arXiv Papers of Image/Video Anomaly Detection

Paperid: 1, https://arxiv.org/pdf/2601.20524.pdf   GitHub
Authors:Matic Fučka, Vitjan Zavrtanik, Danijel Skočaj
Title: AnomalyVFM -- Transforming Vision Foundation Models into Zero-Shot Anomaly Detectors
Abstract:
Zero-shot anomaly detection aims to detect and localise abnormal regions in the image without access to any in-domain training images. While recent approaches leverage vision-language models (VLMs), such as CLIP, to transfer high-level concept knowledge, methods based on purely vision foundation models (VFMs), like DINOv2, have lagged behind in performance. We argue that this gap stems from two practical issues: (i) limited diversity in existing auxiliary anomaly detection datasets and (ii) overly shallow VFM adaptation strategies. To address both challenges, we propose AnomalyVFM, a general and effective framework that turns any pretrained VFM into a strong zero-shot anomaly detector. Our approach combines a robust three-stage synthetic dataset generation scheme with a parameter-efficient adaptation mechanism, utilising low-rank feature adapters and a confidence-weighted pixel loss. Together, these components enable modern VFMs to substantially outperform current state-of-the-art methods. More specifically, with RADIO as a backbone, AnomalyVFM achieves an average image-level AUROC of 94.1% across 9 diverse datasets, surpassing previous methods by significant 3.3 percentage points. Project Page: https://maticfuc.github.io/anomaly_vfm/
Authors:Yixin Liu, Kehan Yan, Shiyuan Li, Qingfeng Chen, Shirui Pan
Title: Beyond a Single Perspective: Text Anomaly Detection with Multi-View Language Representations
Abstract:
Text anomaly detection (TAD) plays a critical role in various language-driven real-world applications, including harmful content moderation, phishing detection, and spam review filtering. While two-step "embedding-detector" TAD methods have shown state-of-the-art performance, their effectiveness is often limited by the use of a single embedding model and the lack of adaptability across diverse datasets and anomaly types. To address these limitations, we propose to exploit the embeddings from multiple pretrained language models and integrate them into $MCA^2$, a multi-view TAD framework. $MCA^2$ adopts a multi-view reconstruction model to effectively extract normal textual patterns from multiple embedding perspectives. To exploit inter-view complementarity, a contrastive collaboration module is designed to leverage and strengthen the interactions across different views. Moreover, an adaptive allocation module is developed to automatically assign the contribution weight of each view, thereby improving the adaptability to diverse datasets. Extensive experiments on 10 benchmark datasets verify the effectiveness of $MCA^2$ against strong baselines. The source code of $MCA^2$ is available at https://github.com/yankehan/MCA2.
Authors:Zichuan Yang, Yiming Xing
Title: Active Hypothesis Testing for Correlated Combinatorial Anomaly Detection
Abstract:
We study the problem of identifying an anomalous subset of streams under correlated noise, motivated by monitoring and security in cyber-physical systems. This problem can be viewed as a form of combinatorial pure exploration, where each stream plays the role of an arm and measurements must be allocated sequentially under uncertainty. Existing combinatorial bandit and hypothesis testing methods typically assume independent observations and fail to exploit correlation for efficient measurement design. We propose ECC-AHT, an adaptive algorithm that selects continuous, constrained measurements to maximize Chernoff information between competing hypotheses, enabling active noise cancellation through differential sensing. ECC-AHT achieves optimal sample complexity guarantees and significantly outperforms state-of-the-art baselines in both synthetic and real-world correlated environments. The code is available on https://github.com/VincentdeCristo/ECC-AHT
Authors:Maab Elrashid, Anthony Deschênes, Cem Subakan, Mirco Ravanelli, Rémi Georges, Michael Morin
Title: Toward Faithful Explanations in Acoustic Anomaly Detection
Abstract:
Interpretability is essential for user trust in real-world anomaly detection applications. However, deep learning models, despite their strong performance, often lack transparency. In this work, we study the interpretability of autoencoder-based models for audio anomaly detection, by comparing a standard autoencoder (AE) with a mask autoencoder (MAE) in terms of detection performance and interpretability. We applied several attribution methods, including error maps, saliency maps, SmoothGrad, Integrated Gradients, GradSHAP, and Grad-CAM. Although MAE shows a slightly lower detection, it consistently provides more faithful and temporally precise explanations, suggesting a better alignment with true anomalies. To assess the relevance of the regions highlighted by the explanation method, we propose a perturbation-based faithfulness metric that replaces them with their reconstructions to simulate normal input. Our findings, based on experiments in a real industrial scenario, highlight the importance of incorporating interpretability into anomaly detection pipelines and show that masked training improves explanation quality without compromising performance.
Authors:Jiahui Sheng, Yidan Shi, Shu Xiang, Xiaorun Li, Shuhan Chen
Title: Utilizing the Score of Data Distribution for Hyperspectral Anomaly Detection
Abstract:
Hyperspectral images (HSIs) are a type of image that contains abundant spectral information. As a type of real-world data, the high-dimensional spectra in hyperspectral images are actually determined by only a few factors, such as chemical composition and illumination. Thus, spectra in hyperspectral images are highly likely to satisfy the manifold hypothesis. Based on the hyperspectral manifold hypothesis, we propose a novel hyperspectral anomaly detection method (named ScoreAD) that leverages the time-dependent gradient field of the data distribution (i.e., the score), as learned by a score-based generative model (SGM). Our method first trains the SGM on the entire set of spectra from the hyperspectral image. At test time, each spectrum is passed through a perturbation kernel, and the resulting perturbed spectrum is fed into the trained SGM to obtain the estimated score. The manifold hypothesis of HSIs posits that background spectra reside on one or more low-dimensional manifolds. Conversely, anomalous spectra, owing to their unique spectral signatures, are considered outliers that do not conform to the background manifold. Based on this fundamental discrepancy in their manifold distributions, we leverage a generative SGM to achieve hyperspectral anomaly detection. Experiments on the four hyperspectral datasets demonstrate the effectiveness of the proposed method. The code is available at https://github.com/jiahuisheng/ScoreAD.
Authors:Jiahui Sheng, Xiaorun Li, Shuhan Chen
Title: Turbo-GoDec: Exploiting the Cluster Sparsity Prior for Hyperspectral Anomaly Detection
Abstract:
As a key task in hyperspectral image processing, hyperspectral anomaly detection has garnered significant attention and undergone extensive research. Existing methods primarily relt on two prior assumption: low-rank background and sparse anomaly, along with additional spatial assumptions of the background. However, most methods only utilize the sparsity prior assumption for anomalies and rarely expand on this hypothesis. From observations of hyperspectral images, we find that anomalous pixels exhibit certain spatial distribution characteristics: they often manifest as small, clustered groups in space, which we refer to as cluster sparsity of anomalies. Then, we combined the cluster sparsity prior with the classical GoDec algorithm, incorporating the cluster sparsity prior into the S-step of GoDec. This resulted in a new hyperspectral anomaly detection method, which we called Turbo-GoDec. In this approach, we modeled the cluster sparsity prior of anomalies using a Markov random field and computed the marginal probabilities of anomalies through message passing on a factor graph. Locations with high anomalous probabilities were treated as the sparse component in the Turbo-GoDec. Experiments are conducted on three real hyperspectral image (HSI) datasets which demonstrate the superior performance of the proposed Turbo-GoDec method in detecting small-size anomalies comparing with the vanilla GoDec (LSMAD) and state-of-the-art anomaly detection methods. The code is available at https://github.com/jiahuisheng/Turbo-GoDec.
Authors:Fatih Maulana
Title: Impact of Circuit Depth versus Qubit Count on Variational Quantum Classifiers for Higgs Boson Signal Detection
Abstract:
High-Energy Physics (HEP) experiments, such as those at the Large Hadron Collider (LHC), generate massive datasets that challenge classical computational limits. Quantum Machine Learning (QML) offers a potential advantage in processing high-dimensional data; however, finding the optimal architecture for current Noisy Intermediate-Scale Quantum (NISQ) devices remains an open challenge. This study investigates the performance of Variational Quantum Classifiers (VQC) in detecting Higgs Boson signals using the ATLAS Higgs Boson Machine Learning Challenge 2014 experiment dataset. We implemented a dimensionality reduction pipeline using Principal Component Analysis (PCA) to map 30 physical features into 4-qubit and 8-qubit latent spaces. We benchmarked three configurations: (A) a shallow 4-qubit circuit, (B) a deep 4-qubit circuit with increased entanglement layers, and (C) an expanded 8-qubit circuit. Experimental results demonstrate that increasing circuit depth significantly improves performance, yielding the highest accuracy of 56.2% (Configuration B), compared to a baseline of 51.9%. Conversely, simply scaling to 8 qubits resulted in a performance degradation to 50.6% due to optimization challenges associated with Barren Plateaus in the larger Hilbert space. These findings suggest that for near-term quantum hardware, prioritizing circuit depth and entanglement capability is more critical than increasing qubit count for effective anomaly detection in HEP data.
Authors:Cheng-Zhuang Liu, Si-Bao Chen, Qing-Ling Shu, Chris Ding, Jin Tang, Bin Luo
Title: FTDMamba: Frequency-Assisted Temporal Dilation Mamba for Unmanned Aerial Vehicle Video Anomaly Detection
Abstract:
Recent advances in video anomaly detection (VAD) mainly focus on ground-based surveillance or unmanned aerial vehicle (UAV) videos with static backgrounds, whereas research on UAV videos with dynamic backgrounds remains limited. Unlike static scenarios, dynamically captured UAV videos exhibit multi-source motion coupling, where the motion of objects and UAV-induced global motion are intricately intertwined. Consequently, existing methods may misclassify normal UAV movements as anomalies or fail to capture true anomalies concealed within dynamic backgrounds. Moreover, many approaches do not adequately address the joint modeling of inter-frame continuity and local spatial correlations across diverse temporal scales. To overcome these limitations, we propose the Frequency-Assisted Temporal Dilation Mamba (FTDMamba) network for UAV VAD, including two core components: (1) a Frequency Decoupled Spatiotemporal Correlation Module, which disentangles coupled motion patterns and models global spatiotemporal dependencies through frequency analysis; and (2) a Temporal Dilation Mamba Module, which leverages Mamba's sequence modeling capability to jointly learn fine-grained temporal dynamics and local spatial structures across multiple temporal receptive fields. Additionally, unlike existing UAV VAD datasets which focus on static backgrounds, we construct a large-scale Moving UAV VAD dataset (MUVAD), comprising 222,736 frames with 240 anomaly events across 12 anomaly types. Extensive experiments demonstrate that FTDMamba achieves state-of-the-art (SOTA) performance on two public static benchmarks and the new MUVAD dataset. The code and MUVAD dataset will be available at: https://github.com/uavano/FTDMamba.
Authors:Samet Hicsonmez, Abd El Rahman Shabayek, Djamila Aouada
Title: Training Free Zero-Shot Visual Anomaly Localization via Diffusion Inversion
Abstract:
Zero-Shot image Anomaly Detection (ZSAD) aims to detect and localise anomalies without access to any normal training samples of the target data. While recent ZSAD approaches leverage additional modalities such as language to generate fine-grained prompts for localisation, vision-only methods remain limited to image-level classification, lacking spatial precision. In this work, we introduce a simple yet effective training-free vision-only ZSAD framework that circumvents the need for fine-grained prompts by leveraging the inversion of a pretrained Denoising Diffusion Implicit Model (DDIM). Specifically, given an input image and a generic text description (e.g., "an image of an [object class]"), we invert the image to obtain latent representations and initiate the denoising process from a fixed intermediate timestep to reconstruct the image. Since the underlying diffusion model is trained solely on normal data, this process yields a normal-looking reconstruction. The discrepancy between the input image and the reconstructed one highlights potential anomalies. Our method achieves state-of-the-art performance on VISA dataset, demonstrating strong localisation capabilities without auxiliary modalities and facilitating a shift away from prompt dependence for zero-shot anomaly detection research. Code is available at https://github.com/giddyyupp/DIVAD.
Authors:Hengyu Liu, Tianyi Li, Haoyu Wang, Kristian Torp, Tiancheng Zhang, Yushuai Li, Christian S. Jensen
Title: VISTA: Knowledge-Driven Interpretable Vessel Trajectory Imputation via Large Language Models
Abstract:
The Automatic Identification System provides critical information for maritime navigation and safety, yet its trajectories are often incomplete due to signal loss or deliberate tampering. Existing imputation methods emphasize trajectory recovery, paying limited attention to interpretability and failing to provide underlying knowledge that benefits downstream tasks such as anomaly detection and route planning. We propose knowledge-driven interpretable vessel trajectory imputation (VISTA), the first trajectory imputation framework that offers interpretability while simultaneously providing underlying knowledge to support downstream analysis. Specifically, we first define underlying knowledge as a combination of Structured Data-derived Knowledge (SDK) distilled from AIS data and Implicit LLM Knowledge acquired from large-scale Internet corpora. Second, to manage and leverage the SDK effectively at scale, we develop a data-knowledge-data loop that employs a Structured Data-derived Knowledge Graph for SDK extraction and knowledge-driven trajectory imputation. Third, to efficiently process large-scale AIS data, we introduce a workflow management layer that coordinates the end-to-end pipeline, enabling parallel knowledge extraction and trajectory imputation with anomaly handling and redundancy elimination. Experiments on two large AIS datasets show that VISTA is capable of state-of-the-art imputation accuracy and computational efficiency, improving over state-of-the-art baselines by 5%-94% and reducing time cost by 51%-93%, while producing interpretable knowledge cues that benefit downstream tasks. The source code and implementation details of VISTA are publicly available.
Authors:Bin-Bin Gao, Chengjie Wang
Title: One Language-Free Foundation Model Is Enough for Universal Vision Anomaly Detection
Abstract:
Universal visual anomaly detection (AD) aims to identify anomaly images and segment anomaly regions towards open and dynamic scenarios, following zero- and few-shot paradigms without any dataset-specific fine-tuning. We have witnessed significant progress in widely use of visual-language foundational models in recent approaches. However, current methods often struggle with complex prompt engineering, elaborate adaptation modules, and challenging training strategies, ultimately limiting their flexibility and generality. To address these issues, this paper rethinks the fundamental mechanism behind visual-language models for AD and presents an embarrassingly simple, general, and effective framework for Universal vision Anomaly Detection (UniADet). Specifically, we first find language encoder is used to derive decision weights for anomaly classification and segmentation, and then demonstrate that it is unnecessary for universal AD. Second, we propose an embarrassingly simple method to completely decouple classification and segmentation, and decouple cross-level features, i.e., learning independent weights for different tasks and hierarchical features. UniADet is highly simple (learning only decoupled weights), parameter-efficient (only 0.002M learnable parameters), general (adapting a variety of foundation models), and effective (surpassing state-of-the-art zero-/few-shot by a large margin and even full-shot AD methods for the first time) on 14 real-world AD benchmarks covering both industrial and medical domains. We will make the code and model of UniADet available at https://github.com/gaobb/UniADet.
Authors:Susmit Das
Title: TIME: Temporally Intelligent Meta-reasoning Engine for Context Triggered Explicit Reasoning
Abstract:
Reasoning oriented large language models often expose explicit "thinking" as long, turn-global traces at the start of every response, either always on or toggled externally at inference time. While useful for arithmetic, programming, and problem solving, this design is costly, blurs claim level auditability, and cannot re-trigger explicit reasoning once the model begins presenting. Dialogue models are also largely blind to temporal structure, treating replies after seconds and replies after weeks as equivalent unless time is stated in text. We introduce TIME, the Temporally Intelligent Meta-reasoning Engine, a behavioral alignment framework that treats explicit reasoning as a context sensitive resource driven by discourse and temporal cues. TIME augments dialogue with optional ISO 8601
Authors:Joongwon Chae, Lihui Luo, Yang Liu, Runming Wang, Dongmei Yu, Zeming Liang, Xi Yuan, Dayan Zhang, Zhenglin Chen, Peiwu Qin, Ilmoon Chae
Title: GCR: Geometry-Consistent Routing for Task-Agnostic Continual Anomaly Detection
Abstract:
Feature-based anomaly detection is widely adopted in industrial inspection due to the strong representational power of large pre-trained vision encoders. While most existing methods focus on improving within-category anomaly scoring, practical deployments increasingly require task-agnostic operation under continual category expansion, where the category identity is unknown at test time. In this setting, overall performance is often dominated by expert selection, namely routing an input to an appropriate normality model before any head-specific scoring is applied. However, routing rules that compare head-specific anomaly scores across independently constructed heads are unreliable in practice, as score distributions can differ substantially across categories in scale and tail behavior. We propose GCR, a lightweight mixture-of-experts framework for stabilizing task-agnostic continual anomaly detection through geometry-consistent routing. GCR routes each test image directly in a shared frozen patch-embedding space by minimizing an accumulated nearest-prototype distance to category-specific prototype banks, and then computes anomaly maps only within the routed expert using a standard prototype-based scoring rule. By separating cross-head decision making from within-head anomaly scoring, GCR avoids cross-head score comparability issues without requiring end-to-end representation learning. Experiments on MVTec AD and VisA show that geometry-consistent routing substantially improves routing stability and mitigates continual performance collapse, achieving near-zero forgetting while maintaining competitive detection and localization performance. These results indicate that many failures previously attributed to representation forgetting can instead be explained by decision-rule instability in cross-head routing. Code is available at https://github.com/jw-chae/GCR
Authors:Mohammad Nasirzadeh, Jafar Tahmoresnezhad, Parviz Rashidi-Khazaee
Title: A unified framework for detecting point and collective anomalies in operating system logs via collaborative transformers
Abstract:
Log anomaly detection is crucial for preserving the security of operating systems. Depending on the source of log data collection, various information is recorded in logs that can be considered log modalities. In light of this intuition, unimodal methods often struggle by ignoring the different modalities of log data. Meanwhile, multimodal methods fail to handle the interactions between these modalities. Applying multimodal sentiment analysis to log anomaly detection, we propose CoLog, a framework that collaboratively encodes logs utilizing various modalities. CoLog utilizes collaborative transformers and multi-head impressed attention to learn interactions among several modalities, ensuring comprehensive anomaly detection. To handle the heterogeneity caused by these interactions, CoLog incorporates a modality adaptation layer, which adapts the representations from different log modalities. This methodology enables CoLog to learn nuanced patterns and dependencies within the data, enhancing its anomaly detection capabilities. Extensive experiments demonstrate CoLog's superiority over existing state-of-the-art methods. Furthermore, in detecting both point and collective anomalies, CoLog achieves a mean precision of 99.63%, a mean recall of 99.59%, and a mean F1 score of 99.61% across seven benchmark datasets for log-based anomaly detection. The comprehensive detection capabilities of CoLog make it highly suitable for cybersecurity, system monitoring, and operational efficiency. CoLog represents a significant advancement in log anomaly detection, providing a sophisticated and effective solution to point and collective anomaly detection through a unified framework and a solution to the complex challenges automatic log data analysis poses. We also provide the implementation of CoLog at https://github.com/NasirzadehMoh/CoLog.
Authors:Rajeeb Thapa Chhetri, Zhixiong Chen, Saurab Thapa
Title: Latent Sculpting for Zero-Shot Generalization: A Manifold Learning Approach to Out-of-Distribution Anomaly Detection
Abstract:
A fundamental limitation of supervised deep learning in high-dimensional tabular domains is "Generalization Collapse": models learn precise decision boundaries for known distributions but fail catastrophically when facing Out-of-Distribution (OOD) data. We hypothesize that this failure stems from the lack of topological constraints in the latent space, resulting in diffuse manifolds where novel anomalies remain statistically indistinguishable from benign data. To address this, we propose Latent Sculpting, a hierarchical two-stage representation learning framework. Stage 1 utilizes a hybrid 1D-CNN and Transformer Encoder trained with a novel Dual-Centroid Compactness Loss (DCCL) to actively "sculpt" benign traffic into a low-entropy, hyperspherical cluster. Unlike standard contrastive losses that rely on triplet mining, DCCL optimizes global cluster centroids to enforce absolute manifold density. Stage 2 conditions a Masked Autoregressive Flow (MAF) on this pre-structured manifold to learn an exact density estimate. We evaluate this methodology on the rigorous CIC-IDS-2017 benchmark, treating it as a proxy for complex, non-stationary data streams. Empirical results demonstrate that explicit manifold sculpting is a prerequisite for robust zero-shot generalization. While supervised baselines suffered catastrophic performance collapse on unseen distribution shifts (F1 approx 0.30) and the strongest unsupervised baseline achieved only 0.76, our framework achieved an F1-Score of 0.87 on strictly zero-shot anomalies. Notably, we report an 88.89% detection rate on "Infiltration" scenarios--a complex distributional shift where state-of-the-art supervised models achieved 0.00% accuracy. These findings suggest that decoupling structure learning from density estimation provides a scalable path toward generalized anomaly detection.
Authors:Xiao Jin, Liang Diao, Qixin Xiao, Yifan Hu, Ziqi Zhang, Yuchen Liu, Haisong Gu
Title: CCAD: Compressed Global Feature Conditioned Anomaly Detection
Abstract:
Anomaly detection holds considerable industrial significance, especially in scenarios with limited anomalous data. Currently, reconstruction-based and unsupervised representation-based approaches are the primary focus. However, unsupervised representation-based methods struggle to extract robust features under domain shift, whereas reconstruction-based methods often suffer from low training efficiency and performance degradation due to insufficient constraints. To address these challenges, we propose a novel method named Compressed Global Feature Conditioned Anomaly Detection (CCAD). CCAD synergizes the strengths of both paradigms by adapting global features as a new modality condition for the reconstruction model. Furthermore, we design an adaptive compression mechanism to enhance both generalization and training efficiency. Extensive experiments demonstrate that CCAD consistently outperforms state-of-the-art methods in terms of AUC while achieving faster convergence. In addition, we contribute a reorganized and re-annotated version of the DAGM 2007 dataset with new annotations to further validate our method's effectiveness. The code for reproducing main results is available at https://github.com/chloeqxq/CCAD.
Authors:Changwei Wu, Yifei Chen, Yuxin Du, Mingxuan Liu, Jinying Zong, Beining Wu, Jie Dong, Feiwei Qin, Yunkang Cao, Qiyuan Tian
Title: AnyAD: Unified Any-Modality Anomaly Detection in Incomplete Multi-Sequence MRI
Abstract:
Reliable anomaly detection in brain MRI remains challenging due to the scarcity of annotated abnormal cases and the frequent absence of key imaging modalities in real clinical workflows. Existing single-class or multi-class anomaly detection (AD) models typically rely on fixed modality configurations, require repetitive training, or fail to generalize to unseen modality combinations, limiting their clinical scalability. In this work, we present a unified Any-Modality AD framework that performs robust anomaly detection and localization under arbitrary MRI modality availability. The framework integrates a dual-pathway DINOv2 encoder with a feature distribution alignment mechanism that statistically aligns incomplete-modality features with full-modality representations, enabling stable inference even with severe modality dropout. To further enhance semantic consistency, we introduce an Intrinsic Normal Prototypes (INPs) extractor and an INP-guided decoder that reconstruct only normal anatomical patterns while naturally amplifying abnormal deviations. Through randomized modality masking and indirect feature completion during training, the model learns to adapt to all modality configurations without re-training. Extensive experiments on BraTS2018, MU-Glioma-Post, and Pretreat-MetsToBrain-Masks demonstrate that our approach consistently surpasses state-of-the-art industrial and medical AD baselines across 7 modality combinations, achieving superior generalization. This study establishes a scalable paradigm for multimodal medical AD under real-world, imperfect modality conditions. Our source code is available at https://github.com/wuchangw/AnyAD.
Authors:Yuxin Jiang, Yunkang Cao, Weiming Shen
Title: Prototypical Learning Guided Context-Aware Segmentation Network for Few-Shot Anomaly Detection
Abstract:
Few-shot anomaly detection (FSAD) denotes the identification of anomalies within a target category with a limited number of normal samples. Existing FSAD methods largely rely on pre-trained feature representations to detect anomalies, but the inherent domain gap between pre-trained representations and target FSAD scenarios is often overlooked. This study proposes a Prototypical Learning Guided Context-Aware Segmentation Network (PCSNet) to address the domain gap, thereby improving feature descriptiveness in target scenarios and enhancing FSAD performance. In particular, PCSNet comprises a prototypical feature adaption (PFA) sub-network and a context-aware segmentation (CAS) sub-network. PFA extracts prototypical features as guidance to ensure better feature compactness for normal data while distinct separation from anomalies. A pixel-level disparity classification loss is also designed to make subtle anomalies more distinguishable. Then a CAS sub-network is introduced for pixel-level anomaly localization, where pseudo anomalies are exploited to facilitate the training process. Experimental results on MVTec and MPDD demonstrate the superior FSAD performance of PCSNet, with 94.9% and 80.2% image-level AUROC in an 8-shot scenario, respectively. Real-world applications on automotive plastic part inspection further demonstrate that PCSNet can achieve promising results with limited training samples. Code is available at https://github.com/yuxin-jiang/PCSNet.
Authors:Da Zhang, Bingyu Li, Zhiyuan Zhao, Feiping Nie, Junyu Gao, Xuelong Li
Title: FusAD: Time-Frequency Fusion with Adaptive Denoising for General Time Series Analysis
Abstract:
Time series analysis plays a vital role in fields such as finance, healthcare, industry, and meteorology, underpinning key tasks including classification, forecasting, and anomaly detection. Although deep learning models have achieved remarkable progress in these areas in recent years, constructing an efficient, multi-task compatible, and generalizable unified framework for time series analysis remains a significant challenge. Existing approaches are often tailored to single tasks or specific data types, making it difficult to simultaneously handle multi-task modeling and effectively integrate information across diverse time series types. Moreover, real-world data are often affected by noise, complex frequency components, and multi-scale dynamic patterns, which further complicate robust feature extraction and analysis. To ameliorate these challenges, we propose FusAD, a unified analysis framework designed for diverse time series tasks. FusAD features an adaptive time-frequency fusion mechanism, integrating both Fourier and Wavelet transforms to efficiently capture global-local and multi-scale dynamic features. With an adaptive denoising mechanism, FusAD automatically senses and filters various types of noise, highlighting crucial sequence variations and enabling robust feature extraction in complex environments. In addition, the framework integrates a general information fusion and decoding structure, combined with masked pre-training, to promote efficient learning and transfer of multi-granularity representations. Extensive experiments demonstrate that FusAD consistently outperforms state-of-the-art models on mainstream time series benchmarks for classification, forecasting, and anomaly detection tasks, while maintaining high efficiency and scalability. Code is available at https://github.com/zhangda1018/FusAD.
Authors:Peichun Hua, Hao Li, Shanghao Shi, Zhiyuan Yu, Ning Zhang
Title: Rethinking Jailbreak Detection of Large Vision Language Models with Representational Contrastive Scoring
Abstract:
Large Vision-Language Models (LVLMs) are vulnerable to a growing array of multimodal jailbreak attacks, necessitating defenses that are both generalizable to novel threats and efficient for practical deployment. Many current strategies fall short, either targeting specific attack patterns, which limits generalization, or imposing high computational overhead. While lightweight anomaly-detection methods offer a promising direction, we find that their common one-class design tends to confuse novel benign inputs with malicious ones, leading to unreliable over-rejection. To address this, we propose Representational Contrastive Scoring (RCS), a framework built on a key insight: the most potent safety signals reside within the LVLM's own internal representations. Our approach inspects the internal geometry of these representations, learning a lightweight projection to maximally separate benign and malicious inputs in safety-critical layers. This enables a simple yet powerful contrastive score that differentiates true malicious intent from mere novelty. Our instantiations, MCD (Mahalanobis Contrastive Detection) and KCD (K-nearest Contrastive Detection), achieve state-of-the-art performance on a challenging evaluation protocol designed to test generalization to unseen attack types. This work demonstrates that effective jailbreak detection can be achieved by applying simple, interpretable statistical methods to the appropriate internal representations, offering a practical path towards safer LVLM deployment. Our code is available on Github https://github.com/sarendis56/Jailbreak_Detection_RCS.
Authors:Yihan Liao, Jacky Keung, Zhenyu Mao, Jingyu Zhang, Jialong Li
Title: FedLAD: A Modular and Adaptive Testbed for Federated Log Anomaly Detection
Abstract:
Log-based anomaly detection (LAD) is critical for ensuring the reliability of large-scale distributed systems. However, most existing LAD approaches assume centralized training, which is often impractical due to privacy constraints and the decentralized nature of system logs. While federated learning (FL) offers a promising alternative, there is a lack of dedicated testbeds tailored to the needs of LAD in federated settings. To address this, we present FedLAD, a unified platform for training and evaluating LAD models under FL constraints. FedLAD supports plug-and-play integration of diverse LAD models, benchmark datasets, and aggregation strategies, while offering runtime support for validation logging (self-monitoring), parameter tuning (self-configuration), and adaptive strategy control (self-adaptation). By enabling reproducible and scalable experimentation, FedLAD bridges the gap between FL frameworks and LAD requirements, providing a solid foundation for future research. Project code is publicly available at: https://github.com/AA-cityu/FedLAD.
Authors:Qinyi Cao, Jianan Fan, Weidong Cai
Title: ART-ASyn: Anatomy-aware Realistic Texture-based Anomaly Synthesis Framework for Chest X-Rays
Abstract:
Unsupervised anomaly detection aims to identify anomalies without pixel-level annotations. Synthetic anomaly-based methods exhibit a unique capacity to introduce controllable irregularities with known masks, enabling explicit supervision during training. However, existing methods often produce synthetic anomalies that are visually distinct from real pathological patterns and ignore anatomical structure. This paper presents a novel Anatomy-aware Realistic Texture-based Anomaly Synthesis framework (ART-ASyn) for chest X-rays that generates realistic and anatomically consistent lung opacity related anomalies using texture-based augmentation guided by our proposed Progressive Binary Thresholding Segmentation method (PBTSeg) for lung segmentation. The generated paired samples of synthetic anomalies and their corresponding precise pixel-level anomaly mask for each normal sample enable explicit segmentation supervision. In contrast to prior work limited to one-class classification, ART-ASyn is further evaluated for zero-shot anomaly segmentation, demonstrating generalizability on an unseen dataset without target-domain annotations. Code availability is available at https://github.com/angelacao-hub/ART-ASyn.
Authors:Dayou Huang, Feng Xue, Xurui Li, Yu Zhou
Title: AnoRefiner: Anomaly-Aware Group-Wise Refinement for Zero-Shot Industrial Anomaly Detection
Abstract:
Zero-shot industrial anomaly detection (ZSAD) methods typically yield coarse anomaly maps as vision transformers (ViTs) extract patch-level features only. To solve this, recent solutions attempt to predict finer anomalies using features from ZSAD, but they still struggle to recover fine-grained anomalies without missed detections, mainly due to the gap between randomly synthesized training anomalies and real ones. We observe that anomaly score maps exactly provide complementary spatial cues that are largely absent from ZSAD's image features, a fact overlooked before. Inspired by this, we propose an anomaly-aware refiner (AnoRefiner) that can be plugged into most ZSAD models and improve patch-level anomaly maps to the pixel level. First, we design an anomaly refinement decoder (ARD) that progressively enhances image features using anomaly score maps, reducing the reliance on synthetic anomaly data. Second, motivated by the mass production paradigm, we propose a progressive group-wise test-time training (PGT) strategy that trains ARD in each product group for the refinement process in the next group, while staying compatible with any ZSAD method. Experiments on the MVTec AD and VisA datasets show that AnoRefiner boosts various ZSAD models by up to a 5.2\% gain in pixel-AP metrics, which can also be directly observed in many visualizations. The code will be available at https://github.com/HUST-SLOW/AnoRefiner.
Authors:Hai Ling, Jia Guo, Zhulin Tao, Yunkang Cao, Donglin Di, Hongyan Xu, Xiu Su, Yang Song, Lei Fan
Title: ADNet: A Large-Scale and Extensible Multi-Domain Benchmark for Anomaly Detection Across 380 Real-World Categories
Abstract:
Anomaly detection (AD) aims to identify defects using normal-only training data. Existing anomaly detection benchmarks (e.g., MVTec-AD with 15 categories) cover only a narrow range of categories, limiting the evaluation of cross-context generalization and scalability. We introduce ADNet, a large-scale, multi-domain benchmark comprising 380 categories aggregated from 49 publicly available datasets across Electronics, Industry, Agrifood, Infrastructure, and Medical domains. The benchmark includes a total of 196,294 RGB images, consisting of 116,192 normal samples for training and 80,102 test images, of which 60,311 are anomalous. All images are standardized with MVTec-style pixel-level annotations and structured text descriptions spanning both spatial and visual attributes, enabling multimodal anomaly detection tasks. Extensive experiments reveal a clear scalability challenge: existing state-of-the-art methods achieve 90.6% I-AUROC in one-for-one settings but drop to 78.5% when scaling to all 380 categories in a multi-class setting. To address this, we propose Dinomaly-m, a context-guided Mixture-of-Experts extension of Dinomaly that expands decoder capacity without increasing inference cost. It achieves 83.2% I-AUROC and 93.1% P-AUROC, demonstrating superior performance over existing approaches. ADNet is designed as a standardized and extensible benchmark, supporting the community in expanding anomaly detection datasets across diverse domains and providing a scalable foundation for future anomaly detection foundation models. Dataset: https://grainnet.github.io/ADNet
Authors:Zhijie Zhong, Zhiwen Yu, Kaixiang Yang, C. L. Philip Chen
Title: Labels Matter More Than Models: Quantifying the Benefit of Supervised Time Series Anomaly Detection
Abstract:
Time series anomaly detection (TSAD) is a critical data mining task often constrained by label scarcity. Consequently, current research predominantly focuses on Unsupervised Time-series Anomaly Detection (UTAD), relying on complex architectures to model normal data distributions. However, this approach often overlooks the significant performance gains available from limited anomaly labels achievable in practical scenarios. This paper challenges the premise that architectural complexity is the optimal path for TSAD. We conduct the first methodical comparison between supervised and unsupervised paradigms and introduce STAND, a streamlined supervised baseline. Extensive experiments on five public datasets demonstrate that: (1) Labels matter more than models: under a limited labeling budget, simple supervised models significantly outperform complex state-of-the-art unsupervised methods; (2) Supervision yields higher returns: the performance gain from minimal supervision far exceeds that from architectural innovations; and (3) Practicality: STAND exhibits superior prediction consistency and anomaly localization compared to unsupervised counterparts. These findings advocate for a data-centric shift in TSAD research, emphasizing label utilization over purely algorithmic complexity. The code is publicly available at https://github.com/EmorZz1G/STAND.
Authors:Yaohua Zha, Xue Yuerong, Chunlin Fan, Yuansong Wang, Tao Dai, Ke Chen, Shu-Tao Xia
Title: CASL: Curvature-Augmented Self-supervised Learning for 3D Anomaly Detection
Abstract:
Deep learning-based 3D anomaly detection methods have demonstrated significant potential in industrial manufacturing. However, many approaches are specifically designed for anomaly detection tasks, which limits their generalizability to other 3D understanding tasks. In contrast, self-supervised point cloud models aim for general-purpose representation learning, yet our investigation reveals that these classical models are suboptimal at anomaly detection under the unified fine-tuning paradigm. This motivates us to develop a more generalizable 3D model that can effectively detect anomalies without relying on task-specific designs. Interestingly, we find that using only the curvature of each point as its anomaly score already outperforms several classical self-supervised and dedicated anomaly detection models, highlighting the critical role of curvature in 3D anomaly detection. In this paper, we propose a Curvature-Augmented Self-supervised Learning (CASL) framework based on a reconstruction paradigm. Built upon the classical U-Net architecture, our approach introduces multi-scale curvature prompts to guide the decoder in predicting the spatial coordinates of each point. Without relying on any dedicated anomaly detection mechanisms, it achieves leading detection performance through straightforward anomaly classification fine-tuning. Moreover, the learned representations generalize well to standard 3D understanding tasks such as point cloud classification. The code is available at https://github.com/zyh16143998882/CASL.
Authors:Hao Li, Zhenfeng Zhuang, Jingyu Lin, Yu Liu, Yifei Chen, Qiong Peng, Lequan Yu, Liansheng Wang
Title: FDP: A Frequency-Decomposition Preprocessing Pipeline for Unsupervised Anomaly Detection in Brain MRI
Abstract:
Due to the diversity of brain anatomy and the scarcity of annotated data, supervised anomaly detection for brain MRI remains challenging, driving the development of unsupervised anomaly detection (UAD) approaches. Current UAD methods typically utilize artificially generated noise perturbations on healthy MRIs to train generative models for normal anatomy reconstruction, enabling anomaly detection via residual mapping. However, such simulated anomalies lack the biophysical fidelity and morphological complexity characteristic of true clinical lesions. To advance UAD in brain MRI, we conduct the first systematic frequency-domain analysis of pathological signatures, revealing two key properties: (1) anomalies exhibit unique frequency patterns distinguishable from normal anatomy, and (2) low-frequency signals maintain consistent representations across healthy scans. These insights motivate our Frequency-Decomposition Preprocessing (FDP) framework, the first UAD method to leverage frequency-domain reconstruction for simultaneous pathology suppression and anatomical preservation. FDP can integrate seamlessly with existing anomaly simulation techniques, consistently enhancing detection performance across diverse architectures while maintaining diagnostic fidelity. Experimental results demonstrate that FDP consistently improves anomaly detection performance when integrated with existing methods. Notably, FDP achieves a 17.63% increase in DICE score with LDM while maintaining robust improvements across multiple baselines. The code is available at https://github.com/ls1rius/MRI_FDP.
Authors:Wenti Yin, Huaxin Zhang, Xiang Wang, Yuqing Lu, Yicheng Zhang, Bingquan Gong, Jialong Zuo, Li Yu, Changxin Gao, Nong Sang
Title: Learning to Tell Apart: Weakly Supervised Video Anomaly Detection via Disentangled Semantic Alignment
Abstract:
Recent advancements in weakly-supervised video anomaly detection have achieved remarkable performance by applying the multiple instance learning paradigm based on multimodal foundation models such as CLIP to highlight anomalous instances and classify categories. However, their objectives may tend to detect the most salient response segments, while neglecting to mine diverse normal patterns separated from anomalies, and are prone to category confusion due to similar appearance, leading to unsatisfactory fine-grained classification results. Therefore, we propose a novel Disentangled Semantic Alignment Network (DSANet) to explicitly separate abnormal and normal features from coarse-grained and fine-grained aspects, enhancing the distinguishability. Specifically, at the coarse-grained level, we introduce a self-guided normality modeling branch that reconstructs input video features under the guidance of learned normal prototypes, encouraging the model to exploit normality cues inherent in the video, thereby improving the temporal separation of normal patterns and anomalous events. At the fine-grained level, we present a decoupled contrastive semantic alignment mechanism, which first temporally decomposes each video into event-centric and background-centric components using frame-level anomaly scores and then applies visual-language contrastive learning to enhance class-discriminative representations. Comprehensive experiments on two standard benchmarks, namely XD-Violence and UCF-Crime, demonstrate that DSANet outperforms existing state-of-the-art methods.
Authors:Samet Hicsonmez, Abd El Rahman Shabayek, Djamila Aouada
Title: VLMDiff: Leveraging Vision-Language Models for Multi-Class Anomaly Detection with Diffusion
Abstract:
Detecting visual anomalies in diverse, multi-class real-world images is a significant challenge. We introduce \ours, a novel unsupervised multi-class visual anomaly detection framework. It integrates a Latent Diffusion Model (LDM) with a Vision-Language Model (VLM) for enhanced anomaly localization and detection. Specifically, a pre-trained VLM with a simple prompt extracts detailed image descriptions, serving as additional conditioning for LDM training. Current diffusion-based methods rely on synthetic noise generation, limiting their generalization and requiring per-class model training, which hinders scalability. \ours, however, leverages VLMs to obtain normal captions without manual annotations or additional training. These descriptions condition the diffusion model, learning a robust normal image feature representation for multi-class anomaly detection. Our method achieves competitive performance, improving the pixel-level Per-Region-Overlap (PRO) metric by up to 25 points on the Real-IAD dataset and 8 points on the COCO-AD dataset, outperforming state-of-the-art diffusion-based approaches. Code is available at https://github.com/giddyyupp/VLMDiff.
Authors:Ximiao Zhang, Min Xu, Zheng Zhang, Junlin Hu, Xiuzhuang Zhou
Title: UniADC: A Unified Framework for Anomaly Detection and Classification
Abstract:
In this paper, we introduce the task of unified anomaly detection and classification, which aims to simultaneously detect anomalous regions in images and identify their specific categories. Existing methods typically treat anomaly detection and classification as separate tasks, thereby neglecting their inherent correlation, limiting information sharing, and resulting in suboptimal performance. To address this, we propose UniADC, a unified anomaly detection and classification model that can effectively perform both tasks with only a few or even no anomaly images. Specifically, UniADC consists of two key components: a training-free controllable inpainting network and a multi-task discriminator. The inpainting network can synthesize anomaly images of specific categories by repainting normal regions guided by anomaly priors, and can also repaint few-shot anomaly samples to augment the available anomaly data. The multi-task discriminator is then trained on these synthesized samples, enabling precise anomaly detection and classification by aligning fine-grained image features with anomaly-category embeddings. We conduct extensive experiments on three anomaly detection and classification datasets, including MVTec-FS, MTD, and WFDD, and the results demonstrate that UniADC consistently outperforms existing methods in anomaly detection, localization, and classification. The code is available at https://github.com/cnulab/UniADC.
Authors:Yuxuan Lin, Hanjing Yan, Xuan Tong, Yang Chang, Huanzhen Wang, Ziheng Zhou, Shuyong Gao, Yan Wang, Wenqiang Zhang
Title: Commonality in Few: Few-Shot Multimodal Anomaly Detection via Hypergraph-Enhanced Memory
Abstract:
Few-shot multimodal industrial anomaly detection is a critical yet underexplored task, offering the ability to quickly adapt to complex industrial scenarios. In few-shot settings, insufficient training samples often fail to cover the diverse patterns present in test samples. This challenge can be mitigated by extracting structural commonality from a small number of training samples. In this paper, we propose a novel few-shot unsupervised multimodal industrial anomaly detection method based on structural commonality, CIF (Commonality In Few). To extract intra-class structural information, we employ hypergraphs, which are capable of modeling higher-order correlations, to capture the structural commonality within training samples, and use a memory bank to store this intra-class structural prior. Firstly, we design a semantic-aware hypergraph construction module tailored for single-semantic industrial images, from which we extract common structures to guide the construction of the memory bank. Secondly, we use a training-free hypergraph message passing module to update the visual features of test samples, reducing the distribution gap between test features and features in the memory bank. We further propose a hyperedge-guided memory search module, which utilizes structural information to assist the memory search process and reduce the false positive rate. Experimental results on the MVTec 3D-AD dataset and the Eyecandies dataset show that our method outperforms the state-of-the-art (SOTA) methods in few-shot settings. Code is available at https://github.com/Sunny5250/CIF.
Authors:Xincheng Yao, Yan Luo, Zefeng Qian, Chongyang Zhang
Title: ADPretrain: Advancing Industrial Anomaly Detection via Anomaly Representation Pretraining
Abstract:
The current mainstream and state-of-the-art anomaly detection (AD) methods are substantially established on pretrained feature networks yielded by ImageNet pretraining. However, regardless of supervised or self-supervised pretraining, the pretraining process on ImageNet does not match the goal of anomaly detection (i.e., pretraining in natural images doesn't aim to distinguish between normal and abnormal). Moreover, natural images and industrial image data in AD scenarios typically have the distribution shift. The two issues can cause ImageNet-pretrained features to be suboptimal for AD tasks. To further promote the development of the AD field, pretrained representations specially for AD tasks are eager and very valuable. To this end, we propose a novel AD representation learning framework specially designed for learning robust and discriminative pretrained representations for industrial anomaly detection. Specifically, closely surrounding the goal of anomaly detection (i.e., focus on discrepancies between normals and anomalies), we propose angle- and norm-oriented contrastive losses to maximize the angle size and norm difference between normal and abnormal features simultaneously. To avoid the distribution shift from natural images to AD images, our pretraining is performed on a large-scale AD dataset, RealIAD. To further alleviate the potential shift between pretraining data and downstream AD datasets, we learn the pretrained AD representations based on the class-generalizable representation, residual features. For evaluation, based on five embedding-based AD methods, we simply replace their original features with our pretrained representations. Extensive experiments on five AD datasets and five backbones consistently show the superiority of our pretrained features. The code is available at https://github.com/xcyao00/ADPretrain.
Authors:Dongheng Lin, Mengxue Qu, Kunyang Han, Jianbo Jiao, Xiaojie Jin, Yunchao Wei
Title: A Unified Reasoning Framework for Holistic Zero-Shot Video Anomaly Analysis
Abstract:
Most video-anomaly research stops at frame-wise detection, offering little insight into why an event is abnormal, typically outputting only frame-wise anomaly scores without spatial or semantic context. Recent video anomaly localization and video anomaly understanding methods improve explainability but remain data-dependent and task-specific. We propose a unified reasoning framework that bridges the gap between temporal detection, spatial localization, and textual explanation. Our approach is built upon a chained test-time reasoning process that sequentially connects these tasks, enabling holistic zero-shot anomaly analysis without any additional training. Specifically, our approach leverages intra-task reasoning to refine temporal detections and inter-task chaining for spatial and semantic understanding, yielding improved interpretability and generalization in a fully zero-shot manner. Without any additional data or gradients, our method achieves state-of-the-art zero-shot performance across multiple video anomaly detection, localization, and explanation benchmarks. The results demonstrate that careful prompt design with task-wise chaining can unlock the reasoning power of foundation models, enabling practical, interpretable video anomaly analysis in a fully zero-shot manner. Project Page: https://rathgrith.github.io/Unified_Frame_VAA/.
Authors:Siddharth Chaini, Federica B. Bianco, Ashish Mahabal
Title: In Search of the Unknown Unknowns: A Multi-Metric Distance Ensemble for Out of Distribution Anomaly Detection in Astronomical Surveys
Abstract:
Distance-based methods involve the computation of distance values between features and are a well-established paradigm in machine learning. In anomaly detection, anomalies are identified by their large distance from normal data points. However, the performance of these methods often hinges on a single, user-selected distance metric (e.g., Euclidean), which may not be optimal for the complex, high-dimensional feature spaces common in astronomy. Here, we introduce a novel anomaly detection method, Distance Multi-Metric Anomaly Detection (DiMMAD), which uses an ensemble of distance metrics to find novelties. Using multiple distance metrics is effectively equivalent to using different geometries in the feature space. By using a robust ensemble of diverse distance metrics, we overcome the metric-selection problem, creating an anomaly score that is not reliant on any single definition of distance. We demonstrate this multi-metric approach as a tool for simple, interpretable scientific discovery on astronomical time series -- (1) with simulated data for the upcoming Vera C. Rubin Observatory Legacy Survey of Space and Time, and (2) real data from the Zwicky Transient Facility. We find that DiMMAD excels at out-of-distribution anomaly detection -- anomalies in the data that might be new classes -- and beats other state-of-the-art methods in the goal of maximizing the diversity of new classes discovered. For rare in-distribution anomaly detection, DiMMAD performs similarly to other methods, but may allow for improved interpretability. All our code is open source: DiMMAD is implemented within DistClassiPy: https://github.com/sidchaini/distclassipy/, while all code to reproduce the results of this paper is available here: https://github.com/sidchaini/dimmad/.
Authors:Wenlong Li, Yifei Xu, Yuan Rao, Zhenhua Wang, Shuiguang Deng
Title: VADTree: Explainable Training-Free Video Anomaly Detection via Hierarchical Granularity-Aware Tree
Abstract:
Video anomaly detection (VAD) focuses on identifying anomalies in videos. Supervised methods demand substantial in-domain training data and fail to deliver clear explanations for anomalies. In contrast, training-free methods leverage the knowledge reserves and language interactivity of large pre-trained models to detect anomalies. However, the current fixed-length temporal window sampling approaches struggle to accurately capture anomalies with varying temporal spans. Therefore, we propose VADTree that utilizes a Hierarchical Granularityaware Tree (HGTree) structure for flexible sampling in VAD. VADTree leverages the knowledge embedded in a pre-trained Generic Event Boundary Detection (GEBD) model to characterize potential anomaly event boundaries. Specifically, VADTree decomposes the video into generic event nodes based on boundary confidence, and performs adaptive coarse-fine hierarchical structuring and redundancy removal to construct the HGTree. Then, the multi-dimensional priors are injected into the visual language models (VLMs) to enhance the node-wise anomaly perception, and anomaly reasoning for generic event nodes is achieved via large language models (LLMs). Finally, an inter-cluster node correlation method is used to integrate the multi-granularity anomaly scores. Extensive experiments on three challenging datasets demonstrate that VADTree achieves state-of-the-art performance in training-free settings while drastically reducing the number of sampled video segments. The code will be available at https://github.com/wenlongli10/VADTree.
Authors:Usman Ali, Ali Zia, Abdul Rehman, Umer Ramzan, Zohaib Hassan, Talha Sattar, Jing Wang, Wei Xiang
Title: 2D_3D Feature Fusion via Cross-Modal Latent Synthesis and Attention Guided Restoration for Industrial Anomaly Detection
Abstract:
Industrial anomaly detection (IAD) increasingly benefits from integrating 2D and 3D data, but robust cross-modal fusion remains challenging. We propose a novel unsupervised framework, Multi-Modal Attention-Driven Fusion Restoration (MAFR), which synthesises a unified latent space from RGB images and point clouds using a shared fusion encoder, followed by attention-guided, modality-specific decoders. Anomalies are localised by measuring reconstruction errors between input features and their restored counterparts. Evaluations on the MVTec 3D-AD and Eyecandies benchmarks demonstrate that MAFR achieves state-of-the-art results, with a mean I-AUROC of 0.972 and 0.901, respectively. The framework also exhibits strong performance in few-shot learning settings, and ablation studies confirm the critical roles of the fusion architecture and composite loss. MAFR offers a principled approach for fusing visual and geometric information, advancing the robustness and accuracy of industrial anomaly detection. Code is available at https://github.com/adabrh/MAFR
Authors:Mojtaba Nafez, Mobina Poulaei, Nikan Vasei, Bardia Soltani Moakhar, Mohammad Sabokrou, MohammadHossein Rohban
Title: FrameShield: Adversarially Robust Video Anomaly Detection
Abstract:
Weakly Supervised Video Anomaly Detection (WSVAD) has achieved notable advancements, yet existing models remain vulnerable to adversarial attacks, limiting their reliability. Due to the inherent constraints of weak supervision, where only video-level labels are provided despite the need for frame-level predictions, traditional adversarial defense mechanisms, such as adversarial training, are not effective since video-level adversarial perturbations are typically weak and inadequate. To address this limitation, pseudo-labels generated directly from the model can enable frame-level adversarial training; however, these pseudo-labels are inherently noisy, significantly degrading performance. We therefore introduce a novel Pseudo-Anomaly Generation method called Spatiotemporal Region Distortion (SRD), which creates synthetic anomalies by applying severe augmentations to localized regions in normal videos while preserving temporal consistency. Integrating these precisely annotated synthetic anomalies with the noisy pseudo-labels substantially reduces label noise, enabling effective adversarial training. Extensive experiments demonstrate that our method significantly enhances the robustness of WSVAD models against adversarial attacks, outperforming state-of-the-art methods by an average of 71.0\% in overall AUROC performance across multiple benchmarks. The implementation and code are publicly available at https://github.com/rohban-lab/FrameShield.
Authors:Shengtian Yang, Yue Feng, Yingshi Liu, Jingrou Zhang, Jie Qin
Title: MoniTor: Exploiting Large Language Models with Instruction for Online Video Anomaly Detection
Abstract:
Video Anomaly Detection (VAD) aims to locate unusual activities or behaviors within videos. Recently, offline VAD has garnered substantial research attention, which has been invigorated by the progress in large language models (LLMs) and vision-language models (VLMs), offering the potential for a more nuanced understanding of anomalies. However, online VAD has seldom received attention due to real-time constraints and computational intensity. In this paper, we introduce a novel Memory-based online scoring queue scheme for Training-free VAD (MoniTor), to address the inherent complexities in online VAD. Specifically, MoniTor applies a streaming input to VLMs, leveraging the capabilities of pre-trained large-scale models. To capture temporal dependencies more effectively, we incorporate a novel prediction mechanism inspired by Long Short-Term Memory (LSTM) networks. This ensures the model can effectively model past states and leverage previous predictions to identify anomalous behaviors. Thereby, it better understands the current frame. Moreover, we design a scoring queue and an anomaly prior to dynamically store recent scores and cover all anomalies in the monitoring scenario, providing guidance for LLMs to distinguish between normal and abnormal behaviors over time. We evaluate MoniTor on two large datasets (i.e., UCF-Crime and XD-Violence) containing various surveillance and real-world scenarios. The results demonstrate that MoniTor outperforms state-of-the-art methods and is competitive with weakly supervised methods without training. Code is available at https://github.com/YsTvT/MoniTor.
Authors:Sukanya Patra, Souhaib Ben Taieb
Title: An Evidence-Based Post-Hoc Adjustment Framework for Anomaly Detection Under Data Contamination
Abstract:
Unsupervised anomaly detection (AD) methods typically assume clean training data, yet real-world datasets often contain undetected or mislabeled anomalies, leading to significant performance degradation. Existing solutions require access to the training pipelines, data or prior knowledge of the proportions of anomalies in the data, limiting their real-world applicability. To address this challenge, we propose EPHAD, a simple yet effective test-time adaptation framework that updates the outputs of AD models trained on contaminated datasets using evidence gathered at test time. Our approach integrates the prior knowledge captured by the AD model trained on contaminated datasets with evidence derived from multimodal foundation models like Contrastive Language-Image Pre-training (CLIP), classical AD methods like the Latent Outlier Factor or domain-specific knowledge. We illustrate the intuition behind EPHAD using a synthetic toy example and validate its effectiveness through comprehensive experiments across eight visual AD datasets, twenty-six tabular AD datasets, and a real-world industrial AD dataset. Additionally, we conduct an ablation study to analyse hyperparameter influence and robustness to varying contamination levels, demonstrating the versatility and robustness of EPHAD across diverse AD models and evidence pairs. To ensure reproducibility, our code is publicly available at https://github.com/sukanyapatra1997/EPHAD.
Authors:Vahid Jalili
Title: The Temporal Graph of Bitcoin Transactions
Abstract:
Since its 2009 genesis block, the Bitcoin network has processed \num{>1.08} billion (B) transactions representing \num{>8.72}B BTC, offering rich potential for machine learning (ML); yet, its pseudonymity and obscured flow of funds inherent in its \utxo-based design, have rendered this data largely inaccessible for ML research. Addressing this gap, we present an ML-compatible graph modeling the Bitcoin's economic topology by reconstructing the flow of funds. This temporal, heterogeneous graph encompasses complete transaction history up to block \cutoffHeight, consisting of \num{>2.4}B nodes and \num{>39.72}B edges. Additionally, we provide custom sampling methods yielding node and edge feature vectors of sampled communities, tools to load and analyze the Bitcoin graph data within specialized graph databases, and ready-to-use database snapshots. This comprehensive dataset and toolkit empower the ML community to tackle Bitcoin's intricate ecosystem at scale, driving progress in applications such as anomaly detection, address classification, market analysis, and large-scale graph ML benchmarking. Dataset and code available at \href{https://github.com/B1AAB/EBA}{github.com/b1aab/eba}
Authors:Wenping Jin, Yuyang Tang, Li Zhu, Fei Guo
Title: Rebellious Student: A Complementary Learning Framework for Background Feature Enhancement in Hyperspectral Anomaly Detection
Abstract:
A recent class of hyperspectral anomaly detection methods that can be trained once on background datasets and then universally deployed -- without per-scene retraining or parameter tuning -- has demonstrated remarkable efficiency and robustness. Building upon this paradigm, we focus on the integration of spectral and spatial cues and introduce a novel "Rebellious Student" framework for complementary feature learning. Unlike conventional teacher-student paradigms driven by imitation, our method intentionally trains the spatial branch to diverge from the spectral teacher, thereby learning complementary spatial patterns that the teacher fails to capture. A two-stage learning strategy is adopted: (1) a spectral enhancement network is first trained via reverse distillation to obtain robust background spectral representations; and (2) a spatial network -- the rebellious student -- is subsequently optimized using decorrelation losses that enforce feature orthogonality while maintaining reconstruction fidelity to avoid irrelevant noise. Once trained, the framework enhances both spectral and spatial background features, enabling parameter-free and training-free anomaly detection when paired with conventional detectors. Experiments on the HAD100 benchmark show substantial improvements over several established baselines with modest computational overhead, confirming the effectiveness of the proposed complementary learning paradigm. Our code is publicly available at https://github.com/xjpp2016/FERS.
Authors:Keivan Faghih Niresi, Zepeng Zhang, Olga Fink
Title: RINS-T: Robust Implicit Neural Solvers for Time Series Linear Inverse Problems
Abstract:
Time series data are often affected by various forms of corruption, such as missing values, noise, and outliers, which pose significant challenges for tasks such as forecasting and anomaly detection. To address these issues, inverse problems focus on reconstructing the original signal from corrupted data by leveraging prior knowledge about its underlying structure. While deep learning methods have demonstrated potential in this domain, they often require extensive pretraining and struggle to generalize under distribution shifts. In this work, we propose RINS-T (Robust Implicit Neural Solvers for Time Series Linear Inverse Problems), a novel deep prior framework that achieves high recovery performance without requiring pretraining data. RINS-T leverages neural networks as implicit priors and integrates robust optimization techniques, making it resilient to outliers while relaxing the reliance on Gaussian noise assumptions. To further improve optimization stability and robustness, we introduce three key innovations: guided input initialization, input perturbation, and convex output combination techniques. Each of these contributions strengthens the framework's optimization stability and robustness. These advancements make RINS-T a flexible and effective solution for addressing complex real-world time series challenges. Our code is available at https://github.com/EPFL-IMOS/RINS-T.
Authors:Pulin Li, Guocheng Wu, Li Yin, Yuxin Zheng, Wei Zhang, Yanjie Zhou
Title: MIRAD - A comprehensive real-world robust anomaly detection dataset for Mass Individualization
Abstract:
Social manufacturing leverages community collaboration and scattered resources to realize mass individualization in modern industry. However, this paradigm shift also introduces substantial challenges in quality control, particularly in defect detection. The main difficulties stem from three aspects. First, products often have highly customized configurations. Second, production typically involves fragmented, small-batch orders. Third, imaging environments vary considerably across distributed sites. To overcome the scarcity of real-world datasets and tailored algorithms, we introduce the Mass Individualization Robust Anomaly Detection (MIRAD) dataset. As the first benchmark explicitly designed for anomaly detection in social manufacturing, MIRAD captures three critical dimensions of this domain: (1) diverse individualized products with large intra-class variation, (2) data collected from six geographically dispersed manufacturing nodes, and (3) substantial imaging heterogeneity, including variations in lighting, background, and motion conditions. We then conduct extensive evaluations of state-of-the-art (SOTA) anomaly detection methods on MIRAD, covering one-class, multi-class, and zero-shot approaches. Results show a significant performance drop across all models compared with conventional benchmarks, highlighting the unresolved complexities of defect detection in real-world individualized production. By bridging industrial requirements and academic research, MIRAD provides a realistic foundation for developing robust quality control solutions essential for Industry 5.0. The dataset is publicly available at https://github.com/wu33learn/MIRAD.
Authors:Zewen Li, Zitong Yu, Qilang Ye, Weicheng Xie, Wei Zhuo, Linlin Shen
Title: IAD-GPT: Advancing Visual Knowledge in Multimodal Large Language Model for Industrial Anomaly Detection
Abstract:
The robust causal capability of Multimodal Large Language Models (MLLMs) hold the potential of detecting defective objects in Industrial Anomaly Detection (IAD). However, most traditional IAD methods lack the ability to provide multi-turn human-machine dialogues and detailed descriptions, such as the color of objects, the shape of an anomaly, or specific types of anomalies. At the same time, methods based on large pre-trained models have not fully stimulated the ability of large models in anomaly detection tasks. In this paper, we explore the combination of rich text semantics with both image-level and pixel-level information from images and propose IAD-GPT, a novel paradigm based on MLLMs for IAD. We employ Abnormal Prompt Generator (APG) to generate detailed anomaly prompts for specific objects. These specific prompts from the large language model (LLM) are used to activate the detection and segmentation functions of the pre-trained visual-language model (i.e., CLIP). To enhance the visual grounding ability of MLLMs, we propose Text-Guided Enhancer, wherein image features interact with normal and abnormal text prompts to dynamically select enhancement pathways, which enables language models to focus on specific aspects of visual data, enhancing their ability to accurately interpret and respond to anomalies within images. Moreover, we design a Multi-Mask Fusion module to incorporate mask as expert knowledge, which enhances the LLM's perception of pixel-level anomalies. Extensive experiments on MVTec-AD and VisA datasets demonstrate our state-of-the-art performance on self-supervised and few-shot anomaly detection and segmentation tasks, such as MVTec-AD and VisA datasets. The codes are available at \href{https://github.com/LiZeWen1225/IAD-GPT}{https://github.com/LiZeWen1225/IAD-GPT}.
Authors:Caleb Robinson, Kimberly T. Goetz, Christin B. Khan, Meredith Sackett, Kathleen Leonard, Rahul Dodhia, Juan M. Lavista Ferres
Title: Where are the Whales: A Human-in-the-loop Detection Method for Identifying Whales in High-resolution Satellite Imagery
Abstract:
Effective monitoring of whale populations is critical for conservation, but traditional survey methods are expensive and difficult to scale. While prior work has shown that whales can be identified in very high-resolution (VHR) satellite imagery, large-scale automated detection remains challenging due to a lack of annotated imagery, variability in image quality and environmental conditions, and the cost of building robust machine learning pipelines over massive remote sensing archives. We present a semi-automated approach for surfacing possible whale detections in VHR imagery using a statistical anomaly detection method that flags spatial outliers, i.e. "interesting points". We pair this detector with a web-based labeling interface designed to enable experts to quickly annotate the interesting points. We evaluate our system on three benchmark scenes with known whale annotations and achieve recalls of 90.3% to 96.4%, while reducing the area requiring expert inspection by up to 99.8% -- from over 1,000 sq km to less than 2 sq km in some cases. Our method does not rely on labeled training data and offers a scalable first step toward future machine-assisted marine mammal monitoring from space. We have open sourced this pipeline at https://github.com/microsoft/whales.
Authors:Yang Cao, Sikun Yang, Yujiu Yang, Lianyong Qi, Ming Liu
Title: Text Anomaly Detection with Simplified Isolation Kernel
Abstract:
Two-step approaches combining pre-trained large language model embeddings and anomaly detectors demonstrate strong performance in text anomaly detection by leveraging rich semantic representations. However, high-dimensional dense embeddings extracted by large language models pose challenges due to substantial memory requirements and high computation time. To address this challenge, we introduce the Simplified Isolation Kernel (SIK), which maps high-dimensional dense embeddings to lower-dimensional sparse representations while preserving crucial anomaly characteristics. SIK has linear time complexity and significantly reduces space complexity through its innovative boundary-focused feature mapping. Experiments across 7 datasets demonstrate that SIK achieves better detection performance than 11 state-of-the-art (SOTA) anomaly detection algorithms while maintaining computational efficiency and low memory cost. All code and demonstrations are available at https://github.com/charles-cao/SIK.
Authors:Xiao He, Huangxuan Zhao, Guojia Wan, Wei Zhou, Yanxing Liu, Juhua Liu, Yongchao Xu, Yong Luo, Dacheng Tao, Bo Du
Title: Epistemic-aware Vision-Language Foundation Model for Fetal Ultrasound Interpretation
Abstract:
Recent medical vision-language models have shown promise on tasks such as VQA, report generation, and anomaly detection. However, most are adapted to structured adult imaging and underperform in fetal ultrasound, which poses challenges of multi-view image reasoning, numerous diseases, and image diversity. To bridge this gap, we introduce FetalMind, a medical AI system tailored to fetal ultrasound for both report generation and diagnosis. Guided by clinical workflow, we propose Salient Epistemic Disentanglement (SED), which injects an expert-curated bipartite graph into the model to decouple view-disease associations and to steer preference selection along clinically faithful steps via reinforcement learning. This design mitigates variability across diseases and heterogeneity across views, reducing learning bottlenecks while aligning the model's inference with obstetric practice. To train FetalMind at scale, we curate FetalSigma-1M dataset, the first large-scale fetal ultrasound report corpus, comprising 20K reports from twelve medical centers, addressing the scarcity of domain data. Extensive experiments show that FetalMind outperforms open- and closed-source baselines across all gestational stages, achieving +14% average gains and +61.2% higher accuracy on critical conditions while remaining efficient, stable, and scalable. Project Page: https://hexiao0275.github.io/FetalMind.
Authors:Bheeshm Sharma, Karthikeyan Jaganathan, Balamurugan Palaniappan
Title: RASALoRE: Region Aware Spatial Attention with Location-based Random Embeddings for Weakly Supervised Anomaly Detection in Brain MRI Scans
Abstract:
Weakly Supervised Anomaly detection (WSAD) in brain MRI scans is an important challenge useful to obtain quick and accurate detection of brain anomalies when precise pixel-level anomaly annotations are unavailable and only weak labels (e.g., slice-level) are available. In this work, we propose RASALoRE: Region Aware Spatial Attention with Location-based Random Embeddings, a novel two-stage WSAD framework. In the first stage, we introduce a Discriminative Dual Prompt Tuning (DDPT) mechanism that generates high-quality pseudo weak masks based on slice-level labels, serving as coarse localization cues. In the second stage, we propose a segmentation network with a region-aware spatial attention mechanism that relies on fixed location-based random embeddings. This design enables the model to effectively focus on anomalous regions. Our approach achieves state-of-the-art anomaly detection performance, significantly outperforming existing WSAD methods while utilizing less than 8 million parameters. Extensive evaluations on the BraTS20, BraTS21, BraTS23, and MSD datasets demonstrate a substantial performance improvement coupled with a significant reduction in computational complexity. Code is available at: https://github.com/BheeshmSharma/RASALoRE-BMVC-2025/.
Authors:Zhe Zhang, Mingxiu Cai, Gaochang Wu, Jing Zhang, Lingqiao Liu, Dacheng Tao, Tianyou Chai, Xiatian Zhu
Title: Unified Unsupervised Anomaly Detection via Matching Cost Filtering
Abstract:
Unsupervised anomaly detection (UAD) aims to identify image- and pixel-level anomalies using only normal training data, with wide applications such as industrial inspection and medical analysis, where anomalies are scarce due to privacy concerns and cold-start constraints. Existing methods, whether reconstruction-based (restoring normal counterparts) or embedding-based (pretrained representations), fundamentally conduct image- or feature-level matching to generate anomaly maps. Nonetheless, matching noise has been largely overlooked, limiting their detection ability. Beyond earlier focus on unimodal RGB-based UAD, recent advances expand to multimodal scenarios, e.g., RGB-3D and RGB-Text, enabled by point cloud sensing and vision-language models. Despite shared challenges, these lines remain largely isolated, hindering a comprehensive understanding and knowledge transfer. In this paper, we advocate unified UAD for both unimodal and multimodal settings in the matching perspective. Under this insight, we present Unified Cost Filtering (UCF), a generic post-hoc refinement framework for refining anomaly cost volume of any UAD model. The cost volume is constructed by matching a test sample against normal samples from the same or different modalities, followed by a learnable filtering module with multi-layer attention guidance from the test sample, mitigating matching noise and highlighting subtle anomalies. Comprehensive experiments on 22 diverse benchmarks demonstrate the efficacy of UCF in enhancing a variety of UAD methods, consistently achieving new state-of-the-art results in both unimodal (RGB) and multimodal (RGB-3D, RGB-Text) UAD scenarios. Code and models will be released at https://github.com/ZHE-SAPI/CostFilter-AD.
Authors:Guangyao Zhai, Yue Zhou, Xinyan Deng, Lars Heckler, Nassir Navab, Benjamin Busam
Title: Foundation Visual Encoders Are Secretly Few-Shot Anomaly Detectors
Abstract:
Few-shot anomaly detection streamlines and simplifies industrial safety inspection. However, limited samples make accurate differentiation between normal and abnormal features challenging, and even more so under category-agnostic conditions. Large-scale pre-training of foundation visual encoders has advanced many fields, as the enormous quantity of data helps to learn the general distribution of normal images. We observe that the anomaly amount in an image directly correlates with the difference in the learnt embeddings and utilize this to design a few-shot anomaly detector termed FoundAD. This is done by learning a nonlinear projection operator onto the natural image manifold. The simple operator acts as an effective tool for anomaly detection to characterize and identify out-of-distribution regions in an image. Extensive experiments show that our approach supports multi-class detection and achieves competitive performance while using substantially fewer parameters than prior methods. Backed up by evaluations with multiple foundation encoders, including fresh DINOv3, we believe this idea broadens the perspective on foundation features and advances the field of few-shot anomaly detection.
Authors:Yuexin Wang, Xiaolei Wang, Yizheng Gong, Jimin Xiao
Title: Normal-Abnormal Guided Generalist Anomaly Detection
Abstract:
Generalist Anomaly Detection (GAD) aims to train a unified model on an original domain that can detect anomalies in new target domains. Previous GAD methods primarily use only normal samples as references, overlooking the valuable information contained in anomalous samples that are often available in real-world scenarios. To address this limitation, we propose a more practical approach: normal-abnormal-guided generalist anomaly detection, which leverages both normal and anomalous samples as references to guide anomaly detection across diverse domains. We introduce the Normal-Abnormal Generalist Learning (NAGL) framework, consisting of two key components: Residual Mining (RM) and Anomaly Feature Learning (AFL). RM extracts abnormal patterns from normal-abnormal reference residuals to establish transferable anomaly representations, while AFL adaptively learns anomaly features in query images through residual mapping to identify instance-aware anomalies. Our approach effectively utilizes both normal and anomalous references for more accurate and efficient cross-domain anomaly detection. Extensive experiments across multiple benchmarks demonstrate that our method significantly outperforms existing GAD approaches. This work represents the first to adopt a mixture of normal and abnormal samples as references in generalist anomaly detection. The code and datasets are available at https://github.com/JasonKyng/NAGL.
Authors:Zhiwei Yang, Chen Gao, Mike Zheng Shou
Title: PANDA: Towards Generalist Video Anomaly Detection via Agentic AI Engineer
Abstract:
Video anomaly detection (VAD) is a critical yet challenging task due to the complex and diverse nature of real-world scenarios. Previous methods typically rely on domain-specific training data and manual adjustments when applying to new scenarios and unseen anomaly types, suffering from high labor costs and limited generalization. Therefore, we aim to achieve generalist VAD, i.e., automatically handle any scene and any anomaly types without training data or human involvement. In this work, we propose PANDA, an agentic AI engineer based on MLLMs. Specifically, we achieve PANDA by comprehensively devising four key capabilities: (1) self-adaptive scene-aware strategy planning, (2) goal-driven heuristic reasoning, (3) tool-augmented self-reflection, and (4) self-improving chain-of-memory. Concretely, we develop a self-adaptive scene-aware RAG mechanism, enabling PANDA to retrieve anomaly-specific knowledge for anomaly detection strategy planning. Next, we introduce a latent anomaly-guided heuristic prompt strategy to enhance reasoning precision. Furthermore, PANDA employs a progressive reflection mechanism alongside a suite of context-aware tools to iteratively refine decision-making in complex scenarios. Finally, a chain-of-memory mechanism enables PANDA to leverage historical experiences for continual performance improvement. Extensive experiments demonstrate that PANDA achieves state-of-the-art performance in multi-scenario, open-set, and complex scenario settings without training and manual involvement, validating its generalizable and robust anomaly detection capability. Code is released at https://github.com/showlab/PANDA.
Authors:Sachith Abeywickrama, Emadeldeen Eldele, Min Wu, Xiaoli Li, Chau Yuen
Title: Entropy Guided Dynamic Patch Segmentation for Time Series Transformers
Abstract:
Patch-based transformers have emerged as efficient and improved long-horizon modeling architectures for time series modeling. Yet, existing approaches rely on temporally-agnostic patch construction, where arbitrary starting positions and fixed lengths fracture temporal coherence by splitting natural transitions across boundaries. This naive segmentation often disrupts short-term dependencies and weakens representation learning. We propose a novel Entropy-Guided Dynamic Patch Encoder (EntroPE), as a temporally informed framework that dynamically detects transition points via conditional entropy and dynamically places patch boundaries. This preserves temporal structure while retaining the computational benefits of patching. EntroPE consists of two key modules, namely an Entropy-based Dynamic Patcher (EDP) that applies information-theoretic criteria to locate natural temporal shifts and determine patch boundaries, and an Adaptive Patch Encoder (APE) that employs pooling and cross-attention to capture intra-patch dependencies and produce fixed-size latent representations. Extensive experiments on long-term forecasting, classification, and anomaly detection demonstrate that the proposed method improves both accuracy and efficiency, establishing entropy-guided dynamic patching as a promising new paradigm for time series modeling. Code is available at https://github.com/Sachithx/EntroPE.
Authors:Yuan Zhao, Youwei Pang, Lihe Zhang, Hanqi Liu, Jiaming Zuo, Huchuan Lu, Xiaoqi Zhao
Title: UniMMAD: Unified Multi-Modal and Multi-Class Anomaly Detection via MoE-Driven Feature Decompression
Abstract:
Existing anomaly detection (AD) methods often treat the modality and class as independent factors. Although this paradigm has enriched the development of AD research branches and produced many specialized models, it has also led to fragmented solutions and excessive memory overhead. Moreover, reconstruction-based multi-class approaches typically rely on shared decoding paths, which struggle to handle large variations across domains, resulting in distorted normality boundaries, domain interference, and high false alarm rates. To address these limitations, we propose UniMMAD, a unified framework for multi-modal and multi-class anomaly detection. At the core of UniMMAD is a Mixture-of-Experts (MoE)-driven feature decompression mechanism, which enables adaptive and disentangled reconstruction tailored to specific domains. This process is guided by a ``general to specific'' paradigm. In the encoding stage, multi-modal inputs of varying combinations are compressed into compact, general-purpose features. The encoder incorporates a feature compression module to suppress latent anomalies, encourage cross-modal interaction, and avoid shortcut learning. In the decoding stage, the general features are decompressed into modality-specific and class-specific forms via a sparsely-gated cross MoE, which dynamically selects expert pathways based on input modality and class. To further improve efficiency, we design a grouped dynamic filtering mechanism and a MoE-in-MoE structure, reducing parameter usage by 75\% while maintaining sparse activation and fast inference. UniMMAD achieves state-of-the-art performance on 9 anomaly detection datasets, spanning 3 fields, 12 modalities, and 66 classes. The source code will be available at https://github.com/yuanzhao-CVLAB/UniMMAD.
Authors:Tao Yin, Xiaohong Zhang, Shaochen Fu, Zhibin Zhang, Li Huang, Yiyuan Yang, Kaixiang Yang, Meng Yan
Title: ScatterAD: Temporal-Topological Scattering Mechanism for Time Series Anomaly Detection
Abstract:
One main challenge in time series anomaly detection for industrial IoT lies in the complex spatio-temporal couplings within multivariate data. However, traditional anomaly detection methods focus on modeling spatial or temporal dependencies independently, resulting in suboptimal representation learning and limited sensitivity to anomalous dispersion in high-dimensional spaces. In this work, we conduct an empirical analysis showing that both normal and anomalous samples tend to scatter in high-dimensional space, especially anomalous samples are markedly more dispersed. We formalize this dispersion phenomenon as scattering, quantified by the mean pairwise distance among sample representations, and leverage it as an inductive signal to enhance spatio-temporal anomaly detection. Technically, we propose ScatterAD to model representation scattering across temporal and topological dimensions. ScatterAD incorporates a topological encoder for capturing graph-structured scattering and a temporal encoder for constraining over-scattering through mean squared error minimization between neighboring time steps. We introduce a contrastive fusion mechanism to ensure the complementarity of the learned temporal and topological representations. Additionally, we theoretically show that maximizing the conditional mutual information between temporal and topological views improves cross-view consistency and enhances more discriminative representations. Extensive experiments on multiple public benchmarks show that ScatterAD achieves state-of-the-art performance on multivariate time series anomaly detection. Code is available at this repository: https://github.com/jk-sounds/ScatterAD.
Authors:Xincheng Yao, Chao Shi, Muming Zhao, Guangtao Zhai, Chongyang Zhang
Title: ResAD++: Towards Class Agnostic Anomaly Detection via Residual Feature Learning
Abstract:
This paper explores the problem of class-agnostic anomaly detection (AD), where the objective is to train one class-agnostic AD model that can generalize to detect anomalies in diverse new classes from different domains without any retraining or fine-tuning on the target data. When applied for new classes, the performance of current single- and multi-class AD methods is still unsatisfactory. One fundamental reason is that representation learning in existing methods is still class-related, namely, feature correlation. To address this issue, we propose residual features and construct a simple but effective framework, termed ResAD. Our core insight is to learn the residual feature distribution rather than the initial feature distribution. Residual features are formed by matching and then subtracting normal reference features. In this way, we can effectively realize feature decorrelation. Even in new classes, the distribution of normal residual features would not remarkably shift from the learned distribution. In addition, we think that residual features still have one issue: scale correlation. To this end, we propose a feature hypersphere constraining approach, which learns to constrain initial normal residual features into a spatial hypersphere for enabling the feature scales of different classes as consistent as possible. Furthermore, we propose a novel logbarrier bidirectional contraction OCC loss and vector quantization based feature distribution matching module to enhance ResAD, leading to the improved version of ResAD (ResAD++). Comprehensive experiments on eight real-world AD datasets demonstrate that our ResAD++ can achieve remarkable AD results when directly used in new classes, outperforming state-of-the-art competing methods and also surpassing ResAD. The code is available at https://github.com/xcyao00/ResAD.
Authors:Federico Chinello, Giacomo Boracchi
Title: Convolutional Set Transformer
Abstract:
We introduce the Convolutional Set Transformer (CST), a novel neural architecture designed to process image sets of arbitrary cardinality that are visually heterogeneous yet share high-level semantics - such as a common category, scene, or concept. Existing set-input networks, e.g., Deep Sets and Set Transformer, are limited to vector inputs and cannot directly handle 3D image tensors. As a result, they must be cascaded with a feature extractor, typically a CNN, which encodes images into embeddings before the set-input network can model inter-image relationships. In contrast, CST operates directly on 3D image tensors, performing feature extraction and contextual modeling simultaneously, thereby enabling synergies between the two processes. This design yields superior performance in tasks such as Set Classification and Set Anomaly Detection and further provides native compatibility with CNN explainability methods such as Grad-CAM, unlike competing approaches that remain opaque. Finally, we show that CSTs can be pre-trained on large-scale datasets and subsequently adapted to new domains and tasks through standard Transfer Learning schemes. To support further research, we release CST-15, a CST backbone pre-trained on ImageNet (https://github.com/chinefed/convolutional-set-transformer).
Authors:Nico Schulthess, Ender Konukoglu
Title: Anomaly Detection by Clustering DINO Embeddings using a Dirichlet Process Mixture
Abstract:
In this work, we leverage informative embeddings from foundational models for unsupervised anomaly detection in medical imaging. For small datasets, a memory-bank of normative features can directly be used for anomaly detection which has been demonstrated recently. However, this is unsuitable for large medical datasets as the computational burden increases substantially. Therefore, we propose to model the distribution of normative DINOv2 embeddings with a Dirichlet Process Mixture model (DPMM), a non-parametric mixture model that automatically adjusts the number of mixture components to the data at hand. Rather than using a memory bank, we use the similarity between the component centers and the embeddings as anomaly score function to create a coarse anomaly segmentation mask. Our experiments show that through DPMM embeddings of DINOv2, despite being trained on natural images, achieve very competitive anomaly detection performance on medical imaging benchmarks and can do this while at least halving the computation time at inference. Our analysis further indicates that normalized DINOv2 embeddings are generally more aligned with anatomical structures than unnormalized features, even in the presence of anomalies, making them great representations for anomaly detection. The code is available at https://github.com/NicoSchulthess/anomalydino-dpmm.
Authors:Sepehr Maleki, Negar Pourmoazemi
Title: Pi-Transformer: A Physics-informed Attention Mechanism for Time Series Anomaly Detection
Abstract:
Anomalies in multivariate time series often arise from temporal context and cross-channel coordination rather than isolated outliers. We present Pi-Transformer, a physics-informed transformer with two attention pathways: a data-driven series attention and a smoothly evolving prior attention that encodes temporal invariants such as scale-related self-similarity and phase synchrony. The prior acts as a stable reference that calibrates reconstruction error. During training, we pair a reconstruction objective with a divergence term that encourages agreement between the two attentions while keeping them meaningfully distinct; the prior is regularised to evolve smoothly and is lightly distilled towards dataset-level statistics. At inference, the model combines an alignment-weighted reconstruction signal (Energy) with a mismatch signal that highlights timing and phase disruptions, and fuses them into a single score for detection. Across five benchmarks (SMD, MSL, SMAP, SWaT, and PSM), Pi-Transformer achieves state-of-the-art or highly competitive F1, with particular strength on timing and phase-breaking anomalies. Case analyses show complementary behaviour of the two streams and interpretable detections around regime changes. Embedding physics-informed priors into attention yields a calibrated and robust approach to anomaly detection in complex multivariate systems. Code is publicly available at this GitHub repository\footnote{https://github.com/sepehr-m/Pi-Transformer}.
Authors:Mehrdad Moradi, Shengzhe Chen, Hao Yan, Kamran Paynabar
Title: A Single Image Is All You Need: Zero-Shot Anomaly Localization Without Training Data
Abstract:
Anomaly detection in images is typically addressed by learning from collections of training data or relying on reference samples. In many real-world scenarios, however, such training data may be unavailable, and only the test image itself is provided. We address this zero-shot setting by proposing a single-image anomaly localization method that leverages the inductive bias of convolutional neural networks, inspired by Deep Image Prior (DIP). Our method is named Single Shot Decomposition Network (SSDnet). Our key assumption is that natural images often exhibit unified textures and patterns, and that anomalies manifest as localized deviations from these repetitive or stochastic patterns. To learn the deep image prior, we design a patch-based training framework where the input image is fed directly into the network for self-reconstruction, rather than mapping random noise to the image as done in DIP. To avoid the model simply learning an identity mapping, we apply masking, patch shuffling, and small Gaussian noise. In addition, we use a perceptual loss based on inner-product similarity to capture structure beyond pixel fidelity. Our approach needs no external training data, labels, or references, and remains robust in the presence of noise or missing pixels. SSDnet achieves 0.99 AUROC and 0.60 AUPRC on MVTec-AD and 0.98 AUROC and 0.67 AUPRC on the fabric dataset, outperforming state-of-the-art methods. The implementation code will be released at https://github.com/mehrdadmoradi124/SSDnet
Authors:Xiuding Cai, Yaoyao Zhu, Linjie Fu, Dong Miao, Yu Yao
Title: Self Identity Mapping
Abstract:
Regularization is essential in deep learning to enhance generalization and mitigate overfitting. However, conventional techniques often rely on heuristics, making them less reliable or effective across diverse settings. We propose Self Identity Mapping (SIM), a simple yet effective, data-intrinsic regularization framework that leverages an inverse mapping mechanism to enhance representation learning. By reconstructing the input from its transformed output, SIM reduces information loss during forward propagation and facilitates smoother gradient flow. To address computational inefficiencies, We instantiate SIM as $ ρ\text{SIM} $ by incorporating patch-level feature sampling and projection-based method to reconstruct latent features, effectively lowering complexity. As a model-agnostic, task-agnostic regularizer, SIM can be seamlessly integrated as a plug-and-play module, making it applicable to different network architectures and tasks. We extensively evaluate $ρ\text{SIM}$ across three tasks: image classification, few-shot prompt learning, and domain generalization. Experimental results show consistent improvements over baseline methods, highlighting $ρ\text{SIM}$'s ability to enhance representation learning across various tasks. We also demonstrate that $ρ\text{SIM}$ is orthogonal to existing regularization methods, boosting their effectiveness. Moreover, our results confirm that $ρ\text{SIM}$ effectively preserves semantic information and enhances performance in dense-to-dense tasks, such as semantic segmentation and image translation, as well as in non-visual domains including audio classification and time series anomaly detection. The code is publicly available at https://github.com/XiudingCai/SIM-pytorch.
Authors:Mariette Schönfeld, Wannes Meert, Hendrik Blockeel
Title: Tailored Transformation Invariance for Industrial Anomaly Detection
Abstract:
Industrial Anomaly Detection (IAD) is a subproblem within Computer Vision Anomaly Detection that has been receiving increasing amounts of attention due to its applicability to real-life scenarios. Recent research has focused on how to extract the most informative features, contrasting older kNN-based methods that use only pretrained features. These recent methods are much more expensive to train however and could complicate real-life application. Careful study of related work with regards to transformation invariance leads to the idea that popular benchmarks require robustness to only minor translations. With this idea we then formulate LWinNN, a local window based approach that creates a middle ground between kNN based methods that have either complete or no translation invariance. Our experiments demonstrate that this small change increases accuracy considerably, while simultaneously decreasing both train and test time. This teaches us two things: first, the gap between kNN-based approaches and more complex state-of-the-art methodology can still be narrowed by effective usage of the limited data available. Second, our assumption of requiring only limited translation invariance highlights potential areas of interest for future work and the need for more spatially diverse benchmarks, for which our method can hopefully serve as a new baseline. Our code can be found at https://github.com/marietteschonfeld/LWinNN .
Authors:Bhavesh Sandbhor, Bheeshm Sharma, Balamurugan Palaniappan
Title: SLaM-DiMM: Shared Latent Modeling for Diffusion Based Missing Modality Synthesis in MRI
Abstract:
Brain MRI scans are often found in four modalities, consisting of T1-weighted with and without contrast enhancement (T1ce and T1w), T2-weighted imaging (T2w), and Flair. Leveraging complementary information from these different modalities enables models to learn richer, more discriminative features for understanding brain anatomy, which could be used in downstream tasks such as anomaly detection. However, in clinical practice, not all MRI modalities are always available due to various reasons. This makes missing modality generation a critical challenge in medical image analysis. In this paper, we propose SLaM-DiMM, a novel missing modality generation framework that harnesses the power of diffusion models to synthesize any of the four target MRI modalities from other available modalities. Our approach not only generates high-fidelity images but also ensures structural coherence across the depth of the volume through a dedicated coherence enhancement mechanism. Qualitative and quantitative evaluations on the BraTS-Lighthouse-2025 Challenge dataset demonstrate the effectiveness of the proposed approach in synthesizing anatomically plausible and structurally consistent results. Code is available at https://github.com/BheeshmSharma/SLaM-DiMM-MICCAI-BraTS-Challenge-2025.
Authors:Pan Tang, Shixiang Tang, Huanqi Pu, Zhiqing Miao, Zhixing Wang
Title: MicroRCA-Agent: Microservice Root Cause Analysis Method Based on Large Language Model Agents
Abstract:
This paper presents MicroRCA-Agent, an innovative solution for microservice root cause analysis based on large language model agents, which constructs an intelligent fault root cause localization system with multimodal data fusion. The technical innovations are embodied in three key aspects: First, we combine the pre-trained Drain log parsing algorithm with multi-level data filtering mechanism to efficiently compress massive logs into high-quality fault features. Second, we employ a dual anomaly detection approach that integrates Isolation Forest unsupervised learning algorithms with status code validation to achieve comprehensive trace anomaly identification. Third, we design a statistical symmetry ratio filtering mechanism coupled with a two-stage LLM analysis strategy to enable full-stack phenomenon summarization across node-service-pod hierarchies. The multimodal root cause analysis module leverages carefully designed cross-modal prompts to deeply integrate multimodal anomaly information, fully exploiting the cross-modal understanding and logical reasoning capabilities of large language models to generate structured analysis results encompassing fault components, root cause descriptions, and reasoning trace. Comprehensive ablation studies validate the complementary value of each modal data and the effectiveness of the system architecture. The proposed solution demonstrates superior performance in complex microservice fault scenarios, achieving a final score of 50.71. The code has been released at: https://github.com/tangpan360/MicroRCA-Agent.
Authors:Jingyi Yuan, Jianxiong Ye, Wenkang Chen, Chenqiang Gao
Title: AD-DINOv3: Enhancing DINOv3 for Zero-Shot Anomaly Detection with Anomaly-Aware Calibration
Abstract:
Zero-Shot Anomaly Detection (ZSAD) seeks to identify anomalies from arbitrary novel categories, offering a scalable and annotation-efficient solution. Traditionally, most ZSAD works have been based on the CLIP model, which performs anomaly detection by calculating the similarity between visual and text embeddings. Recently, vision foundation models such as DINOv3 have demonstrated strong transferable representation capabilities. In this work, we are the first to adapt DINOv3 for ZSAD. However, this adaptation presents two key challenges: (i) the domain bias between large-scale pretraining data and anomaly detection tasks leads to feature misalignment; and (ii) the inherent bias toward global semantics in pretrained representations often leads to subtle anomalies being misinterpreted as part of the normal foreground objects, rather than being distinguished as abnormal regions. To overcome these challenges, we introduce AD-DINOv3, a novel vision-language multimodal framework designed for ZSAD. Specifically, we formulate anomaly detection as a multimodal contrastive learning problem, where DINOv3 is employed as the visual backbone to extract patch tokens and a CLS token, and the CLIP text encoder provides embeddings for both normal and abnormal prompts. To bridge the domain gap, lightweight adapters are introduced in both modalities, enabling their representations to be recalibrated for the anomaly detection task. Beyond this baseline alignment, we further design an Anomaly-Aware Calibration Module (AACM), which explicitly guides the CLS token to attend to anomalous regions rather than generic foreground semantics, thereby enhancing discriminability. Extensive experiments on eight industrial and medical benchmarks demonstrate that AD-DINOv3 consistently matches or surpasses state-of-the-art methods.The code will be available at https://github.com/Kaisor-Yuan/AD-DINOv3.
Authors:Fazle Rafsani, Jay Shah, Catherine D. Chong, Todd J. Schwedt, Teresa Wu
Title: DinoAtten3D: Slice-Level Attention Aggregation of DinoV2 for 3D Brain MRI Anomaly Classification
Abstract:
Anomaly detection and classification in medical imaging are critical for early diagnosis but remain challenging due to limited annotated data, class imbalance, and the high cost of expert labeling. Emerging vision foundation models such as DINOv2, pretrained on extensive, unlabeled datasets, offer generalized representations that can potentially alleviate these limitations. In this study, we propose an attention-based global aggregation framework tailored specifically for 3D medical image anomaly classification. Leveraging the self-supervised DINOv2 model as a pretrained feature extractor, our method processes individual 2D axial slices of brain MRIs, assigning adaptive slice-level importance weights through a soft attention mechanism. To further address data scarcity, we employ a composite loss function combining supervised contrastive learning with class-variance regularization, enhancing inter-class separability and intra-class consistency. We validate our framework on the ADNI dataset and an institutional multi-class headache cohort, demonstrating strong anomaly classification performance despite limited data availability and significant class imbalance. Our results highlight the efficacy of utilizing pretrained 2D foundation models combined with attention-based slice aggregation for robust volumetric anomaly detection in medical imaging. Our implementation is publicly available at https://github.com/Rafsani/DinoAtten3D.git.
Authors:Seongho Kim, Sejong Ryu, Hyoukjun You, Je Hyeong Hong
Title: GTA-Crime: A Synthetic Dataset and Generation Framework for Fatal Violence Detection with Adversarial Snippet-Level Domain Adaptation
Abstract:
Recent advancements in video anomaly detection (VAD) have enabled identification of various criminal activities in surveillance videos, but detecting fatal incidents such as shootings and stabbings remains difficult due to their rarity and ethical issues in data collection. Recognizing this limitation, we introduce GTA-Crime, a fatal video anomaly dataset and generation framework using Grand Theft Auto 5 (GTA5). Our dataset contains fatal situations such as shootings and stabbings, captured from CCTV multiview perspectives under diverse conditions including action types, weather, time of day, and viewpoints. To address the rarity of such scenarios, we also release a framework for generating these types of videos. Additionally, we propose a snippet-level domain adaptation strategy using Wasserstein adversarial training to bridge the gap between synthetic GTA-Crime features and real-world features like UCF-Crime. Experimental results validate our GTA-Crime dataset and demonstrate that incorporating GTA-Crime with our domain adaptation strategy consistently enhances real world fatal violence detection accuracy. Our dataset and the data generation framework are publicly available at https://github.com/ta-ho/GTA-Crime.
Authors:Jack Wilkie, Hanan Hindy, Christos Tachtatzis, Robert Atkinson
Title: Contrastive Self-Supervised Network Intrusion Detection using Augmented Negative Pairs
Abstract:
Network intrusion detection remains a critical challenge in cybersecurity. While supervised machine learning models achieve state-of-the-art performance, their reliance on large labelled datasets makes them impractical for many real-world applications. Anomaly detection methods, which train exclusively on benign traffic to identify malicious activity, suffer from high false positive rates, limiting their usability. Recently, self-supervised learning techniques have demonstrated improved performance with lower false positive rates by learning discriminative latent representations of benign traffic. In particular, contrastive self-supervised models achieve this by minimizing the distance between similar (positive) views of benign traffic while maximizing it between dissimilar (negative) views. Existing approaches generate positive views through data augmentation and treat other samples as negative. In contrast, this work introduces Contrastive Learning using Augmented Negative pairs (CLAN), a novel paradigm for network intrusion detection where augmented samples are treated as negative views - representing potentially malicious distributions - while other benign samples serve as positive views. This approach enhances both classification accuracy and inference efficiency after pretraining on benign traffic. Experimental evaluation on the Lycos2017 dataset demonstrates that the proposed method surpasses existing self-supervised and anomaly detection techniques in a binary classification task. Furthermore, when fine-tuned on a limited labelled dataset, the proposed approach achieves superior multi-class classification performance compared to existing self-supervised models.
Authors:Xudong Mou, Rui Wang, Tiejun Wang, Renyu Yang, Shiru Chen, Jie Sun, Tianyu Wo, Xudong Liu
Title: CAPMix: Robust Time Series Anomaly Detection Based on Abnormal Assumptions with Dual-Space Mixup
Abstract:
Time series anomaly detection (TSAD) is a vital yet challenging task, particularly in scenarios where labeled anomalies are scarce and temporal dependencies are complex. Recent anomaly assumption (AA) approaches alleviate the lack of anomalies by injecting synthetic samples and training discriminative models. Despite promising results, these methods often suffer from two fundamental limitations: patchy generation, where scattered anomaly knowledge leads to overly simplistic or incoherent anomaly injection, and Anomaly Shift, where synthetic anomalies either resemble normal data too closely or diverge unrealistically from real anomalies, thereby distorting classification boundaries. In this paper, we propose CAPMix, a controllable anomaly augmentation framework that addresses both issues. First, we design a CutAddPaste mechanism to inject diverse and complex anomalies in a targeted manner, avoiding patchy generation. Second, we introduce a label revision strategy to adaptively refine anomaly labels, reducing the risk of anomaly shift. Finally, we employ dual-space mixup within a temporal convolutional network to enforce smoother and more robust decision boundaries. Extensive experiments on five benchmark datasets, including AIOps, UCR, SWaT, WADI, and ESA, demonstrate that CAPMix achieves significant improvements over state-of-the-art baselines, with enhanced robustness against contaminated training data. The code is available at https://github.com/alsike22/CAPMix.
Authors:Silvio Chito, Paolo Rabino, Tatiana Tommasi
Title: Efficient Odd-One-Out Anomaly Detection
Abstract:
The recently introduced odd-one-out anomaly detection task involves identifying the odd-looking instances within a multi-object scene. This problem presents several challenges for modern deep learning models, demanding spatial reasoning across multiple views and relational reasoning to understand context and generalize across varying object categories and layouts. We argue that these challenges must be addressed with efficiency in mind. To this end, we propose a DINO-based model that reduces the number of parameters by one third and shortens training time by a factor of three compared to the current state-of-the-art, while maintaining competitive performance. Our experimental evaluation also introduces a Multimodal Large Language Model baseline, providing insights into its current limitations in structured visual reasoning tasks. The project page can be found at https://silviochito.github.io/EfficientOddOneOut/
Authors:Matic Fučka, Vitjan Zavrtanik, Danijel Skočaj
Title: SALAD -- Semantics-Aware Logical Anomaly Detection
Abstract:
Recent surface anomaly detection methods excel at identifying structural anomalies, such as dents and scratches, but struggle with logical anomalies, such as irregular or missing object components. The best-performing logical anomaly detection approaches rely on aggregated pretrained features or handcrafted descriptors (most often derived from composition maps), which discard spatial and semantic information, leading to suboptimal performance. We propose SALAD, a semantics-aware discriminative logical anomaly detection method that incorporates a newly proposed composition branch to explicitly model the distribution of object composition maps, consequently learning important semantic relationships. Additionally, we introduce a novel procedure for extracting composition maps that requires no hand-made labels or category-specific information, in contrast to previous methods. By effectively modelling the composition map distribution, SALAD significantly improves upon state-of-the-art methods on the standard benchmark for logical anomaly detection, MVTec LOCO, achieving an impressive image-level AUROC of 96.1%. Code: https://github.com/MaticFuc/SALAD
Authors:Wen Ye, Jinbo Liu, Defu Cao, Wei Yang, Yan Liu
Title: When LLM Meets Time Series: Can LLMs Perform Multi-Step Time Series Reasoning and Inference
Abstract:
The rapid advancement of Large Language Models (LLMs) has sparked growing interest in their application to time series analysis tasks. However, their ability to perform complex reasoning over temporal data in real-world application domains remains underexplored. To move toward this goal, a first step is to establish a rigorous benchmark dataset for evaluation. In this work, we introduce the TSAIA Benchmark, a first attempt to evaluate LLMs as time-series AI assistants. To ensure both scientific rigor and practical relevance, we surveyed over 20 academic publications and identified 33 real-world task formulations. The benchmark encompasses a broad spectrum of challenges, ranging from constraint-aware forecasting to anomaly detection with threshold calibration: tasks that require compositional reasoning and multi-step time series analysis. The question generator is designed to be dynamic and extensible, supporting continuous expansion as new datasets or task types are introduced. Given the heterogeneous nature of the tasks, we adopt task-specific success criteria and tailored inference-quality metrics to ensure meaningful evaluation for each task. We apply this benchmark to assess eight state-of-the-art LLMs under a unified evaluation protocol. Our analysis reveals limitations in current models' ability to assemble complex time series analysis workflows, underscoring the need for specialized methodologies for domain-specific adaptation. Our benchmark is available at https://huggingface.co/datasets/Melady/TSAIA, and the code is available at https://github.com/USC-Melady/TSAIA.
