measure the ToM capabilities of Tomcat and our study participants. We found that Tomcat with Fs-CoT, particularly with GPT-4o and DeepSeek-R1, achieves performance comparable to the human participants, underscoring its ToM potential for human-AI collaboration.

Authors:Jianping Zhao, Qiong Zhou, Tian Wang, Yusi Fan, Qian Yang, Li Jiao, Chang Liu, Zhehao Guo, Qi Lu, Fengfeng Zhou, Ruochi Zhang
Title: MolProphecy: Bridging Medicinal Chemists' Knowledge and Molecular Pre-Trained Models via a Multi-Modal Framework
Abstract:
MolProphecy is a human-in-the-loop (HITL) multi-modal framework designed to integrate chemists' domain knowledge into molecular property prediction models. While molecular pre-trained models have enabled significant gains in predictive accuracy, they often fail to capture the tacit, interpretive reasoning central to expert-driven molecular design. To address this, MolProphecy employs ChatGPT as a virtual chemist to simulate expert-level reasoning and decision-making. The generated chemist knowledge is embedded by the large language model (LLM) as a dedicated knowledge representation and then fused with graph-based molecular features through a gated cross-attention mechanism, enabling joint reasoning over human-derived and structural features. Evaluated on four benchmark datasets (FreeSolv, BACE, SIDER, and ClinTox), MolProphecy outperforms state-of-the-art (SOTA) models, achieving a 15.0 percent reduction in RMSE on FreeSolv and a 5.39 percent improvement in AUROC on BACE. Analysis reveals that chemist knowledge and structural features provide complementary contributions, improving both accuracy and interpretability. MolProphecy offers a practical and generalizable approach for collaborative drug discovery, with the flexibility to incorporate real chemist input in place of the current simulated proxy--without the need for model retraining. The implementation is publicly available at https://github.com/zhangruochi/MolProphecy.

Authors:Geonwoo Cho, Jaegyun Im, Doyoon Kim, Sundong Kim
Title: Causal-Paced Deep Reinforcement Learning
Abstract:
Designing effective task sequences is crucial for curriculum reinforcement learning (CRL), where agents must gradually acquire skills by training on intermediate tasks. A key challenge in CRL is to identify tasks that promote exploration, yet are similar enough to support effective transfer. While recent approach suggests comparing tasks via their Structural Causal Models (SCMs), the method requires access to ground-truth causal structures, an unrealistic assumption in most RL settings. In this work, we propose Causal-Paced Deep Reinforcement Learning (CP-DRL), a curriculum learning framework aware of SCM differences between tasks based on interaction data approximation. This signal captures task novelty, which we combine with the agent's learnability, measured by reward gain, to form a unified objective. Empirically, CP-DRL outperforms existing curriculum methods on the Point Mass benchmark, achieving faster convergence and higher returns. CP-DRL demonstrates reduced variance with comparable final returns in the Bipedal Walker-Trivial setting, and achieves the highest average performance in the Infeasible variant. These results indicate that leveraging causal relationships between tasks can improve the structure-awareness and sample efficiency of curriculum reinforcement learning. We provide the full implementation of CP-DRL to facilitate the reproduction of our main results at https://github.com/Cho-Geonwoo/CP-DRL.

Authors:Vineet Kumar Rakesh, Soumya Mazumdar, Research Pratim Maity, Sarbajit Pal, Amitabha Das, Tapas Samanta
Title: Advancing Talking Head Generation: A Comprehensive Survey of Multi-Modal Methodologies, Datasets, Evaluation Metrics, and Loss Functions
Abstract:
Talking Head Generation (THG) has emerged as a transformative technology in computer vision, enabling the synthesis of realistic human faces synchronized with image, audio, text, or video inputs. This paper provides a comprehensive review of methodologies and frameworks for talking head generation, categorizing approaches into 2D--based, 3D--based, Neural Radiance Fields (NeRF)--based, diffusion--based, parameter-driven techniques and many other techniques. It evaluates algorithms, datasets, and evaluation metrics while highlighting advancements in perceptual realism and technical efficiency critical for applications such as digital avatars, video dubbing, ultra-low bitrate video conferencing, and online education. The study identifies challenges such as reliance on pre--trained models, extreme pose handling, multilingual synthesis, and temporal consistency. Future directions include modular architectures, multilingual datasets, hybrid models blending pre--trained and task-specific layers, and innovative loss functions. By synthesizing existing research and exploring emerging trends, this paper aims to provide actionable insights for researchers and practitioners in the field of talking head generation. For the complete survey, code, and curated resource list, visit our GitHub repository: https://github.com/VineetKumarRakesh/thg.

Authors:Lindong Xie, Genghui Li, Zhenkun Wang, Edward Chung, Maoguo Gong
Title: Large Language Model-Driven Surrogate-Assisted Evolutionary Algorithm for Expensive Optimization
Abstract:
Surrogate-assisted evolutionary algorithms (SAEAs) are a key tool for addressing costly optimization tasks, with their efficiency being heavily dependent on the selection of surrogate models and infill sampling criteria. However, designing an effective dynamic selection strategy for SAEAs is labor-intensive and requires substantial domain knowledge. To address this challenge, this paper proposes LLM-SAEA, a novel approach that integrates large language models (LLMs) to configure both surrogate models and infill sampling criteria online. Specifically, LLM-SAEA develops a collaboration-of-experts framework, where one LLM serves as a scoring expert (LLM-SE), assigning scores to surrogate models and infill sampling criteria based on their optimization performance, while another LLM acts as a decision expert (LLM-DE), selecting the appropriate configurations by analyzing their scores along with the current optimization state. Experimental results demonstrate that LLM-SAEA outperforms several state-of-the-art algorithms across standard test cases. The source code is publicly available at https://github.com/ForrestXie9/LLM-SAEA.

Authors:Chi Zhang, Yu Dong, Yang Wang, Yuetong Han, Guihua Shan, Bixia Tang
Title: AuraGenome: An LLM-Powered Framework for On-the-Fly Reusable and Scalable Circular Genome Visualizations
Abstract:
Circular genome visualizations are essential for exploring structural variants and gene regulation. However, existing tools often require complex scripting and manual configuration, making the process time-consuming, error-prone, and difficult to learn. To address these challenges, we introduce AuraGenome, an LLM-powered framework for rapid, reusable, and scalable generation of multi-layered circular genome visualizations. AuraGenome combines a semantic-driven multi-agent workflow with an interactive visual analytics system. The workflow employs seven specialized LLM-driven agents, each assigned distinct roles such as intent recognition, layout planning, and code generation, to transform raw genomic data into tailored visualizations. The system supports multiple coordinated views tailored for genomic data, offering ring, radial, and chord-based layouts to represent multi-layered circular genome visualizations. In addition to enabling interactions and configuration reuse, the system supports real-time refinement and high-quality report export. We validate its effectiveness through two case studies and a comprehensive user study. AuraGenome is available at: https://github.com/Darius18/AuraGenome.

Authors:Yuqi Wu, Wenzhao Zheng, Jie Zhou, Jiwen Lu
Title: Point3R: Streaming 3D Reconstruction with Explicit Spatial Pointer Memory
Abstract:
Dense 3D scene reconstruction from an ordered sequence or unordered image collections is a critical step when bringing research in computer vision into practical scenarios. Following the paradigm introduced by DUSt3R, which unifies an image pair densely into a shared coordinate system, subsequent methods maintain an implicit memory to achieve dense 3D reconstruction from more images. However, such implicit memory is limited in capacity and may suffer from information loss of earlier frames. We propose Point3R, an online framework targeting dense streaming 3D reconstruction. To be specific, we maintain an explicit spatial pointer memory directly associated with the 3D structure of the current scene. Each pointer in this memory is assigned a specific 3D position and aggregates scene information nearby in the global coordinate system into a changing spatial feature. Information extracted from the latest frame interacts explicitly with this pointer memory, enabling dense integration of the current observation into the global coordinate system. We design a 3D hierarchical position embedding to promote this interaction and design a simple yet effective fusion mechanism to ensure that our pointer memory is uniform and efficient. Our method achieves competitive or state-of-the-art performance on various tasks with low training costs. Code is available at: https://github.com/YkiWu/Point3R.

Authors:Nikhil Chandak, Shashwat Goel, Ameya Prabhu, Moritz Hardt, Jonas Geiping
Title: Answer Matching Outperforms Multiple Choice for Language Model Evaluation
Abstract:
Multiple choice benchmarks have long been the workhorse of language model evaluation because grading multiple choice is objective and easy to automate. However, we show multiple choice questions from popular benchmarks can often be answered without even seeing the question. These shortcuts arise from a fundamental limitation of discriminative evaluation not shared by evaluations of the model's free-form, generative answers. Until recently, there appeared to be no viable, scalable alternative to multiple choice--but, we show that this has changed. We consider generative evaluation via what we call answer matching: Give the candidate model the question without the options, have it generate a free-form response, then use a modern language model with the reference answer to determine if the response matches the reference. To compare the validity of different evaluation strategies, we annotate MMLU-Pro and GPQA-Diamond to obtain human grading data, and measure the agreement of each evaluation approach. We find answer matching using recent models--even small ones--achieves near-perfect agreement, in the range of inter-annotator agreement. In contrast, both multiple choice evaluation and using LLM-as-a-judge without reference answers aligns poorly with human grading. Improving evaluations via answer matching is not merely a conceptual concern: the rankings of several models change significantly when evaluating their free-form responses with answer matching. In light of these findings, we discuss how to move the evaluation ecosystem from multiple choice to answer matching.