Authors:Manish Shukla
Title: Adaptive Monitoring and Real-World Evaluation of Agentic AI Systems
Abstract:
Agentic artificial intelligence (AI) -- multi-agent systems that combine large language models with external tools and autonomous planning -- are rapidly transitioning from research laboratories into high-stakes domains. Our earlier "Basic" paper introduced a five-axis framework and proposed preliminary metrics such as goal drift and harm reduction but did not provide an algorithmic instantiation or empirical evidence. This "Advanced" sequel fills that gap. First, we revisit recent benchmarks and industrial deployments to show that technical metrics still dominate evaluations: a systematic review of 84 papers from 2023--2025 found that 83% report capability metrics while only 30% consider human-centred or economic axes [2]. Second, we formalise an Adaptive Multi-Dimensional Monitoring (AMDM) algorithm that normalises heterogeneous metrics, applies per-axis exponentially weighted moving-average thresholds and performs joint anomaly detection via the Mahalanobis distance [7]. Third, we conduct simulations and real-world experiments. AMDM cuts anomaly-detection latency from 12.3 s to 5.6 s on simulated goal drift and reduces false-positive rates from 4.5% to 0.9% compared with static thresholds. We present a comparison table and ROC/PR curves, and we reanalyse case studies to surface missing metrics. Code, data and a reproducibility checklist accompany this paper to facilitate replication. The code supporting this work is available at https://github.com/Manishms18/Adaptive-Multi-Dimensional-Monitoring.
Authors:Jiawei Liu, Jiahe Hou, Wei Wang, Jinsong Du, Yang Cong, Huijie Fan
Title: TMUAD: Enhancing Logical Capabilities in Unified Anomaly Detection Models with a Text Memory Bank
Abstract:
Anomaly detection, which aims to identify anomalies deviating from normal patterns, is challenging due to the limited amount of normal data available. Unlike most existing unified methods that rely on carefully designed image feature extractors and memory banks to capture logical relationships between objects, we introduce a text memory bank to enhance the detection of logical anomalies. Specifically, we propose a Three-Memory framework for Unified structural and logical Anomaly Detection (TMUAD). First, we build a class-level text memory bank for logical anomaly detection by the proposed logic-aware text extractor, which can capture rich logical descriptions of objects from input images. Second, we construct an object-level image memory bank that preserves complete object contours by extracting features from segmented objects. Third, we employ visual encoders to extract patch-level image features for constructing a patch-level memory bank for structural anomaly detection. These three complementary memory banks are used to retrieve and compare normal images that are most similar to the query image, compute anomaly scores at multiple levels, and fuse them into a final anomaly score. By unifying structural and logical anomaly detection through collaborative memory banks, TMUAD achieves state-of-the-art performance across seven publicly available datasets involving industrial and medical domains. The model and code are available at https://github.com/SIA-IDE/TMUAD.
Authors:Md. Rashid Shahriar Khan, Md. Abrar Hasan, Mohammod Tareq Aziz Justice
Title: Context-Aware Zero-Shot Anomaly Detection in Surveillance Using Contrastive and Predictive Spatiotemporal Modeling
Abstract:
Detecting anomalies in surveillance footage is inherently challenging due to their unpredictable and context-dependent nature. This work introduces a novel context-aware zero-shot anomaly detection framework that identifies abnormal events without exposure to anomaly examples during training. The proposed hybrid architecture combines TimeSformer, DPC, and CLIP to model spatiotemporal dynamics and semantic context. TimeSformer serves as the vision backbone to extract rich spatial-temporal features, while DPC forecasts future representations to identify temporal deviations. Furthermore, a CLIP-based semantic stream enables concept-level anomaly detection through context-specific text prompts. These components are jointly trained using InfoNCE and CPC losses, aligning visual inputs with their temporal and semantic representations. A context-gating mechanism further enhances decision-making by modulating predictions with scene-aware cues or global video features. By integrating predictive modeling with vision-language understanding, the system can generalize to previously unseen behaviors in complex environments. This framework bridges the gap between temporal reasoning and semantic context in zero-shot anomaly detection for surveillance. The code for this research has been made available at https://github.com/NK-II/Context-Aware-Zero-Shot-Anomaly-Detection-in-Surveillance.
Authors:Jiamu Wang, Keunho Byeon, Jinsol Song, Anh Nguyen, Sangjeong Ahn, Sung Hak Lee, Jin Tae Kwak
Title: Pathology-Informed Latent Diffusion Model for Anomaly Detection in Lymph Node Metastasis
Abstract:
Anomaly detection is an emerging approach in digital pathology for its ability to efficiently and effectively utilize data for disease diagnosis. While supervised learning approaches deliver high accuracy, they rely on extensively annotated datasets, suffering from data scarcity in digital pathology. Unsupervised anomaly detection, however, offers a viable alternative by identifying deviations from normal tissue distributions without requiring exhaustive annotations. Recently, denoising diffusion probabilistic models have gained popularity in unsupervised anomaly detection, achieving promising performance in both natural and medical imaging datasets. Building on this, we incorporate a vision-language model with a diffusion model for unsupervised anomaly detection in digital pathology, utilizing histopathology prompts during reconstruction. Our approach employs a set of pathology-related keywords associated with normal tissues to guide the reconstruction process, facilitating the differentiation between normal and abnormal tissues. To evaluate the effectiveness of the proposed method, we conduct experiments on a gastric lymph node dataset from a local hospital and assess its generalization ability under domain shift using a public breast lymph node dataset. The experimental results highlight the potential of the proposed method for unsupervised anomaly detection across various organs in digital pathology. Code: https://github.com/QuIIL/AnoPILaD.
Authors:Yucong Zhang, Juan Liu, Ming Li
Title: ECHO: Frequency-aware Hierarchical Encoding for Variable-length Signals
Abstract:
Pre-trained foundation models have demonstrated remarkable success in audio, vision and language, yet their potential for general machine signal modeling with arbitrary sampling rates-covering acoustic, vibration, and other industrial sensor data-remains under-explored. In this work, we propose a novel foundation model ECHO that integrates an advanced band-split architecture with frequency positional embeddings, enabling spectral localization across arbitrary sampling configurations. Moreover, the model incorporates sliding patches to support inputs of variable length without padding or cropping, producing a concise embedding that retains both temporal and spectral fidelity and naturally extends to streaming scenarios. We evaluate our method on various kinds of machine signal datasets, including previous DCASE task 2 challenges (2020-2025), and widely-used industrial signal corpora. Experimental results demonstrate consistent state-of-the-art performance in machine signal anomaly detection and fault classification, confirming the effectiveness and generalization capability of the proposed model. We open-sourced ECHO on https://github.com/yucongzh/ECHO.
Authors:Haomin Wen, Shurui Cao, Leman Akoglu
Title: CoBAD: Modeling Collective Behaviors for Human Mobility Anomaly Detection
Abstract:
Detecting anomalies in human mobility is essential for applications such as public safety and urban planning. While traditional anomaly detection methods primarily focus on individual movement patterns (e.g., a child should stay at home at night), collective anomaly detection aims to identify irregularities in collective mobility behaviors across individuals (e.g., a child is at home alone while the parents are elsewhere) and remains an underexplored challenge. Unlike individual anomalies, collective anomalies require modeling spatiotemporal dependencies between individuals, introducing additional complexity. To address this gap, we propose CoBAD, a novel model designed to capture Collective Behaviors for human mobility Anomaly Detection. We first formulate the problem as unsupervised learning over Collective Event Sequences (CES) with a co-occurrence event graph, where CES represents the event sequences of related individuals. CoBAD then employs a two-stage attention mechanism to model both the individual mobility patterns and the interactions across multiple individuals. Pre-trained on large-scale collective behavior data through masked event and link reconstruction tasks, CoBAD is able to detect two types of collective anomalies: unexpected co-occurrence anomalies and absence anomalies, the latter of which has been largely overlooked in prior work. Extensive experiments on large-scale mobility datasets demonstrate that CoBAD significantly outperforms existing anomaly detection baselines, achieving an improvement of 13%-18% in AUCROC and 19%-70% in AUCPR. All source code is available at https://github.com/wenhaomin/CoBAD.
Authors:Ximiao Zhang, Min Xu, Xiuzhuang Zhou
Title: Towards High-Resolution Industrial Image Anomaly Detection
Abstract:
Current anomaly detection methods primarily focus on low-resolution scenarios. For high-resolution images, conventional downsampling often results in missed detections of subtle anomalous regions due to the loss of fine-grained discriminative information. Despite some progress, recent studies have attempted to improve detection resolution by employing lightweight networks or using simple image tiling and ensemble methods. However, these approaches still struggle to meet the practical demands of industrial scenarios in terms of detection accuracy and efficiency. To address the above issues, we propose HiAD, a general framework for high-resolution anomaly detection. HiAD is capable of detecting anomalous regions of varying sizes in high-resolution images under limited computational resources. Specifically, HiAD employs a dual-branch architecture that integrates anomaly cues across different scales to comprehensively capture both subtle and large-scale anomalies. Furthermore, it incorporates a multi-resolution feature fusion strategy to tackle the challenges posed by fine-grained texture variations in high-resolution images. To enhance both adaptability and efficiency, HiAD utilizes a detector pool in conjunction with various detector assignment strategies, enabling detectors to be adaptively assigned based on patch features, ensuring detection performance while effectively controlling computational costs. We conduct extensive experiments on our specifically constructed high-resolution anomaly detection benchmarks, including MVTec-HD, VisA-HD, and the real-world benchmark RealIAD-HD, demonstrating the superior performance of HiAD. The code is available at https://github.com/cnulab/HiAD.
Authors:Shouju Wang, Yuchen Song, Sheng'en Li, Dongmian Zou
Title: Enhancing Fairness in Autoencoders for Node-Level Graph Anomaly Detection
Abstract:
Graph anomaly detection (GAD) has become an increasingly important task across various domains. With the rapid development of graph neural networks (GNNs), GAD methods have achieved significant performance improvements. However, fairness considerations in GAD remain largely underexplored. Indeed, GNN-based GAD models can inherit and amplify biases present in training data, potentially leading to unfair outcomes. While existing efforts have focused on developing fair GNNs, most approaches target node classification tasks, where models often rely on simple layer architectures rather than autoencoder-based structures, which are the most widely used architecturs for anomaly detection. To address fairness in autoencoder-based GAD models, we propose \textbf{D}is\textbf{E}ntangled \textbf{C}ounterfactual \textbf{A}dversarial \textbf{F}air (DECAF)-GAD, a framework that alleviates bias while preserving GAD performance. Specifically, we introduce a structural causal model (SCM) to disentangle sensitive attributes from learned representations. Based on this causal framework, we formulate a specialized autoencoder architecture along with a fairness-guided loss function. Through extensive experiments on both synthetic and real-world datasets, we demonstrate that DECAF-GAD not only achieves competitive anomaly detection performance but also significantly enhances fairness metrics compared to baseline GAD methods. Our code is available at https://github.com/Tlhey/decaf_code.
Authors:Pallavi Zambare, Venkata Nikhil Thanikella, Nikhil Padmanabh Kottur, Sree Akhil Akula, Ying Liu
Title: NetMoniAI: An Agentic AI Framework for Network Security & Monitoring
Abstract:
In this paper, we present NetMoniAI, an agentic AI framework for automatic network monitoring and security that integrates decentralized analysis with lightweight centralized coordination. The framework consists of two layers: autonomous micro-agents at each node perform local traffic analysis and anomaly detection. A central controller then aggregates insights across nodes to detect coordinated attacks and maintain system-wide situational awareness. We evaluated NetMoniAI on a local micro-testbed and through NS-3 simulations. Results confirm that the two-tier agentic-AI design scales under resource constraints, reduces redundancy, and improves response time without compromising accuracy. To facilitate broader adoption and reproducibility, the complete framework is available as open source. This enables researchers and practitioners to replicate, validate, and extend it across diverse network environments and threat scenarios. Github link: https://github.com/pzambare3/NetMoniAI
Authors:Yanhui Li, Yunkang Cao, Chengliang Liu, Yuan Xiong, Xinghui Dong, Chao Huang
Title: IAD-R1: Reinforcing Consistent Reasoning in Industrial Anomaly Detection
Abstract:
Industrial anomaly detection is a critical component of modern manufacturing, yet the scarcity of defective samples restricts traditional detection methods to scenario-specific applications. Although Vision-Language Models (VLMs) demonstrate significant advantages in generalization capabilities, their performance in industrial anomaly detection remains limited. To address this challenge, we propose IAD-R1, a universal post-training framework applicable to VLMs of different architectures and parameter scales, which substantially enhances their anomaly detection capabilities. IAD-R1 employs a two-stage training strategy: the Perception Activation Supervised Fine-Tuning (PA-SFT) stage utilizes a meticulously constructed high-quality Chain-of-Thought dataset (Expert-AD) for training, enhancing anomaly perception capabilities and establishing reasoning-to-answer correlations; the Structured Control Group Relative Policy Optimization (SC-GRPO) stage employs carefully designed reward functions to achieve a capability leap from "Anomaly Perception" to "Anomaly Interpretation". Experimental results demonstrate that IAD-R1 achieves significant improvements across 7 VLMs, the largest improvement was on the DAGM dataset, with average accuracy 43.3% higher than the 0.5B baseline. Notably, the 0.5B parameter model trained with IAD-R1 surpasses commercial models including GPT-4.1 and Claude-Sonnet-4 in zero-shot settings, demonstrating the effectiveness and superiority of IAD-R1. The dataset, code, and all model weights will be publicly available at https://github.com/Yanhui-Lee/IAD-R1.
Authors:Yuxin Zhang, Yunkang Cao, Yuqi Cheng, Yihan Sun, Weiming Shen
Title: Levarging Learning Bias for Noisy Anomaly Detection
Abstract:
This paper addresses the challenge of fully unsupervised image anomaly detection (FUIAD), where training data may contain unlabeled anomalies. Conventional methods assume anomaly-free training data, but real-world contamination leads models to absorb anomalies as normal, degrading detection performance. To mitigate this, we propose a two-stage framework that systematically exploits inherent learning bias in models. The learning bias stems from: (1) the statistical dominance of normal samples, driving models to prioritize learning stable normal patterns over sparse anomalies, and (2) feature-space divergence, where normal data exhibit high intra-class consistency while anomalies display high diversity, leading to unstable model responses. Leveraging the learning bias, stage 1 partitions the training set into subsets, trains sub-models, and aggregates cross-model anomaly scores to filter a purified dataset. Stage 2 trains the final detector on this dataset. Experiments on the Real-IAD benchmark demonstrate superior anomaly detection and localization performance under different noise conditions. Ablation studies further validate the framework's contamination resilience, emphasizing the critical role of learning bias exploitation. The model-agnostic design ensures compatibility with diverse unsupervised backbones, offering a practical solution for real-world scenarios with imperfect training data. Code is available at https://github.com/hustzhangyuxin/LLBNAD.
Authors:Mehrdad Moradi, Marco Grasso, Bianca Maria Colosimo, Kamran Paynabar
Title: Single-Step Reconstruction-Free Anomaly Detection and Segmentation via Diffusion Models
Abstract:
Generative models have demonstrated significant success in anomaly detection and segmentation over the past decade. Recently, diffusion models have emerged as a powerful alternative, outperforming previous approaches such as GANs and VAEs. In typical diffusion-based anomaly detection, a model is trained on normal data, and during inference, anomalous images are perturbed to a predefined intermediate step in the forward diffusion process. The corresponding normal image is then reconstructed through iterative reverse sampling. However, reconstruction-based approaches present three major challenges: (1) the reconstruction process is computationally expensive due to multiple sampling steps, making real-time applications impractical; (2) for complex or subtle patterns, the reconstructed image may correspond to a different normal pattern rather than the original input; and (3) Choosing an appropriate intermediate noise level is challenging because it is application-dependent and often assumes prior knowledge of anomalies, an assumption that does not hold in unsupervised settings. We introduce Reconstruction-free Anomaly Detection with Attention-based diffusion models in Real-time (RADAR), which overcomes the limitations of reconstruction-based anomaly detection. Unlike current SOTA methods that reconstruct the input image, RADAR directly produces anomaly maps from the diffusion model, improving both detection accuracy and computational efficiency. We evaluate RADAR on real-world 3D-printed material and the MVTec-AD dataset. Our approach surpasses state-of-the-art diffusion-based and statistical machine learning models across all key metrics, including accuracy, precision, recall, and F1 score. Specifically, RADAR improves F1 score by 7% on MVTec-AD and 13% on the 3D-printed material dataset compared to the next best model. Code available at: https://github.com/mehrdadmoradi124/RADAR
Authors:Zhiyao Xu, Dan Zhao, Qingsong Zou, Qing Li, Yong Jiang, Yuhang Wang, Jingyu Xiao
Title: Semantic-aware Graph-guided Behavior Sequences Generation with Large Language Models for Smart Homes
Abstract:
As smart homes become increasingly prevalent, intelligent models are widely used for tasks such as anomaly detection and behavior prediction. These models are typically trained on static datasets, making them brittle to behavioral drift caused by seasonal changes, lifestyle shifts, or evolving routines. However, collecting new behavior data for retraining is often impractical due to its slow pace, high cost, and privacy concerns. In this paper, we propose SmartGen, an LLM-based framework that synthesizes context-aware user behavior data to support continual adaptation of downstream smart home models. SmartGen consists of four key components. First, we design a Time and Semantic-aware Split module to divide long behavior sequences into manageable, semantically coherent subsequences under dual time-span constraints. Second, we propose Semantic-aware Sequence Compression to reduce input length while preserving representative semantics by clustering behavior mapping in latent space. Third, we introduce Graph-guided Sequence Synthesis, which constructs a behavior relationship graph and encodes frequent transitions into prompts, guiding the LLM to generate data aligned with contextual changes while retaining core behavior patterns. Finally, we design a Two-stage Outlier Filter to identify and remove implausible or semantically inconsistent outputs, aiming to improve the factual coherence and behavioral validity of the generated sequences. Experiments on three real-world datasets demonstrate that SmartGen significantly enhances model performance on anomaly detection and behavior prediction tasks under behavioral drift, with anomaly detection improving by 85.43% and behavior prediction by 70.51% on average. The code is available at https://github.com/horizonsinzqs/SmartGen.
Authors:Qiyu Chen, Zhen Qu, Wei Luo, Haiming Yao, Yunkang Cao, Yuxin Jiang, Yinan Duan, Huiyuan Luo, Chengkan Lv, Zhengtao Zhang
Title: CoPS: Conditional Prompt Synthesis for Zero-Shot Anomaly Detection
Abstract:
Recently, large pre-trained vision-language models have shown remarkable performance in zero-shot anomaly detection (ZSAD). With fine-tuning on a single auxiliary dataset, the model enables cross-category anomaly detection on diverse datasets covering industrial defects and medical lesions. Compared to manually designed prompts, prompt learning eliminates the need for expert knowledge and trial-and-error. However, it still faces the following challenges: (i) static learnable tokens struggle to capture the continuous and diverse patterns of normal and anomalous states, limiting generalization to unseen categories; (ii) fixed textual labels provide overly sparse category information, making the model prone to overfitting to a specific semantic subspace. To address these issues, we propose Conditional Prompt Synthesis (CoPS), a novel framework that synthesizes dynamic prompts conditioned on visual features to enhance ZSAD performance. Specifically, we extract representative normal and anomaly prototypes from fine-grained patch features and explicitly inject them into prompts, enabling adaptive state modeling. Given the sparsity of class labels, we leverage a variational autoencoder to model semantic image features and implicitly fuse varied class tokens into prompts. Additionally, integrated with our spatially-aware alignment mechanism, extensive experiments demonstrate that CoPS surpasses state-of-the-art methods by 2.5% AUROC in both classification and segmentation across 13 industrial and medical datasets. Code will be available at https://github.com/cqylunlun/CoPS.
Authors:Farzad Beizaee, Sina Hajimiri, Ismail Ben Ayed, Gregory Lodygensky, Christian Desrosiers, Jose Dolz
Title: REFLECT: Rectified Flows for Efficient Brain Anomaly Correction Transport
Abstract:
Unsupervised anomaly detection (UAD) in brain imaging is crucial for identifying pathologies without the need for labeled data. However, accurately localizing anomalies remains challenging due to the intricate structure of brain anatomy and the scarcity of abnormal examples. In this work, we introduce REFLECT, a novel framework that leverages rectified flows to establish a direct, linear trajectory for correcting abnormal MR images toward a normal distribution. By learning a straight, one-step correction transport map, our method efficiently corrects brain anomalies and can precisely localize anomalies by detecting discrepancies between anomalous input and corrected counterpart. In contrast to the diffusion-based UAD models, which require iterative stochastic sampling, rectified flows provide a direct transport map, enabling single-step inference. Extensive experiments on popular UAD brain segmentation benchmarks demonstrate that REFLECT significantly outperforms state-of-the-art unsupervised anomaly detection methods. The code is available at https://github.com/farzad-bz/REFLECT.
Authors:Haoquan Lu, Hanzhe Liang, Jie Zhang, Chenxi Hu, Jinbao Wang, Can Gao
Title: C3D-AD: Toward Continual 3D Anomaly Detection via Kernel Attention with Learnable Advisor
Abstract:
3D Anomaly Detection (AD) has shown great potential in detecting anomalies or defects of high-precision industrial products. However, existing methods are typically trained in a class-specific manner and also lack the capability of learning from emerging classes. In this study, we proposed a continual learning framework named Continual 3D Anomaly Detection (C3D-AD), which can not only learn generalized representations for multi-class point clouds but also handle new classes emerging over time.Specifically, in the feature extraction module, to extract generalized local features from diverse product types of different tasks efficiently, Kernel Attention with random feature Layer (KAL) is introduced, which normalizes the feature space. Then, to reconstruct data correctly and continually, an efficient Kernel Attention with learnable Advisor (KAA) mechanism is proposed, which learns the information from new categories while discarding redundant old information within both the encoder and decoder. Finally, to keep the representation consistency over tasks, a Reconstruction with Parameter Perturbation (RPP) module is proposed by designing a representation rehearsal loss function, which ensures that the model remembers previous category information and returns category-adaptive representation.Extensive experiments on three public datasets demonstrate the effectiveness of the proposed method, achieving an average performance of 66.4%, 83.1%, and 63.4% AUROC on Real3D-AD, Anomaly-ShapeNet, and MulSen-AD, respectively.
Authors:Wei Zhou, Peng Sun, Xuanhe Zhou, Qianglei Zang, Ji Xu, Tieying Zhang, Guoliang Li, Fan Wu
Title: DBAIOps: A Reasoning LLM-Enhanced Database Operation and Maintenance System using Knowledge Graphs
Abstract:
The operation and maintenance (O&M) of database systems is critical to ensuring system availability and performance, typically requiring expert experience (e.g., identifying metric-to-anomaly relations) for effective diagnosis and recovery. However, existing automatic database O&M methods, including commercial products, cannot effectively utilize expert experience. On the one hand, rule-based methods only support basic O&M tasks (e.g., metric-based anomaly detection), which are mostly numerical equations and cannot effectively incorporate literal O&M experience (e.g., troubleshooting guidance in manuals). On the other hand, LLM-based methods, which retrieve fragmented information (e.g., standard documents + RAG), often generate inaccurate or generic results. To address these limitations, we present DBAIOps, a novel hybrid database O&M system that combines reasoning LLMs with knowledge graphs to achieve DBA-style diagnosis. First, DBAIOps introduces a heterogeneous graph model for representing the diagnosis experience, and proposes a semi-automatic graph construction algorithm to build that graph from thousands of documents. Second, DBAIOps develops a collection of (800+) reusable anomaly models that identify both directly alerted metrics and implicitly correlated experience and metrics. Third, for each anomaly, DBAIOps proposes a two-stage graph evolution mechanism to explore relevant diagnosis paths and identify missing relations automatically. It then leverages a reasoning LLM (e.g., DeepSeek-R1) to infer root causes and generate clear diagnosis reports for both DBAs and common users. Our evaluation over four mainstream database systems (Oracle, MySQL, PostgreSQL, and DM8) demonstrates that DBAIOps outperforms state-of-the-art baselines, 34.85% and 47.22% higher in root cause and human evaluation accuracy, respectively.
Authors:Suhang Cai, Xiaohao Peng, Chong Wang, Xiaojie Cai, Jiangbo Qian
Title: GV-VAD : Exploring Video Generation for Weakly-Supervised Video Anomaly Detection
Abstract:
Video anomaly detection (VAD) plays a critical role in public safety applications such as intelligent surveillance. However, the rarity, unpredictability, and high annotation cost of real-world anomalies make it difficult to scale VAD datasets, which limits the performance and generalization ability of existing models. To address this challenge, we propose a generative video-enhanced weakly-supervised video anomaly detection (GV-VAD) framework that leverages text-conditioned video generation models to produce semantically controllable and physically plausible synthetic videos. These virtual videos are used to augment training data at low cost. In addition, a synthetic sample loss scaling strategy is utilized to control the influence of generated synthetic samples for efficient training. The experiments show that the proposed framework outperforms state-of-the-art methods on UCF-Crime datasets. The code is available at https://github.com/Sumutan/GV-VAD.git.
Authors:Yuan-Cheng Yu, Yen-Chieh Ouyang, Chun-An Lin
Title: TriP-LLM: A Tri-Branch Patch-wise Large Language Model Framework for Time-Series Anomaly Detection
Abstract:
Time-series anomaly detection plays a central role across a wide range of application domains. With the increasing proliferation of the Internet of Things (IoT) and smart manufacturing, time-series data has dramatically increased in both scale and dimensionality. This growth has exposed the limitations of traditional statistical methods in handling the high heterogeneity and complexity of such data. Inspired by the recent success of large language models (LLMs) in multimodal tasks across language and vision domains, we propose a novel unsupervised anomaly detection framework: A Tri-Branch Patch-wise Large Language Model Framework for Time-Series Anomaly Detection (TriP-LLM). TriP-LLM integrates local and global temporal features through a tri-branch design-Patching, Selection, and Global-to encode the input time series into patch-wise tokens, which are then processed by a frozen, pretrained LLM. A lightweight patch-wise decoder reconstructs the input, from which anomaly scores are derived. We evaluate TriP-LLM on several public benchmark datasets using PATE, a recently proposed threshold-free evaluation metric, and conduct all comparisons within a unified open-source framework to ensure fairness. Experimental results show that TriP-LLM consistently outperforms recent state-of-the-art methods across all datasets, demonstrating strong detection capabilities. Furthermore, through extensive ablation studies, we verify the substantial contribution of the LLM to the overall architecture. Compared to LLM-based approaches using Channel Independence (CI) patch processing, TriP-LLM achieves significantly lower memory consumption, making it more suitable for GPU memory-constrained environments. All code and model checkpoints are publicly available on https://github.com/YYZStart/TriP-LLM.git
Authors:Nicolas Pinon, Carole Lartizien
Title: OCSVM-Guided Representation Learning for Unsupervised Anomaly Detection
Abstract:
Unsupervised anomaly detection (UAD) aims to detect anomalies without labeled data, a necessity in many machine learning applications where anomalous samples are rare or not available. Most state-of-the-art methods fall into two categories: reconstruction-based approaches, which often reconstruct anomalies too well, and decoupled representation learning with density estimators, which can suffer from suboptimal feature spaces. While some recent methods attempt to couple feature learning and anomaly detection, they often rely on surrogate objectives, restrict kernel choices, or introduce approximations that limit their expressiveness and robustness. To address this challenge, we propose a novel method that tightly couples representation learning with an analytically solvable one-class SVM (OCSVM), through a custom loss formulation that directly aligns latent features with the OCSVM decision boundary. The model is evaluated on two tasks: a new benchmark based on MNIST-C, and a challenging brain MRI subtle lesion detection task. Unlike most methods that focus on large, hyperintense lesions at the image level, our approach succeeds to target small, non-hyperintense lesions, while we evaluate voxel-wise metrics, addressing a more clinically relevant scenario. Both experiments evaluate a form of robustness to domain shifts, including corruption types in MNIST-C and scanner/age variations in MRI. Results demonstrate performance and robustness of our proposed mode,highlighting its potential for general UAD and real-world medical imaging applications. The source code is available at https://github.com/Nicolas-Pinon/uad_ocsvm_guided_repr_learning
Authors:Qingqing Fang, Wenxi Lv, Qinliang Su
Title: AF-CLIP: Zero-Shot Anomaly Detection via Anomaly-Focused CLIP Adaptation
Abstract:
Visual anomaly detection has been widely used in industrial inspection and medical diagnosis. Existing methods typically demand substantial training samples, limiting their utility in zero-/few-shot scenarios. While recent efforts have leveraged CLIP's zero-shot recognition capability for this task, they often ignore optimizing visual features to focus on local anomalies, reducing their efficacy. In this work, we propose AF-CLIP (Anomaly-Focused CLIP) by dramatically enhancing its visual representations to focus on local defects. Our approach introduces a lightweight adapter that emphasizes anomaly-relevant patterns in visual features, simultaneously optimizing both class-level features for image classification and patch-level features for precise localization. To capture anomalies of different sizes and improve detection accuracy, prior to the adapter, we develop a multi-scale spatial aggregation mechanism to effectively consolidate neighborhood context. Complementing these visual enhancements, we design learnable textual prompts that generically characterize normal and abnormal states. After optimization on auxiliary datasets using a composite objective function, AF-CLIP demonstrates strong zero-shot detection capability. Our method is also extended to few-shot scenarios by extra memory banks. Experimental results across diverse industrial and medical datasets demonstrate the effectiveness and generalization of our proposed method. Code is available at https://github.com/Faustinaqq/AF-CLIP.
Authors:An Xiang, Zixuan Huang, Xitong Gao, Kejiang Ye, Cheng-zhong Xu
Title: BridgeNet: A Unified Multimodal Framework for Bridging 2D and 3D Industrial Anomaly Detection
Abstract:
Industrial anomaly detection for 2D objects has gained significant attention and achieved progress in anomaly detection (AD) methods. However, identifying 3D depth anomalies using only 2D information is insufficient. Despite explicitly fusing depth information into RGB images or using point cloud backbone networks to extract depth features, both approaches struggle to adequately represent 3D information in multimodal scenarios due to the disparities among different modal information. Additionally, due to the scarcity of abnormal samples in industrial data, especially in multimodal scenarios, it is necessary to perform anomaly generation to simulate real-world abnormal samples. Therefore, we propose a novel unified multimodal anomaly detection framework to address these issues. Our contributions consist of 3 key aspects. (1) We extract visible depth information from 3D point cloud data simply and use 2D RGB images to represent appearance, which disentangles depth and appearance to support unified anomaly generation. (2) Benefiting from the flexible input representation, the proposed Multi-Scale Gaussian Anomaly Generator and Unified Texture Anomaly Generator can generate richer anomalies in RGB and depth. (3) All modules share parameters for both RGB and depth data, effectively bridging 2D and 3D anomaly detection. Subsequent modules can directly leverage features from both modalities without complex fusion. Experiments show our method outperforms state-of-the-art (SOTA) on MVTec-3D AD and Eyecandies datasets. Code available at: https://github.com/Xantastic/BridgeNet
Authors:Rui Pan, Ruiying Lu
Title: SP-Mamba: Spatial-Perception State Space Model for Unsupervised Medical Anomaly Detection
Abstract:
Radiography imaging protocols target on specific anatomical regions, resulting in highly consistent images with recurrent structural patterns across patients. Recent advances in medical anomaly detection have demonstrated the effectiveness of CNN- and transformer-based approaches. However, CNNs exhibit limitations in capturing long-range dependencies, while transformers suffer from quadratic computational complexity. In contrast, Mamba-based models, leveraging superior long-range modeling, structural feature extraction, and linear computational efficiency, have emerged as a promising alternative. To capitalize on the inherent structural regularity of medical images, this study introduces SP-Mamba, a spatial-perception Mamba framework for unsupervised medical anomaly detection. The window-sliding prototype learning and Circular-Hilbert scanning-based Mamba are introduced to better exploit consistent anatomical patterns and leverage spatial information for medical anomaly detection. Furthermore, we excavate the concentration and contrast characteristics of anomaly maps for improving anomaly detection. Extensive experiments on three diverse medical anomaly detection benchmarks confirm the proposed method's state-of-the-art performance, validating its efficacy and robustness. The code is available at https://github.com/Ray-RuiPan/SP-Mamba.
Authors:Francesco Dalmonte, Emirhan Bayar, Emre Akbas, Mariana-Iuliana Georgescu
Title: Q-Former Autoencoder: A Modern Framework for Medical Anomaly Detection
Abstract:
Anomaly detection in medical images is an important yet challenging task due to the diversity of possible anomalies and the practical impossibility of collecting comprehensively annotated data sets. In this work, we tackle unsupervised medical anomaly detection proposing a modernized autoencoder-based framework, the Q-Former Autoencoder, that leverages state-of-the-art pretrained vision foundation models, such as DINO, DINOv2 and Masked Autoencoder. Instead of training encoders from scratch, we directly utilize frozen vision foundation models as feature extractors, enabling rich, multi-stage, high-level representations without domain-specific fine-tuning. We propose the usage of the Q-Former architecture as the bottleneck, which enables the control of the length of the reconstruction sequence, while efficiently aggregating multiscale features. Additionally, we incorporate a perceptual loss computed using features from a pretrained Masked Autoencoder, guiding the reconstruction towards semantically meaningful structures. Our framework is evaluated on four diverse medical anomaly detection benchmarks, achieving state-of-the-art results on BraTS2021, RESC, and RSNA. Our results highlight the potential of vision foundation model encoders, pretrained on natural images, to generalize effectively to medical image analysis tasks without further fine-tuning. We release the code and models at https://github.com/emirhanbayar/QFAE.
Authors:Yiyuan Yang, Zichuan Liu, Lei Song, Kai Ying, Zhiguang Wang, Tom Bamford, Svitlana Vyetrenko, Jiang Bian, Qingsong Wen
Title: Time-RA: Towards Time Series Reasoning for Anomaly with LLM Feedback
Abstract:
Time series anomaly detection is critical across various domains, yet current approaches often limit analysis to mere binary anomaly classification without detailed categorization or further explanatory reasoning. To address these limitations, we propose a novel task, Time-series Reasoning for Anomaly (Time-RA) that transforms classical time series anomaly detection from a discriminative into a generative, reasoning-intensive task leveraging Large Language Models (LLMs). Also, we introduce the first real-world multimodal benchmark dataset, RATs40K, explicitly annotated for anomaly reasoning, comprising approximately 40,000 samples across 10 real-world domains. Each sample includes numeric time series data, contextual text information, and visual representations, each annotated with fine-grained categories (14 types for univariate anomalies and 6 for multivariate anomalies) and structured explanatory reasoning. We develop a sophisticated annotation framework utilizing ensemble-generated labels refined through GPT-4-driven feedback, ensuring accuracy and interpretability. Extensive benchmarking of LLMs and multimodal LLMs demonstrates the capabilities and limitations of current models, highlighting the critical role of supervised fine-tuning. Our dataset and task pave the way for significant advancements in interpretable time series anomaly detection and reasoning. The code (https://github.com/yyysjz1997/Time-RA) and dataset (https://huggingface.co/datasets/Time-RA/RATs40K) have been fully open-sourced to support and accelerate future research in this area.
Authors:Feng Xiao, Jicong Fan
Title: Text-ADBench: Text Anomaly Detection Benchmark based on LLMs Embedding
Abstract:
Text anomaly detection is a critical task in natural language processing (NLP), with applications spanning fraud detection, misinformation identification, spam detection and content moderation, etc. Despite significant advances in large language models (LLMs) and anomaly detection algorithms, the absence of standardized and comprehensive benchmarks for evaluating the existing anomaly detection methods on text data limits rigorous comparison and development of innovative approaches. This work performs a comprehensive empirical study and introduces a benchmark for text anomaly detection, leveraging embeddings from diverse pre-trained language models across a wide array of text datasets. Our work systematically evaluates the effectiveness of embedding-based text anomaly detection by incorporating (1) early language models (GloVe, BERT); (2) multiple LLMs (LLaMa-2, LLama-3, Mistral, OpenAI (small, ada, large)); (3) multi-domain text datasets (news, social media, scientific publications); (4) comprehensive evaluation metrics (AUROC, AUPRC). Our experiments reveal a critical empirical insight: embedding quality significantly governs anomaly detection efficacy, and deep learning-based approaches demonstrate no performance advantage over conventional shallow algorithms (e.g., KNN, Isolation Forest) when leveraging LLM-derived embeddings.In addition, we observe strongly low-rank characteristics in cross-model performance matrices, which enables an efficient strategy for rapid model evaluation (or embedding evaluation) and selection in practical applications. Furthermore, by open-sourcing our benchmark toolkit that includes all embeddings from different models and code at https://github.com/jicongfan/Text-Anomaly-Detection-Benchmark, this work provides a foundation for future research in robust and scalable text anomaly detection systems.
Authors:Steven Dillmann, Juan Rafael Martínez-Galarza
Title: Learning Representations of Event Time Series with Sparse Autoencoders for Anomaly Detection, Similarity Search, and Unsupervised Classification
Abstract:
Event time series are sequences of discrete events occurring at irregular time intervals, each associated with a domain-specific observational modality. They are common in domains such as high-energy astrophysics, computational social science, cybersecurity, finance, healthcare, neuroscience, and seismology. Their unstructured and irregular structure poses significant challenges for extracting meaningful patterns and identifying salient phenomena using conventional techniques. We propose novel two- and three-dimensional tensor representations for event time series, coupled with sparse autoencoders that learn physically meaningful latent representations. These embeddings support a variety of downstream tasks, including anomaly detection, similarity-based retrieval, semantic clustering, and unsupervised classification. We demonstrate our approach on a real-world dataset from X-ray astronomy, showing that these representations successfully capture temporal and spectral signatures and isolate diverse classes of X-ray transients. Our framework offers a flexible, scalable, and generalizable solution for analyzing complex, irregular event time series across scientific and industrial domains.
Authors:Chenyu Lian, Hong-Yu Zhou, Zhanli Hu, Jing Qin
Title: BenchReAD: A systematic benchmark for retinal anomaly detection
Abstract:
Retinal anomaly detection plays a pivotal role in screening ocular and systemic diseases. Despite its significance, progress in the field has been hindered by the absence of a comprehensive and publicly available benchmark, which is essential for the fair evaluation and advancement of methodologies. Due to this limitation, previous anomaly detection work related to retinal images has been constrained by (1) a limited and overly simplistic set of anomaly types, (2) test sets that are nearly saturated, and (3) a lack of generalization evaluation, resulting in less convincing experimental setups. Furthermore, existing benchmarks in medical anomaly detection predominantly focus on one-class supervised approaches (training only with negative samples), overlooking the vast amounts of labeled abnormal data and unlabeled data that are commonly available in clinical practice. To bridge these gaps, we introduce a benchmark for retinal anomaly detection, which is comprehensive and systematic in terms of data and algorithm. Through categorizing and benchmarking previous methods, we find that a fully supervised approach leveraging disentangled representations of abnormalities (DRA) achieves the best performance but suffers from significant drops in performance when encountering certain unseen anomalies. Inspired by the memory bank mechanisms in one-class supervised learning, we propose NFM-DRA, which integrates DRA with a Normal Feature Memory to mitigate the performance degradation, establishing a new SOTA. The benchmark is publicly available at https://github.com/DopamineLcy/BenchReAD.
Authors:Svetlana Orlova, Tommie Kerssies, Brunó B. Englert, Gijs Dubbelman
Title: Simplifying Traffic Anomaly Detection with Video Foundation Models
Abstract:
Recent methods for ego-centric Traffic Anomaly Detection (TAD) often rely on complex multi-stage or multi-representation fusion architectures, yet it remains unclear whether such complexity is necessary. Recent findings in visual perception suggest that foundation models, enabled by advanced pre-training, allow simple yet flexible architectures to outperform specialized designs. Therefore, in this work, we investigate an architecturally simple encoder-only approach using plain Video Vision Transformers (Video ViTs) and study how pre-training enables strong TAD performance. We find that: (i) advanced pre-training enables simple encoder-only models to match or even surpass the performance of specialized state-of-the-art TAD methods, while also being significantly more efficient; (ii) although weakly- and fully-supervised pre-training are advantageous on standard benchmarks, we find them less effective for TAD. Instead, self-supervised Masked Video Modeling (MVM) provides the strongest signal; and (iii) Domain-Adaptive Pre-Training (DAPT) on unlabeled driving videos further improves downstream performance, without requiring anomalous examples. Our findings highlight the importance of pre-training and show that effective, efficient, and scalable TAD models can be built with minimal architectural complexity. We release our code, domain-adapted encoders, and fine-tuned models to support future work: https://github.com/tue-mps/simple-tad.
Authors:Shiyi Mu, Zichong Gu, Hanqi Lyu, Yilin Gao, Shugong Xu
Title: Stereo-based 3D Anomaly Object Detection for Autonomous Driving: A New Dataset and Baseline
Abstract:
3D detection technology is widely used in the field of autonomous driving, with its application scenarios gradually expanding from enclosed highways to open conventional roads. For rare anomaly categories that appear on the road, 3D detection models trained on closed sets often misdetect or fail to detect anomaly objects. To address this risk, it is necessary to enhance the generalization ability of 3D detection models for targets of arbitrary shapes and to possess the capability to filter out anomalies. The generalization of 3D detection is limited by two factors: the coupled training of 2D and 3D, and the insufficient diversity in the scale distribution of training samples. This paper proposes a Stereo-based 3D Anomaly object Detection (S3AD) algorithm, which decouples the training strategy of 3D and 2D to release the generalization ability for arbitrary 3D foreground detection, and proposes an anomaly scoring algorithm based on foreground confidence prediction, achieving target-level anomaly scoring. In order to further verify and enhance the generalization of anomaly detection, we use a 3D rendering method to synthesize two augmented reality binocular stereo 3D detection datasets which named KITTI-AR. KITTI-AR extends upon KITTI by adding 97 new categories, totaling 6k pairs of stereo images. The KITTI-AR-ExD subset includes 39 common categories as extra training data to address the sparse sample distribution issue. Additionally, 58 rare categories form the KITTI-AR-OoD subset, which are not used in training to simulate zero-shot scenarios in real-world settings, solely for evaluating 3D anomaly detection. Finally, the performance of the algorithm and the dataset is verified in the experiments. (Code and dataset can be obtained at https://github.com/shiyi-mu/S3AD-Code).
Authors:Yuqiang Lin, Sam Lockyer, Mingxuan Sui, Li Gan, Florian Stanek, Markus Zarbock, Wenbin Li, Adrian Evans, Nic Zhang
Title: RoundaboutHD: High-Resolution Real-World Urban Environment Benchmark for Multi-Camera Vehicle Tracking
Abstract:
The multi-camera vehicle tracking (MCVT) framework holds significant potential for smart city applications, including anomaly detection, traffic density estimation, and suspect vehicle tracking. However, current publicly available datasets exhibit limitations, such as overly simplistic scenarios, low-resolution footage, and insufficiently diverse conditions, creating a considerable gap between academic research and real-world scenario. To fill this gap, we introduce RoundaboutHD, a comprehensive, high-resolution multi-camera vehicle tracking benchmark dataset specifically designed to represent real-world roundabout scenarios. RoundaboutHD provides a total of 40 minutes of labelled video footage captured by four non-overlapping, high-resolution (4K resolution, 15 fps) cameras. In total, 512 unique vehicle identities are annotated across different camera views, offering rich cross-camera association data. RoundaboutHD offers temporal consistency video footage and enhanced challenges, including increased occlusions and nonlinear movement inside the roundabout. In addition to the full MCVT dataset, several subsets are also available for object detection, single camera tracking, and image-based vehicle re-identification (ReID) tasks. Vehicle model information and camera modelling/ geometry information are also included to support further analysis. We provide baseline results for vehicle detection, single-camera tracking, image-based vehicle re-identification, and multi-camera tracking. The dataset and the evaluation code are publicly available at: https://github.com/siri-rouser/RoundaboutHD.git
Authors:Guoxin Zang, Xue Li, Donglin Di, Lanshun Nie, Dechen Zhan, Yang Song, Lei Fan
Title: SAGE: A Visual Language Model for Anomaly Detection via Fact Enhancement and Entropy-aware Alignment
Abstract:
While Vision-Language Models (VLMs) have shown promising progress in general multimodal tasks, they often struggle in industrial anomaly detection and reasoning, particularly in delivering interpretable explanations and generalizing to unseen categories. This limitation stems from the inherently domain-specific nature of anomaly detection, which hinders the applicability of existing VLMs in industrial scenarios that require precise, structured, and context-aware analysis. To address these challenges, we propose SAGE, a VLM-based framework that enhances anomaly reasoning through Self-Guided Fact Enhancement (SFE) and Entropy-aware Direct Preference Optimization (E-DPO). SFE integrates domain-specific knowledge into visual reasoning via fact extraction and fusion, while E-DPO aligns model outputs with expert preferences using entropy-aware optimization. Additionally, we introduce AD-PL, a preference-optimized dataset tailored for industrial anomaly reasoning, consisting of 28,415 question-answering instances with expert-ranked responses. To evaluate anomaly reasoning models, we develop Multiscale Logical Evaluation (MLE), a quantitative framework analyzing model logic and consistency. SAGE demonstrates superior performance on industrial anomaly datasets under zero-shot and one-shot settings. The code, model and dataset are available at https://github.com/amoreZgx1n/SAGE.
Authors:Mahshid Shiri, Cigdem Beyan, Vittorio Murino
Title: MADPOT: Medical Anomaly Detection with CLIP Adaptation and Partial Optimal Transport
Abstract:
Medical anomaly detection (AD) is challenging due to diverse imaging modalities, anatomical variations, and limited labeled data. We propose a novel approach combining visual adapters and prompt learning with Partial Optimal Transport (POT) and contrastive learning (CL) to improve CLIP's adaptability to medical images, particularly for AD. Unlike standard prompt learning, which often yields a single representation, our method employs multiple prompts aligned with local features via POT to capture subtle abnormalities. CL further enforces intra-class cohesion and inter-class separation. Our method achieves state-of-the-art results in few-shot, zero-shot, and cross-dataset scenarios without synthetic data or memory banks. The code is available at https://github.com/mahshid1998/MADPOT.
Authors:Ashish Bastola, Mert D. Pesé, Long Cheng, Jonathon Smereka, Abolfazl Razi
Title: Anomalous Decision Discovery using Inverse Reinforcement Learning
Abstract:
Anomaly detection plays a critical role in Autonomous Vehicles (AVs) by identifying unusual behaviors through perception systems that could compromise safety and lead to hazardous situations. Current approaches, which often rely on predefined thresholds or supervised learning paradigms, exhibit reduced efficacy when confronted with unseen scenarios, sensor noise, and occlusions, leading to potential safety-critical failures. Moreover, supervised methods require large annotated datasets, limiting their real-world feasibility. To address these gaps, we propose an anomaly detection framework based on Inverse Reinforcement Learning (IRL) to infer latent driving intentions from sequential perception data, thus enabling robust identification. Specifically, we present Trajectory-Reward Guided Adaptive Pre-training (TRAP), a novel IRL framework for anomaly detection, to address two critical limitations of existing methods: noise robustness and generalization to unseen scenarios. Our core innovation is implicitly learning temporal credit assignments via reward and worst-case supervision. We leverage pre-training with variable-horizon sampling to maximize time-to-consequence, resulting in early detection of behavior deviation. Experiments on 14,000+ simulated trajectories demonstrate state-of-the-art performance, achieving 0.90 AUC and 82.2\% F1-score - outperforming similarly trained supervised and unsupervised baselines by 39\% on Recall and 12\% on F1-score, respectively. Similar performance is achieved while exhibiting robustness to various noise types and generalization to unseen anomaly types. Our code will be available at: https://github.com/abastola0/TRAP.git
Authors:Mahshid Shiri, Cigdem Beyan, Vittorio Murino
Title: MadCLIP: Few-shot Medical Anomaly Detection with CLIP
Abstract:
An innovative few-shot anomaly detection approach is presented, leveraging the pre-trained CLIP model for medical data, and adapting it for both image-level anomaly classification (AC) and pixel-level anomaly segmentation (AS). A dual-branch design is proposed to separately capture normal and abnormal features through learnable adapters in the CLIP vision encoder. To improve semantic alignment, learnable text prompts are employed to link visual features. Furthermore, SigLIP loss is applied to effectively handle the many-to-one relationship between images and unpaired text prompts, showcasing its adaptation in the medical field for the first time. Our approach is validated on multiple modalities, demonstrating superior performance over existing methods for AC and AS, in both same-dataset and cross-dataset evaluations. Unlike prior work, it does not rely on synthetic data or memory banks, and an ablation study confirms the contribution of each component. The code is available at https://github.com/mahshid1998/MadCLIP.
Authors:Zhe Liu, Yuhao Huang, Lian Liu, Chengrui Zhang, Haotian Lin, Tong Han, Zhiyuan Zhu, Yanlin Chen, Yuerui Chen, Dong Ni, Zhongshan Gou, Xin Yang
Title: MReg: A Novel Regression Model with MoE-based Video Feature Mining for Mitral Regurgitation Diagnosis
Abstract:
Color Doppler echocardiography is a crucial tool for diagnosing mitral regurgitation (MR). Recent studies have explored intelligent methods for MR diagnosis to minimize user dependence and improve accuracy. However, these approaches often fail to align with clinical workflow and may lead to suboptimal accuracy and interpretability. In this study, we introduce an automated MR diagnosis model (MReg) developed on the 4-chamber cardiac color Doppler echocardiography video (A4C-CDV). It follows comprehensive feature mining strategies to detect MR and assess its severity, considering clinical realities. Our contribution is threefold. First, we formulate the MR diagnosis as a regression task to capture the continuity and ordinal relationships between categories. Second, we design a feature selection and amplification mechanism to imitate the sonographer's diagnostic logic for accurate MR grading. Third, inspired by the Mixture-of-Experts concept, we introduce a feature summary module to extract the category-level features, enhancing the representational capacity for more accurate grading. We trained and evaluated our proposed MReg on a large in-house A4C-CDV dataset comprising 1868 cases with three graded regurgitation labels. Compared to other weakly supervised video anomaly detection and supervised classification methods, MReg demonstrated superior performance in MR diagnosis. Our code is available at: https://github.com/cskdstz/MReg.
Authors:Kamil Faber, Marcin Pietroń, Dominik Żurek, Roberto Corizzo
Title: xLSTMAD: A Powerful xLSTM-based Method for Anomaly Detection
Abstract:
The recently proposed xLSTM is a powerful model that leverages expressive multiplicative gating and residual connections, providing the temporal capacity needed for long-horizon forecasting and representation learning. This architecture has demonstrated success in time series forecasting, lossless compression, and even large-scale language modeling tasks, where its linear memory footprint and fast inference make it a viable alternative to Transformers. Despite its growing popularity, no prior work has explored xLSTM for anomaly detection. In this work, we fill this gap by proposing xLSTMAD, the first anomaly detection method that integrates a full encoder-decoder xLSTM architecture, purpose-built for multivariate time series data. Our encoder processes input sequences to capture historical context, while the decoder is devised in two separate variants of the method. In the forecasting approach, the decoder iteratively generates forecasted future values xLSTMAD-F, while the reconstruction approach reconstructs the input time series from its encoded counterpart xLSTMAD-R. We investigate the performance of two loss functions: Mean Squared Error (MSE), and Soft Dynamic Time Warping (SoftDTW) to consider local reconstruction fidelity and global sequence alignment, respectively. We evaluate our method on the comprehensive TSB-AD-M benchmark, which spans 17 real-world datasets, using state-of-the-art challenging metrics such as VUS-PR. In our results, xLSTM showcases state-of-the-art accuracy, outperforming 23 popular anomaly detection baselines. Our paper is the first work revealing the powerful modeling capabilities of xLSTM for anomaly detection, paving the way for exciting new developments on this subject. Our code is available at: https://github.com/Nyderx/xlstmad
Authors:Alex Costanzino, Pierluigi Zama Ramirez, Luigi Lella, Matteo Ragaglia, Alessandro Oliva, Giuseppe Lisanti, Luigi Di Stefano
Title: SiM3D: Single-instance Multiview Multimodal and Multisetup 3D Anomaly Detection Benchmark
Abstract:
We propose SiM3D, the first benchmark considering the integration of multiview and multimodal information for comprehensive 3D anomaly detection and segmentation (ADS), where the task is to produce a voxel-based Anomaly Volume. Moreover, SiM3D focuses on a scenario of high interest in manufacturing: single-instance anomaly detection, where only one object, either real or synthetic, is available for training. In this respect, SiM3D stands out as the first ADS benchmark that addresses the challenge of generalising from synthetic training data to real test data. SiM3D includes a novel multimodal multiview dataset acquired using top-tier industrial sensors and robots. The dataset features multiview high-resolution images (12 Mpx) and point clouds (7M points) for 333 instances of eight types of objects, alongside a CAD model for each type. We also provide manually annotated 3D segmentation GTs for anomalous test samples. To establish reference baselines for the proposed multiview 3D ADS task, we adapt prominent singleview methods and assess their performance using novel metrics that operate on Anomaly Volumes.
Authors:Kurt Butler, Guanchao Feng, Tong Chen, Petar Djuric
Title: Trustworthy Prediction with Gaussian Process Knowledge Scores
Abstract:
Probabilistic models are often used to make predictions in regions of the data space where no observations are available, but it is not always clear whether such predictions are well-informed by previously seen data. In this paper, we propose a knowledge score for predictions from Gaussian process regression (GPR) models that quantifies the extent to which observing data have reduced our uncertainty about a prediction. The knowledge score is interpretable and naturally bounded between 0 and 1. We demonstrate in several experiments that the knowledge score can anticipate when predictions from a GPR model are accurate, and that this anticipation improves performance in tasks such as anomaly detection, extrapolation, and missing data imputation. Source code for this project is available online at https://github.com/KurtButler/GP-knowledge.
Authors:Muhao Xu, Xueying Zhou, Xizhan Gao, Weiye Song, Guang Feng, Sijie Niu
Title: Normality Prior Guided Multi-Semantic Fusion Network for Unsupervised Image Anomaly Detection
Abstract:
Recently, detecting logical anomalies is becoming a more challenging task compared to detecting structural ones. Existing encoder decoder based methods typically compress inputs into low-dimensional bottlenecks on the assumption that the compression process can effectively suppress the transmission of logical anomalies to the decoder. However, logical anomalies present a particular difficulty because, while their local features often resemble normal semantics, their global semantics deviate significantly from normal patterns. Thanks to the generalisation capabilities inherent in neural networks, these abnormal semantic features can propagate through low-dimensional bottlenecks. This ultimately allows the decoder to reconstruct anomalous images with misleading fidelity. To tackle the above challenge, we propose a novel normality prior guided multi-semantic fusion network for unsupervised anomaly detection. Instead of feeding the compressed bottlenecks to the decoder directly, we introduce the multi-semantic features of normal samples into the reconstruction process. To this end, we first extract abstract global semantics of normal cases by a pre-trained vision-language network, then the learnable semantic codebooks are constructed to store representative feature vectors of normal samples by vector quantisation. Finally, the above multi-semantic features are fused and employed as input to the decoder to guide the reconstruction of anomalies to approximate normality. Extensive experiments are conducted to validate the effectiveness of our proposed method, and it achieves the SOTA performance on the MVTec LOCO AD dataset with improvements of 5.7% in pixel-sPRO and 2.6% in image-AUROC. The source code is available at https://github.com/Xmh-L/NPGMF.
Authors:Muhammad Usama, Hee-Deok Jang, Soham Shanbhag, Yoo-Chang Sung, Seung-Jun Bae, Dong Eui Chang
Title: Learning High-Quality Latent Representations for Anomaly Detection and Signal Integrity Enhancement in High-Speed Signals
Abstract:
This paper addresses the dual challenge of improving anomaly detection and signal integrity in high-speed dynamic random access memory signals. To achieve this, we propose a joint training framework that integrates an autoencoder with a classifier to learn more distinctive latent representations by focusing on valid data features. Our approach is evaluated across three anomaly detection algorithms and consistently outperforms two baseline methods. Detailed ablation studies further support these findings. Furthermore, we introduce a signal integrity enhancement algorithm that improves signal integrity by an average of 11.3%. The source code and data used in this study are available at https://github.com/Usama1002/learning-latent-representations.
Authors:Xiangfei Qiu, Zhe Li, Wanghui Qiu, Shiyan Hu, Lekui Zhou, Xingjian Wu, Zhengyu Li, Chenjuan Guo, Aoying Zhou, Zhenli Sheng, Jilin Hu, Christian S. Jensen, Bin Yang
Title: TAB: Unified Benchmarking of Time Series Anomaly Detection Methods
Abstract:
Time series anomaly detection (TSAD) plays an important role in many domains such as finance, transportation, and healthcare. With the ongoing instrumentation of reality, more time series data will be available, leading also to growing demands for TSAD. While many TSAD methods already exist, new and better methods are still desirable. However, effective progress hinges on the availability of reliable means of evaluating new methods and comparing them with existing methods. We address deficiencies in current evaluation procedures related to datasets and experimental settings and protocols. Specifically, we propose a new time series anomaly detection benchmark, called TAB. First, TAB encompasses 29 public multivariate datasets and 1,635 univariate time series from different domains to facilitate more comprehensive evaluations on diverse datasets. Second, TAB covers a variety of TSAD methods, including Non-learning, Machine learning, Deep learning, LLM-based, and Time-series pre-trained methods. Third, TAB features a unified and automated evaluation pipeline that enables fair and easy evaluation of TSAD methods. Finally, we employ TAB to evaluate existing TSAD methods and report on the outcomes, thereby offering a deeper insight into the performance of these methods. Besides, all datasets and code are available at https://github.com/decisionintelligence/TAB.
Authors:Jiawen Yu, Jieji Ren, Yang Chang, Qiaojun Yu, Xuan Tong, Boyang Wang, Yan Song, You Li, Xinji Mai, Wenqiang Zhang
Title: Noise Fusion-based Distillation Learning for Anomaly Detection in Complex Industrial Environments
Abstract:
Anomaly detection and localization in automated industrial manufacturing can significantly enhance production efficiency and product quality. Existing methods are capable of detecting surface defects in pre-defined or controlled imaging environments. However, accurately detecting workpiece defects in complex and unstructured industrial environments with varying views, poses and illumination remains challenging. We propose a novel anomaly detection and localization method specifically designed to handle inputs with perturbative patterns. Our approach introduces a new framework based on a collaborative distillation heterogeneous teacher network (HetNet), an adaptive local-global feature fusion module, and a local multivariate Gaussian noise generation module. HetNet can learn to model the complex feature distribution of normal patterns using limited information about local disruptive changes. We conducted extensive experiments on mainstream benchmarks. HetNet demonstrates superior performance with approximately 10% improvement across all evaluation metrics on MSC-AD under industrial conditions, while achieving state-of-the-art results on other datasets, validating its resilience to environmental fluctuations and its capability to enhance the reliability of industrial anomaly detection systems across diverse scenarios. Tests in real-world environments further confirm that HetNet can be effectively integrated into production lines to achieve robust and real-time anomaly detection. Codes, images and videos are published on the project website at: https://zihuatanejoyu.github.io/HetNet/
Authors:Guoguo Ai, Hezhe Qiao, Hui Yan, Guansong Pang
Title: Semi-supervised Graph Anomaly Detection via Robust Homophily Learning
Abstract:
Semi-supervised graph anomaly detection (GAD) utilizes a small set of labeled normal nodes to identify abnormal nodes from a large set of unlabeled nodes in a graph. Current methods in this line posit that 1) normal nodes share a similar level of homophily and 2) the labeled normal nodes can well represent the homophily patterns in the normal class. However, this assumption often does not hold well since normal nodes in a graph can exhibit diverse homophily in real-world GAD datasets. In this paper, we propose RHO, namely Robust Homophily Learning, to adaptively learn such homophily patterns. RHO consists of two novel modules, adaptive frequency response filters (AdaFreq) and graph normality alignment (GNA). AdaFreq learns a set of adaptive spectral filters that capture different frequency components of the labeled normal nodes with varying homophily in the channel-wise and cross-channel views of node attributes. GNA is introduced to enforce consistency between the channel-wise and cross-channel homophily representations to robustify the normality learned by the filters in the two views. Experiments on eight real-world GAD datasets show that RHO can effectively learn varying, often under-represented, homophily in the small normal node set and substantially outperforms state-of-the-art competing methods. Code is available at https://github.com/mala-lab/RHO.
Authors:Adriana Watson
Title: Explain First, Trust Later: LLM-Augmented Explanations for Graph-Based Crypto Anomaly Detection
Abstract:
The decentralized finance (DeFi) community has grown rapidly in recent years, pushed forward by cryptocurrency enthusiasts interested in the vast untapped potential of new markets. The surge in popularity of cryptocurrency has ushered in a new era of financial crime. Unfortunately, the novelty of the technology makes the task of catching and prosecuting offenders particularly challenging. Thus, it is necessary to implement automated detection tools related to policies to address the growing criminality in the cryptocurrency realm.
Authors:Xinyi Zhao, Congjing Zhang, Pei Guo, Wei Li, Lin Chen, Chaoyue Zhao, Shuai Huang
Title: SmartHome-Bench: A Comprehensive Benchmark for Video Anomaly Detection in Smart Homes Using Multi-Modal Large Language Models
Abstract:
Video anomaly detection (VAD) is essential for enhancing safety and security by identifying unusual events across different environments. Existing VAD benchmarks, however, are primarily designed for general-purpose scenarios, neglecting the specific characteristics of smart home applications. To bridge this gap, we introduce SmartHome-Bench, the first comprehensive benchmark specially designed for evaluating VAD in smart home scenarios, focusing on the capabilities of multi-modal large language models (MLLMs). Our newly proposed benchmark consists of 1,203 videos recorded by smart home cameras, organized according to a novel anomaly taxonomy that includes seven categories, such as Wildlife, Senior Care, and Baby Monitoring. Each video is meticulously annotated with anomaly tags, detailed descriptions, and reasoning. We further investigate adaptation methods for MLLMs in VAD, assessing state-of-the-art closed-source and open-source models with various prompting techniques. Results reveal significant limitations in the current models' ability to detect video anomalies accurately. To address these limitations, we introduce the Taxonomy-Driven Reflective LLM Chain (TRLC), a new LLM chaining framework that achieves a notable 11.62% improvement in detection accuracy. The benchmark dataset and code are publicly available at https://github.com/Xinyi-0724/SmartHome-Bench-LLM.
Authors:Ruojing Li, Wei An, Xinyi Ying, Yingqian Wang, Yimian Dai, Longguang Wang, Miao Li, Yulan Guo, Li Liu
Title: Probing Deep into Temporal Profile Makes the Infrared Small Target Detector Much Better
Abstract:
Infrared small target (IRST) detection is challenging in simultaneously achieving precise, universal, robust and efficient performance due to extremely dim targets and strong interference. Current learning-based methods attempt to leverage ``more" information from both the spatial and the short-term temporal domains, but suffer from unreliable performance under complex conditions while incurring computational redundancy. In this paper, we explore the ``more essential" information from a more crucial domain for the detection. Through theoretical analysis, we reveal that the global temporal saliency and correlation information in the temporal profile demonstrate significant superiority in distinguishing target signals from other signals. To investigate whether such superiority is preferentially leveraged by well-trained networks, we built the first prediction attribution tool in this field and verified the importance of the temporal profile information. Inspired by the above conclusions, we remodel the IRST detection task as a one-dimensional signal anomaly detection task, and propose an efficient deep temporal probe network (DeepPro) that only performs calculations in the time dimension for IRST detection. We conducted extensive experiments to fully validate the effectiveness of our method. The experimental results are exciting, as our DeepPro outperforms existing state-of-the-art IRST detection methods on widely-used benchmarks with extremely high efficiency, and achieves a significant improvement on dim targets and in complex scenarios. We provide a new modeling domain, a new insight, a new method, and a new performance, which can promote the development of IRST detection. Codes are available at https://github.com/TinaLRJ/DeepPro.
Authors:Xiaotang Gai, Jiaxiang Liu, Yichen Li, Zijie Meng, Jian Wu, Zuozhu Liu
Title: 3D-RAD: A Comprehensive 3D Radiology Med-VQA Dataset with Multi-Temporal Analysis and Diverse Diagnostic Tasks
Abstract:
Medical Visual Question Answering (Med-VQA) holds significant potential for clinical decision support, yet existing efforts primarily focus on 2D imaging with limited task diversity. This paper presents 3D-RAD, a large-scale dataset designed to advance 3D Med-VQA using radiology CT scans. The 3D-RAD dataset encompasses six diverse VQA tasks: anomaly detection, image observation, medical computation, existence detection, static temporal diagnosis, and longitudinal temporal diagnosis. It supports both open- and closed-ended questions while introducing complex reasoning challenges, including computational tasks and multi-stage temporal analysis, to enable comprehensive benchmarking. Extensive evaluations demonstrate that existing vision-language models (VLMs), especially medical VLMs exhibit limited generalization, particularly in multi-temporal tasks, underscoring the challenges of real-world 3D diagnostic reasoning. To drive future advancements, we release a high-quality training set 3D-RAD-T of 136,195 expert-aligned samples, showing that fine-tuning on this dataset could significantly enhance model performance. Our dataset and code, aiming to catalyze multimodal medical AI research and establish a robust foundation for 3D medical visual understanding, are publicly available at https://github.com/Tang-xiaoxiao/M3D-RAD.
Authors:Hong Huang, Weixiang Sun, Zhijian Wu, Jingwen Niu, Donghuan Lu, Xian Wu, Yefeng Zheng
Title: IQE-CLIP: Instance-aware Query Embedding for Zero-/Few-shot Anomaly Detection in Medical Domain
Abstract:
Recently, the rapid advancements of vision-language models, such as CLIP, leads to significant progress in zero-/few-shot anomaly detection (ZFSAD) tasks. However, most existing CLIP-based ZFSAD methods commonly assume prior knowledge of categories and rely on carefully crafted prompts tailored to specific scenarios. While such meticulously designed text prompts effectively capture semantic information in the textual space, they fall short of distinguishing normal and anomalous instances within the joint embedding space. Moreover, these ZFSAD methods are predominantly explored in industrial scenarios, with few efforts conducted to medical tasks. To this end, we propose an innovative framework for ZFSAD tasks in medical domain, denoted as IQE-CLIP. We reveal that query embeddings, which incorporate both textual and instance-aware visual information, are better indicators for abnormalities. Specifically, we first introduce class-based prompting tokens and learnable prompting tokens for better adaptation of CLIP to the medical domain. Then, we design an instance-aware query module (IQM) to extract region-level contextual information from both text prompts and visual features, enabling the generation of query embeddings that are more sensitive to anomalies. Extensive experiments conducted on six medical datasets demonstrate that IQE-CLIP achieves state-of-the-art performance on both zero-shot and few-shot tasks. We release our code and data at https://github.com/hongh0/IQE-CLIP/.
Authors:Mojtaba Nafez, Amirhossein Koochakian, Arad Maleki, Jafar Habibi, Mohammad Hossein Rohban
Title: PatchGuard: Adversarially Robust Anomaly Detection and Localization through Vision Transformers and Pseudo Anomalies
Abstract:
Anomaly Detection (AD) and Anomaly Localization (AL) are crucial in fields that demand high reliability, such as medical imaging and industrial monitoring. However, current AD and AL approaches are often susceptible to adversarial attacks due to limitations in training data, which typically include only normal, unlabeled samples. This study introduces PatchGuard, an adversarially robust AD and AL method that incorporates pseudo anomalies with localization masks within a Vision Transformer (ViT)-based architecture to address these vulnerabilities. We begin by examining the essential properties of pseudo anomalies, and follow it by providing theoretical insights into the attention mechanisms required to enhance the adversarial robustness of AD and AL systems. We then present our approach, which leverages Foreground-Aware Pseudo-Anomalies to overcome the deficiencies of previous anomaly-aware methods. Our method incorporates these crafted pseudo-anomaly samples into a ViT-based framework, with adversarial training guided by a novel loss function designed to improve model robustness, as supported by our theoretical analysis. Experimental results on well-established industrial and medical datasets demonstrate that PatchGuard significantly outperforms previous methods in adversarial settings, achieving performance gains of $53.2\%$ in AD and $68.5\%$ in AL, while also maintaining competitive accuracy in non-adversarial settings. The code repository is available at https://github.com/rohban-lab/PatchGuard .
Authors:Arun Sharma, Mingzhou Yang, Majid Farhadloo, Subhankar Ghosh, Bharat Jayaprakash, Shashi Shekhar
Title: Towards Physics-informed Diffusion for Anomaly Detection in Trajectories
Abstract:
Given trajectory data, a domain-specific study area, and a user-defined threshold, we aim to find anomalous trajectories indicative of possible GPS spoofing (e.g., fake trajectory). The problem is societally important to curb illegal activities in international waters, such as unauthorized fishing and illicit oil transfers. The problem is challenging due to advances in AI generated in deep fakes generation (e.g., additive noise, fake trajectories) and lack of adequate amount of labeled samples for ground-truth verification. Recent literature shows promising results for anomalous trajectory detection using generative models despite data sparsity. However, they do not consider fine-scale spatiotemporal dependencies and prior physical knowledge, resulting in higher false-positive rates. To address these limitations, we propose a physics-informed diffusion model that integrates kinematic constraints to identify trajectories that do not adhere to physical laws. Experimental results on real-world datasets in the maritime and urban domains show that the proposed framework results in higher prediction accuracy and lower estimation error rate for anomaly detection and trajectory generation methods, respectively. Our implementation is available at https://github.com/arunshar/Physics-Informed-Diffusion-Probabilistic-Model.
Authors:Joscha Diehl, Rasheed Ibraheem, Leonard Schmitz, Yue Wu
Title: Tensor-to-Tensor Models with Fast Iterated Sum Features
Abstract:
Data in the form of images or higher-order tensors is ubiquitous in modern deep learning applications. Owing to their inherent high dimensionality, the need for subquadratic layers processing such data is even more pressing than for sequence data. We propose a novel tensor-to-tensor layer with linear cost in the input size, utilizing the mathematical gadget of ``corner trees'' from the field of permutation counting. In particular, for order-two tensors, we provide an image-to-image layer that can be plugged into image processing pipelines. On the one hand, our method can be seen as a higher-order generalization of state-space models. On the other hand, it is based on a multiparameter generalization of the signature of iterated integrals (or sums). The proposed tensor-to-tensor concept is used to build a neural network layer called the Fast Iterated Sums (FIS) layer which integrates seamlessly with other layer types. We demonstrate the usability of the FIS layer with both classification and anomaly detection tasks. By replacing some layers of a smaller ResNet architecture with FIS, a similar accuracy (with a difference of only 0.1\%) was achieved in comparison to a larger ResNet while reducing the number of trainable parameters and multi-add operations. The FIS layer was also used to build an anomaly detection model that achieved an average AUROC of 97.3\% on the texture images of the popular MVTec AD dataset. The processing and modelling codes are publicly available at https://github.com/diehlj/fast-iterated-sums.
Authors:HyunGi Kim, Jisoo Mok, Dongjun Lee, Jaihyun Lew, Sungjae Kim, Sungroh Yoon
Title: Causality-Aware Contrastive Learning for Robust Multivariate Time-Series Anomaly Detection
Abstract:
Utilizing the complex inter-variable causal relationships within multivariate time-series provides a promising avenue toward more robust and reliable multivariate time-series anomaly detection (MTSAD) but remains an underexplored area of research. This paper proposes Causality-Aware contrastive learning for RObust multivariate Time-Series (CAROTS), a novel MTSAD pipeline that incorporates the notion of causality into contrastive learning. CAROTS employs two data augmentors to obtain causality-preserving and -disturbing samples that serve as a wide range of normal variations and synthetic anomalies, respectively. With causality-preserving and -disturbing samples as positives and negatives, CAROTS performs contrastive learning to train an encoder whose latent space separates normal and abnormal samples based on causality. Moreover, CAROTS introduces a similarity-filtered one-class contrastive loss that encourages the contrastive learning process to gradually incorporate more semantically diverse samples with common causal relationships. Extensive experiments on five real-world and two synthetic datasets validate that the integration of causal relationships endows CAROTS with improved MTSAD capabilities. The code is available at https://github.com/kimanki/CAROTS.
Authors:Juntong Li, Lingwei Dang, Yukun Su, Yun Hao, Qingxin Xiao, Yongwei Nie, Qingyao Wu
Title: MemoryOut: Learning Principal Features via Multimodal Sparse Filtering Network for Semi-supervised Video Anomaly Detection
Abstract:
Video Anomaly Detection (VAD) methods based on reconstruction or prediction face two critical challenges: (1) strong generalization capability often results in accurate reconstruction or prediction of abnormal events, making it difficult to distinguish normal from abnormal patterns; (2) reliance only on low-level appearance and motion cues limits their ability to identify high-level semantic in abnormal events from complex scenes. To address these limitations, we propose a novel VAD framework with two key innovations. First, to suppress excessive generalization, we introduce the Sparse Feature Filtering Module (SFFM) that employs bottleneck filters to dynamically and adaptively remove abnormal information from features. Unlike traditional memory modules, it does not need to memorize the normal prototypes across the training dataset. Further, we design the Mixture of Experts (MoE) architecture for SFFM. Each expert is responsible for extracting specialized principal features during running time, and different experts are selectively activated to ensure the diversity of the learned principal features. Second, to overcome the neglect of semantics in existing methods, we integrate a Vision-Language Model (VLM) to generate textual descriptions for video clips, enabling comprehensive joint modeling of semantic, appearance, and motion cues. Additionally, we enforce modality consistency through semantic similarity constraints and motion frame-difference contrastive loss. Extensive experiments on multiple public datasets validate the effectiveness of our multimodal joint modeling framework and sparse feature filtering paradigm. Project page at https://qzfm.github.io/sfn_vad_project_page/.
Authors:Geonu Lee, Yujeong Oh, Geonhui Jang, Soyoung Lee, Jeonghyo Song, Sungmin Cha, YoungJoon Yoo
Title: Continual-MEGA: A Large-scale Benchmark for Generalizable Continual Anomaly Detection
Abstract:
In this paper, we introduce a new benchmark for continual learning in anomaly detection, aimed at better reflecting real-world deployment scenarios. Our benchmark, Continual-MEGA, includes a large and diverse dataset that significantly expands existing evaluation settings by combining carefully curated existing datasets with our newly proposed dataset, ContinualAD. In addition to standard continual learning with expanded quantity, we propose a novel scenario that measures zero-shot generalization to unseen classes, those not observed during continual adaptation. This setting poses a new problem setting that continual adaptation also enhances zero-shot performance. We also present a unified baseline algorithm that improves robustness in few-shot detection and maintains strong generalization. Through extensive evaluations, we report three key findings: (1) existing methods show substantial room for improvement, particularly in pixel-level defect localization; (2) our proposed method consistently outperforms prior approaches; and (3) the newly introduced ContinualAD dataset enhances the performance of strong anomaly detection models. We release the benchmark and code in https://github.com/Continual-Mega/Continual-Mega.
Authors:Bozhong Zheng, Jinye Gan, Xiaohao Xu, Wenqiao Li, Xiaonan Huang, Na Ni, Yingna Wu
Title: Bridging 3D Anomaly Localization and Repair via High-Quality Continuous Geometric Representation
Abstract:
3D point cloud anomaly detection is essential for robust vision systems but is challenged by pose variations and complex geometric anomalies. Existing patch-based methods often suffer from geometric fidelity issues due to discrete voxelization or projection-based representations, limiting fine-grained anomaly localization. We introduce Pose-Aware Signed Distance Field (PASDF), a novel framework that integrates 3D anomaly detection and repair by learning a continuous, pose-invariant shape representation. PASDF leverages a Pose Alignment Module for canonicalization and a SDF Network to dynamically incorporate pose, enabling implicit learning of high-fidelity anomaly repair templates from the continuous SDF. This facilitates precise pixel-level anomaly localization through an Anomaly-Aware Scoring Module. Crucially, the continuous 3D representation in PASDF extends beyond detection, facilitating in-situ anomaly repair. Experiments on Real3D-AD and Anomaly-ShapeNet demonstrate state-of-the-art performance, achieving high object-level AUROC scores of 80.2% and 90.0%, respectively. These results highlight the effectiveness of continuous geometric representations in advancing 3D anomaly detection and facilitating practical anomaly region repair. The code is available at https://github.com/ZZZBBBZZZ/PASDF to support further research.
Authors:Uzair Khan, Franco Fummi, Luigi Capogrosso
Title: KairosAD: A SAM-Based Model for Industrial Anomaly Detection on Embedded Devices
Abstract:
In the era of intelligent manufacturing, anomaly detection has become essential for maintaining quality control on modern production lines. However, while many existing models show promising performance, they are often too large, computationally demanding, and impractical to deploy on resource-constrained embedded devices that can be easily installed on the production lines of Small and Medium Enterprises (SMEs). To bridge this gap, we present KairosAD, a novel supervised approach that uses the power of the Mobile Segment Anything Model (MobileSAM) for image-based anomaly detection. KairosAD has been evaluated on the two well-known industrial anomaly detection datasets, i.e., MVTec-AD and ViSA. The results show that KairosAD requires 78% fewer parameters and boasts a 4x faster inference time compared to the leading state-of-the-art model, while maintaining comparable AUROC performance. We deployed KairosAD on two embedded devices, the NVIDIA Jetson NX, and the NVIDIA Jetson AGX. Finally, KairosAD was successfully installed and tested on the real production line of the Industrial Computer Engineering Laboratory (ICE Lab) at the University of Verona. The code is available at https://github.com/intelligolabs/KairosAD.
Authors:Liyun Zhu, Qixiang Chen, Xi Shen, Xiaodong Cun
Title: VAU-R1: Advancing Video Anomaly Understanding via Reinforcement Fine-Tuning
Abstract:
Video Anomaly Understanding (VAU) is essential for applications such as smart cities, security surveillance, and disaster alert systems, yet remains challenging due to its demand for fine-grained spatio-temporal perception and robust reasoning under ambiguity. Despite advances in anomaly detection, existing methods often lack interpretability and struggle to capture the causal and contextual aspects of abnormal events. This limitation is further compounded by the absence of comprehensive benchmarks for evaluating reasoning ability in anomaly scenarios. To address both challenges, we introduce VAU-R1, a data-efficient framework built upon Multimodal Large Language Models (MLLMs), which enhances anomaly reasoning through Reinforcement Fine-Tuning (RFT). Besides, we propose VAU-Bench, the first Chain-of-Thought benchmark tailored for video anomaly reasoning, featuring multiple-choice QA, detailed rationales, temporal annotations, and descriptive captions. Empirical results show that VAU-R1 significantly improves question answering accuracy, temporal grounding, and reasoning coherence across diverse contexts. Together, our method and benchmark establish a strong foundation for interpretable and reasoning-aware video anomaly understanding. Our code is available at https://github.com/GVCLab/VAU-R1.
Authors:Siddharth Ancha, Sunshine Jiang, Travis Manderson, Laura Brandt, Yilun Du, Philip R. Osteen, Nicholas Roy
Title: Anomalies by Synthesis: Anomaly Detection using Generative Diffusion Models for Off-Road Navigation
Abstract:
In order to navigate safely and reliably in off-road and unstructured environments, robots must detect anomalies that are out-of-distribution (OOD) with respect to the training data. We present an analysis-by-synthesis approach for pixel-wise anomaly detection without making any assumptions about the nature of OOD data. Given an input image, we use a generative diffusion model to synthesize an edited image that removes anomalies while keeping the remaining image unchanged. Then, we formulate anomaly detection as analyzing which image segments were modified by the diffusion model. We propose a novel inference approach for guided diffusion by analyzing the ideal guidance gradient and deriving a principled approximation that bootstraps the diffusion model to predict guidance gradients. Our editing technique is purely test-time that can be integrated into existing workflows without the need for retraining or fine-tuning. Finally, we use a combination of vision-language foundation models to compare pixels in a learned feature space and detect semantically meaningful edits, enabling accurate anomaly detection for off-road navigation. Project website: https://siddancha.github.io/anomalies-by-diffusion-synthesis/
Authors:Mengjingcheng Mo, Xinyang Tong, Jiaxu Leng, Mingpi Tan, Jiankang Zheng, Yiran Liu, Haosheng Chen, Ji Gan, Weisheng Li, Xinbo Gao
Title: A2Seek: Towards Reasoning-Centric Benchmark for Aerial Anomaly Understanding
Abstract:
While unmanned aerial vehicles (UAVs) offer wide-area, high-altitude coverage for anomaly detection, they face challenges such as dynamic viewpoints, scale variations, and complex scenes. Existing datasets and methods, mainly designed for fixed ground-level views, struggle to adapt to these conditions, leading to significant performance drops in drone-view scenarios. To bridge this gap, we introduce A2Seek (Aerial Anomaly Seek), a large-scale, reasoning-centric benchmark dataset for aerial anomaly understanding. This dataset covers various scenarios and environmental conditions, providing high-resolution real-world aerial videos with detailed annotations, including anomaly categories, frame-level timestamps, region-level bounding boxes, and natural language explanations for causal reasoning. Building on this dataset, we propose A2Seek-R1, a novel reasoning framework that generalizes R1-style strategies to aerial anomaly understanding, enabling a deeper understanding of "Where" anomalies occur and "Why" they happen in aerial frames. To this end, A2Seek-R1 first employs a graph-of-thought (GoT)-guided supervised fine-tuning approach to activate the model's latent reasoning capabilities on A2Seek. Then, we introduce Aerial Group Relative Policy Optimization (A-GRPO) to design rule-based reward functions tailored to aerial scenarios. Furthermore, we propose a novel "seeking" mechanism that simulates UAV flight behavior by directing the model's attention to informative regions. Extensive experiments demonstrate that A2Seek-R1 achieves up to a 22.04% improvement in AP for prediction accuracy and a 13.9% gain in mIoU for anomaly localization, exhibiting strong generalization across complex environments and out-of-distribution scenarios. Our dataset and code will be released at https://hayneyday.github.io/A2Seek/.
Authors:Xurui Li, Zhonesheng Jiang, Tingxuan Ai, Yu Zhou
Title: RoBiS: Robust Binary Segmentation for High-Resolution Industrial Images
Abstract:
Robust unsupervised anomaly detection (AD) in real-world scenarios is an important task. Current methods exhibit severe performance degradation on the MVTec AD 2 benchmark due to its complex real-world challenges. To solve this problem, we propose a robust framework RoBiS, which consists of three core modules: (1) Swin-Cropping, a high-resolution image pre-processing strategy to preserve the information of small anomalies through overlapping window cropping. (2) The data augmentation of noise addition and lighting simulation is carried out on the training data to improve the robustness of AD model. We use INP-Former as our baseline, which could generate better results on the various sub-images. (3) The traditional statistical-based binarization strategy (mean+3std) is combined with our previous work, MEBin (published in CVPR2025), for joint adaptive binarization. Then, SAM is further employed to refine the segmentation results. Compared with some methods reported by the MVTec AD 2, our RoBiS achieves a 29.2% SegF1 improvement (from 21.8% to 51.00%) on Test_private and 29.82% SegF1 gains (from 16.7% to 46.52%) on Test_private_mixed. Code is available at https://github.com/xrli-U/RoBiS.
Authors:Chao Huang, Benfeng Wang, Jie Wen, Chengliang Liu, Wei Wang, Li Shen, Xiaochun Cao
Title: Vad-R1: Towards Video Anomaly Reasoning via Perception-to-Cognition Chain-of-Thought
Abstract:
Recent advancements in reasoning capability of Multimodal Large Language Models (MLLMs) demonstrate its effectiveness in tackling complex visual tasks. However, existing MLLM-based Video Anomaly Detection (VAD) methods remain limited to shallow anomaly descriptions without deep reasoning. In this paper, we propose a new task named Video Anomaly Reasoning (VAR), which aims to enable deep analysis and understanding of anomalies in the video by requiring MLLMs to think explicitly before answering. To this end, we propose Vad-R1, an end-to-end MLLM-based framework for VAR. Specifically, we design a Perception-to-Cognition Chain-of-Thought (P2C-CoT) that simulates the human process of recognizing anomalies, guiding the MLLM to reason anomaly step-by-step. Based on the structured P2C-CoT, we construct Vad-Reasoning, a dedicated dataset for VAR. Furthermore, we propose an improved reinforcement learning algorithm AVA-GRPO, which explicitly incentivizes the anomaly reasoning capability of MLLMs through a self-verification mechanism with limited annotations. Experimental results demonstrate that Vad-R1 achieves superior performance, outperforming both open-source and proprietary models on VAD and VAR tasks. Codes and datasets will be released at https://github.com/wbfwonderful/Vad-R1.
Authors:Xiping Li, Xiangyu Dong, Xingyi Zhang, Kun Xie, Yuanhao Feng, Bo Wang, Guilin Li, Wuxiong Zeng, Xiujun Shu, Sibo Wang
Title: Chi-Square Wavelet Graph Neural Networks for Heterogeneous Graph Anomaly Detection
Abstract:
Graph Anomaly Detection (GAD) in heterogeneous networks presents unique challenges due to node and edge heterogeneity. Existing Graph Neural Network (GNN) methods primarily focus on homogeneous GAD and thus fail to address three key issues: (C1) Capturing abnormal signal and rich semantics across diverse meta-paths; (C2) Retaining high-frequency content in HIN dimension alignment; and (C3) Learning effectively from difficult anomaly samples with class imbalance. To overcome these, we propose ChiGAD, a spectral GNN framework based on a novel Chi-Square filter, inspired by the wavelet effectiveness in diverse domains. Specifically, ChiGAD consists of: (1) Multi-Graph Chi-Square Filter, which captures anomalous information via applying dedicated Chi-Square filters to each meta-path graph; (2) Interactive Meta-Graph Convolution, which aligns features while preserving high-frequency information and incorporates heterogeneous messages by a unified Chi-Square Filter; and (3) Contribution-Informed Cross-Entropy Loss, which prioritizes difficult anomalies to address class imbalance. Extensive experiments on public and industrial datasets show that ChiGAD outperforms state-of-the-art models on multiple metrics. Additionally, its homogeneous variant, ChiGNN, excels on seven GAD datasets, validating the effectiveness of Chi-Square filters. Our code is available at https://github.com/HsipingLi/ChiGAD.
Authors:Tianheng Ling, Chao Qian, Lukas Johannes Haßler, Gregor Schiele
Title: Automating Versatile Time-Series Analysis with Tiny Transformers on Embedded FPGAs
Abstract:
Transformer-based models have shown strong performance across diverse time-series tasks, but their deployment on resource-constrained devices remains challenging due to high memory and computational demand. While prior work targeting Microcontroller Units (MCUs) has explored hardware-specific optimizations, such approaches are often task-specific and limited to 8-bit fixed-point precision. Field-Programmable Gate Arrays (FPGAs) offer greater flexibility, enabling fine-grained control over data precision and architecture. However, existing FPGA-based deployments of Transformers for time-series analysis typically focus on high-density platforms with manual configuration. This paper presents a unified and fully automated deployment framework for Tiny Transformers on embedded FPGAs. Our framework supports a compact encoder-only Transformer architecture across three representative time-series tasks (forecasting, classification, and anomaly detection). It combines quantization-aware training (down to 4 bits), hardware-aware hyperparameter search using Optuna, and automatic VHDL generation for seamless deployment. We evaluate our framework on six public datasets across two embedded FPGA platforms. Results show that our framework produces integer-only, task-specific Transformer accelerators achieving as low as 0.033 mJ per inference with millisecond latency on AMD Spartan-7, while also providing insights into deployment feasibility on Lattice iCE40. All source code will be released in the GitHub repository (https://github.com/Edwina1030/TinyTransformer4TS).
Authors:Qiyu Chen, Huiyuan Luo, Haiming Yao, Wei Luo, Zhen Qu, Chengkan Lv, Zhengtao Zhang
Title: Center-aware Residual Anomaly Synthesis for Multi-class Industrial Anomaly Detection
Abstract:
Anomaly detection plays a vital role in the inspection of industrial images. Most existing methods require separate models for each category, resulting in multiplied deployment costs. This highlights the challenge of developing a unified model for multi-class anomaly detection. However, the significant increase in inter-class interference leads to severe missed detections. Furthermore, the intra-class overlap between normal and abnormal samples, particularly in synthesis-based methods, cannot be ignored and may lead to over-detection. To tackle these issues, we propose a novel Center-aware Residual Anomaly Synthesis (CRAS) method for multi-class anomaly detection. CRAS leverages center-aware residual learning to couple samples from different categories into a unified center, mitigating the effects of inter-class interference. To further reduce intra-class overlap, CRAS introduces distance-guided anomaly synthesis that adaptively adjusts noise variance based on normal data distribution. Experimental results on diverse datasets and real-world industrial applications demonstrate the superior detection accuracy and competitive inference speed of CRAS. The source code and the newly constructed dataset are publicly available at https://github.com/cqylunlun/CRAS.
Authors:Harim Kim, Yuhan Wang, Minkyu Ahn, Heeyoul Choi, Yuyin Zhou, Charmgil Hong
Title: Harnessing EHRs for Diffusion-based Anomaly Detection on Chest X-rays
Abstract:
Unsupervised anomaly detection (UAD) in medical imaging is crucial for identifying pathological abnormalities without requiring extensive labeled data. However, existing diffusion-based UAD models rely solely on imaging features, limiting their ability to distinguish between normal anatomical variations and pathological anomalies. To address this, we propose Diff3M, a multi-modal diffusion-based framework that integrates chest X-rays and structured Electronic Health Records (EHRs) for enhanced anomaly detection. Specifically, we introduce a novel image-EHR cross-attention module to incorporate structured clinical context into the image generation process, improving the model's ability to differentiate normal from abnormal features. Additionally, we develop a static masking strategy to enhance the reconstruction of normal-like images from anomalies. Extensive evaluations on CheXpert and MIMIC-CXR/IV demonstrate that Diff3M achieves state-of-the-art performance, outperforming existing UAD methods in medical imaging. Our code is available at this http URL https://github.com/nth221/Diff3M
Authors:Michael Neri, Sara Baldoni
Title: Unsupervised Network Anomaly Detection with Autoencoders and Traffic Images
Abstract:
Due to the recent increase in the number of connected devices, the need to promptly detect security issues is emerging. Moreover, the high number of communication flows creates the necessity of processing huge amounts of data. Furthermore, the connected devices are heterogeneous in nature, having different computational capacities. For this reason, in this work we propose an image-based representation of network traffic which allows to realize a compact summary of the current network conditions with 1-second time windows. The proposed representation highlights the presence of anomalies thus reducing the need for complex processing architectures. Finally, we present an unsupervised learning approach which effectively detects the presence of anomalies. The code and the dataset are available at https://github.com/michaelneri/image-based-network-traffic-anomaly-detection.
Authors:Yunkang Cao, Yuqi Cheng, Xiaohao Xu, Yiheng Zhang, Yihan Sun, Yuxiang Tan, Yuxin Zhang, Xiaonan Huang, Weiming Shen
Title: Visual Anomaly Detection under Complex View-Illumination Interplay: A Large-Scale Benchmark
Abstract:
The practical deployment of Visual Anomaly Detection (VAD) systems is hindered by their sensitivity to real-world imaging variations, particularly the complex interplay between viewpoint and illumination which drastically alters defect visibility. Current benchmarks largely overlook this critical challenge. We introduce Multi-View Multi-Illumination Anomaly Detection (M2AD), a new large-scale benchmark comprising 119,880 high-resolution images designed explicitly to probe VAD robustness under such interacting conditions. By systematically capturing 999 specimens across 10 categories using 12 synchronized views and 10 illumination settings (120 configurations total), M2AD enables rigorous evaluation. We establish two evaluation protocols: M2AD-Synergy tests the ability to fuse information across diverse configurations, and M2AD-Invariant measures single-image robustness against realistic view-illumination effects. Our extensive benchmarking shows that state-of-the-art VAD methods struggle significantly on M2AD, demonstrating the profound challenge posed by view-illumination interplay. This benchmark serves as an essential tool for developing and validating VAD methods capable of overcoming real-world complexities. Our full dataset and test suite will be released at https://hustcyq.github.io/M2AD to facilitate the field.
Authors:Filippo Leveni, Luca Magri, Cesare Alippi, Giacomo Boracchi
Title: Hashing for Structure-based Anomaly Detection
Abstract:
We focus on the problem of identifying samples in a set that do not conform to structured patterns represented by low-dimensional manifolds. An effective way to solve this problem is to embed data in a high dimensional space, called Preference Space, where anomalies can be identified as the most isolated points. In this work, we employ Locality Sensitive Hashing to avoid explicit computation of distances in high dimensions and thus improve Anomaly Detection efficiency. Specifically, we present an isolation-based anomaly detection technique designed to work in the Preference Space which achieves state-of-the-art performance at a lower computational cost. Code is publicly available at https://github.com/ineveLoppiliF/Hashing-for-Structure-based-Anomaly-Detection.
Authors:Chibueze Peace Obioma, Youcheng Sun, Mustafa A. Mustafa
Title: Defending the Edge: Representative-Attention Defense against Backdoor Attacks in Federated Learning
Abstract:
Federated learning (FL) remains highly vulnerable to adaptive backdoor attacks that preserve stealth by closely imitating benign update statistics. Existing defenses predominantly rely on anomaly detection in parameter or gradient space, overlooking behavioral constraints that backdoor attacks must satisfy to ensure reliable trigger activation. These anomaly-centric methods fail against adaptive attacks that normalize update magnitudes and mimic benign statistical patterns while preserving backdoor functionality, creating a fundamental detection gap. To address this limitation, this paper introduces FeRA (Federated Representative Attention) -- a novel attention-driven defense that shifts the detection paradigm from anomaly-centric to consistency-centric analysis. FeRA exploits the intrinsic need for backdoor persistence across training rounds, identifying malicious clients through suppressed representation-space variance, an orthogonal property to traditional magnitude-based statistics. The framework conducts multi-dimensional behavioral analysis combining spectral and spatial attention, directional alignment, mutual similarity, and norm inflation across two complementary detection mechanisms: consistency analysis and norm-inflation detection. Through this mechanism, FeRA isolates malicious clients that exhibit low-variance consistency or magnitude amplification. Extensive evaluation across six datasets, nine attacks, and three model architectures under both Independent and Identically Distributed (IID) and non-IID settings confirm FeRA achieves superior backdoor mitigation. Under different non-IID settings, FeRA achieved the lowest average Backdoor Accuracy (BA), about 1.67% while maintaining high clean accuracy compared to other state-of-the-art defenses. The code is available at https://github.com/Peatech/FeRA_defense.git.
Authors:Bin-Bin Gao, Yue Zhou, Jiangtao Yan, Yuezhi Cai, Weixi Zhang, Meng Wang, Jun Liu, Yong Liu, Lei Wang, Chengjie Wang
Title: AdaptCLIP: Adapting CLIP for Universal Visual Anomaly Detection
Abstract:
Universal visual anomaly detection aims to identify anomalies from novel or unseen vision domains without additional fine-tuning, which is critical in open scenarios. Recent studies have demonstrated that pre-trained vision-language models like CLIP exhibit strong generalization with just zero or a few normal images. However, existing methods struggle with designing prompt templates, complex token interactions, or requiring additional fine-tuning, resulting in limited flexibility. In this work, we present a simple yet effective method called AdaptCLIP based on two key insights. First, adaptive visual and textual representations should be learned alternately rather than jointly. Second, comparative learning between query and normal image prompt should incorporate both contextual and aligned residual features, rather than relying solely on residual features. AdaptCLIP treats CLIP models as a foundational service, adding only three simple adapters, visual adapter, textual adapter, and prompt-query adapter, at its input or output ends. AdaptCLIP supports zero-/few-shot generalization across domains and possesses a training-free manner on target domains once trained on a base dataset. AdaptCLIP achieves state-of-the-art performance on 12 anomaly detection benchmarks from industrial and medical domains, significantly outperforming existing competitive methods. We will make the code and model of AdaptCLIP available at https://github.com/gaobb/AdaptCLIP.
Authors:Bin-Bin Gao
Title: MetaUAS: Universal Anomaly Segmentation with One-Prompt Meta-Learning
Abstract:
Zero- and few-shot visual anomaly segmentation relies on powerful vision-language models that detect unseen anomalies using manually designed textual prompts. However, visual representations are inherently independent of language. In this paper, we explore the potential of a pure visual foundation model as an alternative to widely used vision-language models for universal visual anomaly segmentation. We present a novel paradigm that unifies anomaly segmentation into change segmentation. This paradigm enables us to leverage large-scale synthetic image pairs, featuring object-level and local region changes, derived from existing image datasets, which are independent of target anomaly datasets. We propose a one-prompt Meta-learning framework for Universal Anomaly Segmentation (MetaUAS) that is trained on this synthetic dataset and then generalizes well to segment any novel or unseen visual anomalies in the real world. To handle geometrical variations between prompt and query images, we propose a soft feature alignment module that bridges paired-image change perception and single-image semantic segmentation. This is the first work to achieve universal anomaly segmentation using a pure vision model without relying on special anomaly detection datasets and pre-trained visual-language models. Our method effectively and efficiently segments any anomalies with only one normal image prompt and enjoys training-free without guidance from language. Our MetaUAS significantly outperforms previous zero-shot, few-shot, and even full-shot anomaly segmentation methods. The code and pre-trained models are available at https://github.com/gaobb/MetaUAS.
Authors:Bin-Bin Gao
Title: Learning to Detect Multi-class Anomalies with Just One Normal Image Prompt
Abstract:
Unsupervised reconstruction networks using self-attention transformers have achieved state-of-the-art performance for multi-class (unified) anomaly detection with a single model. However, these self-attention reconstruction models primarily operate on target features, which may result in perfect reconstruction for both normal and anomaly features due to high consistency with context, leading to failure in detecting anomalies. Additionally, these models often produce inaccurate anomaly segmentation due to performing reconstruction in a low spatial resolution latent space. To enable reconstruction models enjoying high efficiency while enhancing their generalization for unified anomaly detection, we propose a simple yet effective method that reconstructs normal features and restores anomaly features with just One Normal Image Prompt (OneNIP). In contrast to previous work, OneNIP allows for the first time to reconstruct or restore anomalies with just one normal image prompt, effectively boosting unified anomaly detection performance. Furthermore, we propose a supervised refiner that regresses reconstruction errors by using both real normal and synthesized anomalous images, which significantly improves pixel-level anomaly segmentation. OneNIP outperforms previous methods on three industry anomaly detection benchmarks: MVTec, BTAD, and VisA. The code and pre-trained models are available at https://github.com/gaobb/OneNIP.
Authors:Guan Gui, Bin-Bin Gao, Jun Liu, Chengjie Wang, Yunsheng Wu
Title: Few-Shot Anomaly-Driven Generation for Anomaly Classification and Segmentation
Abstract:
Anomaly detection is a practical and challenging task due to the scarcity of anomaly samples in industrial inspection. Some existing anomaly detection methods address this issue by synthesizing anomalies with noise or external data. However, there is always a large semantic gap between synthetic and real-world anomalies, resulting in weak performance in anomaly detection. To solve the problem, we propose a few-shot Anomaly-driven Generation (AnoGen) method, which guides the diffusion model to generate realistic and diverse anomalies with only a few real anomalies, thereby benefiting training anomaly detection models. Specifically, our work is divided into three stages. In the first stage, we learn the anomaly distribution based on a few given real anomalies and inject the learned knowledge into an embedding. In the second stage, we use the embedding and given bounding boxes to guide the diffusion model to generate realistic and diverse anomalies on specific objects (or textures). In the final stage, we propose a weakly-supervised anomaly detection method to train a more powerful model with generated anomalies. Our method builds upon DRAEM and DesTSeg as the foundation model and conducts experiments on the commonly used industrial anomaly detection dataset, MVTec. The experiments demonstrate that our generated anomalies effectively improve the model performance of both anomaly classification and segmentation tasks simultaneously, \eg, DRAEM and DseTSeg achieved a 5.8\% and 1.5\% improvement in AU-PR metric on segmentation task, respectively. The code and generated anomalous data are available at https://github.com/gaobb/AnoGen.
Authors:Ippokratis Koukoulis, Ilias Syrigos, Thanasis Korakis
Title: Self-Supervised Transformer-based Contrastive Learning for Intrusion Detection Systems
Abstract:
As the digital landscape becomes more interconnected, the frequency and severity of zero-day attacks, have significantly increased, leading to an urgent need for innovative Intrusion Detection Systems (IDS). Machine Learning-based IDS that learn from the network traffic characteristics and can discern attack patterns from benign traffic offer an advanced solution to traditional signature-based IDS. However, they heavily rely on labeled datasets, and their ability to generalize when encountering unseen traffic patterns remains a challenge. This paper proposes a novel self-supervised contrastive learning approach based on transformer encoders, specifically tailored for generalizable intrusion detection on raw packet sequences. Our proposed learning scheme employs a packet-level data augmentation strategy combined with a transformer-based architecture to extract and generate meaningful representations of traffic flows. Unlike traditional methods reliant on handcrafted statistical features (NetFlow), our approach automatically learns comprehensive packet sequence representations, significantly enhancing performance in anomaly identification tasks and supervised learning for intrusion detection. Our transformer-based framework exhibits better performance in comparison to existing NetFlow self-supervised methods. Specifically, we achieve up to a 3% higher AUC in anomaly detection for intra-dataset evaluation and up to 20% higher AUC scores in inter-dataset evaluation. Moreover, our model provides a strong baseline for supervised intrusion detection with limited labeled data, exhibiting an improvement over self-supervised NetFlow models of up to 1.5% AUC when pretrained and evaluated on the same dataset. Additionally, we show the adaptability of our pretrained model when fine-tuned across different datasets, demonstrating strong performance even when lacking benign data from the target domain.
Authors:Yuqi Cheng, Yunkang Cao, Dongfang Wang, Weiming Shen, Wenlong Li
Title: Boosting Global-Local Feature Matching via Anomaly Synthesis for Multi-Class Point Cloud Anomaly Detection
Abstract:
Point cloud anomaly detection is essential for various industrial applications. The huge computation and storage costs caused by the increasing product classes limit the application of single-class unsupervised methods, necessitating the development of multi-class unsupervised methods. However, the feature similarity between normal and anomalous points from different class data leads to the feature confusion problem, which greatly hinders the performance of multi-class methods. Therefore, we introduce a multi-class point cloud anomaly detection method, named GLFM, leveraging global-local feature matching to progressively separate data that are prone to confusion across multiple classes. Specifically, GLFM is structured into three stages: Stage-I proposes an anomaly synthesis pipeline that stretches point clouds to create abundant anomaly data that are utilized to adapt the point cloud feature extractor for better feature representation. Stage-II establishes the global and local memory banks according to the global and local feature distributions of all the training data, weakening the impact of feature confusion on the establishment of the memory bank. Stage-III implements anomaly detection of test data leveraging its feature distance from global and local memory banks. Extensive experiments on the MVTec 3D-AD, Real3D-AD and actual industry parts dataset showcase our proposed GLFM's superior point cloud anomaly detection performance. The code is available at https://github.com/hustCYQ/GLFM-Multi-class-3DAD.
Authors:Lei Hu, Zhiyong Gan, Ling Deng, Jinglin Liang, Lingyu Liang, Shuangping Huang, Tianshui Chen
Title: ReplayCAD: Generative Diffusion Replay for Continual Anomaly Detection
Abstract:
Continual Anomaly Detection (CAD) enables anomaly detection models in learning new classes while preserving knowledge of historical classes. CAD faces two key challenges: catastrophic forgetting and segmentation of small anomalous regions. Existing CAD methods store image distributions or patch features to mitigate catastrophic forgetting, but they fail to preserve pixel-level detailed features for accurate segmentation. To overcome this limitation, we propose ReplayCAD, a novel diffusion-driven generative replay framework that replay high-quality historical data, thus effectively preserving pixel-level detailed features. Specifically, we compress historical data by searching for a class semantic embedding in the conditional space of the pre-trained diffusion model, which can guide the model to replay data with fine-grained pixel details, thus improving the segmentation performance. However, relying solely on semantic features results in limited spatial diversity. Hence, we further use spatial features to guide data compression, achieving precise control of sample space, thereby generating more diverse data. Our method achieves state-of-the-art performance in both classification and segmentation, with notable improvements in segmentation: 11.5% on VisA and 8.1% on MVTec. Our source code is available at https://github.com/HULEI7/ReplayCAD.
Authors:Hanzhe Liang, Aoran Wang, Jie Zhou, Xin Jin, Can Gao, Jinbao Wang
Title: Examining the Source of Defects from a Mechanical Perspective for 3D Anomaly Detection
Abstract:
In this paper, we explore a novel approach to 3D anomaly detection (AD) that goes beyond merely identifying anomalies based on structural characteristics. Our primary perspective is that most anomalies arise from unpredictable defective forces originating from both internal and external sources. To address these anomalies, we seek out opposing forces that can help correct them. Therefore, we introduce the Mechanics Complementary Model-based Framework for the 3D-AD task (MC4AD), which generates internal and external corrective forces for each point. We first propose a Diverse Anomaly-Generation (DA-Gen) module designed to simulate various types of anomalies. Next, we present the Corrective Force Prediction Network (CFP-Net), which uses complementary representations for point-level analysis to simulate the different contributions from internal and external corrective forces. To ensure the corrective forces are constrained effectively, we have developed a combined loss function that includes a new symmetric loss and an overall loss. Notably, we implement a Hierarchical Quality Control (HQC) strategy based on a three-way decision process and contribute a dataset titled Anomaly-IntraVariance, which incorporates intraclass variance to evaluate our model. As a result, the proposed MC4AD has been proven effective through theory and experimentation. The experimental results demonstrate that our approach yields nine state-of-the-art performances, achieving optimal results with minimal parameters and the fastest inference speed across five existing datasets, in addition to the proposed Anomaly-IntraVariance dataset. The source is available at https://github.com/hzzzzzhappy/MC4AD
Authors:Yizhuo Yang, Jiulin Zhao, Xinhang Xu, Kun Cao, Shenghai Yuan, Lihua Xie
Title: Unsupervised Anomaly Detection for Autonomous Robots via Mahalanobis SVDD with Audio-IMU Fusion
Abstract:
Reliable anomaly detection is essential for ensuring the safety of autonomous robots, particularly when conventional detection systems based on vision or LiDAR become unreliable in adverse or unpredictable conditions. In such scenarios, alternative sensing modalities are needed to provide timely and robust feedback. To this end, we explore the use of audio and inertial measurement unit (IMU) sensors to detect underlying anomalies in autonomous mobile robots, such as collisions and internal mechanical faults. Furthermore, to address the challenge of limited labeled anomaly data, we propose an unsupervised anomaly detection framework based on Mahalanobis Support Vector Data Description (M-SVDD). In contrast to conventional SVDD methods that rely on Euclidean distance and assume isotropic feature distributions, our approach employs the Mahalanobis distance to adaptively scale feature dimensions and capture inter-feature correlations, enabling more expressive decision boundaries. In addition, a reconstruction-based auxiliary branch is introduced to preserve feature diversity and prevent representation collapse, further enhancing the robustness of anomaly detection. Extensive experiments on a collected mobile robot dataset and four public datasets demonstrate the effectiveness of the proposed method, as shown in the video https://youtu.be/yh1tn6DDD4A. Code and dataset are available at https://github.com/jamesyang7/M-SVDD.
Authors:Sungheon Jeong, Jihong Park, Mohsen Imani
Title: Uncertainty-Weighted Image-Event Multimodal Fusion for Video Anomaly Detection
Abstract:
Most existing video anomaly detectors rely solely on RGB frames, which lack the temporal resolution needed to capture abrupt or transient motion cues, key indicators of anomalous events. To address this limitation, we propose Image-Event Fusion for Video Anomaly Detection (IEF-VAD), a framework that synthesizes event representations directly from RGB videos and fuses them with image features through a principled, uncertainty-aware process. The system (i) models heavy-tailed sensor noise with a Student`s-t likelihood, deriving value-level inverse-variance weights via a Laplace approximation; (ii) applies Kalman-style frame-wise updates to balance modalities over time; and (iii) iteratively refines the fused latent state to erase residual cross-modal noise. Without any dedicated event sensor or frame-level labels, IEF-VAD sets a new state of the art across multiple real-world anomaly detection benchmarks. These findings highlight the utility of synthetic event representations in emphasizing motion cues that are often underrepresented in RGB frames, enabling accurate and robust video understanding across diverse applications without requiring dedicated event sensors. Code and models are available at https://github.com/EavnJeong/IEF-VAD.
Authors:Tao Zhu, Qi Yu, Xinru Dong, Shiyu Li, Yue Liu, Jinlong Jiang, Lei Shu
Title: ProDisc-VAD: An Efficient System for Weakly-Supervised Anomaly Detection in Video Surveillance Applications
Abstract:
Weakly-supervised video anomaly detection (WS-VAD) using Multiple Instance Learning (MIL) suffers from label ambiguity, hindering discriminative feature learning. We propose ProDisc-VAD, an efficient framework tackling this via two synergistic components. The Prototype Interaction Layer (PIL) provides controlled normality modeling using a small set of learnable prototypes, establishing a robust baseline without being overwhelmed by dominant normal data. The Pseudo-Instance Discriminative Enhancement (PIDE) loss boosts separability by applying targeted contrastive learning exclusively to the most reliable extreme-scoring instances (highest/lowest scores). ProDisc-VAD achieves strong AUCs (97.98% ShanghaiTech, 87.12% UCF-Crime) using only 0.4M parameters, over 800x fewer than recent ViT-based methods like VadCLIP. Code is available at https://github.com/modadundun/ProDisc-VAD.
Authors:Jiayi Cheng, Can Gao, Jie Zhou, Jiajun Wen, Tao Dai, Jinbao Wang
Title: MC3D-AD: A Unified Geometry-aware Reconstruction Model for Multi-category 3D Anomaly Detection
Abstract:
3D Anomaly Detection (AD) is a promising means of controlling the quality of manufactured products. However, existing methods typically require carefully training a task-specific model for each category independently, leading to high cost, low efficiency, and weak generalization. Therefore, this paper presents a novel unified model for Multi-Category 3D Anomaly Detection (MC3D-AD) that aims to utilize both local and global geometry-aware information to reconstruct normal representations of all categories. First, to learn robust and generalized features of different categories, we propose an adaptive geometry-aware masked attention module that extracts geometry variation information to guide mask attention. Then, we introduce a local geometry-aware encoder reinforced by the improved mask attention to encode group-level feature tokens. Finally, we design a global query decoder that utilizes point cloud position embeddings to improve the decoding process and reconstruction ability. This leads to local and global geometry-aware reconstructed feature tokens for the AD task. MC3D-AD is evaluated on two publicly available Real3D-AD and Anomaly-ShapeNet datasets, and exhibits significant superiority over current state-of-the-art single-category methods, achieving 3.1\% and 9.3\% improvement in object-level AUROC over Real3D-AD and Anomaly-ShapeNet, respectively. The code is available at https://github.com/iCAN-SZU/MC3D-AD.
Authors:Zhe Zhang, Mingxiu Cai, Hanxiao Wang, Gaochang Wu, Tianyou Chai, Xiatian Zhu
Title: CostFilter-AD: Enhancing Anomaly Detection through Matching Cost Filtering
Abstract:
Unsupervised anomaly detection (UAD) seeks to localize the anomaly mask of an input image with respect to normal samples. Either by reconstructing normal counterparts (reconstruction-based) or by learning an image feature embedding space (embedding-based), existing approaches fundamentally rely on image-level or feature-level matching to derive anomaly scores. Often, such a matching process is inaccurate yet overlooked, leading to sub-optimal detection. To address this issue, we introduce the concept of cost filtering, borrowed from classical matching tasks, such as depth and flow estimation, into the UAD problem. We call this approach {\em CostFilter-AD}. Specifically, we first construct a matching cost volume between the input and normal samples, comprising two spatial dimensions and one matching dimension that encodes potential matches. To refine this, we propose a cost volume filtering network, guided by the input observation as an attention query across multiple feature layers, which effectively suppresses matching noise while preserving edge structures and capturing subtle anomalies. Designed as a generic post-processing plug-in, CostFilter-AD can be integrated with either reconstruction-based or embedding-based methods. Extensive experiments on MVTec-AD and VisA benchmarks validate the generic benefits of CostFilter-AD for both single- and multi-class UAD tasks. Code and models will be released at https://github.com/ZHE-SAPI/CostFilter-AD.
Authors:Narges Rashvand, Ghazal Alinezhad Noghre, Armin Danesh Pazho, Babak Rahimi Ardabili, Hamed Tabkhi
Title: Shopformer: Transformer-Based Framework for Detecting Shoplifting via Human Pose
Abstract:
Shoplifting remains a costly issue for the retail sector, but traditional surveillance systems, which are mostly based on human monitoring, are still largely ineffective, with only about 2% of shoplifters being arrested. Existing AI-based approaches rely on pixel-level video analysis which raises privacy concerns, is sensitive to environmental variations, and demands significant computational resources. To address these limitations, we introduce Shopformer, a novel transformer-based model that detects shoplifting by analyzing pose sequences rather than raw video. We propose a custom tokenization strategy that converts pose sequences into compact embeddings for efficient transformer processing. To the best of our knowledge, this is the first pose-sequence-based transformer model for shoplifting detection. Evaluated on real-world pose data, our method outperforms state-of-the-art anomaly detection models, offering a privacy-preserving, and scalable solution for real-time retail surveillance. The code base for this work is available at https://github.com/TeCSAR-UNCC/Shopformer.
Authors:Peijian Zeng, Feiyan Pang, Zhanbo Wang, Aimin Yang
Title: LR-IAD:Mask-Free Industrial Anomaly Detection with Logical Reasoning
Abstract:
Industrial Anomaly Detection (IAD) is critical for ensuring product quality by identifying defects. Traditional methods such as feature embedding and reconstruction-based approaches require large datasets and struggle with scalability. Existing vision-language models (VLMs) and Multimodal Large Language Models (MLLMs) address some limitations but rely on mask annotations, leading to high implementation costs and false positives. Additionally, industrial datasets like MVTec-AD and VisA suffer from severe class imbalance, with defect samples constituting only 23.8% and 11.1% of total data respectively. To address these challenges, we propose a reward function that dynamically prioritizes rare defect patterns during training to handle class imbalance. We also introduce a mask-free reasoning framework using Chain of Thought (CoT) and Group Relative Policy Optimization (GRPO) mechanisms, enabling anomaly detection directly from raw images without annotated masks. This approach generates interpretable step-by-step explanations for defect localization. Our method achieves state-of-the-art performance, outperforming prior approaches by 36% in accuracy on MVTec-AD and 16% on VisA. By eliminating mask dependency and reducing costs while providing explainable outputs, this work advances industrial anomaly detection and supports scalable quality control in manufacturing. Code to reproduce the experiment is available at https://github.com/LilaKen/LR-IAD.
Authors:Sarah Alnegheimish, Zelin He, Matthew Reimherr, Akash Chandrayan, Abhinav Pradhan, Luca D'Angelo
Title: M$^2$AD: Multi-Sensor Multi-System Anomaly Detection through Global Scoring and Calibrated Thresholding
Abstract:
With the widespread availability of sensor data across industrial and operational systems, we frequently encounter heterogeneous time series from multiple systems. Anomaly detection is crucial for such systems to facilitate predictive maintenance. However, most existing anomaly detection methods are designed for either univariate or single-system multivariate data, making them insufficient for these complex scenarios. To address this, we introduce M$^2$AD, a framework for unsupervised anomaly detection in multivariate time series data from multiple systems. M$^2$AD employs deep models to capture expected behavior under normal conditions, using the residuals as indicators of potential anomalies. These residuals are then aggregated into a global anomaly score through a Gaussian Mixture Model and Gamma calibration. We theoretically demonstrate that this framework can effectively address heterogeneity and dependencies across sensors and systems. Empirically, M$^2$AD outperforms existing methods in extensive evaluations by 21% on average, and its effectiveness is demonstrated on a large-scale real-world case study on 130 assets in Amazon Fulfillment Centers. Our code and results are available at https://github.com/sarahmish/M2AD.
Authors:Wenbing Zhu, Lidong Wang, Ziqing Zhou, Chengjie Wang, Yurui Pan, Ruoyi Zhang, Zhuhao Chen, Linjie Cheng, Bin-Bin Gao, Jiangning Zhang, Zhenye Gan, Yuxie Wang, Yulong Chen, Shuguang Qian, Mingmin Chi, Bo Peng, Lizhuang Ma
Title: Real-IAD D3: A Real-World 2D/Pseudo-3D/3D Dataset for Industrial Anomaly Detection
Abstract:
The increasing complexity of industrial anomaly detection (IAD) has positioned multimodal detection methods as a focal area of machine vision research. However, dedicated multimodal datasets specifically tailored for IAD remain limited. Pioneering datasets like MVTec 3D have laid essential groundwork in multimodal IAD by incorporating RGB+3D data, but still face challenges in bridging the gap with real industrial environments due to limitations in scale and resolution. To address these challenges, we introduce Real-IAD D3, a high-precision multimodal dataset that uniquely incorporates an additional pseudo3D modality generated through photometric stereo, alongside high-resolution RGB images and micrometer-level 3D point clouds. Real-IAD D3 features finer defects, diverse anomalies, and greater scale across 20 categories, providing a challenging benchmark for multimodal IAD Additionally, we introduce an effective approach that integrates RGB, point cloud, and pseudo-3D depth information to leverage the complementary strengths of each modality, enhancing detection performance. Our experiments highlight the importance of these modalities in boosting detection robustness and overall IAD performance. The dataset and code are publicly accessible for research purposes at https://realiad4ad.github.io/Real-IAD D3
Authors:Wenxin Zhang, Cuicui Luo
Title: Decomposition-based multi-scale transformer framework for time series anomaly detection
Abstract:
Time series anomaly detection is crucial for maintaining stable systems. Existing methods face two main challenges. First, it is difficult to directly model the dependencies of diverse and complex patterns within the sequences. Second, many methods that optimize parameters using mean squared error struggle with noise in the time series, leading to performance deterioration. To address these challenges, we propose a transformer-based framework built on decomposition (TransDe) for multivariate time series anomaly detection. The key idea is to combine the strengths of time series decomposition and transformers to effectively learn the complex patterns in normal time series data. A multi-scale patch-based transformer architecture is proposed to exploit the representative dependencies of each decomposed component of the time series. Furthermore, a contrastive learn paradigm based on patch operation is proposed, which leverages KL divergence to align the positive pairs, namely the pure representations of normal patterns between different patch-level views. A novel asynchronous loss function with a stop-gradient strategy is further introduced to enhance the performance of TransDe effectively. It can avoid time-consuming and labor-intensive computation costs in the optimization process. Extensive experiments on five public datasets are conducted and TransDe shows superiority compared with twelve baselines in terms of F1 score. Our code is available at https://github.com/shaieesss/TransDe.
Authors:Wenxin Zhang, Xiaojian Lin, Wenjun Yu, Guangzhen Yao, jingxiang Zhong, Yu Li, Renda Han, Songcheng Xu, Hao Shi, Cuicui Luo
Title: DConAD: A Differencing-based Contrastive Representation Learning Framework for Time Series Anomaly Detection
Abstract:
Time series anomaly detection holds notable importance for risk identification and fault detection across diverse application domains. Unsupervised learning methods have become popular because they have no requirement for labels. However, due to the challenges posed by the multiplicity of abnormal patterns, the sparsity of anomalies, and the growth of data scale and complexity, these methods often fail to capture robust and representative dependencies within the time series for identifying anomalies. To enhance the ability of models to capture normal patterns of time series and avoid the retrogression of modeling ability triggered by the dependencies on high-quality prior knowledge, we propose a differencing-based contrastive representation learning framework for time series anomaly detection (DConAD). Specifically, DConAD generates differential data to provide additional information about time series and utilizes transformer-based architecture to capture spatiotemporal dependencies, which enhances the robustness of unbiased representation learning ability. Furthermore, DConAD implements a novel KL divergence-based contrastive learning paradigm that only uses positive samples to avoid deviation from reconstruction and deploys the stop-gradient strategy to compel convergence. Extensive experiments on five public datasets show the superiority and effectiveness of DConAD compared with nine baselines. The code is available at https://github.com/shaieesss/DConAD.
Authors:Shashank Shriram, Srinivasa Perisetla, Aryan Keskar, Harsha Krishnaswamy, Tonko Emil Westerhof Bossen, Andreas Møgelmose, Ross Greer
Title: Towards a Multi-Agent Vision-Language System for Zero-Shot Novel Hazardous Object Detection for Autonomous Driving Safety
Abstract:
Detecting anomalous hazards in visual data, particularly in video streams, is a critical challenge in autonomous driving. Existing models often struggle with unpredictable, out-of-label hazards due to their reliance on predefined object categories. In this paper, we propose a multimodal approach that integrates vision-language reasoning with zero-shot object detection to improve hazard identification and explanation. Our pipeline consists of a Vision-Language Model (VLM), a Large Language Model (LLM), in order to detect hazardous objects within a traffic scene. We refine object detection by incorporating OpenAI's CLIP model to match predicted hazards with bounding box annotations, improving localization accuracy. To assess model performance, we create a ground truth dataset by denoising and extending the foundational COOOL (Challenge-of-Out-of-Label) anomaly detection benchmark dataset with complete natural language descriptions for hazard annotations. We define a means of hazard detection and labeling evaluation on the extended dataset using cosine similarity. This evaluation considers the semantic similarity between the predicted hazard description and the annotated ground truth for each video. Additionally, we release a set of tools for structuring and managing large-scale hazard detection datasets. Our findings highlight the strengths and limitations of current vision-language-based approaches, offering insights into future improvements in autonomous hazard detection systems. Our models, scripts, and data can be found at https://github.com/mi3labucm/COOOLER.git
Authors:Yihua Shao, Haojin He, Sijie Li, Siyu Chen, Xinwei Long, Fanhu Zeng, Yuxuan Fan, Muyang Zhang, Ziyang Yan, Ao Ma, Xiaochen Wang, Hao Tang, Yan Wang, Shuyan Li
Title: EventVAD: Training-Free Event-Aware Video Anomaly Detection
Abstract:
Video Anomaly Detection~(VAD) focuses on identifying anomalies within videos. Supervised methods require an amount of in-domain training data and often struggle to generalize to unseen anomalies. In contrast, training-free methods leverage the intrinsic world knowledge of large language models (LLMs) to detect anomalies but face challenges in localizing fine-grained visual transitions and diverse events. Therefore, we propose EventVAD, an event-aware video anomaly detection framework that combines tailored dynamic graph architectures and multimodal LLMs through temporal-event reasoning. Specifically, EventVAD first employs dynamic spatiotemporal graph modeling with time-decay constraints to capture event-aware video features. Then, it performs adaptive noise filtering and uses signal ratio thresholding to detect event boundaries via unsupervised statistical features. The statistical boundary detection module reduces the complexity of processing long videos for MLLMs and improves their temporal reasoning through event consistency. Finally, it utilizes a hierarchical prompting strategy to guide MLLMs in performing reasoning before determining final decisions. We conducted extensive experiments on the UCF-Crime and XD-Violence datasets. The results demonstrate that EventVAD with a 7B MLLM achieves state-of-the-art (SOTA) in training-free settings, outperforming strong baselines that use 7B or larger MLLMs.
Authors:Qishan Wang, Shuyong Gao, Junjie Hu, Jiawen Yu, Xuan Tong, You Li, Wenqiang Zhang
Title: HSS-IAD: A Heterogeneous Same-Sort Industrial Anomaly Detection Dataset
Abstract:
Multi-class Unsupervised Anomaly Detection algorithms (MUAD) are receiving increasing attention due to their relatively low deployment costs and improved training efficiency. However, the real-world effectiveness of MUAD methods is questioned due to limitations in current Industrial Anomaly Detection (IAD) datasets. These datasets contain numerous classes that are unlikely to be produced by the same factory and fail to cover multiple structures or appearances. Additionally, the defects do not reflect real-world characteristics. Therefore, we introduce the Heterogeneous Same-Sort Industrial Anomaly Detection (HSS-IAD) dataset, which contains 8,580 images of metallic-like industrial parts and precise anomaly annotations. These parts exhibit variations in structure and appearance, with subtle defects that closely resemble the base materials. We also provide foreground images for synthetic anomaly generation. Finally, we evaluate popular IAD methods on this dataset under multi-class and class-separated settings, demonstrating its potential to bridge the gap between existing datasets and real factory conditions. The dataset is available at https://github.com/Qiqigeww/HSS-IAD-Dataset.
Authors:Qishan Wang, Jia Guo, Shuyong Gao, Haofen Wang, Li Xiong, Junjie Hu, Hanqi Guo, Wenqiang Zhang
Title: Search is All You Need for Few-shot Anomaly Detection
Abstract:
Few-shot anomaly detection (FSAD) has emerged as a crucial yet challenging task in industrial inspection, where normal distribution modeling must be accomplished with only a few normal images. While existing approaches typically employ multi-modal foundation models combining language and vision modalities for prompt-guided anomaly detection, these methods often demand sophisticated prompt engineering and extensive manual tuning. In this paper, we demonstrate that a straightforward nearest-neighbor search framework can surpass state-of-the-art performance in both single-class and multi-class FSAD scenarios. Our proposed method, VisionAD, consists of four simple yet essential components: (1) scalable vision foundation models that extract universal and discriminative features; (2) dual augmentation strategies - support augmentation to enhance feature matching adaptability and query augmentation to address the oversights of single-view prediction; (3) multi-layer feature integration that captures both low-frequency global context and high-frequency local details with minimal computational overhead; and (4) a class-aware visual memory bank enabling efficient one-for-all multi-class detection. Extensive evaluations across MVTec-AD, VisA, and Real-IAD benchmarks demonstrate VisionAD's exceptional performance. Using only 1 normal images as support, our method achieves remarkable image-level AUROC scores of 97.4%, 94.8%, and 70.8% respectively, outperforming current state-of-the-art approaches by significant margins (+1.6%, +3.2%, and +1.4%). The training-free nature and superior few-shot capabilities of VisionAD make it particularly appealing for real-world applications where samples are scarce or expensive to obtain. Code is available at https://github.com/Qiqigeww/VisionAD.
Authors:Taewook Kang, Bum-Jae You, Juyoun Park, Yisoo Lee
Title: A real-time anomaly detection method for robots based on a flexible and sparse latent space
Abstract:
The growing demand for robots to operate effectively in diverse environments necessitates the need for robust real-time anomaly detection techniques during robotic operations. However, deep learning-based models in robotics face significant challenges due to limited training data and highly noisy signal features. In this paper, we present Sparse Masked Autoregressive Flow-based Adversarial AutoEncoder model to address these problems. This approach integrates Masked Autoregressive Flow model into Adversarial AutoEncoders to construct a flexible latent space and utilize Sparse autoencoder to efficiently focus on important features, even in scenarios with limited feature space. Our experiments demonstrate that the proposed model achieves a 4.96% to 9.75% higher area under the receiver operating characteristic curve for pick-and-place robotic operations with randomly placed cans, compared to existing state-of-the-art methods. Notably, it showed up to 19.67% better performance in scenarios involving collisions with lightweight objects. Additionally, unlike the existing state-of-the-art model, our model performs inferences within 1 millisecond, ensuring real-time anomaly detection. These capabilities make our model highly applicable to machine learning-based robotic safety systems in dynamic environments. The code is available at https://github.com/twkang43/sparse-maf-aae.
Authors:Alireza Salehi, Mohammadreza Salehi, Reshad Hosseini, Cees G. M. Snoek, Makoto Yamada, Mohammad Sabokrou
Title: Crane: Context-Guided Prompt Learning and Attention Refinement for Zero-Shot Anomaly Detection
Abstract:
Anomaly Detection involves identifying deviations from normal data distributions and is critical in fields such as medical diagnostics and industrial defect detection. Traditional AD methods typically require the availability of normal training samples; however, this assumption is not always feasible. Recently, the rich pretraining knowledge of CLIP has shown promising zero-shot generalization in detecting anomalies without the need for training samples from target domains. However, CLIP's coarse-grained image-text alignment limits localization and detection performance for fine-grained anomalies due to: (1) spatial misalignment, and (2) the limited sensitivity of global features to local anomalous patterns. In this paper, we propose Crane which tackles both problems. First, we introduce a correlation-based attention module to retain spatial alignment more accurately. Second, to boost the model's awareness of fine-grained anomalies, we condition the learnable prompts of the text encoder on image context extracted from the vision encoder and perform a local-to-global representation fusion. Moreover, our method can incorporate vision foundation models such as DINOv2 to further enhance spatial understanding and localization. The key insight of Crane is to balance learnable adaptations for modeling anomalous concepts with non-learnable adaptations that preserve and exploit generalized pretrained knowledge, thereby minimizing in-domain overfitting and maximizing performance on unseen domains. Extensive evaluation across 14 diverse industrial and medical datasets demonstrates that Crane consistently improves the state-of-the-art ZSAD from 2% to 28%, at both image and pixel levels, while remaining competitive in inference speed. The code is available at https://github.com/AlirezaSalehy/Crane.
Authors:Lucian Chauvin, Somil Gupta, Angelina Ibarra, Joshua Peeples
Title: Benchmarking Suite for Synthetic Aperture Radar Imagery Anomaly Detection (SARIAD) Algorithms
Abstract:
Anomaly detection is a key research challenge in computer vision and machine learning with applications in many fields from quality control to radar imaging. In radar imaging, specifically synthetic aperture radar (SAR), anomaly detection can be used for the classification, detection, and segmentation of objects of interest. However, there is no method for developing and benchmarking these methods on SAR imagery. To address this issue, we introduce SAR imagery anomaly detection (SARIAD). In conjunction with Anomalib, a deep-learning library for anomaly detection, SARIAD provides a comprehensive suite of algorithms and datasets for assessing and developing anomaly detection approaches on SAR imagery. SARIAD specifically integrates multiple SAR datasets along with tools to effectively apply various anomaly detection algorithms to SAR imagery. Several anomaly detection metrics and visualizations are available. Overall, SARIAD acts as a central package for benchmarking SAR models and datasets to allow for reproducible research in the field of anomaly detection in SAR imagery. This package is publicly available: https://github.com/Advanced-Vision-and-Learning-Lab/SARIAD.
Authors:Angelina Ibarra, Joshua Peeples
Title: Patch distribution modeling framework adaptive cosine estimator (PaDiM-ACE) for anomaly detection and localization in synthetic aperture radar imagery
Abstract:
This work presents a new approach to anomaly detection and localization in synthetic aperture radar imagery (SAR), expanding upon the existing patch distribution modeling framework (PaDiM). We introduce the adaptive cosine estimator (ACE) detection statistic. PaDiM uses the Mahalanobis distance at inference, an unbounded metric. ACE instead uses the cosine similarity metric, providing bounded anomaly detection scores. The proposed method is evaluated across multiple SAR datasets, with performance metrics including the area under the receiver operating curve (AUROC) at the image and pixel level, aiming for increased performance in anomaly detection and localization of SAR imagery. The code is publicly available: https://github.com/Advanced-Vision-and-Learning-Lab/PaDiM-ACE.
Authors:Shunsuke Sakai, Xiangteng He, Chunzhi Gu, Leonid Sigal, Tatsuhito Hasegawa
Title: Reconstruction-Free Anomaly Detection with Diffusion Models
Abstract:
Despite the remarkable success, recent reconstruction-based anomaly detection (AD) methods via diffusion modeling still involve fine-grained noise-strength tuning and computationally expensive multi-step denoising, leading to a fundamental tension between fidelity and efficiency. In this paper, we propose a novel inversion-based AD approach - detection via noising in latent space - which circumvents explicit reconstruction. Importantly, we contend that the limitations in prior reconstruction-based methods originate from the prevailing detection via denoising in RGB space paradigm. To address this, we model AD under a reconstruction-free formulation, which directly infers the final latent variable corresponding to the input image via DDIM inversion, and then measures the deviation based on the known prior distribution for anomaly scoring. Specifically, in approximating the original probability flow ODE using the Euler method, we only enforce very few inversion steps to noise the clean image to pursue inference efficiency. As the added noise is adaptively derived with the learned diffusion model, the original features for the clean testing image can still be leveraged to yield high detection accuracy. We perform extensive experiments and detailed analysis across three widely used image AD datasets under the unsupervised unified setting to demonstrate the effectiveness of our model, regarding state-of-the-art AD performance, and about 2 times inference time speedup without diffusion distillation.
Authors:Yongchuan Cui, Jinhe Zhang, Peng Liu, Weijing Song, Yi Zeng
Title: Overcoming the Identity Mapping Problem in Self-Supervised Hyperspectral Anomaly Detection
Abstract:
The surge of deep learning has catalyzed considerable progress in self-supervised Hyperspectral Anomaly Detection (HAD). The core premise for self-supervised HAD is that anomalous pixels are inherently more challenging to reconstruct, resulting in larger errors compared to the background. However, owing to the powerful nonlinear fitting capabilities of neural networks, self-supervised models often suffer from the Identity Mapping Problem (IMP). The IMP manifests as a tendency for the model to overfit to the entire image, particularly with increasing network complexity or prolonged training iterations. Consequently, the whole image can be precisely reconstructed, and even the anomalous pixels exhibit imperceptible errors, making them difficult to detect. Despite the proposal of several models aimed at addressing the IMP-related issues, a unified descriptive framework and validation of solutions for IMP remain lacking. In this paper, we conduct an in-depth exploration to IMP, and summarize a unified framework that describes IMP from the perspective of network optimization, which encompasses three aspects: perturbation, reconstruction, and regularization. Correspondingly, we introduce three solutions: superpixel pooling and uppooling for perturbation, error-adaptive convolution for reconstruction, and online background pixel mining for regularization. With extensive experiments being conducted to validate the effectiveness, it is hoped that our work will provide valuable insights and inspire further research for self-supervised HAD. Code: \url{https://github.com/yc-cui/Super-AD}.
Authors:Nasar Iqbal, Niki Martinel
Title: Pyramid-based Mamba Multi-class Unsupervised Anomaly Detection
Abstract:
Recent advances in convolutional neural networks (CNNs) and transformer-based methods have improved anomaly detection and localization, but challenges persist in precisely localizing small anomalies. While CNNs face limitations in capturing long-range dependencies, transformer architectures often suffer from substantial computational overheads. We introduce a state space model (SSM)-based Pyramidal Scanning Strategy (PSS) for multi-class anomaly detection and localization--a novel approach designed to address the challenge of small anomaly localization. Our method captures fine-grained details at multiple scales by integrating the PSS with a pre-trained encoder for multi-scale feature extraction and a feature-level synthetic anomaly generator. An improvement of $+1\%$ AP for multi-class anomaly localization and a +$1\%$ increase in AU-PRO on MVTec benchmark demonstrate our method's superiority in precise anomaly localization across diverse industrial scenarios. The code is available at https://github.com/iqbalmlpuniud/Pyramid Mamba.
Authors:Abhay Kumar, Louis Owen, Nilabhra Roy Chowdhury, Fabian Güra
Title: ZClip: Adaptive Spike Mitigation for LLM Pre-Training
Abstract:
Training large language models (LLMs) presents numerous challenges, including gradient instability and loss spikes. These phenomena can lead to catastrophic divergence, requiring costly checkpoint restoration and data batch skipping. Traditional gradient clipping techniques, such as constant or norm-based methods, fail to address these issues effectively due to their reliance on fixed thresholds or heuristics, leading to inefficient learning and requiring frequent manual intervention. In this work, we propose ZClip, an adaptive gradient clipping algorithm that dynamically adjusts the clipping threshold based on statistical properties of gradient norms over time. Unlike prior reactive strategies, ZClip proactively adapts to training dynamics without making any prior assumptions on the scale and the temporal evolution of gradient norms. At its core, it leverages z-score-based anomaly detection to identify and mitigate large gradient spikes, preventing malignant loss spikes while not interfering with convergence otherwise. Our code is available at: https://github.com/bluorion-com/ZClip.
Authors:Bo-Kai Ruan, Yi-Zeng Fang, Hong-Han Shuai, Juinn-Dar Huang
Title: Anomaly Detection for Hybrid Butterfly Subspecies via Probability Filtering
Abstract:
Detecting butterfly hybrids requires knowledge of the parent subspecies, and the process can be tedious when encountering a new subspecies. This study focuses on a specific scenario where a model trained to recognize hybrid species A can generalize to species B when B biologically mimics A. Since species A and B share similar patterns, we leverage BioCLIP as our feature extractor to capture features based on their taxonomy. Consequently, the algorithm designed for species A can be transferred to B, as their hybrid and non-hybrid patterns exhibit similar relationships. To determine whether a butterfly is a hybrid, we adopt proposed probability filtering and color jittering to augment and simulate the mimicry. With these approaches, we achieve second place in the official development phase. Our code is publicly available at https://github.com/Justin900429/NSF-HDR-Challenge.
Authors:Sebastian Springer, Andre Scaffidi, Maximilian Autenrieth, Gabriella Contardo, Alessandro Laio, Roberto Trotta, Heikki Haario
Title: Detecting Localized Density Anomalies in Multivariate Data via Coin-Flip Statistics
Abstract:
Detecting localized density differences in multivariate data is a crucial task in computational science. Such anomalies can indicate a critical system failure, lead to a groundbreaking scientific discovery, or reveal unexpected changes in data distribution. We introduce EagleEye, an anomaly detection method to compare two multivariate datasets with the aim of identifying local density anomalies, namely over- or under-densities affecting only localised regions of the feature space. Anomalies are detected by modelling, for each point, the ordered sequence of its neighbours' membership label as a coin-flipping process and monitoring deviations from the expected behaviour of such process. A unique advantage of our method is its ability to provide an accurate, entirely unsupervised estimate of the local signal purity. We demonstrate its effectiveness through experiments on both synthetic and real-world datasets. In synthetic data, EagleEye accurately detects anomalies in multiple dimensions even when they affect a tiny fraction of the data. When applied to a challenging resonant anomaly detection benchmark task in simulated Large Hadron Collider data, EagleEye successfully identifies particle decay events present in just 0.3% of the dataset. In global temperature data, EagleEye uncovers previously unidentified, geographically localised changes in temperature fields that occurred in the most recent years. Thanks to its key advantages of conceptual simplicity, computational efficiency, trivial parallelisation, and scalability, EagleEye is widely applicable across many fields.
Authors:Aimira Baitieva, Yacine Bouaouni, Alexandre Briot, Dick Ameln, Souhaiel Khalfaoui, Samet Akcay
Title: Beyond Academic Benchmarks: Critical Analysis and Best Practices for Visual Industrial Anomaly Detection
Abstract:
Anomaly detection (AD) is essential for automating visual inspection in manufacturing. This field of computer vision is rapidly evolving, with increasing attention towards real-world applications. Meanwhile, popular datasets are typically produced in controlled lab environments with artificially created defects, unable to capture the diversity of real production conditions. New methods often fail in production settings, showing significant performance degradation or requiring impractical computational resources. This disconnect between academic results and industrial viability threatens to misdirect visual anomaly detection research. This paper makes three key contributions: (1) we demonstrate the importance of real-world datasets and establish benchmarks using actual production data, (2) we provide a fair comparison of existing SOTA methods across diverse tasks by utilizing metrics that are valuable for practical applications, and (3) we present a comprehensive analysis of recent advancements in this field by discussing important challenges and new perspectives for bridging the academia-industry gap. The code is publicly available at https://github.com/abc-125/viad-benchmark
Authors:Dian Zheng, Ziqi Huang, Hongbo Liu, Kai Zou, Yinan He, Fan Zhang, Lulu Gu, Yuanhan Zhang, Jingwen He, Wei-Shi Zheng, Yu Qiao, Ziwei Liu
Title: VBench-2.0: Advancing Video Generation Benchmark Suite for Intrinsic Faithfulness
Abstract:
Video generation has advanced significantly, evolving from producing unrealistic outputs to generating videos that appear visually convincing and temporally coherent. To evaluate these video generative models, benchmarks such as VBench have been developed to assess their faithfulness, measuring factors like per-frame aesthetics, temporal consistency, and basic prompt adherence. However, these aspects mainly represent superficial faithfulness, which focus on whether the video appears visually convincing rather than whether it adheres to real-world principles. While recent models perform increasingly well on these metrics, they still struggle to generate videos that are not just visually plausible but fundamentally realistic. To achieve real "world models" through video generation, the next frontier lies in intrinsic faithfulness to ensure that generated videos adhere to physical laws, commonsense reasoning, anatomical correctness, and compositional integrity. Achieving this level of realism is essential for applications such as AI-assisted filmmaking and simulated world modeling. To bridge this gap, we introduce VBench-2.0, a next-generation benchmark designed to automatically evaluate video generative models for their intrinsic faithfulness. VBench-2.0 assesses five key dimensions: Human Fidelity, Controllability, Creativity, Physics, and Commonsense, each further broken down into fine-grained capabilities. Tailored to individual dimensions, our evaluation framework integrates generalists such as SOTA VLMs and LLMs, and specialists, including anomaly detection methods proposed for video generation. We conduct extensive human annotations to ensure evaluation alignment with human judgment. By pushing beyond superficial faithfulness toward intrinsic faithfulness, VBench-2.0 aims to set a new standard for the next generation of video generative models in pursuit of intrinsic faithfulness.
Authors:Jiahao Lyu, Minghua Zhao, Jing Hu, Xuewen Huang, Yifei Chen, Shuangli Du
Title: VADMamba: Exploring State Space Models for Fast Video Anomaly Detection
Abstract:
Video anomaly detection (VAD) methods are mostly CNN-based or Transformer-based, achieving impressive results, but the focus on detection accuracy often comes at the expense of inference speed. The emergence of state space models in computer vision, exemplified by the Mamba model, demonstrates improved computational efficiency through selective scans and showcases the great potential for long-range modeling. Our study pioneers the application of Mamba to VAD, dubbed VADMamba, which is based on multi-task learning for frame prediction and optical flow reconstruction. Specifically, we propose the VQ-Mamba Unet (VQ-MaU) framework, which incorporates a Vector Quantization (VQ) layer and Mamba-based Non-negative Visual State Space (NVSS) block. Furthermore, two individual VQ-MaU networks separately predict frames and reconstruct corresponding optical flows, further boosting accuracy through a clip-level fusion evaluation strategy. Experimental results validate the efficacy of the proposed VADMamba across three benchmark datasets, demonstrating superior performance in inference speed compared to previous work. Code is available at https://github.com/jLooo/VADMamba.
Authors:Jiajie Quan, Ao Tong, Yuxuan Cai, Xinwei He, Yulong Wang, Yang Zhou
Title: Omni-AD: Learning to Reconstruct Global and Local Features for Multi-class Anomaly Detection
Abstract:
In multi-class unsupervised anomaly detection(MUAD), reconstruction-based methods learn to map input images to normal patterns to identify anomalous pixels. However, this strategy easily falls into the well-known "learning shortcut" issue when decoders fail to capture normal patterns and reconstruct both normal and abnormal samples naively. To address that, we propose to learn the input features in global and local manners, forcing the network to memorize the normal patterns more comprehensively. Specifically, we design a two-branch decoder block, named Omni-block. One branch corresponds to global feature learning, where we serialize two self-attention blocks but replace the query and (key, value) with learnable tokens, respectively, thus capturing global features of normal patterns concisely and thoroughly. The local branch comprises depth-separable convolutions, whose locality enables effective and efficient learning of local features for normal patterns. By stacking Omni-blocks, we build a framework, Omni-AD, to learn normal patterns of different granularity and reconstruct them progressively. Comprehensive experiments on public anomaly detection benchmarks show that our method outperforms state-of-the-art approaches in MUAD. Code is available at https://github.com/easyoo/Omni-AD.git
Authors:Farzad Beizaee, Gregory A. Lodygensky, Christian Desrosiers, Jose Dolz
Title: Correcting Deviations from Normality: A Reformulated Diffusion Model for Multi-Class Unsupervised Anomaly Detection
Abstract:
Recent advances in diffusion models have spurred research into their application for Reconstruction-based unsupervised anomaly detection. However, these methods may struggle with maintaining structural integrity and recovering the anomaly-free content of abnormal regions, especially in multi-class scenarios. Furthermore, diffusion models are inherently designed to generate images from pure noise and struggle to selectively alter anomalous regions of an image while preserving normal ones. This leads to potential degradation of normal regions during reconstruction, hampering the effectiveness of anomaly detection. This paper introduces a reformulation of the standard diffusion model geared toward selective region alteration, allowing the accurate identification of anomalies. By modeling anomalies as noise in the latent space, our proposed Deviation correction diffusion (DeCo-Diff) model preserves the normal regions and encourages transformations exclusively on anomalous areas. This selective approach enhances the reconstruction quality, facilitating effective unsupervised detection and localization of anomaly regions. Comprehensive evaluations demonstrate the superiority of our method in accurately identifying and localizing anomalies in complex images, with pixel-level AUPRC improvements of 11-14% over state-of-the-art models on well known anomaly detection datasets. The code is available at https://github.com/farzad-bz/DeCo-Diff
Authors:Xudong Mou, Rui Wang, Bo Li, Tianyu Wo, Jie Sun, Hui Wang, Xudong Liu
Title: RoCA: Robust Contrastive One-class Time Series Anomaly Detection with Contaminated Data
Abstract:
The accumulation of time-series signals and the absence of labels make time-series Anomaly Detection (AD) a self-supervised task of deep learning. Methods based on normality assumptions face the following three limitations: (1) A single assumption could hardly characterize the whole normality or lead to some deviation. (2) Some assumptions may go against the principle of AD. (3) Their basic assumption is that the training data is uncontaminated (free of anomalies), which is unrealistic in practice, leading to a decline in robustness. This paper proposes a novel robust approach, RoCA, which is the first to address all of the above three challenges, as far as we are aware. It fuses the separated assumptions of one-class classification and contrastive learning in a single training process to characterize a more complete so-called normality. Additionally, it monitors the training data and computes a carefully designed anomaly score throughout the training process. This score helps identify latent anomalies, which are then used to define the classification boundary, inspired by the concept of outlier exposure. The performance on AIOps datasets improved by 6% compared to when contamination was not considered (COCA). On two large and high-dimensional multivariate datasets, the performance increased by 5% to 10%. RoCA achieves the highest average performance on both univariate and multivariate datasets. The source code is available at https://github.com/ruiking04/RoCA.
Authors:Jinjin Zhang, Guodong Wang, Yizhou Jin, Di Huang
Title: Towards Training-free Anomaly Detection with Vision and Language Foundation Models
Abstract:
Anomaly detection is valuable for real-world applications, such as industrial quality inspection. However, most approaches focus on detecting local structural anomalies while neglecting compositional anomalies incorporating logical constraints. In this paper, we introduce LogSAD, a novel multi-modal framework that requires no training for both Logical and Structural Anomaly Detection. First, we propose a match-of-thought architecture that employs advanced large multi-modal models (i.e. GPT-4V) to generate matching proposals, formulating interests and compositional rules of thought for anomaly detection. Second, we elaborate on multi-granularity anomaly detection, consisting of patch tokens, sets of interests, and composition matching with vision and language foundation models. Subsequently, we present a calibration module to align anomaly scores from different detectors, followed by integration strategies for the final decision. Consequently, our approach addresses both logical and structural anomaly detection within a unified framework and achieves state-of-the-art results without the need for training, even when compared to supervised approaches, highlighting its robustness and effectiveness. Code is available at https://github.com/zhang0jhon/LogSAD.
Authors:Yali Fu, Jindong Li, Qi Wang, Qianli Xing
Title: GLADMamba: Unsupervised Graph-Level Anomaly Detection Powered by Selective State Space Model
Abstract:
Unsupervised graph-level anomaly detection (UGLAD) is a critical and challenging task across various domains, such as social network analysis, anti-cancer drug discovery, and toxic molecule identification. However, existing methods often struggle to capture the long-range dependencies efficiently and neglect the spectral information. Recently, selective State Space Models (SSMs), particularly Mamba, have demonstrated remarkable advantages in capturing long-range dependencies with linear complexity and a selection mechanism. Motivated by their success across various domains, we propose GLADMamba, a novel framework that adapts the selective state space model into UGLAD field. We design View-Fused Mamba (VFM) with a Mamba-Transformer-style architecture to efficiently fuse information from different views with a selective state mechanism. We also design Spectrum-Guided Mamba (SGM) with a Mamba-Transformer-style architecture to leverage the Rayleigh quotient to guide the embedding refining process. GLADMamba can dynamically focus on anomaly-related information while discarding irrelevant information for anomaly detection. To the best of our knowledge, this is the first work to introduce Mamba and explicit spectral information to UGLAD. Extensive experiments on 12 real-world datasets demonstrate that GLADMamba outperforms existing state-of-the-art methods, achieving superior performance in UGLAD. The code is available at https://github.com/Yali-F/GLADMamba.
Authors:Yaofei Duan, Tao Tan, Zhiyuan Zhu, Yuhao Huang, Yuanji Zhang, Rui Gao, Patrick Cheong-Iao Pang, Xinru Gao, Guowei Tao, Xiang Cong, Zhou Li, Lianying Liang, Guangzhi He, Linliang Yin, Xuedong Deng, Xin Yang, Dong Ni
Title: FetalFlex: Anatomy-Guided Diffusion Model for Flexible Control on Fetal Ultrasound Image Synthesis
Abstract:
Fetal ultrasound (US) examinations require the acquisition of multiple planes, each providing unique diagnostic information to evaluate fetal development and screening for congenital anomalies. However, obtaining a comprehensive, multi-plane annotated fetal US dataset remains challenging, particularly for rare or complex anomalies owing to their low incidence and numerous subtypes. This poses difficulties in training novice radiologists and developing robust AI models, especially for detecting abnormal fetuses. In this study, we introduce a Flexible Fetal US image generation framework (FetalFlex) to address these challenges, which leverages anatomical structures and multimodal information to enable controllable synthesis of fetal US images across diverse planes. Specifically, FetalFlex incorporates a pre-alignment module to enhance controllability and introduces a repaint strategy to ensure consistent texture and appearance. Moreover, a two-stage adaptive sampling strategy is developed to progressively refine image quality from coarse to fine levels. We believe that FetalFlex is the first method capable of generating both in-distribution normal and out-of-distribution abnormal fetal US images, without requiring any abnormal data. Experiments on multi-center datasets demonstrate that FetalFlex achieved state-of-the-art performance across multiple image quality metrics. A reader study further confirms the close alignment of the generated results with expert visual assessments. Furthermore, synthetic images by FetalFlex significantly improve the performance of six typical deep models in downstream classification and anomaly detection tasks. Lastly, FetalFlex's anatomy-level controllable generation offers a unique advantage for anomaly simulation and creating paired or counterfactual data at the pixel level. The demo is available at: https://dyf1023.github.io/FetalFlex/.
Authors:Fatemeh Dehrouyeh, Ibrahim Shaer, Soodeh Nikan, Firouz Badrkhani Ajaei, Abdallah Shami
Title: Pruning-Based TinyML Optimization of Machine Learning Models for Anomaly Detection in Electric Vehicle Charging Infrastructure
Abstract:
With the growing need for real-time processing on IoT devices, optimizing machine learning (ML) models' size, latency, and computational efficiency is essential. This paper investigates a pruning method for anomaly detection in resource-constrained environments, specifically targeting Electric Vehicle Charging Infrastructure (EVCI). Using the CICEVSE2024 dataset, we trained and optimized three models-Multi-Layer Perceptron (MLP), Long Short-Term Memory (LSTM), and XGBoost-through hyperparameter tuning with Optuna, further refining them using SHapley Additive exPlanations (SHAP)-based feature selection (FS) and unstructured pruning techniques. The optimized models achieved significant reductions in model size and inference times, with only a marginal impact on their performance. Notably, our findings indicate that, in the context of EVCI, pruning and FS can enhance computational efficiency while retaining critical anomaly detection capabilities.
Authors:Chunlei Li, Yilei Shi, Jingliang Hu, Xiao Xiang Zhu, Lichao Mou
Title: Scale-Aware Contrastive Reverse Distillation for Unsupervised Medical Anomaly Detection
Abstract:
Unsupervised anomaly detection using deep learning has garnered significant research attention due to its broad applicability, particularly in medical imaging where labeled anomalous data are scarce. While earlier approaches leverage generative models like autoencoders and generative adversarial networks (GANs), they often fall short due to overgeneralization. Recent methods explore various strategies, including memory banks, normalizing flows, self-supervised learning, and knowledge distillation, to enhance discrimination. Among these, knowledge distillation, particularly reverse distillation, has shown promise. Following this paradigm, we propose a novel scale-aware contrastive reverse distillation model that addresses two key limitations of existing reverse distillation methods: insufficient feature discriminability and inability to handle anomaly scale variations. Specifically, we introduce a contrastive student-teacher learning approach to derive more discriminative representations by generating and exploring out-of-normal distributions. Further, we design a scale adaptation mechanism to softly weight contrastive distillation losses at different scales to account for the scale variation issue. Extensive experiments on benchmark datasets demonstrate state-of-the-art performance, validating the efficacy of the proposed method. Code is available at https://github.com/MedAITech/SCRD4AD.
Authors:Qi Zhang, Xiuyuan Chen, Ziyi He, Kun Wang, Lianming Wu, Hongxing Shen, Jianqi Sun
Title: U2AD: Uncertainty-based Unsupervised Anomaly Detection Framework for Detecting T2 Hyperintensity in MRI Spinal Cord
Abstract:
T2 hyperintensities in spinal cord MR images are crucial biomarkers for conditions such as degenerative cervical myelopathy. However, current clinical diagnoses primarily rely on manual evaluation. Deep learning methods have shown promise in lesion detection, but most supervised approaches are heavily dependent on large, annotated datasets. Unsupervised anomaly detection (UAD) offers a compelling alternative by eliminating the need for abnormal data annotations. However, existing UAD methods rely on curated normal datasets and their performance frequently deteriorates when applied to clinical datasets due to domain shifts. We propose an Uncertainty-based Unsupervised Anomaly Detection framework, termed U2AD, to address these limitations. Unlike traditional methods, U2AD is designed to be trained and tested within the same clinical dataset, following a "mask-and-reconstruction" paradigm built on a Vision Transformer-based architecture. We introduce an uncertainty-guided masking strategy to resolve task conflicts between normal reconstruction and anomaly detection to achieve an optimal balance. Specifically, we employ a Monte-Carlo sampling technique to estimate reconstruction uncertainty mappings during training. By iteratively optimizing reconstruction training under the guidance of both epistemic and aleatoric uncertainty, U2AD reduces overall reconstruction variance while emphasizing regions. Experimental results demonstrate that U2AD outperforms existing supervised and unsupervised methods in patient-level identification and segment-level localization tasks. This framework establishes a new benchmark for incorporating uncertainty guidance into UAD, highlighting its clinical utility in addressing domain shifts and task conflicts in medical image anomaly detection. Our code is available: https://github.com/zhibaishouheilab/U2AD
Authors:Yuanze Li, Shihao Yuan, Haolin Wang, Qizhang Li, Ming Liu, Chen Xu, Guangming Shi, Wangmeng Zuo
Title: Triad: Empowering LMM-based Anomaly Detection with Vision Expert-guided Visual Tokenizer and Manufacturing Process
Abstract:
Although recent methods have tried to introduce large multimodal models (LMMs) into industrial anomaly detection (IAD), their generalization in the IAD field is far inferior to that for general purposes. We summarize the main reasons for this gap into two aspects. On one hand, general-purpose LMMs lack cognition of defects in the visual modality, thereby failing to sufficiently focus on defect areas. Therefore, we propose to modify the AnyRes structure of the LLaVA model, providing the potential anomalous areas identified by existing IAD models to the LMMs. On the other hand, existing methods mainly focus on identifying defects by learning defect patterns or comparing with normal samples, yet they fall short of understanding the causes of these defects. Considering that the generation of defects is closely related to the manufacturing process, we propose a manufacturing-driven IAD paradigm. An instruction-tuning dataset for IAD (InstructIAD) and a data organization approach for Chain-of-Thought with manufacturing (CoT-M) are designed to leverage the manufacturing process for IAD. Based on the above two modifications, we present Triad, a novel LMM-based method incorporating an expert-guided region-of-interest tokenizer and manufacturing process for industrial anomaly detection. Extensive experiments show that our Triad not only demonstrates competitive performance against current LMMs but also achieves further improved accuracy when equipped with manufacturing processes. Source code, training data, and pre-trained models will be publicly available at https://github.com/tzjtatata/Triad.
Authors:Hang Ni, Jindong Han, Nengjun Zhu, Hao Liu
Title: Unsupervised Graph Anomaly Detection via Multi-Hypersphere Heterophilic Graph Learning
Abstract:
Graph Anomaly Detection (GAD) plays a vital role in various data mining applications such as e-commerce fraud prevention and malicious user detection. Recently, Graph Neural Network (GNN) based approach has demonstrated great effectiveness in GAD by first encoding graph data into low-dimensional representations and then identifying anomalies under the guidance of supervised or unsupervised signals. However, existing GNN-based approaches implicitly follow the homophily principle (i.e., the "like attracts like" phenomenon) and fail to learn discriminative embedding for anomalies that connect vast normal nodes. Moreover, such approaches identify anomalies in a unified global perspective but overlook diversified abnormal patterns conditioned on local graph context, leading to suboptimal performance. To overcome the aforementioned limitations, in this paper, we propose a Multi-hypersphere Heterophilic Graph Learning (MHetGL) framework for unsupervised GAD. Specifically, we first devise a Heterophilic Graph Encoding (HGE) module to learn distinguishable representations for potential anomalies by purifying and augmenting their neighborhood in a fully unsupervised manner. Then, we propose a Multi-Hypersphere Learning (MHL) module to enhance the detection capability for context-dependent anomalies by jointly incorporating critical patterns from both global and local perspectives. Extensive experiments on ten real-world datasets show that MHetGL outperforms 14 baselines. Our code is publicly available at https://github.com/KennyNH/MHetGL.
Authors:Wenbang Deng, Xieyuanli Chen, Qinghua Yu, Yunze He, Junhao Xiao, Huimin Lu
Title: A Novel Decomposed Feature-Oriented Framework for Open-Set Semantic Segmentation on LiDAR Data
Abstract:
Semantic segmentation is a key technique that enables mobile robots to understand and navigate surrounding environments autonomously. However, most existing works focus on segmenting known objects, overlooking the identification of unknown classes, which is common in real-world applications. In this paper, we propose a feature-oriented framework for open-set semantic segmentation on LiDAR data, capable of identifying unknown objects while retaining the ability to classify known ones. We design a decomposed dual-decoder network to simultaneously perform closed-set semantic segmentation and generate distinctive features for unknown objects. The network is trained with multi-objective loss functions to capture the characteristics of known and unknown objects. Using the extracted features, we introduce an anomaly detection mechanism to identify unknown objects. By integrating the results of close-set semantic segmentation and anomaly detection, we achieve effective feature-driven LiDAR open-set semantic segmentation. Evaluations on both SemanticKITTI and nuScenes datasets demonstrate that our proposed framework significantly outperforms state-of-the-art methods. The source code will be made publicly available at https://github.com/nubot-nudt/DOSS.
Authors:Zhen Qu, Xian Tao, Xinyi Gong, Shichen Qu, Qiyu Chen, Zhengtao Zhang, Xingang Wang, Guiguang Ding
Title: Bayesian Prompt Flow Learning for Zero-Shot Anomaly Detection
Abstract:
Recently, vision-language models (e.g. CLIP) have demonstrated remarkable performance in zero-shot anomaly detection (ZSAD). By leveraging auxiliary data during training, these models can directly perform cross-category anomaly detection on target datasets, such as detecting defects on industrial product surfaces or identifying tumors in organ tissues. Existing approaches typically construct text prompts through either manual design or the optimization of learnable prompt vectors. However, these methods face several challenges: 1) handcrafted prompts require extensive expert knowledge and trial-and-error; 2) single-form learnable prompts struggle to capture complex anomaly semantics; and 3) an unconstrained prompt space limits generalization to unseen categories. To address these issues, we propose Bayesian Prompt Flow Learning (Bayes-PFL), which models the prompt space as a learnable probability distribution from a Bayesian perspective. Specifically, a prompt flow module is designed to learn both image-specific and image-agnostic distributions, which are jointly utilized to regularize the text prompt space and improve the model's generalization on unseen categories. These learned distributions are then sampled to generate diverse text prompts, effectively covering the prompt space. Additionally, a residual cross-model attention (RCA) module is introduced to better align dynamic text embeddings with fine-grained image features. Extensive experiments on 15 industrial and medical datasets demonstrate our method's superior performance. The code is available at https://github.com/xiaozhen228/Bayes-PFL.
Authors:Ying Fu Lim, Jiawen Zhu, Guansong Pang
Title: Adapting Large Language Models for Parameter-Efficient Log Anomaly Detection
Abstract:
Log Anomaly Detection (LAD) seeks to identify atypical patterns in log data that are crucial to assessing the security and condition of systems. Although Large Language Models (LLMs) have shown tremendous success in various fields, the use of LLMs in enabling the detection of log anomalies is largely unexplored. This work aims to fill this gap. Due to the prohibitive costs involved in fully fine-tuning LLMs, we explore the use of parameter-efficient fine-tuning techniques (PEFTs) for adapting LLMs to LAD. To have an in-depth exploration of the potential of LLM-driven LAD, we present a comprehensive investigation of leveraging two of the most popular PEFTs -- Low-Rank Adaptation (LoRA) and Representation Fine-tuning (ReFT) -- to tap into three prominent LLMs of varying size, including RoBERTa, GPT-2, and Llama-3, for parameter-efficient LAD. Comprehensive experiments on four public log datasets are performed to reveal important insights into effective LLM-driven LAD in several key perspectives, including the efficacy of these PEFT-based LLM-driven LAD methods, their stability, sample efficiency, robustness w.r.t. unstable logs, and cross-dataset generalization. Code is available at https://github.com/mala-lab/LogADReft.
Authors:Andrew Gao, Jun Liu
Title: STEAD: Spatio-Temporal Efficient Anomaly Detection for Time and Compute Sensitive Applications
Abstract:
This paper presents a new method for anomaly detection in automated systems with time and compute sensitive requirements, such as autonomous driving, with unparalleled efficiency. As systems like autonomous driving become increasingly popular, ensuring their safety has become more important than ever. Therefore, this paper focuses on how to quickly and effectively detect various anomalies in the aforementioned systems, with the goal of making them safer and more effective. Many detection systems have been developed with great success under spatial contexts; however, there is still significant room for improvement when it comes to temporal context. While there is substantial work regarding this task, there is minimal work done regarding the efficiency of models and their ability to be applied to scenarios that require real-time inference, i.e., autonomous driving where anomalies need to be detected the moment they are within view. To address this gap, we propose STEAD (Spatio-Temporal Efficient Anomaly Detection), whose backbone is developed using (2+1)D Convolutions and Performer Linear Attention, which ensures computational efficiency without sacrificing performance. When tested on the UCF-Crime benchmark, our base model achieves an AUC of 91.34%, outperforming the previous state-of-the-art, and our fast version achieves an AUC of 88.87%, while having 99.70% less parameters and outperforming the previous state-of-the-art as well. The code and pretrained models are made publicly available at https://github.com/agao8/STEAD
Authors:Mohammed Mahfoud, Ghait Boukachab, Michał Koziarski, Alex Hernandez-Garcia, Stefan Bauer, Yoshua Bengio, Nikolay Malkin
Title: Learning Decision Trees as Amortized Structure Inference
Abstract:
Building predictive models for tabular data presents fundamental challenges, notably in scaling consistently, i.e., more resources translating to better performance, and generalizing systematically beyond the training data distribution. Designing decision tree models remains especially challenging given the intractably large search space, and most existing methods rely on greedy heuristics, while deep learning inductive biases expect a temporal or spatial structure not naturally present in tabular data. We propose a hybrid amortized structure inference approach to learn predictive decision tree ensembles given data, formulating decision tree construction as a sequential planning problem. We train a deep reinforcement learning (GFlowNet) policy to solve this problem, yielding a generative model that samples decision trees from the Bayesian posterior. We show that our approach, DT-GFN, outperforms state-of-the-art decision tree and deep learning methods on standard classification benchmarks derived from real-world data, robustness to distribution shifts, and anomaly detection, all while yielding interpretable models with shorter description lengths. Samples from the trained DT-GFN model can be ensembled to construct a random forest, and we further show that the performance of scales consistently in ensemble size, yielding ensembles of predictors that continue to generalize systematically.
Authors:Wenxin Ma, Xu Zhang, Qingsong Yao, Fenghe Tang, Chenxu Wu, Yingtai Li, Rui Yan, Zihang Jiang, S. Kevin Zhou
Title: AA-CLIP: Enhancing Zero-shot Anomaly Detection via Anomaly-Aware CLIP
Abstract:
Anomaly detection (AD) identifies outliers for applications like defect and lesion detection. While CLIP shows promise for zero-shot AD tasks due to its strong generalization capabilities, its inherent Anomaly-Unawareness leads to limited discrimination between normal and abnormal features. To address this problem, we propose Anomaly-Aware CLIP (AA-CLIP), which enhances CLIP's anomaly discrimination ability in both text and visual spaces while preserving its generalization capability. AA-CLIP is achieved through a straightforward yet effective two-stage approach: it first creates anomaly-aware text anchors to differentiate normal and abnormal semantics clearly, then aligns patch-level visual features with these anchors for precise anomaly localization. This two-stage strategy, with the help of residual adapters, gradually adapts CLIP in a controlled manner, achieving effective AD while maintaining CLIP's class knowledge. Extensive experiments validate AA-CLIP as a resource-efficient solution for zero-shot AD tasks, achieving state-of-the-art results in industrial and medical applications. The code is available at https://github.com/Mwxinnn/AA-CLIP.
Authors:Jianqi Yan, Alex P. Leung, Zhiyuan Pei, David C. Y. Hui, Sangin Kim
Title: DeepGrav: Anomalous Gravitational-Wave Detection Through Deep Latent Features
Abstract:
This work introduces a novel deep learning-based approach for gravitational wave anomaly detection, aiming to overcome the limitations of traditional matched filtering techniques in identifying unknown waveform gravitational wave signals. We introduce a modified convolutional neural network architecture inspired by ResNet that leverages residual blocks to extract high-dimensional features, effectively capturing subtle differences between background noise and gravitational wave signals. This network architecture learns a high-dimensional projection while preserving discrepancies with the original input, facilitating precise identification of gravitational wave signals. In our experiments, we implement an innovative data augmentation strategy that generates new data by computing the arithmetic mean of multiple signal samples while retaining the key features of the original signals. In the NSF HDR A3D3: Detecting Anomalous Gravitational Wave Signals competition, it is honorable for us (group name: easonyan123) to get to the first place at the end with our model achieving a true negative rate (TNR) of 0.9708 during development/validation phase and 0.9832 on an unseen challenge dataset during final/testing phase, the highest among all competitors. These results demonstrate that our method not only achieves excellent generalization performance but also maintains robust adaptability in addressing the complex uncertainties inherent in gravitational wave anomaly detection.
Authors:Wenqiao Li, Yao Gu, Xintao Chen, Xiaohao Xu, Ming Hu, Xiaonan Huang, Yingna Wu
Title: Towards Visual Discrimination and Reasoning of Real-World Physical Dynamics: Physics-Grounded Anomaly Detection
Abstract:
Humans detect real-world object anomalies by perceiving, interacting, and reasoning based on object-conditioned physical knowledge. The long-term goal of Industrial Anomaly Detection (IAD) is to enable machines to autonomously replicate this skill. However, current IAD algorithms are largely developed and tested on static, semantically simple datasets, which diverge from real-world scenarios where physical understanding and reasoning are essential. To bridge this gap, we introduce the Physics Anomaly Detection (Phys-AD) dataset, the first large-scale, real-world, physics-grounded video dataset for industrial anomaly detection. Collected using a real robot arm and motor, Phys-AD provides a diverse set of dynamic, semantically rich scenarios. The dataset includes more than 6400 videos across 22 real-world object categories, interacting with robot arms and motors, and exhibits 47 types of anomalies. Anomaly detection in Phys-AD requires visual reasoning, combining both physical knowledge and video content to determine object abnormality. We benchmark state-of-the-art anomaly detection methods under three settings: unsupervised AD, weakly-supervised AD, and video-understanding AD, highlighting their limitations in handling physics-grounded anomalies. Additionally, we introduce the Physics Anomaly Explanation (PAEval) metric, designed to assess the ability of visual-language foundation models to not only detect anomalies but also provide accurate explanations for their underlying physical causes. Our project is available at https://guyao2023.github.io/Phys-AD/.
Authors:Wei Luo, Yunkang Cao, Haiming Yao, Xiaotian Zhang, Jianan Lou, Yuqi Cheng, Weiming Shen, Wenyong Yu
Title: Exploring Intrinsic Normal Prototypes within a Single Image for Universal Anomaly Detection
Abstract:
Anomaly detection (AD) is essential for industrial inspection, yet existing methods typically rely on ``comparing'' test images to normal references from a training set. However, variations in appearance and positioning often complicate the alignment of these references with the test image, limiting detection accuracy. We observe that most anomalies manifest as local variations, meaning that even within anomalous images, valuable normal information remains. We argue that this information is useful and may be more aligned with the anomalies since both the anomalies and the normal information originate from the same image. Therefore, rather than relying on external normality from the training set, we propose INP-Former, a novel method that extracts Intrinsic Normal Prototypes (INPs) directly from the test image. Specifically, we introduce the INP Extractor, which linearly combines normal tokens to represent INPs. We further propose an INP Coherence Loss to ensure INPs can faithfully represent normality for the testing image. These INPs then guide the INP-Guided Decoder to reconstruct only normal tokens, with reconstruction errors serving as anomaly scores. Additionally, we propose a Soft Mining Loss to prioritize hard-to-optimize samples during training. INP-Former achieves state-of-the-art performance in single-class, multi-class, and few-shot AD tasks across MVTec-AD, VisA, and Real-IAD, positioning it as a versatile and universal solution for AD. Remarkably, INP-Former also demonstrates some zero-shot AD capability. Code is available at:https://github.com/luow23/INP-Former.
Authors:Xiaofan Li, Xin Tan, Zhuo Chen, Zhizhong Zhang, Ruixin Zhang, Rizen Guo, Guannan Jiang, Yulong Chen, Yanyun Qu, Lizhuang Ma, Yuan Xie
Title: One-for-More: Continual Diffusion Model for Anomaly Detection
Abstract:
With the rise of generative models, there is a growing interest in unifying all tasks within a generative framework. Anomaly detection methods also fall into this scope and utilize diffusion models to generate or reconstruct normal samples when given arbitrary anomaly images. However, our study found that the diffusion model suffers from severe ``faithfulness hallucination'' and ``catastrophic forgetting'', which can't meet the unpredictable pattern increments. To mitigate the above problems, we propose a continual diffusion model that uses gradient projection to achieve stable continual learning. Gradient projection deploys a regularization on the model updating by modifying the gradient towards the direction protecting the learned knowledge. But as a double-edged sword, it also requires huge memory costs brought by the Markov process. Hence, we propose an iterative singular value decomposition method based on the transitive property of linear representation, which consumes tiny memory and incurs almost no performance loss. Finally, considering the risk of ``over-fitting'' to normal images of the diffusion model, we propose an anomaly-masked network to enhance the condition mechanism of the diffusion model. For continual anomaly detection, ours achieves first place in 17/18 settings on MVTec and VisA. Code is available at https://github.com/FuNz-0/One-for-More
Authors:Xiongxiao Xu, Haoran Wang, Yueqing Liang, Philip S. Yu, Yue Zhao, Kai Shu
Title: Can Multimodal LLMs Perform Time Series Anomaly Detection?
Abstract:
Large language models (LLMs) have been increasingly used in time series analysis. However, the potential of multimodal LLMs (MLLMs), particularly vision-language models, for time series remains largely under-explored. One natural way for humans to detect time series anomalies is through visualization and textual description. Motivated by this, we raise a critical and practical research question: Can multimodal LLMs perform time series anomaly detection? To answer this, we propose VisualTimeAnomaly benchmark to evaluate MLLMs in time series anomaly detection (TSAD). Our approach transforms time series numerical data into the image format and feed these images into various MLLMs, including proprietary models (GPT-4o and Gemini-1.5) and open-source models (LLaVA-NeXT and Qwen2-VL), each with one larger and one smaller variant. In total, VisualTimeAnomaly contains 12.4k time series images spanning 3 scenarios and 3 anomaly granularities with 9 anomaly types across 8 MLLMs. Starting with the univariate case (point- and range-wise anomalies), we extend our evaluation to more practical scenarios, including multivariate and irregular time series scenarios, and variate-wise anomalies. Our study reveals several key insights: 1) MLLMs detect range- and variate-wise anomalies more effectively than point-wise anomalies. 2) MLLMs are highly robust to irregular time series, even with 25% of the data missing. 3) Open-source MLLMs perform comparably to proprietary models in TSAD. While open-source MLLMs excel on univariate time series, proprietary MLLMs demonstrate superior effectiveness on multivariate time series. To the best of our knowledge, this is the first work to comprehensively investigate MLLMs for TSAD, particularly for multivariate and irregular time series scenarios. We release our dataset and code at https://github.com/mllm-ts/VisualTimeAnomaly to support future research.
Authors:Farzad Beizaee, Gregory Lodygensky, Christian Desrosiers, Jose Dolz
Title: MAD-AD: Masked Diffusion for Unsupervised Brain Anomaly Detection
Abstract:
Unsupervised anomaly detection in brain images is crucial for identifying injuries and pathologies without access to labels. However, the accurate localization of anomalies in medical images remains challenging due to the inherent complexity and variability of brain structures and the scarcity of annotated abnormal data. To address this challenge, we propose a novel approach that incorporates masking within diffusion models, leveraging their generative capabilities to learn robust representations of normal brain anatomy. During training, our model processes only normal brain MRI scans and performs a forward diffusion process in the latent space that adds noise to the features of randomly-selected patches. Following a dual objective, the model learns to identify which patches are noisy and recover their original features. This strategy ensures that the model captures intricate patterns of normal brain structures while isolating potential anomalies as noise in the latent space. At inference, the model identifies noisy patches corresponding to anomalies and generates a normal counterpart for these patches by applying a reverse diffusion process. Our method surpasses existing unsupervised anomaly detection techniques, demonstrating superior performance in generating accurate normal counterparts and localizing anomalies. The code is available at hhttps://github.com/farzad-bz/MAD-AD.
Authors:Dong Chen, Zhengqing Hu, Peiguang Fan, Yueting Zhuang, Yafei Li, Qidong Liu, Xiaoheng Jiang, Mingliang Xu
Title: KKA: Improving Vision Anomaly Detection through Anomaly-related Knowledge from Large Language Models
Abstract:
Vision anomaly detection, particularly in unsupervised settings, often struggles to distinguish between normal samples and anomalies due to the wide variability in anomalies. Recently, an increasing number of studies have focused on generating anomalies to help detectors learn more effective boundaries between normal samples and anomalies. However, as the generated anomalies are often derived from random factors, they frequently lack realism. Additionally, randomly generated anomalies typically offer limited support in constructing effective boundaries, as most differ substantially from normal samples and lie far from the boundary. To address these challenges, we propose Key Knowledge Augmentation (KKA), a method that extracts anomaly-related knowledge from large language models (LLMs). More specifically, KKA leverages the extensive prior knowledge of LLMs to generate meaningful anomalies based on normal samples. Then, KKA classifies the generated anomalies as easy anomalies and hard anomalies according to their similarity to normal samples. Easy anomalies exhibit significant differences from normal samples, whereas hard anomalies closely resemble normal samples. KKA iteratively updates the generated anomalies, and gradually increasing the proportion of hard anomalies to enable the detector to learn a more effective boundary. Experimental results show that the proposed method significantly improves the performance of various vision anomaly detectors while maintaining low generation costs. The code for CMG can be found at https://github.com/Anfeather/KKA.
Authors:Louis Carpentier, Nick Seeuws, Wannes Meert, Mathias Verbeke
Title: dtaianomaly: A Python library for time series anomaly detection
Abstract:
dtaianomaly is an open-source Python library for time series anomaly detection, designed to bridge the gap between academic research and real-world applications. Our goal is to (1) accelerate the development of novel state-of-the-art anomaly detection techniques through simple extensibility; (2) offer functionality for large-scale experimental validation; and thereby (3) bring cutting-edge research to business and industry through a standardized API, similar to scikit-learn to lower the entry barrier for both new and experienced users. Besides these key features, dtaianomaly offers (1) a broad range of built-in anomaly detectors, (2) support for time series preprocessing, (3) tools for visual analysis, (4) confidence prediction of anomaly scores, (5) runtime and memory profiling, (6) comprehensive documentation, and (7) cross-platform unit testing. The source code of dtaianomaly, documentation, code examples and installation guides are publicly available at https://github.com/ML-KULeuven/dtaianomaly.
Authors:Sangwoong Yoon, Himchan Hwang, Hyeokju Jeong, Dong Kyu Shin, Che-Sang Park, Sehee Kweon, Frank Chongwoo Park
Title: Value Gradient Sampler: Sampling as Sequential Decision Making
Abstract:
We propose the Value Gradient Sampler (VGS), a trainable sampler based on the interpretation of sampling as discrete-time sequential decision-making. VGS generates samples from a given unnormalized density (i.e., energy) by drifting and diffusing randomly initialized particles. In VGS, finding the optimal drift is equivalent to solving an optimal control problem where the cost is the upper bound of the KL divergence between the target density and the samples. We employ value-based dynamic programming to solve this optimal control problem, which gives the gradient of the value function as the optimal drift vector. The connection to sequential decision making allows VGS to leverage extensively studied techniques in reinforcement learning, making VGS a fast, adaptive, and accurate sampler that achieves competitive results in various sampling benchmarks. Furthermore, VGS can replace MCMC in contrastive divergence training of energy-based models. We demonstrate the effectiveness of VGS in training accurate energy-based models in industrial anomaly detection applications.
Authors:Arnaud Bougaham, Benoît Frénay
Title: Towards a Trustworthy Anomaly Detection for Critical Applications through Approximated Partial AUC Loss
Abstract:
Anomaly Detection is a crucial step for critical applications such in the industrial, medical or cybersecurity domains. These sectors share the same requirement of handling differently the different types of classification errors. Indeed, even if false positives are acceptable, false negatives are not, because it would reflect a missed detection of a quality issue, a disease or a cyber threat. To fulfill this requirement, we propose a method that dynamically applies a trustworthy approximated partial AUC ROC loss (tapAUC). A binary classifier is trained to optimize the specific range of the AUC ROC curve that prevents the True Positive Rate (TPR) to reach 100% while minimizing the False Positive Rate (FPR). The optimal threshold that does not trigger any false negative is then kept and used at the test step. The results show a TPR of 92.52% at a 20.43% FPR for an average across 6 datasets, representing a TPR improvement of 4.3% for a FPR cost of 12.2% against other state-of-the-art methods. The code is available at https://github.com/ArnaudBougaham/tapAUC.
Authors:Karish Grover, Geoffrey J. Gordon, Christos Faloutsos
Title: CurvGAD: Leveraging Curvature for Enhanced Graph Anomaly Detection
Abstract:
Does the intrinsic curvature of complex networks hold the key to unveiling graph anomalies that conventional approaches overlook? Reconstruction-based graph anomaly detection (GAD) methods overlook such geometric outliers, focusing only on structural and attribute-level anomalies. To this end, we propose CurvGAD - a mixed-curvature graph autoencoder that introduces the notion of curvature-based geometric anomalies. CurvGAD introduces two parallel pipelines for enhanced anomaly interpretability: (1) Curvature-equivariant geometry reconstruction, which focuses exclusively on reconstructing the edge curvatures using a mixed-curvature, Riemannian encoder and Gaussian kernel-based decoder; and (2) Curvature-invariant structure and attribute reconstruction, which decouples structural and attribute anomalies from geometric irregularities by regularizing graph curvature under discrete Ollivier-Ricci flow, thereby isolating the non-geometric anomalies. By leveraging curvature, CurvGAD refines the existing anomaly classifications and identifies new curvature-driven anomalies. Extensive experimentation over 10 real-world datasets (both homophilic and heterophilic) demonstrates an improvement of up to 6.5% over state-of-the-art GAD methods. The code is available at: https://github.com/karish-grover/curvgad.
Authors:Tingyi Cai, Yunliang Jiang, Yixin Liu, Ming Li, Changqin Huang, Shirui Pan
Title: Out-of-Distribution Detection on Graphs: A Survey
Abstract:
Graph machine learning has witnessed rapid growth, driving advancements across diverse domains. However, the in-distribution assumption, where training and testing data share the same distribution, often breaks in real-world scenarios, leading to degraded model performance under distribution shifts. This challenge has catalyzed interest in graph out-of-distribution (GOOD) detection, which focuses on identifying graph data that deviates from the distribution seen during training, thereby enhancing model robustness. In this paper, we provide a rigorous definition of GOOD detection and systematically categorize existing methods into four types: enhancement-based, reconstruction-based, information propagation-based, and classification-based approaches. We analyze the principles and mechanisms of each approach and clarify the distinctions between GOOD detection and related fields, such as graph anomaly detection, outlier detection, and GOOD generalization. Beyond methodology, we discuss practical applications and theoretical foundations, highlighting the unique challenges posed by graph data. Finally, we discuss the primary challenges and propose future directions to advance this emerging field. The repository of this survey is available at https://github.com/ca1man-2022/Awesome-GOOD-Detection.
Authors:Jiacong Xu, Shao-Yuan Lo, Bardia Safaei, Vishal M. Patel, Isht Dwivedi
Title: Towards Zero-Shot Anomaly Detection and Reasoning with Multimodal Large Language Models
Abstract:
Zero-Shot Anomaly Detection (ZSAD) is an emerging AD paradigm. Unlike the traditional unsupervised AD setting that requires a large number of normal samples to train a model, ZSAD is more practical for handling data-restricted real-world scenarios. Recently, Multimodal Large Language Models (MLLMs) have shown revolutionary reasoning capabilities in various vision tasks. However, the reasoning of image abnormalities remains underexplored due to the lack of corresponding datasets and benchmarks. To facilitate research in AD & reasoning, we establish the first visual instruction tuning dataset, Anomaly-Instruct-125k, and the evaluation benchmark, VisA-D&R. Through investigation with our benchmark, we reveal that current MLLMs like GPT-4o cannot accurately detect and describe fine-grained anomalous details in images. To address this, we propose Anomaly-OneVision (Anomaly-OV), the first specialist visual assistant for ZSAD and reasoning. Inspired by human behavior in visual inspection, Anomaly-OV leverages a Look-Twice Feature Matching (LTFM) mechanism to adaptively select and emphasize abnormal visual tokens. Extensive experiments demonstrate that Anomaly-OV achieves significant improvements over advanced generalist models in both detection and reasoning. Extensions to medical and 3D AD are provided for future study. The link to our project page: https://xujiacong.github.io/Anomaly-OV/
Authors:Yixiong Jing, Wei Lin, Brian Sheil, Sinan Acikgoz
Title: A 3D Multimodal Feature for Infrastructure Anomaly Detection
Abstract:
Ageing structures require periodic inspections to identify structural defects. Previous work has used geometric distortions to locate cracks in synthetic masonry bridge point clouds but has struggled to detect small cracks. To address this limitation, this study proposes a novel 3D multimodal feature, 3DMulti-FPFHI, that combines a customized Fast Point Feature Histogram (FPFH) with an intensity feature. This feature is integrated into the PatchCore anomaly detection algorithm and evaluated through statistical and parametric analyses. The method is further evaluated using point clouds of a real masonry arch bridge and a full-scale experimental model of a concrete tunnel. Results show that the 3D intensity feature enhances inspection quality by improving crack detection; it also enables the identification of water ingress which introduces intensity anomalies. The 3DMulti-FPFHI outperforms FPFH and a state-of-the-art multimodal anomaly detection method. The potential of the method to address diverse infrastructure anomaly detection scenarios is highlighted by the minimal requirements for data compared to learning-based methods. The code and related point cloud dataset are available at https://github.com/Jingyixiong/3D-Multi-FPFHI.
Authors:Enquan Yang, Peng Xing, Hanyang Sun, Wenbo Guo, Yuanwei Ma, Zechao Li, Dan Zeng
Title: 3CAD: A Large-Scale Real-World 3C Product Dataset for Unsupervised Anomaly
Abstract:
Industrial anomaly detection achieves progress thanks to datasets such as MVTec-AD and VisA. However, they suffer from limitations in terms of the number of defect samples, types of defects, and availability of real-world scenes. These constraints inhibit researchers from further exploring the performance of industrial detection with higher accuracy. To this end, we propose a new large-scale anomaly detection dataset called 3CAD, which is derived from real 3C production lines. Specifically, the proposed 3CAD includes eight different types of manufactured parts, totaling 27,039 high-resolution images labeled with pixel-level anomalies. The key features of 3CAD are that it covers anomalous regions of different sizes, multiple anomaly types, and the possibility of multiple anomalous regions and multiple anomaly types per anomaly image. This is the largest and first anomaly detection dataset dedicated to 3C product quality control for community exploration and development. Meanwhile, we introduce a simple yet effective framework for unsupervised anomaly detection: a Coarse-to-Fine detection paradigm with Recovery Guidance (CFRG). To detect small defect anomalies, the proposed CFRG utilizes a coarse-to-fine detection paradigm. Specifically, we utilize a heterogeneous distillation model for coarse localization and then fine localization through a segmentation model. In addition, to better capture normal patterns, we introduce recovery features as guidance. Finally, we report the results of our CFRG framework and popular anomaly detection methods on the 3CAD dataset, demonstrating strong competitiveness and providing a highly challenging benchmark to promote the development of the anomaly detection field. Data and code are available: https://github.com/EnquanYang2022/3CAD.
Authors:Xiangyu Dong, Xingyi Zhang, Lei Chen, Mingxuan Yuan, Sibo Wang
Title: SpaceGNN: Multi-Space Graph Neural Network for Node Anomaly Detection with Extremely Limited Labels
Abstract:
Node Anomaly Detection (NAD) has gained significant attention in the deep learning community due to its diverse applications in real-world scenarios. Existing NAD methods primarily embed graphs within a single Euclidean space, while overlooking the potential of non-Euclidean spaces. Besides, to address the prevalent issue of limited supervision in real NAD tasks, previous methods tend to leverage synthetic data to collect auxiliary information, which is not an effective solution as shown in our experiments. To overcome these challenges, we introduce a novel SpaceGNN model designed for NAD tasks with extremely limited labels. Specifically, we provide deeper insights into a task-relevant framework by empirically analyzing the benefits of different spaces for node representations, based on which, we design a Learnable Space Projection function that effectively encodes nodes into suitable spaces. Besides, we introduce the concept of weighted homogeneity, which we empirically and theoretically validate as an effective coefficient during information propagation. This concept inspires the design of the Distance Aware Propagation module. Furthermore, we propose the Multiple Space Ensemble module, which extracts comprehensive information for NAD under conditions of extremely limited supervision. Our findings indicate that this module is more beneficial than data augmentation techniques for NAD. Extensive experiments conducted on 9 real datasets confirm the superiority of SpaceGNN, which outperforms the best rival by an average of 8.55% in AUC and 4.31% in F1 scores. Our code is available at https://github.com/xydong127/SpaceGNN.
Authors:Daniel Sliwowski, Dongheui Lee
Title: ConditionNET: Learning Preconditions and Effects for Execution Monitoring
Abstract:
The introduction of robots into everyday scenarios necessitates algorithms capable of monitoring the execution of tasks. In this paper, we propose ConditionNET, an approach for learning the preconditions and effects of actions in a fully data-driven manner. We develop an efficient vision-language model and introduce additional optimization objectives during training to optimize for consistent feature representations. ConditionNET explicitly models the dependencies between actions, preconditions, and effects, leading to improved performance. We evaluate our model on two robotic datasets, one of which we collected for this paper, containing 406 successful and 138 failed teleoperated demonstrations of a Franka Emika Panda robot performing tasks like pouring and cleaning the counter. We show in our experiments that ConditionNET outperforms all baselines on both anomaly detection and phase prediction tasks. Furthermore, we implement an action monitoring system on a real robot to demonstrate the practical applicability of the learned preconditions and effects. Our results highlight the potential of ConditionNET for enhancing the reliability and adaptability of robots in real-world environments. The data is available on the project website: https://dsliwowski1.github.io/ConditionNET_page.
Authors:Arsenii Gavrikov, Julián García Pardiñas, Alberto Garfagnini
Title: DINAMO: Dynamic and INterpretable Anomaly MOnitoring for Large-Scale Particle Physics Experiments
Abstract:
Ensuring reliable data collection in large-scale particle physics experiments demands Data Quality Monitoring (DQM) procedures to detect possible detector malfunctions and preserve data integrity. Traditionally, this resource-intensive task has been handled by human shifters who struggle with frequent changes in operational conditions. We present DINAMO: a novel, interpretable, robust, and scalable DQM framework designed to automate anomaly detection in time-dependent settings. Our approach constructs evolving histogram templates with built-in uncertainties, featuring both a statistical variant - extending the classical Exponentially Weighted Moving Average (EWMA) - and a machine learning (ML)-enhanced version that leverages a transformer encoder for improved adaptability. Experimental validations on synthetic datasets demonstrate the high accuracy, adaptability, and interpretability of these methods. The statistical variant is being commissioned in the LHCb experiment at the Large Hadron Collider, underscoring its real-world impact. The code used in this study is available at https://github.com/ArseniiGav/DINAMO.
Authors:Qingxiang Liu, Chenghao Liu, Sheng Sun, Di Yao, Yuxuan Liang
Title: GDformer: Going Beyond Subsequence Isolation for Multivariate Time Series Anomaly Detection
Abstract:
Unsupervised anomaly detection of multivariate time series is a challenging task, given the requirements of deriving a compact detection criterion without accessing the anomaly points. The existing methods are mainly based on reconstruction error or association divergence, which are both confined to isolated subsequences with limited horizons, hardly promising unified series-level criterion. In this paper, we propose the Global Dictionary-enhanced Transformer (GDformer) with a renovated dictionary-based cross attention mechanism to cultivate the global representations shared by all normal points in the entire series. Accordingly, the cross-attention maps reflect the correlation weights between the point and global representations, which naturally leads to the representation-wise similarity-based detection criterion. To foster more compact detection boundary, prototypes are introduced to capture the distribution of normal point-global correlation weights. GDformer consistently achieves state-of-the-art unsupervised anomaly detection performance on five real-world benchmark datasets. Further experiments validate the global dictionary has great transferability among various datasets. The code is available at https://github.com/yuppielqx/GDformer.
Authors:Anh-Kiet Duong, Petra Gomez-Krämer
Title: Addressing Out-of-Label Hazard Detection in Dashcam Videos: Insights from the COOOL Challenge
Abstract:
This paper presents a novel approach for hazard analysis in dashcam footage, addressing the detection of driver reactions to hazards, the identification of hazardous objects, and the generation of descriptive captions. We first introduce a method for detecting driver reactions through speed and sound anomaly detection, leveraging unsupervised learning techniques. For hazard detection, we employ a set of heuristic rules as weak classifiers, which are combined using an ensemble method. This ensemble approach is further refined with differential privacy to mitigate overconfidence, ensuring robustness despite the lack of labeled data. Lastly, we use state-of-the-art vision-language models for hazard captioning, generating descriptive labels for the detected hazards. Our method achieved the highest scores in the Challenge on Out-of-Label in Autonomous Driving, demonstrating its effectiveness across all three tasks. Source codes are publicly available at https://github.com/ffyyytt/COOOL_2025.
Authors:Hossein Mirzaei, Mojtaba Nafez, Jafar Habibi, Mohammad Sabokrou, Mohammad Hossein Rohban
Title: Mitigating Spurious Negative Pairs for Robust Industrial Anomaly Detection
Abstract:
Despite significant progress in Anomaly Detection (AD), the robustness of existing detection methods against adversarial attacks remains a challenge, compromising their reliability in critical real-world applications such as autonomous driving. This issue primarily arises from the AD setup, which assumes that training data is limited to a group of unlabeled normal samples, making the detectors vulnerable to adversarial anomaly samples during testing. Additionally, implementing adversarial training as a safeguard encounters difficulties, such as formulating an effective objective function without access to labels. An ideal objective function for adversarial training in AD should promote strong perturbations both within and between the normal and anomaly groups to maximize margin between normal and anomaly distribution. To address these issues, we first propose crafting a pseudo-anomaly group derived from normal group samples. Then, we demonstrate that adversarial training with contrastive loss could serve as an ideal objective function, as it creates both inter- and intra-group perturbations. However, we notice that spurious negative pairs compromise the conventional contrastive loss to achieve robust AD. Spurious negative pairs are those that should be closely mapped but are erroneously separated. These pairs introduce noise and misguide the direction of inter-group adversarial perturbations. To overcome the effect of spurious negative pairs, we define opposite pairs and adversarially pull them apart to strengthen inter-group perturbations. Experimental results demonstrate our superior performance in both clean and adversarial scenarios, with a 26.1% improvement in robust detection across various challenging benchmark datasets. The implementation of our work is available at: https://github.com/rohban-lab/COBRA.