Authors:Purbesh Mitra, Sennur Ulukus
Title: MOTIF: Modular Thinking via Reinforcement Fine-tuning in LLMs
Abstract:
Recent advancements in the reasoning capabilities of large language models (LLMs) show that employing group relative policy optimization (GRPO) algorithm for reinforcement learning (RL) training allows the models to use more thinking/reasoning tokens for generating better responses. However, LLMs can generate only a finite amount of tokens while maintaining attention to the previously generated tokens. This limit, also known as the context size of an LLM, is a bottleneck in LLM reasoning with arbitrarily large number of tokens. To think beyond the limit of context size, an LLM must employ a modular thinking strategy to reason over multiple rounds. In this work, we propose $\textbf{MOTIF: Modular Thinking via Reinforcement Finetuning}$ -- an RL training method for generating thinking tokens in multiple rounds, effectively allowing the model to think with additional context size. We trained the open-source model Qwen2.5-3B-Instruct on GSM8K dataset via parameter efficient fine-tuning and tested its accuracy on MATH500 and AIME2024 benchmarks. Our experiments show 3.8\% and 3.3\% improvements over vanilla GRPO based training in the respective benchmarks. Furthermore, this improvement was achieved with only 15\% of samples, thus demonstrating sample efficiency of MOTIF. Our code and models are available at https://github.com/purbeshmitra/MOTIF and https://huggingface.co/purbeshmitra/MOTIF, respectively.

Authors:Alex Colagrande, Paul Caillon, Eva Feillet, Alexandre Allauzen
Title: Linear Attention with Global Context: A Multipole Attention Mechanism for Vision and Physics
Abstract:
Transformers have become the de facto standard for a wide range of tasks, from image classification to physics simulations. Despite their impressive performance, the quadratic complexity of standard Transformers in both memory and time with respect to the input length makes them impractical for processing high-resolution inputs. Therefore, several variants have been proposed, the most successful relying on patchification, downsampling, or coarsening techniques, often at the cost of losing the finest-scale details. In this work, we take a different approach. Inspired by state-of-the-art techniques in $n$-body numerical simulations, we cast attention as an interaction problem between grid points. We introduce the Multipole Attention Neural Operator (MANO), which computes attention in a distance-based multiscale fashion. MANO maintains, in each attention head, a global receptive field and achieves linear time and memory complexity with respect to the number of grid points. Empirical results on image classification and Darcy flows demonstrate that MANO rivals state-of-the-art models such as ViT and Swin Transformer, while reducing runtime and peak memory usage by orders of magnitude. We open source our code for reproducibility at https://github.com/AlexColagrande/MANO.

Authors:JungWoo Chae, Jiyoon Kim, JaeWoong Choi, Kyungyul Kim, Sangheum Hwang
Title: APT: Adaptive Personalized Training for Diffusion Models with Limited Data
Abstract:
Personalizing diffusion models using limited data presents significant challenges, including overfitting, loss of prior knowledge, and degradation of text alignment. Overfitting leads to shifts in the noise prediction distribution, disrupting the denoising trajectory and causing the model to lose semantic coherence. In this paper, we propose Adaptive Personalized Training (APT), a novel framework that mitigates overfitting by employing adaptive training strategies and regularizing the model's internal representations during fine-tuning. APT consists of three key components: (1) Adaptive Training Adjustment, which introduces an overfitting indicator to detect the degree of overfitting at each time step bin and applies adaptive data augmentation and adaptive loss weighting based on this indicator; (2)Representation Stabilization, which regularizes the mean and variance of intermediate feature maps to prevent excessive shifts in noise prediction; and (3) Attention Alignment for Prior Knowledge Preservation, which aligns the cross-attention maps of the fine-tuned model with those of the pretrained model to maintain prior knowledge and semantic coherence. Through extensive experiments, we demonstrate that APT effectively mitigates overfitting, preserves prior knowledge, and outperforms existing methods in generating high-quality, diverse images with limited reference data.

Authors:Jiajie Jin, Xiaoxi Li, Guanting Dong, Yuyao Zhang, Yutao Zhu, Yang Zhao, Hongjin Qian, Zhicheng Dou
Title: Decoupled Planning and Execution: A Hierarchical Reasoning Framework for Deep Search
Abstract:
Complex information needs in real-world search scenarios demand deep reasoning and knowledge synthesis across diverse sources, which traditional retrieval-augmented generation (RAG) pipelines struggle to address effectively. Current reasoning-based approaches suffer from a fundamental limitation: they use a single model to handle both high-level planning and detailed execution, leading to inefficient reasoning and limited scalability. In this paper, we introduce HiRA, a hierarchical framework that separates strategic planning from specialized execution. Our approach decomposes complex search tasks into focused subtasks, assigns each subtask to domain-specific agents equipped with external tools and reasoning capabilities, and coordinates the results through a structured integration mechanism. This separation prevents execution details from disrupting high-level reasoning while enabling the system to leverage specialized expertise for different types of information processing. Experiments on four complex, cross-modal deep search benchmarks demonstrate that HiRA significantly outperforms state-of-the-art RAG and agent-based systems. Our results show improvements in both answer quality and system efficiency, highlighting the effectiveness of decoupled planning and execution for multi-step information seeking tasks. Our code is available at https://github.com/ignorejjj/HiRA.

Authors:Xing Liu, Lizhuo Luo, Ming Tang, Chao Huang
Title: FlowSpec: Continuous Pipelined Speculative Decoding for Efficient Distributed LLM Inference
Abstract:
Distributed inference serves as a promising approach to enabling the inference of large language models (LLMs) at the network edge. It distributes the inference process to multiple devices to ensure that the LLMs can fit into the device memory. Recent pipeline-based approaches have the potential to parallelize communication and computation, which helps reduce inference latency. However, the benefit diminishes when the inference request at the network edge is sparse, where pipeline is typically at low utilization. To enable efficient distributed LLM inference at the edge, we propose \textbf{FlowSpec}, a pipeline-parallel tree-based speculative decoding framework. FlowSpec incorporates three key mechanisms to improve decoding efficiency: 1) score-based step-wise verification prioritizes more important draft tokens to bring earlier accpeted tokens; 2) efficient draft management to prune invalid tokens while maintaining correct causal relationship during verification; 3) dynamic draft expansion strategies to supply high-quality speculative inputs. These techniques work in concert to enhance both pipeline utilization and speculative efficiency. We evaluate FlowSpec on a real-world testbed with other baselines. Experimental results demonstrate that our proposed framework significantly improves inference speed across diverse models and configurations, achieving speedup ratios 1.28$\times$-1.79$\times$ compared to baselines. Our code is publicly available at \href{https://github.com/Leosang-lx/FlowSpec#}{https://github.com/Leosang-lx/FlowSpec\#}

Authors:Edan Toledo, Karen Hambardzumyan, Martin Josifoski, Rishi Hazra, Nicolas Baldwin, Alexis Audran-Reiss, Michael Kuchnik, Despoina Magka, Minqi Jiang, Alisia Maria Lupidi, Andrei Lupu, Roberta Raileanu, Kelvin Niu, Tatiana Shavrina, Jean-Christophe Gagnon-Audet, Michael Shvartsman, Shagun Sodhani, Alexander H. Miller, Abhishek Charnalia, Derek Dunfield, Carole-Jean Wu, Pontus Stenetorp, Nicola Cancedda, Jakob Nicolaus Foerster, Yoram Bachrach
Title: AI Research Agents for Machine Learning: Search, Exploration, and Generalization in MLE-bench
Abstract:
AI research agents are demonstrating great potential to accelerate scientific progress by automating the design, implementation, and training of machine learning models. We focus on methods for improving agents' performance on MLE-bench, a challenging benchmark where agents compete in Kaggle competitions to solve real-world machine learning problems. We formalize AI research agents as search policies that navigate a space of candidate solutions, iteratively modifying them using operators. By designing and systematically varying different operator sets and search policies (Greedy, MCTS, Evolutionary), we show that their interplay is critical for achieving high performance. Our best pairing of search strategy and operator set achieves a state-of-the-art result on MLE-bench lite, increasing the success rate of achieving a Kaggle medal from 39.6% to 47.7%. Our investigation underscores the importance of jointly considering the search strategy, operator design, and evaluation methodology in advancing automated machine learning.

Authors:Chenxu Wang, Yilin Lyu, Zicheng Sun, Liping Jing
Title: Continual Gradient Low-Rank Projection Fine-Tuning for LLMs
Abstract:
Continual fine-tuning of Large Language Models (LLMs) is hampered by the trade-off between efficiency and expressiveness. Low-Rank Adaptation (LoRA) offers efficiency but constrains the model's ability to learn new tasks and transfer knowledge due to its low-rank nature and reliance on explicit parameter constraints. We propose GORP (Gradient LOw Rank Projection) for Continual Learning, a novel training strategy that overcomes these limitations by synergistically combining full and low-rank parameters and jointly updating within a unified low-rank gradient subspace. GORP expands the optimization space while preserving efficiency and mitigating catastrophic forgetting. Extensive experiments on continual learning benchmarks demonstrate GORP's superior performance compared to existing state-of-the-art approaches. Code is available at https://github.com/Wcxwcxw/GORP.