Authors:Pauline Bourigault, Danilo P. Mandic
Title: Kernel-Based Anomaly Detection Using Generalized Hyperbolic Processes
Abstract:
We present a novel approach to anomaly detection by integrating Generalized Hyperbolic (GH) processes into kernel-based methods. The GH distribution, known for its flexibility in modeling skewness, heavy tails, and kurtosis, helps to capture complex patterns in data that deviate from Gaussian assumptions. We propose a GH-based kernel function and utilize it within Kernel Density Estimation (KDE) and One-Class Support Vector Machines (OCSVM) to develop anomaly detection frameworks. Theoretical results confirmed the positive semi-definiteness and consistency of the GH-based kernel, ensuring its suitability for machine learning applications. Empirical evaluation on synthetic and real-world datasets showed that our method improves detection performance in scenarios involving heavy-tailed and asymmetric or imbalanced distributions. https://github.com/paulinebourigault/GHKernelAnomalyDetect
Authors:Aitor Sánchez-Ferrera, Borja Calvo, Jose A. Lozano
Title: A Review on Self-Supervised Learning for Time Series Anomaly Detection: Recent Advances and Open Challenges
Abstract:
Time series anomaly detection presents various challenges due to the sequential and dynamic nature of time-dependent data. Traditional unsupervised methods frequently encounter difficulties in generalization, often overfitting to known normal patterns observed during training and struggling to adapt to unseen normality. In response to this limitation, self-supervised techniques for time series have garnered attention as a potential solution to undertake this obstacle and enhance the performance of anomaly detectors. This paper presents a comprehensive review of the recent methods that make use of self-supervised learning for time series anomaly detection. A taxonomy is proposed to categorize these methods based on their primary characteristics, facilitating a clear understanding of their diversity within this field. The information contained in this survey, along with additional details that will be periodically updated, is available on the following GitHub repository: https://github.com/Aitorzan3/Awesome-Self-Supervised-Time-Series-Anomaly-Detection.
Authors:Peirong Liu, Ana Lawry Aguila, Juan E. Iglesias
Title: Unraveling Normal Anatomy via Fluid-Driven Anomaly Randomization
Abstract:
Data-driven machine learning has made significant strides in medical image analysis. However, most existing methods are tailored to specific modalities and assume a particular resolution (often isotropic). This limits their generalizability in clinical settings, where variations in scan appearance arise from differences in sequence parameters, resolution, and orientation. Furthermore, most general-purpose models are designed for healthy subjects and suffer from performance degradation when pathology is present. We introduce UNA (Unraveling Normal Anatomy), the first modality-agnostic learning approach for normal brain anatomy reconstruction that can handle both healthy scans and cases with pathology. We propose a fluid-driven anomaly randomization method that generates an unlimited number of realistic pathology profiles on-the-fly. UNA is trained on a combination of synthetic and real data, and can be applied directly to real images with potential pathology without the need for fine-tuning. We demonstrate UNA's effectiveness in reconstructing healthy brain anatomy and showcase its direct application to anomaly detection, using both simulated and real images from 3D healthy and stroke datasets, including CT and MRI scans. By bridging the gap between healthy and diseased images, UNA enables the use of general-purpose models on diseased images, opening up new opportunities for large-scale analysis of uncurated clinical images in the presence of pathology. Code is available at https://github.com/peirong26/UNA.
Authors:Wenxin Ma, Qingsong Yao, Xiang Zhang, Zhelong Huang, Zihang Jiang, S. Kevin Zhou
Title: Towards Accurate Unified Anomaly Segmentation
Abstract:
Unsupervised anomaly detection (UAD) from images strives to model normal data distributions, creating discriminative representations to distinguish and precisely localize anomalies. Despite recent advancements in the efficient and unified one-for-all scheme, challenges persist in accurately segmenting anomalies for further monitoring. Moreover, this problem is obscured by the widely-used AUROC metric under imbalanced UAD settings. This motivates us to emphasize the significance of precise segmentation of anomaly pixels using pAP and DSC as metrics. To address the unsolved segmentation task, we introduce the Unified Anomaly Segmentation (UniAS). UniAS presents a multi-level hybrid pipeline that progressively enhances normal information from coarse to fine, incorporating a novel multi-granularity gated CNN (MGG-CNN) into Transformer layers to explicitly aggregate local details from different granularities. UniAS achieves state-of-the-art anomaly segmentation performance, attaining 65.12/59.33 and 40.06/32.50 in pAP/DSC on the MVTec-AD and VisA datasets, respectively, surpassing previous methods significantly. The codes are shared at https://github.com/Mwxinnn/UniAS.
Authors:Jing Liu, Zhenchao Ma, Zepu Wang, Chenxuanyin Zou, Jiayang Ren, Zehua Wang, Liang Song, Bo Hu, Yang Liu, Victor C. M. Leung
Title: A Survey on Diffusion Models for Anomaly Detection
Abstract:
Diffusion models (DMs) have emerged as a powerful class of generative AI models, showing remarkable potential in anomaly detection (AD) tasks across various domains, such as cybersecurity, fraud detection, healthcare, and manufacturing. The intersection of these two fields, termed diffusion models for anomaly detection (DMAD), offers promising solutions for identifying deviations in increasingly complex and high-dimensional data. In this survey, we review recent advances in DMAD research. We begin by presenting the fundamental concepts of AD and DMs, followed by a comprehensive analysis of classic DM architectures including DDPMs, DDIMs, and Score SDEs. We further categorize existing DMAD methods into reconstruction-based, density-based, and hybrid approaches, providing detailed examinations of their methodological innovations. We also explore the diverse tasks across different data modalities, encompassing image, time series, video, and multimodal data analysis. Furthermore, we discuss critical challenges and emerging research directions, including computational efficiency, model interpretability, robustness enhancement, edge-cloud collaboration, and integration with large language models. The collection of DMAD research papers and resources is available at https://github.com/fdjingliu/DMAD.
Authors:Zhaopeng Gu, Bingke Zhu, Guibo Zhu, Yingying Chen, Ming Tang, Jinqiao Wang
Title: FiLo++: Zero-/Few-Shot Anomaly Detection by Fused Fine-Grained Descriptions and Deformable Localization
Abstract:
Anomaly detection methods typically require extensive normal samples from the target class for training, limiting their applicability in scenarios that require rapid adaptation, such as cold start. Zero-shot and few-shot anomaly detection do not require labeled samples from the target class in advance, making them a promising research direction. Existing zero-shot and few-shot approaches often leverage powerful multimodal models to detect and localize anomalies by comparing image-text similarity. However, their handcrafted generic descriptions fail to capture the diverse range of anomalies that may emerge in different objects, and simple patch-level image-text matching often struggles to localize anomalous regions of varying shapes and sizes. To address these issues, this paper proposes the FiLo++ method, which consists of two key components. The first component, Fused Fine-Grained Descriptions (FusDes), utilizes large language models to generate anomaly descriptions for each object category, combines both fixed and learnable prompt templates and applies a runtime prompt filtering method, producing more accurate and task-specific textual descriptions. The second component, Deformable Localization (DefLoc), integrates the vision foundation model Grounding DINO with position-enhanced text descriptions and a Multi-scale Deformable Cross-modal Interaction (MDCI) module, enabling accurate localization of anomalies with various shapes and sizes. In addition, we design a position-enhanced patch matching approach to improve few-shot anomaly detection performance. Experiments on multiple datasets demonstrate that FiLo++ achieves significant performance improvements compared with existing methods. Code will be available at https://github.com/CASIA-IVA-Lab/FiLo.
Authors:Jiayang Wu, Wensheng Gan, Jiahao Zhang, Philip S. Yu
Title: ADKGD: Anomaly Detection in Knowledge Graphs with Dual-Channel Training
Abstract:
In the current development of large language models (LLMs), it is important to ensure the accuracy and reliability of the underlying data sources. LLMs are critical for various applications, but they often suffer from hallucinations and inaccuracies due to knowledge gaps in the training data. Knowledge graphs (KGs), as a powerful structural tool, could serve as a vital external information source to mitigate the aforementioned issues. By providing a structured and comprehensive understanding of real-world data, KGs enhance the performance and reliability of LLMs. However, it is common that errors exist in KGs while extracting triplets from unstructured data to construct KGs. This could lead to degraded performance in downstream tasks such as question-answering and recommender systems. Therefore, anomaly detection in KGs is essential to identify and correct these errors. This paper presents an anomaly detection algorithm in knowledge graphs with dual-channel learning (ADKGD). ADKGD leverages a dual-channel learning approach to enhance representation learning from both the entity-view and triplet-view perspectives. Furthermore, using a cross-layer approach, our framework integrates internal information aggregation and context information aggregation. We introduce a kullback-leibler (KL)-loss component to improve the accuracy of the scoring function between the dual channels. To evaluate ADKGD's performance, we conduct empirical studies on three real-world KGs: WN18RR, FB15K, and NELL-995. Experimental results demonstrate that ADKGD outperforms the state-of-the-art anomaly detection algorithms. The source code and datasets are publicly available at https://github.com/csjywu1/ADKGD.
Authors:Narges Rashvand, Ghazal Alinezhad Noghre, Armin Danesh Pazho, Shanle Yao, Hamed Tabkhi
Title: Exploring Pose-Based Anomaly Detection for Retail Security: A Real-World Shoplifting Dataset and Benchmark
Abstract:
Shoplifting poses a significant challenge for retailers, resulting in billions of dollars in annual losses. Traditional security measures often fall short, highlighting the need for intelligent solutions capable of detecting shoplifting behaviors in real time. This paper frames shoplifting detection as an anomaly detection problem, focusing on the identification of deviations from typical shopping patterns. We introduce PoseLift, a privacy-preserving dataset specifically designed for shoplifting detection, addressing challenges such as data scarcity, privacy concerns, and model biases. PoseLift is built in collaboration with a retail store and contains anonymized human pose data from real-world scenarios. By preserving essential behavioral information while anonymizing identities, PoseLift balances privacy and utility. We benchmark state-of-the-art pose-based anomaly detection models on this dataset, evaluating performance using a comprehensive set of metrics. Our results demonstrate that pose-based approaches achieve high detection accuracy while effectively addressing privacy and bias concerns inherent in traditional methods. As one of the first datasets capturing real-world shoplifting behaviors, PoseLift offers researchers a valuable tool to advance computer vision ethically and will be publicly available to foster innovation and collaboration. The dataset is available at https://github.com/TeCSAR-UNCC/PoseLift.
Authors:Ayush Khot, Xiwei Wang, Avik Roy, Volodymyr Kindratenko, Mark S. Neubauer
Title: Evidential Deep Learning for Uncertainty Quantification and Out-of-Distribution Detection in Jet Identification using Deep Neural Networks
Abstract:
Current methods commonly used for uncertainty quantification (UQ) in deep learning (DL) models utilize Bayesian methods which are computationally expensive and time-consuming. In this paper, we provide a detailed study of UQ based on evidential deep learning (EDL) for deep neural network models designed to identify jets in high energy proton-proton collisions at the Large Hadron Collider and explore its utility in anomaly detection. EDL is a DL approach that treats learning as an evidence acquisition process designed to provide confidence (or epistemic uncertainty) about test data. Using publicly available datasets for jet classification benchmarking, we explore hyperparameter optimizations for EDL applied to the challenge of UQ for jet identification. We also investigate how the uncertainty is distributed for each jet class, how this method can be implemented for the detection of anomalies, how the uncertainty compares with Bayesian ensemble methods, and how the uncertainty maps onto latent spaces for the models. Our studies uncover some pitfalls of EDL applied to anomaly detection and a more effective way to quantify uncertainty from EDL as compared with the foundational EDL setup. These studies illustrate a methodological approach to interpreting EDL in jet classification models, providing new insights on how EDL quantifies uncertainty and detects out-of-distribution data which may lead to improved EDL methods for DL models applied to classification tasks.
Authors:Mian Zou, Baosheng Yu, Yibing Zhan, Kede Ma
Title: Self-Supervised Learning for Detecting AI-Generated Faces as Anomalies
Abstract:
The detection of AI-generated faces is commonly approached as a binary classification task. Nevertheless, the resulting detectors frequently struggle to adapt to novel AI face generators, which evolve rapidly. In this paper, we describe an anomaly detection method for AI-generated faces by leveraging self-supervised learning of camera-intrinsic and face-specific features purely from photographic face images. The success of our method lies in designing a pretext task that trains a feature extractor to rank four ordinal exchangeable image file format (EXIF) tags and classify artificially manipulated face images. Subsequently, we model the learned feature distribution of photographic face images using a Gaussian mixture model. Faces with low likelihoods are flagged as AI-generated. Both quantitative and qualitative experiments validate the effectiveness of our method. Our code is available at \url{https://github.com/MZMMSEC/AIGFD_EXIF.git}.
Authors:Er Jin, Qihui Feng, Yongli Mou, Stefan Decker, Gerhard Lakemeyer, Oliver Simons, Johannes Stegmaier
Title: LogicAD: Explainable Anomaly Detection via VLM-based Text Feature Extraction
Abstract:
Logical image understanding involves interpreting and reasoning about the relationships and consistency within an image's visual content. This capability is essential in applications such as industrial inspection, where logical anomaly detection is critical for maintaining high-quality standards and minimizing costly recalls. Previous research in anomaly detection (AD) has relied on prior knowledge for designing algorithms, which often requires extensive manual annotations, significant computing power, and large amounts of data for training. Autoregressive, multimodal Vision Language Models (AVLMs) offer a promising alternative due to their exceptional performance in visual reasoning across various domains. Despite this, their application to logical AD remains unexplored. In this work, we investigate using AVLMs for logical AD and demonstrate that they are well-suited to the task. Combining AVLMs with format embedding and a logic reasoner, we achieve SOTA performance on public benchmarks, MVTec LOCO AD, with an AUROC of 86.0% and F1-max of 83.7%, along with explanations of anomalies. This significantly outperforms the existing SOTA method by a large margin.
Authors:Chengjie Wang, Xi Jiang, Bin-Bin Gao, Zhenye Gan, Yong Liu, Feng Zheng, Lizhuang Ma
Title: SoftPatch+: Fully Unsupervised Anomaly Classification and Segmentation
Abstract:
Although mainstream unsupervised anomaly detection (AD) (including image-level classification and pixel-level segmentation)algorithms perform well in academic datasets, their performance is limited in practical application due to the ideal experimental setting of clean training data. Training with noisy data is an inevitable problem in real-world anomaly detection but is seldom discussed. This paper is the first to consider fully unsupervised industrial anomaly detection (i.e., unsupervised AD with noisy data). To solve this problem, we proposed memory-based unsupervised AD methods, SoftPatch and SoftPatch+, which efficiently denoise the data at the patch level. Noise discriminators are utilized to generate outlier scores for patch-level noise elimination before coreset construction. The scores are then stored in the memory bank to soften the anomaly detection boundary. Compared with existing methods, SoftPatch maintains a strong modeling ability of normal data and alleviates the overconfidence problem in coreset, and SoftPatch+ has more robust performance which is articularly useful in real-world industrial inspection scenarios with high levels of noise (from 10% to 40%). Comprehensive experiments conducted in diverse noise scenarios demonstrate that both SoftPatch and SoftPatch+ outperform the state-of-the-art AD methods on the MVTecAD, ViSA, and BTAD benchmarks. Furthermore, the performance of SoftPatch and SoftPatch+ is comparable to that of the noise-free methods in conventional unsupervised AD setting. The code of the proposed methods can be found at https://github.com/TencentYoutuResearch/AnomalyDetection-SoftPatch.
Authors:Chathurangi Shyalika, Harleen Kaur Bagga, Ahan Bhatt, Renjith Prasad, Alaa Al Ghazo, Amit Sheth
Title: Time Series Foundational Models: Their Role in Anomaly Detection and Prediction
Abstract:
Time series foundational models (TSFM) have gained prominence in time series forecasting, promising state-of-the-art performance across various applications. However, their application in anomaly detection and prediction remains underexplored, with growing concerns regarding their black-box nature, lack of interpretability and applicability. This paper critically evaluates the efficacy of TSFM in anomaly detection and prediction tasks. We systematically analyze TSFM across multiple datasets, including those characterized by the absence of discernible patterns, trends and seasonality. Our analysis shows that while TSFMs can be extended for anomaly detection and prediction, traditional statistical and deep learning models often match or outperform TSFM in these tasks. Additionally, TSFMs require high computational resources but fail to capture sequential dependencies effectively or improve performance in few-shot or zero-shot scenarios. \noindent The preprocessed datasets, codes to reproduce the results and supplementary materials are available at https://github.com/smtmnfg/TSFM.
Authors:Fenfang Tao, Guo-Sen Xie, Fang Zhao, Xiangbo Shu
Title: Kernel-Aware Graph Prompt Learning for Few-Shot Anomaly Detection
Abstract:
Few-shot anomaly detection (FSAD) aims to detect unseen anomaly regions with the guidance of very few normal support images from the same class. Existing FSAD methods usually find anomalies by directly designing complex text prompts to align them with visual features under the prevailing large vision-language model paradigm. However, these methods, almost always, neglect intrinsic contextual information in visual features, e.g., the interaction relationships between different vision layers, which is an important clue for detecting anomalies comprehensively. To this end, we propose a kernel-aware graph prompt learning framework, termed as KAG-prompt, by reasoning the cross-layer relations among visual features for FSAD. Specifically, a kernel-aware hierarchical graph is built by taking the different layer features focusing on anomalous regions of different sizes as nodes, meanwhile, the relationships between arbitrary pairs of nodes stand for the edges of the graph. By message passing over this graph, KAG-prompt can capture cross-layer contextual information, thus leading to more accurate anomaly prediction. Moreover, to integrate the information of multiple important anomaly signals in the prediction map, we propose a novel image-level scoring method based on multi-level information fusion. Extensive experiments on MVTecAD and VisA datasets show that KAG-prompt achieves state-of-the-art FSAD results for image-level/pixel-level anomaly detection. Code is available at https://github.com/CVL-hub/KAG-prompt.git.
Authors:Qiyu Chen, Huiyuan Luo, Han Gao, Chengkan Lv, Zhengtao Zhang
Title: Progressive Boundary Guided Anomaly Synthesis for Industrial Anomaly Detection
Abstract:
Unsupervised anomaly detection methods can identify surface defects in industrial images by leveraging only normal samples for training. Due to the risk of overfitting when learning from a single class, anomaly synthesis strategies are introduced to enhance detection capability by generating artificial anomalies. However, existing strategies heavily rely on anomalous textures from auxiliary datasets. Moreover, their limitations in the coverage and directionality of anomaly synthesis may result in a failure to capture useful information and lead to significant redundancy. To address these issues, we propose a novel Progressive Boundary-guided Anomaly Synthesis (PBAS) strategy, which can directionally synthesize crucial feature-level anomalies without auxiliary textures. It consists of three core components: Approximate Boundary Learning (ABL), Anomaly Feature Synthesis (AFS), and Refined Boundary Optimization (RBO). To make the distribution of normal samples more compact, ABL first learns an approximate decision boundary by center constraint, which improves the center initialization through feature alignment. AFS then directionally synthesizes anomalies with more flexible scales guided by the hypersphere distribution of normal features. Since the boundary is so loose that it may contain real anomalies, RBO refines the decision boundary through the binary classification of artificial anomalies and normal features. Experimental results show that our method achieves state-of-the-art performance and the fastest detection speed on three widely used industrial datasets, including MVTec AD, VisA, and MPDD. The code will be available at: https://github.com/cqylunlun/PBAS.
Authors:Yunkang Cao, Haiming Yao, Wei Luo, Weiming Shen
Title: VarAD: Lightweight High-Resolution Image Anomaly Detection via Visual Autoregressive Modeling
Abstract:
This paper addresses a practical task: High-Resolution Image Anomaly Detection (HRIAD). In comparison to conventional image anomaly detection for low-resolution images, HRIAD imposes a heavier computational burden and necessitates superior global information capture capacity. To tackle HRIAD, this paper translates image anomaly detection into visual token prediction and proposes VarAD based on visual autoregressive modeling for token prediction. Specifically, VarAD first extracts multi-hierarchy and multi-directional visual token sequences, and then employs an advanced model, Mamba, for visual autoregressive modeling and token prediction. During the prediction process, VarAD effectively exploits information from all preceding tokens to predict the target token. Finally, the discrepancies between predicted tokens and original tokens are utilized to score anomalies. Comprehensive experiments on four publicly available datasets and a real-world button inspection dataset demonstrate that the proposed VarAD achieves superior high-resolution image anomaly detection performance while maintaining lightweight, rendering VarAD a viable solution for HRIAD. Code is available at \href{https://github.com/caoyunkang/VarAD}{\url{https://github.com/caoyunkang/VarAD}}.
Authors:Hongsong Wang, Andi Xu, Pinle Ding, Jie Gui
Title: Dual Conditioned Motion Diffusion for Pose-Based Video Anomaly Detection
Abstract:
Video Anomaly Detection (VAD) is essential for computer vision research. Existing VAD methods utilize either reconstruction-based or prediction-based frameworks. The former excels at detecting irregular patterns or structures, whereas the latter is capable of spotting abnormal deviations or trends. We address pose-based video anomaly detection and introduce a novel framework called Dual Conditioned Motion Diffusion (DCMD), which enjoys the advantages of both approaches. The DCMD integrates conditioned motion and conditioned embedding to comprehensively utilize the pose characteristics and latent semantics of observed movements, respectively. In the reverse diffusion process, a motion transformer is proposed to capture potential correlations from multi-layered characteristics within the spectrum space of human motion. To enhance the discriminability between normal and abnormal instances, we design a novel United Association Discrepancy (UAD) regularization that primarily relies on a Gaussian kernel-based time association and a self-attention-based global association. Finally, a mask completion strategy is introduced during the inference stage of the reverse diffusion process to enhance the utilization of conditioned motion for the prediction branch of anomaly detection. Extensive experiments on four datasets demonstrate that our method dramatically outperforms state-of-the-art methods and exhibits superior generalization performance.
Authors:Noemi Anau Montel, James Alvey, Christoph Weniger
Title: Tests for model misspecification in simulation-based inference: from local distortions to global model checks
Abstract:
Model misspecification analysis strategies, such as anomaly detection, model validation, and model comparison are a key component of scientific model development. Over the last few years, there has been a rapid rise in the use of simulation-based inference (SBI) techniques for Bayesian parameter estimation, applied to increasingly complex forward models. To move towards fully simulation-based analysis pipelines, however, there is an urgent need for a comprehensive simulation-based framework for model misspecification analysis. In this work, we provide a solid and flexible foundation for a wide range of model discrepancy analysis tasks, using distortion-driven model misspecification tests. From a theoretical perspective, we introduce the statistical framework built around performing many hypothesis tests for distortions of the simulation model. We also make explicit analytic connections to classical techniques: anomaly detection, model validation, and goodness-of-fit residual analysis. Furthermore, we introduce an efficient self-calibrating training algorithm that is useful for practitioners. We demonstrate the performance of the framework in multiple scenarios, making the connection to classical results where they are valid. Finally, we show how to conduct such a distortion-driven model misspecification test for real gravitational wave data, specifically on the event GW150914.
Authors:Xi Ding, Lei Wang
Title: Do Language Models Understand Time?
Abstract:
Large language models (LLMs) have revolutionized video-based computer vision applications, including action recognition, anomaly detection, and video summarization. Videos inherently pose unique challenges, combining spatial complexity with temporal dynamics that are absent in static images or textual data. Current approaches to video understanding with LLMs often rely on pretrained video encoders to extract spatiotemporal features and text encoders to capture semantic meaning. These representations are integrated within LLM frameworks, enabling multimodal reasoning across diverse video tasks. However, the critical question persists: Can LLMs truly understand the concept of time, and how effectively can they reason about temporal relationships in videos? This work critically examines the role of LLMs in video processing, with a specific focus on their temporal reasoning capabilities. We identify key limitations in the interaction between LLMs and pretrained encoders, revealing gaps in their ability to model long-term dependencies and abstract temporal concepts such as causality and event progression. Furthermore, we analyze challenges posed by existing video datasets, including biases, lack of temporal annotations, and domain-specific limitations that constrain the temporal understanding of LLMs. To address these gaps, we explore promising future directions, including the co-evolution of LLMs and encoders, the development of enriched datasets with explicit temporal labels, and innovative architectures for integrating spatial, temporal, and semantic reasoning. By addressing these challenges, we aim to advance the temporal comprehension of LLMs, unlocking their full potential in video analysis and beyond. Our paper's GitHub repository can be found at https://github.com/Darcyddx/Video-LLM.
Authors:Sihan Chen, Zhuangzhuang Qian, Wingchun Siu, Xingcan Hu, Jiaqi Li, Shawn Li, Yuehan Qin, Tiankai Yang, Zhuo Xiao, Wanghao Ye, Yichi Zhang, Yushun Dong, Yue Zhao
Title: PyOD 2: A Python Library for Outlier Detection with LLM-powered Model Selection
Abstract:
Outlier detection (OD), also known as anomaly detection, is a critical machine learning (ML) task with applications in fraud detection, network intrusion detection, clickstream analysis, recommendation systems, and social network moderation. Among open-source libraries for outlier detection, the Python Outlier Detection (PyOD) library is the most widely adopted, with over 8,500 GitHub stars, 25 million downloads, and diverse industry usage. However, PyOD currently faces three limitations: (1) insufficient coverage of modern deep learning algorithms, (2) fragmented implementations across PyTorch and TensorFlow, and (3) no automated model selection, making it hard for non-experts. To address these issues, we present PyOD Version 2 (PyOD 2), which integrates 12 state-of-the-art deep learning models into a unified PyTorch framework and introduces a large language model (LLM)-based pipeline for automated OD model selection. These improvements simplify OD workflows, provide access to 45 algorithms, and deliver robust performance on various datasets. In this paper, we demonstrate how PyOD 2 streamlines the deployment and automation of OD models and sets a new standard in both research and industry. PyOD 2 is accessible at [https://github.com/yzhao062/pyod](https://github.com/yzhao062/pyod). This study aligns with the Web Mining and Content Analysis track, addressing topics such as the robustness of Web mining methods and the quality of algorithmically-generated Web data.
Authors:Wei Luo, Haiming Yao, Wenyong Yu, Zhengyong Li
Title: AMI-Net: Adaptive Mask Inpainting Network for Industrial Anomaly Detection and Localization
Abstract:
Unsupervised visual anomaly detection is crucial for enhancing industrial production quality and efficiency. Among unsupervised methods, reconstruction approaches are popular due to their simplicity and effectiveness. The key aspect of reconstruction methods lies in the restoration of anomalous regions, which current methods have not satisfactorily achieved. To tackle this issue, we introduce a novel \uline{A}daptive \uline{M}ask \uline{I}npainting \uline{Net}work (AMI-Net) from the perspective of adaptive mask-inpainting. In contrast to traditional reconstruction methods that treat non-semantic image pixels as targets, our method uses a pre-trained network to extract multi-scale semantic features as reconstruction targets. Given the multiscale nature of industrial defects, we incorporate a training strategy involving random positional and quantitative masking. Moreover, we propose an innovative adaptive mask generator capable of generating adaptive masks that effectively mask anomalous regions while preserving normal regions. In this manner, the model can leverage the visible normal global contextual information to restore the masked anomalous regions, thereby effectively suppressing the reconstruction of defects. Extensive experimental results on the MVTec AD and BTAD industrial datasets validate the effectiveness of the proposed method. Additionally, AMI-Net exhibits exceptional real-time performance, striking a favorable balance between detection accuracy and speed, rendering it highly suitable for industrial applications. Code is available at: https://github.com/luow23/AMI-Net
Authors:Zining Chen, Xingshuang Luo, Weiqiu Wang, Zhicheng Zhao, Fei Su, Aidong Men
Title: Filter or Compensate: Towards Invariant Representation from Distribution Shift for Anomaly Detection
Abstract:
Recent Anomaly Detection (AD) methods have achieved great success with In-Distribution (ID) data. However, real-world data often exhibits distribution shift, causing huge performance decay on traditional AD methods. From this perspective, few previous work has explored AD with distribution shift, and the distribution-invariant normality learning has been proposed based on the Reverse Distillation (RD) framework. However, we observe the misalignment issue between the teacher and the student network that causes detection failure, thereby propose FiCo, Filter or Compensate, to address the distribution shift issue in AD. FiCo firstly compensates the distribution-specific information to reduce the misalignment between the teacher and student network via the Distribution-Specific Compensation (DiSCo) module, and secondly filters all abnormal information to capture distribution-invariant normality with the Distribution-Invariant Filter (DiIFi) module. Extensive experiments on three different AD benchmarks demonstrate the effectiveness of FiCo, which outperforms all existing state-of-the-art (SOTA) methods, and even achieves better results on the ID scenario compared with RD-based methods. Our code is available at https://github.com/znchen666/FiCo.
Authors:Xinyue Liu, Jianyuan Wang, Biao Leng, Shuo Zhang
Title: Tuned Reverse Distillation: Enhancing Multimodal Industrial Anomaly Detection with Crossmodal Tuners
Abstract:
Knowledge distillation (KD) has been widely studied in unsupervised image Anomaly Detection (AD), but its application to unsupervised multimodal AD remains underexplored. Existing KD-based methods for multimodal AD that use fused multimodal features to obtain teacher representations face challenges. Anomalies that only exist in one modality may not be effectively captured in the fused teacher features, leading to detection failures. Besides, these methods do not fully leverage the rich intra- and inter-modality information that are critical for effective anomaly detection. In this paper, we propose Tuned Reverse Distillation (TRD) based on Multi-branch design to realize Multimodal Industrial AD. By assigning independent branches to each modality, our method enables finer detection of anomalies within each modality. Furthermore, we enhance the interaction between modalities during the distillation process by designing two Crossmodal Tuners including Crossmodal Filter and Amplifier. With the idea of crossmodal mapping, the student network is allowed to better learn normal features while anomalies in all modalities are ensured to be effectively detected. Experimental verifications on multimodal AD datasets demonstrate that our method achieves state-of-the-art performance in multimodal anomaly detection and localization. Code is available at https://github.com/hito2448/TRD.
Authors:Huaxin Zhang, Xiaohao Xu, Xiang Wang, Jialong Zuo, Xiaonan Huang, Changxin Gao, Shanjun Zhang, Li Yu, Nong Sang
Title: Holmes-VAU: Towards Long-term Video Anomaly Understanding at Any Granularity
Abstract:
How can we enable models to comprehend video anomalies occurring over varying temporal scales and contexts? Traditional Video Anomaly Understanding (VAU) methods focus on frame-level anomaly prediction, often missing the interpretability of complex and diverse real-world anomalies. Recent multimodal approaches leverage visual and textual data but lack hierarchical annotations that capture both short-term and long-term anomalies. To address this challenge, we introduce HIVAU-70k, a large-scale benchmark for hierarchical video anomaly understanding across any granularity. We develop a semi-automated annotation engine that efficiently scales high-quality annotations by combining manual video segmentation with recursive free-text annotation using large language models (LLMs). This results in over 70,000 multi-granular annotations organized at clip-level, event-level, and video-level segments. For efficient anomaly detection in long videos, we propose the Anomaly-focused Temporal Sampler (ATS). ATS integrates an anomaly scorer with a density-aware sampler to adaptively select frames based on anomaly scores, ensuring that the multimodal LLM concentrates on anomaly-rich regions, which significantly enhances both efficiency and accuracy. Extensive experiments demonstrate that our hierarchical instruction data markedly improves anomaly comprehension. The integrated ATS and visual-language model outperform traditional methods in processing long videos. Our benchmark and model are publicly available at https://github.com/pipixin321/HolmesVAU.
Authors:Lei Fan, Dongdong Fan, Zhiguang Hu, Yiwen Ding, Donglin Di, Kai Yi, Maurice Pagnucco, Yang Song
Title: MANTA: A Large-Scale Multi-View and Visual-Text Anomaly Detection Dataset for Tiny Objects
Abstract:
We present MANTA, a visual-text anomaly detection dataset for tiny objects. The visual component comprises over 137.3K images across 38 object categories spanning five typical domains, of which 8.6K images are labeled as anomalous with pixel-level annotations. Each image is captured from five distinct viewpoints to ensure comprehensive object coverage. The text component consists of two subsets: Declarative Knowledge, including 875 words that describe common anomalies across various domains and specific categories, with detailed explanations for < what, why, how>, including causes and visual characteristics; and Constructivist Learning, providing 2K multiple-choice questions with varying levels of difficulty, each paired with images and corresponded answer explanations. We also propose a baseline for visual-text tasks and conduct extensive benchmarking experiments to evaluate advanced methods across different settings, highlighting the challenges and efficacy of our dataset.
Authors:Yuangang Li, Jiaqi Li, Zhuo Xiao, Tiankai Yang, Yi Nian, Xiyang Hu, Yue Zhao
Title: NLP-ADBench: NLP Anomaly Detection Benchmark
Abstract:
Anomaly detection (AD) is a critical machine learning task with diverse applications in web systems, including fraud detection, content moderation, and user behavior analysis. Despite its significance, AD in natural language processing (NLP) remains underexplored, limiting advancements in detecting anomalies in text data such as harmful content, phishing attempts, or spam reviews. In this paper, we introduce NLP-ADBench, the most comprehensive benchmark for NLP anomaly detection (NLP-AD), comprising eight curated datasets and evaluations of nineteen state-of-the-art algorithms. These include three end-to-end methods and sixteen two-step algorithms that apply traditional anomaly detection techniques to language embeddings generated by bert-base-uncased and OpenAI's text-embedding-3-large models. Our results reveal critical insights and future directions for NLP-AD. Notably, no single model excels across all datasets, highlighting the need for automated model selection. Moreover, two-step methods leveraging transformer-based embeddings consistently outperform specialized end-to-end approaches, with OpenAI embeddings demonstrating superior performance over BERT embeddings. By releasing NLP-ADBench at https://github.com/USC-FORTIS/NLP-ADBench, we provide a standardized framework for evaluating NLP-AD methods, fostering the development of innovative approaches. This work fills a crucial gap in the field and establishes a foundation for advancing NLP anomaly detection, particularly in the context of improving the safety and reliability of web-based systems.
Authors:Jie Huang
Title: Take Package as Language: Anomaly Detection Using Transformer
Abstract:
Network data packet anomaly detection faces numerous challenges, including exploring new anomaly supervision signals, researching weakly supervised anomaly detection, and improving model interpretability. This paper proposes NIDS-GPT, a GPT-based causal language model for network intrusion detection. Unlike previous work, NIDS-GPT innovatively treats each number in the packet as an independent "word" rather than packet fields, enabling a more fine-grained data representation. We adopt an improved GPT-2 model and design special tokenizers and embedding layers to better capture the structure and semantics of network data. NIDS-GPT has good scalability, supports unsupervised pre-training, and enhances model interpretability through attention weight visualization. Experiments on the CICIDS2017 and car-hacking datasets show that NIDS-GPT achieves 100\% accuracy under extreme imbalance conditions, far surpassing traditional methods; it also achieves over 90\% accuracy in one-shot learning. These results demonstrate NIDS-GPT's excellent performance and potential in handling complex network anomaly detection tasks, especially in data-imbalanced and resource-constrained scenarios. The code is available at \url{https://github.com/woshixiaobai2019/nids-gpt.gi
Authors:Zuo Zuo, Jiahao Dong, Yao Wu, Yanyun Qu, Zongze Wu
Title: CLIP-FSAC++: Few-Shot Anomaly Classification with Anomaly Descriptor Based on CLIP
Abstract:
Industrial anomaly classification (AC) is an indispensable task in industrial manufacturing, which guarantees quality and safety of various product. To address the scarcity of data in industrial scenarios, lots of few-shot anomaly detection methods emerge recently. In this paper, we propose an effective few-shot anomaly classification (FSAC) framework with one-stage training, dubbed CLIP-FSAC++. Specifically, we introduce a cross-modality interaction module named Anomaly Descriptor following image and text encoders, which enhances the correlation of visual and text embeddings and adapts the representations of CLIP from pre-trained data to target data. In anomaly descriptor, image-to-text cross-attention module is used to obtain image-specific text embeddings and text-to-image cross-attention module is used to obtain text-specific visual embeddings. Then these modality-specific embeddings are used to enhance original representations of CLIP for better matching ability. Comprehensive experiment results are provided for evaluating our method in few-normal shot anomaly classification on VisA and MVTEC-AD for 1, 2, 4 and 8-shot settings. The source codes are at https://github.com/Jay-zzcoder/clip-fsac-pp
Authors:Zhaopeng Gu, Bingke Zhu, Guibo Zhu, Yingying Chen, Ming Tang, Jinqiao Wang
Title: UniVAD: A Training-free Unified Model for Few-shot Visual Anomaly Detection
Abstract:
Visual Anomaly Detection (VAD) aims to identify abnormal samples in images that deviate from normal patterns, covering multiple domains, including industrial, logical, and medical fields. Due to the domain gaps between these fields, existing VAD methods are typically tailored to each domain, with specialized detection techniques and model architectures that are difficult to generalize across different domains. Moreover, even within the same domain, current VAD approaches often follow a "one-category-one-model" paradigm, requiring large amounts of normal samples to train class-specific models, resulting in poor generalizability and hindering unified evaluation across domains. To address this issue, we propose a generalized few-shot VAD method, UniVAD, capable of detecting anomalies across various domains, such as industrial, logical, and medical anomalies, with a training-free unified model. UniVAD only needs few normal samples as references during testing to detect anomalies in previously unseen objects, without training on the specific domain. Specifically, UniVAD employs a Contextual Component Clustering ($C^3$) module based on clustering and vision foundation models to segment components within the image accurately, and leverages Component-Aware Patch Matching (CAPM) and Graph-Enhanced Component Modeling (GECM) modules to detect anomalies at different semantic levels, which are aggregated to produce the final detection result. We conduct experiments on nine datasets spanning industrial, logical, and medical fields, and the results demonstrate that UniVAD achieves state-of-the-art performance in few-shot anomaly detection tasks across multiple domains, outperforming domain-specific anomaly detection models. Code is available at https://github.com/FantasticGNU/UniVAD.
Authors:Xiaofeng Tan, Hongsong Wang, Xin Geng, Liang Wang
Title: Frequency-Guided Diffusion Model with Perturbation Training for Skeleton-Based Video Anomaly Detection
Abstract:
Video anomaly detection (VAD) is a vital yet complex open-set task in computer vision, commonly tackled through reconstruction-based methods. However, these methods struggle with two key limitations: (1) insufficient robustness in open-set scenarios, where unseen normal motions are frequently misclassified as anomalies, and (2) an overemphasis on, but restricted capacity for, local motion reconstruction, which are inherently difficult to capture accurately due to their diversity. To overcome these challenges, we introduce a novel frequency-guided diffusion model with perturbation training. First, we enhance robustness by training a generator to produce perturbed samples, which are similar to normal samples and target the weakness of the reconstruction model. This training paradigm expands the reconstruction domain of the model, improving its generalization to unseen normal motions. Second, to address the overemphasis on motion details, we employ the 2D Discrete Cosine Transform (DCT) to separate high-frequency (local) and low-frequency (global) motion components. By guiding the diffusion model with observed high-frequency information, we prioritize the reconstruction of low-frequency components, enabling more accurate and robust anomaly detection. Extensive experiments on five widely used VAD datasets demonstrate that our approach surpasses state-of-the-art methods, underscoring its effectiveness in open-set scenarios and diverse motion contexts. Our project website is https://xiaofeng-tan.github.io/projects/FG-Diff/index.html.
Authors:Jiin Im, Yongho Son, Je Hyeong Hong
Title: FUN-AD: Fully Unsupervised Learning for Anomaly Detection with Noisy Training Data
Abstract:
While the mainstream research in anomaly detection has mainly followed the one-class classification, practical industrial environments often incur noisy training data due to annotation errors or lack of labels for new or refurbished products. To address these issues, we propose a novel learning-based approach for fully unsupervised anomaly detection with unlabeled and potentially contaminated training data. Our method is motivated by two observations, that i) the pairwise feature distances between the normal samples are on average likely to be smaller than those between the anomaly samples or heterogeneous samples and ii) pairs of features mutually closest to each other are likely to be homogeneous pairs, which hold if the normal data has smaller variance than the anomaly data. Building on the first observation that nearest-neighbor distances can distinguish between confident normal samples and anomalies, we propose a pseudo-labeling strategy using an iteratively reconstructed memory bank (IRMB). The second observation is utilized as a new loss function to promote class-homogeneity between mutually closest pairs thereby reducing the ill-posedness of the task. Experimental results on two public industrial anomaly benchmarks and semantic anomaly examples validate the effectiveness of FUN-AD across different scenarios and anomaly-to-normal ratios. Our code is available at https://github.com/HY-Vision-Lab/FUNAD.
Authors:Yachao Yuan, Yu Huang, Jin Wang
Title: AnomalyAID: Reliable Interpretation for Semi-supervised Network Anomaly Detection
Abstract:
Semi-supervised Learning plays a crucial role in network anomaly detection applications, however, learning anomaly patterns with limited labeled samples is not easy. Additionally, the lack of interpretability creates key barriers to the adoption of semi-supervised frameworks in practice. Most existing interpretation methods are developed for supervised/unsupervised frameworks or non-security domains and fail to provide reliable interpretations. In this paper, we propose AnomalyAID, a general framework aiming to (1) make the anomaly detection process interpretable and improve the reliability of interpretation results, and (2) assign high-confidence pseudo labels to unlabeled samples for improving the performance of anomaly detection systems with limited supervised data. For (1), we propose a novel interpretation approach that leverages global and local interpreters to provide reliable explanations, while for (2), we design a new two-stage semi-supervised learning framework for network anomaly detection by aligning both stages' model predictions with special constraints. We apply AnomalyAID over two representative network anomaly detection tasks and extensively evaluate AnomalyAID with representative prior works. Experimental results demonstrate that AnomalyAID can provide accurate detection results with reliable interpretations for semi-supervised network anomaly detection systems. The code is available at: https://github.com/M-Code-Space/AnomalyAID.
Authors:Jianan Ye, Zhaorui Tan, Yijie Hu, Xi Yang, Guangliang Cheng, Kaizhu Huang
Title: Disentangling Tabular Data Towards Better One-Class Anomaly Detection
Abstract:
Tabular anomaly detection under the one-class classification setting poses a significant challenge, as it involves accurately conceptualizing "normal" derived exclusively from a single category to discern anomalies from normal data variations. Capturing the intrinsic correlation among attributes within normal samples presents one promising method for learning the concept. To do so, the most recent effort relies on a learnable mask strategy with a reconstruction task. However, this wisdom may suffer from the risk of producing uniform masks, i.e., essentially nothing is masked, leading to less effective correlation learning. To address this issue, we presume that attributes related to others in normal samples can be divided into two non-overlapping and correlated subsets, defined as CorrSets, to capture the intrinsic correlation effectively. Accordingly, we introduce an innovative method that disentangles CorrSets from normal tabular data. To our knowledge, this is a pioneering effort to apply the concept of disentanglement for one-class anomaly detection on tabular data. Extensive experiments on 20 tabular datasets show that our method substantially outperforms the state-of-the-art methods and leads to an average performance improvement of 6.1% on AUC-PR and 2.1% on AUC-ROC. Codes are available at https://github.com/yjnanan/Disent-AD.
Authors:Yiqing Lin, Jianheng Tang, Chenyi Zi, H. Vicky Zhao, Yuan Yao, Jia Li
Title: UniGAD: Unifying Multi-level Graph Anomaly Detection
Abstract:
Graph Anomaly Detection (GAD) aims to identify uncommon, deviated, or suspicious objects within graph-structured data. Existing methods generally focus on a single graph object type (node, edge, graph, etc.) and often overlook the inherent connections among different object types of graph anomalies. For instance, a money laundering transaction might involve an abnormal account and the broader community it interacts with. To address this, we present UniGAD, the first unified framework for detecting anomalies at node, edge, and graph levels jointly. Specifically, we develop the Maximum Rayleigh Quotient Subgraph Sampler (MRQSampler) that unifies multi-level formats by transferring objects at each level into graph-level tasks on subgraphs. We theoretically prove that MRQSampler maximizes the accumulated spectral energy of subgraphs (i.e., the Rayleigh quotient) to preserve the most significant anomaly information. To further unify multi-level training, we introduce a novel GraphStitch Network to integrate information across different levels, adjust the amount of sharing required at each level, and harmonize conflicting training goals. Comprehensive experiments show that UniGAD outperforms both existing GAD methods specialized for a single task and graph prompt-based approaches for multiple tasks, while also providing robust zero-shot task transferability. All codes can be found at https://github.com/lllyyq1121/UniGAD.
Authors:Jiyul Ham, Yonggon Jung, Jun-Geol Baek
Title: GlocalCLIP: Object-agnostic Global-Local Prompt Learning for Zero-shot Anomaly Detection
Abstract:
Zero-shot anomaly detection (ZSAD) is crucial for detecting anomalous patterns in target datasets without using training samples, specifically in scenarios where there are distributional differences between the target domain and training data or where data scarcity arises because of restricted access. Although recently pretrained vision-language models demonstrate strong zero-shot performance across various visual tasks, they focus on learning class semantics, which makes their direct application to ZSAD challenging. To address this scenario, we propose GlocalCLIP, which uniquely separates global and local prompts and jointly optimizes them. This approach enables the object-agnostic glocal semantic prompt to effectively capture general normal and anomalous patterns without dependency on specific objects in the image. We refine the text prompts for more precise adjustments by utilizing deep-text prompt tuning in the text encoder. In the vision encoder, we apply V-V attention layers to capture detailed local image features. Finally, we introduce glocal contrastive learning to improve the complementary learning of global and local prompts, effectively detecting anomalous patterns across various domains. The generalization performance of GlocalCLIP in ZSAD was demonstrated on 15 real-world datasets from both the industrial and medical domains, achieving superior performance compared to existing methods. Code will be made available at https://github.com/YUL-git/GlocalCLIP.
Authors:Anran Zhang, Xingfen Wang, Yuhan Zhao
Title: HACD: Harnessing Attribute Semantics and Mesoscopic Structure for Community Detection
Abstract:
Community detection plays a pivotal role in uncovering closely connected subgraphs, aiding various real-world applications such as recommendation systems and anomaly detection. With the surge of rich information available for entities in real-world networks, the community detection problem in attributed networks has attracted widespread attention. While previous research has effectively leveraged network topology and attribute information for attributed community detection, these methods overlook two critical issues: (i) the semantic similarity between node attributes within the community, and (ii) the inherent mesoscopic structure, which differs from the pairwise connections of the micro-structure. To address these limitations, we propose HACD, a novel attributed community detection model based on heterogeneous graph attention networks. HACD treats node attributes as another type of node, constructs attributed networks into heterogeneous graph structures and employs attribute-level attention mechanisms to capture semantic similarity. Furthermore, HACD introduces a community membership function to explore mesoscopic community structures, enhancing the robustness of detected communities. Extensive experiments demonstrate the effectiveness and efficiency of HACD, outperforming state-of-the-art methods in attributed community detection tasks. Our code is publicly available at https://github.com/Anniran1/HACD1-wsdm.
Authors:Shelei Li, Yong Chai Tan, Tai Vincent
Title: High-Pass Graph Convolutional Network for Enhanced Anomaly Detection: A Novel Approach
Abstract:
Graph Convolutional Network (GCN) are widely used in Graph Anomaly Detection (GAD) due to their natural compatibility with graph structures, resulting in significant performance improvements. However, most researchers approach GAD as a graph node classification task and often rely on low-pass filters or feature aggregation from neighboring nodes. This paper proposes a novel approach by introducing a High-Pass Graph Convolution Network (HP-GCN) for GAD. The proposed HP-GCN leverages high-frequency components to detect anomalies, as anomalies tend to increase high-frequency signals within the network of normal nodes. Additionally, isolated nodes, which lack interactions with other nodes, present a challenge for Graph Neural Network (GNN). To address this, the model segments the graph into isolated nodes and nodes within connected subgraphs. Isolated nodes learn their features through Multi-Layer Perceptron (MLP), enhancing detection accuracy. The model is evaluated and validated on YelpChi, Amazon, T-Finance, and T-Social datasets. The results showed that the proposed HP-GCN can achieve anomaly detection accuracy of 96.10%, 98.16%, 96.46%, and 98.94%, respectively. The findings demonstrate that the HP-GCN outperforms existing GAD methods based on spatial domain GNN as well as those using low-pass and band-pass filters in spectral domain GCN. The findings underscore the effectiveness of this method in improving anomaly detection performance. Source code can be found at: https://github.com/meteor0033/High-pass_GAD.git.
Authors:Jiahao Xu, Zikai Zhang, Rui Hu
Title: Identify Backdoored Model in Federated Learning via Individual Unlearning
Abstract:
Backdoor attacks present a significant threat to the robustness of Federated Learning (FL) due to their stealth and effectiveness. They maintain both the main task of the FL system and the backdoor task simultaneously, causing malicious models to appear statistically similar to benign ones, which enables them to evade detection by existing defense methods. We find that malicious parameters in backdoored models are inactive on the main task, resulting in a significantly large empirical loss during the machine unlearning process on clean inputs. Inspired by this, we propose MASA, a method that utilizes individual unlearning on local models to identify malicious models in FL. To improve the performance of MASA in challenging non-independent and identically distributed (non-IID) settings, we design pre-unlearning model fusion that integrates local models with knowledge learned from other datasets to mitigate the divergence in their unlearning behaviors caused by the non-IID data distributions of clients. Additionally, we propose a new anomaly detection metric with minimal hyperparameters to filter out malicious models efficiently. Extensive experiments on IID and non-IID datasets across six different attacks validate the effectiveness of MASA. To the best of our knowledge, this is the first work to leverage machine unlearning to identify malicious models in FL. Code is available at \url{https://github.com/JiiahaoXU/MASA}.
Authors:Xiayan Ji, Anton Xue, Eric Wong, Oleg Sokolsky, Insup Lee
Title: AR-Pro: Counterfactual Explanations for Anomaly Repair with Formal Properties
Abstract:
Anomaly detection is widely used for identifying critical errors and suspicious behaviors, but current methods lack interpretability. We leverage common properties of existing methods and recent advances in generative models to introduce counterfactual explanations for anomaly detection. Given an input, we generate its counterfactual as a diffusion-based repair that shows what a non-anomalous version should have looked like. A key advantage of this approach is that it enables a domain-independent formal specification of explainability desiderata, offering a unified framework for generating and evaluating explanations. We demonstrate the effectiveness of our anomaly explainability framework, AR-Pro, on vision (MVTec, VisA) and time-series (SWaT, WADI, HAI) anomaly datasets. The code used for the experiments is accessible at: https://github.com/xjiae/arpro.
Authors:Seunghan Lee, Taeyoung Park, Kibok Lee
Title: Partial Channel Dependence with Channel Masks for Time Series Foundation Models
Abstract:
Recent advancements in foundation models have been successfully extended to the time series (TS) domain, facilitated by the emergence of large-scale TS datasets. However, previous efforts have primarily focused on designing model architectures to address explicit heterogeneity among datasets such as various numbers of channels, while often overlooking implicit heterogeneity such as varying dependencies between channels. In this work, we introduce the concept of partial channel dependence (PCD), which enables a more sophisticated adjustment of channel dependencies based on dataset-specific information. To achieve PCD, we propose a channel mask that captures the relationships between channels within a dataset using two key components: 1) a correlation matrix that encodes relative dependencies between channels, and 2) domain parameters that learn the absolute dependencies specific to each dataset, refining the correlation matrix. We validate the effectiveness of PCD across four tasks in TS including forecasting, classification, imputation, and anomaly detection, under diverse settings, including few-shot and zero-shot scenarios with both TS foundation models and single-task models. Code is available at https://github.com/seunghan96/CM.
Authors:Yachao Yuan, Yu Huang, Jin Wang
Title: Adaptive NAD: Online and Self-adaptive Unsupervised Network Anomaly Detector
Abstract:
The widespread usage of the Internet of Things (IoT) has raised the risks of cyber threats, thus developing Anomaly Detection Systems (ADSs) that can adapt to evolving or new attacks is critical. Previous studies primarily focused on offline unsupervised learning methods to safeguard ADSs, which is not applicable in practical real-world applications. Besides, most of them strongly rely on assumptions of known legitimates and fail to satisfy the interpretable requirements in security applications, creating barriers to the adoption in practice. In this paper, we design Adaptive NAD, a general framework to improve and interpret online unsupervised anomaly detection in security domains. An interpretable two-layer anomaly detection strategy is proposed to generate reliable high-confidence pseudo-labels. Then, an online learning scheme is introduced to update Adaptive NAD by a novel threshold calculation technique to adapt to new threats. Experimental results demonstrate that Adaptive NAD achieves more than 5.4%, 23.0%, and 3.2% improvements in SPAUC compared with state-of-the-art solutions on the CIC-Darknet2020, CIC-DoHBrw-2020, and Edge-IIoTset datasets, respectively. The code is released at https://github.com/MyLearnCodeSpace/Adaptive-NAD.
Authors:Ryozo Masukawa, Sanggeon Yun, Yoshiki Yamaguchi, Mohsen Imani
Title: PV-VTT: A Privacy-Centric Dataset for Mission-Specific Anomaly Detection and Natural Language Interpretation
Abstract:
Video crime detection is a significant application of computer vision and artificial intelligence. However, existing datasets primarily focus on detecting severe crimes by analyzing entire video clips, often neglecting the precursor activities (i.e., privacy violations) that could potentially prevent these crimes. To address this limitation, we present PV-VTT (Privacy Violation Video To Text), a unique multimodal dataset aimed at identifying privacy violations. PV-VTT provides detailed annotations for both video and text in scenarios. To ensure the privacy of individuals in the videos, we only provide video feature vectors, avoiding the release of any raw video data. This privacy-focused approach allows researchers to use the dataset while protecting participant confidentiality. Recognizing that privacy violations are often ambiguous and context-dependent, we propose a Graph Neural Network (GNN)-based video description model. Our model generates a GNN-based prompt with image for Large Language Model (LLM), which deliver cost-effective and high-quality video descriptions. By leveraging a single video frame along with relevant text, our method reduces the number of input tokens required, maintaining descriptive quality while optimizing LLM API-usage. Extensive experiments validate the effectiveness and interpretability of our approach in video description tasks and flexibility of our PV-VTT dataset.
Authors:Yuxuan Lin, Yang Chang, Xuan Tong, Jiawen Yu, Antonio Liotta, Guofan Huang, Wei Song, Deyu Zeng, Zongze Wu, Yan Wang, Wenqiang Zhang
Title: A Survey on RGB, 3D, and Multimodal Approaches for Unsupervised Industrial Image Anomaly Detection
Abstract:
In the advancement of industrial informatization, unsupervised anomaly detection technology effectively overcomes the scarcity of abnormal samples and significantly enhances the automation and reliability of smart manufacturing. As an important branch, industrial image anomaly detection focuses on automatically identifying visual anomalies in industrial scenarios (such as product surface defects, assembly errors, and equipment appearance anomalies) through computer vision techniques. With the rapid development of Unsupervised industrial Image Anomaly Detection (UIAD), excellent detection performance has been achieved not only in RGB setting but also in 3D and multimodal (RGB and 3D) settings. However, existing surveys primarily focus on UIAD tasks in RGB setting, with little discussion in 3D and multimodal settings. To address this gap, this artical provides a comprehensive review of UIAD tasks in the three modal settings. Specifically, we first introduce the task concept and process of UIAD. We then overview the research on UIAD in three modal settings (RGB, 3D, and multimodal), including datasets and methods, and review multimodal feature fusion strategies in multimodal setting. Finally, we summarize the main challenges faced by UIAD tasks in the three modal settings, and offer insights into future development directions, aiming to provide researchers with a comprehensive reference and offer new perspectives for the advancement of industrial informatization. Corresponding resources are available at https://github.com/Sunny5250/Awesome-Multi-Setting-UIAD.
Authors:Hwan Kim, Junghoon Kim, Sungsu Lim
Title: ANOMIX: A Simple yet Effective Hard Negative Generation via Mixing for Graph Anomaly Detection
Abstract:
Graph contrastive learning (GCL) generally requires a large number of samples. The one of the effective ways to reduce the number of samples is using hard negatives (e.g., Mixup). Designing mixing-based approach for GAD can be difficult due to imbalanced data or limited number of anomalies. We propose ANOMIX, a framework that consists of a novel graph mixing approach, ANOMIX-M, and multi-level contrasts for GAD. ANOMIX-M can effectively mix abnormality and normality from input graph to generate hard negatives, which are important for efficient GCL. ANOMIX is (a) A first mixing approach: firstly attempting graph mixing to generate hard negatives for GAD task and node- and subgraph-level contrasts to distinguish underlying anomalies. (b) Accurate: winning the highest AUC, up to 5.49% higher and 1.76% faster. (c) Effective: reducing the number of samples nearly 80% in GCL. Code is available at https://github.com/missinghwan/ANOMIX.
Authors:Xincheng Yao, Zixin Chen, Chao Gao, Guangtao Zhai, Chongyang Zhang
Title: ResAD: A Simple Framework for Class Generalizable Anomaly Detection
Abstract:
This paper explores the problem of class-generalizable anomaly detection, where the objective is to train one unified AD model that can generalize to detect anomalies in diverse classes from different domains without any retraining or fine-tuning on the target data. Because normal feature representations vary significantly across classes, this will cause the widely studied one-for-one AD models to be poorly classgeneralizable (i.e., performance drops dramatically when used for new classes). In this work, we propose a simple but effective framework (called ResAD) that can be directly applied to detect anomalies in new classes. Our main insight is to learn the residual feature distribution rather than the initial feature distribution. In this way, we can significantly reduce feature variations. Even in new classes, the distribution of normal residual features would not remarkably shift from the learned distribution. Therefore, the learned model can be directly adapted to new classes. ResAD consists of three components: (1) a Feature Converter that converts initial features into residual features; (2) a simple and shallow Feature Constraintor that constrains normal residual features into a spatial hypersphere for further reducing feature variations and maintaining consistency in feature scales among different classes; (3) a Feature Distribution Estimator that estimates the normal residual feature distribution, anomalies can be recognized as out-of-distribution. Despite the simplicity, ResAD can achieve remarkable anomaly detection results when directly used in new classes. The code is available at https://github.com/xcyao00/ResAD.
Authors:Sukanya Patra, Souhaib Ben Taieb
Title: Revisiting Deep Feature Reconstruction for Logical and Structural Industrial Anomaly Detection
Abstract:
Industrial anomaly detection is crucial for quality control and predictive maintenance, but it presents challenges due to limited training data, diverse anomaly types, and external factors that alter object appearances. Existing methods commonly detect structural anomalies, such as dents and scratches, by leveraging multi-scale features from image patches extracted through deep pre-trained networks. However, significant memory and computational demands often limit their practical application. Additionally, detecting logical anomalies-such as images with missing or excess elements-requires an understanding of spatial relationships that traditional patch-based methods fail to capture. In this work, we address these limitations by focusing on Deep Feature Reconstruction (DFR), a memory- and compute-efficient approach for detecting structural anomalies. We further enhance DFR into a unified framework, called ULSAD, which is capable of detecting both structural and logical anomalies. Specifically, we refine the DFR training objective to improve performance in structural anomaly detection, while introducing an attention-based loss mechanism using a global autoencoder-like network to handle logical anomaly detection. Our empirical evaluation across five benchmark datasets demonstrates the performance of ULSAD in detecting and localizing both structural and logical anomalies, outperforming eight state-of-the-art methods. An extensive ablation study further highlights the contribution of each component to the overall performance improvement. Our code is available at https://github.com/sukanyapatra1997/ULSAD-2024.git
Authors:Chaoxi Niu, Hezhe Qiao, Changlu Chen, Ling Chen, Guansong Pang
Title: Zero-shot Generalist Graph Anomaly Detection with Unified Neighborhood Prompts
Abstract:
Graph anomaly detection (GAD), which aims to identify nodes in a graph that significantly deviate from normal patterns, plays a crucial role in broad application domains. However, existing GAD methods are one-model-for-one-dataset approaches, i.e., training a separate model for each graph dataset. This largely limits their applicability in real-world scenarios. To overcome this limitation, we propose a novel zero-shot generalist GAD approach UNPrompt that trains a one-for-all detection model, requiring the training of one GAD model on a single graph dataset and then effectively generalizing to detect anomalies in other graph datasets without any retraining or fine-tuning. The key insight in UNPrompt is that i) the predictability of latent node attributes can serve as a generalized anomaly measure and ii) generalized normal and abnormal graph patterns can be learned via latent node attribute prediction in a properly normalized node attribute space. UNPrompt achieves a generalist mode for GAD through two main modules: one module aligns the dimensionality and semantics of node attributes across different graphs via coordinate-wise normalization, while another module learns generalized neighborhood prompts that support the use of latent node attribute predictability as an anomaly score across different datasets. Extensive experiments on real-world GAD datasets show that UNPrompt significantly outperforms diverse competing methods under the generalist GAD setting, and it also has strong superiority under the one-model-for-one-dataset setting. Code is available at https://github.com/mala-lab/UNPrompt.
Authors:Ziming Huang, Xurui Li, Haotian Liu, Feng Xue, Yuzhe Wang, Yu Zhou
Title: AnomalyNCD: Towards Novel Anomaly Class Discovery in Industrial Scenarios
Abstract:
Recently, multi-class anomaly classification has garnered increasing attention. Previous methods directly cluster anomalies but often struggle due to the lack of anomaly-prior knowledge. Acquiring this knowledge faces two issues: the non-prominent and weak-semantics anomalies. In this paper, we propose AnomalyNCD, a multi-class anomaly classification network compatible with different anomaly detection methods. To address the non-prominence of anomalies, we design main element binarization (MEBin) to obtain anomaly-centered images, ensuring anomalies are learned while avoiding the impact of incorrect detections. Next, to learn anomalies with weak semantics, we design mask-guided representation learning, which focuses on isolated anomalies guided by masks and reduces confusion from erroneous inputs through corrected pseudo labels. Finally, to enable flexible classification at both region and image levels, we develop a region merging strategy that determines the overall image category based on the classified anomaly regions. Our method outperforms the state-of-the-art works on the MVTec AD and MTD datasets. Compared with the current methods, AnomalyNCD combined with zero-shot anomaly detection method achieves a 10.8% $F_1$ gain, 8.8% NMI gain, and 9.5% ARI gain on MVTec AD, and 12.8% $F_1$ gain, 5.7% NMI gain, and 10.8% ARI gain on MTD. Code is available at https://github.com/HUST-SLOW/AnomalyNCD.
Authors:Xingjian Wu, Xiangfei Qiu, Zhengyu Li, Yihang Wang, Jilin Hu, Chenjuan Guo, Hui Xiong, Bin Yang
Title: CATCH: Channel-Aware multivariate Time Series Anomaly Detection via Frequency Patching
Abstract:
Anomaly detection in multivariate time series is challenging as heterogeneous subsequence anomalies may occur. Reconstruction-based methods, which focus on learning normal patterns in the frequency domain to detect diverse abnormal subsequences, achieve promising results, while still falling short on capturing fine-grained frequency characteristics and channel correlations. To contend with the limitations, we introduce CATCH, a framework based on frequency patching. We propose to patchify the frequency domain into frequency bands, which enhances its ability to capture fine-grained frequency characteristics. To perceive appropriate channel correlations, we propose a Channel Fusion Module (CFM), which features a patch-wise mask generator and a masked-attention mechanism. Driven by a bi-level multi-objective optimization algorithm, the CFM is encouraged to iteratively discover appropriate patch-wise channel correlations, and to cluster relevant channels while isolating adverse effects from irrelevant channels. Extensive experiments on 10 real-world datasets and 12 synthetic datasets demonstrate that CATCH achieves state-of-the-art performance. We make our code and datasets available at https://github.com/decisionintelligence/CATCH.
Authors:Jiawen Zhu, Yew-Soon Ong, Chunhua Shen, Guansong Pang
Title: Fine-grained Abnormality Prompt Learning for Zero-shot Anomaly Detection
Abstract:
Current zero-shot anomaly detection (ZSAD) methods show remarkable success in prompting large pre-trained vision-language models to detect anomalies in a target dataset without using any dataset-specific training or demonstration. However, these methods are often focused on crafting/learning prompts that capture only coarse-grained semantics of abnormality, e.g., high-level semantics like "damaged", "imperfect", or "defective" on carpet. They therefore have limited capability in recognizing diverse abnormality details with distinctive visual appearance, e.g., specific defect types like color stains, cuts, holes, and threads on carpet. To address this limitation, we propose FAPrompt, a novel framework designed to learn Fine-grained Abnormality Prompts for more accurate ZSAD. To this end, we introduce a novel compound abnormality prompting module in FAPrompt to learn a set of complementary, decomposed abnormality prompts, where each abnormality prompt is formed by a compound of shared normal tokens and a few learnable abnormal tokens. On the other hand, the fine-grained abnormality patterns can be very different from one dataset to another. To enhance their cross-dataset generalization, we further introduce a data-dependent abnormality prior module that learns to derive abnormality features from each query/test image as a sample-wise abnormality prior to ground the abnormality prompts in a given target dataset. Comprehensive experiments conducted across 19 real-world datasets, covering both industrial defects and medical anomalies, demonstrate that FAPrompt substantially outperforms state-of-the-art methods by at least 3%-5% AUC/AP in both image- and pixel-level ZSAD tasks. Code is available at https://github.com/mala-lab/FAPrompt.
Authors:Kecen Li, Bingquan Dai, Jingjing Fu, Xinwen Hou
Title: DAS3D: Dual-modality Anomaly Synthesis for 3D Anomaly Detection
Abstract:
Synthesizing anomaly samples has proven to be an effective strategy for self-supervised 2D industrial anomaly detection. However, this approach has been rarely explored in multi-modality anomaly detection, particularly involving 3D and RGB images. In this paper, we propose a novel dual-modality augmentation method for 3D anomaly synthesis, which is simple and capable of mimicking the characteristics of 3D defects. Incorporating with our anomaly synthesis method, we introduce a reconstruction-based discriminative anomaly detection network, in which a dual-modal discriminator is employed to fuse the original and reconstructed embedding of two modalities for anomaly detection. Additionally, we design an augmentation dropout mechanism to enhance the generalizability of the discriminator. Extensive experiments show that our method outperforms the state-of-the-art methods on detection precision and achieves competitive segmentation performance on both MVTec 3D-AD and Eyescandies datasets.
Authors:Xi Jiang, Jian Li, Hanqiu Deng, Yong Liu, Bin-Bin Gao, Yifeng Zhou, Jialin Li, Chengjie Wang, Feng Zheng
Title: MMAD: A Comprehensive Benchmark for Multimodal Large Language Models in Industrial Anomaly Detection
Abstract:
In the field of industrial inspection, Multimodal Large Language Models (MLLMs) have a high potential to renew the paradigms in practical applications due to their robust language capabilities and generalization abilities. However, despite their impressive problem-solving skills in many domains, MLLMs' ability in industrial anomaly detection has not been systematically studied. To bridge this gap, we present MMAD, the first-ever full-spectrum MLLMs benchmark in industrial Anomaly Detection. We defined seven key subtasks of MLLMs in industrial inspection and designed a novel pipeline to generate the MMAD dataset with 39,672 questions for 8,366 industrial images. With MMAD, we have conducted a comprehensive, quantitative evaluation of various state-of-the-art MLLMs. The commercial models performed the best, with the average accuracy of GPT-4o models reaching 74.9%. However, this result falls far short of industrial requirements. Our analysis reveals that current MLLMs still have significant room for improvement in answering questions related to industrial anomalies and defects. We further explore two training-free performance enhancement strategies to help models improve in industrial scenarios, highlighting their promising potential for future research.
Authors:Yonatan Sverdlov, Ido Springer, Nadav Dym
Title: Revisiting Multi-Permutation Equivariance through the Lens of Irreducible Representations
Abstract:
This paper explores the characterization of equivariant linear layers for representations of permutations and related groups. Unlike traditional approaches, which address these problems using parameter-sharing, we consider an alternative methodology based on irreducible representations and Schur's lemma. Using this methodology, we obtain an alternative derivation for existing models like DeepSets, 2-IGN graph equivariant networks, and Deep Weight Space (DWS) networks. The derivation for DWS networks is significantly simpler than that of previous results. Next, we extend our approach to unaligned symmetric sets, where equivariance to the wreath product of groups is required. Previous works have addressed this problem in a rather restrictive setting, in which almost all wreath equivariant layers are Siamese. In contrast, we give a full characterization of layers in this case and show that there is a vast number of additional non-Siamese layers in some settings. We also show empirically that these additional non-Siamese layers can improve performance in tasks like graph anomaly detection, weight space alignment, and learning Wasserstein distances. Our code is available at \href{https://github.com/yonatansverdlov/Irreducible-Representations-of-Deep-Weight-Spaces}{GitHub}.
Authors:Zihao Zhou, Rose Yu
Title: Can LLMs Understand Time Series Anomalies?
Abstract:
Large Language Models (LLMs) have gained popularity in time series forecasting, but their potential for anomaly detection remains largely unexplored. Our study investigates whether LLMs can understand and detect anomalies in time series data, focusing on zero-shot and few-shot scenarios. Inspired by conjectures about LLMs' behavior from time series forecasting research, we formulate key hypotheses about LLMs' capabilities in time series anomaly detection. We design and conduct principled experiments to test each of these hypotheses. Our investigation reveals several surprising findings about LLMs for time series: (1) LLMs understand time series better as images rather than as text, (2) LLMs do not demonstrate enhanced performance when prompted to engage in explicit reasoning about time series analysis. (3) Contrary to common beliefs, LLMs' understanding of time series does not stem from their repetition biases or arithmetic abilities. (4) LLMs' behaviors and performance in time series analysis vary significantly across different models. This study provides the first comprehensive analysis of contemporary LLM capabilities in time series anomaly detection. Our results suggest that while LLMs can understand trivial time series anomalies, we have no evidence that they can understand more subtle real-world anomalies. Many common conjectures based on their reasoning capabilities do not hold. All synthetic dataset generators, final prompts, and evaluation scripts have been made available in https://github.com/rose-stl-lab/anomllm.
Authors:Hossein Amiri, Ruochen Kong, Andreas Zufle
Title: Urban Anomalies: A Simulated Human Mobility Dataset with Injected Anomalies
Abstract:
Human mobility anomaly detection based on location is essential in areas such as public health, safety, welfare, and urban planning. Developing models and approaches for location-based anomaly detection requires a comprehensive dataset. However, privacy concerns and the absence of ground truth hinder the availability of publicly available datasets. With this paper, we provide extensive simulated human mobility datasets featuring various anomaly types created using an existing Urban Patterns of Life Simulation. To create these datasets, we inject changes in the logic of individual agents to change their behavior. Specifically, we create four of anomalous agent behavior by (1) changing the agents' appetite (causing agents to have meals more frequently), (2) changing their group of interest (causing agents to interact with different agents from another group). (3) changing their social place selection (causing agents to visit different recreational places) and (4) changing their work schedule (causing agents to skip work), For each type of anomaly, we use three degrees of behavioral change to tune the difficulty of detecting the anomalous agents. To select agents to inject anomalous behavior into, we employ three methods: (1) Random selection using a centralized manipulation mechanism, (2) Spread based selection using an infectious disease model, and (3) through exposure of agents to a specific location. All datasets are split into normal and anomalous phases. The normal phase, which can be used for training models of normalcy, exhibits no anomalous behavior. The anomalous phase, which can be used for testing for anomalous detection algorithm, includes ground truth labels that indicate, for each five-minute simulation step, which agents are anomalous at that time. Datasets are generated using the maps (roads and buildings) for Atlanta and Berlin, having 1k agents in each simulation.
Authors:Kaichen Zhou, Yang Cao, Taewhan Kim, Hao Zhao, Hao Dong, Kai Ming Ting, Ye Zhu
Title: RAD: A Dataset and Benchmark for Real-Life Anomaly Detection with Robotic Observations
Abstract:
Recent advancements in industrial anomaly detection have been hindered by the lack of realistic datasets that accurately represent real-world conditions. Existing algorithms are often developed and evaluated using idealized datasets, which deviate significantly from real-life scenarios characterized by environmental noise and data corruption such as fluctuating lighting conditions, variable object poses, and unstable camera positions. To address this gap, we introduce the Realistic Anomaly Detection (RAD) dataset, the first multi-view RGB-based anomaly detection dataset specifically collected using a real robot arm, providing unique and realistic data scenarios. RAD comprises 4765 images across 13 categories and 4 defect types, collected from more than 50 viewpoints, providing a comprehensive and realistic benchmark. This multi-viewpoint setup mirrors real-world conditions where anomalies may not be detectable from every perspective. Moreover, by sampling varying numbers of views, the algorithm's performance can be comprehensively evaluated across different viewpoints. This approach enhances the thoroughness of performance assessment and helps improve the algorithm's robustness. Besides, to support 3D multi-view reconstruction algorithms, we propose a data augmentation method to improve the accuracy of pose estimation and facilitate the reconstruction of 3D point clouds. We systematically evaluate state-of-the-art RGB-based and point cloud-based models using RAD, identifying limitations and future research directions. The code and dataset could found at https://github.com/kaichen-z/RAD
Authors:Akshatha Arodi, Margaux Luck, Jean-Luc Bedwani, Aldo Zaimi, Ge Li, Nicolas Pouliot, Julien Beaudry, Gaétan Marceau Caron
Title: CableInspect-AD: An Expert-Annotated Anomaly Detection Dataset
Abstract:
Machine learning models are increasingly being deployed in real-world contexts. However, systematic studies on their transferability to specific and critical applications are underrepresented in the research literature. An important example is visual anomaly detection (VAD) for robotic power line inspection. While existing VAD methods perform well in controlled environments, real-world scenarios present diverse and unexpected anomalies that current datasets fail to capture. To address this gap, we introduce $\textit{CableInspect-AD}$, a high-quality, publicly available dataset created and annotated by domain experts from Hydro-Québec, a Canadian public utility. This dataset includes high-resolution images with challenging real-world anomalies, covering defects with varying severity levels. To address the challenges of collecting diverse anomalous and nominal examples for setting a detection threshold, we propose an enhancement to the celebrated PatchCore algorithm. This enhancement enables its use in scenarios with limited labeled data. We also present a comprehensive evaluation protocol based on cross-validation to assess models' performances. We evaluate our $\textit{Enhanced-PatchCore}$ for few-shot and many-shot detection, and Vision-Language Models for zero-shot detection. While promising, these models struggle to detect all anomalies, highlighting the dataset's value as a challenging benchmark for the broader research community. Project page: https://mila-iqia.github.io/cableinspect-ad/.
Authors:Vivek Kumar Trivedi, Bheeshm Sharma, P. Balamurugan
Title: MCDDPM: Multichannel Conditional Denoising Diffusion Model for Unsupervised Anomaly Detection in Brain MRI
Abstract:
Detecting anomalies in brain MRI scans using supervised deep learning methods presents challenges due to anatomical diversity and labor-intensive requirement of pixel-level annotations. Generative models like Denoising Diffusion Probabilistic Model (DDPM) and their variants like pDDPM, mDDPM, cDDPM have recently emerged to be powerful alternatives to perform unsupervised anomaly detection in brain MRI scans. These methods leverage frame-level labels of healthy brains to generate healthy tissues in brain MRI scans. During inference, when an anomalous (or unhealthy) scan image is presented as an input, these models generate a healthy scan image corresponding to the input anomalous scan, and the difference map between the generated healthy scan image and the original anomalous scan image provide the necessary pixel level identification of abnormal tissues. The generated healthy images from the DDPM, pDDPM and mDDPM models however suffer from fidelity issues and contain artifacts that do not have medical significance. While cDDPM achieves slightly better fidelity and artifact suppression, it requires huge memory footprint and is computationally expensive than the other DDPM based models. In this work, we propose an improved version of DDPM called Multichannel Conditional Denoising Diffusion Probabilistic Model (MCDDPM) for unsupervised anomaly detection in brain MRI scans. Our proposed model achieves high fidelity by making use of additional information from the healthy images during the training process, enriching the representation power of DDPM models, with a computational cost and memory requirements on par with DDPM, pDDPM and mDDPM models. Experimental results on multiple datasets (e.g. BraTS20, BraTS21) demonstrate promising performance of the proposed method. The code is available at https://github.com/vivekkumartri/MCDDPM.
Authors:Harsh Purohit, Tomoya Nishida, Kota Dohi, Takashi Endo, Yohei Kawaguchi
Title: MIMII-Gen: Generative Modeling Approach for Simulated Evaluation of Anomalous Sound Detection System
Abstract:
Insufficient recordings and the scarcity of anomalies present significant challenges in developing and validating robust anomaly detection systems for machine sounds. To address these limitations, we propose a novel approach for generating diverse anomalies in machine sound using a latent diffusion-based model that integrates an encoder-decoder framework. Our method utilizes the Flan-T5 model to encode captions derived from audio file metadata, enabling conditional generation through a carefully designed U-Net architecture. This approach aids our model in generating audio signals within the EnCodec latent space, ensuring high contextual relevance and quality. We objectively evaluated the quality of our generated sounds using the Fréchet Audio Distance (FAD) score and other metrics, demonstrating that our approach surpasses existing models in generating reliable machine audio that closely resembles actual abnormal conditions. The evaluation of the anomaly detection system using our generated data revealed a strong correlation, with the area under the curve (AUC) score differing by 4.8\% from the original, validating the effectiveness of our generated data. These results demonstrate the potential of our approach to enhance the evaluation and robustness of anomaly detection systems across varied and previously unseen conditions. Audio samples can be found at \url{https://hpworkhub.github.io/MIMII-Gen.github.io/}.
Authors:Yi Gu, Yi Lin, Kwang-Ting Cheng, Hao Chen
Title: Revisiting Deep Ensemble Uncertainty for Enhanced Medical Anomaly Detection
Abstract:
Medical anomaly detection (AD) is crucial in pathological identification and localization. Current methods typically rely on uncertainty estimation in deep ensembles to detect anomalies, assuming that ensemble learners should agree on normal samples while exhibiting disagreement on unseen anomalies in the output space. However, these methods may suffer from inadequate disagreement on anomalies or diminished agreement on normal samples. To tackle these issues, we propose D2UE, a Diversified Dual-space Uncertainty Estimation framework for medical anomaly detection. To effectively balance agreement and disagreement for anomaly detection, we propose Redundancy-Aware Repulsion (RAR), which uses a similarity kernel that remains invariant to both isotropic scaling and orthogonal transformations, explicitly promoting diversity in learners' feature space. Moreover, to accentuate anomalous regions, we develop Dual-Space Uncertainty (DSU), which utilizes the ensemble's uncertainty in input and output spaces. In input space, we first calculate gradients of reconstruction error with respect to input images. The gradients are then integrated with reconstruction outputs to estimate uncertainty for inputs, enabling effective anomaly discrimination even when output space disagreement is minimal. We conduct a comprehensive evaluation of five medical benchmarks with different backbones. Experimental results demonstrate the superiority of our method to state-of-the-art methods and the effectiveness of each component in our framework. Our code is available at https://github.com/Rubiscol/D2UE.
Authors:Junjie Huang, Zhihan Jiang, Jinyang Liu, Yintong Huo, Jiazhen Gu, Zhuangbin Chen, Cong Feng, Hui Dong, Zengyin Yang, Michael R. Lyu
Title: Demystifying and Extracting Fault-indicating Information from Logs for Failure Diagnosis
Abstract:
Logs are imperative in the maintenance of online service systems, which often encompass important information for effective failure mitigation. While existing anomaly detection methodologies facilitate the identification of anomalous logs within extensive runtime data, manual investigation of log messages by engineers remains essential to comprehend faults, which is labor-intensive and error-prone. Upon examining the log-based troubleshooting practices at CloudA, we find that engineers typically prioritize two categories of log information for diagnosis. These include fault-indicating descriptions, which record abnormal system events, and fault-indicating parameters, which specify the associated entities. Motivated by this finding, we propose an approach to automatically extract such faultindicating information from logs for fault diagnosis, named LoFI. LoFI comprises two key stages. In the first stage, LoFI performs coarse-grained filtering to collect logs related to the faults based on semantic similarity. In the second stage, LoFI leverages a pre-trained language model with a novel prompt-based tuning method to extract fine-grained information of interest from the collected logs. We evaluate LoFI on logs collected from Apache Spark and an industrial dataset from CloudA. The experimental results demonstrate that LoFI outperforms all baseline methods by a significant margin, achieving an absolute improvement of 25.8~37.9 in F1 over the best baseline method, ChatGPT. This highlights the effectiveness of LoFI in recognizing fault-indicating information. Furthermore, the successful deployment of LoFI at CloudA and user studies validate the utility of our method. The code and data are available at https://github.com/Jun-jie-Huang/LoFI.
Authors:Yuqi Cheng, Yunkang Cao, Guoyang Xie, Zhichao Lu, Weiming Shen
Title: Towards Zero-shot Point Cloud Anomaly Detection: A Multi-View Projection Framework
Abstract:
Detecting anomalies within point clouds is crucial for various industrial applications, but traditional unsupervised methods face challenges due to data acquisition costs, early-stage production constraints, and limited generalization across product categories. To overcome these challenges, we introduce the Multi-View Projection (MVP) framework, leveraging pre-trained Vision-Language Models (VLMs) to detect anomalies. Specifically, MVP projects point cloud data into multi-view depth images, thereby translating point cloud anomaly detection into image anomaly detection. Following zero-shot image anomaly detection methods, pre-trained VLMs are utilized to detect anomalies on these depth images. Given that pre-trained VLMs are not inherently tailored for zero-shot point cloud anomaly detection and may lack specificity, we propose the integration of learnable visual and adaptive text prompting techniques to fine-tune these VLMs, thereby enhancing their detection performance. Extensive experiments on the MVTec 3D-AD and Real3D-AD demonstrate our proposed MVP framework's superior zero-shot anomaly detection performance and the prompting techniques' effectiveness. Real-world evaluations on automotive plastic part inspection further showcase that the proposed method can also be generalized to practical unseen scenarios. The code is available at https://github.com/hustCYQ/MVP-PCLIP.
Authors:Hezhe Qiao, Hanghang Tong, Bo An, Irwin King, Charu Aggarwal, Guansong Pang
Title: Deep Graph Anomaly Detection: A Survey and New Perspectives
Abstract:
Graph anomaly detection (GAD), which aims to identify unusual graph instances (nodes, edges, subgraphs, or graphs), has attracted increasing attention in recent years due to its significance in a wide range of applications. Deep learning approaches, graph neural networks (GNNs) in particular, have been emerging as a promising paradigm for GAD, owing to its strong capability in capturing complex structure and/or node attributes in graph data. Considering the large number of methods proposed for GNN-based GAD, it is of paramount importance to summarize the methodologies and findings in the existing GAD studies, so that we can pinpoint effective model designs for tackling open GAD problems. To this end, in this work we aim to present a comprehensive review of deep learning approaches for GAD. Existing GAD surveys are focused on task-specific discussions, making it difficult to understand the technical insights of existing methods and their limitations in addressing some unique challenges in GAD. To fill this gap, we first discuss the problem complexities and their resulting challenges in GAD, and then provide a systematic review of current deep GAD methods from three novel perspectives of methodology, including GNN backbone design, proxy task design for GAD, and graph anomaly measures. To deepen the discussions, we further propose a taxonomy of 13 fine-grained method categories under these three perspectives to provide more in-depth insights into the model designs and their capabilities. To facilitate the experiments and validation, we also summarize a collection of widely-used GAD datasets and empirical comparison. We further discuss multiple open problems to inspire more future high-quality research. A continuously updated repository for datasets, links to the codes of algorithms, and empirical comparison is available at https://github.com/mala-lab/Awesome-Deep-Graph-Anomaly-Detection.
Authors:Lecheng Zheng, John R. Birge, Haiyue Wu, Yifang Zhang, Jingrui He
Title: Cluster Aware Graph Anomaly Detection
Abstract:
Graph anomaly detection has gained significant attention across various domains, particularly in critical applications like fraud detection in e-commerce platforms and insider threat detection in cybersecurity. Usually, these data are composed of multiple types (e.g., user information and transaction records for financial data), thus exhibiting view heterogeneity. However, in the era of big data, the heterogeneity of views and the lack of label information pose substantial challenges to traditional approaches. Existing unsupervised graph anomaly detection methods often struggle with high-dimensionality issues, rely on strong assumptions about graph structures or fail to handle complex multi-view graphs. To address these challenges, we propose a cluster aware multi-view graph anomaly detection method, called CARE. Our approach captures both local and global node affinities by augmenting the graph's adjacency matrix with the pseudo-label (i.e., soft membership assignments) without any strong assumption about the graph. To mitigate potential biases from the pseudo-label, we introduce a similarity-guided loss. Theoretically, we show that the proposed similarity-guided loss is a variant of contrastive learning loss, and we present how this loss alleviates the bias introduced by pseudo-label with the connection to graph spectral clustering. Experimental results on several datasets demonstrate the effectiveness and efficiency of our proposed framework. Specifically, CARE outperforms the second-best competitors by more than 39% on the Amazon dataset with respect to AUPRC and 18.7% on the YelpChi dataset with respect to AUROC. The code of our method is available at the GitHub link: https://github.com/zhenglecheng/CARE-demo.
Authors:Hui-Yue Yang, Hui Chen, Lihao Liu, Zijia Lin, Kai Chen, Liejun Wang, Jungong Han, Guiguang Ding
Title: Context Enhancement with Reconstruction as Sequence for Unified Unsupervised Anomaly Detection
Abstract:
Unsupervised anomaly detection (AD) aims to train robust detection models using only normal samples, while can generalize well to unseen anomalies. Recent research focuses on a unified unsupervised AD setting in which only one model is trained for all classes, i.e., n-class-one-model paradigm. Feature-reconstruction-based methods achieve state-of-the-art performance in this scenario. However, existing methods often suffer from a lack of sufficient contextual awareness, thereby compromising the quality of the reconstruction. To address this issue, we introduce a novel Reconstruction as Sequence (RAS) method, which enhances the contextual correspondence during feature reconstruction from a sequence modeling perspective. In particular, based on the transformer technique, we integrate a specialized RASFormer block into RAS. This block enables the capture of spatial relationships among different image regions and enhances sequential dependencies throughout the reconstruction process. By incorporating the RASFormer block, our RAS method achieves superior contextual awareness capabilities, leading to remarkable performance. Experimental results show that our RAS significantly outperforms competing methods, well demonstrating the effectiveness and superiority of our method. Our code is available at https://github.com/Nothingtolose9979/RAS.
Authors:Tianwu Lei, Silin Chen, Bohan Wang, Zhengkai Jiang, Ningmu Zou
Title: Adapted-MoE: Mixture of Experts with Test-Time Adaption for Anomaly Detection
Abstract:
Most unsupervised anomaly detection methods based on representations of normal samples to distinguish anomalies have recently made remarkable progress. However, existing methods only learn a single decision boundary for distinguishing the samples within the training dataset, neglecting the variation in feature distribution for normal samples even in the same category in the real world. Furthermore, it was not considered that a distribution bias still exists between the test set and the train set. Therefore, we propose an Adapted-MoE which contains a routing network and a series of expert models to handle multiple distributions of same-category samples by divide and conquer. Specifically, we propose a routing network based on representation learning to route same-category samples into the subclasses feature space. Then, a series of expert models are utilized to learn the representation of various normal samples and construct several independent decision boundaries. We propose the test-time adaption to eliminate the bias between the unseen test sample representation and the feature distribution learned by the expert model. Our experiments are conducted on a dataset that provides multiple subclasses from three categories, namely Texture AD benchmark. The Adapted-MoE significantly improves the performance of the baseline model, achieving 2.18%-7.20% and 1.57%-16.30% increase in I-AUROC and P-AUROC, which outperforms the current state-of-the-art methods. Our code is available at https://github.com/.
Authors:Yixuan Zhou, Xing Xu, Zhe Sun, Jingkuan Song, Andrzej Cichocki, Heng Tao Shen
Title: VQ-Flow: Taming Normalizing Flows for Multi-Class Anomaly Detection via Hierarchical Vector Quantization
Abstract:
Normalizing flows, a category of probabilistic models famed for their capabilities in modeling complex data distributions, have exhibited remarkable efficacy in unsupervised anomaly detection. This paper explores the potential of normalizing flows in multi-class anomaly detection, wherein the normal data is compounded with multiple classes without providing class labels. Through the integration of vector quantization (VQ), we empower the flow models to distinguish different concepts of multi-class normal data in an unsupervised manner, resulting in a novel flow-based unified method, named VQ-Flow. Specifically, our VQ-Flow leverages hierarchical vector quantization to estimate two relative codebooks: a Conceptual Prototype Codebook (CPC) for concept distinction and its concomitant Concept-Specific Pattern Codebook (CSPC) to capture concept-specific normal patterns. The flow models in VQ-Flow are conditioned on the concept-specific patterns captured in CSPC, capable of modeling specific normal patterns associated with different concepts. Moreover, CPC further enables our VQ-Flow for concept-aware distribution modeling, faithfully mimicking the intricate multi-class normal distribution through a mixed Gaussian distribution reparametrized on the conceptual prototypes. Through the introduction of vector quantization, the proposed VQ-Flow advances the state-of-the-art in multi-class anomaly detection within a unified training scheme, yielding the Det./Loc. AUROC of 99.5%/98.3% on MVTec AD. The codebase is publicly available at https://github.com/cool-xuan/vqflow.
Authors:Yuanwei Li, Elizaveta Ivanova, Martins Bruveris
Title: FADE: Few-shot/zero-shot Anomaly Detection Engine using Large Vision-Language Model
Abstract:
Automatic image anomaly detection is important for quality inspection in the manufacturing industry. The usual unsupervised anomaly detection approach is to train a model for each object class using a dataset of normal samples. However, a more realistic problem is zero-/few-shot anomaly detection where zero or only a few normal samples are available. This makes the training of object-specific models challenging. Recently, large foundation vision-language models have shown strong zero-shot performance in various downstream tasks. While these models have learned complex relationships between vision and language, they are not specifically designed for the tasks of anomaly detection. In this paper, we propose the Few-shot/zero-shot Anomaly Detection Engine (FADE) which leverages the vision-language CLIP model and adjusts it for the purpose of industrial anomaly detection. Specifically, we improve language-guided anomaly segmentation 1) by adapting CLIP to extract multi-scale image patch embeddings that are better aligned with language and 2) by automatically generating an ensemble of text prompts related to industrial anomaly detection. 3) We use additional vision-based guidance from the query and reference images to further improve both zero-shot and few-shot anomaly detection. On the MVTec-AD (and VisA) dataset, FADE outperforms other state-of-the-art methods in anomaly segmentation with pixel-AUROC of 89.6% (91.5%) in zero-shot and 95.4% (97.5%) in 1-normal-shot. Code is available at https://github.com/BMVC-FADE/BMVC-FADE.
Authors:Lingyi Cai, Jiacheng Wang, Ruichen Zhang, Yu Zhang, Tao Jiang, Dusit Niyato, Xianbin Wang, Abbas Jamalipour, Xuemin Shen
Title: Secure Physical Layer Communications for Low-Altitude Economy Networking: A Survey
Abstract:
The Low-Altitude Economy Networking (LAENet) is emerging as a transformative paradigm that enables an integrated and sophisticated communication infrastructure to support aerial vehicles in carrying out a wide range of economic activities within low-altitude airspace. However, the physical layer communications in the LAENet face growing security threats due to inherent characteristics of aerial communication environments, such as signal broadcast nature and channel openness. These challenges highlight the urgent need for safeguarding communication confidentiality, availability, and integrity. In view of the above, this survey comprehensively reviews existing secure countermeasures for physical layer communication in the LAENet. We explore core methods focusing on anti-eavesdropping and authentication for ensuring communication confidentiality. Subsequently, availability-enhancing techniques are thoroughly discussed for anti-jamming and spoofing defense. Then, we review approaches for safeguarding integrity through anomaly detection and injection protection. Furthermore, we discuss future research directions, emphasizing energy-efficient physical layer security, multi-drone collaboration for secure communication, AI-driven security defense strategy, space-air-ground integrated security architecture, and 6G-enabled secure UAV communication. This survey may provide valuable references and new insights for researchers in the field of secure physical layer communication for the LAENet.
Authors:Haoqi Huang, Ping Wang, Jianhua Pei, Jiacheng Wang, Shahen Alexanian, Dusit Niyato
Title: Deep Learning Advancements in Anomaly Detection: A Comprehensive Survey
Abstract:
The rapid expansion of data from diverse sources has made anomaly detection (AD) increasingly essential for identifying unexpected observations that may signal system failures, security breaches, or fraud. As datasets become more complex and high-dimensional, traditional detection methods struggle to effectively capture intricate patterns. Advances in deep learning have made AD methods more powerful and adaptable, improving their ability to handle high-dimensional and unstructured data. This survey provides a comprehensive review of over 180 recent studies, focusing on deep learning-based AD techniques. We categorize and analyze these methods into reconstruction-based and prediction-based approaches, highlighting their effectiveness in modeling complex data distributions. Additionally, we explore the integration of traditional and deep learning methods, highlighting how hybrid approaches combine the interpretability of traditional techniques with the flexibility of deep learning to enhance detection accuracy and model transparency. Finally, we identify open issues and propose future research directions to advance the field of AD. This review bridges gaps in existing literature and serves as a valuable resource for researchers and practitioners seeking to enhance AD techniques using deep learning.
Authors:Wenbing Zhu, Chengjie Wang, Bin-Bin Gao, Jiangning Zhang, Guannan Jiang, Jie Hu, Zhenye Gan, Lidong Wang, Ziqing Zhou, Linjie Cheng, Yurui Pan, Bo Peng, Mingmin Chi, Lizhuang Ma
Title: Real-IAD Variety: Pushing Industrial Anomaly Detection Dataset to a Modern Era
Abstract:
Industrial Anomaly Detection (IAD) is critical for enhancing operational safety, ensuring product quality, and optimizing manufacturing efficiency across global industries. However, the IAD algorithms are severely constrained by the limitations of existing public benchmarks. Current datasets exhibit restricted category diversity and insufficient scale, frequently resulting in metric saturation and limited model transferability to real-world scenarios. To address this gap, we introduce Real-IAD Variety, the largest and most diverse IAD benchmark, comprising 198,960 high-resolution images across 160 distinct object categories. Its diversity is ensured through comprehensive coverage of 28 industries, 24 material types, and 22 color variations. Our comprehensive experimental analysis validates the benchmark's substantial challenge: state-of-the-art multi-class unsupervised anomaly detection methods experience significant performance degradation when scaled from 30 to 160 categories. Crucially, we demonstrate that vision-language models exhibit remarkable robustness to category scale-up, with minimal performance variation across different category counts, significantly enhancing generalization capabilities in diverse industrial contexts. The unprecedented scale and complexity of Real-IAD Variety position it as an essential resource for training and evaluating next-generation foundation models for anomaly detection. By providing this comprehensive benchmark with rigorous evaluation protocols across multi-class unsupervised, multi-view, and zero-/few-shot settings, we aim to accelerate research beyond domain-specific constraints, enabling the development of scalable, general-purpose anomaly detection systems. Real-IAD Variety will be made publicly available to facilitate innovation in this critical field.
Authors:Changyuan Zhao, Guangyuan Liu, Bin Xiang, Dusit Niyato, Benoit Delinchant, Hongyang Du, Dong In Kim
Title: Generative AI Enabled Robust Sensor Placement in Cyber-Physical Power Systems: A Graph Diffusion Approach
Abstract:
With advancements in physical power systems and network technologies, integrated Cyber-Physical Power Systems (CPPS) have significantly enhanced system monitoring and control efficiency and reliability. This integration, however, introduces complex challenges in designing coherent CPPS, particularly as few studies concurrently address the deployment of physical layers and communication connections in the cyber layer. This paper addresses these challenges by proposing a framework for robust sensor placement to optimize anomaly detection in the physical layer and enhance communication resilience in the cyber layer. We model the CPPS as an interdependent network via a graph, allowing for simultaneous consideration of both layers. Then, we adopt the Log-normal Shadowing Path Loss (LNSPL) model to ensure reliable data transmission. Additionally, we leverage the Fiedler value to measure graph resilience against line failures and three anomaly detectors to fortify system safety. However, the optimization problem is NP-hard. Therefore, we introduce the Experience Feedback Graph Diffusion (EFGD) algorithm, which utilizes a diffusion process to generate optimal sensor placement strategies. This algorithm incorporates cross-entropy gradient and experience feedback mechanisms to expedite convergence and generate higher reward strategies. Extensive simulations demonstrate that the EFGD algorithm enhances model convergence by 18.9% over existing graph diffusion methods and improves average reward by 22.90% compared to Denoising Diffusion Policy Optimization (DDPO) and 19.57% compared to Graph Diffusion Policy Optimization (GDPO), thereby significantly bolstering the robustness and reliability of CPPS operations.
Authors:Buang Zhang, Tung Kieu, Xiangfei Qiu, Chenjuan Guo, Jilin Hu, Aoying Zhou, Christian S. Jensen, Bin Yang
Title: An Encode-then-Decompose Approach to Unsupervised Time Series Anomaly Detection on Contaminated Training Data--Extended Version
Abstract:
Time series anomaly detection is important in modern large-scale systems and is applied in a variety of domains to analyze and monitor the operation of diverse systems. Unsupervised approaches have received widespread interest, as they do not require anomaly labels during training, thus avoiding potentially high costs and having wider applications. Among these, autoencoders have received extensive attention. They use reconstruction errors from compressed representations to define anomaly scores. However, representations learned by autoencoders are sensitive to anomalies in training time series, causing reduced accuracy. We propose a novel encode-then-decompose paradigm, where we decompose the encoded representation into stable and auxiliary representations, thereby enhancing the robustness when training with contaminated time series. In addition, we propose a novel mutual information based metric to replace the reconstruction errors for identifying anomalies. Our proposal demonstrates competitive or state-of-the-art performance on eight commonly used multi- and univariate time series benchmarks and exhibits robustness to time series with different contamination ratios.
Authors:Hanyin Cheng, Ruitong Zhang, Yuning Lu, Peng Chen, Meng Wang, Yang Shu, Bin Yang, Chenjuan Guo
Title: STAR: Boosting Time Series Foundation Models for Anomaly Detection through State-aware Adapter
Abstract:
While Time Series Foundation Models (TSFMs) have demonstrated remarkable success in Multivariate Time Series Anomaly Detection (MTSAD), however, in real-world industrial scenarios, many time series comprise not only numerical variables such as temperature and flow, but also numerous discrete state variables that describe the system status, such as valve on/off or day of the week. Existing TSFMs often overlook the distinct categorical nature of state variables and their critical role as conditions, typically treating them uniformly with numerical variables. This inappropriate modeling approach prevents the model from fully leveraging state information and even leads to a significant degradation in detection performance after state variables are integrated. To address this critical limitation, this paper proposes a novel STate-aware AdapteR (STAR). STAR is a plug-and-play module designed to enhance the capability of TSFMs in modeling and leveraging state variables during the fine-tuning stage. Specifically, STAR comprisesthree core components: (1) We design an Identity-guided State Encoder, whicheffectively captures the complex categorical semantics of state variables through a learnable State Memory. (2) We propose a Conditional Bottleneck Adapter, which dynamically generates low-rank adaptation parameters conditioned on the current state, thereby flexibly injecting the influence of state variables into the backbone model. (3) We also introduce a Numeral-State Matching module to more effectively detect anomalies inherent to the state variables themselves. Extensive experiments conducted on real-world datasets demonstrate that STAR can improve the performance of existing TSFMs on MTSAD.
Authors:Beibu Li, Qichao Shentu, Yang Shu, Hui Zhang, Ming Li, Ning Jin, Bin Yang, Chenjuan Guo
Title: CrossAD: Time Series Anomaly Detection with Cross-scale Associations and Cross-window Modeling
Abstract:
Time series anomaly detection plays a crucial role in a wide range of real-world applications. Given that time series data can exhibit different patterns at different sampling granularities, multi-scale modeling has proven beneficial for uncovering latent anomaly patterns that may not be apparent at a single scale. However, existing methods often model multi-scale information independently or rely on simple feature fusion strategies, neglecting the dynamic changes in cross-scale associations that occur during anomalies. Moreover, most approaches perform multi-scale modeling based on fixed sliding windows, which limits their ability to capture comprehensive contextual information. In this work, we propose CrossAD, a novel framework for time series Anomaly Detection that takes Cross-scale associations and Cross-window modeling into account. We propose a cross-scale reconstruction that reconstructs fine-grained series from coarser series, explicitly capturing cross-scale associations. Furthermore, we design a query library and incorporate global multi-scale context to overcome the limitations imposed by fixed window sizes. Extensive experiments conducted on multiple real-world datasets using nine evaluation metrics validate the effectiveness of CrossAD, demonstrating state-of-the-art performance in anomaly detection.
Authors:Shiyan Hu, Kai Zhao, Xiangfei Qiu, Yang Shu, Jilin Hu, Bin Yang, Chenjuan Guo
Title: MultiRC: Joint Learning for Time Series Anomaly Prediction and Detection with Multi-scale Reconstructive Contrast
Abstract:
Many methods have been proposed for unsupervised time series anomaly detection. Despite some progress, research on predicting future anomalies is still relatively scarce. Predicting anomalies is particularly challenging due to the diverse reaction time and the lack of labeled data. To address these challenges, we propose MultiRC to integrate reconstructive and contrastive learning for joint learning of anomaly prediction and detection, with multi-scale structure and adaptive dominant period mask to deal with the diverse reaction time. MultiRC also generates negative samples to provide essential training momentum for the anomaly prediction tasks and prevent model degradation. We evaluate seven benchmark datasets from different fields. For both anomaly prediction and detection tasks, MultiRC outperforms existing state-of-the-art methods.
Authors:Kento Kawaharazuka, Kei Okada, Masayuki Inaba
Title: GeMuCo: Generalized Multisensory Correlational Model for Body Schema Learning
Abstract:
Humans can autonomously learn the relationship between sensation and motion in their own bodies, estimate and control their own body states, and move while continuously adapting to the current environment. On the other hand, current robots control their bodies by learning the network structure described by humans from their experiences, making certain assumptions on the relationship between sensors and actuators. In addition, the network model does not adapt to changes in the robot's body, the tools that are grasped, or the environment, and there is no unified theory, not only for control but also for state estimation, anomaly detection, simulation, and so on. In this study, we propose a Generalized Multisensory Correlational Model (GeMuCo), in which the robot itself acquires a body schema describing the correlation between sensors and actuators from its own experience, including model structures such as network input/output. The robot adapts to the current environment by updating this body schema model online, estimates and controls its body state, and even performs anomaly detection and simulation. We demonstrate the effectiveness of this method by applying it to tool-use considering changes in grasping state for an axis-driven robot, to joint-muscle mapping learning for a musculoskeletal robot, and to full-body tool manipulation for a low-rigidity plastic-made humanoid.
Authors:Peng Tang, Xiaoxiao Yan, Xiaobin Hu, Yuning Cui, Donghao Luo, Jiangning Zhang, Pengcheng Xu, Jinlong Peng, Qingdong He, Feiyue Huang, Song Xue, Tobias Lasser
Title: ShortcutBreaker: Low-Rank Noisy Bottleneck with Global Perturbation Attention for Multi-Class Unsupervised Anomaly Detection
Abstract:
Multi-class unsupervised anomaly detection (MUAD) has garnered growing research interest, as it seeks to develop a unified model for anomaly detection across multiple classes, i.e., eliminating the need to train separate models for distinct objects and thereby saving substantial computational resources. Under the MUAD setting, while advanced Transformer-based architectures have brought significant performance improvements, identity shortcuts persist: they directly copy inputs to outputs, narrowing the gap in reconstruction errors between normal and abnormal cases, and thereby making the two harder to distinguish. Therefore, we propose ShortcutBreaker, a novel unified feature-reconstruction framework for MUAD tasks, featuring two key innovations to address the issue of shortcuts. First, drawing on matrix rank inequality, we design a low-rank noisy bottleneck (LRNB) to project highdimensional features into a low-rank latent space, and theoretically demonstrate its capacity to prevent trivial identity reproduction. Second, leveraging ViTs global modeling capability instead of merely focusing on local features, we incorporate a global perturbation attention to prevent information shortcuts in the decoders. Extensive experiments are performed on four widely used anomaly detection benchmarks, including three industrial datasets (MVTec-AD, ViSA, and Real-IAD) and one medical dataset (Universal Medical). The proposed method achieves a remarkable image-level AUROC of 99.8%, 98.9%, 90.6%, and 87.8% on these four datasets, respectively, consistently outperforming previous MUAD methods across different scenarios.
Authors:Weiche Hsieh, Ziqian Bi, Keyu Chen, Benji Peng, Sen Zhang, Jiawei Xu, Jinlang Wang, Caitlyn Heqi Yin, Yichao Zhang, Pohsun Feng, Yizhu Wen, Tianyang Wang, Ming Li, Chia Xin Liang, Jintao Ren, Qian Niu, Silin Chen, Lawrence K. Q. Yan, Han Xu, Hong-Ming Tseng, Xinyuan Song, Bowen Jing, Junjie Yang, Junhao Song, Junyu Liu, Ming Liu
Title: Deep Learning, Machine Learning, Advancing Big Data Analytics and Management
Abstract:
Advancements in artificial intelligence, machine learning, and deep learning have catalyzed the transformation of big data analytics and management into pivotal domains for research and application. This work explores the theoretical foundations, methodological advancements, and practical implementations of these technologies, emphasizing their role in uncovering actionable insights from massive, high-dimensional datasets. The study presents a systematic overview of data preprocessing techniques, including data cleaning, normalization, integration, and dimensionality reduction, to prepare raw data for analysis. Core analytics methodologies such as classification, clustering, regression, and anomaly detection are examined, with a focus on algorithmic innovation and scalability. Furthermore, the text delves into state-of-the-art frameworks for data mining and predictive modeling, highlighting the role of neural networks, support vector machines, and ensemble methods in tackling complex analytical challenges. Special emphasis is placed on the convergence of big data with distributed computing paradigms, including cloud and edge computing, to address challenges in storage, computation, and real-time analytics. The integration of ethical considerations, including data privacy and compliance with global standards, ensures a holistic perspective on data management. Practical applications across healthcare, finance, marketing, and policy-making illustrate the real-world impact of these technologies. Through comprehensive case studies and Python-based implementations, this work equips researchers, practitioners, and data enthusiasts with the tools to navigate the complexities of modern data analytics. It bridges the gap between theory and practice, fostering the development of innovative solutions for managing and leveraging data in the era of artificial intelligence.
Authors:Chuangchuang Tan, Xiang Ming, Jinglu Wang, Renshuai Tao, Bin Li, Yunchao Wei, Yao Zhao, Yan Lu
Title: Semantic Visual Anomaly Detection and Reasoning in AI-Generated Images
Abstract:
The rapid advancement of AI-generated content (AIGC) has enabled the synthesis of visually convincing images; however, many such outputs exhibit subtle \textbf{semantic anomalies}, including unrealistic object configurations, violations of physical laws, or commonsense inconsistencies, which compromise the overall plausibility of the generated scenes. Detecting these semantic-level anomalies is essential for assessing the trustworthiness of AIGC media, especially in AIGC image analysis, explainable deepfake detection and semantic authenticity assessment. In this paper, we formalize \textbf{semantic anomaly detection and reasoning} for AIGC images and introduce \textbf{AnomReason}, a large-scale benchmark with structured annotations as quadruples \emph{(Name, Phenomenon, Reasoning, Severity)}. Annotations are produced by a modular multi-agent pipeline (\textbf{AnomAgent}) with lightweight human-in-the-loop verification, enabling scale while preserving quality. At construction time, AnomAgent processed approximately 4.17\,B GPT-4o tokens, providing scale evidence for the resulting structured annotations. We further show that models fine-tuned on AnomReason achieve consistent gains over strong vision-language baselines under our proposed semantic matching metric (\textit{SemAP} and \textit{SemF1}). Applications to {explainable deepfake detection} and {semantic reasonableness assessment of image generators} demonstrate practical utility. In summary, AnomReason and AnomAgent serve as a foundation for measuring and improving the semantic plausibility of AI-generated images. We will release code, metrics, data, and task-aligned models to support reproducible research on semantic authenticity and interpretable AIGC forensics.
Authors:Shifang Zhao, Yiheng Lin, Lu Han, Yao Zhao, Yunchao Wei
Title: OmniAD: Detect and Understand Industrial Anomaly via Multimodal Reasoning
Abstract:
While anomaly detection has made significant progress, generating detailed analyses that incorporate industrial knowledge remains a challenge. To address this gap, we introduce OmniAD, a novel framework that unifies anomaly detection and understanding for fine-grained analysis. OmniAD is a multimodal reasoner that combines visual and textual reasoning processes. The visual reasoning provides detailed inspection by leveraging Text-as-Mask Encoding to perform anomaly detection through text generation without manually selected thresholds. Following this, Visual Guided Textual Reasoning conducts comprehensive analysis by integrating visual perception. To enhance few-shot generalization, we employ an integrated training strategy that combines supervised fine-tuning (SFT) with reinforcement learning (GRPO), incorporating three sophisticated reward functions. Experimental results demonstrate that OmniAD achieves a performance of 79.1 on the MMAD benchmark, surpassing models such as Qwen2.5-VL-7B and GPT-4o. It also shows strong results across multiple anomaly detection benchmarks. These results highlight the importance of enhancing visual perception for effective reasoning in anomaly understanding. All codes and models will be publicly available.
Authors:Guangyu Dai, Dong Chen, Siliang Tang, Yueting Zhuang
Title: GMFVAD: Using Grained Multi-modal Feature to Improve Video Anomaly Detection
Abstract:
Video anomaly detection (VAD) is a challenging task that detects anomalous frames in continuous surveillance videos. Most previous work utilizes the spatio-temporal correlation of visual features to distinguish whether there are abnormalities in video snippets. Recently, some works attempt to introduce multi-modal information, like text feature, to enhance the results of video anomaly detection. However, these works merely incorporate text features into video snippets in a coarse manner, overlooking the significant amount of redundant information that may exist within the video snippets. Therefore, we propose to leverage the diversity among multi-modal information to further refine the extracted features, reducing the redundancy in visual features, and we propose Grained Multi-modal Feature for Video Anomaly Detection (GMFVAD). Specifically, we generate more grained multi-modal feature based on the video snippet, which summarizes the main content, and text features based on the captions of original video will be introduced to further enhance the visual features of highlighted portions. Experiments show that the proposed GMFVAD achieves state-of-the-art performance on four mainly datasets. Ablation experiments also validate that the improvement of GMFVAD is due to the reduction of redundant information.
Authors:Can Cui, Xindong Zheng, Ruining Deng, Quan Liu, Tianyuan Yao, Keith T Wilson, Lori A Coburn, Bennett A Landman, Haichun Yang, Yaohong Wang, Yuankai Huo
Title: Quantitative Benchmarking of Anomaly Detection Methods in Digital Pathology
Abstract:
Anomaly detection has been widely studied in the context of industrial defect inspection, with numerous methods developed to tackle a range of challenges. In digital pathology, anomaly detection holds significant potential for applications such as rare disease identification, artifact detection, and biomarker discovery. However, the unique characteristics of pathology images, such as their large size, multi-scale structures, stain variability, and repetitive patterns, introduce new challenges that current anomaly detection algorithms struggle to address. In this quantitative study, we benchmark over 20 classical and prevalent anomaly detection methods through extensive experiments. We curated five digital pathology datasets, both real and synthetic, to systematically evaluate these approaches. Our experiments investigate the influence of image scale, anomaly pattern types, and training epoch selection strategies on detection performance. The results provide a detailed comparison of each method's strengths and limitations, establishing a comprehensive benchmark to guide future research in anomaly detection for digital pathology images.
Authors:Cheng He, Xu Huang, Gangwei Jiang, Zhaoyi Li, Defu Lian, Hong Xie, Enhong Chen, Xijie Liang, Zengrong Zheng
Title: General Time-series Model for Universal Knowledge Representation of Multivariate Time-Series data
Abstract:
Universal knowledge representation is a central problem for multivariate time series(MTS) foundation models and yet remains open. This paper investigates this problem from the first principle and it makes four folds of contributions. First, a new empirical finding is revealed: time series with different time granularities (or corresponding frequency resolutions) exhibit distinct joint distributions in the frequency domain. This implies a crucial aspect of learning universal knowledge, one that has been overlooked by previous studies. Second, a novel Fourier knowledge attention mechanism is proposed to enable learning time granularity-aware representations from both the temporal and frequency domains. Third, an autoregressive blank infilling pre-training framework is incorporated to time series analysis for the first time, leading to a generative tasks agnostic pre-training strategy. To this end, we develop the General Time-series Model (GTM), a unified MTS foundation model that addresses the limitation of contemporary time series models, which often require token, pre-training, or model-level customizations for downstream tasks adaption. Fourth, extensive experiments show that GTM outperforms state-of-the-art (SOTA) methods across all generative tasks, including long-term forecasting, anomaly detection, and imputation.
Authors:Bingchen Miao, Wenqiao Zhang, Juncheng Li, Siliang Tang, Zhaocheng Li, Haochen Shi, Jun Xiao, Yueting Zhuang
Title: RADAR: Robust Two-stage Modality-incomplete Industrial Anomaly Detection
Abstract:
Multimodal Industrial Anomaly Detection (MIAD), utilizing 3D point clouds and 2D RGB images to identify the abnormal region of products, plays a crucial role in industrial quality inspection. However, the conventional MIAD setting presupposes that all 2D and 3D modalities are paired, overlooking the fact that multimodal data collected from the real world is often imperfect due to missing modalities. Consequently, MIAD models that demonstrate robustness against modal-incomplete data are highly desirable in practice. To address this practical challenge, we introduce a first-of-its-kind study that comprehensively investigates Modality-Incomplete Industrial Anomaly Detection (MIIAD), to consider the imperfect learning environment in which the multimodal information may be incomplete. Not surprisingly, we discovered that most existing MIAD approaches are inadequate for addressing MIIAD challenges, leading to significant performance degradation on the MIIAD benchmark we developed. In this paper, we propose a novel two-stage Robust modAlity-imcomplete fusing and Detecting frAmewoRk, abbreviated as RADAR. Our bootstrapping philosophy is to enhance two stages in MIIAD, improving the robustness of the Multimodal Transformer: i) In feature fusion, we first explore learning modality-incomplete instruction, guiding the pre-trained Multimodal Transformer to robustly adapt to various modality-incomplete scenarios, and implement adaptive parameter learning based on a HyperNetwork; ii) In anomaly detection, we construct a real-pseudo hybrid module to highlight the distinctiveness of modality combinations, further enhancing the robustness of the MIIAD model. Our experimental results demonstrate that the proposed RADAR significantly surpasses conventional MIAD methods in terms of effectiveness and robustness on our newly created MIIAD dataset, underscoring its practical application value.
Authors:Omri Sgan Cohen, Ehud Malul, Yair Meidan, Dudu Mimran, Yuval Elovici, Asaf Shabtai
Title: KubeGuard: LLM-Assisted Kubernetes Hardening via Configuration Files and Runtime Logs Analysis
Abstract:
The widespread adoption of Kubernetes (K8s) for orchestrating cloud-native applications has introduced significant security challenges, such as misconfigured resources and overly permissive configurations. Failing to address these issues can result in unauthorized access, privilege escalation, and lateral movement within clusters. Most existing K8s security solutions focus on detecting misconfigurations, typically through static analysis or anomaly detection. In contrast, this paper presents KubeGuard, a novel runtime log-driven recommender framework aimed at mitigating risks by addressing overly permissive configurations. KubeGuard is designed to harden K8s environments through two complementary tasks: Resource Creation and Resource Refinement. It leverages large language models (LLMs) to analyze manifests and runtime logs reflecting actual system behavior, using modular prompt-chaining workflows. This approach enables KubeGuard to create least-privilege configurations for new resources and refine existing manifests to reduce the attack surface. KubeGuard's output manifests are presented as recommendations that users (e.g., developers and operators) can review and adopt to enhance cluster security. Our evaluation demonstrates that KubeGuard effectively generates and refines K8s manifests for Roles, NetworkPolicies, and Deployments, leveraging both proprietary and open-source LLMs. The high precision, recall, and F1-scores affirm KubeGuard's practicality as a framework that translates runtime observability into actionable, least-privilege configuration guidance.
Authors:Ron Solomon, Yarin Yerushalmi Levi, Lior Vaknin, Eran Aizikovich, Amit Baras, Etai Ohana, Amit Giloni, Shamik Bose, Chiara Picardi, Yuval Elovici, Asaf Shabtai
Title: LumiMAS: A Comprehensive Framework for Real-Time Monitoring and Enhanced Observability in Multi-Agent Systems
Abstract:
The incorporation of large language models in multi-agent systems (MASs) has the potential to significantly improve our ability to autonomously solve complex problems. However, such systems introduce unique challenges in monitoring, interpreting, and detecting system failures. Most existing MAS observability frameworks focus on analyzing each individual agent separately, overlooking failures associated with the entire MAS. To bridge this gap, we propose LumiMAS, a novel MAS observability framework that incorporates advanced analytics and monitoring techniques. The proposed framework consists of three key components: a monitoring and logging layer, anomaly detection layer, and anomaly explanation layer. LumiMAS's first layer monitors MAS executions, creating detailed logs of the agents' activity. These logs serve as input to the anomaly detection layer, which detects anomalies across the MAS workflow in real time. Then, the anomaly explanation layer performs classification and root cause analysis (RCA) of the detected anomalies. LumiMAS was evaluated on seven different MAS applications, implemented using two popular MAS platforms, and a diverse set of possible failures. The applications include two novel failure-tailored applications that illustrate the effects of a hallucination or bias on the MAS. The evaluation results demonstrate LumiMAS's effectiveness in failure detection, classification, and RCA.
Authors:Prashanth Krishnamurthy, Ramesh Karri, Farshad Khorrami
Title: Enabling Deep Visibility into VxWorks-Based Embedded Controllers in Cyber-Physical Systems for Anomaly Detection
Abstract:
We propose the DIVER (Defensive Implant for Visibility into Embedded Run-times) framework for real-time deep visibility into embedded control devices in cyber-physical systems (CPSs). DIVER enables run-time detection of anomalies and targets devices running VxWorks real-time operating system (RTOS), precluding traditional methods of implementing dynamic monitors using OS (e.g., Linux, Windows) functions. DIVER has two components: "measurer" implant embedded into VxWorks kernel to collect run-time measurements and provide interactive/streaming interfaces over TCP/IP; remote "listener" that acquires and analyzes measurements and provides interactive user interface. DIVER focuses on small embedded devices with stringent resource constraints (e.g., insufficient storage to locally store measurements). To show efficacy and scalability of DIVER, we demonstrate on two embedded devices with different processor architectures and VxWorks versions: Motorola ACE Remote Terminal Unit used in CPS including power systems and Raspberry Pi representative of Internet-of-Things (IoT) applications.
Authors:Parth Atulbhai Gandhi, Prasanna N. Wudali, Yonatan Amaru, Yuval Elovici, Asaf Shabtai
Title: SHIELD: APT Detection and Intelligent Explanation Using LLM
Abstract:
Advanced persistent threats (APTs) are sophisticated cyber attacks that can remain undetected for extended periods, making their mitigation particularly challenging. Given their persistence, significant effort is required to detect them and respond effectively. Existing provenance-based attack detection methods often lack interpretability and suffer from high false positive rates, while investigation approaches are either supervised or limited to known attacks. To address these challenges, we introduce SHIELD, a novel approach that combines statistical anomaly detection and graph-based analysis with the contextual analysis capabilities of large language models (LLMs). SHIELD leverages the implicit knowledge of LLMs to uncover hidden attack patterns in provenance data, while reducing false positives and providing clear, interpretable attack descriptions. This reduces analysts' alert fatigue and makes it easier for them to understand the threat landscape. Our extensive evaluation demonstrates SHIELD's effectiveness and computational efficiency in real-world scenarios. SHIELD was shown to outperform state-of-the-art methods, achieving higher precision and recall. SHIELD's integration of anomaly detection, LLM-driven contextual analysis, and advanced graph-based correlation establishes a new benchmark for APT detection.
Authors:Farshad Khorrami, Ramesh Karri, Prashanth Krishnamurthy
Title: Real-Time Multi-Modal Subcomponent-Level Measurements for Trustworthy System Monitoring and Malware Detection
Abstract:
With increasingly sophisticated cyber-adversaries able to access a wider repertoire of mechanisms to implant malware such as ransomware, CPU/GPU keyloggers, and stealthy kernel rootkits, there is an urgent need for techniques to detect and mitigate such attacks. While state of the art relies on digital and analog side channel measurements assuming trustworthiness of measurements obtained on the main processor, such an approach has limitations since processor-based side channel measurements are potentially untrustworthy. Sophisticated adversaries (especially in late stage cyber attacks when they have breached the computer and network security systems such as firewalls and antivirus and penetrated the computer's OS) can compromise user-space and kernel-space measurements. To address this key limitation of state of the art, we propose a "subcomponent-level" approach to collect side channel measurements so as to enable robust anomaly detection in a modern computer even when the main processor is compromised. Our proposed approach leverages the fact that modern computers are complex systems with multiple interacting subcomponents and measurements from subcomponents can be used to detect anomalies even when the main processor is no longer trustworthy. We develop mechanisms to obtain time series measurements of activity of several subcomponents and methodologies to process and fuse these measurements for anomaly detection. The subcomponents include network interface controller, GPU, CPU Hardware Performance Counters, CPU power, and keyboard. Our main hypothesis is that subcomponent measurements can enable detection of security threats without requiring a trustworthy main processor. By enabling real-time measurements from multiple subcomponents, the goal is to provide a deeper visibility into system operation, thereby yielding a powerful tool to track system operation and detect anomalies.
Authors:Yael Itzhakev, Amit Giloni, Yuval Elovici, Asaf Shabtai
Title: Addressing Key Challenges of Adversarial Attacks and Defenses in the Tabular Domain: A Methodological Framework for Coherence and Consistency
Abstract:
Machine learning models trained on tabular data are vulnerable to adversarial attacks, even in realistic scenarios where attackers only have access to the model's outputs. Since tabular data contains complex interdependencies among features, it presents a unique challenge for adversarial samples which must maintain coherence and respect these interdependencies to remain indistinguishable from benign data. Moreover, existing attack evaluation metrics-such as the success rate, perturbation magnitude, and query count-fail to account for this challenge. To address those gaps, we propose a technique for perturbing dependent features while preserving sample coherence. In addition, we introduce Class-Specific Anomaly Detection (CSAD), an effective novel anomaly detection approach, along with concrete metrics for assessing the quality of tabular adversarial attacks. CSAD evaluates adversarial samples relative to their predicted class distribution, rather than a broad benign distribution. It ensures that subtle adversarial perturbations, which may appear coherent in other classes, are correctly identified as anomalies. We integrate SHAP explainability techniques to detect inconsistencies in model decision-making, extending CSAD for SHAP-based anomaly detection. Our evaluation incorporates both anomaly detection rates with SHAP-based assessments to provide a more comprehensive measure of adversarial sample quality. We evaluate various attack strategies, examining black-box query-based and transferability-based gradient attacks across four target models. Experiments on benchmark tabular datasets reveal key differences in the attacker's risk and effort and attack quality, offering insights into the strengths, limitations, and trade-offs faced by attackers and defenders. Our findings lay the groundwork for future research on adversarial attacks and defense development in the tabular domain.
Authors:Hao Fu, Prashanth Krishnamurthy, Farshad Khorrami
Title: Combining Switching Mechanism with Re-Initialization and Anomaly Detection for Resiliency of Cyber-Physical Systems
Abstract:
Cyber-physical systems (CPS) play a pivotal role in numerous critical real-world applications that have stringent requirements for safety. To enhance the CPS resiliency against attacks, redundancy can be integrated in real-time controller implementations by designing strategies that switch among multiple controllers. However, existing switching strategies typically overlook remediation measures for compromised controllers, opting instead to simply exclude them. Such a solution reduces the CPS redundancy since only a subset of controllers are used. To address this gap, this work proposes a multi-controller switching strategy with periodic re-initialization to remove attacks. Controllers that finish re-initialization can be reused by the switching strategy, preserving the CPS redundancy and resiliency. The proposed switching strategy is designed to ensure that at each switching moment, a controller that has just completed re-initialization is available, minimizing the likelihood of compromise. Additionally, the controller's working period decreases with the number of involved controllers, reducing the controller's exposure time to attacks. An anomaly detector is used to detect CPS attacks during the controller's working period. Upon alarm activation, the current control signal is set to a predefined value, and a switch to an alternative controller occurs at the earliest switching moment. Our switching strategy is shown to be still effective even if the anomaly detector fails to detect (stealthy) attacks.
Authors:Arun Vignesh Malarkkan, Haoyue Bai, Dongjie Wang, Yanjie Fu
Title: Causal Graph Profiling via Structural Divergence for Robust Anomaly Detection in Cyber-Physical Systems
Abstract:
With the growing complexity of cyberattacks targeting critical infrastructures such as water treatment networks, there is a pressing need for robust anomaly detection strategies that account for both system vulnerabilities and evolving attack patterns. Traditional methods -- statistical, density-based, and graph-based models struggle with distribution shifts and class imbalance in multivariate time series, often leading to high false positive rates. To address these challenges, we propose CGAD, a Causal Graph-based Anomaly Detection framework designed for reliable cyberattack detection in public infrastructure systems. CGAD follows a two-phase supervised framework -- causal profiling and anomaly scoring. First, it learns causal invariant graph structures representing the system's behavior under "Normal" and "Attack" states using Dynamic Bayesian Networks. Second, it employs structural divergence to detect anomalies via causal graph comparison by evaluating topological deviations in causal graphs over time. By leveraging causal structures, CGAD achieves superior adaptability and accuracy in non-stationary and imbalanced time series environments compared to conventional machine learning approaches. By uncovering causal structures beneath volatile sensor data, our framework not only detects cyberattacks with markedly higher precision but also redefines robustness in anomaly detection, proving resilience where traditional models falter under imbalance and drift. Our framework achieves substantial gains in F1 and ROC-AUC scores over best-performing baselines across four industrial datasets, demonstrating robust detection of delayed and structurally complex anomalies.
Authors:Arun Vignesh Malarkkan, Dongjie Wang, Haoyue Bai, Yanjie Fu
Title: Incremental Causal Graph Learning for Online Cyberattack Detection in Cyber-Physical Infrastructures
Abstract:
The escalating threat of cyberattacks on real-time critical infrastructures poses serious risks to public safety, demanding detection methods that effectively capture complex system interdependencies and adapt to evolving attack patterns. Traditional real-time anomaly detection techniques often suffer from excessive false positives due to their statistical sensitivity to high data variance and class imbalance. To address these limitations, recent research has explored modeling causal relationships among system components. However, prior work mainly focuses on offline causal graph-based approaches that require static historical data and fail to generalize to real-time settings. These methods are fundamentally constrained by: (1) their inability to adapt to dynamic shifts in data distribution without retraining, and (2) the risk of catastrophic forgetting when lacking timely supervision in live systems. To overcome these challenges, we propose INCADET, a novel framework for incremental causal graph learning tailored to real-time cyberattack detection. INCADET dynamically captures evolving system behavior by incrementally updating causal graphs across streaming time windows. The framework comprises three modules: 1) Early Symptom Detection: Detects transitions in system status using divergence in edge-weight distributions across sequential causal graphs. 2) Incremental Causal Graph Learning: Leverages experience replay and edge reinforcement to continually refine causal structures while preserving prior knowledge. 3) Causal Graph Classification: Employs Graph Convolutional Networks (GCNs) to classify system status using the learned causal graphs. Extensive experiments on real-world critical infrastructure datasets demonstrate that INCADET achieves superior accuracy, robustness, and adaptability compared to both static causal and deep temporal baselines in evolving attack scenarios.
Authors:Arun Vignesh Malarkkan, Haoyue Bai, Xinyuan Wang, Anjali Kaushik, Dongjie Wang, Yanjie Fu
Title: Rethinking Spatio-Temporal Anomaly Detection: A Vision for Causality-Driven Cybersecurity
Abstract:
As cyber-physical systems grow increasingly interconnected and spatially distributed, ensuring their resilience against evolving cyberattacks has become a critical priority. Spatio-Temporal Anomaly detection plays an important role in ensuring system security and operational integrity. However, current data-driven approaches, largely driven by black-box deep learning, face challenges in interpretability, adaptability to distribution shifts, and robustness under evolving system dynamics. In this paper, we advocate for a causal learning perspective to advance anomaly detection in spatially distributed infrastructures that grounds detection in structural cause-effect relationships. We identify and formalize three key directions: causal graph profiling, multi-view fusion, and continual causal graph learning, each offering distinct advantages in uncovering dynamic cause-effect structures across time and space. Drawing on real-world insights from systems such as water treatment infrastructures, we illustrate how causal models provide early warning signals and root cause attribution, addressing the limitations of black-box detectors. Looking ahead, we outline the future research agenda centered on multi-modality, generative AI-driven, and scalable adaptive causal frameworks. Our objective is to lay a new research trajectory toward scalable, adaptive, explainable, and spatially grounded anomaly detection systems. We hope to inspire a paradigm shift in cybersecurity research, promoting causality-driven approaches to address evolving threats in interconnected infrastructures.
Authors:Yingli Shen, Wen Lai, Shuo Wang, Xueren Zhang, Kangyang Luo, Alexander Fraser, Maosong Sun
Title: DCAD-2000: A Multilingual Dataset across 2000+ Languages with Data Cleaning as Anomaly Detection
Abstract:
The rapid development of multilingual large language models (LLMs) highlights the need for high-quality, diverse, and clean multilingual datasets. In this paper, we introduce DCAD-2000 (Data Cleaning as Anomaly Detection), a large-scale multilingual corpus built using newly extracted Common Crawl data and existing multilingual datasets. DCAD-2000 includes over 2,282 languages, 46.72TB of data, and 8.63 billion documents, spanning 155 high- and medium-resource languages and 159 writing scripts. To overcome the limitations of current data cleaning methods, which rely on manual heuristic thresholds, we propose reframing data cleaning as an anomaly detection task. This dynamic filtering approach significantly enhances data quality by identifying and removing noisy or anomalous content. We evaluate the quality of DCAD-2000 on the FineTask benchmark, demonstrating substantial improvements in multilingual dataset quality and task performance.
Authors:Yutong Xia, Yingying Zhang, Yuxuan Liang, Lunting Fan, Qingsong Wen, Roger Zimmermann
Title: CaPulse: Detecting Anomalies by Tuning in to the Causal Rhythms of Time Series
Abstract:
Time series anomaly detection has garnered considerable attention across diverse domains. While existing methods often fail to capture the underlying mechanisms behind anomaly generation in time series data. In addition, time series anomaly detection often faces several data-related inherent challenges, i.e., label scarcity, data imbalance, and complex multi-periodicity. In this paper, we leverage causal tools and introduce a new causality-based framework, CaPulse, which tunes in to the underlying causal pulse of time series data to effectively detect anomalies. Concretely, we begin by building a structural causal model to decipher the generation processes behind anomalies. To tackle the challenges posed by the data, we propose Periodical Normalizing Flows with a novel mask mechanism and carefully designed periodical learners, creating a periodicity-aware, density-based anomaly detection approach. Extensive experiments on seven real-world datasets demonstrate that CaPulse consistently outperforms existing methods, achieving AUROC improvements of 3% to 17%, with enhanced interpretability.
Authors:Ksheeraja Raghavan, Samiran Gode, Ankit Shah, Surabhi Raghavan, Wolfram Burgard, Bhiksha Raj, Rita Singh
Title: Did You Hear That? Introducing AADG: A Framework for Generating Benchmark Data in Audio Anomaly Detection
Abstract:
We introduce a novel, general-purpose audio generation framework specifically designed for anomaly detection and localization. Unlike existing datasets that predominantly focus on industrial and machine-related sounds, our framework focuses a broader range of environments, particularly useful in real-world scenarios where only audio data are available, such as in video-derived or telephonic audio. To generate such data, we propose a new method inspired by the LLM-Modulo framework, which leverages large language models(LLMs) as world models to simulate such real-world scenarios. This tool is modular allowing a plug-and-play approach. It operates by first using LLMs to predict plausible real-world scenarios. An LLM further extracts the constituent sounds, the order and the way in which these should be merged to create coherent wholes. Much like the LLM-Modulo framework, we include rigorous verification of each output stage, ensuring the reliability of the generated data. The data produced using the framework serves as a benchmark for anomaly detection applications, potentially enhancing the performance of models trained on audio data, particularly in handling out-of-distribution cases. Our contributions thus fill a critical void in audio anomaly detection resources and provide a scalable tool for generating diverse, realistic audio data.
Authors:Yuhu Bai, Jiangning Zhang, Yunkang Cao, Guangyuan Lu, Qingdong He, Xiangtai Li, Guanzhong Tian
Title: Bridge Feature Matching and Cross-Modal Alignment with Mutual-filtering for Zero-shot Anomaly Detection
Abstract:
With the advent of vision-language models (e.g., CLIP) in zero- and few-shot settings, CLIP has been widely applied to zero-shot anomaly detection (ZSAD) in recent research, where the rare classes are essential and expected in many applications. This study introduces \textbf{FiSeCLIP} for ZSAD with training-free \textbf{CLIP}, combining the feature matching with the cross-modal alignment. Testing with the entire dataset is impractical, while batch-based testing better aligns with real industrial needs, and images within a batch can serve as mutual reference points. Accordingly, FiSeCLIP utilizes other images in the same batch as reference information for the current image. However, the lack of labels for these references can introduce ambiguity, we apply text information to \textbf{fi}lter out noisy features. In addition, we further explore CLIP's inherent potential to restore its local \textbf{se}mantic correlation, adapting it for fine-grained anomaly detection tasks to enable a more accurate filtering process. Our approach exhibits superior performance for both anomaly classification and segmentation on anomaly detection benchmarks, building a stronger baseline for the direction, e.g., on MVTec-AD, FiSeCLIP outperforms the SOTA AdaCLIP by +4.6\%$\uparrow$/+5.7\%$\uparrow$ in segmentation metrics AU-ROC/$F_1$-max.
Authors:Chang Zong, Yueting Zhuang, Jian Shao, Weiming Lu
Title: Structural-Temporal Coupling Anomaly Detection with Dynamic Graph Transformer
Abstract:
Detecting anomalous edges in dynamic graphs is an important task in many applications over evolving triple-based data, such as social networks, transaction management, and epidemiology. A major challenge with this task is the absence of structural-temporal coupling information, which decreases the ability of the representation to distinguish anomalies from normal instances. Existing methods focus on handling independent structural and temporal features with embedding models, which ignore the deep interaction between these two types of information. In this paper, we propose a structural-temporal coupling anomaly detection architecture with a dynamic graph transformer model. Specifically, we introduce structural and temporal features from two integration levels to provide anomaly-aware graph evolutionary patterns. Then, a dynamic graph transformer enhanced by two-dimensional positional encoding is implemented to capture both discrimination and contextual consistency signals. Extensive experiments on six datasets demonstrate that our method outperforms current state-of-the-art models. Finally, a case study illustrates the strength of our method when applied to a real-world task.
Authors:Kai Li, Conggai Li, Xin Yuan, Shenghong Li, Sai Zou, Syed Sohail Ahmed, Wei Ni, Dusit Niyato, Abbas Jamalipour, Falko Dressler, Ozgur B. Akan
Title: Zero-Trust Foundation Models: A New Paradigm for Secure and Collaborative Artificial Intelligence for Internet of Things
Abstract:
This paper focuses on Zero-Trust Foundation Models (ZTFMs), a novel paradigm that embeds zero-trust security principles into the lifecycle of foundation models (FMs) for Internet of Things (IoT) systems. By integrating core tenets, such as continuous verification, least privilege access (LPA), data confidentiality, and behavioral analytics into the design, training, and deployment of FMs, ZTFMs can enable secure, privacy-preserving AI across distributed, heterogeneous, and potentially adversarial IoT environments. We present the first structured synthesis of ZTFMs, identifying their potential to transform conventional trust-based IoT architectures into resilient, self-defending ecosystems. Moreover, we propose a comprehensive technical framework, incorporating federated learning (FL), blockchain-based identity management, micro-segmentation, and trusted execution environments (TEEs) to support decentralized, verifiable intelligence at the network edge. In addition, we investigate emerging security threats unique to ZTFM-enabled systems and evaluate countermeasures, such as anomaly detection, adversarial training, and secure aggregation. Through this analysis, we highlight key open research challenges in terms of scalability, secure orchestration, interpretable threat attribution, and dynamic trust calibration. This survey lays a foundational roadmap for secure, intelligent, and trustworthy IoT infrastructures powered by FMs.
Authors:Rui An, Haohao Qu, Wenqi Fan, Xuequn Shang, Qing Li
Title: DeMa: Dual-Path Delay-Aware Mamba for Efficient Multivariate Time Series Analysis
Abstract:
Accurate and efficient multivariate time series (MTS) analysis is increasingly critical for a wide range of intelligent applications. Within this realm, Transformers have emerged as the predominant architecture due to their strong ability to capture pairwise dependencies. However, Transformer-based models suffer from quadratic computational complexity and high memory overhead, limiting their scalability and practical deployment in long-term and large-scale MTS modeling. Recently, Mamba has emerged as a promising linear-time alternative with high expressiveness. Nevertheless, directly applying vanilla Mamba to MTS remains suboptimal due to three key limitations: (i) the lack of explicit cross-variate modeling, (ii) difficulty in disentangling the entangled intra-series temporal dynamics and inter-series interactions, and (iii) insufficient modeling of latent time-lag interaction effects. These issues constrain its effectiveness across diverse MTS tasks. To address these challenges, we propose DeMa, a dual-path delay-aware Mamba backbone. DeMa preserves Mamba's linear-complexity advantage while substantially improving its suitability for MTS settings. Specifically, DeMa introduces three key innovations: (i) it decomposes the MTS into intra-series temporal dynamics and inter-series interactions; (ii) it develops a temporal path with a Mamba-SSD module to capture long-range dynamics within each individual series, enabling series-independent, parallel computation; and (iii) it designs a variate path with a Mamba-DALA module that integrates delay-aware linear attention to model cross-variate dependencies. Extensive experiments on five representative tasks, long- and short-term forecasting, data imputation, anomaly detection, and series classification, demonstrate that DeMa achieves state-of-the-art performance while delivering remarkable computational efficiency.
Authors:Yuanting Fan, Jun Liu, Xiaochen Chen, Bin-Bin Gao, Jian Li, Yong Liu, Jinlong Peng, Chengjie Wang
Title: Towards Fine-Grained Vision-Language Alignment for Few-Shot Anomaly Detection
Abstract:
Few-shot anomaly detection (FSAD) methods identify anomalous regions with few known normal samples. Most existing methods rely on the generalization ability of pre-trained vision-language models (VLMs) to recognize potentially anomalous regions through feature similarity between text descriptions and images. However, due to the lack of detailed textual descriptions, these methods can only pre-define image-level descriptions to match each visual patch token to identify potential anomalous regions, which leads to the semantic misalignment between image descriptions and patch-level visual anomalies, achieving sub-optimal localization performance. To address the above issues, we propose the Multi-Level Fine-Grained Semantic Caption (MFSC) to provide multi-level and fine-grained textual descriptions for existing anomaly detection datasets with automatic construction pipeline. Based on the MFSC, we propose a novel framework named FineGrainedAD to improve anomaly localization performance, which consists of two components: Multi-Level Learnable Prompt (MLLP) and Multi-Level Semantic Alignment (MLSA). MLLP introduces fine-grained semantics into multi-level learnable prompts through automatic replacement and concatenation mechanism, while MLSA designs region aggregation strategy and multi-level alignment training to facilitate learnable prompts better align with corresponding visual regions. Experiments demonstrate that the proposed FineGrainedAD achieves superior overall performance in few-shot settings on MVTec-AD and VisA datasets.
Authors:Zhaopeng Gu, Bingke Zhu, Guibo Zhu, Yingying Chen, Wei Ge, Ming Tang, Jinqiao Wang
Title: AnomalyMoE: Towards a Language-free Generalist Model for Unified Visual Anomaly Detection
Abstract:
Anomaly detection is a critical task across numerous domains and modalities, yet existing methods are often highly specialized, limiting their generalizability. These specialized models, tailored for specific anomaly types like textural defects or logical errors, typically exhibit limited performance when deployed outside their designated contexts. To overcome this limitation, we propose AnomalyMoE, a novel and universal anomaly detection framework based on a Mixture-of-Experts (MoE) architecture. Our key insight is to decompose the complex anomaly detection problem into three distinct semantic hierarchies: local structural anomalies, component-level semantic anomalies, and global logical anomalies. AnomalyMoE correspondingly employs three dedicated expert networks at the patch, component, and global levels, and is specialized in reconstructing features and identifying deviations at its designated semantic level. This hierarchical design allows a single model to concurrently understand and detect a wide spectrum of anomalies. Furthermore, we introduce an Expert Information Repulsion (EIR) module to promote expert diversity and an Expert Selection Balancing (ESB) module to ensure the comprehensive utilization of all experts. Experiments on 8 challenging datasets spanning industrial imaging, 3D point clouds, medical imaging, video surveillance, and logical anomaly detection demonstrate that AnomalyMoE establishes new state-of-the-art performance, significantly outperforming specialized methods in their respective domains.
Authors:Long Qian, Bingke Zhu, Yingying Chen, Ming Tang, Jinqiao Wang
Title: Quality-Aware Language-Conditioned Local Auto-Regressive Anomaly Synthesis and Detection
Abstract:
Despite substantial progress in anomaly synthesis methods, existing diffusion-based and coarse inpainting pipelines commonly suffer from structural deficiencies such as micro-structural discontinuities, limited semantic controllability, and inefficient generation. To overcome these limitations, we introduce ARAS, a language-conditioned, auto-regressive anomaly synthesis approach that precisely injects local, text-specified defects into normal images via token-anchored latent editing. Leveraging a hard-gated auto-regressive operator and a training-free, context-preserving masked sampling kernel, ARAS significantly enhances defect realism, preserves fine-grained material textures, and provides continuous semantic control over synthesized anomalies. Integrated within our Quality-Aware Re-weighted Anomaly Detection (QARAD) framework, we further propose a dynamic weighting strategy that emphasizes high-quality synthetic samples by computing an image-text similarity score with a dual-encoder model. Extensive experiments across three benchmark datasets-MVTec AD, VisA, and BTAD, demonstrate that our QARAD outperforms SOTA methods in both image- and pixel-level anomaly detection tasks, achieving improved accuracy, robustness, and a 5 times synthesis speedup compared to diffusion-based alternatives. Our complete code and synthesized dataset will be publicly available.
Authors:Long Qian, Bingke Zhu, Yingying Chen, Ming Tang, Jinqiao Wang
Title: MathPhys-Guided Coarse-to-Fine Anomaly Synthesis with SQE-Driven Bi-Level Optimization for Anomaly Detection
Abstract:
Currently, industrial anomaly detection suffers from two bottlenecks: (i) the rarity of real-world defect images and (ii) the opacity of sample quality when synthetic data are used. Existing synthetic strategies (e.g., cut-and-paste) overlook the underlying physical causes of defects, leading to inconsistent, low-fidelity anomalies that hamper model generalization to real-world complexities. In this paper, we introduce a novel and lightweight pipeline that generates synthetic anomalies through Math-Phys model guidance, refines them via a Coarse-to-Fine approach and employs a bi-level optimization strategy with a Synthesis Quality Estimator (SQE). By combining physical modeling of the three most typical physics-driven defect mechanisms: Fracture Line (FL), Pitting Loss (PL), and Plastic Warpage (PW), our method produces realistic defect masks, which are subsequently enhanced in two phases. The first stage (npcF) enforces a PDE-based consistency to achieve a globally coherent anomaly structure, while the second stage (npcF++) further improves local fidelity. Additionally, we leverage SQE-driven weighting, ensuring that high-quality synthetic samples receive greater emphasis during training. To validate our method, we conduct experiments on three anomaly detection benchmarks: MVTec AD, VisA, and BTAD. Across these datasets, our method achieves state-of-the-art results in both image- and pixel-AUROC, confirming the effectiveness of our MaPhC2F dataset and BiSQAD method. All code will be released.
Authors:Long Qian, Bingke Zhu, Yingying Chen, Ming Tang, Jinqiao Wang
Title: Friend or Foe? Harnessing Controllable Overfitting for Anomaly Detection
Abstract:
Overfitting has traditionally been viewed as detrimental to anomaly detection, where excessive generalization often limits models' sensitivity to subtle anomalies. Our work challenges this conventional view by introducing Controllable Overfitting-based Anomaly Detection (COAD), a novel framework that strategically leverages overfitting to enhance anomaly discrimination capabilities. We propose the Aberrance Retention Quotient (ARQ), a novel metric that systematically quantifies the extent of overfitting, enabling the identification of an optimal golden overfitting interval wherein model sensitivity to anomalies is maximized without sacrificing generalization. To comprehensively capture how overfitting affects detection performance, we further propose the Relative Anomaly Distribution Index (RADI), a metric superior to traditional AUROC by explicitly modeling the separation between normal and anomalous score distributions. Theoretically, RADI leverages ARQ to track and evaluate how overfitting impacts anomaly detection, offering an integrated approach to understanding the relationship between overfitting dynamics and model efficacy. We also rigorously validate the statistical efficacy of Gaussian noise as pseudo-anomaly generators, reinforcing the method's broad applicability. Empirical evaluations demonstrate that our controllable overfitting method achieves State-Of-The-Art(SOTA) performance in both one-class and multi-class anomaly detection tasks, thus redefining overfitting as a powerful strategy rather than a limitation.
Authors:Huilin Deng, Hongchen Luo, Wei Zhai, Yang Cao, Yu Kang
Title: VMAD: Visual-enhanced Multimodal Large Language Model for Zero-Shot Anomaly Detection
Abstract:
Zero-shot anomaly detection (ZSAD) recognizes and localizes anomalies in previously unseen objects by establishing feature mapping between textual prompts and inspection images, demonstrating excellent research value in flexible industrial manufacturing. However, existing ZSAD methods are limited by closed-world settings, struggling to unseen defects with predefined prompts. Recently, adapting Multimodal Large Language Models (MLLMs) for Industrial Anomaly Detection (IAD) presents a viable solution. Unlike fixed-prompt methods, MLLMs exhibit a generative paradigm with open-ended text interpretation, enabling more adaptive anomaly analysis. However, this adaption faces inherent challenges as anomalies often manifest in fine-grained regions and exhibit minimal visual discrepancies from normal samples. To address these challenges, we propose a novel framework VMAD (Visual-enhanced MLLM Anomaly Detection) that enhances MLLM with visual-based IAD knowledge and fine-grained perception, simultaneously providing precise detection and comprehensive analysis of anomalies. Specifically, we design a Defect-Sensitive Structure Learning scheme that transfers patch-similarities cues from visual branch to our MLLM for improved anomaly discrimination. Besides, we introduce a novel visual projector, Locality-enhanced Token Compression, which mines multi-level features in local contexts to enhance fine-grained detection. Furthermore, we introduce the Real Industrial Anomaly Detection (RIAD), a comprehensive IAD dataset with detailed anomaly descriptions and analyses, offering a valuable resource for MLLM-based IAD development. Extensive experiments on zero-shot benchmarks, including MVTec-AD, Visa, WFDD, and RIAD datasets, demonstrate our superior performance over state-of-the-art methods. The code and dataset will be available soon.
Authors:Haoran Zhang, Yong Liu, Yunzhong Qiu, Haixuan Liu, Zhongyi Pei, Jianmin Wang, Mingsheng Long
Title: TimesBERT: A BERT-Style Foundation Model for Time Series Understanding
Abstract:
Time series analysis is crucial in diverse scenarios. Beyond forecasting, considerable real-world tasks are categorized into classification, imputation, and anomaly detection, underscoring different capabilities termed time series understanding in this paper. While GPT-style models have been positioned as foundation models for time series forecasting, the BERT-style architecture, which has made significant advances in natural language understanding, has not been fully unlocked for time series understanding, possibly attributed to the undesirable dropout of essential elements of BERT. In this paper, inspired by the shared multi-granularity structure between multivariate time series and multisentence documents, we design TimesBERT to learn generic representations of time series including temporal patterns and variate-centric characteristics. In addition to a natural adaptation of masked modeling, we propose a parallel task of functional token prediction to embody vital multi-granularity structures. Our model is pre-trained on 260 billion time points across diverse domains. Leveraging multi-granularity representations, TimesBERT achieves state-of-the-art performance across four typical downstream understanding tasks, outperforming task-specific models and language pre-trained backbones, positioning it as a versatile foundation model for time series understanding.
Authors:Wei Tao, Xiaoyang Qu, Kai Lu, Jiguang Wan, Guokuan Li, Jianzong Wang
Title: MADLLM: Multivariate Anomaly Detection via Pre-trained LLMs
Abstract:
When applying pre-trained large language models (LLMs) to address anomaly detection tasks, the multivariate time series (MTS) modality of anomaly detection does not align with the text modality of LLMs. Existing methods simply transform the MTS data into multiple univariate time series sequences, which can cause many problems. This paper introduces MADLLM, a novel multivariate anomaly detection method via pre-trained LLMs. We design a new triple encoding technique to align the MTS modality with the text modality of LLMs. Specifically, this technique integrates the traditional patch embedding method with two novel embedding approaches: Skip Embedding, which alters the order of patch processing in traditional methods to help LLMs retain knowledge of previous features, and Feature Embedding, which leverages contrastive learning to allow the model to better understand the correlations between different features. Experimental results demonstrate that our method outperforms state-of-the-art methods in various public anomaly detection datasets.
Authors:Bin Han, Di Feng, Jie Wang, Hans D. Schotten
Title: Quotation-Based Data Retention Mechanism for Data Privacy in LLM-Empowered Network Services
Abstract:
The deployment of large language models (LLMs) for next-generation network optimization introduces novel data governance challenges. mobile network operators (MNOs) increasingly leverage generative artificial intelligence (AI) for traffic prediction, anomaly detection, and service personalization, requiring access to users' sensitive network usage data-including mobility patterns, traffic types, and location histories. Under the General Data Protection Regulation (GDPR), the California Consumer Privacy Act (CCPA), and similar regulations, users retain the right to withdraw consent and demand data deletion. However, extensive machine unlearning degrades model accuracy and incurs substantial computational costs, ultimately harming network performance for all users. We propose an iterative price discovery mechanism enabling MNOs to compensate users for data retention through sequential price quotations. The server progressively raises the unit price for retaining data while users independently determine their supply at each quoted price. This approach requires no prior knowledge of users' privacy preferences and efficiently maximizes social welfare across the network ecosystem.
Authors:Shixuan Song, Hao Chen, Shu Hu, Xin Wang, Jinrong Hu, Xi Wu
Title: Teacher Encoder-Student Decoder Denoising Guided Segmentation Network for Anomaly Detection
Abstract:
Visual anomaly detection is a highly challenging task, often categorized as a one-class classification and segmentation problem. Recent studies have demonstrated that the student-teacher (S-T) framework effectively addresses this challenge. However, most S-T frameworks rely solely on pre-trained teacher networks to guide student networks in learning multi-scale similar features, overlooking the potential of the student networks to enhance learning through multi-scale feature fusion. In this study, we propose a novel model named PFADSeg, which integrates a pre-trained teacher network, a denoising student network with multi-scale feature fusion, and a guided anomaly segmentation network into a unified framework. By adopting a unique teacher-encoder and student-decoder denoising mode, the model improves the student network's ability to learn from teacher network features. Furthermore, an adaptive feature fusion mechanism is introduced to train a self-supervised segmentation network that synthesizes anomaly masks autonomously, significantly increasing detection performance. Evaluated on the MVTec AD dataset, PFADSeg achieves state-of-the-art results with an image-level AUC of 98.9%, a pixel-level mean precision of 76.4%, and an instance-level mean precision of 78.7%.
Authors:Phai Vu Dinh, Diep N. Nguyen, Dinh Thai Hoang, Quang Uy Nguyen, Eryk Dutkiewicz
Title: Multiple-Input Variational Auto-Encoder for Anomaly Detection in Heterogeneous Data
Abstract:
Anomaly detection (AD) plays a pivotal role in AI applications, e.g., in classification, and intrusion/threat detection in cybersecurity. However, most existing methods face challenges of heterogeneity amongst feature subsets posed by non-independent and identically distributed (non-IID) data. We propose a novel neural network model called Multiple-Input Auto-Encoder for AD (MIAEAD) to address this. MIAEAD assigns an anomaly score to each feature subset of a data sample to indicate its likelihood of being an anomaly. This is done by using the reconstruction error of its sub-encoder as the anomaly score. All sub-encoders are then simultaneously trained using unsupervised learning to determine the anomaly scores of feature subsets. The final AUC of MIAEAD is calculated for each sub-dataset, and the maximum AUC obtained among the sub-datasets is selected. To leverage the modelling of the distribution of normal data to identify anomalies of the generative models, we develop a novel neural network architecture/model called Multiple-Input Variational Auto-Encoder (MIVAE). MIVAE can process feature subsets through its sub-encoders before learning distribution of normal data in the latent space. This allows MIVAE to identify anomalies that deviate from the learned distribution. We theoretically prove that the difference in the average anomaly score between normal samples and anomalies obtained by the proposed MIVAE is greater than that of the Variational Auto-Encoder (VAEAD), resulting in a higher AUC for MIVAE. Extensive experiments on eight real-world anomaly datasets demonstrate the superior performance of MIAEAD and MIVAE over conventional methods and the state-of-the-art unsupervised models, by up to 6% in terms of AUC score. Alternatively, MIAEAD and MIVAE have a high AUC when applied to feature subsets with low heterogeneity based on the coefficient of variation (CV) score.
Authors:Lipeng Ma, Yixuan Li, Weidong Yang, Mingjie Zhou, Xinyi Liu, Ben Fei, Shuhao Li, Xiaoyan Sun, Sihang Jiang, Yanghua Xiao
Title: LogReasoner: Empowering LLMs with Expert-like Coarse-to-Fine Reasoning for Automated Log Analysis
Abstract:
Log analysis is crucial for monitoring system health and diagnosing failures in complex systems. Recent advances in large language models (LLMs) offer new opportunities for automated log analysis, leveraging their reasoning capabilities to perform tasks such as anomaly detection and failure prediction. However, general-purpose LLMs struggle to formulate structured reasoning workflows that align with expert cognition and deliver precise details of reasoning steps. To address these challenges, we propose LogReasoner, a coarse-to-fine reasoning enhancement framework designed to enable LLMs to reason log analysis tasks like experts. LogReasoner consists of two stages: (1) coarse-grained enhancement of expert thinking, where high-level expert thoughts are constructed from collected troubleshooting flowcharts and existing tasks to enable LLMs to formulate structured reasoning workflows and (2) fine-grained enhancement of specific steps, where we first fine-tune the LLM with task-specific stepwise solutions to enhance the LLM for instantiated reasoning, then employ the preference learning to calibrate the LLM's reasoning details from its mistakes, further strengthen the LLM's analytical granularity and correctness. We evaluate LogReasoner on four distinct log analysis tasks using open-source LLMs such as Qwen-2.5 and Llama-3. Experimental results show that LogReasoner significantly outperforms existing LLMs, achieving state-of-the-art performance and demonstrating its effectiveness in enhancing the reasoning capabilities of LLMs for log analysis.
Authors:Yue Wang, Xu Cao, Yaojun Hu, Haochao Ying, Hongxia Xu, Ruijia Wu, James Matthew Rehg, Jimeng Sun, Jian Wu, Jintai Chen
Title: AnyECG: Foundational Models for Multitask Cardiac Analysis in Real-World Settings
Abstract:
Electrocardiogram (ECG), a non-invasive and affordable tool for cardiac monitoring, is highly sensitive in detecting acute heart attacks. However, due to the lengthy nature of ECG recordings, numerous machine learning methods have been developed for automated heart disease detection to reduce human workload. Despite these efforts, performance remains suboptimal. A key obstacle is the inherent complexity of ECG data, which includes heterogeneity (e.g., varying sampling rates), high levels of noise, demographic-related pattern shifts, and intricate rhythm-event associations. To overcome these challenges, this paper introduces AnyECG, a foundational model designed to extract robust representations from any real-world ECG data. Specifically, a tailored ECG Tokenizer encodes each fixed-duration ECG fragment into a token and, guided by proxy tasks, converts noisy, continuous ECG features into discrete, compact, and clinically meaningful local rhythm codes. These codes encapsulate basic morphological, frequency, and demographic information (e.g., sex), effectively mitigating signal noise. We further pre-train the AnyECG to learn rhythmic pattern associations across ECG tokens, enabling the capture of cardiac event semantics. By being jointly pre-trained on diverse ECG data sources, AnyECG is capable of generalizing across a wide range of downstream tasks where ECG signals are recorded from various devices and scenarios. The experimental results show that AnyECG achieves an average performance improvement of 6% across four critical tasks-anomaly detection, arrhythmia classification, corrupted lead generation, and ultra-long ECG recognition. AnyECG learns common ECG rhythm from data and significantly outperforms state-of-the-art methods in each of these tasks.
Authors:Yuta Kaneko, Abu Saleh Musa Miah, Najmul Hassan, Hyoun-Sup Lee, Si-Woong Jang, Jungpil Shin
Title: Multimodal Attention-Enhanced Feature Fusion-based Weekly Supervised Anomaly Violence Detection
Abstract:
Weakly supervised video anomaly detection (WS-VAD) is a crucial area in computer vision for developing intelligent surveillance systems. This system uses three feature streams: RGB video, optical flow, and audio signals, where each stream extracts complementary spatial and temporal features using an enhanced attention module to improve detection accuracy and robustness. In the first stream, we employed an attention-based, multi-stage feature enhancement approach to improve spatial and temporal features from the RGB video where the first stage consists of a ViT-based CLIP module, with top-k features concatenated in parallel with I3D and Temporal Contextual Aggregation (TCA) based rich spatiotemporal features. The second stage effectively captures temporal dependencies using the Uncertainty-Regulated Dual Memory Units (UR-DMU) model, which learns representations of normal and abnormal data simultaneously, and the third stage is employed to select the most relevant spatiotemporal features. The second stream extracted enhanced attention-based spatiotemporal features from the flow data modality-based feature by taking advantage of the integration of the deep learning and attention module. The audio stream captures auditory cues using an attention module integrated with the VGGish model, aiming to detect anomalies based on sound patterns. These streams enrich the model by incorporating motion and audio signals often indicative of abnormal events undetectable through visual analysis alone. The concatenation of the multimodal fusion leverages the strengths of each modality, resulting in a comprehensive feature set that significantly improves anomaly detection accuracy and robustness across three datasets. The extensive experiment and high performance with the three benchmark datasets proved the effectiveness of the proposed system over the existing state-of-the-art system.
Authors:Rong Zhou, Dongping Chen, Zihan Jia, Yao Su, Yixin Liu, Yiwen Lu, Dongwei Shi, Yue Huang, Tianyang Xu, Yi Pan, Xinliang Li, Yohannes Abate, Qingyu Chen, Zhengzhong Tu, Yu Yang, Yu Zhang, Qingsong Wen, Gengchen Mai, Sunyang Fu, Jiachen Li, Xuyu Wang, Ziran Wang, Jing Huang, Tianming Liu, Yong Chen, Lichao Sun, Lifang He
Title: Digital Twin AI: Opportunities and Challenges from Large Language Models to World Models
Abstract:
Digital twins, as precise digital representations of physical systems, have evolved from passive simulation tools into intelligent and autonomous entities through the integration of artificial intelligence technologies. This paper presents a unified four-stage framework that systematically characterizes AI integration across the digital twin lifecycle, spanning modeling, mirroring, intervention, and autonomous management. By synthesizing existing technologies and practices, we distill a unified four-stage framework that systematically characterizes how AI methodologies are embedded across the digital twin lifecycle: (1) modeling the physical twin through physics-based and physics-informed AI approaches, (2) mirroring the physical system into a digital twin with real-time synchronization, (3) intervening in the physical twin through predictive modeling, anomaly detection, and optimization strategies, and (4) achieving autonomous management through large language models, foundation models, and intelligent agents. We analyze the synergy between physics-based modeling and data-driven learning, highlighting the shift from traditional numerical solvers to physics-informed and foundation models for physical systems. Furthermore, we examine how generative AI technologies, including large language models and generative world models, transform digital twins into proactive and self-improving cognitive systems capable of reasoning, communication, and creative scenario generation. Through a cross-domain review spanning eleven application domains, including healthcare, aerospace, smart manufacturing, robotics, and smart cities, we identify common challenges related to scalability, explainability, and trustworthiness, and outline directions for responsible AI-driven digital twin systems.
Authors:Junjie Huang, Minghua He, Jinyang Liu, Yintong Huo, Domenico Bianculli, Michael R. Lyu
Title: CodeAD: Synthesize Code of Rules for Log-based Anomaly Detection with LLMs
Abstract:
Log-based anomaly detection (LogAD) is critical for maintaining the reliability and availability of large-scale online service systems. While machine learning, deep learning, and large language models (LLMs)-based methods have advanced the LogAD, they often suffer from limited interpretability, high inference costs, and extensive preprocessing requirements, limiting their practicality for real-time, high-volume log analysis. In contrast, rule-based systems offer efficiency and transparency, but require significant manual effort and are difficult to scale across diverse and evolving environments. In this paper, We present CodeAD, a novel framework that automatically synthesizes lightweight Python rule functions for LogAD using LLMs. CodeAD introduces a hierarchical clustering and anchor-grounded sampling strategy to construct representative contrastive log windows, enabling LLMs to discern discriminative anomaly patterns. To ensure robustness and generalizability, CodeAD employs an agentic workflow that iteratively generates, tests, repairs, and refines the rules until it meets correctness and abstraction requirements. The synthesized rules are interpretable, lightweight, and directly executable on raw logs, supporting efficient and transparent online anomaly detection. Our comprehensive experiments on three public datasets (BGL, Hadoop, Thunderbird) demonstrate that CodeAD achieves an average absolute improvement of 3.6% F1 score over the state-of-the-art baselines, while processing large datasets up to 4x faster and at a fraction of the cost (total LLM invocation cost under 4 USD per dataset). These results highlight CodeAD as a practical and scalable solution for online monitoring systems, enabling interpretable, efficient, and automated LogAD in real-world environment.
Authors:Wenwei Gu, Renyi Zhong, Guangba Yu, Xinying Sun, Jinyang Liu, Yintong Huo, Zhuangbin Chen, Jianping Zhang, Jiazhen Gu, Yongqiang Yang, Michael R. Lyu
Title: KPIRoot+: An Efficient Integrated Framework for Anomaly Detection and Root Cause Analysis in Large-Scale Cloud Systems
Abstract:
To ensure the reliability of cloud systems, their performance is monitored using KPIs (key performance indicators). When issues arise, root cause localization identifies KPIs responsible for service degradation, aiding in quick diagnosis and resolution. Traditional methods rely on similarity calculations, which can be ineffective in complex, interdependent cloud environments. While deep learning-based approaches model these dependencies better, they often face challenges such as high computational demands and lack of interpretability. To address these issues, KPIRoot is proposed as an efficient method combining similarity and causality analysis. It uses symbolic aggregate approximation for compact KPI representation, improving analysis efficiency. However, deployment in Cloud H revealed two drawbacks: 1) threshold-based anomaly detection misses some performance anomalies, and 2) SAX representation fails to capture intricate variation trends. KPIRoot+ addresses these limitations, outperforming eight state-of-the-art baselines by 2.9% to 35.7%, while reducing time cost by 34.7%. We also share our experience deploying KPIRoot in a large-scale cloud provider's production environment.
Authors:Yaxuan Kong, Yiyuan Yang, Yoontae Hwang, Wenjie Du, Stefan Zohren, Zhangyang Wang, Ming Jin, Qingsong Wen
Title: Time-MQA: Time Series Multi-Task Question Answering with Context Enhancement
Abstract:
Time series data are foundational in finance, healthcare, and energy domains. However, most existing methods and datasets remain focused on a narrow spectrum of tasks, such as forecasting or anomaly detection. To bridge this gap, we introduce Time Series Multi-Task Question Answering (Time-MQA), a unified framework that enables natural language queries across multiple time series tasks - numerical analytical tasks and open-ended question answering with reasoning. Central to Time-MQA is the TSQA dataset, a large-scale dataset containing $\sim$200k question-answer pairs derived from diverse time series spanning environment, traffic, etc. This comprehensive resource covers various time series lengths and promotes robust model development. We further demonstrate how continually pre-training large language models (Mistral 7B, Llama-3 8B, and Qwen-2.5 7B) on the TSQA dataset enhanced time series reasoning capabilities, moving beyond mere numeric tasks and enabling more advanced and intuitive interactions with temporal data. The complete TSQA dataset, models, user study questionnaires for evaluation, and other related materials have been open-sourced.
Authors:Muhamamd Haris Khan, Selamawit Asfaw, Dmitrii Iarchuk, Miguel Altamirano Cabrera, Luis Moreno, Issatay Tokmurziyev, Dzmitry Tsetserukou
Title: Shake-VLA: Vision-Language-Action Model-Based System for Bimanual Robotic Manipulations and Liquid Mixing
Abstract:
This paper introduces Shake-VLA, a Vision-Language-Action (VLA) model-based system designed to enable bimanual robotic manipulation for automated cocktail preparation. The system integrates a vision module for detecting ingredient bottles and reading labels, a speech-to-text module for interpreting user commands, and a language model to generate task-specific robotic instructions. Force Torque (FT) sensors are employed to precisely measure the quantity of liquid poured, ensuring accuracy in ingredient proportions during the mixing process. The system architecture includes a Retrieval-Augmented Generation (RAG) module for accessing and adapting recipes, an anomaly detection mechanism to address ingredient availability issues, and bimanual robotic arms for dexterous manipulation. Experimental evaluations demonstrated a high success rate across system components, with the speech-to-text module achieving a 93% success rate in noisy environments, the vision module attaining a 91% success rate in object and label detection in cluttered environment, the anomaly module successfully identified 95% of discrepancies between detected ingredients and recipe requirements, and the system achieved an overall success rate of 100% in preparing cocktails, from recipe formulation to action generation.
Authors:Yizhou Jin, Jiahui Zhu, Guodong Wang, Shiwei Li, Jinjin Zhang, Xinyue Liu, Qingjie Liu, Yunhong Wang
Title: ONER: Online Experience Replay for Incremental Anomaly Detection
Abstract:
Incremental anomaly detection aims to sequentially identify defects in industrial product lines but suffers from catastrophic forgetting, primarily due to knowledge overwriting during parameter updates and feature conflicts between tasks. In this work, We propose ONER (ONline Experience Replay), an end-to-end framework that addresses these issues by synergistically integrating two types of experience: (1) decomposed prompts, which dynamically generate image-conditioned prompts from reusable modules to retain prior knowledge thus prevent knowledge overwriting, and (2) semantic prototypes, which enforce separability in latent feature spaces at pixel and image levels to mitigate cross-task feature conflicts. Extensive experiments demonstrate the superiority of ONER, achieving state-of-the-art performance with +4.4% Pixel AUROC and +28.3% Pixel AUPR improvements on the MVTec AD dataset over prior methods. Remarkably, ONER achieves this with only 0.019M parameters and 5 training epochs per task, confirming its efficiency and stability for real-world industrial deployment.
Authors:Shenglin Zhang, Ziang Chen, Zijing Que, Yilun Liu, Yongqian Sun, Sicheng Wei, Dan Pei, Hailin Li
Title: LogPurge: Log Data Purification for Anomaly Detection via Rule-Enhanced Filtering
Abstract:
Log anomaly detection, which is critical for identifying system failures and preempting security breaches, detects irregular patterns within large volumes of log data, and impacts domains such as service reliability, performance optimization, and database log analysis. Modern log anomaly detection methods rely on training deep learning models on clean, anomaly-free log sequences. However, obtaining such clean log data requires costly and tedious human labeling, and existing automatic cleaning methods fail to fully integrate the specific characteristics and actual semantics of logs in their purification process. In this paper, we propose a cost-aware, rule-enhanced purification framework, LogPurge, that automatically selects a sufficient subset of normal log sequences from contamination log sequences to train a anomaly detection model. Our approach involves a two-stage filtering algorithm: In the first stage, we use a large language model (LLM) to remove clustered anomalous patterns and enhance system rules to improve LLM's understanding of system logs; in the second stage, we utilize a divide-and-conquer strategy that decomposes the remaining contaminated regions into smaller subproblems, allowing each to be effectively purified through the first stage procedure. Our experiments, conducted on two public datasets and one industrial dataset, show that our method significantly removes an average of 98.74% of anomalies while retaining 82.39% of normal samples. Compared to the latest unsupervised log sample selection algorithms, our method achieves F-1 score improvements of 35.7% and 84.11% on the public datasets, and an impressive 149.72% F-1 improvement on the private dataset, demonstrating the effectiveness of our approach.
Authors:Song Xu, Yilun Liu, Minggui He, Mingchen Dai, Ziang Chen, Chunguang Zhao, Jingzhou Du, Shimin Tao, Weibin Meng, Shenglin Zhang, Yongqian Sun, Boxing Chen, Daimeng Wei
Title: RationAnomaly: Log Anomaly Detection with Rationality via Chain-of-Thought and Reinforcement Learning
Abstract:
Logs constitute a form of evidence signaling the operational status of software systems. Automated log anomaly detection is crucial for ensuring the reliability of modern software systems. However, existing approaches face significant limitations: traditional deep learning models lack interpretability and generalization, while methods leveraging Large Language Models are often hindered by unreliability and factual inaccuracies. To address these issues, we propose RationAnomaly, a novel framework that enhances log anomaly detection by synergizing Chain-of-Thought (CoT) fine-tuning with reinforcement learning. Our approach first instills expert-like reasoning patterns using CoT-guided supervised fine-tuning, grounded in a high-quality dataset corrected through a rigorous expert-driven process. Subsequently, a reinforcement learning phase with a multi-faceted reward function optimizes for accuracy and logical consistency, effectively mitigating hallucinations. Experimentally, RationAnomaly outperforms state-of-the-art baselines, achieving superior F1-scores on key benchmarks while providing transparent, step-by-step analytical outputs. We have released the corresponding resources, including code and datasets.
Authors:Jialun Zheng, Jie Liu, Jiannong Cao, Xiao Wang, Hanchen Yang, Yankai Chen, Philip S. Yu
Title: DP-DGAD: A Generalist Dynamic Graph Anomaly Detector with Dynamic Prototypes
Abstract:
Dynamic graph anomaly detection (DGAD) is essential for identifying anomalies in evolving graphs across domains such as finance, traffic, and social networks. Recently, generalist graph anomaly detection (GAD) models have shown promising results. They are pretrained on multiple source datasets and generalize across domains. While effective on static graphs, they struggle to capture evolving anomalies in dynamic graphs. Moreover, the continuous emergence of new domains and the lack of labeled data further challenge generalist DGAD. Effective cross-domain DGAD requires both domain-specific and domain-agnostic anomalous patterns. Importantly, these patterns evolve temporally within and across domains. Building on these insights, we propose a DGAD model with Dynamic Prototypes (DP) to capture evolving domain-specific and domain-agnostic patterns. Firstly, DP-DGAD extracts dynamic prototypes, i.e., evolving representations of normal and anomalous patterns, from temporal ego-graphs and stores them in a memory buffer. The buffer is selectively updated to retain general, domain-agnostic patterns while incorporating new domain-specific ones. Then, an anomaly scorer compares incoming data with dynamic prototypes to flag both general and domain-specific anomalies. Finally, DP-DGAD employs confidence-based pseudo-labeling for effective self-supervised adaptation in target domains. Extensive experiments demonstrate state-of-the-art performance across ten real-world datasets from different domains.
Authors:Yongqian Sun, Yu Luo, Xidao Wen, Yuan Yuan, Xiaohui Nie, Shenglin Zhang, Tong Liu, Xi Luo
Title: TrioXpert: An automated incident management framework for microservice system
Abstract:
Automated incident management plays a pivotal role in large-scale microservice systems. However, many existing methods rely solely on single-modal data (e.g., metrics, logs, and traces) and struggle to simultaneously address multiple downstream tasks, including anomaly detection (AD), failure triage (FT), and root cause localization (RCL). Moreover, the lack of clear reasoning evidence in current techniques often leads to insufficient interpretability. To address these limitations, we propose TrioXpert, an end-to-end incident management framework capable of fully leveraging multimodal data. TrioXpert designs three independent data processing pipelines based on the inherent characteristics of different modalities, comprehensively characterizing the operational status of microservice systems from both numerical and textual dimensions. It employs a collaborative reasoning mechanism using large language models (LLMs) to simultaneously handle multiple tasks while providing clear reasoning evidence to ensure strong interpretability. We conducted extensive evaluations on two popular microservice system datasets, and the experimental results demonstrate that TrioXpert achieves outstanding performance in AD (improving by 4.7% to 57.7%), FT (improving by 2.1% to 40.6%), and RCL (improving by 1.6% to 163.1%) tasks.
Authors:Hongwei Ji, Wulian Yun, Mengshi Qi, Huadong Ma
Title: Chain-of-Thought Textual Reasoning for Few-shot Temporal Action Localization
Abstract:
Traditional temporal action localization (TAL) methods rely on large amounts of detailed annotated data, whereas few-shot TAL reduces this dependence by using only a few training samples to identify unseen action categories. However, existing few-shot TAL methods typically focus solely on video-level information, neglecting textual information, which can provide valuable semantic support for the localization task. Therefore, we propose a new few-shot temporal action localization method by Chain-of-Thought textual reasoning to improve localization performance. Specifically, we design a novel few-shot learning framework that leverages textual semantic information to enhance the model's ability to capture action commonalities and variations, which includes a semantic-aware text-visual alignment module designed to align the query and support videos at different levels. Meanwhile, to better express the temporal dependencies and causal relationships between actions at the textual level to assist action localization, we design a Chain of Thought (CoT)-like reasoning method that progressively guides the Vision Language Model (VLM) and Large Language Model (LLM) to generate CoT-like text descriptions for videos. The generated texts can capture more variance of action than visual features. We conduct extensive experiments on the publicly available ActivityNet1.3 and THUMOS14 datasets. We introduce the first dataset named Human-related Anomaly Localization and explore the application of the TAL task in human anomaly detection. The experimental results demonstrate that our proposed method significantly outperforms existing methods in single-instance and multi-instance scenarios. We will release our code, data and benchmark.
Authors:Yilun Liu, Yuhe Ji, Shimin Tao, Minggui He, Weibin Meng, Shenglin Zhang, Yongqian Sun, Yuming Xie, Boxing Chen, Hao Yang
Title: LogLM: From Task-based to Instruction-based Automated Log Analysis
Abstract:
Automatic log analysis is essential for the efficient Operation and Maintenance (O&M) of software systems, providing critical insights into system behaviors. However, existing approaches mostly treat log analysis as training a model to perform an isolated task ( e.g., anomaly detection, log parsing, etc.) using task-specific log-label pairs. These task-based approaches are inflexible in generalizing to complex scenarios, depend on task-specific training data, and cost significantly when deploying multiple models. In this paper, we propose an instruction-based training approach that transforms log-label pairs from multiple tasks and domains into a unified format of instruction-response pairs. Our trained model, LogLM, can follow complex user instructions and generalize better across different tasks, thereby increasing flexibility and reducing the dependence on task-specific training data. By integrating major log analysis tasks into a single model, our approach also relieves model deployment burden. Experimentally, LogLM outperforms existing approaches across five log analysis capabilities, and exhibits strong generalization abilities on complex instructions and unseen tasks.
Authors:Jinghan Li, Yuan Gao, Jinda Lu, Junfeng Fang, Congcong Wen, Hui Lin, Xiang Wang
Title: DiffGAD: A Diffusion-based Unsupervised Graph Anomaly Detector
Abstract:
Graph Anomaly Detection (GAD) is crucial for identifying abnormal entities within networks, garnering significant attention across various fields. Traditional unsupervised methods, which decode encoded latent representations of unlabeled data with a reconstruction focus, often fail to capture critical discriminative content, leading to suboptimal anomaly detection. To address these challenges, we present a Diffusion-based Graph Anomaly Detector (DiffGAD). At the heart of DiffGAD is a novel latent space learning paradigm, meticulously designed to enhance its proficiency by guiding it with discriminative content. This innovative approach leverages diffusion sampling to infuse the latent space with discriminative content and introduces a content-preservation mechanism that retains valuable information across different scales, significantly improving its adeptness at identifying anomalies with limited time and space complexity. Our comprehensive evaluation of DiffGAD, conducted on six real-world and large-scale datasets with various metrics, demonstrated its exceptional performance.
Authors:Tiankai Yang, Junjun Liu, Wingchun Siu, Jiahang Wang, Zhuangzhuang Qian, Chanjuan Song, Cheng Cheng, Xiyang Hu, Yue Zhao
Title: AD-AGENT: A Multi-agent Framework for End-to-end Anomaly Detection
Abstract:
Anomaly detection (AD) is essential in areas such as fraud detection, network monitoring, and scientific research. However, the diversity of data modalities and the increasing number of specialized AD libraries pose challenges for non-expert users who lack in-depth library-specific knowledge and advanced programming skills. To tackle this, we present AD-AGENT, an LLM-driven multi-agent framework that turns natural-language instructions into fully executable AD pipelines. AD-AGENT coordinates specialized agents for intent parsing, data preparation, library and model selection, documentation mining, and iterative code generation and debugging. Using a shared short-term workspace and a long-term cache, the agents integrate popular AD libraries like PyOD, PyGOD, and TSLib into a unified workflow. Experiments demonstrate that AD-AGENT produces reliable scripts and recommends competitive models across libraries. The system is open-sourced to support further research and practical applications in AD.
Authors:Junfeng Guo, Yiming Li, Ruibo Chen, Yihan Wu, Chenxi Liu, Yanshuo Chen, Heng Huang
Title: Towards Copyright Protection for Knowledge Bases of Retrieval-augmented Language Models via Reasoning
Abstract:
Large language models (LLMs) are increasingly integrated into real-world personalized applications through retrieval-augmented generation (RAG) mechanisms to supplement their responses with domain-specific knowledge. However, the valuable and often proprietary nature of the knowledge bases used in RAG introduces the risk of unauthorized usage by adversaries. Existing methods that can be generalized as watermarking techniques to protect these knowledge bases typically involve poisoning or backdoor attacks. However, these methods require altering the LLM's results of verification samples, inevitably making these watermarks susceptible to anomaly detection and even introducing new security risks. To address these challenges, we propose \name{} for `harmless' copyright protection of knowledge bases. Instead of manipulating LLM's final output, \name{} implants distinct yet benign verification behaviors in the space of chain-of-thought (CoT) reasoning, maintaining the correctness of the final answer. Our method has three main stages: (1) Generating CoTs: For each verification question, we generate two `innocent' CoTs, including a target CoT for building watermark behaviors; (2) Optimizing Watermark Phrases and Target CoTs: Inspired by our theoretical analysis, we optimize them to minimize retrieval errors under the \emph{black-box} and \emph{text-only} setting of suspicious LLM, ensuring that only watermarked verification queries can retrieve their correspondingly target CoTs contained in the knowledge base; (3) Ownership Verification: We exploit a pairwise Wilcoxon test to verify whether a suspicious LLM is augmented with the protected knowledge base by comparing its responses to watermarked and benign verification queries. Our experiments on diverse benchmarks demonstrate that \name{} effectively protects knowledge bases and its resistance to adaptive attacks.
Authors:Tiankai Yang, Yi Nian, Shawn Li, Ruiyao Xu, Yuangang Li, Jiaqi Li, Zhuo Xiao, Xiyang Hu, Ryan Rossi, Kaize Ding, Xia Hu, Yue Zhao
Title: AD-LLM: Benchmarking Large Language Models for Anomaly Detection
Abstract:
Anomaly detection (AD) is an important machine learning task with many real-world uses, including fraud detection, medical diagnosis, and industrial monitoring. Within natural language processing (NLP), AD helps detect issues like spam, misinformation, and unusual user activity. Although large language models (LLMs) have had a strong impact on tasks such as text generation and summarization, their potential in AD has not been studied enough. This paper introduces AD-LLM, the first benchmark that evaluates how LLMs can help with NLP anomaly detection. We examine three key tasks: (i) zero-shot detection, using LLMs' pre-trained knowledge to perform AD without tasks-specific training; (ii) data augmentation, generating synthetic data and category descriptions to improve AD models; and (iii) model selection, using LLMs to suggest unsupervised AD models. Through experiments with different datasets, we find that LLMs can work well in zero-shot AD, that carefully designed augmentation methods are useful, and that explaining model selection for specific datasets remains challenging. Based on these results, we outline six future research directions on LLMs for AD.
Authors:Shengchao Chen, Guodong Long, Jing Jiang, Chengqi Zhang
Title: Federated Foundation Models on Heterogeneous Time Series
Abstract:
Training a general-purpose time series foundation models with robust generalization capabilities across diverse applications from scratch is still an open challenge. Efforts are primarily focused on fusing cross-domain time series datasets to extract shared subsequences as tokens for training models on Transformer architecture. However, due to significant statistical heterogeneity across domains, this cross-domain fusing approach doesn't work effectively as the same as fusing texts and images. To tackle this challenge, this paper proposes a novel federated learning approach to address the heterogeneity in time series foundation models training, namely FFTS. Specifically, each data-holding organization is treated as an independent client in a collaborative learning framework with federated settings, and then many client-specific local models will be trained to preserve the unique characteristics per dataset. Moreover, a new regularization mechanism will be applied to both client-side and server-side, thus to align the shared knowledge across heterogeneous datasets from different domains. Extensive experiments on benchmark datasets demonstrate the effectiveness of the proposed federated learning approach. The newly learned time series foundation models achieve superior generalization capabilities on cross-domain time series analysis tasks, including forecasting, imputation, and anomaly detection.
Authors:Yongrui Yu, Yannian Gu, Shaoting Zhang, Xiaofan Zhang
Title: MedDiff-FM: A Diffusion-based Foundation Model for Versatile Medical Image Applications
Abstract:
Diffusion models have achieved significant success in both natural image and medical image domains, encompassing a wide range of applications. Previous investigations in medical images have often been constrained to specific anatomical regions, particular applications, and limited datasets, resulting in isolated diffusion models. This paper introduces a diffusion-based foundation model to address a diverse range of medical image tasks, namely MedDiff-FM. MedDiff-FM leverages 3D CT images from multiple publicly available datasets, covering anatomical regions from head to abdomen, to pre-train a diffusion foundation model, and explores the capabilities of the diffusion foundation model across a variety of application scenarios. The diffusion foundation model handles multi-level integrated image processing both at the image-level and patch-level, utilizes position embedding to establish multi-level spatial relationships, and leverages region classes and anatomical structures to capture certain anatomical regions. MedDiff-FM manages several downstream tasks seamlessly, including image denoising, anomaly detection, and image synthesis. MedDiff-FM is also capable of performing super-resolution, lesion generation, and lesion inpainting by rapidly fine-tuning the diffusion foundation model using ControlNet with task-specific conditions. The experimental results demonstrate the effectiveness of MedDiff-FM in addressing diverse downstream medical image tasks.
Authors:Wei Guan, Jun Lan, Jian Cao, Hao Tan, Huijia Zhu, Weiqiang Wang
Title: EMIT: Enhancing MLLMs for Industrial Anomaly Detection via Difficulty-Aware GRPO
Abstract:
Industrial anomaly detection (IAD) plays a crucial role in maintaining the safety and reliability of manufacturing systems. While multimodal large language models (MLLMs) show strong vision-language reasoning abilities, their effectiveness in IAD remains limited without domain-specific adaptation. In this work, we propose EMIT, a unified framework that enhances MLLMs for IAD via difficulty-aware group relative policy optimization (GRPO). EMIT constructs a multi-task IAD dataset and utilizes GPT-generated object text descriptions to compensate for missing defective images. For few-shot anomaly detection, it integrates a soft prompt and heatmap-guided contrastive embeddings derived from patch-level comparisons. To better handle difficult data samples, i.e., cases where the MLLM struggles to generate correct answers, we propose a difficulty-aware GRPO that extends the original GRPO by incorporating a response resampling strategy to ensure the inclusion of correct answers in the sampled responses, as well as an advantage reweighting mechanism to strengthen learning from such difficult data samples. Extensive experiments on the MMAD benchmark demonstrate that EMIT significantly enhances the IAD performance of MLLMs, achieving an average improvement of 7.77\% over the base model (InternVL3-8B) across seven tasks.
Authors:Roberto Brusnicki, David Pop, Yuan Gao, Mattia Piccinini, Johannes Betz
Title: SAVANT: Semantic Analysis with Vision-Augmented Anomaly deTection
Abstract:
Autonomous driving systems remain critically vulnerable to the long-tail of rare, out-of-distribution scenarios with semantic anomalies. While Vision Language Models (VLMs) offer promising reasoning capabilities, naive prompting approaches yield unreliable performance and depend on expensive proprietary models, limiting practical deployment. We introduce SAVANT (Semantic Analysis with Vision-Augmented Anomaly deTection), a structured reasoning framework that achieves high accuracy and recall in detecting anomalous driving scenarios from input images through layered scene analysis and a two-phase pipeline: structured scene description extraction followed by multi-modal evaluation. Our approach transforms VLM reasoning from ad-hoc prompting to systematic analysis across four semantic layers: Street, Infrastructure, Movable Objects, and Environment. SAVANT achieves 89.6% recall and 88.0% accuracy on real-world driving scenarios, significantly outperforming unstructured baselines. More importantly, we demonstrate that our structured framework enables a fine-tuned 7B parameter open-source model (Qwen2.5VL) to achieve 90.8% recall and 93.8% accuracy - surpassing all models evaluated while enabling local deployment at near-zero cost. By automatically labeling over 9,640 real-world images with high accuracy, SAVANT addresses the critical data scarcity problem in anomaly detection and provides a practical path toward reliable, accessible semantic monitoring for autonomous systems.
Authors:Shuang Liang, Zhihao Xu, Jialing Tao, Hui Xue, Xiting Wang
Title: Learning to Detect Unknown Jailbreak Attacks in Large Vision-Language Models: A Unified and Accurate Approach
Abstract:
Despite extensive alignment efforts, Large Vision-Language Models (LVLMs) remain vulnerable to jailbreak attacks, posing serious safety risks. Although recent detection works have shifted to internal representations due to their rich cross-modal information, most methods rely on heuristic rules rather than principled objectives, resulting in suboptimal performance. To address these limitations, we propose Learning to Detect (LoD), a novel unsupervised framework that formulates jailbreak detection as anomaly detection. LoD introduces two key components: Multi-modal Safety Concept Activation Vectors (MSCAV), which capture layer-wise safety-related representations across modalities, and the Safety Pattern Auto-Encoder, which models the distribution of MSCAV derived from safe inputs and detects anomalies via reconstruction errors. By training the auto-encoder (AE) solely on safe samples without attack labels, LoD naturally identifies jailbreak inputs as distributional anomalies, enabling accurate and unified detection of jailbreak attacks. Comprehensive experiments on three different LVLMs and five benchmarks demonstrate that LoD achieves state-of-the-art performance, with an average AUROC of 0.9951 and an improvement of up to 38.89% in the minimum AUROC over the strongest baselines.
Authors:Minxian Xu, Linfeng Wen, Junhan Liao, Huaming Wu, Kejiang Ye, Chengzhong Xu
Title: Auto-scaling Approaches for Cloud-native Applications: A Survey and Taxonomy
Abstract:
The interactions within cloud-native applications are complex, with a constantly changing number of services and loads, posing higher demands on auto-scaling approach. This mainly involves several challenges such as microservices dependency analysis, performance profiling, anomaly detection, workload characterization and task co-location. Therefore, some advanced algorithms have been investigated into auto-scaling cloud-native applications to optimize system and application performance. These algorithms can learn from historical data and appropriately adjust resource allocation based on the current environment and load conditions to optimize resource utilization and system performance. In this paper, we systematically review the literature on state-of-the-art auto-scaling approaches for cloud-native applications from 2020, and further explore the technological evolution. Additionally, we propose a detailed taxonomy to categorize current research from five perspectives, including infrastructure, architecture, scaling methods, optimization objectives, and behavior modeling. Then, we provide a comprehensive comparison and in-depth discussion of the key features, advantages, limitations, and application scenarios of each approach, considering their performance in diverse environments and under various conditions. Finally, we summarize the current state of research in this field, identify the gaps and unresolved challenges, and emphasize promising directions for future exploration, particularly in areas such as the application of large models, microservice dependency management, and the use of meta-learning techniques to enhance model applicability and adaptability across different environments.
Authors:Wei Zhou, Ji Sun, Xuanhe Zhou, Guoliang Li, Luyang Liu, Hao Wu, Tianyuan Wang
Title: GaussMaster: An LLM-based Database Copilot System
Abstract:
In the financial industry, data is the lifeblood of operations, and DBAs shoulder significant responsibilities for SQL tuning, database deployment, diagnosis, and service repair. In recent years, both database vendors and customers have increasingly turned to autonomous database platforms in an effort to alleviate the heavy workload of DBAs. However, existing autonomous database platforms are limited in their capabilities, primarily addressing single-point issues such as NL2SQL, anomaly detection, and SQL tuning. Manual intervention remains a necessity for comprehensive database maintenance. GaussMaster aims to revolutionize this landscape by introducing an LLM-based database copilot system. This innovative solution is designed not only to assist developers in writing efficient SQL queries but also to provide comprehensive care for database services. When database instances exhibit abnormal behavior, GaussMaster is capable of orchestrating the entire maintenance process automatically. It achieves this by analyzing hundreds of metrics and logs, employing a Tree-of-thought approach to identify root causes, and invoking appropriate tools to resolve issues. We have successfully implemented GaussMaster in real-world scenarios, such as the banking industry, where it has achieved zero human intervention for over 34 database maintenance scenarios. In this paper, we present significant improvements in these tasks with code at https://gitcode.com/opengauss/openGauss-GaussMaster.
Authors:Di Jin, Jingyi Cao, Xiaobao Wang, Bingdao Feng, Dongxiao He, Longbiao Wang, Jianwu Dang
Title: Rethinking Contrastive Learning in Graph Anomaly Detection: A Clean-View Perspective
Abstract:
Graph anomaly detection aims to identify unusual patterns in graph-based data, with wide applications in fields such as web security and financial fraud detection. Existing methods typically rely on contrastive learning, assuming that a lower similarity between a node and its local subgraph indicates abnormality. However, these approaches overlook a crucial limitation: the presence of interfering edges invalidates this assumption, since it introduces disruptive noise that compromises the contrastive learning process. Consequently, this limitation impairs the ability to effectively learn meaningful representations of normal patterns, leading to suboptimal detection performance. To address this issue, we propose a Clean-View Enhanced Graph Anomaly Detection framework (CVGAD), which includes a multi-scale anomaly awareness module to identify key sources of interference in the contrastive learning process. Moreover, to mitigate bias from the one-step edge removal process, we introduce a novel progressive purification module. This module incrementally refines the graph by iteratively identifying and removing interfering edges, thereby enhancing model performance. Extensive experiments on five benchmark datasets validate the effectiveness of our approach.
Authors:Alicia Russell-Gilbert, Sudip Mittal, Shahram Rahimi, Maria Seale, Joseph Jabour, Thomas Arnold, Joshua Church
Title: RAAD-LLM: Adaptive Anomaly Detection Using LLMs and RAG Integration
Abstract:
Anomaly detection in complex industrial environments poses unique challenges, particularly in contexts characterized by data sparsity and evolving operational conditions. Predictive maintenance (PdM) in such settings demands methodologies that are adaptive, transferable, and capable of integrating domain-specific knowledge. In this paper, we present RAAD-LLM, a novel framework for adaptive anomaly detection, leveraging large language models (LLMs) integrated with Retrieval-Augmented Generation (RAG). This approach addresses the aforementioned PdM challenges. By effectively utilizing domain-specific knowledge, RAAD-LLM enhances the detection of anomalies in time series data without requiring fine-tuning on specific datasets. The framework's adaptability mechanism enables it to adjust its understanding of normal operating conditions dynamically, thus increasing detection accuracy. We validate this methodology through a real-world application for a plastics manufacturing plant and the Skoltech Anomaly Benchmark (SKAB). Results show significant improvements over our previous model with an accuracy increase from 70.7% to 88.6% on the real-world dataset. By allowing for the enriching of input series data with semantics, RAAD-LLM incorporates multimodal capabilities that facilitate more collaborative decision-making between the model and plant operators. Overall, our findings support RAAD-LLM's ability to revolutionize anomaly detection methodologies in PdM, potentially leading to a paradigm shift in how anomaly detection is implemented across various industries.
Authors:Andrew Thompson, Alexander Sommers, Alicia Russell-Gilbert, Logan Cummins, Sudip Mittal, Shahram Rahimi, Maria Seale, Joseph Jaboure, Thomas Arnold, Joshua Church
Title: Multivariate Data Augmentation for Predictive Maintenance using Diffusion
Abstract:
Predictive maintenance has been used to optimize system repairs in the industrial, medical, and financial domains. This technique relies on the consistent ability to detect and predict anomalies in critical systems. AI models have been trained to detect system faults, improving predictive maintenance efficiency. Typically there is a lack of fault data to train these models, due to organizations working to keep fault occurrences and down time to a minimum. For newly installed systems, no fault data exists since they have yet to fail. By using diffusion models for synthetic data generation, the complex training datasets for these predictive models can be supplemented with high level synthetic fault data to improve their performance in anomaly detection. By learning the relationship between healthy and faulty data in similar systems, a diffusion model can attempt to apply that relationship to healthy data of a newly installed system that has no fault data. The diffusion model would then be able to generate useful fault data for the new system, and enable predictive models to be trained for predictive maintenance. The following paper demonstrates a system for generating useful, multivariate synthetic data for predictive maintenance, and how it can be applied to systems that have yet to fail.
Authors:Alicia Russell-Gilbert, Alexander Sommers, Andrew Thompson, Logan Cummins, Sudip Mittal, Shahram Rahimi, Maria Seale, Joseph Jaboure, Thomas Arnold, Joshua Church
Title: AAD-LLM: Adaptive Anomaly Detection Using Large Language Models
Abstract:
For data-constrained, complex and dynamic industrial environments, there is a critical need for transferable and multimodal methodologies to enhance anomaly detection and therefore, prevent costs associated with system failures. Typically, traditional PdM approaches are not transferable or multimodal. This work examines the use of Large Language Models (LLMs) for anomaly detection in complex and dynamic manufacturing systems. The research aims to improve the transferability of anomaly detection models by leveraging Large Language Models (LLMs) and seeks to validate the enhanced effectiveness of the proposed approach in data-sparse industrial applications. The research also seeks to enable more collaborative decision-making between the model and plant operators by allowing for the enriching of input series data with semantics. Additionally, the research aims to address the issue of concept drift in dynamic industrial settings by integrating an adaptability mechanism. The literature review examines the latest developments in LLM time series tasks alongside associated adaptive anomaly detection methods to establish a robust theoretical framework for the proposed architecture. This paper presents a novel model framework (AAD-LLM) that doesn't require any training or finetuning on the dataset it is applied to and is multimodal. Results suggest that anomaly detection can be converted into a "language" task to deliver effective, context-aware detection in data-constrained industrial applications. This work, therefore, contributes significantly to advancements in anomaly detection methodologies.