Authors:Luca Parolari, Andrea Cherubini, Lamberto Ballan, Carlo Biffi
Title: Temporally-Aware Supervised Contrastive Learning for Polyp Counting in Colonoscopy
Abstract:
Automated polyp counting in colonoscopy is a crucial step toward automated procedure reporting and quality control, aiming to enhance the cost-effectiveness of colonoscopy screening. Counting polyps in a procedure involves detecting and tracking polyps, and then clustering tracklets that belong to the same polyp entity. Existing methods for polyp counting rely on self-supervised learning and primarily leverage visual appearance, neglecting temporal relationships in both tracklet feature learning and clustering stages. In this work, we introduce a paradigm shift by proposing a supervised contrastive loss that incorporates temporally-aware soft targets. Our approach captures intra-polyp variability while preserving inter-polyp discriminability, leading to more robust clustering. Additionally, we improve tracklet clustering by integrating a temporal adjacency constraint, reducing false positive re-associations between visually similar but temporally distant tracklets. We train and validate our method on publicly available datasets and evaluate its performance with a leave-one-out cross-validation strategy. Results demonstrate a 2.2x reduction in fragmentation rate compared to prior approaches. Our results highlight the importance of temporal awareness in polyp counting, establishing a new state-of-the-art. Code is available at https://github.com/lparolari/temporally-aware-polyp-counting.

Authors:Teng Fu, Yuwen Chen, Zhuofan Chen, Mengyang Zhao, Bin Li, Xiangyang Xue
Title: CrowdTrack: A Benchmark for Difficult Multiple Pedestrian Tracking in Real Scenarios
Abstract:
Multi-object tracking is a classic field in computer vision. Among them, pedestrian tracking has extremely high application value and has become the most popular research category. Existing methods mainly use motion or appearance information for tracking, which is often difficult in complex scenarios. For the motion information, mutual occlusions between objects often prevent updating of the motion state; for the appearance information, non-robust results are often obtained due to reasons such as only partial visibility of the object or blurred images. Although learning how to perform tracking in these situations from the annotated data is the simplest solution, the existing MOT dataset fails to satisfy this solution. Existing methods mainly have two drawbacks: relatively simple scene composition and non-realistic scenarios. Although some of the video sequences in existing dataset do not have the above-mentioned drawbacks, the number is far from adequate for research purposes. To this end, we propose a difficult large-scale dataset for multi-pedestrian tracking, shot mainly from the first-person view and all from real-life complex scenarios. We name it ``CrowdTrack'' because there are numerous objects in most of the sequences. Our dataset consists of 33 videos, containing a total of 5,185 trajectories. Each object is annotated with a complete bounding box and a unique object ID. The dataset will provide a platform to facilitate the development of algorithms that remain effective in complex situations. We analyzed the dataset comprehensively and tested multiple SOTA models on our dataset. Besides, we analyzed the performance of the foundation models on our dataset. The dataset and project code is released at: https://github.com/loseevaya/CrowdTrack .

Authors:Zihan Tan, Suyuan Huang, Guancheng Wan, Wenke Huang, He Li, Mang Ye
Title: S2FGL: Spatial Spectral Federated Graph Learning
Abstract:
Federated Graph Learning (FGL) combines the privacy-preserving capabilities of federated learning (FL) with the strong graph modeling capability of Graph Neural Networks (GNNs). Current research addresses subgraph-FL from the structural perspective, neglecting the propagation of graph signals on spatial and spectral domains of the structure. From a spatial perspective, subgraph-FL introduces edge disconnections between clients, leading to disruptions in label signals and a degradation in the semantic knowledge of the global GNN. From a spectral perspective, spectral heterogeneity causes inconsistencies in signal frequencies across subgraphs, which makes local GNNs overfit the local signal propagation schemes. As a result, spectral client drift occurs, undermining global generalizability. To tackle the challenges, we propose a global knowledge repository to mitigate the challenge of poor semantic knowledge caused by label signal disruption. Furthermore, we design a frequency alignment to address spectral client drift. The combination of Spatial and Spectral strategies forms our framework S2FGL. Extensive experiments on multiple datasets demonstrate the superiority of S2FGL. The code is available at https://github.com/Wonder7racer/S2FGL.git.

Authors:Mufhumudzi Muthivhi, Terence L. van Zyl
Title: Wildlife Target Re-Identification Using Self-supervised Learning in Non-Urban Settings
Abstract:
Wildlife re-identification aims to match individuals of the same species across different observations. Current state-of-the-art (SOTA) models rely on class labels to train supervised models for individual classification. This dependence on annotated data has driven the curation of numerous large-scale wildlife datasets. This study investigates self-supervised learning Self-Supervised Learning (SSL) for wildlife re-identification. We automatically extract two distinct views of an individual using temporal image pairs from camera trap data without supervision. The image pairs train a self-supervised model from a potentially endless stream of video data. We evaluate the learnt representations against supervised features on open-world scenarios and transfer learning in various wildlife downstream tasks. The analysis of the experimental results shows that self-supervised models are more robust even with limited data. Moreover, self-supervised features outperform supervision across all downstream tasks. The code is available here https://github.com/pxpana/SSLWildlife.

Authors:Taehoon Kim, Jongwook Choi, Yonghyun Jeong, Haeun Noh, Jaejun Yoo, Seungryul Baek, Jongwon Choi
Title: Beyond Spatial Frequency: Pixel-wise Temporal Frequency-based Deepfake Video Detection
Abstract:
We introduce a deepfake video detection approach that exploits pixel-wise temporal inconsistencies, which traditional spatial frequency-based detectors often overlook. Traditional detectors represent temporal information merely by stacking spatial frequency spectra across frames, resulting in the failure to detect temporal artifacts in the pixel plane. Our approach performs a 1D Fourier transform on the time axis for each pixel, extracting features highly sensitive to temporal inconsistencies, especially in areas prone to unnatural movements. To precisely locate regions containing the temporal artifacts, we introduce an attention proposal module trained in an end-to-end manner. Additionally, our joint transformer module effectively integrates pixel-wise temporal frequency features with spatio-temporal context features, expanding the range of detectable forgery artifacts. Our framework represents a significant advancement in deepfake video detection, providing robust performance across diverse and challenging detection scenarios.

Authors:Anlin Zheng, Haochen Wang, Yucheng Zhao, Weipeng Deng, Tiancai Wang, Xiangyu Zhang, Xiaojuan Qi
Title: Hita: Holistic Tokenizer for Autoregressive Image Generation
Abstract:
Vanilla autoregressive image generation models generate visual tokens step-by-step, limiting their ability to capture holistic relationships among token sequences. Moreover, because most visual tokenizers map local image patches into latent tokens, global information is limited. To address this, we introduce \textit{Hita}, a novel image tokenizer for autoregressive (AR) image generation. It introduces a holistic-to-local tokenization scheme with learnable holistic queries and local patch tokens. Hita incorporates two key strategies to better align with the AR generation process: 1) {arranging} a sequential structure with holistic tokens at the beginning, followed by patch-level tokens, and using causal attention to maintain awareness of previous tokens; and 2) adopting a lightweight fusion module before feeding the de-quantized tokens into the decoder to control information flow and prioritize holistic tokens. Extensive experiments show that Hita accelerates the training speed of AR generators and outperforms those trained with vanilla tokenizers, achieving \textbf{2.59 FID} and \textbf{281.9 IS} on the ImageNet benchmark. Detailed analysis of the holistic representation highlights its ability to capture global image properties, such as textures, materials, and shapes. Additionally, Hita also demonstrates effectiveness in zero-shot style transfer and image in-painting. The code is available at \href{https://github.com/CVMI-Lab/Hita}{https://github.com/CVMI-Lab/Hita}.

Authors:Changhun Kim, Yechan Mun, Sangchul Hahn, Eunho Yang
Title: DeltaSHAP: Explaining Prediction Evolutions in Online Patient Monitoring with Shapley Values
Abstract:
This study proposes DeltaSHAP, a novel explainable artificial intelligence (XAI) algorithm specifically designed for online patient monitoring systems. In clinical environments, discovering the causes driving patient risk evolution is critical for timely intervention, yet existing XAI methods fail to address the unique requirements of clinical time series explanation tasks. To this end, DeltaSHAP addresses three key clinical needs: explaining the changes in the consecutive predictions rather than isolated prediction scores, providing both magnitude and direction of feature attributions, and delivering these insights in real time. By adapting Shapley values to temporal settings, our approach accurately captures feature coalition effects. It further attributes prediction changes using only the actually observed feature combinations, making it efficient and practical for time-sensitive clinical applications. We also introduce new evaluation metrics to evaluate the faithfulness of the attributions for online time series, and demonstrate through experiments on online patient monitoring tasks that DeltaSHAP outperforms state-of-the-art XAI methods in both explanation quality as 62% and computational efficiency as 33% time reduction on the MIMIC-III decompensation benchmark. We release our code at https://github.com/AITRICS/DeltaSHAP.