Authors:Zongcan Ding, Haodong Zhang, Peng Wu, Guansong Pang, Zhiwei Yang, Peng Wang, Yanning Zhang
Title: SlowFastVAD: Video Anomaly Detection via Integrating Simple Detector and RAG-Enhanced Vision-Language Model
Abstract:
Video anomaly detection (VAD) aims to identify unexpected events in videos and has wide applications in safety-critical domains. While semi-supervised methods trained on only normal samples have gained traction, they often suffer from high false alarm rates and poor interpretability. Recently, vision-language models (VLMs) have demonstrated strong multimodal reasoning capabilities, offering new opportunities for explainable anomaly detection. However, their high computational cost and lack of domain adaptation hinder real-time deployment and reliability. Inspired by dual complementary pathways in human visual perception, we propose SlowFastVAD, a hybrid framework that integrates a fast anomaly detector with a slow anomaly detector (namely a retrieval augmented generation (RAG) enhanced VLM), to address these limitations. Specifically, the fast detector first provides coarse anomaly confidence scores, and only a small subset of ambiguous segments, rather than the entire video, is further analyzed by the slower yet more interpretable VLM for elaborate detection and reasoning. Furthermore, to adapt VLMs to domain-specific VAD scenarios, we construct a knowledge base including normal patterns based on few normal samples and abnormal patterns inferred by VLMs. During inference, relevant patterns are retrieved and used to augment prompts for anomaly reasoning. Finally, we smoothly fuse the anomaly confidence of fast and slow detectors to enhance robustness of anomaly detection. Extensive experiments on four benchmarks demonstrate that SlowFastVAD effectively combines the strengths of both fast and slow detectors, and achieves remarkable detection accuracy and interpretability with significantly reduced computational overhead, making it well-suited for real-world VAD applications with high reliability requirements.
Authors:Peng Wu, Wanshun Su, Guansong Pang, Yujia Sun, Qingsen Yan, Peng Wang, Yanning Zhang
Title: AVadCLIP: Audio-Visual Collaboration for Robust Video Anomaly Detection
Abstract:
With the increasing adoption of video anomaly detection in intelligent surveillance domains, conventional visual-based detection approaches often struggle with information insufficiency and high false-positive rates in complex environments. To address these limitations, we present a novel weakly supervised framework that leverages audio-visual collaboration for robust video anomaly detection. Capitalizing on the exceptional cross-modal representation learning capabilities of Contrastive Language-Image Pretraining (CLIP) across visual, audio, and textual domains, our framework introduces two major innovations: an efficient audio-visual fusion that enables adaptive cross-modal integration through lightweight parametric adaptation while maintaining the frozen CLIP backbone, and a novel audio-visual prompt that dynamically enhances text embeddings with key multimodal information based on the semantic correlation between audio-visual features and textual labels, significantly improving CLIP's generalization for the video anomaly detection task. Moreover, to enhance robustness against modality deficiency during inference, we further develop an uncertainty-driven feature distillation module that synthesizes audio-visual representations from visual-only inputs. This module employs uncertainty modeling based on the diversity of audio-visual features to dynamically emphasize challenging features during the distillation process. Our framework demonstrates superior performance across multiple benchmarks, with audio integration significantly boosting anomaly detection accuracy in various scenarios. Notably, with unimodal data enhanced by uncertainty-driven distillation, our approach consistently outperforms current unimodal VAD methods.
Authors:Peng Wu, Chengyu Pan, Yuting Yan, Guansong Pang, Peng Wang, Yanning Zhang
Title: Deep Learning for Video Anomaly Detection: A Review
Abstract:
Video anomaly detection (VAD) aims to discover behaviors or events deviating from the normality in videos. As a long-standing task in the field of computer vision, VAD has witnessed much good progress. In the era of deep learning, with the explosion of architectures of continuously growing capability and capacity, a great variety of deep learning based methods are constantly emerging for the VAD task, greatly improving the generalization ability of detection algorithms and broadening the application scenarios. Therefore, such a multitude of methods and a large body of literature make a comprehensive survey a pressing necessity. In this paper, we present an extensive and comprehensive research review, covering the spectrum of five different categories, namely, semi-supervised, weakly supervised, fully supervised, unsupervised and open-set supervised VAD, and we also delve into the latest VAD works based on pre-trained large models, remedying the limitations of past reviews in terms of only focusing on semi-supervised VAD and small model based methods. For the VAD task with different levels of supervision, we construct a well-organized taxonomy, profoundly discuss the characteristics of different types of methods, and show their performance comparisons. In addition, this review involves the public datasets, open-source codes, and evaluation metrics covering all the aforementioned VAD tasks. Finally, we provide several important research directions for the VAD community.
Authors:Canhui Tang, Sanping Zhou, Haoyue Shi, Le Wang
Title: Action Hints: Semantic Typicality and Context Uniqueness for Generalizable Skeleton-based Video Anomaly Detection
Abstract:
Zero-Shot Video Anomaly Detection (ZS-VAD) requires temporally localizing anomalies without target domain training data, which is a crucial task due to various practical concerns, e.g., data privacy or new surveillance deployments. Skeleton-based approach has inherent generalizable advantages in achieving ZS-VAD as it eliminates domain disparities both in background and human appearance. However, existing methods only learn low-level skeleton representation and rely on the domain-limited normality boundary, which cannot generalize well to new scenes with different normal and abnormal behavior patterns. In this paper, we propose a novel zero-shot video anomaly detection framework, unlocking the potential of skeleton data via action typicality and uniqueness learning. Firstly, we introduce a language-guided semantic typicality modeling module that projects skeleton snippets into action semantic space and distills LLM's knowledge of typical normal and abnormal behaviors during training. Secondly, we propose a test-time context uniqueness analysis module to finely analyze the spatio-temporal differences between skeleton snippets and then derive scene-adaptive boundaries. Without using any training samples from the target domain, our method achieves state-of-the-art results against skeleton-based methods on four large-scale VAD datasets: ShanghaiTech, UBnormal, NWPU, and UCF-Crime, featuring over 100 unseen surveillance scenes.
Authors:Gabriele Greco, Carlo Cena, Umberto Albertin, Mauro Martini, Marcello Chiaberge
Title: Fault injection analysis of Real NVP normalising flow model for satellite anomaly detection
Abstract:
Satellites are used for a multitude of applications, including communications, Earth observation, and space science. Neural networks and deep learning-based approaches now represent the state-of-the-art to enhance the performance and efficiency of these tasks. Given that satellites are susceptible to various faults, one critical application of Artificial Intelligence (AI) is fault detection. However, despite the advantages of neural networks, these systems are vulnerable to radiation errors, which can significantly impact their reliability. Ensuring the dependability of these solutions requires extensive testing and validation, particularly using fault injection methods. This study analyses a physics-informed (PI) real-valued non-volume preserving (Real NVP) normalizing flow model for fault detection in space systems, with a focus on resilience to Single-Event Upsets (SEUs). We present a customized fault injection framework in TensorFlow to assess neural network resilience. Fault injections are applied through two primary methods: Layer State injection, targeting internal network components such as weights and biases, and Layer Output injection, which modifies layer outputs across various activations. Fault types include zeros, random values, and bit-flip operations, applied at varying levels and across different network layers. Our findings reveal several critical insights, such as the significance of bit-flip errors in critical bits, that can lead to substantial performance degradation or even system failure. With this work, we aim to exhaustively study the resilience of Real NVP models against errors due to radiation, providing a means to guide the implementation of fault tolerance measures.
Authors:Tuomas Jalonen, Mohammad Al-Sa'd, Serkan Kiranyaz, Moncef Gabbouj
Title: Dual-Domain Fusion for Semi-Supervised Learning
Abstract:
Labeled time-series data is often expensive and difficult to obtain, making it challenging to train accurate machine learning models for real-world applications such as anomaly detection or fault diagnosis. The scarcity of labeled samples limits model generalization and leaves valuable unlabeled data underutilized. We propose Dual-Domain Fusion (DDF), a new model-agnostic semi-supervised learning (SSL) framework applicable to any time-series signal. DDF performs dual-domain training by combining the one-dimensional time-domain signals with their two-dimensional time-frequency representations and fusing them to maximize learning performance. Its tri-model architecture consists of time-domain, time-frequency, and fusion components, enabling the model to exploit complementary information across domains during training. To support practical deployment, DDF maintains the same inference cost as standard time-domain models by discarding the time-frequency and fusion branches at test time. Experimental results on two public fault diagnosis datasets demonstrate substantial accuracy improvements of 8-46% over widely used SSL methods FixMatch, MixMatch, Mean Teacher, Adversarial Training, and Self-training. These results show that DDF provides an effective and generalizable strategy for semi-supervised time-series classification.
Authors:Shuai Niu, Jing Ma, Hongzhan Lin, Liang Bai, Zhihua Wang, Wei Bi, Yida Xu, Guo Li, Xian Yang
Title: ProMedTS: A Self-Supervised, Prompt-Guided Multimodal Approach for Integrating Medical Text and Time Series
Abstract:
Large language models (LLMs) have shown remarkable performance in vision-language tasks, but their application in the medical field remains underexplored, particularly for integrating structured time series data with unstructured clinical notes. In clinical practice, dynamic time series data, such as lab test results, capture critical temporal patterns, while clinical notes provide rich semantic context. Merging these modalities is challenging due to the inherent differences between continuous signals and discrete text. To bridge this gap, we introduce ProMedTS, a novel self-supervised multimodal framework that employs prompt-guided learning to unify these heterogeneous data types. Our approach leverages lightweight anomaly detection to generate anomaly captions that serve as prompts, guiding the encoding of raw time series data into informative prompt embeddings. These prompt embeddings are aligned with textual representations in a shared latent space, preserving fine-grained temporal nuances alongside semantic insights. Furthermore, our framework incorporates tailored self-supervised objectives to enhance both intra- and inter-modal alignment. We evaluate ProMedTS on disease diagnosis tasks using real-world datasets, and the results demonstrate that our method consistently outperforms state-of-the-art approaches.
Authors:Siqi Wang, Yuanze Hu, Xinwang Liu, Siwei Wang, Guangpu Wang, Chuanfu Xu, Jie Liu, Ping Chen
Title: "Stones from Other Hills can Polish Jade": Zero-shot Anomaly Image Synthesis via Cross-domain Anomaly Injection
Abstract:
Industrial image anomaly detection (IAD) is a pivotal topic with huge value. Due to anomaly's nature, real anomalies in a specific modern industrial domain (i.e. domain-specific anomalies) are usually too rare to collect, which severely hinders IAD. Thus, zero-shot anomaly synthesis (ZSAS), which synthesizes pseudo anomaly images without any domain-specific anomaly, emerges as a vital technique for IAD. However, existing solutions are either unable to synthesize authentic pseudo anomalies, or require cumbersome training. Thus, we focus on ZSAS and propose a brand-new paradigm that can realize both authentic and training-free ZSAS. It is based on a chronically-ignored fact: Although domain-specific anomalies are rare, real anomalies from other domains (i.e. cross-domain anomalies) are actually abundant and directly applicable to ZSAS. Specifically, our new ZSAS paradigm makes three-fold contributions: First, we propose a novel method named Cross-domain Anomaly Injection (CAI), which directly exploits cross-domain anomalies to enable highly authentic ZSAS in a training-free manner. Second, to supply CAI with sufficient cross-domain anomalies, we build the first Domain-agnostic Anomaly Dataset within our best knowledge, which provides ZSAS with abundant real anomaly patterns. Third, we propose a CAI-guided Diffusion Mechanism, which further breaks the quantity limit of real anomalies and enable unlimited anomaly synthesis. Our head-to-head comparison with existing ZSAS solutions justifies our paradigm's superior performance for IAD and demonstrates it as an effective and pragmatic ZSAS solution.
Authors:Hang Zhou, Jiale Cai, Yuteng Ye, Yonghui Feng, Chenxing Gao, Junqing Yu, Zikai Song, Wei Yang
Title: Video Anomaly Detection with Motion and Appearance Guided Patch Diffusion Model
Abstract:
A recent endeavor in one class of video anomaly detection is to leverage diffusion models and posit the task as a generation problem, where the diffusion model is trained to recover normal patterns exclusively, thus reporting abnormal patterns as outliers. Yet, existing attempts neglect the various formations of anomaly and predict normal samples at the feature level regardless that abnormal objects in surveillance videos are often relatively small. To address this, a novel patch-based diffusion model is proposed, specifically engineered to capture fine-grained local information. We further observe that anomalies in videos manifest themselves as deviations in both appearance and motion. Therefore, we argue that a comprehensive solution must consider both of these aspects simultaneously to achieve accurate frame prediction. To address this, we introduce innovative motion and appearance conditions that are seamlessly integrated into our patch diffusion model. These conditions are designed to guide the model in generating coherent and contextually appropriate predictions for both semantic content and motion relations. Experimental results in four challenging video anomaly detection datasets empirically substantiate the efficacy of our proposed approach, demonstrating that it consistently outperforms most existing methods in detecting abnormal behaviors.
Authors:Yuxin Jiang, Yunkang Cao, Yuqi Cheng, Yiheng Zhang, Weiming Shen
Title: VTFusion: A Vision-Text Multimodal Fusion Network for Few-Shot Anomaly Detection
Abstract:
Few-Shot Anomaly Detection (FSAD) has emerged as a critical paradigm for identifying irregularities using scarce normal references. While recent methods have integrated textual semantics to complement visual data, they predominantly rely on features pre-trained on natural scenes, thereby neglecting the granular, domain-specific semantics essential for industrial inspection. Furthermore, prevalent fusion strategies often resort to superficial concatenation, failing to address the inherent semantic misalignment between visual and textual modalities, which compromises robustness against cross-modal interference. To bridge these gaps, this study proposes VTFusion, a vision-text multimodal fusion framework tailored for FSAD. The framework rests on two core designs. First, adaptive feature extractors for both image and text modalities are introduced to learn task-specific representations, bridging the domain gap between pre-trained models and industrial data; this is further augmented by generating diverse synthetic anomalies to enhance feature discriminability. Second, a dedicated multimodal prediction fusion module is developed, comprising a fusion block that facilitates rich cross-modal information exchange and a segmentation network that generates refined pixel-level anomaly maps under multimodal guidance. VTFusion significantly advances FSAD performance, achieving image-level AUROCs of 96.8% and 86.2% in the 2-shot scenario on the MVTec AD and VisA datasets, respectively. Furthermore, VTFusion achieves an AUPRO of 93.5% on a real-world dataset of industrial automotive plastic parts introduced in this paper, further demonstrating its practical applicability in demanding industrial scenarios.
Authors:Yuxin Jiang, Wei Luo, Hui Zhang, Qiyu Chen, Haiming Yao, Weiming Shen, Yunkang Cao
Title: Anomagic: Crossmodal Prompt-driven Zero-shot Anomaly Generation
Abstract:
We propose Anomagic, a zero-shot anomaly generation method that produces semantically coherent anomalies without requiring any exemplar anomalies. By unifying both visual and textual cues through a crossmodal prompt encoding scheme, Anomagic leverages rich contextual information to steer an inpainting-based generation pipeline. A subsequent contrastive refinement strategy enforces precise alignment between synthesized anomalies and their masks, thereby bolstering downstream anomaly detection accuracy. To facilitate training, we introduce AnomVerse, a collection of 12,987 anomaly-mask-caption triplets assembled from 13 publicly available datasets, where captions are automatically generated by multimodal large language models using structured visual prompts and template-based textual hints. Extensive experiments demonstrate that Anomagic trained on AnomVerse can synthesize more realistic and varied anomalies than prior methods, yielding superior improvements in downstream anomaly detection. Furthermore, Anomagic can generate anomalies for any normal-category image using user-defined prompts, establishing a versatile foundation model for anomaly generation.
Authors:Hangcheng Cao, Baixiang Huang, Longzhi Yuan, Haonan An, Zihan Fang, Xianhao Chen, Yuguang Fang
Title: SAFE-D: A Spatiotemporal Detection Framework for Abnormal Driving Among Parkinson's Disease-like Drivers
Abstract:
A driver's health state serves as a determinant factor in driving behavioral regulation. Subtle deviations from normalcy can lead to operational anomalies, posing risks to public transportation safety. While prior efforts have developed detection mechanisms for functionally-driven temporary anomalies such as drowsiness and distraction, limited research has addressed pathologically-triggered deviations, especially those stemming from chronic medical conditions. To bridge this gap, we investigate the driving behavior of Parkinson's disease patients and propose SAFE-D, a novel framework for detecting Parkinson-related behavioral anomalies to enhance driving safety. Our methodology starts by performing analysis of Parkinson's disease symptomatology, focusing on primary motor impairments, and establishes causal links to degraded driving performance. To represent the subclinical behavioral variations of early-stage Parkinson's disease, our framework integrates data from multiple vehicle control components to build a behavioral profile. We then design an attention-based network that adaptively prioritizes spatiotemporal features, enabling robust anomaly detection under physiological variability. Finally, we validate SAFE-D on the Logitech G29 platform and CARLA simulator, using data from three road maps to emulate real-world driving. Our results show SAFE-D achieves 96.8% average accuracy in distinguishing normal and Parkinson-affected driving patterns.
Authors:Yuanyuan Yao, Yuhan Shi, Lu Chen, Ziquan Fang, Yunjun Gao, Leong Hou U, Yushuai Li, Tianyi Li
Title: Moon: A Modality Conversion-based Efficient Multivariate Time Series Anomaly Detection
Abstract:
Multivariate time series (MTS) anomaly detection identifies abnormal patterns where each timestamp contains multiple variables. Existing MTS anomaly detection methods fall into three categories: reconstruction-based, prediction-based, and classifier-based methods. However, these methods face two key challenges: (1) Unsupervised learning methods, such as reconstruction-based and prediction-based methods, rely on error thresholds, which can lead to inaccuracies; (2) Semi-supervised methods mainly model normal data and often underuse anomaly labels, limiting detection of subtle anomalies;(3) Supervised learning methods, such as classifier-based approaches, often fail to capture local relationships, incur high computational costs, and are constrained by the scarcity of labeled data. To address these limitations, we propose Moon, a supervised modality conversion-based multivariate time series anomaly detection framework. Moon enhances the efficiency and accuracy of anomaly detection while providing detailed anomaly analysis reports. First, Moon introduces a novel multivariate Markov Transition Field (MV-MTF) technique to convert numeric time series data into image representations, capturing relationships across variables and timestamps. Since numeric data retains unique patterns that cannot be fully captured by image conversion alone, Moon employs a Multimodal-CNN to integrate numeric and image data through a feature fusion model with parameter sharing, enhancing training efficiency. Finally, a SHAP-based anomaly explainer identifies key variables contributing to anomalies, improving interpretability. Extensive experiments on six real-world MTS datasets demonstrate that Moon outperforms six state-of-the-art methods by up to 93% in efficiency, 4% in accuracy and, 10.8% in interpretation performance.
Authors:Yihan Sun, Yuqi Cheng, Yunkang Cao, Yuxin Zhang, Weiming Shen
Title: Multi-View Reconstruction with Global Context for 3D Anomaly Detection
Abstract:
3D anomaly detection is critical in industrial quality inspection. While existing methods achieve notable progress, their performance degrades in high-precision 3D anomaly detection due to insufficient global information. To address this, we propose Multi-View Reconstruction (MVR), a method that losslessly converts high-resolution point clouds into multi-view images and employs a reconstruction-based anomaly detection framework to enhance global information learning. Extensive experiments demonstrate the effectiveness of MVR, achieving 89.6\% object-wise AU-ROC and 95.7\% point-wise AU-ROC on the Real3D-AD benchmark.
Authors:Yuqi Cheng, Yihan Sun, Hui Zhang, Weiming Shen, Yunkang Cao
Title: Towards High-Resolution 3D Anomaly Detection: A Scalable Dataset and Real-Time Framework for Subtle Industrial Defects
Abstract:
In industrial point cloud analysis, detecting subtle anomalies demands high-resolution spatial data, yet prevailing benchmarks emphasize low-resolution inputs. To address this disparity, we propose a scalable pipeline for generating realistic and subtle 3D anomalies. Employing this pipeline, we developed MiniShift, the inaugural high-resolution 3D anomaly detection dataset, encompassing 2,577 point clouds, each with 500,000 points and anomalies occupying less than 1\% of the total. We further introduce Simple3D, an efficient framework integrating Multi-scale Neighborhood Descriptors (MSND) and Local Feature Spatial Aggregation (LFSA) to capture intricate geometric details with minimal computational overhead, achieving real-time inference exceeding 20 fps. Extensive evaluations on MiniShift and established benchmarks demonstrate that Simple3D surpasses state-of-the-art methods in both accuracy and speed, highlighting the pivotal role of high-resolution data and effective feature aggregation in advancing practical 3D anomaly detection.
Authors:Wei Luo, Haiming Yao, Yunkang Cao, Qiyu Chen, Ang Gao, Weiming Shen, Wenyong Yu
Title: INP-Former++: Advancing Universal Anomaly Detection via Intrinsic Normal Prototypes and Residual Learning
Abstract:
Anomaly detection (AD) is essential for industrial inspection and medical diagnosis, yet existing methods typically rely on ``comparing'' test images to normal references from a training set. However, variations in appearance and positioning often complicate the alignment of these references with the test image, limiting detection accuracy. We observe that most anomalies manifest as local variations, meaning that even within anomalous images, valuable normal information remains. We argue that this information is useful and may be more aligned with the anomalies since both the anomalies and the normal information originate from the same image. Therefore, rather than relying on external normality from the training set, we propose INP-Former, a novel method that extracts Intrinsic Normal Prototypes (INPs) directly from the test image. Specifically, we introduce the INP Extractor, which linearly combines normal tokens to represent INPs. We further propose an INP Coherence Loss to ensure INPs can faithfully represent normality for the testing image. These INPs then guide the INP-guided Decoder to reconstruct only normal tokens, with reconstruction errors serving as anomaly scores. Additionally, we propose a Soft Mining Loss to prioritize hard-to-optimize samples during training. INP-Former achieves state-of-the-art performance in single-class, multi-class, and few-shot AD tasks across MVTec-AD, VisA, and Real-IAD, positioning it as a versatile and universal solution for AD. Remarkably, INP-Former also demonstrates some zero-shot AD capability. Furthermore, we propose a soft version of the INP Coherence Loss and enhance INP-Former by incorporating residual learning, leading to the development of INP-Former++. The proposed method significantly improves detection performance across single-class, multi-class, semi-supervised, few-shot, and zero-shot settings.
Authors:Yunhui Liu, Tieke He, Yongchao Liu, Can Yi, Hong Jin, Chuntao Hong
Title: Tabular Foundation Models are Strong Graph Anomaly Detectors
Abstract:
Graph anomaly detection (GAD), which aims to identify abnormal nodes that deviate from the majority, has become increasingly important in high-stakes Web domains. However, existing GAD methods follow a "one model per dataset" paradigm, leading to high computational costs, substantial data demands, and poor generalization when transferred to new datasets. This calls for a foundation model that enables a "one-for-all" GAD solution capable of detecting anomalies across diverse graphs without retraining. Yet, achieving this is challenging due to the large structural and feature heterogeneity across domains. In this paper, we propose TFM4GAD, a simple yet effective framework that adapts tabular foundation models (TFMs) for graph anomaly detection. Our key insight is that the core challenges of foundation GAD, handling heterogeneous features, generalizing across domains, and operating with scarce labels, are the exact problems that modern TFMs are designed to solve via synthetic pre-training and powerful in-context learning. The primary challenge thus becomes structural: TFMs are agnostic to graph topology. TFM4GAD bridges this gap by "flattening" the graph, constructing an augmented feature table that enriches raw node features with Laplacian embeddings, local and global structural characteristics, and anomaly-sensitive neighborhood aggregations. This augmented table is processed by a TFM in a fully in-context regime. Extensive experiments on multiple datasets with various TFM backbones reveal that TFM4GAD surprisingly achieves significant performance gains over specialized GAD models trained from scratch. Our work offers a new perspective and a practical paradigm for leveraging TFMs as powerful, generalist graph anomaly detectors.
Authors:Saeid Jamshidi, Amin Nikanjam, Negar Shahabi, Kawser Wazed Nafi, Foutse Khomh, Samira Keivanpour, Rolando Herrero
Title: Think Fast: Real-Time IoT Intrusion Reasoning Using IDS and LLMs at the Edge Gateway
Abstract:
As the number of connected IoT devices continues to grow, securing these systems against cyber threats remains a major challenge, especially in environments with limited computational and energy resources. This paper presents an edge-centric Intrusion Detection System (IDS) framework that integrates lightweight machine learning (ML) based IDS models with pre-trained large language models (LLMs) to improve detection accuracy, semantic interpretability, and operational efficiency at the network edge. The system evaluates six ML-based IDS models: Decision Tree (DT), K-Nearest Neighbors (KNN), Random Forest (RF), Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), and a hybrid CNN-LSTM model on low-power edge gateways, achieving accuracy up to 98 percent under real-world cyberattacks. For anomaly detection, the system transmits a compact and secure telemetry snapshot (for example, CPU usage, memory usage, latency, and energy consumption) via low-bandwidth API calls to LLMs including GPT-4-turbo, DeepSeek V2, and LLaMA 3.5. These models use zero-shot, few-shot, and chain-of-thought reasoning to produce human-readable threat analyses and actionable mitigation recommendations. Evaluations across diverse attacks such as DoS, DDoS, brute force, and port scanning show that the system enhances interpretability while maintaining low latency (<1.5 s), minimal bandwidth usage (<1.2 kB per prompt), and energy efficiency (<75 J), demonstrating its practicality and scalability as an IDS solution for edge gateways.
Authors:Xinlong Zhao, Tong Jia, Minghua He, Ying Li
Title: Generality Is Not Enough: Zero-Label Cross-System Log-Based Anomaly Detection via Knowledge-Level Collaboration
Abstract:
Log-based anomaly detection is crucial for ensuring software system stability. However, the scarcity of labeled logs limits rapid deployment to new systems. Cross-system transfer has become an important research direction. State-of-the-art approaches perform well with a few labeled target logs, but limitations remain: small-model methods transfer general knowledge but overlook mismatches with the target system's proprietary knowledge; LLM-based methods can capture proprietary patterns but rely on a few positive examples and incur high inference cost. Existing LLM-small model collaborations route 'simple logs' to the small model and 'complex logs' to the LLM based on output uncertainty. In zero-label cross-system settings, supervised sample complexity is unavailable, and such routing does not consider knowledge separation. To address this, we propose GeneralLog, a novel LLM-small model collaborative method for zero-label cross-system log anomaly detection. GeneralLog dynamically routes unlabeled logs, letting the LLM handle 'proprietary logs' and the small model 'general logs,' enabling cross-system generalization without labeled target logs. Experiments on three public log datasets show that GeneralLog achieves over 90% F1-score under a fully zero-label setting, significantly outperforming existing methods.
Authors:Xinlong Zhao, Tong Jia, Minghua He, Xixuan Yang, Ying Li
Title: FusionLog: Cross-System Log-based Anomaly Detection via Fusion of General and Proprietary Knowledge
Abstract:
Log-based anomaly detection is critical for ensuring the stability and reliability of web systems. One of the key problems in this task is the lack of sufficient labeled logs, which limits the rapid deployment in new systems. Existing works usually leverage large-scale labeled logs from a mature web system and a small amount of labeled logs from a new system, using transfer learning to extract and generalize general knowledge across both domains. However, these methods focus solely on the transfer of general knowledge and neglect the disparity and potential mismatch between such knowledge and the proprietary knowledge of target system, thus constraining performance. To address this limitation, we propose FusionLog, a novel zero-label cross-system log-based anomaly detection method that effectively achieves the fusion of general and proprietary knowledge, enabling cross-system generalization without any labeled target logs. Specifically, we first design a training-free router based on semantic similarity that dynamically partitions unlabeled target logs into 'general logs' and 'proprietary logs.' For general logs, FusionLog employs a small model based on system-agnostic representation meta-learning for direct training and inference, inheriting the general anomaly patterns shared between the source and target systems. For proprietary logs, we iteratively generate pseudo-labels and fine-tune the small model using multi-round collaborative knowledge distillation and fusion based on large language model (LLM) and small model (SM) to enhance its capability to recognize anomaly patterns specific to the target system. Experimental results on three public log datasets from different systems show that FusionLog achieves over 90% F1-score under a fully zero-label setting, significantly outperforming state-of-the-art cross-system log-based anomaly detection methods.
Authors:Xinlong Zhao, Tong Jia, Minghua He, Ying Li, Gang Huang
Title: ZeroLog: Zero-Label Generalizable Cross-System Log-based Anomaly Detection
Abstract:
Log-based anomaly detection is an important task in ensuring the stability and reliability of software systems. One of the key problems in this task is the lack of labeled logs. Existing works usually leverage large-scale labeled logs from mature systems to train an anomaly detection model of a target system based on the idea of transfer learning. However, these works still require a certain number of labeled logs from the target system. In this paper, we take a step forward and study a valuable yet underexplored setting: zero-label cross-system log-based anomaly detection, that is, no labeled logs are available in the target system. Specifically, we propose ZeroLog, a system-agnostic representation meta-learning method that enables cross-system log-based anomaly detection under zero-label conditions. To achieve this, we leverage unsupervised domain adaptation to perform adversarial training between the source and target domains, aiming to learn system-agnostic general feature representations. By employing meta-learning, the learned representations are further generalized to the target system without any target labels. Experimental results on three public log datasets from different systems show that ZeroLog reaches over 80% F1-score without labels, comparable to state-of-the-art cross-system methods trained with labeled logs, and outperforms existing methods under zero-label conditions.
Authors:Chiming Duan, Minghua He, Pei Xiao, Tong Jia, Xin Zhang, Zhewei Zhong, Xiang Luo, Yan Niu, Lingzhe Zhang, Yifan Wu, Siyu Yu, Weijie Hong, Ying Li, Gang Huang
Title: LogAction: Consistent Cross-system Anomaly Detection through Logs via Active Domain Adaptation
Abstract:
Log-based anomaly detection is a essential task for ensuring the reliability and performance of software systems. However, the performance of existing anomaly detection methods heavily relies on labeling, while labeling a large volume of logs is highly challenging. To address this issue, many approaches based on transfer learning and active learning have been proposed. Nevertheless, their effectiveness is hindered by issues such as the gap between source and target system data distributions and cold-start problems. In this paper, we propose LogAction, a novel log-based anomaly detection model based on active domain adaptation. LogAction integrates transfer learning and active learning techniques. On one hand, it uses labeled data from a mature system to train a base model, mitigating the cold-start issue in active learning. On the other hand, LogAction utilize free energy-based sampling and uncertainty-based sampling to select logs located at the distribution boundaries for manual labeling, thus addresses the data distribution gap in transfer learning with minimal human labeling efforts. Experimental results on six different combinations of datasets demonstrate that LogAction achieves an average 93.01% F1 score with only 2% of manual labels, outperforming some state-of-the-art methods by 26.28%. Website: https://logaction.github.io
Authors:Minghua He, Chiming Duan, Pei Xiao, Tong Jia, Siyu Yu, Lingzhe Zhang, Weijie Hong, Jin Han, Yifan Wu, Ying Li, Gang Huang
Title: United We Stand: Towards End-to-End Log-based Fault Diagnosis via Interactive Multi-Task Learning
Abstract:
Log-based fault diagnosis is essential for maintaining software system availability. However, existing fault diagnosis methods are built using a task-independent manner, which fails to bridge the gap between anomaly detection and root cause localization in terms of data form and diagnostic objectives, resulting in three major issues: 1) Diagnostic bias accumulates in the system; 2) System deployment relies on expensive monitoring data; 3) The collaborative relationship between diagnostic tasks is overlooked. Facing this problems, we propose a novel end-to-end log-based fault diagnosis method, Chimera, whose key idea is to achieve end-to-end fault diagnosis through bidirectional interaction and knowledge transfer between anomaly detection and root cause localization. Chimera is based on interactive multi-task learning, carefully designing interaction strategies between anomaly detection and root cause localization at the data, feature, and diagnostic result levels, thereby achieving both sub-tasks interactively within a unified end-to-end framework. Evaluation on two public datasets and one industrial dataset shows that Chimera outperforms existing methods in both anomaly detection and root cause localization, achieving improvements of over 2.92% - 5.00% and 19.01% - 37.09%, respectively. It has been successfully deployed in production, serving an industrial cloud platform.
Authors:Minghua He, Tong Jia, Chiming Duan, Pei Xiao, Lingzhe Zhang, Kangjin Wang, Yifan Wu, Ying Li, Gang Huang
Title: Walk the Talk: Is Your Log-based Software Reliability Maintenance System Really Reliable?
Abstract:
Log-based software reliability maintenance systems are crucial for sustaining stable customer experience. However, existing deep learning-based methods represent a black box for service providers, making it impossible for providers to understand how these methods detect anomalies, thereby hindering trust and deployment in real production environments. To address this issue, this paper defines a trustworthiness metric, diagnostic faithfulness, for models to gain service providers' trust, based on surveys of SREs at a major cloud provider. We design two evaluation tasks: attention-based root cause localization and event perturbation. Empirical studies demonstrate that existing methods perform poorly in diagnostic faithfulness. Consequently, we propose FaithLog, a faithful log-based anomaly detection system, which achieves faithfulness through a carefully designed causality-guided attention mechanism and adversarial consistency learning. Evaluation results on two public datasets and one industrial dataset demonstrate that the proposed method achieves state-of-the-art performance in diagnostic faithfulness.
Authors:Xinlong Zhao, Tong Jia, Minghua He, Yihan Wu, Ying Li, Gang Huang
Title: From Few-Label to Zero-Label: An Approach for Cross-System Log-Based Anomaly Detection with Meta-Learning
Abstract:
Log anomaly detection plays a critical role in ensuring the stability and reliability of software systems. However, existing approaches rely on large amounts of labeled log data, which poses significant challenges in real-world applications. To address this issue, cross-system transfer has been identified as a key research direction. State-of-the-art cross-system approaches achieve promising performance with only a few labels from the target system. However, their reliance on labeled target logs makes them susceptible to the cold-start problem when labeled logs are insufficient. To overcome this limitation, we explore a novel yet underexplored setting: zero-label cross-system log anomaly detection, where the target system logs are entirely unlabeled. To this end, we propose FreeLog, a system-agnostic representation meta-learning method that eliminates the need for labeled target system logs, enabling cross-system log anomaly detection under zero-label conditions. Experimental results on three public log datasets demonstrate that FreeLog achieves performance comparable to state-of-the-art methods that rely on a small amount of labeled data from the target system.
Authors:Konstantinos Bourazas, Savvas Papaioannou, Panayiotis Kolios
Title: Adaptive Out-of-Control Point Pattern Detection in Sequential Random Finite Set Observations
Abstract:
In this work we introduce a novel adaptive anomaly detection framework specifically designed for monitoring sequential random finite set (RFS) observations. Our approach effectively distinguishes between In-Control data (normal) and Out-Of-Control data (anomalies) by detecting deviations from the expected statistical behavior of the process. The primary contributions of this study include the development of an innovative RFS-based framework that not only learns the normal behavior of the data-generating process online but also dynamically adapts to behavioral shifts to accurately identify abnormal point patterns. To achieve this, we introduce a new class of RFS-based posterior distributions, named Power Discounting Posteriors (PD), which facilitate adaptation to systematic changes in data while enabling anomaly detection of point pattern data through a novel predictive posterior density function. The effectiveness of the proposed approach is demonstrated by extensive qualitative and quantitative simulation experiments.
Authors:Sarah Seifi, Tobias Sukianto, Cecilia Carbonelli, Lorenzo Servadei, Robert Wille
Title: Complying with the EU AI Act: Innovations in Explainable and User-Centric Hand Gesture Recognition
Abstract:
The EU AI Act underscores the importance of transparency, user-centricity, and robustness in AI systems, particularly for high-risk systems. In response, we present advancements in XentricAI, an explainable hand gesture recognition (HGR) system designed to meet these regulatory requirements. XentricAI adresses fundamental challenges in HGR, such as the opacity of black-box models using explainable AI methods and the handling of distributional shifts in real-world data through transfer learning techniques. We extend an existing radar-based HGR dataset by adding 28,000 new gestures, with contributions from multiple users across varied locations, including 24,000 out-of-distribution gestures. Leveraging this real-world dataset, we enhance XentricAI's capabilities by integrating a variational autoencoder module for improved gesture anomaly detection, incorporating user-specific thresholding. This integration enables the identification of 11.50% more anomalous gestures. Our extensive evaluations demonstrate a 97.5% sucess rate in characterizing these anomalies, significantly improving system explainability. Furthermore, the implementation of transfer learning techniques has shown a substantial increase in user adaptability, with an average improvement of at least 15.17%. This work contributes to the development of trustworthy AI systems by providing both technical advancements and regulatory compliance, offering a commercially viable solution that aligns with the EU AI Act requirements.
Authors:Xixuan Yang, Xin Huang, Chiming Duan, Tong Jia, Shandong Dong, Ying Li, Gang Huang
Title: Enhancing Web Service Anomaly Detection via Fine-grained Multi-modal Association and Frequency Domain Analysis
Abstract:
Anomaly detection is crucial for ensuring the stability and reliability of web service systems. Logs and metrics contain multiple information that can reflect the system's operational state and potential anomalies. Thus, existing anomaly detection methods use logs and metrics to detect web service systems' anomalies through data fusion approaches. They associate logs and metrics using coarse-grained time window alignment and capture the normal patterns of system operation through reconstruction. However, these methods have two issues that limit their performance in anomaly detection. First, due to asynchrony between logs and metrics, coarse-grained time window alignment cannot achieve a precise association between the two modalities. Second, reconstruction-based methods suffer from severe overgeneralization problems, resulting in anomalies being accurately reconstructed. In this paper, we propose a novel anomaly detection method named FFAD to address these two issues. On the one hand, FFAD employs graph-based alignment to mine and extract associations between the modalities from the constructed log-metric relation graph, achieving precise associations between logs and metrics. On the other hand, we improve the model's fit to normal data distributions through Fourier Frequency Focus, thereby enhancing the effectiveness of anomaly detection. We validated the effectiveness of our model on two real-world industrial datasets and one open-source dataset. The results show that our method achieves an average anomaly detection F1-score of 93.6%, representing an 8.8% improvement over previous state-of-the-art methods.
Authors:Xin Chen, Liujuan Cao, Shengchuan Zhang, Xiewu Zheng, Yan Zhang
Title: Breaking the Bias: Recalibrating the Attention of Industrial Anomaly Detection
Abstract:
Due to the scarcity and unpredictable nature of defect samples, industrial anomaly detection (IAD) predominantly employs unsupervised learning. However, all unsupervised IAD methods face a common challenge: the inherent bias in normal samples, which causes models to focus on variable regions while overlooking potential defects in invariant areas. To effectively overcome this, it is essential to decompose and recalibrate attention, guiding the model to suppress irrelevant variations and concentrate on subtle, defect-susceptible areas. In this paper, we propose Recalibrating Attention of Industrial Anomaly Detection (RAAD), a framework that systematically decomposes and recalibrates attention maps. RAAD employs a two-stage process: first, it reduces attention bias through quantization, and second, it fine-tunes defect-prone regions for improved sensitivity. Central to this framework is Hierarchical Quantization Scoring (HQS), which dynamically allocates bit-widths across layers based on their anomaly detection contributions. HQS dynamically adjusts bit-widths based on the hierarchical nature of attention maps, compressing lower layers that produce coarse and noisy attention while preserving deeper layers with sharper, defect-focused attention. This approach optimizes both computational efficiency and the model' s sensitivity to anomalies. We validate the effectiveness of RAAD on 32 datasets using a single 3090ti. Experiments demonstrate that RAAD, balances the complexity and expressive power of the model, enhancing its anomaly detection capability.
Authors:Lingzhe Zhang, Tong Jia, Kangjin Wang, Mengxi Jia, Yang Yong, Ying Li
Title: Reducing Events to Augment Log-based Anomaly Detection Models: An Empirical Study
Abstract:
As software systems grow increasingly intricate, the precise detection of anomalies have become both essential and challenging. Current log-based anomaly detection methods depend heavily on vast amounts of log data leading to inefficient inference and potential misguidance by noise logs. However, the quantitative effects of log reduction on the effectiveness of anomaly detection remain unexplored. Therefore, we first conduct a comprehensive study on six distinct models spanning three datasets. Through the study, the impact of log quantity and their effectiveness in representing anomalies is qualifies, uncovering three distinctive log event types that differently influence model performance. Drawing from these insights, we propose LogCleaner: an efficient methodology for the automatic reduction of log events in the context of anomaly detection. Serving as middleware between software systems and models, LogCleaner continuously updates and filters anti-events and duplicative-events in the raw generated logs. Experimental outcomes highlight LogCleaner's capability to reduce over 70% of log events in anomaly detection, accelerating the model's inference speed by approximately 300%, and universally improving the performance of models for anomaly detection.
Authors:Junjun Pan, Yixin Liu, Rui Miao, Kaize Ding, Yu Zheng, Quoc Viet Hung Nguyen, Alan Wee-Chung Liew, Shirui Pan
Title: Explainable and Fine-Grained Safeguarding of LLM Multi-Agent Systems via Bi-Level Graph Anomaly Detection
Abstract:
Large language model (LLM)-based multi-agent systems (MAS) have shown strong capabilities in solving complex tasks. As MAS become increasingly autonomous in various safety-critical tasks, detecting malicious agents has become a critical security concern. Although existing graph anomaly detection (GAD)-based defenses can identify anomalous agents, they mainly rely on coarse sentence-level information and overlook fine-grained lexical cues, leading to suboptimal performance. Moreover, the lack of interpretability in these methods limits their reliability and real-world applicability. To address these limitations, we propose XG-Guard, an explainable and fine-grained safeguarding framework for detecting malicious agents in MAS. To incorporate both coarse and fine-grained textual information for anomalous agent identification, we utilize a bi-level agent encoder to jointly model the sentence- and token-level representations of each agent. A theme-based anomaly detector further captures the evolving discussion focus in MAS dialogues, while a bi-level score fusion mechanism quantifies token-level contributions for explanation. Extensive experiments across diverse MAS topologies and attack scenarios demonstrate robust detection performance and strong interpretability of XG-Guard.
Authors:Pirzada Suhail, Rehna Afroz, Amit Sethi
Title: TIE: A Training-Inversion-Exclusion Framework for Visually Interpretable and Uncertainty-Guided Out-of-Distribution Detection
Abstract:
Deep neural networks often struggle to recognize when an input lies outside their training experience, leading to unreliable and overconfident predictions. Building dependable machine learning systems therefore requires methods that can both estimate predictive \textit{uncertainty} and detect \textit{out-of-distribution (OOD)} samples in a unified manner. In this paper, we propose \textbf{TIE: a Training--Inversion--Exclusion} framework for visually interpretable and uncertainty-guided anomaly detection that jointly addresses these challenges through iterative refinement. TIE extends a standard $n$-class classifier to an $(n+1)$-class model by introducing a garbage class initialized with Gaussian noise to represent outlier inputs. Within each epoch, TIE performs a closed-loop process of \textit{training, inversion, and exclusion}, where highly uncertain inverted samples reconstructed from the just-trained classifier are excluded into the garbage class. Over successive iterations, the inverted samples transition from noisy artifacts into visually coherent class prototypes, providing transparent insight into how the model organizes its learned manifolds. During inference, TIE rejects OOD inputs by either directly mapping them to the garbage class or producing low-confidence, uncertain misclassifications within the in-distribution classes that are easily separable, all without relying on external OOD datasets. A comprehensive threshold-based evaluation using multiple OOD metrics and performance measures such as \textit{AUROC}, \textit{AUPR}, and \textit{FPR@95\%TPR} demonstrates that TIE offers a unified and interpretable framework for robust anomaly detection and calibrated uncertainty estimation (UE) achieving near-perfect OOD detection with \textbf{\(\!\approx\!\) 0 FPR@95\%TPR} when trained on MNIST or FashionMNIST and tested against diverse unseen datasets.
Authors:Junjun Pan, Yixin Liu, Chuan Zhou, Fei Xiong, Alan Wee-Chung Liew, Shirui Pan
Title: Correcting False Alarms from Unseen: Adapting Graph Anomaly Detectors at Test Time
Abstract:
Graph anomaly detection (GAD), which aims to detect outliers in graph-structured data, has received increasing research attention recently. However, existing GAD methods assume identical training and testing distributions, which is rarely valid in practice. In real-world scenarios, unseen but normal samples may emerge during deployment, leading to a normality shift that degrades the performance of GAD models trained on the original data. Through empirical analysis, we reveal that the degradation arises from (1) semantic confusion, where unseen normal samples are misinterpreted as anomalies due to their novel patterns, and (2) aggregation contamination, where the representations of seen normal nodes are distorted by unseen normals through message aggregation. While retraining or fine-tuning GAD models could be a potential solution to the above challenges, the high cost of model retraining and the difficulty of obtaining labeled data often render this approach impractical in real-world applications. To bridge the gap, we proposed a lightweight and plug-and-play Test-time adaptation framework for correcting Unseen Normal pattErns (TUNE) in GAD. To address semantic confusion, a graph aligner is employed to align the shifted data to the original one at the graph attribute level. Moreover, we utilize the minimization of representation-level shift as a supervision signal to train the aligner, which leverages the estimated aggregation contamination as a key indicator of normality shift. Extensive experiments on 10 real-world datasets demonstrate that TUNE significantly enhances the generalizability of pre-trained GAD models to both synthetic and real unseen normal patterns.
Authors:Federico Chiariotti, Fabio Saggese, Andrea Munari, Leonardo Badia, Petar Popovski
Title: A Combined Push-Pull Access Framework for Digital Twin Alignment and Anomaly Reporting
Abstract:
A digital twin (DT) contains a set of virtual models of real systems and processes that are synchronized to their physical counterparts. This enables experimentation and examination of counterfactuals, simulating the consequences of decisions in real time. However, the DT accuracy relies on timely updates that maintain alignment with the real system. We can distinguish between: (i) pull-updates, which follow a request from the DT to the sensors, to decrease its drift from the physical state; (ii) push-updates, which are sent directly by the sensors since they represent urgent information, such as anomalies. In this work, we devise a push-pull scheduler (PPS) medium access framework, which dynamically allocates the communication resources used for these two types of updates. Our scheme strikes a balance in the trade-off between DT alignment in normal conditions and anomaly reporting, optimizing resource usage and reducing the drift age of incorrect information (AoII) by over 20% with respect to state-of-the-art solutions, while maintaining the same anomaly detection guarantees, as well as reducing the worst-case anomaly detection AoII from 70 ms to 20 ms when considering a 1 ms average drift AoII constraint.
Authors:Sanggeon Yun, Raheeb Hassan, Ryozo Masukawa, Mohsen Imani
Title: MissionHD: Data-Driven Refinement of Reasoning Graph Structure through Hyperdimensional Causal Path Encoding and Decoding
Abstract:
Reasoning graphs from Large Language Models (LLMs) are often misaligned with downstream visual tasks such as video anomaly detection (VAD). Existing Graph Structure Refinement (GSR) methods are ill-suited for these novel, dataset-less graphs. We introduce Data-driven GSR (D-GSR), a new paradigm that directly optimizes graph structure using downstream task data, and propose MissionHD, a hyperdimensional computing (HDC) framework to operationalize it. MissionHD uses an efficient encode-decode process to refine the graph, guided by the downstream task signal. Experiments on challenging VAD and VAR benchmarks show significant performance improvements when using our refined graphs, validating our approach as an effective pre-processing step.
Authors:Yunfeng Zhao, Yixin Liu, Shiyuan Li, Qingfeng Chen, Yu Zheng, Shirui Pan
Title: FreeGAD: A Training-Free yet Effective Approach for Graph Anomaly Detection
Abstract:
Graph Anomaly Detection (GAD) aims to identify nodes that deviate from the majority within a graph, playing a crucial role in applications such as social networks and e-commerce. Despite the current advancements in deep learning-based GAD, existing approaches often suffer from high deployment costs and poor scalability due to their complex and resource-intensive training processes. Surprisingly, our empirical findings suggest that the training phase of deep GAD methods, commonly perceived as crucial, may actually contribute less to anomaly detection performance than expected. Inspired by this, we propose FreeGAD, a novel training-free yet effective GAD method. Specifically, it leverages an affinity-gated residual encoder to generate anomaly-aware representations. Meanwhile, FreeGAD identifies anchor nodes as pseudo-normal and anomalous guides, followed by calculating anomaly scores through anchor-guided statistical deviations. Extensive experiments demonstrate that FreeGAD achieves superior anomaly detection performance, efficiency, and scalability on multiple benchmark datasets from diverse domains, without any training or iterative optimization.
Authors:Yue Zhou, Yuan Bi, Wenjuan Tong, Wei Wang, Nassir Navab, Zhongliang Jiang
Title: UltraAD: Fine-Grained Ultrasound Anomaly Classification via Few-Shot CLIP Adaptation
Abstract:
Precise anomaly detection in medical images is critical for clinical decision-making. While recent unsupervised or semi-supervised anomaly detection methods trained on large-scale normal data show promising results, they lack fine-grained differentiation, such as benign vs. malignant tumors. Additionally, ultrasound (US) imaging is highly sensitive to devices and acquisition parameter variations, creating significant domain gaps in the resulting US images. To address these challenges, we propose UltraAD, a vision-language model (VLM)-based approach that leverages few-shot US examples for generalized anomaly localization and fine-grained classification. To enhance localization performance, the image-level token of query visual prototypes is first fused with learnable text embeddings. This image-informed prompt feature is then further integrated with patch-level tokens, refining local representations for improved accuracy. For fine-grained classification, a memory bank is constructed from few-shot image samples and corresponding text descriptions that capture anatomical and abnormality-specific features. During training, the stored text embeddings remain frozen, while image features are adapted to better align with medical data. UltraAD has been extensively evaluated on three breast US datasets, outperforming state-of-the-art methods in both lesion localization and fine-grained medical classification. The code will be released upon acceptance.
Authors:Jiongchi Yu, Xiaofei Xie, Qiang Hu, Bowen Zhang, Ziming Zhao, Yun Lin, Lei Ma, Ruitao Feng, Frank Liauw
Title: CAShift: Benchmarking Log-Based Cloud Attack Detection under Normality Shift
Abstract:
With the rapid advancement of cloud-native computing, securing cloud environments has become an important task. Log-based Anomaly Detection (LAD) is the most representative technique used in different systems for attack detection and safety guarantee, where multiple LAD methods and relevant datasets have been proposed. However, even though some of these datasets are specifically prepared for cloud systems, they only cover limited cloud behaviors and lack information from a whole-system perspective. Another critical issue to consider is normality shift, which implies that the test distribution could differ from the training distribution and highly affect the performance of LAD. Unfortunately, existing works only focus on simple shift types such as chronological changes, while other cloud-specific shift types are ignored. Therefore, a dataset that captures diverse cloud system behaviors and various types of normality shifts is essential. To fill this gap, we construct a dataset CAShift to evaluate the performance of LAD in cloud, which considers different roles of software in cloud systems, supports three real-world normality shift types and features 20 different attack scenarios in various cloud system components. Based on CAShift, we evaluate the effectiveness of existing LAD methods in normality shift scenarios. Additionally, to explore the feasibility of shift adaptation, we further investigate three continuous learning approaches to mitigate the impact of distribution shift. Results demonstrated that 1) all LAD methods suffer from normality shift where the performance drops up to 34%, and 2) existing continuous learning methods are promising to address shift drawbacks, but the configurations highly affect the shift adaptation. Based on our findings, we offer valuable implications for future research in designing more robust LAD models and methods for LAD shift adaptation.
Authors:Ryozo Masukawa, Sanggeon Yun, Sungheon Jeong, Wenjun Huang, Yang Ni, Ian Bryant, Nathaniel D. Bastian, Mohsen Imani
Title: PacketCLIP: Multi-Modal Embedding of Network Traffic and Language for Cybersecurity Reasoning
Abstract:
Traffic classification is vital for cybersecurity, yet encrypted traffic poses significant challenges. We present PacketCLIP, a multi-modal framework combining packet data with natural language semantics through contrastive pretraining and hierarchical Graph Neural Network (GNN) reasoning. PacketCLIP integrates semantic reasoning with efficient classification, enabling robust detection of anomalies in encrypted network flows. By aligning textual descriptions with packet behaviors, it offers enhanced interpretability, scalability, and practical applicability across diverse security scenarios. PacketCLIP achieves a 95% mean AUC, outperforms baselines by 11.6%, and reduces model size by 92%, making it ideal for real-time anomaly detection. By bridging advanced machine learning techniques and practical cybersecurity needs, PacketCLIP provides a foundation for scalable, efficient, and interpretable solutions to tackle encrypted traffic classification and network intrusion detection challenges in resource-constrained environments.
Authors:Sanggeon Yun, Ryozo Masukawa, William Youngwoo Chung, Minhyoung Na, Nathaniel Bastian, Mohsen Imani
Title: Continuous GNN-based Anomaly Detection on Edge using Efficient Adaptive Knowledge Graph Learning
Abstract:
The increasing demand for robust security solutions across various industries has made Video Anomaly Detection (VAD) a critical task in applications such as intelligent surveillance, evidence investigation, and violence detection. Traditional approaches to VAD often rely on finetuning large pre-trained models, which can be computationally expensive and impractical for real-time or resource-constrained environments. To address this, MissionGNN introduced a more efficient method by training a graph neural network (GNN) using a fixed knowledge graph (KG) derived from large language models (LLMs) like GPT-4. While this approach demonstrated significant efficiency in computational power and memory, it faces limitations in dynamic environments where frequent updates to the KG are necessary due to evolving behavior trends and shifting data patterns. These updates typically require cloud-based computation, posing challenges for edge computing applications. In this paper, we propose a novel framework that facilitates continuous KG adaptation directly on edge devices, overcoming the limitations of cloud dependency. Our method dynamically modifies the KG through a three-phase process: pruning, alternating, and creating nodes, enabling real-time adaptation to changing data trends. This continuous learning approach enhances the robustness of anomaly detection models, making them more suitable for deployment in dynamic and resource-constrained environments.
Authors:Yuan Bi, Lucie Huang, Ricarda Clarenbach, Reza Ghotbi, Angelos Karlas, Nassir Navab, Zhongliang Jiang
Title: Synomaly Noise and Multi-Stage Diffusion: A Novel Approach for Unsupervised Anomaly Detection in Medical Images
Abstract:
Anomaly detection in medical imaging plays a crucial role in identifying pathological regions across various imaging modalities, such as brain MRI, liver CT, and carotid ultrasound (US). However, training fully supervised segmentation models is often hindered by the scarcity of expert annotations and the complexity of diverse anatomical structures. To address these issues, we propose a novel unsupervised anomaly detection framework based on a diffusion model that incorporates a synthetic anomaly (Synomaly) noise function and a multi-stage diffusion process. Synomaly noise introduces synthetic anomalies into healthy images during training, allowing the model to effectively learn anomaly removal. The multi-stage diffusion process is introduced to progressively denoise images, preserving fine details while improving the quality of anomaly-free reconstructions. The generated high-fidelity counterfactual healthy images can further enhance the interpretability of the segmentation models, as well as provide a reliable baseline for evaluating the extent of anomalies and supporting clinical decision-making. Notably, the unsupervised anomaly detection model is trained purely on healthy images, eliminating the need for anomalous training samples and pixel-level annotations. We validate the proposed approach on brain MRI, liver CT datasets, and carotid US. The experimental results demonstrate that the proposed framework outperforms existing state-of-the-art unsupervised anomaly detection methods, achieving performance comparable to fully supervised segmentation models in the US dataset. Ablation studies further highlight the contributions of Synomaly noise and the multi-stage diffusion process in improving anomaly segmentation. These findings underscore the potential of our approach as a robust and annotation-efficient alternative for medical anomaly detection.
Authors:Sunwoo Kim, Soo Yong Lee, Fanchen Bu, Shinhwan Kang, Kyungho Kim, Jaemin Yoo, Kijung Shin
Title: Rethinking Reconstruction-based Graph-Level Anomaly Detection: Limitations and a Simple Remedy
Abstract:
Graph autoencoders (Graph-AEs) learn representations of given graphs by aiming to accurately reconstruct them. A notable application of Graph-AEs is graph-level anomaly detection (GLAD), whose objective is to identify graphs with anomalous topological structures and/or node features compared to the majority of the graph population. Graph-AEs for GLAD regard a graph with a high mean reconstruction error (i.e. mean of errors from all node pairs and/or nodes) as anomalies. Namely, the methods rest on the assumption that they would better reconstruct graphs with similar characteristics to the majority. We, however, report non-trivial counter-examples, a phenomenon we call reconstruction flip, and highlight the limitations of the existing Graph-AE-based GLAD methods. Specifically, we empirically and theoretically investigate when this assumption holds and when it fails. Through our analyses, we further argue that, while the reconstruction errors for a given graph are effective features for GLAD, leveraging the multifaceted summaries of the reconstruction errors, beyond just mean, can further strengthen the features. Thus, we propose a novel and simple GLAD method, named MUSE. The key innovation of MUSE involves taking multifaceted summaries of reconstruction errors as graph features for GLAD. This surprisingly simple method obtains SOTA performance in GLAD, performing best overall among 14 methods across 10 datasets.
Authors:Qihang Zhou, Binbin Gao, Guansong Pang, Xin Wang, Jiming Chen, Shibo He
Title: TokenCLIP: Token-wise Prompt Learning for Zero-shot Anomaly Detection
Abstract:
Adapting CLIP for anomaly detection on unseen objects has shown strong potential in a zero-shot manner. However, existing methods typically rely on a single textual space to align with visual semantics across diverse objects and domains. The indiscriminate alignment hinders the model from accurately capturing varied anomaly semantics. We propose TokenCLIP, a token-wise adaptation framework that enables dynamic alignment between visual and learnable textual spaces for fine-grained anomaly learning. Rather than mapping all visual tokens to a single, token-agnostic textual space, TokenCLIP aligns each token with a customized textual subspace that represents its visual characteristics. Explicitly assigning a unique learnable textual space to each token is computationally intractable and prone to insufficient optimization. We instead expand the token-agnostic textual space into a set of orthogonal subspaces, and then dynamically assign each token to a subspace combination guided by semantic affinity, which jointly supports customized and efficient token-wise adaptation. To this end, we formulate dynamic alignment as an optimal transport problem, where all visual tokens in an image are transported to textual subspaces based on semantic similarity. The transport constraints of OT ensure sufficient optimization across subspaces and encourage them to focus on different semantics. Solving the problem yields a transport plan that adaptively assigns each token to semantically relevant subspaces. A top-k masking is then applied to sparsify the plan and specialize subspaces for distinct visual regions. Extensive experiments demonstrate the superiority of TokenCLIP.
Authors:Yuyang Yu, Zhengwei Chen, Xuemiao Xu, Lei Zhang, Haoxin Yang, Yongwei Nie, Shengfeng He
Title: Registration is a Powerful Rotation-Invariance Learner for 3D Anomaly Detection
Abstract:
3D anomaly detection in point-cloud data is critical for industrial quality control, aiming to identify structural defects with high reliability. However, current memory bank-based methods often suffer from inconsistent feature transformations and limited discriminative capacity, particularly in capturing local geometric details and achieving rotation invariance. These limitations become more pronounced when registration fails, leading to unreliable detection results. We argue that point-cloud registration plays an essential role not only in aligning geometric structures but also in guiding feature extraction toward rotation-invariant and locally discriminative representations. To this end, we propose a registration-induced, rotation-invariant feature extraction framework that integrates the objectives of point-cloud registration and memory-based anomaly detection. Our key insight is that both tasks rely on modeling local geometric structures and leveraging feature similarity across samples. By embedding feature extraction into the registration learning process, our framework jointly optimizes alignment and representation learning. This integration enables the network to acquire features that are both robust to rotations and highly effective for anomaly detection. Extensive experiments on the Anomaly-ShapeNet and Real3D-AD datasets demonstrate that our method consistently outperforms existing approaches in effectiveness and generalizability.
Authors:Qihang Zhou, Shibo He, Jiangtao Yan, Wenchao Meng, Jiming Chen
Title: PointAD+: Learning Hierarchical Representations for Zero-shot 3D Anomaly Detection
Abstract:
In this paper, we aim to transfer CLIP's robust 2D generalization capabilities to identify 3D anomalies across unseen objects of highly diverse class semantics. To this end, we propose a unified framework to comprehensively detect and segment 3D anomalies by leveraging both point- and pixel-level information. We first design PointAD, which leverages point-pixel correspondence to represent 3D anomalies through their associated rendering pixel representations. This approach is referred to as implicit 3D representation, as it focuses solely on rendering pixel anomalies but neglects the inherent spatial relationships within point clouds. Then, we propose PointAD+ to further broaden the interpretation of 3D anomalies by introducing explicit 3D representation, emphasizing spatial abnormality to uncover abnormal spatial relationships. Hence, we propose G-aggregation to involve geometry information to enable the aggregated point representations spatially aware. To simultaneously capture rendering and spatial abnormality, PointAD+ proposes hierarchical representation learning, incorporating implicit and explicit anomaly semantics into hierarchical text prompts: rendering prompts for the rendering layer and geometry prompts for the geometry layer. A cross-hierarchy contrastive alignment is further introduced to promote the interaction between the rendering and geometry layers, facilitating mutual anomaly learning. Finally, PointAD+ integrates anomaly semantics from both layers to capture the generalized anomaly semantics. During the test, PointAD+ can integrate RGB information in a plug-and-play manner and further improve its detection performance. Extensive experiments demonstrate the superiority of PointAD+ in ZS 3D anomaly detection across unseen objects with highly diverse class semantics, achieving a holistic understanding of abnormality.
Authors:Ashish Bastola, Hao Wang, Abolfazl Razi
Title: Anomaly Detection in Cooperative Vehicle Perception Systems under Imperfect Communication
Abstract:
Anomaly detection is a critical requirement for ensuring safety in autonomous driving. In this work, we leverage Cooperative Perception to share information across nearby vehicles, enabling more accurate identification and consensus of anomalous behaviors in complex traffic scenarios. To account for the real-world challenge of imperfect communication, we propose a cooperative-perception-based anomaly detection framework (CPAD), which is a robust architecture that remains effective under communication interruptions, thereby facilitating reliable performance even in low-bandwidth settings. Since no multi-agent anomaly detection dataset exists for vehicle trajectories, we introduce 15,000 different scenarios with a 90,000 trajectories benchmark dataset generated through rule-based vehicle dynamics analysis. Empirical results demonstrate that our approach outperforms standard anomaly classification methods in F1-score, AUC and showcase strong robustness to agent connection interruptions.
Authors:Zhiling Chen, Hanning Chen, Mohsen Imani, Farhad Imani
Title: Can Multimodal Large Language Models be Guided to Improve Industrial Anomaly Detection?
Abstract:
In industrial settings, the accurate detection of anomalies is essential for maintaining product quality and ensuring operational safety. Traditional industrial anomaly detection (IAD) models often struggle with flexibility and adaptability, especially in dynamic production environments where new defect types and operational changes frequently arise. Recent advancements in Multimodal Large Language Models (MLLMs) hold promise for overcoming these limitations by combining visual and textual information processing capabilities. MLLMs excel in general visual understanding due to their training on large, diverse datasets, but they lack domain-specific knowledge, such as industry-specific defect tolerance levels, which limits their effectiveness in IAD tasks. To address these challenges, we propose Echo, a novel multi-expert framework designed to enhance MLLM performance for IAD. Echo integrates four expert modules: Reference Extractor which provides a contextual baseline by retrieving similar normal images, Knowledge Guide which supplies domain-specific insights, Reasoning Expert which enables structured, stepwise reasoning for complex queries, and Decision Maker which synthesizes information from all modules to deliver precise, context-aware responses. Evaluated on the MMAD benchmark, Echo demonstrates significant improvements in adaptability, precision, and robustness, moving closer to meeting the demands of real-world industrial anomaly detection.
Authors:Qihang Zhou, Jiangtao Yan, Shibo He, Wenchao Meng, Jiming Chen
Title: PointAD: Comprehending 3D Anomalies from Points and Pixels for Zero-shot 3D Anomaly Detection
Abstract:
Zero-shot (ZS) 3D anomaly detection is a crucial yet unexplored field that addresses scenarios where target 3D training samples are unavailable due to practical concerns like privacy protection. This paper introduces PointAD, a novel approach that transfers the strong generalization capabilities of CLIP for recognizing 3D anomalies on unseen objects. PointAD provides a unified framework to comprehend 3D anomalies from both points and pixels. In this framework, PointAD renders 3D anomalies into multiple 2D renderings and projects them back into 3D space. To capture the generic anomaly semantics into PointAD, we propose hybrid representation learning that optimizes the learnable text prompts from 3D and 2D through auxiliary point clouds. The collaboration optimization between point and pixel representations jointly facilitates our model to grasp underlying 3D anomaly patterns, contributing to detecting and segmenting anomalies of unseen diverse 3D objects. Through the alignment of 3D and 2D space, our model can directly integrate RGB information, further enhancing the understanding of 3D anomalies in a plug-and-play manner. Extensive experiments show the superiority of PointAD in ZS 3D anomaly detection across diverse unseen objects.
Authors:Lecheng Zheng, Dongqi Fu, Zihao Li, Jingrui He
Title: OWLEYE: Zero-Shot Learner for Cross-Domain Graph Data Anomaly Detection
Abstract:
Graph data is informative to represent complex relationships such as transactions between accounts, communications between devices, and dependencies among machines or processes. Correspondingly, graph anomaly detection (GAD) plays a critical role in identifying anomalies across various domains, including finance, cybersecurity, manufacturing, etc. Facing the large-volume and multi-domain graph data, nascent efforts attempt to develop foundational generalist models capable of detecting anomalies in unseen graphs without retraining. To the best of our knowledge, the different feature semantics and dimensions of cross-domain graph data heavily hinder the development of the graph foundation model, leaving further in-depth continual learning and inference capabilities a quite open problem. Hence, we propose OWLEYE, a novel zero-shot GAD framework that learns transferable patterns of normal behavior from multiple graphs, with a threefold contribution. First, OWLEYE proposes a cross-domain feature alignment module to harmonize feature distributions, which preserves domain-specific semantics during alignment. Second, with aligned features, to enable continuous learning capabilities, OWLEYE designs the multi-domain multi-pattern dictionary learning to encode shared structural and attribute-based patterns. Third, for achieving the in-context learning ability, OWLEYE develops a truncated attention-based reconstruction module to robustly detect anomalies without requiring labeled data for unseen graph-structured data. Extensive experiments on real-world datasets demonstrate that OWLEYE achieves superior performance and generalizability compared to state-of-the-art baselines, establishing a strong foundation for scalable and label-efficient anomaly detection.
Authors:Justus Arweiler, Indra Jungjohann, Aparna Muraleedharan, Heike Leitte, Jakob Burger, Kerstin Münnemann, Fabian Jirasek, Hans Hasse
Title: Batch Distillation Data for Developing Machine Learning Anomaly Detection Methods
Abstract:
Machine learning (ML) holds great potential to advance anomaly detection (AD) in chemical processes. However, the development of ML-based methods is hindered by the lack of openly available experimental data. To address this gap, we have set up a laboratory-scale batch distillation plant and operated it to generate an extensive experimental database, covering fault-free experiments and experiments in which anomalies were intentionally induced, for training advanced ML-based AD methods. In total, 119 experiments were conducted across a wide range of operating conditions and mixtures. Most experiments containing anomalies were paired with a corresponding fault-free one. The database that we provide here includes time-series data from numerous sensors and actuators, along with estimates of measurement uncertainty. In addition, unconventional data sources -- such as concentration profiles obtained via online benchtop NMR spectroscopy and video and audio recordings -- are provided. Extensive metadata and expert annotations of all experiments are included. The anomaly annotations are based on an ontology developed in this work. The data are organized in a structured database and made freely available via doi.org/10.5281/zenodo.17395544. This new database paves the way for the development of advanced ML-based AD methods. As it includes information on the causes of anomalies, it further enables the development of interpretable and explainable ML approaches, as well as methods for anomaly mitigation.
Authors:Dennis Wagner, Arjun Nair, Billy Joe Franks, Justus Arweiler, Aparna Muraleedharan, Indra Jungjohann, Fabian Hartung, Mayank C. Ahuja, Andriy Balinskyy, Saurabh Varshneya, Nabeel Hussain Syed, Mayank Nagda, Phillip Liznerski, Steffen Reithermann, Maja Rudolph, Sebastian Vollmer, Ralf Schulz, Torsten Katz, Stephan Mandt, Michael Bortz, Heike Leitte, Daniel Neider, Jakob Burger, Fabian Jirasek, Hans Hasse, Sophie Fellenz, Marius Kloft
Title: Formally Exploring Time-Series Anomaly Detection Evaluation Metrics
Abstract:
Undetected anomalies in time series can trigger catastrophic failures in safety-critical systems, such as chemical plant explosions or power grid outages. Although many detection methods have been proposed, their performance remains unclear because current metrics capture only narrow aspects of the task and often yield misleading results. We address this issue by introducing verifiable properties that formalize essential requirements for evaluating time-series anomaly detection. These properties enable a theoretical framework that supports principled evaluations and reliable comparisons. Analyzing 37 widely used metrics, we show that most satisfy only a few properties, and none satisfy all, explaining persistent inconsistencies in prior results. To close this gap, we propose LARM, a flexible metric that provably satisfies all properties, and extend it to ALARM, an advanced variant meeting stricter requirements.
Authors:Mayank Nagda, Phil Ostheimer, Justus Arweiler, Indra Jungjohann, Jennifer Werner, Dennis Wagner, Aparna Muraleedharan, Pouya Jafari, Jochen Schmid, Fabian Jirasek, Jakob Burger, Michael Bortz, Hans Hasse, Stephan Mandt, Marius Kloft, Sophie Fellenz
Title: DiffStyleTS: Diffusion Model for Style Transfer in Time Series
Abstract:
Style transfer combines the content of one signal with the style of another. It supports applications such as data augmentation and scenario simulation, helping machine learning models generalize in data-scarce domains. While well developed in vision and language, style transfer methods for time series data remain limited. We introduce DiffTSST, a diffusion-based framework that disentangles a time series into content and style representations via convolutional encoders and recombines them through a self-supervised attention-based diffusion process. At inference, encoders extract content and style from two distinct series, enabling conditional generation of novel samples to achieve style transfer. We demonstrate both qualitatively and quantitatively that DiffTSST achieves effective style transfer. We further validate its real-world utility by showing that data augmentation with DiffTSST improves anomaly detection in data-scarce regimes.
Authors:Youssef Sabiri, Walid Houmaidi, Ouail El Maadi, Yousra Chtouki
Title: AQUAIR: A High-Resolution Indoor Environmental Quality Dataset for Smart Aquaculture Monitoring
Abstract:
Smart aquaculture systems depend on rich environmental data streams to protect fish welfare, optimize feeding, and reduce energy use. Yet public datasets that describe the air surrounding indoor tanks remain scarce, limiting the development of forecasting and anomaly-detection tools that couple head-space conditions with water-quality dynamics. We therefore introduce AQUAIR, an open-access public dataset that logs six Indoor Environmental Quality (IEQ) variables--air temperature, relative humidity, carbon dioxide, total volatile organic compounds, PM2.5 and PM10--inside a fish aquaculture facility in Amghass, Azrou, Morocco. A single Awair HOME monitor sampled every five minutes from 14 October 2024 to 9 January 2025, producing more than 23,000 time-stamped observations that are fully quality-controlled and publicly archived on Figshare. We describe the sensor placement, ISO-compliant mounting height, calibration checks against reference instruments, and an open-source processing pipeline that normalizes timestamps, interpolates short gaps, and exports analysis-ready tables. Exploratory statistics show stable conditions (median CO2 = 758 ppm; PM2.5 = 12 micrograms/m3) with pronounced feeding-time peaks, offering rich structure for short-horizon forecasting, event detection, and sensor drift studies. AQUAIR thus fills a critical gap in smart aquaculture informatics and provides a reproducible benchmark for data-centric machine learning curricula and environmental sensing research focused on head-space dynamics in recirculating aquaculture systems.
Authors:Matteo Esposito, Alexander Bakhtin, Noman Ahmad, Mikel Robredo, Ruoyu Su, Valentina Lenarduzzi, Davide Taibi
Title: Autonomic Microservice Management via Agentic AI and MAPE-K Integration
Abstract:
While microservices are revolutionizing cloud computing by offering unparalleled scalability and independent deployment, their decentralized nature poses significant security and management challenges that can threaten system stability. We propose a framework based on MAPE-K, which leverages agentic AI, for autonomous anomaly detection and remediation to address the daunting task of highly distributed system management. Our framework offers practical, industry-ready solutions for maintaining robust and secure microservices. Practitioners and researchers can customize the framework to enhance system stability, reduce downtime, and monitor broader system quality attributes such as system performance level, resilience, security, and anomaly management, among others.
Authors:Yunbo Long, Zhengyang Ling, Sam Brook, Duncan McFarlane, Alexandra Brintrup
Title: Leveraging Unsupervised Learning for Cost-Effective Visual Anomaly Detection
Abstract:
Traditional machine learning-based visual inspection systems require extensive data collection and repetitive model training to improve accuracy. These systems typically require expensive camera, computing equipment and significant machine learning expertise, which can substantially burden small and medium-sized enterprises. This study explores leveraging unsupervised learning methods with pre-trained models and low-cost hardware to create a cost-effective visual anomaly detection system. The research aims to develop a low-cost visual anomaly detection solution that uses minimal data for model training while maintaining generalizability and scalability. The system utilises unsupervised learning models from Anomalib and is deployed on affordable Raspberry Pi hardware through openVINO. The results show that this cost-effective system can complete anomaly defection training and inference on a Raspberry Pi in just 90 seconds using only 10 normal product images, achieving an F1 macro score exceeding 0.95. While the system is slightly sensitive to environmental changes like lighting, product positioning, or background, it remains a swift and economical method for factory automation inspection for small and medium-sized manufacturers
Authors:Chin-Chia Michael Yeh, Audrey Der, Uday Singh Saini, Vivian Lai, Yan Zheng, Junpeng Wang, Xin Dai, Zhongfang Zhuang, Yujie Fan, Huiyuan Chen, Prince Osei Aboagye, Liang Wang, Wei Zhang, Eamonn Keogh
Title: Matrix Profile for Anomaly Detection on Multidimensional Time Series
Abstract:
The Matrix Profile (MP), a versatile tool for time series data mining, has been shown effective in time series anomaly detection (TSAD). This paper delves into the problem of anomaly detection in multidimensional time series, a common occurrence in real-world applications. For instance, in a manufacturing factory, multiple sensors installed across the site collect time-varying data for analysis. The Matrix Profile, named for its role in profiling the matrix storing pairwise distance between subsequences of univariate time series, becomes complex in multidimensional scenarios. If the input univariate time series has n subsequences, the pairwise distance matrix is a n x n matrix. In a multidimensional time series with d dimensions, the pairwise distance information must be stored in a n x n x d tensor. In this paper, we first analyze different strategies for condensing this tensor into a profile vector. We then investigate the potential of extending the MP to efficiently find k-nearest neighbors for anomaly detection. Finally, we benchmark the multidimensional MP against 19 baseline methods on 119 multidimensional TSAD datasets. The experiments covers three learning setups: unsupervised, supervised, and semi-supervised. MP is the only method that consistently delivers high performance across all setups.
Authors:Dongyang Zhan, Kai Tan, Lin Ye, Xiangzhan Yu, Hongli Zhang, Zheng He
Title: An Adversarial Robust Behavior Sequence Anomaly Detection Approach Based on Critical Behavior Unit Learning
Abstract:
Sequential deep learning models (e.g., RNN and LSTM) can learn the sequence features of software behaviors, such as API or syscall sequences. However, recent studies have shown that these deep learning-based approaches are vulnerable to adversarial samples. Attackers can use adversarial samples to change the sequential characteristics of behavior sequences and mislead malware classifiers. In this paper, an adversarial robustness anomaly detection method based on the analysis of behavior units is proposed to overcome this problem. We extract related behaviors that usually perform a behavior intention as a behavior unit, which contains the representative semantic information of local behaviors and can be used to improve the robustness of behavior analysis. By learning the overall semantics of each behavior unit and the contextual relationships among behavior units based on a multilevel deep learning model, our approach can mitigate perturbation attacks that target local and large-scale behaviors. In addition, our approach can be applied to both low-level and high-level behavior logs (e.g., API and syscall logs). The experimental results show that our approach outperforms all the compared methods, which indicates that our approach has better performance against obfuscation attacks.
Authors:Kai Tan, Dongyang Zhan, Lin Ye, Hongli Zhang, Binxing Fang
Title: A Practical Adversarial Attack against Sequence-based Deep Learning Malware Classifiers
Abstract:
Sequence-based deep learning models (e.g., RNNs), can detect malware by analyzing its behavioral sequences. Meanwhile, these models are susceptible to adversarial attacks. Attackers can create adversarial samples that alter the sequence characteristics of behavior sequences to deceive malware classifiers. The existing methods for generating adversarial samples typically involve deleting or replacing crucial behaviors in the original data sequences, or inserting benign behaviors that may violate the behavior constraints. However, these methods that directly manipulate sequences make adversarial samples difficult to implement or apply in practice. In this paper, we propose an adversarial attack approach based on Deep Q-Network and a heuristic backtracking search strategy, which can generate perturbation sequences that satisfy practical conditions for successful attacks. Subsequently, we utilize a novel transformation approach that maps modifications back to the source code, thereby avoiding the need to directly modify the behavior log sequences. We conduct an evaluation of our approach, and the results confirm its effectiveness in generating adversarial samples from real-world malware behavior sequences, which have a high success rate in evading anomaly detection models. Furthermore, our approach is practical and can generate adversarial samples while maintaining the functionality of the modified software.
Authors:Dongyang Zhan, Wenqi Zhang, Lin Ye, Xiangzhan Yu, Hongli Zhang, Zheng He
Title: Anomaly Detection in Industrial Control Systems Based on Cross-Domain Representation Learning
Abstract:
Industrial control systems (ICSs) are widely used in industry, and their security and stability are very important. Once the ICS is attacked, it may cause serious damage. Therefore, it is very important to detect anomalies in ICSs. ICS can monitor and manage physical devices remotely using communication networks. The existing anomaly detection approaches mainly focus on analyzing the security of network traffic or sensor data. However, the behaviors of different domains (e.g., network traffic and sensor physical status) of ICSs are correlated, so it is difficult to comprehensively identify anomalies by analyzing only a single domain. In this paper, an anomaly detection approach based on cross-domain representation learning in ICSs is proposed, which can learn the joint features of multi-domain behaviors and detect anomalies within different domains. After constructing a cross-domain graph that can represent the behaviors of multiple domains in ICSs, our approach can learn the joint features of them by leveraging graph neural networks. Since anomalies behave differently in different domains, we leverage a multi-task learning approach to identify anomalies in different domains separately and perform joint training. The experimental results show that the performance of our approach is better than existing approaches for identifying anomalies in ICSs.
Authors:Ghazal Alinezhad Noghre, Armin Danesh Pazho, Hamed Tabkhi
Title: A Survey on Video Anomaly Detection via Deep Learning: Human, Vehicle, and Environment
Abstract:
Video Anomaly Detection (VAD) has emerged as a pivotal task in computer vision, with broad relevance across multiple fields. Recent advances in deep learning have driven significant progress in this area, yet the field remains fragmented across domains and learning paradigms. This survey offers a comprehensive perspective on VAD, systematically organizing the literature across various supervision levels, as well as adaptive learning methods such as online, active, and continual learning. We examine the state of VAD across three major application categories: human-centric, vehicle-centric, and environment-centric scenarios, each with distinct challenges and design considerations. In doing so, we identify fundamental contributions and limitations of current methodologies. By consolidating insights from subfields, we aim to provide the community with a structured foundation for advancing both theoretical understanding and real-world applicability of VAD systems. This survey aims to support researchers by providing a useful reference, while also drawing attention to the broader set of open challenges in anomaly detection, including both fundamental research questions and practical obstacles to real-world deployment.
Authors:Shanle Yao, Ghazal Alinezhad Noghre, Armin Danesh Pazho, Hamed Tabkhi
Title: ALFred: An Active Learning Framework for Real-world Semi-supervised Anomaly Detection with Adaptive Thresholds
Abstract:
Video Anomaly Detection (VAD) can play a key role in spotting unusual activities in video footage. VAD is difficult to use in real-world settings due to the dynamic nature of human actions, environmental variations, and domain shifts. Traditional evaluation metrics often prove inadequate for such scenarios, as they rely on static assumptions and fall short of identifying a threshold that distinguishes normal from anomalous behavior in dynamic settings. To address this, we introduce an active learning framework tailored for VAD, designed for adapting to the ever-changing real-world conditions. Our approach leverages active learning to continuously select the most informative data points for labeling, thereby enhancing model adaptability. A critical innovation is the incorporation of a human-in-the-loop mechanism, which enables the identification of actual normal and anomalous instances from pseudo-labeling results generated by AI. This collected data allows the framework to define an adaptive threshold tailored to different environments, ensuring that the system remains effective as the definition of 'normal' shifts across various settings. Implemented within a lab-based framework that simulates real-world conditions, our approach allows rigorous testing and refinement of VAD algorithms with a new metric. Experimental results show that our method achieves an EBI (Error Balance Index) of 68.91 for Q3 in real-world simulated scenarios, demonstrating its practical effectiveness and significantly enhancing the applicability of VAD in dynamic environments.
Authors:Chunyu Liu, Hao Zhang, Wei Wu, Fuhui Zhou, Qihui Wu, Derrick Wing Kwan Ng, Chan-Byoung Chae
Title: SpectrumFM: Redefining Spectrum Cognition via Foundation Modeling
Abstract:
The enhancement of spectrum efficiency and the realization of secure spectrum utilization are critically dependent on spectrum cognition. However, existing spectrum cognition methods often exhibit limited generalization and suboptimal accuracy when deployed across diverse spectrum environments and tasks. To overcome these challenges, we propose a spectrum foundation model, termed SpectrumFM, which provides a new paradigm for spectrum cognition. An innovative spectrum encoder that exploits the convolutional neural networks and the multi-head self attention mechanisms is proposed to effectively capture both fine-grained local signal structures and high-level global dependencies in the spectrum data. To enhance its adaptability, two novel self-supervised learning tasks, namely masked reconstruction and next-slot signal prediction, are developed for pre-training SpectrumFM, enabling the model to learn rich and transferable representations. Furthermore, low-rank adaptation (LoRA) parameter-efficient fine-tuning is exploited to enable SpectrumFM to seamlessly adapt to various downstream spectrum cognition tasks, including spectrum sensing (SS), anomaly detection (AD), and wireless technology classification (WTC). Extensive experiments demonstrate the superiority of SpectrumFM over state-of-the-art methods. Specifically, it improves detection probability in the SS task by 30% at -4 dB signal-to-noise ratio (SNR), boosts the area under the curve (AUC) in the AD task by over 10%, and enhances WTC accuracy by 9.6%.
Authors:Wei Li, Yunyao Cheng, Xinli Hao, Chaohong Ma, Yuxuan Liang, Bin Yang, Christian S. Jensen, Xiaofeng Meng
Title: Prioritizing Alignment Paradigms over Task-Specific Model Customization in Time-Series LLMs
Abstract:
Recent advances in Large Language Models (LLMs) have enabled unprecedented capabilities for time-series reasoning in diverse real-world applications, including medical, financial, and spatio-temporal domains. However, existing approaches typically focus on task-specific model customization, such as forecasting and anomaly detection, while overlooking the data itself, referred to as time-series primitives, which are essential for in-depth reasoning. This position paper advocates a fundamental shift in approaching time-series reasoning with LLMs: prioritizing alignment paradigms grounded in the intrinsic primitives of time series data over task-specific model customization. This realignment addresses the core limitations of current time-series reasoning approaches, which are often costly, inflexible, and inefficient, by systematically accounting for intrinsic structure of data before task engineering. To this end, we propose three alignment paradigms: Injective Alignment, Bridging Alignment, and Internal Alignment, which are emphasized by prioritizing different aspects of time-series primitives: domain, characteristic, and representation, respectively, to activate time-series reasoning capabilities of LLMs to enable economical, flexible, and efficient reasoning. We further recommend that practitioners adopt an alignment-oriented method to avail this instruction to select an appropriate alignment paradigm. Additionally, we categorize relevant literature into these alignment paradigms and outline promising research directions.
Authors:Fuhui Zhou, Chunyu Liu, Hao Zhang, Wei Wu, Qihui Wu, Derrick Wing Kwan Ng, Tony Q. S. Quek, Chan-Byoung Chae
Title: SpectrumFM: A Foundation Model for Intelligent Spectrum Management
Abstract:
Intelligent spectrum management is crucial for improving spectrum efficiency and achieving secure utilization of spectrum resources. However, existing intelligent spectrum management methods, typically based on small-scale models, suffer from notable limitations in recognition accuracy, convergence speed, and generalization, particularly in the complex and dynamic spectrum environments. To address these challenges, this paper proposes a novel spectrum foundation model, termed SpectrumFM, establishing a new paradigm for spectrum management. SpectrumFM features an innovative encoder architecture that synergistically exploits the convolutional neural networks and the multi-head self-attention mechanisms to enhance feature extraction and enable robust representation learning. The model is pre-trained via two novel self-supervised learning tasks, namely masked reconstruction and next-slot signal prediction, which leverage large-scale in-phase and quadrature (IQ) data to achieve comprehensive and transferable spectrum representations. Furthermore, a parameter-efficient fine-tuning strategy is proposed to enable SpectrumFM to adapt to various downstream spectrum management tasks, including automatic modulation classification (AMC), wireless technology classification (WTC), spectrum sensing (SS), and anomaly detection (AD). Extensive experiments demonstrate that SpectrumFM achieves superior performance in terms of accuracy, robustness, adaptability, few-shot learning efficiency, and convergence speed, consistently outperforming conventional methods across multiple benchmarks. Specifically, SpectrumFM improves AMC accuracy by up to 12.1% and WTC accuracy by 9.3%, achieves an area under the curve (AUC) of 0.97 in SS at -4 dB signal-to-noise ratio (SNR), and enhances AD performance by over 10%.
Authors:Zongyun Zhang, Jiacheng Ruan, Xian Gao, Ting Liu, Yuzhuo Fu
Title: EIAD: Explainable Industrial Anomaly Detection Via Multi-Modal Large Language Models
Abstract:
Industrial Anomaly Detection (IAD) is critical to ensure product quality during manufacturing. Although existing zero-shot defect segmentation and detection methods have shown effectiveness, they cannot provide detailed descriptions of the defects. Furthermore, the application of large multi-modal models in IAD remains in its infancy, facing challenges in balancing question-answering (QA) performance and mask-based grounding capabilities, often owing to overfitting during the fine-tuning process. To address these challenges, we propose a novel approach that introduces a dedicated multi-modal defect localization module to decouple the dialog functionality from the core feature extraction. This decoupling is achieved through independent optimization objectives and tailored learning strategies. Additionally, we contribute to the first multi-modal industrial anomaly detection training dataset, named Defect Detection Question Answering (DDQA), encompassing a wide range of defect types and industrial scenarios. Unlike conventional datasets that rely on GPT-generated data, DDQA ensures authenticity and reliability and offers a robust foundation for model training. Experimental results demonstrate that our proposed method, Explainable Industrial Anomaly Detection Assistant (EIAD), achieves outstanding performance in defect detection and localization tasks. It not only significantly enhances accuracy but also improves interpretability. These advancements highlight the potential of EIAD for practical applications in industrial settings.
Authors:Hongjun An, Yiliang Song, Jiawei Shao, Zhe Sun, Xuelong Li
Title: Single-Pixel Vision-Language Model for Intrinsic Privacy-Preserving Behavioral Intelligence
Abstract:
Adverse social interactions, such as bullying, harassment, and other illicit activities, pose significant threats to individual well-being and public safety, leaving profound impacts on physical and mental health. However, these critical events frequently occur in privacy-sensitive environments like restrooms, and changing rooms, where conventional surveillance is prohibited or severely restricted by stringent privacy regulations and ethical concerns. Here, we propose the Single-Pixel Vision-Language Model (SP-VLM), a novel framework that reimagines secure environmental monitoring. It achieves intrinsic privacy-by-design by capturing human dynamics through inherently low-dimensional single-pixel modalities and inferring complex behavioral patterns via seamless vision-language integration. Building on this framework, we demonstrate that single-pixel sensing intrinsically suppresses identity recoverability, rendering state-of-the-art face recognition systems ineffective below a critical sampling rate. We further show that SP-VLM can nonetheless extract meaningful behavioral semantics, enabling robust anomaly detection, people counting, and activity understanding from severely degraded single-pixel observations. Combining these findings, we identify a practical sampling-rate regime in which behavioral intelligence emerges while personal identity remains strongly protected. Together, these results point to a human-rights-aligned pathway for safety monitoring that can support timely intervention without normalizing intrusive surveillance in privacy-sensitive spaces.
Authors:Yifei Sun, Yuzhi He, Junhao Jia, Jinhong Wang, Ruiquan Ge, Changmiao Wang, Hongxia Xu
Title: WDT-MD: Wavelet Diffusion Transformers for Microaneurysm Detection in Fundus Images
Abstract:
Microaneurysms (MAs), the earliest pathognomonic signs of Diabetic Retinopathy (DR), present as sub-60 $μm$ lesions in fundus images with highly variable photometric and morphological characteristics, rendering manual screening not only labor-intensive but inherently error-prone. While diffusion-based anomaly detection has emerged as a promising approach for automated MA screening, its clinical application is hindered by three fundamental limitations. First, these models often fall prey to "identity mapping", where they inadvertently replicate the input image. Second, they struggle to distinguish MAs from other anomalies, leading to high false positives. Third, their suboptimal reconstruction of normal features hampers overall performance. To address these challenges, we propose a Wavelet Diffusion Transformer framework for MA Detection (WDT-MD), which features three key innovations: a noise-encoded image conditioning mechanism to avoid "identity mapping" by perturbing image conditions during training; pseudo-normal pattern synthesis via inpainting to introduce pixel-level supervision, enabling discrimination between MAs and other anomalies; and a wavelet diffusion Transformer architecture that combines the global modeling capability of diffusion Transformers with multi-scale wavelet analysis to enhance reconstruction of normal retinal features. Comprehensive experiments on the IDRiD and e-ophtha MA datasets demonstrate that WDT-MD outperforms state-of-the-art methods in both pixel-level and image-level MA detection. This advancement holds significant promise for improving early DR screening.
Authors:Jia Guo, Shuai Lu, Lei Fan, Zelin Li, Donglin Di, Yang Song, Weihang Zhang, Wenbing Zhu, Hong Yan, Fang Chen, Huiqi Li, Hongen Liao
Title: One Dinomaly2 Detect Them All: A Unified Framework for Full-Spectrum Unsupervised Anomaly Detection
Abstract:
Unsupervised anomaly detection (UAD) has evolved from building specialized single-class models to unified multi-class models, yet existing multi-class models significantly underperform the most advanced one-for-one counterparts. Moreover, the field has fragmented into specialized methods tailored to specific scenarios (multi-class, 3D, few-shot, etc.), creating deployment barriers and highlighting the need for a unified solution. In this paper, we present Dinomaly2, the first unified framework for full-spectrum image UAD, which bridges the performance gap in multi-class models while seamlessly extending across diverse data modalities and task settings. Guided by the "less is more" philosophy, we demonstrate that the orchestration of five simple element achieves superior performance in a standard reconstruction-based framework. This methodological minimalism enables natural extension across diverse tasks without modification, establishing that simplicity is the foundation of true universality. Extensive experiments on 12 UAD benchmarks demonstrate Dinomaly2's full-spectrum superiority across multiple modalities (2D, multi-view, RGB-3D, RGB-IR), task settings (single-class, multi-class, inference-unified multi-class, few-shot) and application domains (industrial, biological, outdoor). For example, our multi-class model achieves unprecedented 99.9% and 99.3% image-level (I-) AUROC on MVTec-AD and VisA respectively. For multi-view and multi-modal inspection, Dinomaly2 demonstrates state-of-the-art performance with minimum adaptations. Moreover, using only 8 normal examples per class, our method surpasses previous full-shot models, achieving 98.7% and 97.4% I-AUROC on MVTec-AD and VisA. The combination of minimalistic design, computational scalability, and universal applicability positions Dinomaly2 as a unified solution for the full spectrum of real-world anomaly detection applications.
Authors:Jijun Xiang, Longliang Liu, Xuan Zhu, Xianqi Wang, Min Lin, Xin Yang
Title: DEPTHOR++: Robust Depth Enhancement from a Real-World Lightweight dToF and RGB Guidance
Abstract:
Depth enhancement, which converts raw dToF signals into dense depth maps using RGB guidance, is crucial for improving depth perception in high-precision tasks such as 3D reconstruction and SLAM. However, existing methods often assume ideal dToF inputs and perfect dToF-RGB alignment, overlooking calibration errors and anomalies, thus limiting real-world applicability. This work systematically analyzes the noise characteristics of real-world lightweight dToF sensors and proposes a practical and novel depth completion framework, DEPTHOR++, which enhances robustness to noisy dToF inputs from three key aspects. First, we introduce a simulation method based on synthetic datasets to generate realistic training samples for robust model training. Second, we propose a learnable-parameter-free anomaly detection mechanism to identify and remove erroneous dToF measurements, preventing misleading propagation during completion. Third, we design a depth completion network tailored to noisy dToF inputs, which integrates RGB images and pre-trained monocular depth estimation priors to improve depth recovery in challenging regions. On the ZJU-L5 dataset and real-world samples, our training strategy significantly boosts existing depth completion models, with our model achieving state-of-the-art performance, improving RMSE and Rel by 22% and 11% on average. On the Mirror3D-NYU dataset, by incorporating the anomaly detection method, our model improves upon the previous SOTA by 37% in mirror regions. On the Hammer dataset, using simulated low-cost dToF data from RealSense L515, our method surpasses the L515 measurements with an average gain of 22%, demonstrating its potential to enable low-cost sensors to outperform higher-end devices. Qualitative results across diverse real-world datasets further validate the effectiveness and generalizability of our approach.
Authors:Xiaobao Wang, Ruoxiao Sun, Yujun Zhang, Bingdao Feng, Dongxiao He, Luzhi Wang, Di Jin
Title: Stealthy Yet Effective: Distribution-Preserving Backdoor Attacks on Graph Classification
Abstract:
Graph Neural Networks (GNNs) have demonstrated strong performance across tasks such as node classification, link prediction, and graph classification, but remain vulnerable to backdoor attacks that implant imperceptible triggers during training to control predictions. While node-level attacks exploit local message passing, graph-level attacks face the harder challenge of manipulating global representations while maintaining stealth. We identify two main sources of anomaly in existing graph classification backdoor methods: structural deviation from rare subgraph triggers and semantic deviation caused by label flipping, both of which make poisoned graphs easily detectable by anomaly detection models. To address this, we propose DPSBA, a clean-label backdoor framework that learns in-distribution triggers via adversarial training guided by anomaly-aware discriminators. DPSBA effectively suppresses both structural and semantic anomalies, achieving high attack success while significantly improving stealth. Extensive experiments on real-world datasets validate that DPSBA achieves a superior balance between effectiveness and detectability compared to state-of-the-art baselines.
Authors:Donghyeong Kim, Chaewon Park, Suhwan Cho, Hyeonjeong Lim, Minseok Kang, Jungho Lee, Sangyoun Lee
Title: GenCLIP: Generalizing CLIP Prompts for Zero-shot Anomaly Detection
Abstract:
Zero-shot anomaly detection (ZSAD) aims to identify anomalies in unseen categories by leveraging CLIP's zero-shot capabilities to match text prompts with visual features. A key challenge in ZSAD is learning general prompts stably and utilizing them effectively, while maintaining both generalizability and category specificity. Although general prompts have been explored in prior works, achieving their stable optimization and effective deployment remains a significant challenge. In this work, we propose GenCLIP, a novel framework that learns and leverages general prompts more effectively through multi-layer prompting and dual-branch inference. Multi-layer prompting integrates category-specific visual cues from different CLIP layers, enriching general prompts with more comprehensive and robust feature representations. By combining general prompts with multi-layer visual features, our method further enhances its generalization capability. To balance specificity and generalization, we introduce a dual-branch inference strategy, where a vision-enhanced branch captures fine-grained category-specific features, while a query-only branch prioritizes generalization. The complementary outputs from both branches improve the stability and reliability of anomaly detection across unseen categories. Additionally, we propose an adaptive text prompt filtering mechanism, which removes irrelevant or atypical class names not encountered during CLIP's training, ensuring that only meaningful textual inputs contribute to the final vision-language alignment.
Authors:Nesryne Mejri, Enjie Ghorbel, Anis Kacem, Pavel Chernakov, Niki Foteinopoulou, Djamila Aouada
Title: When Unsupervised Domain Adaptation meets One-class Anomaly Detection: Addressing the Two-fold Unsupervised Curse by Leveraging Anomaly Scarcity
Abstract:
This paper introduces the first fully unsupervised domain adaptation (UDA) framework for unsupervised anomaly detection (UAD). The performance of UAD techniques degrades significantly in the presence of a domain shift, difficult to avoid in a real-world setting. While UDA has contributed to solving this issue in binary and multi-class classification, such a strategy is ill-posed in UAD. This might be explained by the unsupervised nature of the two tasks, namely, domain adaptation and anomaly detection. Herein, we first formulate this problem that we call the two-fold unsupervised curse. Then, we propose a pioneering solution to this curse, considered intractable so far, by assuming that anomalies are rare. Specifically, we leverage clustering techniques to identify a dominant cluster in the target feature space. Posed as the normal cluster, the latter is aligned with the source normal features. Concretely, given a one-class source set and an unlabeled target set composed mostly of normal data and some anomalies, we fit the source features within a hypersphere while jointly aligning them with the features of the dominant cluster from the target set. The paper provides extensive experiments and analysis on common adaptation benchmarks for anomaly detection, demonstrating the relevance of both the newly introduced paradigm and the proposed approach. The code will be made publicly available.