Authors:JaeHyuck Choi, MinJun Kim, JeHyeong Hong
Title: MAGIC: Mask-Guided Diffusion Inpainting with Multi-Level Perturbations and Context-Aware Alignment for Few-Shot Anomaly Generation
Abstract:
Few-shot anomaly generation is emerging as a practical solution for augmenting the scarce anomaly data in industrial quality control settings. An ideal generator would meet three demands at once, namely (i) keep the normal background intact, (ii) inpaint anomalous regions to tightly overlap with the corresponding anomaly masks, and (iii) generate anomalous regions in a semantically valid location, while still producing realistic, diverse appearances from only a handful of real examples. Existing diffusion-based methods usually satisfy at most two of these requirements: global anomaly generators corrupt the background, whereas mask-guided ones often falter when the mask is imprecise or misplaced. We propose MAGIC--Mask-guided inpainting with multi-level perturbations and Context-aware alignment--to resolve all three issues. At its core, MAGIC fine-tunes a Stable Diffusion inpainting backbone that preserves normal regions and ensures strict adherence of the synthesized anomaly to the supplied mask, directly addressing background corruption and misalignment. To offset the diversity loss that fine-tuning can cause, MAGIC adds two complementary perturbation strategies: (i) Gaussian prompt-level perturbation applied during fine-tuning and inference that broadens the global appearance of anomalies while avoiding low-fidelity textual appearances, and (ii) mask-guided spatial noise injection that enriches local texture variations. Additionally, the context-aware mask alignment module forms semantic correspondences and relocates masks so that every anomaly remains plausibly contained within the host object, eliminating out-of-boundary artifacts. Under a consistent identical evaluation protocol on the MVTec-AD dataset, MAGIC outperforms previous state-of-the-arts in downstream anomaly tasks.

Authors:Dohoon Kim, Donghun Kang, Taesup Moon
Title: DoMIX: An Efficient Framework for Exploiting Domain Knowledge in Fine-Tuning
Abstract:
Domain-Adaptive Pre-training (DAP) has recently gained attention for its effectiveness in fine-tuning pre-trained models. Building on this, continual DAP has been explored to develop pre-trained models capable of incrementally incorporating different domain datasets. However, existing continual DAP methods face several limitations: (1) high computational cost and GPU memory usage during training; (2) sensitivity to incremental data order; and (3) providing a single, generalized model for all end tasks, which contradicts the essence of DAP. In this paper, we propose DoMIX, a novel approach that addresses these challenges by leveraging LoRA modules, a representative parameter-efficient fine-tuning (PEFT) method. Our approach enables efficient and parallel domain-adaptive pre-training that is robust to domain order and effectively utilizes accumulated knowledge to provide tailored pre-trained models for specific tasks. We also demonstrate that our method can be extended beyond the DAP setting to standard LLM fine-tuning scenarios. Code is available at https://github.com/dohoonkim-ai/DoMIX.

Authors:Xiao Wang, Jingtao Jiang, Qiang Chen, Lan Chen, Lin Zhu, Yaowei Wang, Yonghong Tian, Jin Tang
Title: ESTR-CoT: Towards Explainable and Accurate Event Stream based Scene Text Recognition with Chain-of-Thought Reasoning
Abstract:
Event stream based scene text recognition is a newly arising research topic in recent years which performs better than the widely used RGB cameras in extremely challenging scenarios, especially the low illumination, fast motion. Existing works either adopt end-to-end encoder-decoder framework or large language models for enhanced recognition, however, they are still limited by the challenges of insufficient interpretability and weak contextual logical reasoning. In this work, we propose a novel chain-of-thought reasoning based event stream scene text recognition framework, termed ESTR-CoT. Specifically, we first adopt the vision encoder EVA-CLIP (ViT-G/14) to transform the input event stream into tokens and utilize a Llama tokenizer to encode the given generation prompt. A Q-former is used to align the vision token to the pre-trained large language model Vicuna-7B and output both the answer and chain-of-thought (CoT) reasoning process simultaneously. Our framework can be optimized using supervised fine-tuning in an end-to-end manner. In addition, we also propose a large-scale CoT dataset to train our framework via a three stage processing (i.e., generation, polish, and expert verification). This dataset provides a solid data foundation for the development of subsequent reasoning-based large models. Extensive experiments on three event stream STR benchmark datasets (i.e., EventSTR, WordArt*, IC15*) fully validated the effectiveness and interpretability of our proposed framework. The source code and pre-trained models will be released on https://github.com/Event-AHU/ESTR-CoT.

Authors:Wenquan Lu, Yuechuan Yang, Kyle Lee, Yanshu Li, Enqi Liu
Title: Latent Chain-of-Thought? Decoding the Depth-Recurrent Transformer
Abstract:
Chain-of-thought (CoT) reasoning has enabled transformer-based language models to excel at complex mathematics and multi-step planning. However, in standard decoder-only architectures, these reasoning steps are externalized in natural language, improving interpretability at the cost of efficiency. To capture reasoning that is not easily represented in words, many works have explored recurrent architectures that aim to internalize reasoning in latent space, potentially supporting latent CoT. In this paper, we investigate whether such reasoning structures emerge in Huginn-3.5B, a depth-recurrent Transformer that reuses layers at inference time without increasing parameter count. We examine the model's internal behavior on arithmetic tasks using a suite of probing techniques including the Logit Lens and Coda Lens. Our findings reveal limited evidence of interpretable latent CoT by tracking rank trajectories of final and intermediate result tokens. Furthermore, we uncover significant probing inconsistencies across recurrent blocks, where the interpretability of hidden states depends heavily on both the layer index and the decoding method. Finally, we empirically show that increasing recurrence depth yields only marginal gains and falls well short of models that explicitly externalize reasoning steps. The code is available at https://github.com/wenquanlu/huginn-latent-cot.

Authors:Qiguang Chen, Mingda Yang, Libo Qin, Jinhao Liu, Zheng Yan, Jiannan Guan, Dengyun Peng, Yiyan Ji, Hanjing Li, Mengkang Hu, Yimeng Zhang, Yihao Liang, Yuhang Zhou, Jiaqi Wang, Zhi Chen, Wanxiang Che
Title: AI4Research: A Survey of Artificial Intelligence for Scientific Research
Abstract:
Recent advancements in artificial intelligence (AI), particularly in large language models (LLMs) such as OpenAI-o1 and DeepSeek-R1, have demonstrated remarkable capabilities in complex domains such as logical reasoning and experimental coding. Motivated by these advancements, numerous studies have explored the application of AI in the innovation process, particularly in the context of scientific research. These AI technologies primarily aim to develop systems that can autonomously conduct research processes across a wide range of scientific disciplines. Despite these significant strides, a comprehensive survey on AI for Research (AI4Research) remains absent, which hampers our understanding and impedes further development in this field. To address this gap, we present a comprehensive survey and offer a unified perspective on AI4Research. Specifically, the main contributions of our work are as follows: (1) Systematic taxonomy: We first introduce a systematic taxonomy to classify five mainstream tasks in AI4Research. (2) New frontiers: Then, we identify key research gaps and highlight promising future directions, focusing on the rigor and scalability of automated experiments, as well as the societal impact. (3) Abundant applications and resources: Finally, we compile a wealth of resources, including relevant multidisciplinary applications, data corpora, and tools. We hope our work will provide the research community with quick access to these resources and stimulate innovative breakthroughs in AI4Research.

Authors:Tianze Hua, Tian Yun, Ellie Pavlick
Title: How Do Vision-Language Models Process Conflicting Information Across Modalities?
Abstract:
AI models are increasingly required to be multimodal, integrating disparate input streams into a coherent state representation on which subsequent behaviors and actions can be based. This paper seeks to understand how such models behave when input streams present conflicting information. Focusing specifically on vision-language models, we provide inconsistent inputs (e.g., an image of a dog paired with the caption "A photo of a cat") and ask the model to report the information present in one of the specific modalities (e.g., "What does the caption say / What is in the image?"). We find that models often favor one modality over the other, e.g., reporting the image regardless of what the caption says, but that different models differ in which modality they favor. We find evidence that the behaviorally preferred modality is evident in the internal representational structure of the model, and that specific attention heads can restructure the representations to favor one modality over the other. Moreover, we find modality-agnostic "router heads" which appear to promote answers about the modality requested in the instruction, and which can be manipulated or transferred in order to improve performance across datasets and modalities. Together, the work provides essential steps towards identifying and controlling if and how models detect and resolve conflicting signals within complex multimodal environments.

Authors:Kai Chen, Ruiyuan Gao, Lanqing Hong, Hang Xu, Xu Jia, Holger Caesar, Dengxin Dai, Bingbing Liu, Dzmitry Tsishkou, Songcen Xu, Chunjing Xu, Qiang Xu, Huchuan Lu, Dit-Yan Yeung
Title: ECCV 2024 W-CODA: 1st Workshop on Multimodal Perception and Comprehension of Corner Cases in Autonomous Driving
Abstract:
In this paper, we present details of the 1st W-CODA workshop, held in conjunction with the ECCV 2024. W-CODA aims to explore next-generation solutions for autonomous driving corner cases, empowered by state-of-the-art multimodal perception and comprehension techniques. 5 Speakers from both academia and industry are invited to share their latest progress and opinions. We collect research papers and hold a dual-track challenge, including both corner case scene understanding and generation. As the pioneering effort, we will continuously bridge the gap between frontier autonomous driving techniques and fully intelligent, reliable self-driving agents robust towards corner cases.

Authors:Zixin Chen, Hongzhan Lin, Kaixin Li, Ziyang Luo, Zhen Ye, Guang Chen, Zhiyong Huang, Jing Ma
Title: AdamMeme: Adaptively Probe the Reasoning Capacity of Multimodal Large Language Models on Harmfulness
Abstract:
The proliferation of multimodal memes in the social media era demands that multimodal Large Language Models (mLLMs) effectively understand meme harmfulness. Existing benchmarks for assessing mLLMs on harmful meme understanding rely on accuracy-based, model-agnostic evaluations using static datasets. These benchmarks are limited in their ability to provide up-to-date and thorough assessments, as online memes evolve dynamically. To address this, we propose AdamMeme, a flexible, agent-based evaluation framework that adaptively probes the reasoning capabilities of mLLMs in deciphering meme harmfulness. Through multi-agent collaboration, AdamMeme provides comprehensive evaluations by iteratively updating the meme data with challenging samples, thereby exposing specific limitations in how mLLMs interpret harmfulness. Extensive experiments show that our framework systematically reveals the varying performance of different target mLLMs, offering in-depth, fine-grained analyses of model-specific weaknesses. Our code is available at https://github.com/Lbotirx/AdamMeme.