Authors:Lei Fan, Junjie Huang, Donglin Di, Anyang Su, Tianyou Song, Maurice Pagnucco, Yang Song
Title: Salvaging the Overlooked: Leveraging Class-Aware Contrastive Learning for Multi-Class Anomaly Detection
Abstract:
For anomaly detection (AD), early approaches often train separate models for individual classes, yielding high performance but posing challenges in scalability and resource management. Recent efforts have shifted toward training a single model capable of handling multiple classes. However, directly extending early AD methods to multi-class settings often results in degraded performance. In this paper, we investigate this performance degradation observed in reconstruction-based methods, identifying the key issue: inter-class confusion. This confusion emerges when a model trained in multi-class scenarios incorrectly reconstructs samples from one class as those of another, thereby exacerbating reconstruction errors. To this end, we propose a simple yet effective modification, called class-aware contrastive learning (CCL). By explicitly leveraging raw object category information (\eg carpet or wood) as supervised signals, we introduce local CL to refine multiscale dense features, and global CL to obtain more compact feature representations of normal patterns, thereby effectively adapting the models to multi-class settings. Experiments across five datasets validate the effectiveness of our approach, demonstrating significant improvements and superior performance compared to state-of-the-art methods. Notably, ablation studies indicate that pseudo-class labels can achieve comparable performance.
Authors:Yang Liu, Siao Liu, Xiaoguang Zhu, Jielin Li, Hao Yang, Liangyu Teng, Juncen Guo, Yan Wang, Dingkang Yang, Jing Liu
Title: Privacy-Preserving Video Anomaly Detection: A Survey
Abstract:
Video Anomaly Detection (VAD) aims to automatically analyze spatiotemporal patterns in surveillance videos collected from open spaces to detect anomalous events that may cause harm, such as fighting, stealing, and car accidents. However, vision-based surveillance systems such as closed-circuit television often capture personally identifiable information. The lack of transparency and interpretability in video transmission and usage raises public concerns about privacy and ethics, limiting the real-world application of VAD. Recently, researchers have focused on privacy concerns in VAD by conducting systematic studies from various perspectives including data, features, and systems, making Privacy-Preserving Video Anomaly Detection (P2VAD) a hotspot in the AI community. However, current research in P2VAD is fragmented, and prior reviews have mostly focused on methods using RGB sequences, overlooking privacy leakage and appearance bias considerations. To address this gap, this article is the first to systematically reviews the progress of P2VAD, defining its scope and providing an intuitive taxonomy. We outline the basic assumptions, learning frameworks, and optimization objectives of various approaches, analyzing their strengths, weaknesses, and potential correlations. Additionally, we provide open access to research resources such as benchmark datasets and available code. Finally, we discuss key challenges and future opportunities from the perspectives of AI development and P2VAD deployment, aiming to guide future work in the field.
Authors:Austin Feng, Andreas Varvarigos, Ioannis Panitsas, Daniela Fernandez, Jinbiao Wei, Yuwei Guo, Jialin Chen, Ali Maatouk, Leandros Tassiulas, Rex Ying
Title: TelecomTS: A Multi-Modal Observability Dataset for Time Series and Language Analysis
Abstract:
Modern enterprises generate vast streams of time series metrics when monitoring complex systems, known as observability data. Unlike conventional time series from domains such as weather, observability data are zero-inflated, highly stochastic, and exhibit minimal temporal structure. Despite their importance, observability datasets are underrepresented in public benchmarks due to proprietary restrictions. Existing datasets are often anonymized and normalized, removing scale information and limiting their use for tasks beyond forecasting, such as anomaly detection, root-cause analysis, and multi-modal reasoning. To address this gap, we introduce TelecomTS, a large-scale observability dataset derived from a 5G telecommunications network. TelecomTS features heterogeneous, de-anonymized covariates with explicit scale information and supports a suite of downstream tasks, including anomaly detection, root-cause analysis, and a question-answering benchmark requiring multi-modal reasoning. Benchmarking state-of-the-art time series, language, and reasoning models reveals that existing approaches struggle with the abrupt, noisy, and high-variance dynamics of observability data. Our experiments also underscore the importance of preserving covariates' absolute scale, emphasizing the need for foundation time series models that natively leverage scale information for practical observability applications.
Authors:Onat Gungor, Ishaan Kale, Jiasheng Zhou, Tajana Rosing
Title: LIGHT-HIDS: A Lightweight and Effective Machine Learning-Based Framework for Robust Host Intrusion Detection
Abstract:
The expansion of edge computing has increased the attack surface, creating an urgent need for robust, real-time machine learning (ML)-based host intrusion detection systems (HIDS) that balance accuracy and efficiency. In such settings, inference latency poses a critical security risk, as delays may provide exploitable opportunities for attackers. However, many state-of-the-art ML-based HIDS solutions rely on computationally intensive architectures with high inference costs, limiting their practical deployment. This paper proposes LIGHT-HIDS, a lightweight machine learning framework that combines a compressed neural network feature extractor trained via Deep Support Vector Data Description (DeepSVDD) with an efficient novelty detection model. This hybrid approach enables the learning of compact, meaningful representations of normal system call behavior for accurate anomaly detection. Experimental results on multiple datasets demonstrate that LIGHT-HIDS consistently enhances detection accuracy while reducing inference time by up to 75x compared to state-of-the-art methods. These findings highlight its effectiveness and scalability as a machine learning-based solution for real-time host intrusion detection.
Authors:Elvin Li, Onat Gungor, Zhengli Shang, Tajana Rosing
Title: CITADEL: Continual Anomaly Detection for Enhanced Learning in IoT Intrusion Detection
Abstract:
The Internet of Things (IoT), with its high degree of interconnectivity and limited computational resources, is particularly vulnerable to a wide range of cyber threats. Intrusion detection systems (IDS) have been extensively studied to enhance IoT security, and machine learning-based IDS (ML-IDS) show considerable promise for detecting malicious activity. However, their effectiveness is often constrained by poor adaptability to emerging threats and the issue of catastrophic forgetting during continuous learning. To address these challenges, we propose CITADEL, a self-supervised continual learning framework designed to extract robust representations from benign data while preserving long-term knowledge through optimized memory consolidation mechanisms. CITADEL integrates a tabular-to-image transformation module, a memory-aware masked autoencoder for self-supervised representation learning, and a novelty detection component capable of identifying anomalies without dependence on labeled attack data. Our design enables the system to incrementally adapt to emerging behaviors while retaining its ability to detect previously observed threats. Experiments on multiple intrusion datasets demonstrate that CITADEL achieves up to a 72.9% improvement over the VAE-based lifelong anomaly detector (VLAD) in key detection and retention metrics, highlighting its effectiveness in dynamic IoT environments.
Authors:Mengyang Zhao, Teng Fu, Haiyang Yu, Ke Niu, Bin Li
Title: IADGPT: Unified LVLM for Few-Shot Industrial Anomaly Detection, Localization, and Reasoning via In-Context Learning
Abstract:
Few-Shot Industrial Anomaly Detection (FS-IAD) has important applications in automating industrial quality inspection. Recently, some FS-IAD methods based on Large Vision-Language Models (LVLMs) have been proposed with some achievements through prompt learning or fine-tuning. However, existing LVLMs focus on general tasks but lack basic industrial knowledge and reasoning capabilities related to FS-IAD, making these methods far from specialized human quality inspectors. To address these challenges, we propose a unified framework, IADGPT, designed to perform FS-IAD in a human-like manner, while also handling associated localization and reasoning tasks, even for diverse and novel industrial products. To this end, we introduce a three-stage progressive training strategy inspired by humans. Specifically, the first two stages gradually guide IADGPT in acquiring fundamental industrial knowledge and discrepancy awareness. In the third stage, we design an in-context learning-based training paradigm, enabling IADGPT to leverage a few-shot image as the exemplars for improved generalization to novel products. In addition, we design a strategy that enables IADGPT to output image-level and pixel-level anomaly scores using the logits output and the attention map, respectively, in conjunction with the language output to accomplish anomaly reasoning. To support our training, we present a new dataset comprising 100K images across 400 diverse industrial product categories with extensive attribute-level textual annotations. Experiments indicate IADGPT achieves considerable performance gains in anomaly detection and demonstrates competitiveness in anomaly localization and reasoning. We will release our dataset in camera-ready.
Authors:Utku Demir, Yalin E. Sagduyu, Tugba Erpek, Hossein Jafari, Sastry Kompella, Mengran Xue
Title: Distributed Federated Learning for Vehicular Network Security: Anomaly Detection Benefits and Multi-Domain Attack Threats
Abstract:
In connected and autonomous vehicles, machine learning for safety message classification has become critical for detecting malicious or anomalous behavior. However, conventional approaches that rely on centralized data collection or purely local training face limitations due to the large scale, high mobility, and heterogeneous data distributions inherent in inter-vehicle networks. To overcome these challenges, this paper explores Distributed Federated Learning (DFL), whereby vehicles collaboratively train deep learning models by exchanging model updates among one-hop neighbors and propagating models over multiple hops. Using the Vehicular Reference Misbehavior (VeReMi) Extension Dataset, we show that DFL can significantly improve classification accuracy across all vehicles compared to learning strictly with local data. Notably, vehicles with low individual accuracy see substantial accuracy gains through DFL, illustrating the benefit of knowledge sharing across the network. We further show that local training data size and time-varying network connectivity correlate strongly with the model's overall accuracy. We investigate DFL's resilience and vulnerabilities under attacks in multiple domains, namely wireless jamming and training data poisoning attacks. Our results reveal important insights into the vulnerabilities of DFL when confronted with multi-domain attacks, underlining the need for more robust strategies to secure DFL in vehicular networks.
Authors:Kohei Obata, Yasuko Matsubara, Yasushi Sakurai
Title: Robust and Explainable Detector of Time Series Anomaly via Augmenting Multiclass Pseudo-Anomalies
Abstract:
Unsupervised anomaly detection in time series has been a pivotal research area for decades. Current mainstream approaches focus on learning normality, on the assumption that all or most of the samples in the training set are normal. However, anomalies in the training set (i.e., anomaly contamination) can be misleading. Recent studies employ data augmentation to generate pseudo-anomalies and learn the boundary separating the training samples from the augmented samples. Although this approach mitigates anomaly contamination if augmented samples mimic unseen real anomalies, it suffers from several limitations. (1) Covering a wide range of time series anomalies is challenging. (2) It disregards augmented samples that resemble normal samples (i.e., false anomalies). (3) It places too much trust in the labels of training and augmented samples. In response, we propose RedLamp, which employs diverse data augmentations to generate multiclass pseudo-anomalies and learns the multiclass boundary. Such multiclass pseudo-anomalies cover a wide variety of time series anomalies. We conduct multiclass classification using soft labels, which prevents the model from being overconfident and ensures its robustness against contaminated/false anomalies. The learned latent space is inherently explainable as it is trained to separate pseudo-anomalies into multiclasses. Extensive experiments demonstrate the effectiveness of RedLamp in anomaly detection and its robustness against anomaly contamination.
Authors:Cosmin I. Bercea, Jun Li, Philipp Raffler, Evamaria O. Riedel, Lena Schmitzer, Angela Kurz, Felix Bitzer, Paula Roßmüller, Julian Canisius, Mirjam L. Beyrle, Che Liu, Wenjia Bai, Bernhard Kainz, Julia A. Schnabel, Benedikt Wiestler
Title: NOVA: A Benchmark for Anomaly Localization and Clinical Reasoning in Brain MRI
Abstract:
In many real-world applications, deployed models encounter inputs that differ from the data seen during training. Out-of-distribution detection identifies whether an input stems from an unseen distribution, while open-world recognition flags such inputs to ensure the system remains robust as ever-emerging, previously $unknown$ categories appear and must be addressed without retraining. Foundation and vision-language models are pre-trained on large and diverse datasets with the expectation of broad generalization across domains, including medical imaging. However, benchmarking these models on test sets with only a few common outlier types silently collapses the evaluation back to a closed-set problem, masking failures on rare or truly novel conditions encountered in clinical use. We therefore present $NOVA$, a challenging, real-life $evaluation-only$ benchmark of $\sim$900 brain MRI scans that span 281 rare pathologies and heterogeneous acquisition protocols. Each case includes rich clinical narratives and double-blinded expert bounding-box annotations. Together, these enable joint assessment of anomaly localisation, visual captioning, and diagnostic reasoning. Because NOVA is never used for training, it serves as an $extreme$ stress-test of out-of-distribution generalisation: models must bridge a distribution gap both in sample appearance and in semantic space. Baseline results with leading vision-language models (GPT-4o, Gemini 2.0 Flash, and Qwen2.5-VL-72B) reveal substantial performance drops across all tasks, establishing NOVA as a rigorous testbed for advancing models that can detect, localize, and reason about truly unknown anomalies.
Authors:Jianbo Gao, Keke Gai, Jing Yu, Liehuang Zhu, Qi Wu
Title: AGATE: Stealthy Black-box Watermarking for Multimodal Model Copyright Protection
Abstract:
Recent advancement in large-scale Artificial Intelligence (AI) models offering multimodal services have become foundational in AI systems, making them prime targets for model theft. Existing methods select Out-of-Distribution (OoD) data as backdoor watermarks and retrain the original model for copyright protection. However, existing methods are susceptible to malicious detection and forgery by adversaries, resulting in watermark evasion. In this work, we propose Model-\underline{ag}nostic Black-box Backdoor W\underline{ate}rmarking Framework (AGATE) to address stealthiness and robustness challenges in multimodal model copyright protection. Specifically, we propose an adversarial trigger generation method to generate stealthy adversarial triggers from ordinary dataset, providing visual fidelity while inducing semantic shifts. To alleviate the issue of anomaly detection among model outputs, we propose a post-transform module to correct the model output by narrowing the distance between adversarial trigger image embedding and text embedding. Subsequently, a two-phase watermark verification is proposed to judge whether the current model infringes by comparing the two results with and without the transform module. Consequently, we consistently outperform state-of-the-art methods across five datasets in the downstream tasks of multimodal image-text retrieval and image classification. Additionally, we validated the robustness of AGATE under two adversarial attack scenarios.
Authors:Kota Nakamura, Koki Kawabata, Shungo Tanaka, Yasuko Matsubara, Yasushi Sakurai
Title: CyberCScope: Mining Skewed Tensor Streams and Online Anomaly Detection in Cybersecurity Systems
Abstract:
Cybersecurity systems are continuously producing a huge number of time-stamped events in the form of high-order tensors, such as {count; time, port, flow duration, packet size, . . . }, and so how can we detect anomalies/intrusions in real time? How can we identify multiple types of intrusions and capture their characteristic behaviors? The tensor data consists of categorical and continuous attributes and the data distributions of continuous attributes typically exhibit skew. These data properties require handling skewed infinite and finite dimensional spaces simultaneously. In this paper, we propose a novel streaming method, namely CyberCScope. The method effectively decomposes incoming tensors into major trends while explicitly distinguishing between categorical and skewed continuous attributes. To our knowledge, it is the first to compute hybrid skewed infinite and finite dimensional decomposition. Based on this decomposition, it streamingly finds distinct time-evolving patterns, enabling the detection of multiple types of anomalies. Extensive experiments on large-scale real datasets demonstrate that CyberCScope detects various intrusions with higher accuracy than state-of-the-art baselines while providing meaningful summaries for the intrusions that occur in practice.
Authors:Elvin Li, Zhengli Shang, Onat Gungor, Tajana Rosing
Title: SAFE: Self-Supervised Anomaly Detection Framework for Intrusion Detection
Abstract:
The proliferation of IoT devices has significantly increased network vulnerabilities, creating an urgent need for effective Intrusion Detection Systems (IDS). Machine Learning-based IDS (ML-IDS) offer advanced detection capabilities but rely on labeled attack data, which limits their ability to identify unknown threats. Self-Supervised Learning (SSL) presents a promising solution by using only normal data to detect patterns and anomalies. This paper introduces SAFE, a novel framework that transforms tabular network intrusion data into an image-like format, enabling Masked Autoencoders (MAEs) to learn robust representations of network behavior. The features extracted by the MAEs are then incorporated into a lightweight novelty detector, enhancing the effectiveness of anomaly detection. Experimental results demonstrate that SAFE outperforms the state-of-the-art anomaly detection method, Scale Learning-based Deep Anomaly Detection method (SLAD), by up to 26.2% and surpasses the state-of-the-art SSL-based network intrusion detection approach, Anomal-E, by up to 23.5% in F1-score.
Authors:Cosmin I. Bercea, Philippe C. Cattin, Julia A. Schnabel, Julia Wolleb
Title: Denoising Diffusion Models for Anomaly Localization in Medical Images
Abstract:
This chapter explores anomaly localization in medical images using denoising diffusion models. After providing a brief methodological background of these models, including their application to image reconstruction and their conditioning using guidance mechanisms, we provide an overview of available datasets and evaluation metrics suitable for their application to anomaly localization in medical images. In this context, we discuss supervision schemes ranging from fully supervised segmentation to semi-supervised, weakly supervised, self-supervised, and unsupervised methods, and provide insights into the effectiveness and limitations of these approaches. Furthermore, we highlight open challenges in anomaly localization, including detection bias, domain shift, computational cost, and model interpretability. Our goal is to provide an overview of the current state of the art in the field, outline research gaps, and highlight the potential of diffusion models for robust anomaly localization in medical images.
Authors:Sameer Ambekar, Julia A. Schnabel, Cosmin I. Bercea
Title: Selective Test-Time Adaptation for Unsupervised Anomaly Detection using Neural Implicit Representations
Abstract:
Deep learning models in medical imaging often encounter challenges when adapting to new clinical settings unseen during training. Test-time adaptation offers a promising approach to optimize models for these unseen domains, yet its application in anomaly detection (AD) remains largely unexplored. AD aims to efficiently identify deviations from normative distributions; however, full adaptation, including pathological shifts, may inadvertently learn the anomalies it intends to detect. We introduce a novel concept of selective test-time adaptation that utilizes the inherent characteristics of deep pre-trained features to adapt selectively in a zero-shot manner to any test image from an unseen domain. This approach employs a model-agnostic, lightweight multi-layer perceptron for neural implicit representations, enabling the adaptation of outputs from any reconstruction-based AD method without altering the source-trained model. Rigorous validation in brain AD demonstrated that our strategy substantially enhances detection accuracy for multiple conditions and different target distributions. Specifically, our method improves the detection rates by up to 78% for enlarged ventricles and 24% for edemas.
Authors:Tianxu Liu, Yanbin Wang, Jianguo Sun, Ye Tian, Yanyu Huang, Tao Xue, Peiyue Li, Yiwei Liu
Title: The Role of Transformer Models in Advancing Blockchain Technology: A Systematic Survey
Abstract:
As blockchain technology rapidly evolves, the demand for enhanced efficiency, security, and scalability grows.Transformer models, as powerful deep learning architectures,have shown unprecedented potential in addressing various blockchain challenges. However, a systematic review of Transformer applications in blockchain is lacking. This paper aims to fill this research gap by surveying over 200 relevant papers, comprehensively reviewing practical cases and research progress of Transformers in blockchain applications. Our survey covers key areas including anomaly detection, smart contract security analysis, cryptocurrency prediction and trend analysis, and code summary generation. To clearly articulate the advancements of Transformers across various blockchain domains, we adopt a domain-oriented classification system, organizing and introducing representative methods based on major challenges in current blockchain research. For each research domain,we first introduce its background and objectives, then review previous representative methods and analyze their limitations,and finally introduce the advancements brought by Transformer models. Furthermore, we explore the challenges of utilizing Transformer, such as data privacy, model complexity, and real-time processing requirements. Finally, this article proposes future research directions, emphasizing the importance of exploring the Transformer architecture in depth to adapt it to specific blockchain applications, and discusses its potential role in promoting the development of blockchain technology. This review aims to provide new perspectives and a research foundation for the integrated development of blockchain technology and machine learning, supporting further innovation and application expansion of blockchain technology.
Authors:Qunyi Zhang, Songan Zhang, Jinbao Wang, Xiaoning Lei, Guoyang Xie, Guannan Jiang, Zhichao Lu
Title: ASBench: Image Anomalies Synthesis Benchmark for Anomaly Detection
Abstract:
Anomaly detection plays a pivotal role in manufacturing quality control, yet its application is constrained by limited abnormal samples and high manual annotation costs. While anomaly synthesis offers a promising solution, existing studies predominantly treat anomaly synthesis as an auxiliary component within anomaly detection frameworks, lacking systematic evaluation of anomaly synthesis algorithms. Current research also overlook crucial factors specific to anomaly synthesis, such as decoupling its impact from detection, quantitative analysis of synthetic data and adaptability across different scenarios. To address these limitations, we propose ASBench, the first comprehensive benchmarking framework dedicated to evaluating anomaly synthesis methods. Our framework introduces four critical evaluation dimensions: (i) the generalization performance across different datasets and pipelines (ii) the ratio of synthetic to real data (iii) the correlation between intrinsic metrics of synthesis images and anomaly detection performance metrics , and (iv) strategies for hybrid anomaly synthesis methods. Through extensive experiments, ASBench not only reveals limitations in current anomaly synthesis methods but also provides actionable insights for future research directions in anomaly synthesis
Authors:Antonin Sulc, Thorsten Hellert, Steven Hunt
Title: Unsupervised Anomaly Detection in ALS EPICS Event Logs
Abstract:
This paper introduces an automated fault analysis framework for the Advanced Light Source (ALS) that processes real-time event logs from its EPICS control system. By treating log entries as natural language, we transform them into contextual vector representations using semantic embedding techniques. A sequence-aware neural network, trained on normal operational data, assigns a real-time anomaly score to each event. This method flags deviations from baseline behavior, enabling operators to rapidly identify the critical event sequences that precede complex system failures.
Authors:Haodi Zhong, Liuxin Zou, Di Wang, Bo Wang, Zhenxing Niu, Quan Wang
Title: EvoFormer: Learning Dynamic Graph-Level Representations with Structural and Temporal Bias Correction
Abstract:
Dynamic graph-level embedding aims to capture structural evolution in networks, which is essential for modeling real-world scenarios. However, existing methods face two critical yet under-explored issues: Structural Visit Bias, where random walk sampling disproportionately emphasizes high-degree nodes, leading to redundant and noisy structural representations; and Abrupt Evolution Blindness, the failure to effectively detect sudden structural changes due to rigid or overly simplistic temporal modeling strategies, resulting in inconsistent temporal embeddings. To overcome these challenges, we propose EvoFormer, an evolution-aware Transformer framework tailored for dynamic graph-level representation learning. To mitigate Structural Visit Bias, EvoFormer introduces a Structure-Aware Transformer Module that incorporates positional encoding based on node structural roles, allowing the model to globally differentiate and accurately represent node structures. To overcome Abrupt Evolution Blindness, EvoFormer employs an Evolution-Sensitive Temporal Module, which explicitly models temporal evolution through a sequential three-step strategy: (I) Random Walk Timestamp Classification, generating initial timestamp-aware graph-level embeddings; (II) Graph-Level Temporal Segmentation, partitioning the graph stream into segments reflecting structurally coherent periods; and (III) Segment-Aware Temporal Self-Attention combined with an Edge Evolution Prediction task, enabling the model to precisely capture segment boundaries and perceive structural evolution trends, effectively adapting to rapid temporal shifts. Extensive evaluations on five benchmark datasets confirm that EvoFormer achieves state-of-the-art performance in graph similarity ranking, temporal anomaly detection, and temporal segmentation tasks, validating its effectiveness in correcting structural and temporal biases.
Authors:Athanasios Tziouvaras, Carolina Fortuna, George Floros, Kostas Kolomvatsos, Panagiotis Sarigiannidis, Marko Grobelnik, Blaž Bertalanič
Title: Towards Reliable AI in 6G: Detecting Concept Drift in Wireless Network
Abstract:
AI-native 6G networks promise unprecedented automation and performance by embedding machine-learning models throughout the radio access and core segments of the network. However, the non-stationary nature of wireless environments due to infrastructure changes, user mobility, and emerging traffic patterns, induces concept drifts that can quickly degrade these model accuracies. Existing methods in general are very domain specific, or struggle with certain type of concept drift. In this paper, we introduce two unsupervised, model-agnostic, batch concept drift detectors. Both methods compute an expected-utility score to decide when concept drift occurred and if model retraining is warranted, without requiring ground-truth labels after deployment. We validate our framework on two real-world wireless use cases in outdoor fingerprinting for localization and for link-anomaly detection, and demonstrate that both methods are outperforming classical detectors such as ADWIN, DDM, CUSUM by 20-40 percentage points. Additionally, they achieve an F1-score of 0.94 and 1.00 in correctly triggering retraining alarm, thus reducing the false alarm rate by up to 20 percentage points compared to the best classical detectors.
Authors:Divyanshu Mishra, Mohammadreza Salehi, Pramit Saha, Olga Patey, Aris T. Papageorghiou, Yuki M. Asano, J. Alison Noble
Title: Self-supervised Learning of Echocardiographic Video Representations via Online Cluster Distillation
Abstract:
Self-supervised learning (SSL) has achieved major advances in natural images and video understanding, but challenges remain in domains like echocardiography (heart ultrasound) due to subtle anatomical structures, complex temporal dynamics, and the current lack of domain-specific pre-trained models. Existing SSL approaches such as contrastive, masked modeling, and clustering-based methods struggle with high intersample similarity, sensitivity to low PSNR inputs common in ultrasound, or aggressive augmentations that distort clinically relevant features. We present DISCOVR (Distilled Image Supervision for Cross Modal Video Representation), a self-supervised dual branch framework for cardiac ultrasound video representation learning. DISCOVR combines a clustering-based video encoder that models temporal dynamics with an online image encoder that extracts fine-grained spatial semantics. These branches are connected through a semantic cluster distillation loss that transfers anatomical knowledge from the evolving image encoder to the video encoder, enabling temporally coherent representations enriched with fine-grained semantic understanding. Evaluated on six echocardiography datasets spanning fetal, pediatric, and adult populations, DISCOVR outperforms both specialized video anomaly detection methods and state-of-the-art video-SSL baselines in zero-shot and linear probing setups, and achieves superior segmentation transfer.
Authors:Yuhao Chao, Jie Liu, Jie Tang, Gangshan Wu
Title: AnomalyR1: A GRPO-based End-to-end MLLM for Industrial Anomaly Detection
Abstract:
Industrial Anomaly Detection (IAD) poses a formidable challenge due to the scarcity of defective samples, making it imperative to deploy models capable of robust generalization to detect unseen anomalies effectively. Traditional approaches, often constrained by hand-crafted features or domain-specific expert models, struggle to address this limitation, underscoring the need for a paradigm shift. We introduce AnomalyR1, a pioneering framework that leverages VLM-R1, a Multimodal Large Language Model (MLLM) renowned for its exceptional generalization and interpretability, to revolutionize IAD. By integrating MLLM with Group Relative Policy Optimization (GRPO), enhanced by our novel Reasoned Outcome Alignment Metric (ROAM), AnomalyR1 achieves a fully end-to-end solution that autonomously processes inputs of image and domain knowledge, reasons through analysis, and generates precise anomaly localizations and masks. Based on the latest multimodal IAD benchmark, our compact 3-billion-parameter model outperforms existing methods, establishing state-of-the-art results. As MLLM capabilities continue to advance, this study is the first to deliver an end-to-end VLM-based IAD solution that demonstrates the transformative potential of ROAM-enhanced GRPO, positioning our framework as a forward-looking cornerstone for next-generation intelligent anomaly detection systems in industrial applications with limited defective data.
Authors:Jinsung Jeon, Jaehyeon Park, Sewon Park, Jeongwhan Choi, Minjung Kim, Noseong Park
Title: Possibility for Proactive Anomaly Detection
Abstract:
Time-series anomaly detection, which detects errors and failures in a workflow, is one of the most important topics in real-world applications. The purpose of time-series anomaly detection is to reduce potential damages or losses. However, existing anomaly detection models detect anomalies through the error between the model output and the ground truth (observed) value, which makes them impractical. In this work, we present a \textit{proactive} approach for time-series anomaly detection based on a time-series forecasting model specialized for anomaly detection and a data-driven anomaly detection model. Our proactive approach establishes an anomaly threshold from training data with a data-driven anomaly detection model, and anomalies are subsequently detected by identifying predicted values that exceed the anomaly threshold. In addition, we extensively evaluated the model using four anomaly detection benchmarks and analyzed both predictable and unpredictable anomalies. We attached the source code as supplementary material.
Authors:Divyanshu Mishra, Pramit Saha, He Zhao, Netzahualcoyotl Hernandez-Cruz, Olga Patey, Aris Papageorghiou, J. Alison Noble
Title: MCAT: Visual Query-Based Localization of Standard Anatomical Clips in Fetal Ultrasound Videos Using Multi-Tier Class-Aware Token Transformer
Abstract:
Accurate standard plane acquisition in fetal ultrasound (US) videos is crucial for fetal growth assessment, anomaly detection, and adherence to clinical guidelines. However, manually selecting standard frames is time-consuming and prone to intra- and inter-sonographer variability. Existing methods primarily rely on image-based approaches that capture standard frames and then classify the input frames across different anatomies. This ignores the dynamic nature of video acquisition and its interpretation. To address these challenges, we introduce Multi-Tier Class-Aware Token Transformer (MCAT), a visual query-based video clip localization (VQ-VCL) method, to assist sonographers by enabling them to capture a quick US sweep. By then providing a visual query of the anatomy they wish to analyze, MCAT returns the video clip containing the standard frames for that anatomy, facilitating thorough screening for potential anomalies. We evaluate MCAT on two ultrasound video datasets and a natural image VQ-VCL dataset based on Ego4D. Our model outperforms state-of-the-art methods by 10% and 13% mIoU on the ultrasound datasets and by 5.35% mIoU on the Ego4D dataset, using 96% fewer tokens. MCAT's efficiency and accuracy have significant potential implications for public health, especially in low- and middle-income countries (LMICs), where it may enhance prenatal care by streamlining standard plane acquisition, simplifying US-based screening, diagnosis and allowing sonographers to examine more patients.
Authors:Pramit Saha, Divyanshu Mishra, Netzahualcoyotl Hernandez-Cruz, Olga Patey, Aris Papageorghiou, Yuki M. Asano, J. Alison Noble
Title: Self-supervised Normality Learning and Divergence Vector-guided Model Merging for Zero-shot Congenital Heart Disease Detection in Fetal Ultrasound Videos
Abstract:
Congenital Heart Disease (CHD) is one of the leading causes of fetal mortality, yet the scarcity of labeled CHD data and strict privacy regulations surrounding fetal ultrasound (US) imaging present significant challenges for the development of deep learning-based models for CHD detection. Centralised collection of large real-world datasets for rare conditions, such as CHD, from large populations requires significant co-ordination and resource. In addition, data governance rules increasingly prevent data sharing between sites. To address these challenges, we introduce, for the first time, a novel privacy-preserving, zero-shot CHD detection framework that formulates CHD detection as a normality modeling problem integrated with model merging. In our framework dubbed Sparse Tube Ultrasound Distillation (STUD), each hospital site first trains a sparse video tube-based self-supervised video anomaly detection (VAD) model on normal fetal heart US clips with self-distillation loss. This enables site-specific models to independently learn the distribution of healthy cases. To aggregate knowledge across the decentralized models while maintaining privacy, we propose a Divergence Vector-Guided Model Merging approach, DivMerge, that combines site-specific models into a single VAD model without data exchange. Our approach preserves domain-agnostic rich spatio-temporal representations, ensuring generalization to unseen CHD cases. We evaluated our approach on real-world fetal US data collected from 5 hospital sites. Our merged model outperformed site-specific models by 23.77% and 30.13% in accuracy and F1-score respectively on external test sets.
Authors:Tianchen Ji, Neeloy Chakraborty, Andre Schreiber, Katherine Driggs-Campbell
Title: An Expert Ensemble for Detecting Anomalous Scenes, Interactions, and Behaviors in Autonomous Driving
Abstract:
As automated vehicles enter public roads, safety in a near-infinite number of driving scenarios becomes one of the major concerns for the widespread adoption of fully autonomous driving. The ability to detect anomalous situations outside of the operational design domain is a key component in self-driving cars, enabling us to mitigate the impact of abnormal ego behaviors and to realize trustworthy driving systems. On-road anomaly detection in egocentric videos remains a challenging problem due to the difficulties introduced by complex and interactive scenarios. We conduct a holistic analysis of common on-road anomaly patterns, from which we propose three unsupervised anomaly detection experts: a scene expert that focuses on frame-level appearances to detect abnormal scenes and unexpected scene motions; an interaction expert that models normal relative motions between two road participants and raises alarms whenever anomalous interactions emerge; and a behavior expert which monitors abnormal behaviors of individual objects by future trajectory prediction. To combine the strengths of all the modules, we propose an expert ensemble (Xen) using a Kalman filter, in which the final anomaly score is absorbed as one of the states and the observations are generated by the experts. Our experiments employ a novel evaluation protocol for realistic model performance, demonstrate superior anomaly detection performance than previous methods, and show that our framework has potential in classifying anomaly types using unsupervised learning on a large-scale on-road anomaly dataset.
Authors:Hanzhe Liang, Guoyang Xie, Chengbin Hou, Bingshu Wang, Can Gao, Jinbao Wang
Title: Look Inside for More: Internal Spatial Modality Perception for 3D Anomaly Detection
Abstract:
3D anomaly detection has recently become a significant focus in computer vision. Several advanced methods have achieved satisfying anomaly detection performance. However, they typically concentrate on the external structure of 3D samples and struggle to leverage the internal information embedded within samples. Inspired by the basic intuition of why not look inside for more, we introduce a straightforward method named Internal Spatial Modality Perception~(ISMP) to explore the feature representation from internal views fully. Specifically, our proposed ISMP consists of a critical perception module, Spatial Insight Engine~(SIE), which abstracts complex internal information of point clouds into essential global features. Besides, to better align structural information with point data, we propose an enhanced key point feature extraction module for amplifying spatial structure feature representation. Simultaneously, a novel feature filtering module is incorporated to reduce noise and redundant features for further aligning precise spatial structure. Extensive experiments validate the effectiveness of our proposed method, achieving object-level and pixel-level AUROC improvements of 3.2\% and 13.1\%, respectively, on the Real3D-AD benchmarks. Note that the strong generalization ability of SIE has been theoretically proven and is verified in both classification and segmentation tasks.
Authors:Yizhou Wang, Kuan-Chuan Peng, Yun Fu
Title: Towards Zero-shot 3D Anomaly Localization
Abstract:
3D anomaly detection and localization is of great significance for industrial inspection. Prior 3D anomaly detection and localization methods focus on the setting that the testing data share the same category as the training data which is normal. However, in real-world applications, the normal training data for the target 3D objects can be unavailable due to issues like data privacy or export control regulation. To tackle these challenges, we identify a new task -- zero-shot 3D anomaly detection and localization, where the training and testing classes do not overlap. To this end, we design 3DzAL, a novel patch-level contrastive learning framework based on pseudo anomalies generated using the inductive bias from task-irrelevant 3D xyz data to learn more representative feature representations. Furthermore, we train a normalcy classifier network to classify the normal patches and pseudo anomalies and utilize the classification result jointly with feature distance to design anomaly scores. Instead of directly using the patch point clouds, we introduce adversarial perturbations to the input patch xyz data before feeding into the 3D normalcy classifier for the classification-based anomaly score. We show that 3DzAL outperforms the state-of-the-art anomaly detection and localization performance.
Authors:Xi Ding, Lei Wang, Piotr Koniusz, Yongsheng Gao
Title: Learning Time in Static Classifiers
Abstract:
Real-world visual data rarely presents as isolated, static instances. Instead, it often evolves gradually over time through variations in pose, lighting, object state, or scene context. However, conventional classifiers are typically trained under the assumption of temporal independence, limiting their ability to capture such dynamics. We propose a simple yet effective framework that equips standard feedforward classifiers with temporal reasoning, all without modifying model architectures or introducing recurrent modules. At the heart of our approach is a novel Support-Exemplar-Query (SEQ) learning paradigm, which structures training data into temporally coherent trajectories. These trajectories enable the model to learn class-specific temporal prototypes and align prediction sequences via a differentiable soft-DTW loss. A multi-term objective further promotes semantic consistency and temporal smoothness. By interpreting input sequences as evolving feature trajectories, our method introduces a strong temporal inductive bias through loss design alone. This proves highly effective in both static and temporal tasks: it enhances performance on fine-grained and ultra-fine-grained image classification, and delivers precise, temporally consistent predictions in video anomaly detection. Despite its simplicity, our approach bridges static and temporal learning in a modular and data-efficient manner, requiring only a simple classifier on top of pre-extracted features.
Authors:Haoyan Xu, Ruizhi Qian, Jiate Li, Yushun Dong, Minghao Lin, Hanson Yan, Zhengtao Yao, Qinghua Liu, Junhao Dong, Ruopeng Huang, Yue Zhao, Mengyuan Li
Title: A Systematic Study of Model Extraction Attacks on Graph Foundation Models
Abstract:
Graph machine learning has advanced rapidly in tasks such as link prediction, anomaly detection, and node classification. As models scale up, pretrained graph models have become valuable intellectual assets because they encode extensive computation and domain expertise. Building on these advances, Graph Foundation Models (GFMs) mark a major step forward by jointly pretraining graph and text encoders on massive and diverse data. This unifies structural and semantic understanding, enables zero-shot inference, and supports applications such as fraud detection and biomedical analysis. However, the high pretraining cost and broad cross-domain knowledge in GFMs also make them attractive targets for model extraction attacks (MEAs). Prior work has focused only on small graph neural networks trained on a single graph, leaving the security implications for large-scale and multimodal GFMs largely unexplored. This paper presents the first systematic study of MEAs against GFMs. We formalize a black-box threat model and define six practical attack scenarios covering domain-level and graph-specific extraction goals, architectural mismatch, limited query budgets, partial node access, and training data discrepancies. To instantiate these attacks, we introduce a lightweight extraction method that trains an attacker encoder using supervised regression of graph embeddings. Even without contrastive pretraining data, this method learns an encoder that stays aligned with the victim text encoder and preserves its zero-shot inference ability on unseen graphs. Experiments on seven datasets show that the attacker can approximate the victim model using only a tiny fraction of its original training cost, with almost no loss in accuracy. These findings reveal that GFMs greatly expand the MEA surface and highlight the need for deployment-aware security defenses in large-scale graph learning systems.
Authors:Guan-Yan Yang, Farn Wang, Kuo-Hui Yeh
Title: GNN-enhanced Traffic Anomaly Detection for Next-Generation SDN-Enabled Consumer Electronics
Abstract:
Consumer electronics (CE) connected to the Internet of Things are susceptible to various attacks, including DDoS and web-based threats, which can compromise their functionality and facilitate remote hijacking. These vulnerabilities allow attackers to exploit CE for broader system attacks while enabling the propagation of malicious code across the CE network, resulting in device failures. Existing deep learning-based traffic anomaly detection systems exhibit high accuracy in traditional network environments but are often overly complex and reliant on static infrastructure, necessitating manual configuration and management. To address these limitations, we propose a scalable network model that integrates Software-defined Networking (SDN) and Compute First Networking (CFN) for next-generation CE networks. In this network model, we propose a Graph Neural Networks-based Network Anomaly Detection framework (GNN-NAD) that integrates SDN-based CE networks and enables the CFN architecture. GNN-NAD uniquely fuses a static, vulnerability-aware attack graph with dynamic traffic features, providing a holistic view of network security. The core of the framework is a GNN model (GSAGE) for graph representation learning, followed by a Random Forest (RF) classifier. This design (GSAGE+RF) demonstrates superior performance compared to existing feature selection methods. Experimental evaluations on CE environment reveal that GNN-NAD achieves superior metrics in accuracy, recall, precision, and F1 score, even with small sample sizes, exceeding the performance of current network anomaly detection methods. This work advances the security and efficiency of next-generation intelligent CE networks.
Authors:Yuchen Zhou, Jiayu Tang, Shuo Yang, Xiaoyan Xiao, Yuqin Dai, Wenhao Yang, Chao Gou, Xiaobo Xia, Tat-Seng Chua
Title: Logic Unseen: Revealing the Logical Blindspots of Vision-Language Models
Abstract:
Vision-Language Models (VLMs), exemplified by CLIP, have emerged as foundational for multimodal intelligence. However, their capacity for logical understanding remains significantly underexplored, resulting in critical ''logical blindspots'' that limit their reliability in practical applications. To systematically diagnose this, we introduce LogicBench, a comprehensive benchmark with over 50,000 vision-language pairs across 9 logical categories and 4 diverse scenarios: images, videos, anomaly detection, and medical diagnostics. Our evaluation reveals that existing VLMs, even the state-of-the-art ones, fall at over 40 accuracy points below human performance, particularly in challenging tasks like Causality and Conditionality, highlighting their reliance on surface semantics over critical logical structures. To bridge this gap, we propose LogicCLIP, a novel training framework designed to boost VLMs' logical sensitivity through advancements in both data generation and optimization objectives. LogicCLIP utilizes logic-aware data generation and a contrastive learning strategy that combines coarse-grained alignment, a fine-grained multiple-choice objective, and a novel logical structure-aware objective. Extensive experiments demonstrate LogicCLIP's substantial improvements in logical comprehension across all LogicBench domains, significantly outperforming baselines. Moreover, LogicCLIP retains, and often surpasses, competitive performance on general vision-language benchmarks, demonstrating that the enhanced logical understanding does not come at the expense of general alignment. We believe that LogicBench and LogicCLIP will be important resources for advancing VLM logical capabilities.
Authors:Puchun Liu, C. L. Philip Chen, Yubin He, Tong Zhang
Title: CRIA: A Cross-View Interaction and Instance-Adapted Pre-training Framework for Generalizable EEG Representations
Abstract:
The difficulty of extracting deep features from EEG data and effectively integrating information from multiple views presents significant challenges for developing a generalizable pretraining framework for EEG representation learning. However, most existing pre-training methods rely solely on the contextual semantics of a single view, failing to capture the complex and synergistic interactions among different perspectives, limiting the expressiveness and generalization of learned representations. To address these issues, this paper proposes CRIA, an adaptive framework that utilizes variable-length and variable-channel coding to achieve a unified representation of EEG data across different datasets. In this work, we define cross-view information as the integrated representation that emerges from the interaction among temporal, spectral, and spatial views of EEG signals. The model employs a cross-attention mechanism to fuse temporal, spectral, and spatial features effectively, and combines an attention matrix masking strategy based on the information bottleneck principle with a novel viewpoint masking pre-training scheme. Experimental results on the Temple University EEG corpus and the CHB-MIT dataset show that CRIA outperforms existing methods with the same pre-training conditions, achieving a balanced accuracy of 57.02% for multi-class event classification and 80.03% for anomaly detection, highlighting its strong generalization ability.
Authors:Yuzhi Huang, Chenxin Li, Haitao Zhang, Zixu Lin, Yunlong Lin, Hengyu Liu, Wuyang Li, Xinyu Liu, Jiechao Gao, Yue Huang, Xinghao Ding, Yixuan Yuan
Title: Track Any Anomalous Object: A Granular Video Anomaly Detection Pipeline
Abstract:
Video anomaly detection (VAD) is crucial in scenarios such as surveillance and autonomous driving, where timely detection of unexpected activities is essential. Although existing methods have primarily focused on detecting anomalous objects in videos -- either by identifying anomalous frames or objects -- they often neglect finer-grained analysis, such as anomalous pixels, which limits their ability to capture a broader range of anomalies. To address this challenge, we propose a new framework called Track Any Anomalous Object (TAO), which introduces a granular video anomaly detection pipeline that, for the first time, integrates the detection of multiple fine-grained anomalous objects into a unified framework. Unlike methods that assign anomaly scores to every pixel, our approach transforms the problem into pixel-level tracking of anomalous objects. By linking anomaly scores to downstream tasks such as segmentation and tracking, our method removes the need for threshold tuning and achieves more precise anomaly localization in long and complex video sequences. Experiments demonstrate that TAO sets new benchmarks in accuracy and robustness. Project page available online.
Authors:Yuhan Jing, Jingyu Wang, Lei Zhang, Haifeng Sun, Bo He, Zirui Zhuang, Chengsen Wang, Qi Qi, Jianxin Liao
Title: OIPR: Evaluation for Time-series Anomaly Detection Inspired by Operator Interest
Abstract:
With the growing adoption of time-series anomaly detection (TAD) technology, numerous studies have employed deep learning-based detectors for analyzing time-series data in the fields of Internet services, industrial systems, and sensors. The selection and optimization of anomaly detectors strongly rely on the availability of an effective performance evaluation method for TAD. Since anomalies in time-series data often manifest as a sequence of points, conventional metrics that solely consider the detection of individual point are inadequate. Existing evaluation methods for TAD typically employ point-based or event-based metrics to capture the temporal context. However, point-based metrics tend to overestimate detectors that excel only in detecting long anomalies, while event-based metrics are susceptible to being misled by fragmented detection results. To address these limitations, we propose OIPR, a novel set of TAD evaluation metrics. It models the process of operators receiving detector alarms and handling faults, utilizing area under the operator interest curve to evaluate the performance of TAD algorithms. Furthermore, we build a special scenario dataset to compare the characteristics of different evaluation methods. Through experiments conducted on the special scenario dataset and five real-world datasets, we demonstrate the remarkable performance of OIPR in extreme and complex scenarios. It achieves a balance between point and event perspectives, overcoming their primary limitations and offering applicability to broader situations.
Authors:Wenqiao Li, Bozhong Zheng, Xiaohao Xu, Jinye Gan, Fading Lu, Xiang Li, Na Ni, Zheng Tian, Xiaonan Huang, Shenghua Gao, Yingna Wu
Title: Multi-Sensor Object Anomaly Detection: Unifying Appearance, Geometry, and Internal Properties
Abstract:
Object anomaly detection is essential for industrial quality inspection, yet traditional single-sensor methods face critical limitations. They fail to capture the wide range of anomaly types, as single sensors are often constrained to either external appearance, geometric structure, or internal properties. To overcome these challenges, we introduce MulSen-AD, the first high-resolution, multi-sensor anomaly detection dataset tailored for industrial applications. MulSen-AD unifies data from RGB cameras, laser scanners, and lock-in infrared thermography, effectively capturing external appearance, geometric deformations, and internal defects. The dataset spans 15 industrial products with diverse, real-world anomalies. We also present MulSen-AD Bench, a benchmark designed to evaluate multi-sensor methods, and propose MulSen-TripleAD, a decision-level fusion algorithm that integrates these three modalities for robust, unsupervised object anomaly detection. Our experiments demonstrate that multi-sensor fusion substantially outperforms single-sensor approaches, achieving 96.1% AUROC in object-level detection accuracy. These results highlight the importance of integrating multi-sensor data for comprehensive industrial anomaly detection.
Authors:Jianan Ye, Weiguang Zhao, Xi Yang, Guangliang Cheng, Kaizhu Huang
Title: PO3AD: Predicting Point Offsets toward Better 3D Point Cloud Anomaly Detection
Abstract:
Point cloud anomaly detection under the anomaly-free setting poses significant challenges as it requires accurately capturing the features of 3D normal data to identify deviations indicative of anomalies. Current efforts focus on devising reconstruction tasks, such as acquiring normal data representations by restoring normal samples from altered, pseudo-anomalous counterparts. Our findings reveal that distributing attention equally across normal and pseudo-anomalous data tends to dilute the model's focus on anomalous deviations. The challenge is further compounded by the inherently disordered and sparse nature of 3D point cloud data. In response to those predicaments, we introduce an innovative approach that emphasizes learning point offsets, targeting more informative pseudo-abnormal points, thus fostering more effective distillation of normal data representations. We also have crafted an augmentation technique that is steered by normal vectors, facilitating the creation of credible pseudo anomalies that enhance the efficiency of the training process. Our comprehensive experimental evaluation on the Anomaly-ShapeNet and Real3D-AD datasets evidences that our proposed method outperforms existing state-of-the-art approaches, achieving an average enhancement of 9.0% and 1.4% in the AUC-ROC detection metric across these datasets, respectively.
Authors:Pengyu Li, Zhijie Zhong, Tong Zhang, Zhiwen Yu, C. L. Philip Chen, Kaixiang Yang
Title: A New Perspective on Time Series Anomaly Detection: Faster Patch-based Broad Learning System
Abstract:
Time series anomaly detection (TSAD) has been a research hotspot in both academia and industry in recent years. Deep learning methods have become the mainstream research direction due to their excellent performance. However, new viewpoints have emerged in recent TSAD research. Deep learning is not required for TSAD due to limitations such as slow deep learning speed. The Broad Learning System (BLS) is a shallow network framework that benefits from its ease of optimization and speed. It has been shown to outperform machine learning approaches while remaining competitive with deep learning. Based on the current situation of TSAD, we propose the Contrastive Patch-based Broad Learning System (CPatchBLS). This is a new exploration of patching technique and BLS, providing a new perspective for TSAD. We construct Dual-PatchBLS as a base through patching and Simple Kernel Perturbation (SKP) and utilize contrastive learning to capture the differences between normal and abnormal data under different representations. To compensate for the temporal semantic loss caused by various patching, we propose CPatchBLS with model level integration, which takes advantage of BLS's fast feature to build model-level integration and improve model detection. Using five real-world series anomaly detection datasets, we confirmed the method's efficacy, outperforming previous deep learning and machine learning methods while retaining a high level of computing efficiency.
Authors:Yuanyi Wang, Haifeng Sun, Chengsen Wang, Mengde Zhu, Jingyu Wang, Wei Tang, Qi Qi, Zirui Zhuang, Jianxin Liao
Title: Interdependency Matters: Graph Alignment for Multivariate Time Series Anomaly Detection
Abstract:
Anomaly detection in multivariate time series (MTS) is crucial for various applications in data mining and industry. Current industrial methods typically approach anomaly detection as an unsupervised learning task, aiming to identify deviations by estimating the normal distribution in noisy, label-free datasets. These methods increasingly incorporate interdependencies between channels through graph structures to enhance accuracy. However, the role of interdependencies is more critical than previously understood, as shifts in interdependencies between MTS channels from normal to anomalous data are significant. This observation suggests that \textit{anomalies could be detected by changes in these interdependency graph series}. To capitalize on this insight, we introduce MADGA (MTS Anomaly Detection via Graph Alignment), which redefines anomaly detection as a graph alignment (GA) problem that explicitly utilizes interdependencies for anomaly detection. MADGA dynamically transforms subsequences into graphs to capture the evolving interdependencies, and Graph alignment is performed between these graphs, optimizing an alignment plan that minimizes cost, effectively minimizing the distance for normal data and maximizing it for anomalous data. Uniquely, our GA approach involves explicit alignment of both nodes and edges, employing Wasserstein distance for nodes and Gromov-Wasserstein distance for edges. To our knowledge, this is the first application of GA to MTS anomaly detection that explicitly leverages interdependency for this purpose. Extensive experiments on diverse real-world datasets validate the effectiveness of MADGA, demonstrating its capability to detect anomalies and differentiate interdependencies, consistently achieving state-of-the-art across various scenarios.
Authors:Jiahao Yu, Xian Wu, Hao Liu, Wenbo Guo, Xinyu Xing
Title: BlockScan: Detecting Anomalies in Blockchain Transactions
Abstract:
We propose BlockScan, a customized Transformer for anomaly detection in blockchain transactions. Unlike existing methods that rely on rule-based systems or directly apply off-the-shelf large language models (LLMs), BlockScan introduces a series of customized designs to effectively model the unique data structure of blockchain transactions. First, a blockchain transaction is multi-modal, containing blockchain-specific tokens, texts, and numbers. We design a novel modularized tokenizer to handle these multi-modal inputs, balancing the information across different modalities. Second, we design a customized masked language modeling mechanism for pretraining the Transformer architecture, incorporating RoPE embedding and FlashAttention for handling longer sequences. Finally, we design a novel anomaly detection method based on the model outputs. We further provide theoretical analysis for the detection method of our system. Extensive evaluations on Ethereum and Solana transactions demonstrate BlockScan's exceptional capability in anomaly detection while maintaining a low false positive rate. Remarkably, BlockScan is the only method that successfully detects anomalous transactions on Solana with high accuracy, whereas all other approaches achieved very low or zero detection recall scores. This work sets a new benchmark for applying Transformer-based approaches in blockchain data analysis.
Authors:Dexuan Ding, Lei Wang, Liyun Zhu, Tom Gedeon, Piotr Koniusz
Title: Learnable Expansion of Graph Operators for Multi-Modal Feature Fusion
Abstract:
In computer vision tasks, features often come from diverse representations, domains (e.g., indoor and outdoor), and modalities (e.g., text, images, and videos). Effectively fusing these features is essential for robust performance, especially with the availability of powerful pre-trained models like vision-language models. However, common fusion methods, such as concatenation, element-wise operations, and non-linear techniques, often fail to capture structural relationships, deep feature interactions, and suffer from inefficiency or misalignment of features across domains or modalities. In this paper, we shift from high-dimensional feature space to a lower-dimensional, interpretable graph space by constructing relationship graphs that encode feature relationships at different levels, e.g., clip, frame, patch, token, etc. To capture deeper interactions, we expand graphs through iterative graph relationship updates and introduce a learnable graph fusion operator to integrate these expanded relationships for more effective fusion. Our approach is relationship-centric, operates in a homogeneous space, and is mathematically principled, resembling element-wise relationship score aggregation via multilinear polynomials. We demonstrate the effectiveness of our graph-based fusion method on video anomaly detection, showing strong performance across multi-representational, multi-modal, and multi-domain feature fusion tasks.
Authors:Amine Bechar, Adel Oulefki, Abbes Amira, Fatih Kurogollu, Yassine Himeur
Title: Extracting Actionable Insights from Building Energy Data using Vision LLMs on Wavelet and 3D Recurrence Representations
Abstract:
The analysis of complex building time-series for actionable insights and recommendations remains challenging due to the nonlinear and multi-scale characteristics of energy data. To address this, we propose a framework that fine-tunes visual language large models (VLLMs) on 3D graphical representations of the data. The approach converts 1D time-series into 3D representations using continuous wavelet transforms (CWTs) and recurrence plots (RPs), which capture temporal dynamics and localize frequency anomalies. These 3D encodings enable VLLMs to visually interpret energy-consumption patterns, detect anomalies, and provide recommendations for energy efficiency. We demonstrate the framework on real-world building-energy datasets, where fine-tuned VLLMs successfully monitor building states, identify recurring anomalies, and generate optimization recommendations. Quantitatively, the Idefics-7B VLLM achieves validation losses of 0.0952 with CWTs and 0.1064 with RPs on the University of Sharjah energy dataset, outperforming direct fine-tuning on raw time-series data (0.1176) for anomaly detection. This work bridges time-series analysis and visualization, providing a scalable and interpretable framework for energy analytics.
Authors:Lucas Correia, Jan-Christoph Goos, Thomas Bäck, Anna V. Kononova
Title: DQS: A Low-Budget Query Strategy for Enhancing Unsupervised Data-driven Anomaly Detection Approaches
Abstract:
Truly unsupervised approaches for time series anomaly detection are rare in the literature. Those that exist suffer from a poorly set threshold, which hampers detection performance, while others, despite claiming to be unsupervised, need to be calibrated using a labelled data subset, which is often not available in the real world. This work integrates active learning with an existing unsupervised anomaly detection method by selectively querying the labels of multivariate time series, which are then used to refine the threshold selection process. To achieve this, we introduce a novel query strategy called the dissimilarity-based query strategy (DQS). DQS aims to maximise the diversity of queried samples by evaluating the similarity between anomaly scores using dynamic time warping. We assess the detection performance of DQS in comparison to other query strategies and explore the impact of mislabelling, a topic that is underexplored in the literature. Our findings indicate that DQS performs best in small-budget scenarios, though the others appear to be more robust when faced with mislabelling. Therefore, in the real world, the choice of query strategy depends on the expertise of the oracle and the number of samples they are willing to label. Regardless, all query strategies outperform the unsupervised threshold even in the presence of mislabelling. Thus, whenever it is feasible to query an oracle, employing an active learning-based threshold is recommended.
Authors:Kiana Kiashemshaki, Elvis Nnaemeka Chukwuani, Mohammad Jalili Torkamani, Negin Mahmoudi
Title: Secure and Scalable Blockchain Voting: A Comparative Framework and the Role of Large Language Models
Abstract:
Blockchain technology offers a promising foundation for modernizing E-Voting systems by enhancing transparency, decentralization, and security. Yet, real-world adoption remains limited due to persistent challenges such as scalability constraints, high computational demands, and complex privacy requirements. This paper presents a comparative framework for analyzing blockchain-based E-Voting architectures, consensus mechanisms, and cryptographic protocols. We examine the limitations of prevalent models like Proof of Work, Proof of Stake, and Delegated Proof of Stake, and propose optimization strategies that include hybrid consensus, lightweight cryptography, and decentralized identity management. Additionally, we explore the novel role of Large Language Models (LLMs) in smart contract generation, anomaly detection, and user interaction. Our findings offer a foundation for designing secure, scalable, and intelligent blockchain-based E-Voting systems suitable for national-scale deployment. This work lays the groundwork for building an end-to-end blockchain E-Voting prototype enhanced by LLM-guided smart contract generation and validation, supported by a systematic framework and simulation-based analysis.
Authors:Shibo Gao, Peipei Yang, Haiyang Guo, Yangyang Liu, Yi Chen, Shuai Li, Han Zhu, Jian Xu, Xu-Yao Zhang, Linlin Huang
Title: The Evolution of Video Anomaly Detection: A Unified Framework from DNN to MLLM
Abstract:
Video anomaly detection (VAD) aims to identify and ground anomalous behaviors or events in videos, serving as a core technology in the fields of intelligent surveillance and public safety. With the advancement of deep learning, the continuous evolution of deep model architectures has driven innovation in VAD methodologies, significantly enhancing feature representation and scene adaptability, thereby improving algorithm generalization and expanding application boundaries. More importantly, the rapid development of multi-modal large language (MLLMs) and large language models (LLMs) has introduced new opportunities and challenges to the VAD field. Under the support of MLLMs and LLMs, VAD has undergone significant transformations in terms of data annotation, input modalities, model architectures, and task objectives. The surge in publications and the evolution of tasks have created an urgent need for systematic reviews of recent advancements. This paper presents the first comprehensive survey analyzing VAD methods based on MLLMs and LLMs, providing an in-depth discussion of the changes occurring in the VAD field in the era of large models and their underlying causes. Additionally, this paper proposes a unified framework that encompasses both deep neural network (DNN)-based and LLM-based VAD methods, offering a thorough analysis of the new VAD paradigms empowered by LLMs, constructing a classification system, and comparing their strengths and weaknesses. Building on this foundation, this paper focuses on current VAD methods based on MLLMs/LLMs. Finally, based on the trajectory of technological advancements and existing bottlenecks, this paper distills key challenges and outlines future research directions, offering guidance for the VAD community.
Authors:Kaifang Long, Guoyang Xie, Lianbo Ma, Jiaqi Liu, Zhichao Lu
Title: Revisiting Multimodal Fusion for 3D Anomaly Detection from an Architectural Perspective
Abstract:
Existing efforts to boost multimodal fusion of 3D anomaly detection (3D-AD) primarily concentrate on devising more effective multimodal fusion strategies. However, little attention was devoted to analyzing the role of multimodal fusion architecture (topology) design in contributing to 3D-AD. In this paper, we aim to bridge this gap and present a systematic study on the impact of multimodal fusion architecture design on 3D-AD. This work considers the multimodal fusion architecture design at the intra-module fusion level, i.e., independent modality-specific modules, involving early, middle or late multimodal features with specific fusion operations, and also at the inter-module fusion level, i.e., the strategies to fuse those modules. In both cases, we first derive insights through theoretically and experimentally exploring how architectural designs influence 3D-AD. Then, we extend SOTA neural architecture search (NAS) paradigm and propose 3D-ADNAS to simultaneously search across multimodal fusion strategies and modality-specific modules for the first time.Extensive experiments show that 3D-ADNAS obtains consistent improvements in 3D-AD across various model capacities in terms of accuracy, frame rate, and memory usage, and it exhibits great potential in dealing with few-shot 3D-AD tasks.
Authors:Lucas Correia, Jan-Christoph Goos, Thomas Bäck, Anna V. Kononova
Title: PATH: A Discrete-sequence Dataset for Evaluating Online Unsupervised Anomaly Detection Approaches for Multivariate Time Series
Abstract:
Benchmarking anomaly detection approaches for multivariate time series is a challenging task due to a lack of high-quality datasets. Current publicly available datasets are too small, not diverse and feature trivial anomalies, which hinders measurable progress in this research area. We propose a solution: a diverse, extensive, and non-trivial dataset generated via state-of-the-art simulation tools that reflects realistic behaviour of an automotive powertrain, including its multivariate, dynamic and variable-state properties. Additionally, our dataset represents a discrete-sequence problem, which remains unaddressed by previously-proposed solutions in literature. To cater for both unsupervised and semi-supervised anomaly detection settings, as well as time series generation and forecasting, we make different versions of the dataset available, where training and test subsets are offered in contaminated and clean versions, depending on the task. We also provide baseline results from a selection of approaches based on deterministic and variational autoencoders, as well as a non-parametric approach. As expected, the baseline experimentation shows that the approaches trained on the semi-supervised version of the dataset outperform their unsupervised counterparts, highlighting a need for approaches more robust to contaminated training data. Furthermore, results show that the threshold used can have a large influence on detection performance, hence more work needs to be invested in methods to find a suitable threshold without the need for labelled data.
Authors:Maxime Kawawa-Beaudan, Srijan Sood, Soham Palande, Ganapathy Mani, Tucker Balch, Manuela Veloso
Title: Ensemble Methods for Sequence Classification with Hidden Markov Models
Abstract:
We present a lightweight approach to sequence classification using Ensemble Methods for Hidden Markov Models (HMMs). HMMs offer significant advantages in scenarios with imbalanced or smaller datasets due to their simplicity, interpretability, and efficiency. These models are particularly effective in domains such as finance and biology, where traditional methods struggle with high feature dimensionality and varied sequence lengths. Our ensemble-based scoring method enables the comparison of sequences of any length and improves performance on imbalanced datasets. This study focuses on the binary classification problem, particularly in scenarios with data imbalance, where the negative class is the majority (e.g., normal data) and the positive class is the minority (e.g., anomalous data), often with extreme distribution skews. We propose a novel training approach for HMM Ensembles that generalizes to multi-class problems and supports classification and anomaly detection. Our method fits class-specific groups of diverse models using random data subsets, and compares likelihoods across classes to produce composite scores, achieving high average precisions and AUCs. In addition, we compare our approach with neural network-based methods such as Convolutional Neural Networks (CNNs) and Long Short-Term Memory networks (LSTMs), highlighting the efficiency and robustness of HMMs in data-scarce environments. Motivated by real-world use cases, our method demonstrates robust performance across various benchmarks, offering a flexible framework for diverse applications.
Authors:Qishan Wang, Haofeng Wang, Shuyong Gao, Jia Guo, Li Xiong, Jiaqi Li, Dengxuan Bai, Wenqiang Zhang
Title: Collaborative Reconstruction and Repair for Multi-class Industrial Anomaly Detection
Abstract:
Industrial anomaly detection is a challenging open-set task that aims to identify unknown anomalous patterns deviating from normal data distribution. To avoid the significant memory consumption and limited generalizability brought by building separate models per class, we focus on developing a unified framework for multi-class anomaly detection. However, under this challenging setting, conventional reconstruction-based networks often suffer from an identity mapping problem, where they directly replicate input features regardless of whether they are normal or anomalous, resulting in detection failures. To address this issue, this study proposes a novel framework termed Collaborative Reconstruction and Repair (CRR), which transforms the reconstruction to repairation. First, we optimize the decoder to reconstruct normal samples while repairing synthesized anomalies. Consequently, it generates distinct representations for anomalous regions and similar representations for normal areas compared to the encoder's output. Second, we implement feature-level random masking to ensure that the representations from decoder contain sufficient local information. Finally, to minimize detection errors arising from the discrepancies between feature representations from the encoder and decoder, we train a segmentation network supervised by synthetic anomaly masks, thereby enhancing localization performance. Extensive experiments on industrial datasets that CRR effectively mitigates the identity mapping issue and achieves state-of-the-art performance in multi-class industrial anomaly detection.
Authors:Rongcheng Wu, Hao Zhu, Shiying Zhang, Mingzhe Wang, Zhidong Li, Hui Li, Jianlong Zhou, Jiangtao Cui, Fang Chen, Pingyang Sun, Qiyu Liao, Ye Lin
Title: RcAE: Recursive Reconstruction Framework for Unsupervised Industrial Anomaly Detection
Abstract:
Unsupervised industrial anomaly detection requires accurately identifying defects without labeled data. Traditional autoencoder-based methods often struggle with incomplete anomaly suppression and loss of fine details, as their single-pass decoding fails to effectively handle anomalies with varying severity and scale. We propose a recursive architecture for autoencoder (RcAE), which performs reconstruction iteratively to progressively suppress anomalies while refining normal structures. Unlike traditional single-pass models, this recursive design naturally produces a sequence of reconstructions, progressively exposing suppressed abnormal patterns. To leverage this reconstruction dynamics, we introduce a Cross Recursion Detection (CRD) module that tracks inconsistencies across recursion steps, enhancing detection of both subtle and large-scale anomalies. Additionally, we incorporate a Detail Preservation Network (DPN) to recover high-frequency textures typically lost during reconstruction. Extensive experiments demonstrate that our method significantly outperforms existing non-diffusion methods, and achieves performance on par with recent diffusion models with only 10% of their parameters and offering substantially faster inference. These results highlight the practicality and efficiency of our approach for real-world applications.
Authors:Wenjie Zhang, Yun Lin, Chun Fung Amos Kwok, Xiwen Teoh, Xiaofei Xie, Frank Liauw, Hongyu Zhang, Jin Song Dong
Title: MINES: Explainable Anomaly Detection through Web API Invariant Inference
Abstract:
Detecting the anomalies of web applications, important infrastructures for running modern companies and governments, is crucial for providing reliable web services. Many modern web applications operate on web APIs (e.g., RESTful, SOAP, and WebSockets), their exposure invites intended attacks or unintended illegal visits, causing abnormal system behaviors. However, such anomalies can share very similar logs with normal logs, missing crucial information (which could be in database) for log discrimination. Further, log instances can be also noisy, which can further mislead the state-of-the-art log learning solutions to learn spurious correlation, resulting superficial models and rules for anomaly detection. In this work, we propose MINES which infers explainable API invariants for anomaly detection from the schema level instead of detailed raw log instances, which can (1) significantly discriminate noise in logs to identify precise normalities and (2) detect abnormal behaviors beyond the instrumented logs. Technically, MINES (1) converts API signatures into table schema to enhance the original database shema; and (2) infers the potential database constraints on the enhanced database schema to capture the potential relationships between APIs and database tables. MINES uses LLM for extracting potential relationship based on two given table structures; and use normal log instances to reject and accept LLM-generated invariants. Finally, MINES translates the inferred constraints into invariants to generate Python code for verifying the runtime logs. We extensively evaluate MINES on web-tamper attacks on the benchmarks of TrainTicket, NiceFish, Gitea, Mastodon, and NextCloud against baselines such as LogRobust, LogFormer, and WebNorm. The results show that MINES achieves high recall for the anomalies while introducing almost zero false positives, indicating a new state-of-the-art.
Authors:Arianna Stropeni, Valentina Zaccaria, Francesco Borsatti, Davide Dalle Pezze, Manuel Barusco, Gian Antonio Susto
Title: Explainable Visual Anomaly Detection via Concept Bottleneck Models
Abstract:
In recent years, Visual Anomaly Detection (VAD) has gained significant attention due to its ability to identify anomalous images using only normal images during training. Many VAD models work without supervision but are still able to provide visual explanations by highlighting the anomalous regions within an image. However, although these visual explanations can be helpful, they lack a direct and semantically meaningful interpretation for users. To address this limitation, we propose extending Concept Bottleneck Models (CBMs) to the VAD setting. By learning meaningful concepts, the network can provide human-interpretable descriptions of anomalies, offering a novel and more insightful way to explain them. Our contributions are threefold: (i) we develop a Concept Dataset to support research on CBMs for VAD; (ii) we improve the CBM architecture to generate both concept-based and visual explanations, bridging semantic and localization interpretability; and (iii) we introduce a pipeline for synthesizing artificial anomalies, preserving the VAD paradigm of minimizing dependence on rare anomalous samples. Our approach, Concept-Aware Visual Anomaly Detection (CONVAD), achieves performance comparable to classic VAD methods while providing richer, concept-driven explanations that enhance interpretability and trust in VAD systems.
Authors:Hibah Agha, Samuel Yen-Chi Chen, Huan-Hsin Tseng, Shinjae Yoo
Title: Neural Architecture Search for Quantum Autoencoders
Abstract:
In recent years, machine learning and deep learning have driven advances in domains such as image classification, speech recognition, and anomaly detection by leveraging multi-layer neural networks to model complex data. Simultaneously, quantum computing (QC) promises to address classically intractable problems via quantum parallelism, motivating research in quantum machine learning (QML). Among QML techniques, quantum autoencoders show promise for compressing high-dimensional quantum and classical data. However, designing effective quantum circuit architectures for quantum autoencoders remains challenging due to the complexity of selecting gates, arranging circuit layers, and tuning parameters. This paper proposes a neural architecture search (NAS) framework that automates the design of quantum autoencoders using a genetic algorithm (GA). By systematically evolving variational quantum circuit (VQC) configurations, our method seeks to identify high-performing hybrid quantum-classical autoencoders for data reconstruction without becoming trapped in local minima. We demonstrate effectiveness on image datasets, highlighting the potential of quantum autoencoders for efficient feature extraction within a noise-prone, near-term quantum era. Our approach lays a foundation for broader application of genetic algorithms to quantum architecture search, aiming for a robust, automated method that can adapt to varied data and hardware constraints.
Authors:Qiming Guo, Bishal Khatri, Wenbo Sun, Jinwen Tang, Hua Zhang, Wenlu Wang
Title: AquaSentinel: Next-Generation AI System Integrating Sensor Networks for Urban Underground Water Pipeline Anomaly Detection via Collaborative MoE-LLM Agent Architecture
Abstract:
Underground pipeline leaks and infiltrations pose significant threats to water security and environmental safety. Traditional manual inspection methods provide limited coverage and delayed response, often missing critical anomalies. This paper proposes AquaSentinel, a novel physics-informed AI system for real-time anomaly detection in urban underground water pipeline networks. We introduce four key innovations: (1) strategic sparse sensor deployment at high-centrality nodes combined with physics-based state augmentation to achieve network-wide observability from minimal infrastructure; (2) the RTCA (Real-Time Cumulative Anomaly) detection algorithm, which employs dual-threshold monitoring with adaptive statistics to distinguish transient fluctuations from genuine anomalies; (3) a Mixture of Experts (MoE) ensemble of spatiotemporal graph neural networks that provides robust predictions by dynamically weighting model contributions; (4) causal flow-based leak localization that traces anomalies upstream to identify source nodes and affected pipe segments. Our system strategically deploys sensors at critical network junctions and leverages physics-based modeling to propagate measurements to unmonitored nodes, creating virtual sensors that enhance data availability across the entire network. Experimental evaluation using 110 leak scenarios demonstrates that AquaSentinel achieves 100% detection accuracy. This work advances pipeline monitoring by demonstrating that physics-informed sparse sensing can match the performance of dense deployments at a fraction of the cost, providing a practical solution for aging urban infrastructure.
Authors:Yang Liu, Boan Chen, Xiaoguang Zhu, Jing Liu, Peng Sun, Wei Zhou
Title: M2S2L: Mamba-based Multi-Scale Spatial-temporal Learning for Video Anomaly Detection
Abstract:
Video anomaly detection (VAD) is an essential task in the image processing community with prospects in video surveillance, which faces fundamental challenges in balancing detection accuracy with computational efficiency. As video content becomes increasingly complex with diverse behavioral patterns and contextual scenarios, traditional VAD approaches struggle to provide robust assessment for modern surveillance systems. Existing methods either lack comprehensive spatial-temporal modeling or require excessive computational resources for real-time applications. In this regard, we present a Mamba-based multi-scale spatial-temporal learning (M2S2L) framework in this paper. The proposed method employs hierarchical spatial encoders operating at multiple granularities and multi-temporal encoders capturing motion dynamics across different time scales. We also introduce a feature decomposition mechanism to enable task-specific optimization for appearance and motion reconstruction, facilitating more nuanced behavioral modeling and quality-aware anomaly assessment. Experiments on three benchmark datasets demonstrate that M2S2L framework achieves 98.5%, 92.1%, and 77.9% frame-level AUCs on UCSD Ped2, CUHK Avenue, and ShanghaiTech respectively, while maintaining efficiency with 20.1G FLOPs and 45 FPS inference speed, making it suitable for practical surveillance deployment.
Authors:MohammadReza EskandariNasab, Shah Muhammad Hamdi, Soukaina Filali Boubrahimi
Title: TIMED: Adversarial and Autoregressive Refinement of Diffusion-Based Time Series Generation
Abstract:
Generating high-quality synthetic time series is a fundamental yet challenging task across domains such as forecasting and anomaly detection, where real data can be scarce, noisy, or costly to collect. Unlike static data generation, synthesizing time series requires modeling both the marginal distribution of observations and the conditional temporal dependencies that govern sequential dynamics. We propose TIMED, a unified generative framework that integrates a denoising diffusion probabilistic model (DDPM) to capture global structure via a forward-reverse diffusion process, a supervisor network trained with teacher forcing to learn autoregressive dependencies through next-step prediction, and a Wasserstein critic that provides adversarial feedback to ensure temporal smoothness and fidelity. To further align the real and synthetic distributions in feature space, TIMED incorporates a Maximum Mean Discrepancy (MMD) loss, promoting both diversity and sample quality. All components are built using masked attention architectures optimized for sequence modeling and are trained jointly to effectively capture both unconditional and conditional aspects of time series data. Experimental results across diverse multivariate time series benchmarks demonstrate that TIMED generates more realistic and temporally coherent sequences than state-of-the-art generative models.
Authors:Manuel Barusco, Francesco Borsatti, Nicola Beda, Davide Dalle Pezze, Gian Antonio Susto
Title: Towards Continual Visual Anomaly Detection in the Medical Domain
Abstract:
Visual Anomaly Detection (VAD) seeks to identify abnormal images and precisely localize the corresponding anomalous regions, relying solely on normal data during training. This approach has proven essential in domains such as manufacturing and, more recently, in the medical field, where accurate and explainable detection is critical. Despite its importance, the impact of evolving input data distributions over time has received limited attention, even though such changes can significantly degrade model performance. In particular, given the dynamic and evolving nature of medical imaging data, Continual Learning (CL) provides a natural and effective framework to incrementally adapt models while preserving previously acquired knowledge. This study explores for the first time the application of VAD models in a CL scenario for the medical field. In this work, we utilize a CL version of the well-established PatchCore model, called PatchCoreCL, and evaluate its performance using BMAD, a real-world medical imaging dataset with both image-level and pixel-level annotations. Our results demonstrate that PatchCoreCL is an effective solution, achieving performance comparable to the task-specific models, with a forgetting value less than a 1%, highlighting the feasibility and potential of CL for adaptive VAD in medical imaging.
Authors:Manuel Barusco, Francesco Borsatti, Arianna Stropeni, Davide Dalle Pezze, Gian Antonio Susto
Title: MoViAD: A Modular Library for Visual Anomaly Detection
Abstract:
VAD is a critical field in machine learning focused on identifying deviations from normal patterns in images, often challenged by the scarcity of anomalous data and the need for unsupervised training. To accelerate research and deployment in this domain, we introduce MoViAD, a comprehensive and highly modular library designed to provide fast and easy access to state-of-the-art VAD models, trainers, datasets, and VAD utilities. MoViAD supports a wide array of scenarios, including continual, semi-supervised, few-shots, noisy, and many more. In addition, it addresses practical deployment challenges through dedicated Edge and IoT settings, offering optimized models and backbones, along with quantization and compression utilities for efficient on-device execution and distributed inference. MoViAD integrates a selection of backbones, robust evaluation VAD metrics (pixel-level and image-level) and useful profiling tools for efficiency analysis. The library is designed for fast, effortless deployment, enabling machine learning engineers to easily use it for their specific setup with custom models, datasets, and backbones. At the same time, it offers the flexibility and extensibility researchers need to develop and experiment with new methods.
Authors:Yang Liu, Jing Liu, Chengfang Li, Rui Xi, Wenchao Li, Liang Cao, Jin Wang, Laurence T. Yang, Junsong Yuan, Wei Zhou
Title: Anomaly Detection and Generation with Diffusion Models: A Survey
Abstract:
Anomaly detection (AD) plays a pivotal role across diverse domains, including cybersecurity, finance, healthcare, and industrial manufacturing, by identifying unexpected patterns that deviate from established norms in real-world data. Recent advancements in deep learning, specifically diffusion models (DMs), have sparked significant interest due to their ability to learn complex data distributions and generate high-fidelity samples, offering a robust framework for unsupervised AD. In this survey, we comprehensively review anomaly detection and generation with diffusion models (ADGDM), presenting a tutorial-style analysis of the theoretical foundations and practical implementations and spanning images, videos, time series, tabular, and multimodal data. Crucially, unlike existing surveys that often treat anomaly detection and generation as separate problems, we highlight their inherent synergistic relationship. We reveal how DMs enable a reinforcing cycle where generation techniques directly address the fundamental challenge of anomaly data scarcity, while detection methods provide critical feedback to improve generation fidelity and relevance, advancing both capabilities beyond their individual potential. A detailed taxonomy categorizes ADGDM methods based on anomaly scoring mechanisms, conditioning strategies, and architectural designs, analyzing their strengths and limitations. We final discuss key challenges including scalability and computational efficiency, and outline promising future directions such as efficient architectures, conditioning strategies, and integration with foundation models (e.g., visual-language models and large language models). By synthesizing recent advances and outlining open research questions, this survey aims to guide researchers and practitioners in leveraging DMs for innovative AD solutions across diverse applications.
Authors:Alvaro Gonzalez-Jimenez, Simone Lionetti, Ludovic Amruthalingam, Philippe Gottfrois, Fabian Gröger, Marc Pouly, Alexander A. Navarini
Title: Is Hyperbolic Space All You Need for Medical Anomaly Detection?
Abstract:
Medical anomaly detection has emerged as a promising solution to challenges in data availability and labeling constraints. Traditional methods extract features from different layers of pre-trained networks in Euclidean space; however, Euclidean representations fail to effectively capture the hierarchical relationships within these features, leading to suboptimal anomaly detection performance. We propose a novel yet simple approach that projects feature representations into hyperbolic space, aggregates them based on confidence levels, and classifies samples as healthy or anomalous. Our experiments demonstrate that hyperbolic space consistently outperforms Euclidean-based frameworks, achieving higher AUROC scores at both image and pixel levels across multiple medical benchmark datasets. Additionally, we show that hyperbolic space exhibits resilience to parameter variations and excels in few-shot scenarios, where healthy images are scarce. These findings underscore the potential of hyperbolic space as a powerful alternative for medical anomaly detection. The project website can be found at https://hyperbolic-anomalies.github.io
Authors:Kaiyu Guo, Tan Pan, Chen Jiang, Zijian Wang, Brian C. Lovell, Limei Han, Yuan Cheng, Mahsa Baktashmotlagh
Title: SD-MAD: Sign-Driven Few-shot Multi-Anomaly Detection in Medical Images
Abstract:
Medical anomaly detection (AD) is crucial for early clinical intervention, yet it faces challenges due to limited access to high-quality medical imaging data, caused by privacy concerns and data silos. Few-shot learning has emerged as a promising approach to alleviate these limitations by leveraging the large-scale prior knowledge embedded in vision-language models (VLMs). Recent advancements in few-shot medical AD have treated normal and abnormal cases as a one-class classification problem, often overlooking the distinction among multiple anomaly categories. Thus, in this paper, we propose a framework tailored for few-shot medical anomaly detection in the scenario where the identification of multiple anomaly categories is required. To capture the detailed radiological signs of medical anomaly categories, our framework incorporates diverse textual descriptions for each category generated by a Large-Language model, under the assumption that different anomalies in medical images may share common radiological signs in each category. Specifically, we introduce SD-MAD, a two-stage Sign-Driven few-shot Multi-Anomaly Detection framework: (i) Radiological signs are aligned with anomaly categories by amplifying inter-anomaly discrepancy; (ii) Aligned signs are selected further to mitigate the effect of the under-fitting and uncertain-sample issue caused by limited medical data, employing an automatic sign selection strategy at inference. Moreover, we propose three protocols to comprehensively quantify the performance of multi-anomaly detection. Extensive experiments illustrate the effectiveness of our method.
Authors:Manuel Barusco, Francesco Borsatti, Youssef Ben Khalifa, Davide Dalle Pezze, Gian Antonio Susto
Title: Evaluating Modern Visual Anomaly Detection Approaches in Semiconductor Manufacturing: A Comparative Study
Abstract:
Semiconductor manufacturing is a complex, multistage process. Automated visual inspection of Scanning Electron Microscope (SEM) images is indispensable for minimizing equipment downtime and containing costs. Most previous research considers supervised approaches, assuming a sufficient number of anomalously labeled samples. On the contrary, Visual Anomaly Detection (VAD), an emerging research domain, focuses on unsupervised learning, avoiding the costly defect collection phase while providing explanations of the predictions. We introduce a benchmark for VAD in the semiconductor domain by leveraging the MIIC dataset. Our results demonstrate the efficacy of modern VAD approaches in this field.
Authors:Arianna Stropeni, Francesco Borsatti, Manuel Barusco, Davide Dalle Pezze, Marco Fabris, Gian Antonio Susto
Title: Towards Scalable IoT Deployment for Visual Anomaly Detection via Efficient Compression
Abstract:
Visual Anomaly Detection (VAD) is a key task in industrial settings, where minimizing operational costs is essential. Deploying deep learning models within Internet of Things (IoT) environments introduces specific challenges due to limited computational power and bandwidth of edge devices. This study investigates how to perform VAD effectively under such constraints by leveraging compact, efficient processing strategies. We evaluate several data compression techniques, examining the tradeoff between system latency and detection accuracy. Experiments on the MVTec AD benchmark demonstrate that significant compression can be achieved with minimal loss in anomaly detection performance compared to uncompressed data. Current results show up to 80% reduction in end-to-end inference time, including edge processing, transmission, and server computation.
Authors:Thomas Grübl, Weijie Niu, Jan von der Assen, Burkhard Stiller
Title: QUIC-Exfil: Exploiting QUIC's Server Preferred Address Feature to Perform Data Exfiltration Attacks
Abstract:
The QUIC protocol is now widely adopted by major tech companies and accounts for a significant fraction of today's Internet traffic. QUIC's multiplexing capabilities, encrypted headers, dynamic IP address changes, and encrypted parameter negotiations make the protocol not only more efficient, secure, and censorship-resistant, but also practically unmanageable by firewalls. This opens doors for attackers who may exploit certain traits of the QUIC protocol to perform targeted attacks, such as data exfiltration attacks. Whereas existing data exfiltration techniques, such as TLS and DNS-based exfiltration, can be detected on a firewall level, QUIC-based data exfiltration is more difficult to detect, since changes in IP addresses and ports are inherent to the protocol's normal behavior. To show the feasibility of a QUIC-based data exfiltration attack, we introduce a novel method leveraging the server preferred address feature of the QUIC protocol and, thus, allows an attacker to exfiltrate sensitive data from an infected machine to a malicious server, disguised as a server-side connection migration. The attack is implemented as a proof of concept tool in Rust. We evaluated the performance of five anomaly detection classifiers - Random Forest, Multi-Layer Perceptron, Support Vector Machine, Autoencoder, and Isolation Forest - trained on datasets collected from three network traffic scenarios. The classifiers were trained on over 700K benign and malicious QUIC packets and 786 connection migration events, but were unable to detect the data exfiltration attempts. Furthermore, post-analysis of the traffic captures did not reveal any identifiable fingerprint. As part of our evaluation, we also interviewed five leading firewall vendors and found that, as of today, no major firewall vendor implements functionality capable of distinguishing between benign and malicious QUIC connection migrations.
Authors:Yunhui Liu, Jiashun Cheng, Yiqing Lin, Qizhuo Xie, Jia Li, Fugee Tsung, Hongzhi Yin, Tao Zheng, Jianhua Zhao, Tieke He
Title: Towards Anomaly-Aware Pre-Training and Fine-Tuning for Graph Anomaly Detection
Abstract:
Graph anomaly detection (GAD) has garnered increasing attention in recent years, yet remains challenging due to two key factors: (1) label scarcity stemming from the high cost of annotations and (2) homophily disparity at node and class levels. In this paper, we introduce Anomaly-Aware Pre-Training and Fine-Tuning (APF), a targeted and effective framework to mitigate the above challenges in GAD. In the pre-training stage, APF incorporates node-specific subgraphs selected via the Rayleigh Quotient, a label-free anomaly metric, into the learning objective to enhance anomaly awareness. It further introduces two learnable spectral polynomial filters to jointly learn dual representations that capture both general semantics and subtle anomaly cues. During fine-tuning, a gated fusion mechanism adaptively integrates pre-trained representations across nodes and dimensions, while an anomaly-aware regularization loss encourages abnormal nodes to preserve more anomaly-relevant information. Furthermore, we theoretically show that APF tends to achieve linear separability under mild conditions. Comprehensive experiments on 10 benchmark datasets validate the superior performance of APF in comparison to state-of-the-art baselines.
Authors:Yang Liu, Hongjin Wang, Zepu Wang, Xiaoguang Zhu, Jing Liu, Peng Sun, Rui Tang, Jianwei Du, Victor C. M. Leung, Liang Song
Title: CRCL: Causal Representation Consistency Learning for Anomaly Detection in Surveillance Videos
Abstract:
Video Anomaly Detection (VAD) remains a fundamental yet formidable task in the video understanding community, with promising applications in areas such as information forensics and public safety protection. Due to the rarity and diversity of anomalies, existing methods only use easily collected regular events to model the inherent normality of normal spatial-temporal patterns in an unsupervised manner. Previous studies have shown that existing unsupervised VAD models are incapable of label-independent data offsets (e.g., scene changes) in real-world scenarios and may fail to respond to light anomalies due to the overgeneralization of deep neural networks. Inspired by causality learning, we argue that there exist causal factors that can adequately generalize the prototypical patterns of regular events and present significant deviations when anomalous instances occur. In this regard, we propose Causal Representation Consistency Learning (CRCL) to implicitly mine potential scene-robust causal variable in unsupervised video normality learning. Specifically, building on the structural causal models, we propose scene-debiasing learning and causality-inspired normality learning to strip away entangled scene bias in deep representations and learn causal video normality, respectively. Extensive experiments on benchmarks validate the superiority of our method over conventional deep representation learning. Moreover, ablation studies and extension validation show that the CRCL can cope with label-independent biases in multi-scene settings and maintain stable performance with only limited training data available.
Authors:Manuel Barusco, Lorenzo D'Antoni, Davide Dalle Pezze, Francesco Borsatti, Gian Antonio Susto
Title: Memory Efficient Continual Learning for Edge-Based Visual Anomaly Detection
Abstract:
Visual Anomaly Detection (VAD) is a critical task in computer vision with numerous real-world applications. However, deploying these models on edge devices presents significant challenges, such as constrained computational and memory resources. Additionally, dynamic data distributions in real-world settings necessitate continuous model adaptation, further complicating deployment under limited resources. To address these challenges, we present a novel investigation into the problem of Continual Learning for Visual Anomaly Detection (CLAD) on edge devices. We evaluate the STFPM approach, given its low memory footprint on edge devices, which demonstrates good performance when combined with the Replay approach. Furthermore, we propose to study the behavior of a recently proposed approach, PaSTe, specifically designed for the edge but not yet explored in the Continual Learning context. Our results show that PaSTe is not only a lighter version of STPFM, but it also achieves superior anomaly detection performance, improving the f1 pixel performance by 10% with the Replay technique. In particular, the structure of PaSTe allows us to test it using a series of Compressed Replay techniques, reducing memory overhead by a maximum of 91.5% compared to the traditional Replay for STFPM. Our study proves the feasibility of deploying VAD models that adapt and learn incrementally on CLAD scenarios on resource-constrained edge devices.
Authors:Manuel Barusco, Francesco Borsatti, Davide Dalle Pezze, Francesco Paissan, Elisabetta Farella, Gian Antonio Susto
Title: From Vision to Sound: Advancing Audio Anomaly Detection with Vision-Based Algorithms
Abstract:
Recent advances in Visual Anomaly Detection (VAD) have introduced sophisticated algorithms leveraging embeddings generated by pre-trained feature extractors. Inspired by these developments, we investigate the adaptation of such algorithms to the audio domain to address the problem of Audio Anomaly Detection (AAD). Unlike most existing AAD methods, which primarily classify anomalous samples, our approach introduces fine-grained temporal-frequency localization of anomalies within the spectrogram, significantly improving explainability. This capability enables a more precise understanding of where and when anomalies occur, making the results more actionable for end users. We evaluate our approach on industrial and environmental benchmarks, demonstrating the effectiveness of VAD techniques in detecting anomalies in audio signals. Moreover, they improve explainability by enabling localized anomaly identification, making audio anomaly detection systems more interpretable and practical.
Authors:Thomas Debelle, Fahad Sohrab, Pekka Abrahamsson, Moncef Gabbouj
Title: Anomaly Detection in Smart Power Grids with Graph-Regularized MS-SVDD: a Multimodal Subspace Learning Approach
Abstract:
In this paper, we address an anomaly detection problem in smart power grids using Multimodal Subspace Support Vector Data Description (MS-SVDD). This approach aims to leverage better feature relations by considering the data as coming from different modalities. These data are projected into a shared lower-dimensionality subspace which aims to preserve their inner characteristics. To supplement the previous work on this subject, we introduce novel multimodal graph-embedded regularizers that leverage graph information for every modality to enhance the training process, and we consider an improved training equation that allows us to maximize or minimize each modality according to the specified criteria. We apply this regularized graph-embedded model on a 3-modalities dataset after having generalized MS-SVDD algorithms to any number of modalities. To set up our application, we propose a whole preprocessing procedure to extract One-Class Classification training instances from time-bounded event time series that are used to evaluate both the reliability and earliness of our model for Event Detection.
Authors:Sertac Kilickaya, Mete Ahishali, Cansu Celebioglu, Fahad Sohrab, Levent Eren, Turker Ince, Murat Askar, Moncef Gabbouj
Title: Audio-based Anomaly Detection in Industrial Machines Using Deep One-Class Support Vector Data Description
Abstract:
The frequent breakdowns and malfunctions of industrial equipment have driven increasing interest in utilizing cost-effective and easy-to-deploy sensors, such as microphones, for effective condition monitoring of machinery. Microphones offer a low-cost alternative to widely used condition monitoring sensors with their high bandwidth and capability to detect subtle anomalies that other sensors might have less sensitivity. In this study, we investigate malfunctioning industrial machines to evaluate and compare anomaly detection performance across different machine types and fault conditions. Log-Mel spectrograms of machinery sound are used as input, and the performance is evaluated using the area under the curve (AUC) score for two different methods: baseline dense autoencoder (AE) and one-class deep Support Vector Data Description (deep SVDD) with different subspace dimensions. Our results over the MIMII sound dataset demonstrate that the deep SVDD method with a subspace dimension of 2 provides superior anomaly detection performance, achieving average AUC scores of 0.84, 0.80, and 0.69 for 6 dB, 0 dB, and -6 dB signal-to-noise ratios (SNRs), respectively, compared to 0.82, 0.72, and 0.64 for the baseline model. Moreover, deep SVDD requires 7.4 times fewer trainable parameters than the baseline dense AE, emphasizing its advantage in both effectiveness and computational efficiency.
Authors:Jiashun Cheng, Zinan Zheng, Yang Liu, Jianheng Tang, Hongwei Wang, Yu Rong, Jia Li, Fugee Tsung
Title: Graph Pre-Training Models Are Strong Anomaly Detectors
Abstract:
Graph Anomaly Detection (GAD) is a challenging and practical research topic where Graph Neural Networks (GNNs) have recently shown promising results. The effectiveness of existing GNNs in GAD has been mainly attributed to the simultaneous learning of node representations and the classifier in an end-to-end manner. Meanwhile, graph pre-training, the two-stage learning paradigm such as DGI and GraphMAE, has shown potential in leveraging unlabeled graph data to enhance downstream tasks, yet its impact on GAD remains under-explored. In this work, we show that graph pre-training models are strong graph anomaly detectors. Specifically, we demonstrate that pre-training is highly competitive, markedly outperforming the state-of-the-art end-to-end training models when faced with limited supervision. To understand this phenomenon, we further uncover pre-training enhances the detection of distant, under-represented, unlabeled anomalies that go beyond 2-hop neighborhoods of known anomalies, shedding light on its superior performance against end-to-end models. Moreover, we extend our examination to the potential of pre-training in graph-level anomaly detection. We envision this work to stimulate a re-evaluation of pre-training's role in GAD and offer valuable insights for future research.
Authors:Manuel Barusco, Francesco Borsatti, Davide Dalle Pezze, Francesco Paissan, Elisabetta Farella, Gian Antonio Susto
Title: PaSTe: Improving the Efficiency of Visual Anomaly Detection at the Edge
Abstract:
Visual Anomaly Detection (VAD) has gained significant research attention for its ability to identify anomalous images and pinpoint the specific areas responsible for the anomaly. A key advantage of VAD is its unsupervised nature, which eliminates the need for costly and time-consuming labeled data collection. However, despite its potential for real-world applications, the literature has given limited focus to resource-efficient VAD, particularly for deployment on edge devices. This work addresses this gap by leveraging lightweight neural networks to reduce memory and computation requirements, enabling VAD deployment on resource-constrained edge devices. We benchmark the major VAD algorithms within this framework and demonstrate the feasibility of edge-based VAD using the well-known MVTec dataset. Furthermore, we introduce a novel algorithm, Partially Shared Teacher-student (PaSTe), designed to address the high resource demands of the existing Student Teacher Feature Pyramid Matching (STFPM) approach. Our results show that PaSTe decreases the inference time by 25%, while reducing the training time by 33% and peak RAM usage during training by 76%. These improvements make the VAD process significantly more efficient, laying a solid foundation for real-world deployment on edge devices.
Authors:Ziwei Wu, Lecheng Zheng, Yuancheng Yu, Ruizhong Qiu, John Birge, Jingrui He
Title: Fair Anomaly Detection For Imbalanced Groups
Abstract:
Anomaly detection (AD) has been widely studied for decades in many real-world applications, including fraud detection in finance, and intrusion detection for cybersecurity, etc. Due to the imbalanced nature between protected and unprotected groups and the imbalanced distributions of normal examples and anomalies, the learning objectives of most existing anomaly detection methods tend to solely concentrate on the dominating unprotected group. Thus, it has been recognized by many researchers about the significance of ensuring model fairness in anomaly detection. However, the existing fair anomaly detection methods tend to erroneously label most normal examples from the protected group as anomalies in the imbalanced scenario where the unprotected group is more abundant than the protected group. This phenomenon is caused by the improper design of learning objectives, which statistically focus on learning the frequent patterns (i.e., the unprotected group) while overlooking the under-represented patterns (i.e., the protected group). To address these issues, we propose FairAD, a fairness-aware anomaly detection method targeting the imbalanced scenario. It consists of a fairness-aware contrastive learning module and a rebalancing autoencoder module to ensure fairness and handle the imbalanced data issue, respectively. Moreover, we provide the theoretical analysis that shows our proposed contrastive learning regularization guarantees group fairness. Empirical studies demonstrate the effectiveness and efficiency of FairAD across multiple real-world datasets.
Authors:Defu Cao, Wen Ye, Yizhou Zhang, Yan Liu
Title: TimeDiT: General-purpose Diffusion Transformers for Time Series Foundation Model
Abstract:
Foundation models, particularly Large Language Models (LLMs), have revolutionized text and video processing, yet time series data presents distinct challenges for such approaches due to domain-specific features such as missing values, multi-resolution characteristics, etc. Furthermore, the de-facto autoregressive transformers tend to learn deterministic temporal dependencies within pre-trained data while overlooking inherent uncertainties and lacking integration of physical constraints. In this paper, we introduce TimeDiT, a diffusion transformer model that synergistically combines transformer-based temporal dependency learning with diffusion-based probabilistic sampling. TimeDiT employs a unified masking mechanism to harmonize the training and inference process across diverse tasks while introducing a theoretically grounded, finetuning-free model editing strategy that enables flexible integration of external knowledge during sampling. Acknowledging the challenges of unifying multiple downstream tasks under a single model, our systematic evaluation demonstrates TimeDiT's effectiveness both in fundamental tasks, i.e., forecasting and imputation, through zero-shot/fine-tuning; and in domain tasks, i.e., multi-resolution forecasting, anomaly detection, and data generation, establishing it as a \textit{proto-foundation model} that bridges the gap between general-purpose and domain-specific models.