Authors:Boyuan Sun, Modi Jin, Bowen Yin, Qibin Hou
Title: Depth Anything at Any Condition
Abstract:
We present Depth Anything at Any Condition (DepthAnything-AC), a foundation monocular depth estimation (MDE) model capable of handling diverse environmental conditions. Previous foundation MDE models achieve impressive performance across general scenes but not perform well in complex open-world environments that involve challenging conditions, such as illumination variations, adverse weather, and sensor-induced distortions. To overcome the challenges of data scarcity and the inability of generating high-quality pseudo-labels from corrupted images, we propose an unsupervised consistency regularization finetuning paradigm that requires only a relatively small amount of unlabeled data. Furthermore, we propose the Spatial Distance Constraint to explicitly enforce the model to learn patch-level relative relationships, resulting in clearer semantic boundaries and more accurate details. Experimental results demonstrate the zero-shot capabilities of DepthAnything-AC across diverse benchmarks, including real-world adverse weather benchmarks, synthetic corruption benchmarks, and general benchmarks. Project Page: https://ghost233lism.github.io/depthanything-AC-page Code: https://github.com/HVision-NKU/DepthAnythingAC

Authors:Camille Billouard, Dawa Derksen, Alexandre Constantin, Bruno Vallet
Title: Tile and Slide : A New Framework for Scaling NeRF from Local to Global 3D Earth Observation
Abstract:
Neural Radiance Fields (NeRF) have recently emerged as a paradigm for 3D reconstruction from multiview satellite imagery. However, state-of-the-art NeRF methods are typically constrained to small scenes due to the memory footprint during training, which we study in this paper. Previous work on large-scale NeRFs palliate this by dividing the scene into NeRFs. This paper introduces Snake-NeRF, a framework that scales to large scenes. Our out-of-core method eliminates the need to load all images and networks simultaneously, and operates on a single device. We achieve this by dividing the region of interest into NeRFs that 3D tile without overlap. Importantly, we crop the images with overlap to ensure each NeRFs is trained with all the necessary pixels. We introduce a novel $2\times 2$ 3D tile progression strategy and segmented sampler, which together prevent 3D reconstruction errors along the tile edges. Our experiments conclude that large satellite images can effectively be processed with linear time complexity, on a single GPU, and without compromise in quality.

Authors:Yuxiao Wang, Yu Lei, Zhenao Wei, Weiying Xue, Xinyu Jiang, Nan Zhuang, Qi Liu
Title: Prompt Guidance and Human Proximal Perception for HOT Prediction with Regional Joint Loss
Abstract:
The task of Human-Object conTact (HOT) detection involves identifying the specific areas of the human body that are touching objects. Nevertheless, current models are restricted to just one type of image, often leading to too much segmentation in areas with little interaction, and struggling to maintain category consistency within specific regions. To tackle this issue, a HOT framework, termed \textbf{P3HOT}, is proposed, which blends \textbf{P}rompt guidance and human \textbf{P}roximal \textbf{P}erception. To begin with, we utilize a semantic-driven prompt mechanism to direct the network's attention towards the relevant regions based on the correlation between image and text. Then a human proximal perception mechanism is employed to dynamically perceive key depth range around the human, using learnable parameters to effectively eliminate regions where interactions are not expected. Calculating depth resolves the uncertainty of the overlap between humans and objects in a 2D perspective, providing a quasi-3D viewpoint. Moreover, a Regional Joint Loss (RJLoss) has been created as a new loss to inhibit abnormal categories in the same area. A new evaluation metric called ``AD-Acc.'' is introduced to address the shortcomings of existing methods in addressing negative samples. Comprehensive experimental results demonstrate that our approach achieves state-of-the-art performance in four metrics across two benchmark datasets. Specifically, our model achieves an improvement of \textbf{0.7}$\uparrow$, \textbf{2.0}$\uparrow$, \textbf{1.6}$\uparrow$, and \textbf{11.0}$\uparrow$ in SC-Acc., mIoU, wIoU, and AD-Acc. metrics, respectively, on the HOT-Annotated dataset. The sources code are available at https://github.com/YuxiaoWang-AI/P3HOT.

Authors:Robert Aufschläger, Youssef Shoeb, Azarm Nowzad, Michael Heigl, Fabian Bally, Martin Schramm
Title: Following the Clues: Experiments on Person Re-ID using Cross-Modal Intelligence
Abstract:
The collection and release of street-level recordings as Open Data play a vital role in advancing autonomous driving systems and AI research. However, these datasets pose significant privacy risks, particularly for pedestrians, due to the presence of Personally Identifiable Information (PII) that extends beyond biometric traits such as faces. In this paper, we present cRID, a novel cross-modal framework combining Large Vision-Language Models, Graph Attention Networks, and representation learning to detect textual describable clues of PII and enhance person re-identification (Re-ID). Our approach focuses on identifying and leveraging interpretable features, enabling the detection of semantically meaningful PII beyond low-level appearance cues. We conduct a systematic evaluation of PII presence in person image datasets. Our experiments show improved performance in practical cross-dataset Re-ID scenarios, notably from Market-1501 to CUHK03-np (detected), highlighting the framework's practical utility. Code is available at https://github.com/RAufschlaeger/cRID.

Authors:Huanwen Liang, Jingxian Xu, Yuanji Zhang, Yuhao Huang, Yuhan Zhang, Xin Yang, Ran Li, Xuedong Deng, Yanjun Liu, Guowei Tao, Yun Wu, Sheng Zhao, Xinru Gao, Dong Ni
Title: Medical-Knowledge Driven Multiple Instance Learning for Classifying Severe Abdominal Anomalies on Prenatal Ultrasound
Abstract:
Fetal abdominal malformations are serious congenital anomalies that require accurate diagnosis to guide pregnancy management and reduce mortality. Although AI has demonstrated significant potential in medical diagnosis, its application to prenatal abdominal anomalies remains limited. Most existing studies focus on image-level classification and rely on standard plane localization, placing less emphasis on case-level diagnosis. In this paper, we develop a case-level multiple instance learning (MIL)-based method, free of standard plane localization, for classifying fetal abdominal anomalies in prenatal ultrasound. Our contribution is three-fold. First, we adopt a mixture-of-attention-experts module (MoAE) to weight different attention heads for various planes. Secondly, we propose a medical-knowledge-driven feature selection module (MFS) to align image features with medical knowledge, performing self-supervised image token selection at the case-level. Finally, we propose a prompt-based prototype learning (PPL) to enhance the MFS. Extensively validated on a large prenatal abdominal ultrasound dataset containing 2,419 cases, with a total of 24,748 images and 6 categories, our proposed method outperforms the state-of-the-art competitors. Codes are available at:https://github.com/LL-AC/AAcls.

Authors:Yutong Wen, Minje Kim, Paris Smaragdis
Title: User-guided Generative Source Separation
Abstract:
Music source separation (MSS) aims to extract individual instrument sources from their mixture. While most existing methods focus on the widely adopted four-stem separation setup (vocals, bass, drums, and other instruments), this approach lacks the flexibility needed for real-world applications. To address this, we propose GuideSep, a diffusion-based MSS model capable of instrument-agnostic separation beyond the four-stem setup. GuideSep is conditioned on multiple inputs: a waveform mimicry condition, which can be easily provided by humming or playing the target melody, and mel-spectrogram domain masks, which offer additional guidance for separation. Unlike prior approaches that relied on fixed class labels or sound queries, our conditioning scheme, coupled with the generative approach, provides greater flexibility and applicability. Additionally, we design a mask-prediction baseline using the same model architecture to systematically compare predictive and generative approaches. Our objective and subjective evaluations demonstrate that GuideSep achieves high-quality separation while enabling more versatile instrument extraction, highlighting the potential of user participation in the diffusion-based generative process for MSS. Our code and demo page are available at https://yutongwen.github.io/GuideSep/

Authors:Jing Yu, Yibo Zhao, Jiapeng Zhu, Wenming Shao, Bo Pang, Zhao Zhang, Xiang Li
Title: Text Detoxification: Data Efficiency, Semantic Preservation and Model Generalization
Abstract:
The widespread dissemination of toxic content on social media poses a serious threat to both online environments and public discourse, highlighting the urgent need for detoxification methods that effectively remove toxicity while preserving the original semantics. However, existing approaches often struggle to simultaneously achieve strong detoxification performance, semantic preservation, and robustness to out-of-distribution data. Moreover, they typically rely on costly, manually annotated parallel corpora while showing poor data efficiency. To address these challenges, we propose a two-stage training framework that jointly optimizes for data efficiency, semantic preservation, and model generalization. We first perform supervised fine-tuning on a small set of high-quality, filtered parallel data to establish a strong initialization. Then, we leverage unlabeled toxic inputs and a custom-designed reward model to train the LLM using Group Relative Policy Optimization. Experimental results demonstrate that our method effectively mitigates the trade-offs faced by previous work, achieving state-of-the-art performance with improved generalization and significantly reduced dependence on annotated data. Our code is available at: https://github.com/allacnobug/Detoxification-of-Text.

Authors:Tianxiang Xia, Max Neuwinger, Lin Xiao
Title: Fast Clifford Neural Layers
Abstract:
Clifford Neural Layers improve PDE modeling by introducing Clifford Algebra into neural networks. In this project we focus on optimizing the inference of 2/3D Clifford convolutional layers and multivector activation layers for one core CPU performance. Overall, by testing on a real network block involving Clifford convolutional layers and multivector activation layers, we observe that our implementation is 30% faster than standard PyTorch implementation in relatively large data + network size (>L2 cache). We open source our code base at https://github.com/egretwAlker/c-opt-clifford-layers

Authors:V Team, Wenyi Hong, Wenmeng Yu, Xiaotao Gu, Guo Wang, Guobing Gan, Haomiao Tang, Jiale Cheng, Ji Qi, Junhui Ji, Lihang Pan, Shuaiqi Duan, Weihan Wang, Yan Wang, Yean Cheng, Zehai He, Zhe Su, Zhen Yang, Ziyang Pan, Aohan Zeng, Baoxu Wang, Bin Chen, Boyan Shi, Changyu Pang, Chenhui Zhang, Da Yin, Fan Yang, Guoqing Chen, Jiazheng Xu, Jiale Zhu, Jiali Chen, Jing Chen, Jinhao Chen, Jinghao Lin, Jinjiang Wang, Junjie Chen, Leqi Lei, Letian Gong, Leyi Pan, Mingdao Liu, Mingde Xu, Mingzhi Zhang, Qinkai Zheng, Sheng Yang, Shi Zhong, Shiyu Huang, Shuyuan Zhao, Siyan Xue, Shangqin Tu, Shengbiao Meng, Tianshu Zhang, Tianwei Luo, Tianxiang Hao, Tianyu Tong, Wenkai Li, Wei Jia, Xiao Liu, Xiaohan Zhang, Xin Lyu, Xinyue Fan, Xuancheng Huang, Yanling Wang, Yadong Xue, Yanfeng Wang, Yanzi Wang, Yifan An, Yifan Du, Yiming Shi, Yiheng Huang, Yilin Niu, Yuan Wang, Yuanchang Yue, Yuchen Li, Yutao Zhang, Yuting Wang, Yu Wang, Yuxuan Zhang, Zhao Xue, Zhenyu Hou, Zhengxiao Du, Zihan Wang, Peng Zhang, Debing Liu, Bin Xu, Juanzi Li, Minlie Huang, Yuxiao Dong, Jie Tang
Title: GLM-4.5V and GLM-4.1V-Thinking: Towards Versatile Multimodal Reasoning with Scalable Reinforcement Learning
Abstract:
We present GLM-4.1V-Thinking and GLM-4.5V, a family of vision-language models (VLMs) designed to advance general-purpose multimodal understanding and reasoning. In this report, we share our key findings in the development of the reasoning-centric training framework. We first develop a capable vision foundation model with significant potential through large-scale pre-training, which arguably sets the upper bound for the final performance. We then propose Reinforcement Learning with Curriculum Sampling (RLCS) to unlock the full potential of the model, leading to comprehensive capability enhancement across a diverse range of tasks, including STEM problem solving, video understanding, content recognition, coding, grounding, GUI-based agents, and long document interpretation. In a comprehensive evaluation across 42 public benchmarks, GLM-4.5V achieves state-of-the-art performance on nearly all tasks among open-source models of similar size, and demonstrates competitive or even superior results compared to closed-source models such as Gemini-2.5-Flash on challenging tasks including Coding and GUI Agents. Meanwhile, the smaller GLM-4.1V-9B-Thinking remains highly competitive-achieving superior results to the much larger Qwen2.5-VL-72B on 29 benchmarks. We open-source both GLM-4.1V-9B-Thinking and GLM-4.5V. Code, models and more information are released at https://github.com/zai-org/GLM-V.

Authors:Dongyoon Hahm, Woogyeol Jin, June Suk Choi, Sungsoo Ahn, Kimin Lee
Title: Enhancing LLM Agent Safety via Causal Influence Prompting
Abstract:
As autonomous agents powered by large language models (LLMs) continue to demonstrate potential across various assistive tasks, ensuring their safe and reliable behavior is crucial for preventing unintended consequences. In this work, we introduce CIP, a novel technique that leverages causal influence diagrams (CIDs) to identify and mitigate risks arising from agent decision-making. CIDs provide a structured representation of cause-and-effect relationships, enabling agents to anticipate harmful outcomes and make safer decisions. Our approach consists of three key steps: (1) initializing a CID based on task specifications to outline the decision-making process, (2) guiding agent interactions with the environment using the CID, and (3) iteratively refining the CID based on observed behaviors and outcomes. Experimental results demonstrate that our method effectively enhances safety in both code execution and mobile device control tasks.

Authors:Ke Liu, Shuaike Shen, Hao Chen
Title: From Sentences to Sequences: Rethinking Languages in Biological System
Abstract:
The paradigm of large language models in natural language processing (NLP) has also shown promise in modeling biological languages, including proteins, RNA, and DNA. Both the auto-regressive generation paradigm and evaluation metrics have been transferred from NLP to biological sequence modeling. However, the intrinsic structural correlations in natural and biological languages differ fundamentally. Therefore, we revisit the notion of language in biological systems to better understand how NLP successes can be effectively translated to biological domains. By treating the 3D structure of biomolecules as the semantic content of a sentence and accounting for the strong correlations between residues or bases, we highlight the importance of structural evaluation and demonstrate the applicability of the auto-regressive paradigm in biological language modeling. Code can be found at \href{https://github.com/zjuKeLiu/RiFold}{github.com/zjuKeLiu/RiFold}

Authors:Jindong Han, Yansong Ning, Zirui Yuan, Hang Ni, Fan Liu, Tengfei Lyu, Hao Liu
Title: Large Language Model Powered Intelligent Urban Agents: Concepts, Capabilities, and Applications
Abstract:
The long-standing vision of intelligent cities is to create efficient, livable, and sustainable urban environments using big data and artificial intelligence technologies. Recently, the advent of Large Language Models (LLMs) has opened new ways toward realizing this vision. With powerful semantic understanding and reasoning capabilities, LLMs can be deployed as intelligent agents capable of autonomously solving complex problems across domains. In this article, we focus on Urban LLM Agents, which are LLM-powered agents that are semi-embodied within the hybrid cyber-physical-social space of cities and used for system-level urban decision-making. First, we introduce the concept of urban LLM agents, discussing their unique capabilities and features. Second, we survey the current research landscape from the perspective of agent workflows, encompassing urban sensing, memory management, reasoning, execution, and learning. Third, we categorize the application domains of urban LLM agents into five groups: urban planning, transportation, environment, public safety, and urban society, presenting representative works in each group. Finally, we discuss trustworthiness and evaluation issues that are critical for real-world deployment, and identify several open problems for future research. This survey aims to establish a foundation for the emerging field of urban LLM agents and to provide a roadmap for advancing the intersection of LLMs and urban intelligence. A curated list of relevant papers and open-source resources is maintained and continuously updated at https://github.com/usail-hkust/Awesome-Urban-LLM-Agents.

Authors:Ruihan Xu, Haokui Zhang, Yaowei Wang, Wei Zeng, Shiliang Zhang
Title: NN-Former: Rethinking Graph Structure in Neural Architecture Representation
Abstract:
The growing use of deep learning necessitates efficient network design and deployment, making neural predictors vital for estimating attributes such as accuracy and latency. Recently, Graph Neural Networks (GNNs) and transformers have shown promising performance in representing neural architectures. However, each of both methods has its disadvantages. GNNs lack the capabilities to represent complicated features, while transformers face poor generalization when the depth of architecture grows. To mitigate the above issues, we rethink neural architecture topology and show that sibling nodes are pivotal while overlooked in previous research. We thus propose a novel predictor leveraging the strengths of GNNs and transformers to learn the enhanced topology. We introduce a novel token mixer that considers siblings, and a new channel mixer named bidirectional graph isomorphism feed-forward network. Our approach consistently achieves promising performance in both accuracy and latency prediction, providing valuable insights for learning Directed Acyclic Graph (DAG) topology. The code is available at https://github.com/XuRuihan/NNFormer.

Authors:Huaqiu Li, Yong Wang, Tongwen Huang, Hailang Huang, Haoqian Wang, Xiangxiang Chu
Title: LD-RPS: Zero-Shot Unified Image Restoration via Latent Diffusion Recurrent Posterior Sampling
Abstract:
Unified image restoration is a significantly challenging task in low-level vision. Existing methods either make tailored designs for specific tasks, limiting their generalizability across various types of degradation, or rely on training with paired datasets, thereby suffering from closed-set constraints. To address these issues, we propose a novel, dataset-free, and unified approach through recurrent posterior sampling utilizing a pretrained latent diffusion model. Our method incorporates the multimodal understanding model to provide sematic priors for the generative model under a task-blind condition. Furthermore, it utilizes a lightweight module to align the degraded input with the generated preference of the diffusion model, and employs recurrent refinement for posterior sampling. Extensive experiments demonstrate that our method outperforms state-of-the-art methods, validating its effectiveness and robustness. Our code and data are available at https://github.com/AMAP-ML/LD-RPS.

Authors:Dongyoon Hwang, Hojoon Lee, Jaegul Choo, Dongmin Park, Jongho Park
Title: Can Large Language Models Develop Strategic Reasoning? Post-training Insights from Learning Chess
Abstract:
While reinforcement learning (RL) for large language models (LLMs) has shown promise in mathematical reasoning, strategic reasoning for LLMs using RL remains largely unexplored. We investigate whether LLMs can develop strategic reasoning capabilities through RL in chess. To this end, we leverage a chess-pretrained action-value network to provide dense reward on the LLM's output move quality, which can be seen as a form of knowledge distillation. Our experiments show that our distillation-based dense rewards often outperform sparse binary rewards. However, surprisingly, all models plateau far below expert levels. We provide SFT and RL ablations on chess reasoning training and find evidence that this limitation stems from a deficit in the pretrained models' internal understanding of chess-a deficit which RL alone may not be able to fully overcome. The code is available at https://github.com/krafton-ai/Chess-R1.

Authors:Sihang Li, Wei Shi, Ziyuan Xie, Tao Liang, Guojun Ma, Xiang Wang
Title: SAFER: Probing Safety in Reward Models with Sparse Autoencoder
Abstract:
Reinforcement learning from human feedback (RLHF) is a key paradigm for aligning large language models (LLMs) with human values, yet the reward models at its core remain largely opaque. In this work, we present sparse Autoencoder For Enhanced Reward model (\textbf{SAFER}), a novel framework for interpreting and improving reward models through mechanistic analysis. Leveraging Sparse Autoencoders (SAEs), we uncover human-interpretable features in reward model activations, enabling insight into safety-relevant decision-making. We apply SAFER to safety-oriented preference datasets and quantify the salience of individual features by activation differences between chosen and rejected responses. Using these feature-level signals, we design targeted data poisoning and denoising strategies. Experiments show that SAFER can precisely degrade or enhance safety alignment with minimal data modification, without sacrificing general chat performance. Our approach contributes to interpreting, auditing and refining reward models in high-stakes LLM alignment tasks. Our codes are available at https://github.com/xzy-101/SAFER-code. \textit{This paper discusses topics related to large language model safety and may include discussions or examples that highlight potential risks or unsafe outcomes.}

Authors:Rusi Chen, Yuanting Yang, Jiezhi Yao, Hongning Song, Ji Zhang, Yongsong Zhou, Yuhao Huang, Ronghao Yang, Dan Jia, Yuhan Zhang, Xing Tao, Haoran Dou, Qing Zhou, Xin Yang, Dong Ni
Title: MTCNet: Motion and Topology Consistency Guided Learning for Mitral Valve Segmentationin 4D Ultrasound
Abstract:
Mitral regurgitation is one of the most prevalent cardiac disorders. Four-dimensional (4D) ultrasound has emerged as the primary imaging modality for assessing dynamic valvular morphology. However, 4D mitral valve (MV) analysis remains challenging due to limited phase annotations, severe motion artifacts, and poor imaging quality. Yet, the absence of inter-phase dependency in existing methods hinders 4D MV analysis. To bridge this gap, we propose a Motion-Topology guided consistency network (MTCNet) for accurate 4D MV ultrasound segmentation in semi-supervised learning (SSL). MTCNet requires only sparse end-diastolic and end-systolic annotations. First, we design a cross-phase motion-guided consistency learning strategy, utilizing a bi-directional attention memory bank to propagate spatio-temporal features. This enables MTCNet to achieve excellent performance both per- and inter-phase. Second, we devise a novel topology-guided correlation regularization that explores physical prior knowledge to maintain anatomically plausible. Therefore, MTCNet can effectively leverage structural correspondence between labeled and unlabeled phases. Extensive evaluations on the first largest 4D MV dataset, with 1408 phases from 160 patients, show that MTCNet performs superior cross-phase consistency compared to other advanced methods (Dice: 87.30%, HD: 1.75mm). Both the code and the dataset are available at https://github.com/crs524/MTCNet.

Authors:Chenyang Cao, Miguel Rogel-García, Mohamed Nabail, Xueqian Wang, Nicholas Rhinehart
Title: Residual Reward Models for Preference-based Reinforcement Learning
Abstract:
Preference-based Reinforcement Learning (PbRL) provides a way to learn high-performance policies in environments where the reward signal is hard to specify, avoiding heuristic and time-consuming reward design. However, PbRL can suffer from slow convergence speed since it requires training in a reward model. Prior work has proposed learning a reward model from demonstrations and fine-tuning it using preferences. However, when the model is a neural network, using different loss functions for pre-training and fine-tuning can pose challenges to reliable optimization. In this paper, we propose a method to effectively leverage prior knowledge with a Residual Reward Model (RRM). An RRM assumes that the true reward of the environment can be split into a sum of two parts: a prior reward and a learned reward. The prior reward is a term available before training, for example, a user's ``best guess'' reward function, or a reward function learned from inverse reinforcement learning (IRL), and the learned reward is trained with preferences. We introduce state-based and image-based versions of RRM and evaluate them on several tasks in the Meta-World environment suite. Experimental results show that our method substantially improves the performance of a common PbRL method. Our method achieves performance improvements for a variety of different types of prior rewards, including proxy rewards, a reward obtained from IRL, and even a negated version of the proxy reward. We also conduct experiments with a Franka Panda to show that our method leads to superior performance on a real robot. It significantly accelerates policy learning for different tasks, achieving success in fewer steps than the baseline. The videos are presented at https://sunlighted.github.io/RRM-web/.

Authors:Djamahl Etchegaray, Yuxia Fu, Zi Huang, Yadan Luo
Title: Box-QAymo: Box-Referring VQA Dataset for Autonomous Driving
Abstract:
Interpretable communication is essential for safe and trustworthy autonomous driving, yet current vision-language models (VLMs) often operate under idealized assumptions and struggle to capture user intent in real-world scenarios. Existing driving-oriented VQA datasets are limited to full-scene descriptions or waypoint prediction, preventing the assessment of whether VLMs can respond to localized user-driven queries. We introduce Box-QAymo, a box-referring dataset and benchmark designed to both evaluate and finetune VLMs on spatial and temporal reasoning over user-specified objects. Users express intent by drawing bounding boxes, offering a fast and intuitive interface for focused queries in complex scenes. Specifically, we propose a hierarchical evaluation protocol that begins with binary sanity-check questions to assess basic model capacities, and progresses to (1) attribute prediction for box-referred objects, (2) motion understanding of target instances, and (3) spatiotemporal motion reasoning over inter-object dynamics across frames. To support this, we crowd-sourced fine-grained object classes and visual attributes that reflect the complexity drivers encounter, and extract object trajectories to construct temporally grounded QA pairs. Rigorous quality control through negative sampling, temporal consistency checks, and difficulty-aware balancing guarantee dataset robustness and diversity. Our comprehensive evaluation reveals significant limitations in current VLMs when queried about perception questions, highlighting the gap in achieving real-world performance. This work provides a foundation for developing more robust and interpretable autonomous driving systems that can communicate effectively with users under real-world conditions. Project page and dataset are available at https://djamahl99.github.io/qaymo-pages/.

Authors:Weiran Guo, Guanjun Liu, Ziyuan Zhou, Ling Wang
Title: PNAct: Crafting Backdoor Attacks in Safe Reinforcement Learning
Abstract:
Reinforcement Learning (RL) is widely used in tasks where agents interact with an environment to maximize rewards. Building on this foundation, Safe Reinforcement Learning (Safe RL) incorporates a cost metric alongside the reward metric, ensuring that agents adhere to safety constraints during decision-making. In this paper, we identify that Safe RL is vulnerable to backdoor attacks, which can manipulate agents into performing unsafe actions. First, we introduce the relevant concepts and evaluation metrics for backdoor attacks in Safe RL. It is the first attack framework in the Safe RL field that involves both Positive and Negative Action sample (PNAct) is to implant backdoors, where positive action samples provide reference actions and negative action samples indicate actions to be avoided. We theoretically point out the properties of PNAct and design an attack algorithm. Finally, we conduct experiments to evaluate the effectiveness of our proposed backdoor attack framework, evaluating it with the established metrics. This paper highlights the potential risks associated with Safe RL and underscores the feasibility of such attacks. Our code and supplementary material are available at https://github.com/azure-123/PNAct.

Authors:Yujia Yin, Tianyi Qu, Zihao Wang, Yifan Chen
Title: A Recipe for Causal Graph Regression: Confounding Effects Revisited
Abstract:
Through recognizing causal subgraphs, causal graph learning (CGL) has risen to be a promising approach for improving the generalizability of graph neural networks under out-of-distribution (OOD) scenarios. However, the empirical successes of CGL techniques are mostly exemplified in classification settings, while regression tasks, a more challenging setting in graph learning, are overlooked. We thus devote this work to tackling causal graph regression (CGR); to this end we reshape the processing of confounding effects in existing CGL studies, which mainly deal with classification. Specifically, we reflect on the predictive power of confounders in graph-level regression, and generalize classification-specific causal intervention techniques to regression through a lens of contrastive learning. Extensive experiments on graph OOD benchmarks validate the efficacy of our proposals for CGR. The model implementation and the code are provided on https://github.com/causal-graph/CGR.

Authors:Yimin Dou, Xinming Wu, Nathan L Bangs, Harpreet Singh Sethi, Jintao Li, Hang Gao, Zhixiang Guo
Title: Geological Everything Model 3D: A Promptable Foundation Model for Unified and Zero-Shot Subsurface Understanding
Abstract:
Understanding Earth's subsurface is critical for energy transition, natural hazard mitigation, and planetary science. Yet subsurface analysis remains fragmented, with separate models required for structural interpretation, stratigraphic analysis, geobody segmentation, and property modeling-each tightly coupled to specific data distributions and task formulations. We introduce the Geological Everything Model 3D (GEM), a unified generative architecture that reformulates all these tasks as prompt-conditioned inference along latent structural frameworks derived from subsurface imaging. This formulation moves beyond task-specific models by enabling a shared inference mechanism, where GEM propagates human-provided prompts-such as well logs, masks, or structural sketches-along inferred structural frameworks to produce geologically coherent outputs. Through this mechanism, GEM achieves zero-shot generalization across tasks with heterogeneous prompt types, without retraining for new tasks or data sources. This capability emerges from a two-stage training process that combines self-supervised representation learning on large-scale field seismic data with adversarial fine-tuning using mixed prompts and labels across diverse subsurface tasks. GEM demonstrates broad applicability across surveys and tasks, including Martian radar stratigraphy analysis, structural interpretation in subduction zones, full seismic stratigraphic interpretation, geobody segmentation, and property modeling. By bridging expert knowledge with generative reasoning in a structurally aware manner, GEM lays the foundation for scalable, human-in-the-loop geophysical AI-transitioning from fragmented pipelines to a vertically integrated, promptable reasoning system. Project page: https://douyimin.github.io/GEM

Authors:Ethan Smyth, Alessandro Suglia
Title: VoyagerVision: Investigating the Role of Multi-modal Information for Open-ended Learning Systems
Abstract:
Open-endedness is an active field of research in the pursuit of capable Artificial General Intelligence (AGI), allowing models to pursue tasks of their own choosing. Simultaneously, recent advancements in Large Language Models (LLMs) such as GPT-4o [9] have allowed such models to be capable of interpreting image inputs. Implementations such as OMNI-EPIC [4] have made use of such features, providing an LLM with pixel data of an agent's POV to parse the environment and allow it to solve tasks. This paper proposes that providing these visual inputs to a model gives it greater ability to interpret spatial environments, and as such, can increase the number of tasks it can successfully perform, extending its open-ended potential. To this aim, this paper proposes VoyagerVision -- a multi-modal model capable of creating structures within Minecraft using screenshots as a form of visual feedback, building on the foundation of Voyager. VoyagerVision was capable of creating an average of 2.75 unique structures within fifty iterations of the system, as Voyager was incapable of this, it is an extension in an entirely new direction. Additionally, in a set of building unit tests VoyagerVision was successful in half of all attempts in flat worlds, with most failures arising in more complex structures. Project website is available at https://esmyth-dev.github.io/VoyagerVision.github.io/

Authors:Hoang-Dieu Vu, Duc-Nghia Tran, Quang-Tu Pham, Hieu H. Pham, Nicolas Vuillerme, Duc-Tan Tran
Title: Smooth-Distill: A Self-distillation Framework for Multitask Learning with Wearable Sensor Data
Abstract:
This paper introduces Smooth-Distill, a novel self-distillation framework designed to simultaneously perform human activity recognition (HAR) and sensor placement detection using wearable sensor data. The proposed approach utilizes a unified CNN-based architecture, MTL-net, which processes accelerometer data and branches into two outputs for each respective task. Unlike conventional distillation methods that require separate teacher and student models, the proposed framework utilizes a smoothed, historical version of the model itself as the teacher, significantly reducing training computational overhead while maintaining performance benefits. To support this research, we developed a comprehensive accelerometer-based dataset capturing 12 distinct sleep postures across three different wearing positions, complementing two existing public datasets (MHealth and WISDM). Experimental results show that Smooth-Distill consistently outperforms alternative approaches across different evaluation scenarios, achieving notable improvements in both human activity recognition and device placement detection tasks. This method demonstrates enhanced stability in convergence patterns during training and exhibits reduced overfitting compared to traditional multitask learning baselines. This framework contributes to the practical implementation of knowledge distillation in human activity recognition systems, offering an effective solution for multitask learning with accelerometer data that balances accuracy and training efficiency. More broadly, it reduces the computational cost of model training, which is critical for scenarios requiring frequent model updates or training on resource-constrained platforms. The code and model are available at https://github.com/Kuan2vn/smooth\_distill.

Authors:Mehmet Yigit Avci, Pedro Borges, Paul Wright, Mehmet Yigitsoy, Sebastien Ourselin, Jorge Cardoso
Title: MR-CLIP: Efficient Metadata-Guided Learning of MRI Contrast Representations
Abstract:
Accurate interpretation of Magnetic Resonance Imaging scans in clinical systems is based on a precise understanding of image contrast. This contrast is primarily governed by acquisition parameters, such as echo time and repetition time, which are stored in the DICOM metadata. To simplify contrast identification, broad labels such as T1-weighted or T2-weighted are commonly used, but these offer only a coarse approximation of the underlying acquisition settings. In many real-world datasets, such labels are entirely missing, leaving raw acquisition parameters as the only indicators of contrast. Adding to this challenge, the available metadata is often incomplete, noisy, or inconsistent. The lack of reliable and standardized metadata complicates tasks such as image interpretation, retrieval, and integration into clinical workflows. Furthermore, robust contrast-aware representations are essential to enable more advanced clinical applications, such as achieving modality-invariant representations and data harmonization. To address these challenges, we propose MR-CLIP, a multimodal contrastive learning framework that aligns MR images with their DICOM metadata to learn contrast-aware representations, without relying on manual labels. Trained on a diverse clinical dataset that spans various scanners and protocols, MR-CLIP captures contrast variations across acquisitions and within scans, enabling anatomy-invariant representations. We demonstrate its effectiveness in cross-modal retrieval and contrast classification, highlighting its scalability and potential for further clinical applications. The code and weights are publicly available at https://github.com/myigitavci/MR-CLIP.

Authors:Varun Mannam, Fang Wang, Chaochun Liu, Xin Chen
Title: TalentMine: LLM-Based Extraction and Question-Answering from Multimodal Talent Tables
Abstract:
In talent management systems, critical information often resides in complex tabular formats, presenting significant retrieval challenges for conventional language models. These challenges are pronounced when processing Talent documentation that requires precise interpretation of tabular relationships for accurate information retrieval and downstream decision-making. Current table extraction methods struggle with semantic understanding, resulting in poor performance when integrated into retrieval-augmented chat applications. This paper identifies a key bottleneck - while structural table information can be extracted, the semantic relationships between tabular elements are lost, causing downstream query failures. To address this, we introduce TalentMine, a novel LLM-enhanced framework that transforms extracted tables into semantically enriched representations. Unlike conventional approaches relying on CSV or text linearization, our method employs specialized multimodal reasoning to preserve both structural and semantic dimensions of tabular data. Experimental evaluation across employee benefits document collections demonstrates TalentMine's superior performance, achieving 100% accuracy in query answering tasks compared to 0% for standard AWS Textract extraction and 40% for AWS Textract Visual Q&A capabilities. Our comparative analysis also reveals that the Claude v3 Haiku model achieves optimal performance for talent management applications. The key contributions of this work include (1) a systematic analysis of semantic information loss in current table extraction pipelines, (2) a novel LLM-based method for semantically enriched table representation, (3) an efficient integration framework for retrieval-augmented systems as end-to-end systems, and (4) comprehensive benchmarks on talent analytics tasks showing substantial improvements across multiple categories.

Authors:Phoomraphee Luenam, Andreas Spanopoulos, Amit Sant, Thomas Hofmann, Sotiris Anagnostidis, Sidak Pal Singh
Title: Model Fusion via Neuron Interpolation
Abstract:
Model fusion aims to combine the knowledge of multiple models by creating one representative model that captures the strengths of all of its parents. However, this process is non-trivial due to differences in internal representations, which can stem from permutation invariance, random initialization, or differently distributed training data. We present a novel, neuron-centric family of model fusion algorithms designed to integrate multiple trained neural networks into a single network effectively regardless of training data distribution. Our algorithms group intermediate neurons of parent models to create target representations that the fused model approximates with its corresponding sub-network. Unlike prior approaches, our approach incorporates neuron attribution scores into the fusion process. Furthermore, our algorithms can generalize to arbitrary layer types. Experimental results on various benchmark datasets demonstrate that our algorithms consistently outperform previous fusion techniques, particularly in zero-shot and non-IID fusion scenarios. The code is available at https://github.com/AndrewSpano/neuron-interpolation-model-fusion.

Authors:Tiexin Qin, Hong Yan, Haoliang Li
Title: Generalizing to New Dynamical Systems via Frequency Domain Adaptation
Abstract:
Learning the underlying dynamics from data with deep neural networks has shown remarkable potential in modeling various complex physical dynamics. However, current approaches are constrained in their ability to make reliable predictions in a specific domain and struggle with generalizing to unseen systems that are governed by the same general dynamics but differ in environmental characteristics. In this work, we formulate a parameter-efficient method, Fourier Neural Simulator for Dynamical Adaptation (FNSDA), that can readily generalize to new dynamics via adaptation in the Fourier space. Specifically, FNSDA identifies the shareable dynamics based on the known environments using an automatic partition in Fourier modes and learns to adjust the modes specific for each new environment by conditioning on low-dimensional latent systematic parameters for efficient generalization. We evaluate our approach on four representative families of dynamic systems, and the results show that FNSDA can achieve superior or competitive generalization performance compared to existing methods with a significantly reduced parameter cost. Our code is available at https://github.com/WonderSeven/FNSDA.