Authors:Chao Huang, Benfeng Wang, Wei Wang, Jie Wen, Li Shen, Wenqi Ren, Yong Xu, Xiaochun Cao
Title: Advancing Adaptive Multi-Stage Video Anomaly Reasoning: A Benchmark Dataset and Method
Abstract:
Recent progress in reasoning capabilities of Multimodal Large Language Models(MLLMs) has highlighted their potential for performing complex video understanding tasks. However, in the domain of Video Anomaly Detection and Understanding (VAD&U), existing MLLM-based methods are largely limited to anomaly localization or post-hoc description, lacking explicit reasoning processes, risk awareness, and decision-oriented interpretation. To address this gap, we define a new task termed Video Anomaly Reasoning (VAR), which elevates video anomaly analysis from descriptive understanding to structured, multi-stage reasoning. VAR explicitly requires models to perform progressive reasoning over anomalous events before answering anomaly-related questions, encompassing visual perception, causal interpretation, and risk-aware decision making. To support this task, we present a new dataset with 8,641 videos, where each video is annotated with diverse question types corresponding to different reasoning depths, totaling more than 50,000 samples, making it one of the largest datasets for video anomaly. The annotations are based on a structured Perception-Cognition-Action Chain-of-Thought (PerCoAct-CoT), which formalizes domain-specific reasoning priors for video anomaly understanding. This design enables systematic evaluation of multi-stage and adaptive anomaly reasoning. In addition, we propose Anomaly-Aware Group Relative Policy Optimization to further enhance reasoning reliability under weak supervision. Building upon the proposed task and dataset, we develop an end-to-end MLLM-based VAR model termed Vad-R1-Plus, which supports adaptive hierarchical reasoning and risk-aware decision making. Extensive experiments demonstrate that the proposed benchmark and method effectively advance the reasoning capabilities of MLLMs on VAR tasks, outperforming both open-source and proprietary baselines.
Authors:Salem AlMarri, Muhammad Irzam Liaqat, Muhammad Zaigham Zaheer, Shah Nawaz, Karthik Nandakumar, Markus Schedl
Title: RobustA: Robust Anomaly Detection in Multimodal Data
Abstract:
In recent years, multimodal anomaly detection methods have demonstrated remarkable performance improvements over video-only models. However, real-world multimodal data is often corrupted due to unforeseen environmental distortions. In this paper, we present the first-of-its-kind work that comprehensively investigates the adverse effects of corrupted modalities on multimodal anomaly detection task. To streamline this work, we propose RobustA, a carefully curated evaluation dataset to systematically observe the impacts of audio and visual corruptions on the overall effectiveness of anomaly detection systems. Furthermore, we propose a multimodal anomaly detection method, which shows notable resilience against corrupted modalities. The proposed method learns a shared representation space for different modalities and employs a dynamic weighting scheme during inference based on the estimated level of corruption. Our work represents a significant step forward in enabling the real-world application of multimodal anomaly detection, addressing situations where the likely events of modality corruptions occur. The proposed evaluation dataset with corrupted modalities and respective extracted features will be made publicly available.
Authors:Kuan-Cheng Chen, Samuel Yen-Chi Chen, Chen-Yu Liu, Kin K. Leung
Title: Federated Quantum Kernel Learning for Anomaly Detection in Multivariate IoT Time-Series
Abstract:
The rapid growth of industrial Internet of Things (IIoT) systems has created new challenges for anomaly detection in high-dimensional, multivariate time-series, where privacy, scalability, and communication efficiency are critical. Classical federated learning approaches mitigate privacy concerns by enabling decentralized training, but they often struggle with highly non-linear decision boundaries and imbalanced anomaly distributions. To address this gap, we propose a Federated Quantum Kernel Learning (FQKL) framework that integrates quantum feature maps with federated aggregation to enable distributed, privacy-preserving anomaly detection across heterogeneous IoT networks. In our design, quantum edge nodes locally compute compressed kernel statistics using parameterized quantum circuits and share only these summaries with a central server, which constructs a global Gram matrix and trains a decision function (e.g., Fed-QSVM). Experimental results on synthetic IIoT benchmarks demonstrate that FQKL achieves superior generalization in capturing complex temporal correlations compared to classical federated baselines, while significantly reducing communication overhead. This work highlights the promise of quantum kernels in federated settings, advancing the path toward scalable, robust, and quantum-enhanced intelligence for next-generation IoT infrastructures.
Authors:Rishika Bhagwatkar, Syrielle Montariol, Angelika Romanou, Beatriz Borges, Irina Rish, Antoine Bosselut
Title: CAVE: Detecting and Explaining Commonsense Anomalies in Visual Environments
Abstract:
Humans can naturally identify, reason about, and explain anomalies in their environment. In computer vision, this long-standing challenge remains limited to industrial defects or unrealistic, synthetically generated anomalies, failing to capture the richness and unpredictability of real-world anomalies. In this work, we introduce CAVE, the first benchmark of real-world visual anomalies. CAVE supports three open-ended tasks: anomaly description, explanation, and justification; with fine-grained annotations for visual grounding and categorizing anomalies based on their visual manifestations, their complexity, severity, and commonness. These annotations draw inspiration from cognitive science research on how humans identify and resolve anomalies, providing a comprehensive framework for evaluating Vision-Language Models (VLMs) in detecting and understanding anomalies. We show that state-of-the-art VLMs struggle with visual anomaly perception and commonsense reasoning, even with advanced prompting strategies. By offering a realistic and cognitively grounded benchmark, CAVE serves as a valuable resource for advancing research in anomaly detection and commonsense reasoning in VLMs.
Authors:Jiahao Liu, Bonan Ruan, Xianglin Yang, Zhiwei Lin, Yan Liu, Yang Wang, Tao Wei, Zhenkai Liang
Title: TraceAegis: Securing LLM-Based Agents via Hierarchical and Behavioral Anomaly Detection
Abstract:
LLM-based agents have demonstrated promising adaptability in real-world applications. However, these agents remain vulnerable to a wide range of attacks, such as tool poisoning and malicious instructions, that compromise their execution flow and can lead to serious consequences like data breaches and financial loss. Existing studies typically attempt to mitigate such anomalies by predefining specific rules and enforcing them at runtime to enhance safety. Yet, designing comprehensive rules is difficult, requiring extensive manual effort and still leaving gaps that result in false negatives. As agent systems evolve into complex software systems, we take inspiration from software system security and propose TraceAegis, a provenance-based analysis framework that leverages agent execution traces to detect potential anomalies. In particular, TraceAegis constructs a hierarchical structure to abstract stable execution units that characterize normal agent behaviors. These units are then summarized into constrained behavioral rules that specify the conditions necessary to complete a task. By validating execution traces against both hierarchical and behavioral constraints, TraceAegis is able to effectively detect abnormal behaviors. To evaluate the effectiveness of TraceAegis, we introduce TraceAegis-Bench, a dataset covering two representative scenarios: healthcare and corporate procurement. Each scenario includes 1,300 benign behaviors and 300 abnormal behaviors, where the anomalies either violate the agent's execution order or break the semantic consistency of its execution sequence. Experimental results demonstrate that TraceAegis achieves strong performance on TraceAegis-Bench, successfully identifying the majority of abnormal behaviors.
Authors:Thusitha Dayaratne, Ngoc Duy Pham, Viet Vo, Shangqi Lai, Sharif Abuadbba, Hajime Suzuki, Xingliang Yuan, Carsten Rudolph
Title: From Description to Detection: LLM based Extendable O-RAN Compliant Blind DoS Detection in 5G and Beyond
Abstract:
The quality and experience of mobile communication have significantly improved with the introduction of 5G, and these improvements are expected to continue beyond the 5G era. However, vulnerabilities in control-plane protocols, such as Radio Resource Control (RRC) and Non-Access Stratum (NAS), pose significant security threats, such as Blind Denial of Service (DoS) attacks. Despite the availability of existing anomaly detection methods that leverage rule-based systems or traditional machine learning methods, these methods have several limitations, including the need for extensive training data, predefined rules, and limited explainability. Addressing these challenges, we propose a novel anomaly detection framework that leverages the capabilities of Large Language Models (LLMs) in zero-shot mode with unordered data and short natural language attack descriptions within the Open Radio Access Network (O-RAN) architecture. We analyse robustness to prompt variation, demonstrate the practicality of automating the attack descriptions and show that detection quality relies on the semantic completeness of the description rather than its phrasing or length. We utilise an RRC/NAS dataset to evaluate the solution and provide an extensive comparison of open-source and proprietary LLM implementations to demonstrate superior performance in attack detection. We further validate the practicality of our framework within O-RAN's real-time constraints, illustrating its potential for detecting other Layer-3 attacks.
Authors:Hanzhe Wei, Jiajun Wu, Jialin Yang, Henry Leung, Steve Drew
Title: SPEAR: Soft Prompt Enhanced Anomaly Recognition for Time Series Data
Abstract:
Time series anomaly detection plays a crucial role in a wide range of fields, such as healthcare and internet traffic monitoring. The emergence of large language models (LLMs) offers new opportunities for detecting anomalies in the ubiquitous time series data. Traditional approaches struggle with variable-length time series sequences and context-based anomalies. We propose Soft Prompt Enhanced Anomaly Recognition (SPEAR), a novel approach to leverage LLMs for anomaly detection with soft prompts and quantization. Our methodology involves quantizing and transforming the time series data into input embeddings and combining them with learnable soft prompt embeddings. These combined embeddings are then fed into a frozen LLM. The soft prompts are updated iteratively based on a cross-entropy loss, allowing the model to adapt to time series anomaly detection. The use of soft prompts helps adapt LLMs effectively to time series tasks, while quantization ensures optimal handling of sequences, as LLMs are designed to handle discrete sequences. Our experimental results demonstrate that soft prompts effectively increase LLMs' performance in downstream tasks regarding time series anomaly detection.
Authors:Fei Teng, Haoyang Li, Lei Chen
Title: LLMLog: Advanced Log Template Generation via LLM-driven Multi-Round Annotation
Abstract:
Modern computing systems, such as HDFS and Spark, produce vast quantities of logs that developers use for tasks like anomaly detection and error analysis. To simplify log analysis, template generation methods have been proposed to standardize log formats, transforming unstructured data into structured templates. Existing heuristic-based methods and neural network-based methods suffer from low accuracy problems due to the reliance on handcrafted heuristics or specific log patterns in training sets. Recently, large language models (LLMs) have shown great potential in log template generation. However, they often struggle with ambiguous, complex, or highly specific log content, which can lead to errors in generating accurate templates. To address these challenges, we propose LLMLog, a multi-round annotation framework with adaptive in-context learning. We first propose an edit-distance-based similarity metric to evaluate log similarity. Then, we introduce a method to select the most informative $k$ unlabeled logs for annotation by considering both the representativeness of the logs and the confidence of LLM predictions. Additionally, we design an adaptive context selection strategy that adaptively selects labeled logs to ensure comprehensive keyword coverage for unlabeled logs. These labeled logs serve as the context for LLMs to better understand the unlabeled logs, thereby enhancing the accuracy of template generation. Extensive experiments on sixteen datasets demonstrate that LLMLog outperforms the state-of-the-art approaches.
Authors:Thusitha Dayaratne, Ngoc Duy Pham, Viet Vo, Shangqi Lai, Sharif Abuadbba, Hajime Suzuki, Xingliang Yuan, Carsten Rudolph
Title: Robust Anomaly Detection in O-RAN: Leveraging LLMs against Data Manipulation Attacks
Abstract:
The introduction of 5G and the Open Radio Access Network (O-RAN) architecture has enabled more flexible and intelligent network deployments. However, the increased complexity and openness of these architectures also introduce novel security challenges, such as data manipulation attacks on the semi-standardised Shared Data Layer (SDL) within the O-RAN platform through malicious xApps. In particular, malicious xApps can exploit this vulnerability by introducing subtle Unicode-wise alterations (hypoglyphs) into the data that are being used by traditional machine learning (ML)-based anomaly detection methods. These Unicode-wise manipulations can potentially bypass detection and cause failures in anomaly detection systems based on traditional ML, such as AutoEncoders, which are unable to process hypoglyphed data without crashing. We investigate the use of Large Language Models (LLMs) for anomaly detection within the O-RAN architecture to address this challenge. We demonstrate that LLM-based xApps maintain robust operational performance and are capable of processing manipulated messages without crashing. While initial detection accuracy requires further improvements, our results highlight the robustness of LLMs to adversarial attacks such as hypoglyphs in input data. There is potential to use their adaptability through prompt engineering to further improve the accuracy, although this requires further research. Additionally, we show that LLMs achieve low detection latency (under 0.07 seconds), making them suitable for Near-Real-Time (Near-RT) RIC deployments.
Authors:Lemar Abdi, Amaan Valiuddin, Francisco Caetano, Christiaan Viviers, Fons van der Sommen
Title: Zero-Shot Image Anomaly Detection Using Generative Foundation Models
Abstract:
Detecting out-of-distribution (OOD) inputs is pivotal for deploying safe vision systems in open-world environments. We revisit diffusion models, not as generators, but as universal perceptual templates for OOD detection. This research explores the use of score-based generative models as foundational tools for semantic anomaly detection across unseen datasets. Specifically, we leverage the denoising trajectories of Denoising Diffusion Models (DDMs) as a rich source of texture and semantic information. By analyzing Stein score errors, amplified through the Structural Similarity Index Metric (SSIM), we introduce a novel method for identifying anomalous samples without requiring re-training on each target dataset. Our approach improves over state-of-the-art and relies on training a single model on one dataset -- CelebA -- which we find to be an effective base distribution, even outperforming more commonly used datasets like ImageNet in several settings. Experimental results show near-perfect performance on some benchmarks, with notable headroom on others, highlighting both the strength and future potential of generative foundation models in anomaly detection.
Authors:Hieu-Thi Luong, Inbal Rimon, Haim Permuter, Kong Aik Lee, Eng Siong Chng
Title: Robust Localization of Partially Fake Speech: Metrics and Out-of-Domain Evaluation
Abstract:
Partial audio deepfake localization poses unique challenges and remain underexplored compared to full-utterance spoofing detection. While recent methods report strong in-domain performance, their real-world utility remains unclear. In this analysis, we critically examine the limitations of current evaluation practices, particularly the widespread use of Equal Error Rate (EER), which often obscures generalization and deployment readiness. We propose reframing the localization task as a sequential anomaly detection problem and advocate for the use of threshold-dependent metrics such as accuracy, precision, recall, and F1-score, which better reflect real-world behavior. Specifically, we analyze the performance of the open-source Coarse-to-Fine Proposal Refinement Framework (CFPRF), which achieves a 20-ms EER of 7.61% on the in-domain PartialSpoof evaluation set, but 43.25% and 27.59% on the LlamaPartialSpoof and Half-Truth out-of-domain test sets. Interestingly, our reproduced version of the same model performs worse on in-domain data (9.84%) but better on the out-of-domain sets (41.72% and 14.98%, respectively). This highlights the risks of over-optimizing for in-domain EER, which can lead to models that perform poorly in real-world scenarios. It also suggests that while deep learning models can be effective on in-domain data, they generalize poorly to out-of-domain scenarios, failing to detect novel synthetic samples and misclassifying unfamiliar bona fide audio. Finally, we observe that adding more bona fide or fully synthetic utterances to the training data often degrades performance, whereas adding partially fake utterances improves it.
Authors:Dong Xiao, Guangyao Chen, Peixi Peng, Yangru Huang, Yifan Zhao, Yongxing Dai, Yonghong Tian
Title: When Every Millisecond Counts: Real-Time Anomaly Detection via the Multimodal Asynchronous Hybrid Network
Abstract:
Anomaly detection is essential for the safety and reliability of autonomous driving systems. Current methods often focus on detection accuracy but neglect response time, which is critical in time-sensitive driving scenarios. In this paper, we introduce real-time anomaly detection for autonomous driving, prioritizing both minimal response time and high accuracy. We propose a novel multimodal asynchronous hybrid network that combines event streams from event cameras with image data from RGB cameras. Our network utilizes the high temporal resolution of event cameras through an asynchronous Graph Neural Network and integrates it with spatial features extracted by a CNN from RGB images. This combination effectively captures both the temporal dynamics and spatial details of the driving environment, enabling swift and precise anomaly detection. Extensive experiments on benchmark datasets show that our approach outperforms existing methods in both accuracy and response time, achieving millisecond-level real-time performance.
Authors:Ana Lawry Aguila, Peirong Liu, Oula Puonti, Juan Eugenio Iglesias
Title: Conditional diffusion models for guided anomaly detection in brain images using fluid-driven anomaly randomization
Abstract:
Supervised machine learning has enabled accurate pathology detection in brain MRI, but requires training data from diseased subjects that may not be readily available in some scenarios, for example, in the case of rare diseases. Reconstruction-based unsupervised anomaly detection, in particular using diffusion models, has gained popularity in the medical field as it allows for training on healthy images alone, eliminating the need for large disease-specific cohorts. These methods assume that a model trained on normal data cannot accurately represent or reconstruct anomalies. However, this assumption often fails with models failing to reconstruct healthy tissue or accurately reconstruct abnormal regions i.e., failing to remove anomalies. In this work, we introduce a novel conditional diffusion model framework for anomaly detection and healthy image reconstruction in brain MRI. Our weakly supervised approach integrates synthetically generated pseudo-pathology images into the modeling process to better guide the reconstruction of healthy images. To generate these pseudo-pathologies, we apply fluid-driven anomaly randomization to augment real pathology segmentation maps from an auxiliary dataset, ensuring that the synthetic anomalies are both realistic and anatomically coherent. We evaluate our model's ability to detect pathology, using both synthetic anomaly datasets and real pathology from the ATLAS dataset. In our extensive experiments, our model: (i) consistently outperforms variational autoencoders, and conditional and unconditional latent diffusion; and (ii) surpasses on most datasets, the performance of supervised inpainting methods with access to paired diseased/healthy images.
Authors:Elizabeth G. Campolongo, Yuan-Tang Chou, Ekaterina Govorkova, Wahid Bhimji, Wei-Lun Chao, Chris Harris, Shih-Chieh Hsu, Hilmar Lapp, Mark S. Neubauer, Josephine Namayanja, Aneesh Subramanian, Philip Harris, Advaith Anand, David E. Carlyn, Subhankar Ghosh, Christopher Lawrence, Eric Moreno, Ryan Raikman, Jiaman Wu, Ziheng Zhang, Bayu Adhi, Mohammad Ahmadi Gharehtoragh, Saúl Alonso Monsalve, Marta Babicz, Furqan Baig, Namrata Banerji, William Bardon, Tyler Barna, Tanya Berger-Wolf, Adji Bousso Dieng, Micah Brachman, Quentin Buat, David C. Y. Hui, Phuong Cao, Franco Cerino, Yi-Chun Chang, Shivaji Chaulagain, An-Kai Chen, Deming Chen, Eric Chen, Chia-Jui Chou, Zih-Chen Ciou, Miles Cochran-Branson, Artur Cordeiro Oudot Choi, Michael Coughlin, Matteo Cremonesi, Maria Dadarlat, Peter Darch, Malina Desai, Daniel Diaz, Steven Dillmann, Javier Duarte, Isla Duporge, Urbas Ekka, Saba Entezari Heravi, Hao Fang, Rian Flynn, Geoffrey Fox, Emily Freed, Hang Gao, Jing Gao, Julia Gonski, Matthew Graham, Abolfazl Hashemi, Scott Hauck, James Hazelden, Joshua Henry Peterson, Duc Hoang, Wei Hu, Mirco Huennefeld, David Hyde, Vandana Janeja, Nattapon Jaroenchai, Haoyi Jia, Yunfan Kang, Maksim Kholiavchenko, Elham E. Khoda, Sangin Kim, Aditya Kumar, Bo-Cheng Lai, Trung Le, Chi-Wei Lee, JangHyeon Lee, Shaocheng Lee, Suzan van der Lee, Charles Lewis, Haitong Li, Haoyang Li, Henry Liao, Mia Liu, Xiaolin Liu, Xiulong Liu, Vladimir Loncar, Fangzheng Lyu, Ilya Makarov, Abhishikth Mallampalli Chen-Yu Mao, Alexander Michels, Alexander Migala, Farouk Mokhtar, Mathieu Morlighem, Min Namgung, Andrzej Novak, Andrew Novick, Amy Orsborn, Anand Padmanabhan, Jia-Cheng Pan, Sneh Pandya, Zhiyuan Pei, Ana Peixoto, George Percivall, Alex Po Leung, Sanjay Purushotham, Zhiqiang Que, Melissa Quinnan, Arghya Ranjan, Dylan Rankin, Christina Reissel, Benedikt Riedel, Dan Rubenstein, Argyro Sasli, Eli Shlizerman, Arushi Singh, Kim Singh, Eric R. Sokol, Arturo Sorensen, Yu Su, Mitra Taheri, Vaibhav Thakkar, Ann Mariam Thomas, Eric Toberer, Chenghan Tsai, Rebecca Vandewalle, Arjun Verma, Ricco C. Venterea, He Wang, Jianwu Wang, Sam Wang, Shaowen Wang, Gordon Watts, Jason Weitz, Andrew Wildridge, Rebecca Williams, Scott Wolf, Yue Xu, Jianqi Yan, Jai Yu, Yulei Zhang, Haoran Zhao, Ying Zhao, Yibo Zhong
Title: Building Machine Learning Challenges for Anomaly Detection in Science
Abstract:
Scientific discoveries are often made by finding a pattern or object that was not predicted by the known rules of science. Oftentimes, these anomalous events or objects that do not conform to the norms are an indication that the rules of science governing the data are incomplete, and something new needs to be present to explain these unexpected outliers. The challenge of finding anomalies can be confounding since it requires codifying a complete knowledge of the known scientific behaviors and then projecting these known behaviors on the data to look for deviations. When utilizing machine learning, this presents a particular challenge since we require that the model not only understands scientific data perfectly but also recognizes when the data is inconsistent and out of the scope of its trained behavior. In this paper, we present three datasets aimed at developing machine learning-based anomaly detection for disparate scientific domains covering astrophysics, genomics, and polar science. We present the different datasets along with a scheme to make machine learning challenges around the three datasets findable, accessible, interoperable, and reusable (FAIR). Furthermore, we present an approach that generalizes to future machine learning challenges, enabling the possibility of large, more compute-intensive challenges that can ultimately lead to scientific discovery.
Authors:Yao Xie, Xiuyuan Cheng
Title: Flow-based generative models as iterative algorithms in probability space
Abstract:
Generative AI (GenAI) has revolutionized data-driven modeling by enabling the synthesis of high-dimensional data across various applications, including image generation, language modeling, biomedical signal processing, and anomaly detection. Flow-based generative models provide a powerful framework for capturing complex probability distributions, offering exact likelihood estimation, efficient sampling, and deterministic transformations between distributions. These models leverage invertible mappings governed by Ordinary Differential Equations (ODEs), enabling precise density estimation and likelihood evaluation. This tutorial presents an intuitive mathematical framework for flow-based generative models, formulating them as neural network-based representations of continuous probability densities. We explore key theoretical principles, including the Wasserstein metric, gradient flows, and density evolution governed by ODEs, to establish convergence guarantees and bridge empirical advancements with theoretical insights. By providing a rigorous yet accessible treatment, we aim to equip researchers and practitioners with the necessary tools to effectively apply flow-based generative models in signal processing and machine learning.
Authors:Jing Ren, Tao Tang, Hong Jia, Ziqi Xu, Haytham Fayek, Xiaodong Li, Suyu Ma, Xiwei Xu, Feng Xia
Title: Foundation Models for Anomaly Detection: Vision and Challenges
Abstract:
As data continues to grow in volume and complexity across domains such as finance, manufacturing, and healthcare, effective anomaly detection is essential for identifying irregular patterns that may signal critical issues. Recently, foundation models (FMs) have emerged as a powerful tool for advancing anomaly detection. They have demonstrated unprecedented capabilities in enhancing anomaly identification, generating detailed data descriptions, and providing visual explanations. This survey presents the first comprehensive review of recent advancements in FM-based anomaly detection. We propose a novel taxonomy that classifies FMs into three categories based on their roles in anomaly detection tasks, i.e., as encoders, detectors, or interpreters. We provide a systematic analysis of state-of-the-art methods and discuss key challenges in leveraging FMs for improved anomaly detection. We also outline future research directions in this rapidly evolving field.
Authors:Ayush Gupta, Ramneet Kaur, Anirban Roy, Adam D. Cobb, Rama Chellappa, Susmit Jha
Title: Polysemantic Dropout: Conformal OOD Detection for Specialized LLMs
Abstract:
We propose a novel inference-time out-of-domain (OOD) detection algorithm for specialized large language models (LLMs). Despite achieving state-of-the-art performance on in-domain tasks through fine-tuning, specialized LLMs remain vulnerable to incorrect or unreliable outputs when presented with OOD inputs, posing risks in critical applications. Our method leverages the Inductive Conformal Anomaly Detection (ICAD) framework, using a new non-conformity measure based on the model's dropout tolerance. Motivated by recent findings on polysemanticity and redundancy in LLMs, we hypothesize that in-domain inputs exhibit higher dropout tolerance than OOD inputs. We aggregate dropout tolerance across multiple layers via a valid ensemble approach, improving detection while maintaining theoretical false alarm bounds from ICAD. Experiments with medical-specialized LLMs show that our approach detects OOD inputs better than baseline methods, with AUROC improvements of $2\%$ to $37\%$ when treating OOD datapoints as positives and in-domain test datapoints as negatives.
Authors:Theo Di Piazza, Carole Lazarus, Olivier Nempont, Loic Boussel
Title: Structured Spectral Graph Learning for Anomaly Classification in 3D Chest CT Scans
Abstract:
With the increasing number of CT scan examinations, there is a need for automated methods such as organ segmentation, anomaly detection and report generation to assist radiologists in managing their increasing workload. Multi-label classification of 3D CT scans remains a critical yet challenging task due to the complex spatial relationships within volumetric data and the variety of observed anomalies. Existing approaches based on 3D convolutional networks have limited abilities to model long-range dependencies while Vision Transformers suffer from high computational costs and often require extensive pre-training on large-scale datasets from the same domain to achieve competitive performance. In this work, we propose an alternative by introducing a new graph-based approach that models CT scans as structured graphs, leveraging axial slice triplets nodes processed through spectral domain convolution to enhance multi-label anomaly classification performance. Our method exhibits strong cross-dataset generalization, and competitive performance while achieving robustness to z-axis translation. An ablation study evaluates the contribution of each proposed component.
Authors:Qilin Yin, Wei Lu, Xiangyang Luo, Xiaochun Cao
Title: Context-aware TFL: A Universal Context-aware Contrastive Learning Framework for Temporal Forgery Localization
Abstract:
Most research efforts in the multimedia forensics domain have focused on detecting forgery audio-visual content and reached sound achievements. However, these works only consider deepfake detection as a classification task and ignore the case where partial segments of the video are tampered with. Temporal forgery localization (TFL) of small fake audio-visual clips embedded in real videos is still challenging and more in line with realistic application scenarios. To resolve this issue, we propose a universal context-aware contrastive learning framework (UniCaCLF) for TFL. Our approach leverages supervised contrastive learning to discover and identify forged instants by means of anomaly detection, allowing for the precise localization of temporal forged segments. To this end, we propose a novel context-aware perception layer that utilizes a heterogeneous activation operation and an adaptive context updater to construct a context-aware contrastive objective, which enhances the discriminability of forged instant features by contrasting them with genuine instant features in terms of their distances to the global context. An efficient context-aware contrastive coding is introduced to further push the limit of instant feature distinguishability between genuine and forged instants in a supervised sample-by-sample manner, suppressing the cross-sample influence to improve temporal forgery localization performance. Extensive experimental results over five public datasets demonstrate that our proposed UniCaCLF significantly outperforms the state-of-the-art competing algorithms.
Authors:Qianzi Yu, Yang Cao, Yu Kang
Title: Learning Multi-view Multi-class Anomaly Detection
Abstract:
The latest trend in anomaly detection is to train a unified model instead of training a separate model for each category. However, existing multi-class anomaly detection (MCAD) models perform poorly in multi-view scenarios because they often fail to effectively model the relationships and complementary information among different views. In this paper, we introduce a Multi-View Multi-Class Anomaly Detection model (MVMCAD), which integrates information from multiple views to accurately identify anomalies. Specifically, we propose a semi-frozen encoder, where a pre-encoder prior enhancement mechanism is added before the frozen encoder, enabling stable cross-view feature modeling and efficient adaptation for improved anomaly detection. Furthermore, we propose an Anomaly Amplification Module (AAM) that models global token interactions and suppresses normal regions to enhance anomaly signals, leading to improved detection performance in multi-view settings. Finally, we propose a Cross-Feature Loss that aligns shallow encoder features with deep decoder features and vice versa, enhancing the model's sensitivity to anomalies at different semantic levels under multi-view scenarios. Extensive experiments on the Real-IAD dataset for multi-view multi-class anomaly detection validate the effectiveness of our approach, achieving state-of-the-art performance of 91.0/88.6/82.1 and 99.1/43.9/48.2/95.2 for image-level and the pixel-level, respectively.
Authors:Jingyu Xing, Chenwei Tang, Tao Wang, Rong Xiao, Wei Ju, Ji-Zhe Zhou, Liangli Zhen, Jiancheng Lv
Title: Memory-Augmented Dual-Decoder Networks for Multi-Class Unsupervised Anomaly Detection
Abstract:
Recent advances in unsupervised anomaly detection (UAD) have shifted from single-class to multi-class scenarios. In such complex contexts, the increasing pattern diversity has brought two challenges to reconstruction-based approaches: (1) over-generalization: anomalies that are subtle or share compositional similarities with normal patterns may be reconstructed with high fidelity, making them difficult to distinguish from normal instances; and (2) insufficient normality reconstruction: complex normal features, such as intricate textures or fine-grained structures, may not be faithfully reconstructed due to the model's limited representational capacity, resulting in false positives. Existing methods typically focus on addressing the former, which unintentionally exacerbate the latter, resulting in inadequate representation of intricate normal patterns. To concurrently address these two challenges, we propose a Memory-augmented Dual-Decoder Networks (MDD-Net). This network includes two critical components: a Dual-Decoder Reverse Distillation Network (DRD-Net) and a Class-aware Memory Module (CMM). Specifically, the DRD-Net incorporates a restoration decoder designed to recover normal features from synthetic abnormal inputs and an identity decoder to reconstruct features that maintain the anomalous semantics. By exploiting the discrepancy between features produced by two decoders, our approach refines anomaly scores beyond the conventional encoder-decoder comparison paradigm, effectively reducing false positives and enhancing localization accuracy. Furthermore, the CMM explicitly encodes and preserves class-specific normal prototypes, actively steering the network away from anomaly reconstruction. Comprehensive experimental results across several benchmarks demonstrate the superior performance of our MDD-Net framework over current SoTA approaches in multi-class UAD tasks.
Authors:Haci Ismail Aslan, Philipp Wiesner, Ping Xiong, Odej Kao
Title: $β$-GNN: A Robust Ensemble Approach Against Graph Structure Perturbation
Abstract:
Graph Neural Networks (GNNs) are playing an increasingly important role in the efficient operation and security of computing systems, with applications in workload scheduling, anomaly detection, and resource management. However, their vulnerability to network perturbations poses a significant challenge. We propose $β$-GNN, a model enhancing GNN robustness without sacrificing clean data performance. $β$-GNN uses a weighted ensemble, combining any GNN with a multi-layer perceptron. A learned dynamic weight, $β$, modulates the GNN's contribution. This $β$ not only weights GNN influence but also indicates data perturbation levels, enabling proactive mitigation. Experimental results on diverse datasets show $β$-GNN's superior adversarial accuracy and attack severity quantification. Crucially, $β$-GNN avoids perturbation assumptions, preserving clean data structure and performance.
Authors:Emma Coletta, Davide Salvi, Viola Negroni, Daniele Ugo Leonzio, Paolo Bestagini
Title: Anomaly Detection and Localization for Speech Deepfakes via Feature Pyramid Matching
Abstract:
The rise of AI-driven generative models has enabled the creation of highly realistic speech deepfakes - synthetic audio signals that can imitate target speakers' voices - raising critical security concerns. Existing methods for detecting speech deepfakes primarily rely on supervised learning, which suffers from two critical limitations: limited generalization to unseen synthesis techniques and a lack of explainability. In this paper, we address these issues by introducing a novel interpretable one-class detection framework, which reframes speech deepfake detection as an anomaly detection task. Our model is trained exclusively on real speech to characterize its distribution, enabling the classification of out-of-distribution samples as synthetically generated. Additionally, our framework produces interpretable anomaly maps during inference, highlighting anomalous regions across both time and frequency domains. This is done through a Student-Teacher Feature Pyramid Matching system, enhanced with Discrepancy Scaling to improve generalization capabilities across unseen data distributions. Extensive evaluations demonstrate the superior performance of our approach compared to the considered baselines, validating the effectiveness of framing speech deepfake detection as an anomaly detection problem.
Authors:Xuan Tong, Yang Chang, Qing Zhao, Jiawen Yu, Boyang Wang, Junxiong Lin, Yuxuan Lin, Xinji Mai, Haoran Wang, Zeng Tao, Yan Wang, Wenqiang Zhang
Title: Component-aware Unsupervised Logical Anomaly Generation for Industrial Anomaly Detection
Abstract:
Anomaly detection is critical in industrial manufacturing for ensuring product quality and improving efficiency in automated processes. The scarcity of anomalous samples limits traditional detection methods, making anomaly generation essential for expanding the data repository. However, recent generative models often produce unrealistic anomalies increasing false positives, or require real-world anomaly samples for training. In this work, we treat anomaly generation as a compositional problem and propose ComGEN, a component-aware and unsupervised framework that addresses the gap in logical anomaly generation. Our method comprises a multi-component learning strategy to disentangle visual components, followed by subsequent generation editing procedures. Disentangled text-to-component pairs, revealing intrinsic logical constraints, conduct attention-guided residual mapping and model training with iteratively matched references across multiple scales. Experiments on the MVTecLOCO dataset confirm the efficacy of ComGEN, achieving the best AUROC score of 91.2%. Additional experiments on the real-world scenario of Diesel Engine and widely-used MVTecAD dataset demonstrate significant performance improvements when integrating simulated anomalies generated by ComGEN into automated production workflows.
Authors:Liangwei Nathan Zheng, Chang George Dong, Wei Emma Zhang, Lin Yue, Miao Xu, Olaf Maennel, Weitong Chen
Title: Understanding Why Large Language Models Can Be Ineffective in Time Series Analysis: The Impact of Modality Alignment
Abstract:
Large Language Models (LLMs) have demonstrated impressive performance in time series analysis and seems to understand the time temporal relationship well than traditional transformer-based approaches. However, since LLMs are not designed for time series tasks, simpler models like linear regressions can often achieve comparable performance with far less complexity. In this study, we perform extensive experiments to assess the effectiveness of applying LLMs to key time series tasks, including forecasting, classification, imputation, and anomaly detection. We compare the performance of LLMs against simpler baseline models, such as single layer linear models and randomly initialized LLMs. Our results reveal that LLMs offer minimal advantages for these core time series tasks and may even distort the temporal structure of the data. In contrast, simpler models consistently outperform LLMs while requiring far fewer parameters. Furthermore, we analyze existing reprogramming techniques and show, through data manifold analysis, that these methods fail to effectively align time series data with language and display "pseudo-alignment" behavior in embedding space. Our findings suggest that the performance of LLM based methods in time series tasks arises from the intrinsic characteristics and structure of time series data, rather than any meaningful alignment with the language model architecture.
Authors:Shihua Qin, Ming Zhang, Juan Shan, Taehoon Shin, Jonghye Woo, Fangxu Xing
Title: Semi-Supervised Bone Marrow Lesion Detection from Knee MRI Segmentation Using Mask Inpainting Models
Abstract:
Bone marrow lesions (BMLs) are critical indicators of knee osteoarthritis (OA). Since they often appear as small, irregular structures with indistinguishable edges in knee magnetic resonance images (MRIs), effective detection of BMLs in MRI is vital for OA diagnosis and treatment. This paper proposes a semi-supervised local anomaly detection method using mask inpainting models for identification of BMLs in high-resolution knee MRI, effectively integrating a 3D femur bone segmentation model, a large mask inpainting model, and a series of post-processing techniques. The method was evaluated using MRIs at various resolutions from a subset of the public Osteoarthritis Initiative database. Dice score, Intersection over Union (IoU), and pixel-level sensitivity, specificity, and accuracy showed an advantage over the multiresolution knowledge distillation method-a state-of-the-art global anomaly detection method. Especially, segmentation performance is enhanced on higher-resolution images, achieving an over two times performance increase on the Dice score and the IoU score at a 448x448 resolution level. We also demonstrate that with increasing size of the BML region, both the Dice and IoU scores improve as the proportion of distinguishable boundary decreases. The identified BML masks can serve as markers for downstream tasks such as segmentation and classification. The proposed method has shown a potential in improving BML detection, laying a foundation for further advances in imaging-based OA research.
Authors:Dehao Yuan, Tyler Farnan, Stefan Tesliuc, Doron L Bergman, Yulun Wu, Xiaoyu Liu, Minghui Liu, James Montgomery, Nam H Nguyen, C. Bayan Bruss, Furong Huang
Title: PersonaLedger: Generating Realistic Financial Transactions with Persona Conditioned LLMs and Rule Grounded Feedback
Abstract:
Strict privacy regulations limit access to real transaction data, slowing open research in financial AI. Synthetic data can bridge this gap, but existing generators do not jointly achieve behavioral diversity and logical groundedness. Rule-driven simulators rely on hand-crafted workflows and shallow stochasticity, which miss the richness of human behavior. Learning-based generators such as GANs capture correlations yet often violate hard financial constraints and still require training on private data. We introduce PersonaLedger, a generation engine that uses a large language model conditioned on rich user personas to produce diverse transaction streams, coupled with an expert configurable programmatic engine that maintains correctness. The LLM and engine interact in a closed loop: after each event, the engine updates the user state, enforces financial rules, and returns a context aware "nextprompt" that guides the LLM toward feasible next actions. With this engine, we create a public dataset of 30 million transactions from 23,000 users and a benchmark suite with two tasks, illiquidity classification and identity theft segmentation. PersonaLedger offers a realistic, privacy preserving resource that supports rigorous evaluation of forecasting and anomaly detection models. PersonaLedger offers the community a rich, realistic, and privacy preserving resource -- complete with code, rules, and generation logs -- to accelerate innovation in financial AI and enable rigorous, reproducible evaluation.
Authors:Alexander Roman, Emilie Panek, Roy T. Forestano, Eyup B. Unlu, Katia Matcheva, Konstantin T. Matchev
Title: Hunting for "Oddballs" with Machine Learning: Detecting Anomalous Exoplanets Using a Deep-Learned Low-Dimensional Representation of Transit Spectra with Autoencoders
Abstract:
This study explores the application of autoencoder-based machine learning techniques for anomaly detection to identify exoplanet atmospheres with unconventional chemical signatures using a low-dimensional data representation. We use the Atmospheric Big Challenge (ABC) database, a publicly available dataset with over 100,000 simulated exoplanet spectra, to construct an anomaly detection scenario by defining CO2-rich atmospheres as anomalies and CO2-poor atmospheres as the normal class. We benchmarked four different anomaly detection strategies: Autoencoder Reconstruction Loss, One-Class Support Vector Machine (1 class-SVM), K-means Clustering, and Local Outlier Factor (LOF). Each method was evaluated in both the original spectral space and the autoencoder's latent space using Receiver Operating Characteristic (ROC) curves and Area Under the Curve (AUC) metrics. To test the performance of the different methods under realistic conditions, we introduced Gaussian noise levels ranging from 10 to 50 ppm. Our results indicate that anomaly detection is consistently more effective when performed within the latent space across all noise levels. Specifically, K-means clustering in the latent space emerged as a stable and high-performing method. We demonstrate that this anomaly detection approach is robust to noise levels up to 30 ppm (consistent with realistic space-based observations) and remains viable even at 50 ppm when leveraging latent space representations. On the other hand, the performance of the anomaly detection methods applied directly in the raw spectral space degrades significantly with increasing the level of noise. This suggests that autoencoder-driven dimensionality reduction offers a robust methodology for flagging chemically anomalous targets in large-scale surveys where exhaustive retrievals are computationally prohibitive.
Authors:Peizheng Li, Ioannis Mavromatis, Ajith Sahadevan, Tim Farnham, Adnan Aijaz, Aftab Khan
Title: A Multi-Year Urban Streetlight Imagery Dataset for Visual Monitoring and Spatio-Temporal Drift Detection
Abstract:
We present a large-scale, longitudinal visual dataset of urban streetlights captured by 22 fixed-angle cameras deployed across Bristol, U.K., from 2021 to 2025. The dataset contains over 526,000 images, collected hourly under diverse lighting, weather, and seasonal conditions. Each image is accompanied by rich metadata, including timestamps, GPS coordinates, and device identifiers. This unique real-world dataset enables detailed investigation of visual drift, anomaly detection, and MLOps strategies in smart city deployments. To promtoe seconardary analysis, we additionally provide a self-supervised framework based on convolutional variational autoencoders (CNN-VAEs). Models are trained separately for each camera node and for day/night image sets. We define two per-sample drift metrics: relative centroid drift, capturing latent space deviation from a baseline quarter, and relative reconstruction error, measuring normalized image-domain degradation. This dataset provides a realistic, fine-grained benchmark for evaluating long-term model stability, drift-aware learning, and deployment-ready vision systems. The images and structured metadata are publicly released in JPEG and CSV formats, supporting reproducibility and downstream applications such as streetlight monitoring, weather inference, and urban scene understanding. The dataset can be found at https://doi.org/10.5281/zenodo.17781192 and https://doi.org/10.5281/zenodo.17859120.
Authors:Hanzhe Liang, Jie Zhou, Can Gao, Bingyang Guo, Jinbao Wang, Linlin Shen
Title: A Lightweight 3D Anomaly Detection Method with Rotationally Invariant Features
Abstract:
3D anomaly detection (AD) is a crucial task in computer vision, aiming to identify anomalous points or regions from point cloud data. However, existing methods may encounter challenges when handling point clouds with changes in orientation and position because the resulting features may vary significantly. To address this problem, we propose a novel Rotationally Invariant Features (RIF) framework for 3D AD. Firstly, to remove the adverse effect of variations on point cloud data, we develop a Point Coordinate Mapping (PCM) technique, which maps each point into a rotationally invariant space to maintain consistency of representation. Then, to learn robust and discriminative features, we design a lightweight Convolutional Transform Feature Network (CTF-Net) to extract rotationally invariant features for the memory bank. To improve the ability of the feature extractor, we introduce the idea of transfer learning to pre-train the feature extractor with 3D data augmentation. Experimental results show that the proposed method achieves the advanced performance on the Anomaly-ShapeNet dataset, with an average P-AUROC improvement of 17.7\%, and also gains the best performance on the Real3D-AD dataset, with an average P-AUROC improvement of 1.6\%. The strong generalization ability of RIF has been verified by combining it with traditional feature extraction methods on anomaly detection tasks, demonstrating great potential for industrial applications.
Authors:Shu Zou, Xinyu Tian, Lukas Wesemann, Fabian Waschkowski, Zhaoyuan Yang, Jing Zhang
Title: Unlocking Vision-Language Models for Video Anomaly Detection via Fine-Grained Prompting
Abstract:
Prompting has emerged as a practical way to adapt frozen vision-language models (VLMs) for video anomaly detection (VAD). Yet, existing prompts are often overly abstract, overlooking the fine-grained human-object interactions or action semantics that define complex anomalies in surveillance videos. We propose ASK-Hint, a structured prompting framework that leverages action-centric knowledge to elicit more accurate and interpretable reasoning from frozen VLMs. Our approach organizes prompts into semantically coherent groups (e.g. violence, property crimes, public safety) and formulates fine-grained guiding questions that align model predictions with discriminative visual cues. Extensive experiments on UCF-Crime and XD-Violence show that ASK-Hint consistently improves AUC over prior baselines, achieving state-of-the-art performance compared to both fine-tuned and training-free methods. Beyond accuracy, our framework provides interpretable reasoning traces towards anomaly and demonstrates strong generalization across datasets and VLM backbones. These results highlight the critical role of prompt granularity and establish ASK-Hint as a new training-free and generalizable solution for explainable video anomaly detection.
Authors:Po-Han Huang, Jeng-Lin Li, Po-Hsuan Huang, Ming-Ching Chang, Wei-Chao Chen
Title: PatchEAD: Unifying Industrial Visual Prompting Frameworks for Patch-Exclusive Anomaly Detection
Abstract:
Industrial anomaly detection is increasingly relying on foundation models, aiming for strong out-of-distribution generalization and rapid adaptation in real-world deployments. Notably, past studies have primarily focused on textual prompt tuning, leaving the intrinsic visual counterpart fragmented into processing steps specific to each foundation model. We aim to address this limitation by proposing a unified patch-focused framework, Patch-Exclusive Anomaly Detection (PatchEAD), enabling training-free anomaly detection that is compatible with diverse foundation models. The framework constructs visual prompting techniques, including an alignment module and foreground masking. Our experiments show superior few-shot and batch zero-shot performance compared to prior work, despite the absence of textual features. Our study further examines how backbone structure and pretrained characteristics affect patch-similarity robustness, providing actionable guidance for selecting and configuring foundation models for real-world visual inspection. These results confirm that a well-unified patch-only framework can enable quick, calibration-light deployment without the need for carefully engineered textual prompts.
Authors:Zhifang Zhang, Jiahan Zhang, Shengjie Zhou, Qi Wei, Shuo He, Feng Liu, Lei Feng
Title: Improving Generalizability and Undetectability for Targeted Adversarial Attacks on Multimodal Pre-trained Models
Abstract:
Multimodal pre-trained models (e.g., ImageBind), which align distinct data modalities into a shared embedding space, have shown remarkable success across downstream tasks. However, their increasing adoption raises serious security concerns, especially regarding targeted adversarial attacks. In this paper, we show that existing targeted adversarial attacks on multimodal pre-trained models still have limitations in two aspects: generalizability and undetectability. Specifically, the crafted targeted adversarial examples (AEs) exhibit limited generalization to partially known or semantically similar targets in cross-modal alignment tasks (i.e., limited generalizability) and can be easily detected by simple anomaly detection methods (i.e., limited undetectability). To address these limitations, we propose a novel method called Proxy Targeted Attack (PTA), which leverages multiple source-modal and target-modal proxies to optimize targeted AEs, ensuring they remain evasive to defenses while aligning with multiple potential targets. We also provide theoretical analyses to highlight the relationship between generalizability and undetectability and to ensure optimal generalizability while meeting the specified requirements for undetectability. Furthermore, experimental results demonstrate that our PTA can achieve a high success rate across various related targets and remain undetectable against multiple anomaly detection methods.
Authors:Xiaoyang Xu, Xiaofeng Lin, Koh Takeuchi, Kyohei Atarashi, Hisashi Kashima
Title: Robust Anomaly Detection Under Normality Distribution Shift in Dynamic Graphs
Abstract:
Anomaly detection in dynamic graphs is a critical task with broad real-world applications, including social networks, e-commerce, and cybersecurity. Most existing methods assume that normal patterns remain stable over time; however, this assumption often fails in practice due to the phenomenon we refer to as normality distribution shift (NDS), where normal behaviors evolve over time. Ignoring NDS can lead models to misclassify shifted normal instances as anomalies, degrading detection performance. To tackle this issue, we propose WhENDS, a novel unsupervised anomaly detection method that aligns normal edge embeddings across time by estimating distributional statistics and applying whitening transformations. Extensive experiments on four widely-used dynamic graph datasets show that WhENDS consistently outperforms nine strong baselines, achieving state-of-the-art results and underscoring the importance of addressing NDS in dynamic graph anomaly detection.
Authors:Chen Wang, Sarah Erfani, Tansu Alpcan, Christopher Leckie
Title: Intention-aware Hierarchical Diffusion Model for Long-term Trajectory Anomaly Detection
Abstract:
Long-term trajectory anomaly detection is a challenging problem due to the diversity and complex spatiotemporal dependencies in trajectory data. Existing trajectory anomaly detection methods fail to simultaneously consider both the high-level intentions of agents as well as the low-level details of the agent's navigation when analysing an agent's trajectories. This limits their ability to capture the full diversity of normal trajectories. In this paper, we propose an unsupervised trajectory anomaly detection method named Intention-aware Hierarchical Diffusion model (IHiD), which detects anomalies through both high-level intent evaluation and low-level sub-trajectory analysis. Our approach leverages Inverse Q Learning as the high-level model to assess whether a selected subgoal aligns with an agent's intention based on predicted Q-values. Meanwhile, a diffusion model serves as the low-level model to generate sub-trajectories conditioned on subgoal information, with anomaly detection based on reconstruction error. By integrating both models, IHiD effectively utilises subgoal transition knowledge and is designed to capture the diverse distribution of normal trajectories. Our experiments show that the proposed method IHiD achieves up to 30.2% improvement in anomaly detection performance in terms of F1 score over state-of-the-art baselines.
Authors:Yanshu Wang, Xichen Xu, Xiaoning Lei, Guoyang Xie
Title: SARD: Segmentation-Aware Anomaly Synthesis via Region-Constrained Diffusion with Discriminative Mask Guidance
Abstract:
Synthesizing realistic and spatially precise anomalies is essential for enhancing the robustness of industrial anomaly detection systems. While recent diffusion-based methods have demonstrated strong capabilities in modeling complex defect patterns, they often struggle with spatial controllability and fail to maintain fine-grained regional fidelity. To overcome these limitations, we propose SARD (Segmentation-Aware anomaly synthesis via Region-constrained Diffusion with discriminative mask Guidance), a novel diffusion-based framework specifically designed for anomaly generation. Our approach introduces a Region-Constrained Diffusion (RCD) process that preserves the background by freezing it and selectively updating only the foreground anomaly regions during the reverse denoising phase, thereby effectively reducing background artifacts. Additionally, we incorporate a Discriminative Mask Guidance (DMG) module into the discriminator, enabling joint evaluation of both global realism and local anomaly fidelity, guided by pixel-level masks. Extensive experiments on the MVTec-AD and BTAD datasets show that SARD surpasses existing methods in segmentation accuracy and visual quality, setting a new state-of-the-art for pixel-level anomaly synthesis.
Authors:Hanzhe Liang, Jie Zhang, Tao Dai, Linlin Shen, Jinbao Wang, Can Gao
Title: Taming Anomalies with Down-Up Sampling Networks: Group Center Preserving Reconstruction for 3D Anomaly Detection
Abstract:
Reconstruction-based methods have demonstrated very promising results for 3D anomaly detection. However, these methods face great challenges in handling high-precision point clouds due to the large scale and complex structure. In this study, a Down-Up Sampling Network (DUS-Net) is proposed to reconstruct high-precision point clouds for 3D anomaly detection by preserving the group center geometric structure. The DUS-Net first introduces a Noise Generation module to generate noisy patches, which facilitates the diversity of training data and strengthens the feature representation for reconstruction. Then, a Down-sampling Network (Down-Net) is developed to learn an anomaly-free center point cloud from patches with noise injection. Subsequently, an Up-sampling Network (Up-Net) is designed to reconstruct high-precision point clouds by fusing multi-scale up-sampling features. Our method leverages group centers for construction, enabling the preservation of geometric structure and providing a more precise point cloud. Extensive experiments demonstrate the effectiveness of our proposed method, achieving state-of-the-art (SOTA) performance with an Object-level AUROC of 79.9% and 79.5%, and a Point-level AUROC of 71.2% and 84.7% on the Real3D-AD and Anomaly-ShapeNet datasets, respectively.
Authors:Max Peter Ronecker, Matthew Foutter, Amine Elhafsi, Daniele Gammelli, Ihor Barakaiev, Marco Pavone, Daniel Watzenig
Title: Vision Foundation Model Embedding-Based Semantic Anomaly Detection
Abstract:
Semantic anomalies are contextually invalid or unusual combinations of familiar visual elements that can cause undefined behavior and failures in system-level reasoning for autonomous systems. This work explores semantic anomaly detection by leveraging the semantic priors of state-of-the-art vision foundation models, operating directly on the image. We propose a framework that compares local vision embeddings from runtime images to a database of nominal scenarios in which the autonomous system is deemed safe and performant. In this work, we consider two variants of the proposed framework: one using raw grid-based embeddings, and another leveraging instance segmentation for object-centric representations. To further improve robustness, we introduce a simple filtering mechanism to suppress false positives. Our evaluations on CARLA-simulated anomalies show that the instance-based method with filtering achieves performance comparable to GPT-4o, while providing precise anomaly localization. These results highlight the potential utility of vision embeddings from foundation models for real-time anomaly detection in autonomous systems.
Authors:Peizheng Li, Adnan Aijaz
Title: Task-Oriented Connectivity for Networked Robotics with Generative AI and Semantic Communications
Abstract:
The convergence of robotics, advanced communication networks, and artificial intelligence (AI) holds the promise of transforming industries through fully automated and intelligent operations. In this work, we introduce a novel co-working framework for robots that unifies goal-oriented semantic communication (SemCom) with a Generative AI (GenAI)-agent under a semantic-aware network. SemCom prioritizes the exchange of meaningful information among robots and the network, thereby reducing overhead and latency. Meanwhile, the GenAI-agent leverages generative AI models to interpret high-level task instructions, allocate resources, and adapt to dynamic changes in both network and robotic environments. This agent-driven paradigm ushers in a new level of autonomy and intelligence, enabling complex tasks of networked robots to be conducted with minimal human intervention. We validate our approach through a multi-robot anomaly detection use-case simulation, where robots detect, compress, and transmit relevant information for classification. Simulation results confirm that SemCom significantly reduces data traffic while preserving critical semantic details, and the GenAI-agent ensures task coordination and network adaptation. This synergy provides a robust, efficient, and scalable solution for modern industrial environments.
Authors:Hanzhe Liang, Jie Zhou, Xuanxin Chen, Tao Dai, Jinbao Wang, Can Gao
Title: Fence Theorem: Towards Dual-Objective Semantic-Structure Isolation in Preprocessing Phase for 3D Anomaly Detection
Abstract:
3D anomaly detection (AD) is prominent but difficult due to lacking a unified theoretical foundation for preprocessing design. We establish the Fence Theorem, formalizing preprocessing as a dual-objective semantic isolator: (1) mitigating cross-semantic interference to the greatest extent feasible and (2) confining anomaly judgments to aligned semantic spaces wherever viable, thereby establishing intra-semantic comparability. Any preprocessing approach achieves this goal through a two-stage process of Emantic-Division and Spatial-Constraints stage. Through systematic deconstruction, we theoretically and experimentally subsume existing preprocessing methods under this theorem via tripartite evidence: qualitative analyses, quantitative studies, and mathematical proofs. Guided by the Fence Theorem, we implement Patch3D, consisting of Patch-Cutting and Patch-Matching modules, to segment semantic spaces and consolidate similar ones while independently modeling normal features within each space. Experiments on Anomaly-ShapeNet and Real3D-AD with different settings demonstrate that progressively finer-grained semantic alignment in preprocessing directly enhances point-level AD accuracy, providing inverse validation of the theorem's causal logic.
Authors:Ingeborg Wenger, Peter Eberhard, Henrik Ebel
Title: Discovering Antagonists in Networks of Systems: Robot Deployment
Abstract:
A contextual anomaly detection method is proposed and applied to the physical motions of a robot swarm executing a coverage task. Using simulations of a swarm's normal behavior, a normalizing flow is trained to predict the likelihood of a robot motion within the current context of its environment. During application, the predicted likelihood of the observed motions is used by a detection criterion that categorizes a robot agent as normal or antagonistic. The proposed method is evaluated on five different strategies of antagonistic behavior. Importantly, only readily available simulated data of normal robot behavior is used for training such that the nature of the anomalies need not be known beforehand. The best detection criterion correctly categorizes at least 80% of each antagonistic type while maintaining a false positive rate of less than 5% for normal robot agents. Additionally, the method is validated in hardware experiments, yielding results similar to the simulated scenarios. Compared to the state-of-the-art approach, both the predictive performance of the normalizing flow and the robustness of the detection criterion are increased.
Authors:Zag ElSayed, Ahmed Abdelgawad, Nelly Elsayed
Title: CryptoDNA: A Machine Learning Paradigm for DDoS Detection in Healthcare IoT, Inspired by crypto jacking prevention Models
Abstract:
The rapid integration of the Internet of Things (IoT) and Internet of Medical (IoM) devices in the healthcare industry has markedly improved patient care and hospital operations but has concurrently brought substantial risks. Distributed Denial-of-Service (DDoS) attacks present significant dangers, jeopardizing operational stability and patient safety. This study introduces CryptoDNA, an innovative machine learning detection framework influenced by cryptojacking detection methods, designed to identify and alleviate DDoS attacks in healthcare IoT settings. The proposed approach relies on behavioral analytics, including atypical resource usage and network activity patterns. Key features derived from cryptojacking-inspired methodologies include entropy-based analysis of traffic, time-series monitoring of device performance, and dynamic anomaly detection. A lightweight architecture ensures inter-compatibility with resource-constrained IoT devices while maintaining high detection accuracy. The proposed architecture and model were tested in real-world and synthetic datasets to demonstrate the model's superior performance, achieving over 96% accuracy with minimal computational overhead. Comparative analysis reveals its resilience against emerging attack vectors and scalability across diverse device ecosystems. By bridging principles from cryptojacking and DDoS detection, CryptoDNA offers a robust, innovative solution to fortify the healthcare IoT landscape against evolving cyber threats and highlights the potential of interdisciplinary approaches in adaptive cybersecurity defense mechanisms for critical healthcare infrastructures.
Authors:Yile Gu, Yifan Xiong, Jonathan Mace, Yuting Jiang, Yigong Hu, Baris Kasikci, Peng Cheng
Title: Argos: Agentic Time-Series Anomaly Detection with Autonomous Rule Generation via Large Language Models
Abstract:
Observability in cloud infrastructure is critical for service providers, driving the widespread adoption of anomaly detection systems for monitoring metrics. However, existing systems often struggle to simultaneously achieve explainability, reproducibility, and autonomy, which are three indispensable properties for production use. We introduce Argos, an agentic system for detecting time-series anomalies in cloud infrastructure by leveraging large language models (LLMs). Argos proposes to use explainable and reproducible anomaly rules as intermediate representation and employs LLMs to autonomously generate such rules. The system will efficiently train error-free and accuracy-guaranteed anomaly rules through multiple collaborative agents and deploy the trained rules for low-cost online anomaly detection. Through evaluation results, we demonstrate that Argos outperforms state-of-the-art methods, increasing $F_1$ scores by up to $9.5\%$ and $28.3\%$ on public anomaly detection datasets and an internal dataset collected from Microsoft, respectively.
Authors:Xingfang Wu, Heng Li, Foutse Khomh
Title: What Information Contributes to Log-based Anomaly Detection? Insights from a Configurable Transformer-Based Approach
Abstract:
Log data are generated from logging statements in the source code, providing insights into the execution processes of software applications and systems. State-of-the-art log-based anomaly detection approaches typically leverage deep learning models to capture the semantic or sequential information in the log data and detect anomalous runtime behaviors. However, the impacts of these different types of information are not clear. In addition, most existing approaches ignore the timestamps in log data, which can potentially provide fine-grained sequential and temporal information. In this work, we propose a configurable Transformer-based anomaly detection model that can capture the semantic, sequential, and temporal information in the log data and allows us to configure the different types of information as the model's features. Additionally, we train and evaluate the proposed model using log sequences of different lengths, thus overcoming the constraint of existing methods that rely on fixed-length or time-windowed log sequences as inputs. With the proposed model, we conduct a series of experiments with different combinations of input features to evaluate the roles of different types of information in anomaly detection. The model can attain competitive and consistently stable performance compared to the baselines when presented with log sequences of varying lengths. The results indicate that the event occurrence information plays a key role in identifying anomalies, while the impact of the sequential and temporal information is not significant for anomaly detection on the studied public datasets. On the other hand, the findings also reveal the simplicity of the studied public datasets and highlight the importance of constructing new datasets that contain different types of anomalies to better evaluate the performance of anomaly detection models.
Authors:Roozbeh Aghili, Heng Li, Foutse Khomh
Title: Protecting Privacy in Software Logs: What Should Be Anonymized?
Abstract:
Software logs, generated during the runtime of software systems, are essential for various development and analysis activities, such as anomaly detection and failure diagnosis. However, the presence of sensitive information in these logs poses significant privacy concerns, particularly regarding Personally Identifiable Information (PII) and quasi-identifiers that could lead to re-identification risks. While general data privacy has been extensively studied, the specific domain of privacy in software logs remains underexplored, with inconsistent definitions of sensitivity and a lack of standardized guidelines for anonymization. To mitigate this gap, this study offers a comprehensive analysis of privacy in software logs from multiple perspectives. We start by performing an analysis of 25 publicly available log datasets to identify potentially sensitive attributes. Based on the result of this step, we focus on three perspectives: privacy regulations, research literature, and industry practices. We first analyze key data privacy regulations, such as the General Data Protection Regulation (GDPR) and the California Consumer Privacy Act (CCPA), to understand the legal requirements concerning sensitive information in logs. Second, we conduct a systematic literature review to identify common privacy attributes and practices in log anonymization, revealing gaps in existing approaches. Finally, we survey 45 industry professionals to capture practical insights on log anonymization practices. Our findings shed light on various perspectives of log privacy and reveal industry challenges, such as technical and efficiency issues while highlighting the need for standardized guidelines. By combining insights from regulatory, academic, and industry perspectives, our study aims to provide a clearer framework for identifying and protecting sensitive information in software logs.
Authors:Danyu Sun, Joann Qiongna Chen, Chen Gong, Tianhao Wang, Zhou Li
Title: NetDPSyn: Synthesizing Network Traces under Differential Privacy
Abstract:
As the utilization of network traces for the network measurement research becomes increasingly prevalent, concerns regarding privacy leakage from network traces have garnered the public's attention. To safeguard network traces, researchers have proposed the trace synthesis that retains the essential properties of the raw data. However, previous works also show that synthesis traces with generative models are vulnerable under linkage attacks. This paper introduces NetDPSyn, the first system to synthesize high-fidelity network traces under privacy guarantees. NetDPSyn is built with the Differential Privacy (DP) framework as its core, which is significantly different from prior works that apply DP when training the generative model. The experiments conducted on three flow and two packet datasets indicate that NetDPSyn achieves much better data utility in downstream tasks like anomaly detection. NetDPSyn is also 2.5 times faster than the other methods on average in data synthesis.
Authors:Jiaqi Sun, Wei Li, Heng Zhang, Chutong Ding, Shiyou Qian, Jian Cao, Guangtao Xue
Title: LLM-SrcLog: Towards Proactive and Unified Log Template Extraction via Large Language Models
Abstract:
Log parsing transforms raw logs into structured templates containing constants and variables. It underpins anomaly detection, failure diagnosis, and other AIOps tasks. Current parsers are mostly reactive and log-centric. They only infer templates from logs, mostly overlooking the source code. This restricts their capacity to grasp dynamic log structures or adjust to evolving systems. Moreover, per-log LLM inference is too costly for practical deployment. In this paper, we propose LLM-SrcLog, a proactive and unified framework for log template parsing. It extracts templates directly from source code prior to deployment and supplements them with data-driven parsing for logs without available code. LLM-SrcLog integrates a cross-function static code analyzer to reconstruct meaningful logging contexts, an LLM-based white-box template extractor with post-processing to distinguish constants from variables, and a black-box template extractor that incorporates data-driven clustering for remaining unmatched logs. Experiments on two public benchmarks (Hadoop and Zookeeper) and a large-scale industrial system (Sunfire-Compute) show that, compared to two LLM-based baselines, LLM-SrcLog improves average F1-score by 2-17% and 8-35%. Meanwhile, its online parsing latency is comparable to data-driven methods and about 1,000 times faster than per-log LLM parsing. LLM-SrcLog achieves a near-ideal balance between speed and accuracy. Finally, we further validate the effectiveness of LLM-SrcLog through practical case studies in a real-world production environment.
Authors:Ratun Rahman, Sina Shaham, Dinh C. Nguyen
Title: Towards Personalized Quantum Federated Learning for Anomaly Detection
Abstract:
Anomaly detection has a significant impact on applications such as video surveillance, medical diagnostics, and industrial monitoring, where anomalies frequently depend on context and anomaly-labeled data are limited. Quantum federated learning (QFL) overcomes these concerns by distributing model training among several quantum clients, consequently eliminating the requirement for centralized quantum storage and processing. However, in real-life quantum networks, clients frequently differ in terms of hardware capabilities, circuit designs, noise levels, and how classical data is encoded or preprocessed into quantum states. These differences create inherent heterogeneity across clients - not just in their data distributions, but also in their quantum processing behaviors. As a result, training a single global model becomes ineffective, especially when clients handle imbalanced or non-identically distributed (non-IID) data. To address this, we propose a new framework called personalized quantum federated learning (PQFL) for anomaly detection. PQFL enhances local model training at quantum clients using parameterized quantum circuits and classical optimizers, while introducing a quantum-centric personalization strategy that adapts each client's model to its own hardware characteristics and data representation. Extensive experiments show that PQFL significantly improves anomaly detection accuracy under diverse and realistic conditions. Compared to state-of-the-art methods, PQFL reduces false errors by up to 23%, and achieves gains of 24.2% in AUROC and 20.5% in AUPR, highlighting its effectiveness and scalability in practical quantum federated settings.
Authors:Qingfeng Chen, Haojin Zeng, Jingyi Jie, Shichao Zhang, Debo Cheng
Title: DeNoise: Learning Robust Graph Representations for Unsupervised Graph-Level Anomaly Detection
Abstract:
With the rapid growth of graph-structured data in critical domains, unsupervised graph-level anomaly detection (UGAD) has become a pivotal task. UGAD seeks to identify entire graphs that deviate from normal behavioral patterns. However, most Graph Neural Network (GNN) approaches implicitly assume that the training set is clean, containing only normal graphs, which is rarely true in practice. Even modest contamination by anomalous graphs can distort learned representations and sharply degrade performance. To address this challenge, we propose DeNoise, a robust UGAD framework explicitly designed for contaminated training data. It jointly optimizes a graph-level encoder, an attribute decoder, and a structure decoder via an adversarial objective to learn noise-resistant embeddings. Further, DeNoise introduces an encoder anchor-alignment denoising mechanism that fuses high-information node embeddings from normal graphs into all graph embeddings, improving representation quality while suppressing anomaly interference. A contrastive learning component then compacts normal graph embeddings and repels anomalous ones in the latent space. Extensive experiments on eight real-world datasets demonstrate that DeNoise consistently learns reliable graph-level representations under varying noise intensities and significantly outperforms state-of-the-art UGAD baselines.
Authors:Nand Kumar Yadav, Rodrigue Rizk, William CW Chen, KC Santosh
Title: I Detect What I Don't Know: Incremental Anomaly Learning with Stochastic Weight Averaging-Gaussian for Oracle-Free Medical Imaging
Abstract:
Unknown anomaly detection in medical imaging remains a fundamental challenge due to the scarcity of labeled anomalies and the high cost of expert supervision. We introduce an unsupervised, oracle-free framework that incrementally expands a trusted set of normal samples without any anomaly labels. Starting from a small, verified seed of normal images, our method alternates between lightweight adapter updates and uncertainty-gated sample admission. A frozen pretrained vision backbone is augmented with tiny convolutional adapters, ensuring rapid domain adaptation with negligible computational overhead. Extracted embeddings are stored in a compact coreset enabling efficient k-nearest neighbor anomaly (k-NN) scoring. Safety during incremental expansion is enforced by dual probabilistic gates, a sample is admitted into the normal memory only if its distance to the existing coreset lies within a calibrated z-score threshold, and its SWAG-based epistemic uncertainty remains below a seed-calibrated bound. This mechanism prevents drift and false inclusions without relying on generative reconstruction or replay buffers. Empirically, our system steadily refines the notion of normality as unlabeled data arrive, producing substantial gains over baselines. On COVID-CXR, ROC-AUC improves from 0.9489 to 0.9982 (F1: 0.8048 to 0.9746); on Pneumonia CXR, ROC-AUC rises from 0.6834 to 0.8968; and on Brain MRI ND-5, ROC-AUC increases from 0.6041 to 0.7269 and PR-AUC from 0.7539 to 0.8211. These results highlight the effectiveness and efficiency of the proposed framework for real-world, label-scarce medical imaging applications.
Authors:Daniel Sorensen, Bappaditya Dey, Minjin Hwang, Sandip Halder
Title: Unsupervised Anomaly Prediction with N-BEATS and Graph Neural Network in Multi-variate Semiconductor Process Time Series
Abstract:
Semiconductor manufacturing is an extremely complex and precision-driven process, characterized by thousands of interdependent parameters collected across diverse tools and process steps. Multi-variate time-series analysis has emerged as a critical field for real-time monitoring and fault detection in such environments. However, anomaly prediction in semiconductor fabrication presents several critical challenges, including high dimensionality of sensor data and severe class imbalance due to the rarity of true faults. Furthermore, the complex interdependencies between variables complicate both anomaly prediction and root-cause-analysis. This paper proposes two novel approaches to advance the field from anomaly detection to anomaly prediction, an essential step toward enabling real-time process correction and proactive fault prevention. The proposed anomaly prediction framework contains two main stages: (a) training a forecasting model on a dataset assumed to contain no anomalies, and (b) performing forecast on unseen time series data. The forecast is compared with the forecast of the trained signal. Deviations beyond a predefined threshold are flagged as anomalies. The two approaches differ in the forecasting model employed. The first assumes independence between variables by utilizing the N-BEATS model for univariate time series forecasting. The second lifts this assumption by utilizing a Graph Neural Network (GNN) to capture inter-variable relationships. Both models demonstrate strong forecasting performance up to a horizon of 20 time points and maintain stable anomaly prediction up to 50 time points. The GNN consistently outperforms the N-BEATS model while requiring significantly fewer trainable parameters and lower computational cost. These results position the GNN as promising solution for online anomaly forecasting to be deployed in manufacturing environments.
Authors:Anja Adamov, Markus Chardonnet, Florian Krach, Jakob Heiss, Josef Teichmann, Nicholas A. Bokulich
Title: Revealing the temporal dynamics of antibiotic anomalies in the infant gut microbiome with neural jump ODEs
Abstract:
Detecting anomalies in irregularly sampled multi-variate time-series is challenging, especially in data-scarce settings. Here we introduce an anomaly detection framework for irregularly sampled time-series that leverages neural jump ordinary differential equations (NJODEs). The method infers conditional mean and variance trajectories in a fully path dependent way and computes anomaly scores. On synthetic data containing jump, drift, diffusion, and noise anomalies, the framework accurately identifies diverse deviations. Applied to infant gut microbiome trajectories, it delineates the magnitude and persistence of antibiotic-induced disruptions: revealing prolonged anomalies after second antibiotic courses, extended duration treatments, and exposures during the second year of life. We further demonstrate the predictive capabilities of the inferred anomaly scores in accurately predicting antibiotic events and outperforming diversity-based baselines. Our approach accommodates unevenly spaced longitudinal observations, adjusts for static and dynamic covariates, and provides a foundation for inferring microbial anomalies induced by perturbations, offering a translational opportunity to optimize intervention regimens by minimizing microbial disruptions.
Authors:Tian Lan, Hao Duong Le, Jinbo Li, Wenjun He, Meng Wang, Chenghao Liu, Chen Zhang
Title: AXIS: Explainable Time Series Anomaly Detection with Large Language Models
Abstract:
Time-series anomaly detection (TSAD) increasingly demands explanations that articulate not only if an anomaly occurred, but also what pattern it exhibits and why it is anomalous. Leveraging the impressive explanatory capabilities of Large Language Models (LLMs), recent works have attempted to treat time series as text for explainable TSAD. However, this approach faces a fundamental challenge: LLMs operate on discrete tokens and struggle to directly process long, continuous signals. Consequently, naive time-to-text serialization suffers from a lack of contextual grounding and representation alignment between the two modalities. To address this gap, we introduce AXIS, a framework that conditions a frozen LLM for nuanced time-series understanding. Instead of direct serialization, AXIS enriches the LLM's input with three complementary hints derived from the series: (i) a symbolic numeric hint for numerical grounding, (ii) a context-integrated, step-aligned hint distilled from a pretrained time-series encoder to capture fine-grained dynamics, and (iii) a task-prior hint that encodes global anomaly characteristics. Furthermore, to facilitate robust evaluation of explainability, we introduce a new benchmark featuring multi-format questions and rationales that supervise contextual grounding and pattern-level semantics. Extensive experiments, including both LLM-based and human evaluations, demonstrate that AXIS yields explanations of significantly higher quality and achieves competitive detection accuracy compared to general-purpose LLMs, specialized time-series LLMs, and time-series Vision Language Models.
Authors:Tian Lan, Hao Duong Le, Jinbo Li, Wenjun He, Meng Wang, Chenghao Liu, Chen Zhang
Title: Towards Foundation Models for Zero-Shot Time Series Anomaly Detection: Leveraging Synthetic Data and Relative Context Discrepancy
Abstract:
Time series anomaly detection (TSAD) is a critical task, but developing models that generalize to unseen data in a zero-shot manner remains a major challenge. Prevailing foundation models for TSAD predominantly rely on reconstruction-based objectives, which suffer from a fundamental objective mismatch: they struggle to identify subtle anomalies while often misinterpreting complex normal patterns, leading to high rates of false negatives and positives. To overcome these limitations, we introduce \texttt{TimeRCD}, a novel foundation model for TSAD built upon a new pre-training paradigm: Relative Context Discrepancy (RCD). Instead of learning to reconstruct inputs, \texttt{TimeRCD} is explicitly trained to identify anomalies by detecting significant discrepancies between adjacent time windows. This relational approach, implemented with a standard Transformer architecture, enables the model to capture contextual shifts indicative of anomalies that reconstruction-based methods often miss. To facilitate this paradigm, we develop a large-scale, diverse synthetic corpus with token-level anomaly labels, providing the rich supervisory signal necessary for effective pre-training. Extensive experiments demonstrate that \texttt{TimeRCD} significantly outperforms existing general-purpose and anomaly-specific foundation models in zero-shot TSAD across diverse datasets. Our results validate the superiority of the RCD paradigm and establish a new, effective path toward building robust and generalizable foundation models for time series anomaly detection.
Authors:Jingyi Liao, Yongyi Su, Rong-Cheng Tu, Zhao Jin, Wenhao Sun, Yiting Li, Dacheng Tao, Xun Xu, Xulei Yang
Title: AD-FM: Multimodal LLMs for Anomaly Detection via Multi-Stage Reasoning and Fine-Grained Reward Optimization
Abstract:
While Multimodal Large Language Models (MLLMs) demonstrate remarkable capabilities across diverse domains, their application to specialized anomaly detection (AD) remains constrained by domain adaptation challenges. Existing Group Relative Policy Optimization (GRPO) based approaches suffer from two critical limitations: inadequate training data utilization when models produce uniform responses, and insufficient supervision over reasoning processes that encourage immediate binary decisions without deliberative analysis. We propose a comprehensive framework addressing these limitations through two synergistic innovations. First, we introduce a multi-stage deliberative reasoning process that guides models from region identification to focused examination, generating diverse response patterns essential for GRPO optimization while enabling structured supervision over analytical workflows. Second, we develop a fine-grained reward mechanism incorporating classification accuracy and localization supervision, transforming binary feedback into continuous signals that distinguish genuine analytical insight from spurious correctness. Comprehensive evaluation across multiple industrial datasets demonstrates substantial performance improvements in adapting general vision-language models to specialized anomaly detection. Our method achieves superior accuracy with efficient adaptation of existing annotations, effectively bridging the gap between general-purpose MLLM capabilities and the fine-grained visual discrimination required for detecting subtle manufacturing defects and structural irregularities.
Authors:Bappaditya Dey, Daniel Sorensen, Minjin Hwang, Sandip Halder
Title: Continuous Wavelet Transform and Siamese Network-Based Anomaly Detection in Multi-variate Semiconductor Process Time Series
Abstract:
Semiconductor manufacturing is an extremely complex process, characterized by thousands of interdependent parameters collected across diverse tools and process steps. Multi-variate time-series (MTS) analysis has emerged as a critical methodology for enabling real-time monitoring, fault detection, and predictive maintenance in such environments. However, anomaly prediction in semiconductor fabrication presents several critical challenges, including high data dimensionality, severe class imbalance due to the rarity of true faults, noisy and missing measurements, and non-stationary behavior of production systems. Furthermore, the complex interdependencies between variables and the delayed emergence of faults across downstream stages complicate both anomaly detection and root-cause-analysis. This paper presents a novel and generic approach for anomaly detection in MTS data using machine learning. The proposed methodology consists of three main steps: a) converting MTS data into image-based representations using the Continuous Wavelet Transform, b) developing a multi-class image classifier by fine-tuning a pretrained VGG-16 architecture on custom CWT image datasets, and c) constructing a Siamese network composed of two identical sub-networks, each utilizing the fine-tuned VGG-16 as a backbone. The network takes pairs of CWT images as input -one serving as a reference or anchor (representing a known-good signal), and the other as a query (representing an unknown signal). The model then compares the embeddings of both inputs to determine whether they belong to the same class at a given time step. Our approach demonstrates high accuracy in identifying anomalies on a real FAB process time-series dataset, offering a promising solution for offline anomaly detection in process and tool trace data. Moreover, the approach is flexible and can be applied in both supervised and semi-supervised settings.
Authors:Alexey Nekrasov, Malcolm Burdorf, Stewart Worrall, Bastian Leibe, Julie Stephany Berrio Perez
Title: Spotting the Unexpected (STU): A 3D LiDAR Dataset for Anomaly Segmentation in Autonomous Driving
Abstract:
To operate safely, autonomous vehicles (AVs) need to detect and handle unexpected objects or anomalies on the road. While significant research exists for anomaly detection and segmentation in 2D, research progress in 3D is underexplored. Existing datasets lack high-quality multimodal data that are typically found in AVs. This paper presents a novel dataset for anomaly segmentation in driving scenarios. To the best of our knowledge, it is the first publicly available dataset focused on road anomaly segmentation with dense 3D semantic labeling, incorporating both LiDAR and camera data, as well as sequential information to enable anomaly detection across various ranges. This capability is critical for the safe navigation of autonomous vehicles. We adapted and evaluated several baseline models for 3D segmentation, highlighting the challenges of 3D anomaly detection in driving environments. Our dataset and evaluation code will be openly available, facilitating the testing and performance comparison of different approaches.
Authors:Tian Lan, Yifei Gao, Yimeng Lu, Chen Zhang
Title: CICADA: Cross-Domain Interpretable Coding for Anomaly Detection and Adaptation in Multivariate Time Series
Abstract:
Unsupervised Time series anomaly detection plays a crucial role in applications across industries. However, existing methods face significant challenges due to data distributional shifts across different domains, which are exacerbated by the non-stationarity of time series over time. Existing models fail to generalize under multiple heterogeneous source domains and emerging unseen new target domains. To fill the research gap, we introduce CICADA (Cross-domain Interpretable Coding for Anomaly Detection and Adaptation), with four key innovations: (1) a mixture of experts (MOE) framework that captures domain-agnostic anomaly features with high flexibility and interpretability; (2) a novel selective meta-learning mechanism to prevent negative transfer between dissimilar domains, (3) an adaptive expansion algorithm for emerging heterogeneous domain expansion, and (4) a hierarchical attention structure that quantifies expert contributions during fusion to enhance interpretability further.Extensive experiments on synthetic and real-world industrial datasets demonstrate that CICADA outperforms state-of-the-art methods in both cross-domain detection performance and interpretability.
Authors:Xinyu Li, Yingtong Huo, Chenxi Mao, Shiwen Shan, Yuxin Su, Dan Li, Zibin Zheng
Title: AnomalyGen: An Automated Semantic Log Sequence Generation Framework with LLM for Anomaly Detection
Abstract:
The scarcity of high-quality public log datasets has become a critical bottleneck in advancing log-based anomaly detection techniques. Current datasets exhibit three fundamental limitations: (1) incomplete event coverage, (2) artificial patterns introduced by static analysis-based generation frameworks, and (3) insufficient semantic awareness. To address these challenges, we present AnomalyGen, the first automated log synthesis framework specifically designed for anomaly detection. Our framework introduces a novel four-phase architecture that integrates enhanced program analysis with Chain-of-Thought reasoning (CoT reasoning), enabling iterative log generation and anomaly annotation without requiring physical system execution. Evaluations on Hadoop and HDFS distributed systems demonstrate that AnomalyGen achieves substantially broader log event coverage (38-95 times improvement over existing datasets) while producing more operationally realistic log sequences compared to static analysis-based approaches. When augmenting benchmark datasets with synthesized logs, we observe maximum F1-score improvements of 3.7% (average 1.8% improvement across three state-of-the-art anomaly detection models). This work not only establishes a high-quality benchmarking resource for automated log analysis but also pioneers a new paradigm for applying large language models (LLMs) in software engineering workflows.
Authors:Jingyi Liao, Xun Xu, Yongyi Su, Rong-Cheng Tu, Yifan Liu, Dacheng Tao, Xulei Yang
Title: Robust Distribution Alignment for Industrial Anomaly Detection under Distribution Shift
Abstract:
Anomaly detection plays a crucial role in quality control for industrial applications. However, ensuring robustness under unseen domain shifts such as lighting variations or sensor drift remains a significant challenge. Existing methods attempt to address domain shifts by training generalizable models but often rely on prior knowledge of target distributions and can hardly generalise to backbones designed for other data modalities. To overcome these limitations, we build upon memory-bank-based anomaly detection methods, optimizing a robust Sinkhorn distance on limited target training data to enhance generalization to unseen target domains. We evaluate the effectiveness on both 2D and 3D anomaly detection benchmarks with simulated distribution shifts. Our proposed method demonstrates superior results compared with state-of-the-art anomaly detection and domain adaptation methods.
Authors:Yifan Liu, Xun Xu, Shijie Li, Jingyi Liao, Xulei Yang
Title: Multi-View Industrial Anomaly Detection with Epipolar Constrained Cross-View Fusion
Abstract:
Multi-camera systems provide richer contextual information for industrial anomaly detection. However, traditional methods process each view independently, disregarding the complementary information across viewpoints. Existing multi-view anomaly detection approaches typically employ data-driven cross-view attention for feature fusion but fail to leverage the unique geometric properties of multi-camera setups. In this work, we introduce an epipolar geometry-constrained attention module to guide cross-view fusion, ensuring more effective information aggregation. To further enhance the potential of cross-view attention, we propose a pretraining strategy inspired by memory bank-based anomaly detection. This approach encourages normal feature representations to form multiple local clusters and incorporate multi-view aware negative sample synthesis to regularize pretraining. We demonstrate that our epipolar guided multi-view anomaly detection framework outperforms existing methods on the state-of-the-art multi-view anomaly detection dataset.
Authors:Sunghyun Ahn, Youngwan Jo, Kijung Lee, Sein Kwon, Inpyo Hong, Sanghyun Park
Title: AnyAnomaly: Zero-Shot Customizable Video Anomaly Detection with LVLM
Abstract:
Video anomaly detection (VAD) is crucial for video analysis and surveillance in computer vision. However, existing VAD models rely on learned normal patterns, which makes them difficult to apply to diverse environments. Consequently, users should retrain models or develop separate AI models for new environments, which requires expertise in machine learning, high-performance hardware, and extensive data collection, limiting the practical usability of VAD. To address these challenges, this study proposes customizable video anomaly detection (C-VAD) technique and the AnyAnomaly model. C-VAD considers user-defined text as an abnormal event and detects frames containing a specified event in a video. We effectively implemented AnyAnomaly using a context-aware visual question answering without fine-tuning the large vision language model. To validate the effectiveness of the proposed model, we constructed C-VAD datasets and demonstrated the superiority of AnyAnomaly. Furthermore, our approach showed competitive results on VAD benchmarks, achieving state-of-the-art performance on UBnormal and UCF-Crime and surpassing other methods in generalization across all datasets. Our code is available online at github.com/SkiddieAhn/Paper-AnyAnomaly.
Authors:Jiaxiang Wang, Haote Xu, Xiaolu Chen, Haodi Xu, Yue Huang, Xinghao Ding, Xiaotong Tu
Title: Exploiting Point-Language Models with Dual-Prompts for 3D Anomaly Detection
Abstract:
Anomaly detection (AD) in 3D point clouds is crucial in a wide range of industrial applications, especially in various forms of precision manufacturing. Considering the industrial demand for reliable 3D AD, several methods have been developed. However, most of these approaches typically require training separate models for each category, which is memory-intensive and lacks flexibility. In this paper, we propose a novel Point-Language model with dual-prompts for 3D ANomaly dEtection (PLANE). The approach leverages multi-modal prompts to extend the strong generalization capabilities of pre-trained Point-Language Models (PLMs) to the domain of 3D point cloud AD, achieving impressive detection performance across multiple categories using a single model. Specifically, we propose a dual-prompt learning method, incorporating both text and point cloud prompts. The method utilizes a dynamic prompt creator module (DPCM) to produce sample-specific dynamic prompts, which are then integrated with class-specific static prompts for each modality, effectively driving the PLMs. Additionally, based on the characteristics of point cloud data, we propose a pseudo 3D anomaly generation method (Ano3D) to improve the model's detection capabilities in an unsupervised setting. Experimental results demonstrate that the proposed method, which is under the multi-class-one-model paradigm, achieves a +8.7%/+17% gain on anomaly detection and localization performance as compared to the state-of-the-art one-class-one-model methods for the Anomaly-ShapeNet dataset, and obtains +4.3%/+4.1% gain for the Real3D-AD dataset. Code will be available upon publication.
Authors:Xiang Li, Jianpeng Qi, Zhongying Zhao, Guanjie Zheng, Lei Cao, Junyu Dong, Yanwei Yu
Title: UMGAD: Unsupervised Multiplex Graph Anomaly Detection
Abstract:
Graph anomaly detection (GAD) is a critical task in graph machine learning, with the primary objective of identifying anomalous nodes that deviate significantly from the majority. This task is widely applied in various real-world scenarios, including fraud detection and social network analysis. However, existing GAD methods still face two major challenges: (1) They are often limited to detecting anomalies in single-type interaction graphs and struggle with multiple interaction types in multiplex heterogeneous graphs. (2) In unsupervised scenarios, selecting appropriate anomaly score thresholds remains a significant challenge for accurate anomaly detection. To address the above challenges, we propose a novel Unsupervised Multiplex Graph Anomaly Detection method, named UMGAD. We first learn multi-relational correlations among nodes in multiplex heterogeneous graphs and capture anomaly information during node attribute and structure reconstruction through graph-masked autoencoder (GMAE). Then, to further extract abnormal information, we generate attribute-level and subgraph-level augmented-view graphs, respectively, and perform attribute and structure reconstruction through GMAE. Finally, we learn to optimize node attributes and structural features through contrastive learning between original-view and augmented-view graphs to improve the model's ability to capture anomalies. Meanwhile, we propose a new anomaly score threshold selection strategy, which allows the model to be independent of ground truth information in real unsupervised scenarios. Extensive experiments on six datasets show that our UMGAD significantly outperforms state-of-the-art methods, achieving average improvements of 12.25% in AUC and 11.29% in Macro-F1 across all datasets.
Authors:Wei Guan, Jian Cao, Shiyou Qian, Jianqi Gao, Chun Ouyang
Title: LogLLM: Log-based Anomaly Detection Using Large Language Models
Abstract:
Software systems often record important runtime information in logs to help with troubleshooting. Log-based anomaly detection has become a key research area that aims to identify system issues through log data, ultimately enhancing the reliability of software systems. Traditional deep learning methods often struggle to capture the semantic information embedded in log data, which is typically organized in natural language. In this paper, we propose LogLLM, a log-based anomaly detection framework that leverages large language models (LLMs). LogLLM employs BERT for extracting semantic vectors from log messages, while utilizing Llama, a transformer decoder-based model, for classifying log sequences. Additionally, we introduce a projector to align the vector representation spaces of BERT and Llama, ensuring a cohesive understanding of log semantics. Unlike conventional methods that require log parsers to extract templates, LogLLM preprocesses log messages with regular expressions, streamlining the entire process. Our framework is trained through a novel three-stage procedure designed to enhance performance and adaptability. Experimental results across four public datasets demonstrate that LogLLM outperforms state-of-the-art methods. Even when handling unstable logs, it effectively captures the semantic meaning of log messages and detects anomalies accurately.
Authors:Sunghyun Ahn, Youngwan Jo, Kijung Lee, Sanghyun Park
Title: VideoPatchCore: An Effective Method to Memorize Normality for Video Anomaly Detection
Abstract:
Video anomaly detection (VAD) is a crucial task in video analysis and surveillance within computer vision. Currently, VAD is gaining attention with memory techniques that store the features of normal frames. The stored features are utilized for frame reconstruction, identifying an abnormality when a significant difference exists between the reconstructed and input frames. However, this approach faces several challenges due to the simultaneous optimization required for both the memory and encoder-decoder model. These challenges include increased optimization difficulty, complexity of implementation, and performance variability depending on the memory size. To address these challenges,we propose an effective memory method for VAD, called VideoPatchCore. Inspired by PatchCore, our approach introduces a structure that prioritizes memory optimization and configures three types of memory tailored to the characteristics of video data. This method effectively addresses the limitations of existing memory-based methods, achieving good performance comparable to state-of-the-art methods. Furthermore, our method requires no training and is straightforward to implement, making VAD tasks more accessible. Our code is available online at github.com/SkiddieAhn/Paper-VideoPatchCore.
Authors:Haoyan Xu, Ruizhi Qian, Zhengtao Yao, Ziyi Liu, Li Li, Yuqi Li, Yanshu Li, Wenqing Zheng, Daniele Rosa, Daniel Barcklow, Senthil Kumar, Jieyu Zhao, Yue Zhao
Title: LLM-Powered Text-Attributed Graph Anomaly Detection via Retrieval-Augmented Reasoning
Abstract:
Anomaly detection on attributed graphs plays an essential role in applications such as fraud detection, intrusion monitoring, and misinformation analysis. However, text-attributed graphs (TAGs), in which node information is expressed in natural language, remain underexplored, largely due to the absence of standardized benchmark datasets. In this work, we introduce TAG-AD, a comprehensive benchmark for anomaly node detection on TAGs. TAG-AD leverages large language models (LLMs) to generate realistic anomalous node texts directly in the raw text space, producing anomalies that are semantically coherent yet contextually inconsistent and thus more reflective of real-world irregularities. In addition, TAG-AD incorporates multiple other anomaly types, enabling thorough and reproducible evaluation of graph anomaly detection (GAD) methods. With these datasets, we further benchmark existing unsupervised GNN-based GAD methods as well as zero-shot LLMs for GAD. As part of our zero-shot detection setup, we propose a retrieval-augmented generation (RAG)-assisted, LLM-based zero-shot anomaly detection framework. The framework mitigates reliance on brittle, hand-crafted prompts by constructing a global anomaly knowledge base and distilling it into reusable analysis frameworks. Our experimental results reveal a clear division of strengths: LLMs are particularly effective at detecting contextual anomalies, whereas GNN-based methods remain superior for structural anomaly detection. Moreover, RAG-assisted prompting achieves performance comparable to human-designed prompts while eliminating manual prompt engineering, underscoring the practical value of our RAG-assisted zero-shot LLM anomaly detection framework.
Authors:Fan Yang, Quanting Xie, Atsunori Moteki, Shoichi Masui, Shan Jiang, Kanji Uchino, Yonatan Bisk, Graham Neubig
Title: Unsupervised Discovery of Long-Term Spatiotemporal Periodic Workflows in Human Activities
Abstract:
Periodic human activities with implicit workflows are common in manufacturing, sports, and daily life. While short-term periodic activities -- characterized by simple structures and high-contrast patterns -- have been widely studied, long-term periodic workflows with low-contrast patterns remain largely underexplored. To bridge this gap, we introduce the first benchmark comprising 580 multimodal human activity sequences featuring long-term periodic workflows. The benchmark supports three evaluation tasks aligned with real-world applications: unsupervised periodic workflow detection, task completion tracking, and procedural anomaly detection. We also propose a lightweight, training-free baseline for modeling diverse periodic workflow patterns. Experiments show that: (i) our benchmark presents significant challenges to both unsupervised periodic detection methods and zero-shot approaches based on powerful large language models (LLMs); (ii) our baseline outperforms competing methods by a substantial margin in all evaluation tasks; and (iii) in real-world applications, our baseline demonstrates deployment advantages on par with traditional supervised workflow detection approaches, eliminating the need for annotation and retraining. Our project page is https://sites.google.com/view/periodicworkflow.
Authors:Yihao Ang, Peicheng Yao, Yifan Bao, Yushuo Feng, Qiang Huang, Anthony K. H. Tung, Zhiyong Huang
Title: RFOD: Random Forest-based Outlier Detection for Tabular Data
Abstract:
Outlier detection in tabular data is crucial for safeguarding data integrity in high-stakes domains such as cybersecurity, financial fraud detection, and healthcare, where anomalies can cause serious operational and economic impacts. Despite advances in both data mining and deep learning, many existing methods struggle with mixed-type tabular data, often relying on encoding schemes that lose important semantic information. Moreover, they frequently lack interpretability, offering little insight into which specific values cause anomalies. To overcome these challenges, we introduce \textsf{\textbf{RFOD}}, a novel \textsf{\textbf{R}}andom \textsf{\textbf{F}}orest-based \textsf{\textbf{O}}utlier \textsf{\textbf{D}}etection framework tailored for tabular data. Rather than modeling a global joint distribution, \textsf{RFOD} reframes anomaly detection as a feature-wise conditional reconstruction problem, training dedicated random forests for each feature conditioned on the others. This design robustly handles heterogeneous data types while preserving the semantic integrity of categorical features. To further enable precise and interpretable detection, \textsf{RFOD} combines Adjusted Gower's Distance (AGD) for cell-level scoring, which adapts to skewed numerical data and accounts for categorical confidence, with Uncertainty-Weighted Averaging (UWA) to aggregate cell-level scores into robust row-level anomaly scores. Extensive experiments on 15 real-world datasets demonstrate that \textsf{RFOD} consistently outperforms state-of-the-art baselines in detection accuracy while offering superior robustness, scalability, and interpretability for mixed-type tabular data.
Authors:Zexin Wang, Changhua Pei, Yang Liu, Hengyue Jiang, Quan Zhou, Haotian Si, Hang Cui, Jianhui Li, Gaogang Xie, Jingjing Li, Dan Pei
Title: ViTs: Teaching Machines to See Time Series Anomalies Like Human Experts
Abstract:
Web service administrators must ensure the stability of multiple systems by promptly detecting anomalies in Key Performance Indicators (KPIs). Achieving the goal of "train once, infer across scenarios" remains a fundamental challenge for time series anomaly detection models. Beyond improving zero-shot generalization, such models must also flexibly handle sequences of varying lengths during inference, ranging from one hour to one week, without retraining. Conventional approaches rely on sliding-window encoding and self-supervised learning, which restrict inference to fixed-length inputs. Large Language Models (LLMs) have demonstrated remarkable zero-shot capabilities across general domains. However, when applied to time series data, they face inherent limitations due to context length. To address this issue, we propose ViTs, a Vision-Language Model (VLM)-based framework that converts time series curves into visual representations. By rescaling time series images, temporal dependencies are preserved while maintaining a consistent input size, thereby enabling efficient processing of arbitrarily long sequences without context constraints. Training VLMs for this purpose introduces unique challenges, primarily due to the scarcity of aligned time series image-text data. To overcome this, we employ an evolutionary algorithm to automatically generate thousands of high-quality image-text pairs and design a three-stage training pipeline consisting of: (1) time series knowledge injection, (2) anomaly detection enhancement, and (3) anomaly reasoning refinement. Extensive experiments demonstrate that ViTs substantially enhance the ability of VLMs to understand and detect anomalies in time series data. All datasets and code will be publicly released at: https://anonymous.4open.science/r/ViTs-C484/.
Authors:Hang Cui, Jingjing Li, Haotian Si, Quan Zhou, Changhua Pei, Gaogang Xie, Dan Pei
Title: TShape: Rescuing Machine Learning Models from Complex Shapelet Anomalies
Abstract:
Time series anomaly detection (TSAD) is critical for maintaining the reliability of modern IT infrastructures, where complex anomalies frequently arise in highly dynamic environments. In this paper, we present TShape, a novel framework designed to address the challenges in industrial time series anomaly detection. Existing methods often struggle to detect shapelet anomalies that manifest as complex shape deviations, which appear obvious to human experts but prove challenging for machine learning algorithms. TShape introduces a patch-wise dual attention mechanism with multi-scale convolution to model intricate sub-sequence variations by balancing local, fine-grained shape features with global contextual dependencies. Our extensive evaluation on five diverse benchmarks demonstrates that TShape outperforms existing state-of-the-art models, achieving an average 10\% F1 score improvement in anomaly detection. Additionally, ablation studies and attention visualizations confirm the essential contributions of each component, highlighting the robustness and adaptability of TShape to complex shapelet shapes in time series data.
Authors:Yating Lin, Zixuan Huang, Fan Yang, Dmitry Berenson
Title: AnoF-Diff: One-Step Diffusion-Based Anomaly Detection for Forceful Tool Use
Abstract:
Multivariate time-series anomaly detection, which is critical for identifying unexpected events, has been explored in the field of machine learning for several decades. However, directly applying these methods to data from forceful tool use tasks is challenging because streaming sensor data in the real world tends to be inherently noisy, exhibits non-stationary behavior, and varies across different tasks and tools. To address these challenges, we propose a method, AnoF-Diff, based on the diffusion model to extract force-torque features from time-series data and use force-torque features to detect anomalies. We compare our method with other state-of-the-art methods in terms of F1-score and Area Under the Receiver Operating Characteristic curve (AUROC) on four forceful tool-use tasks, demonstrating that our method has better performance and is more robust to a noisy dataset. We also propose the method of parallel anomaly score evaluation based on one-step diffusion and demonstrate how our method can be used for online anomaly detection in several forceful tool use experiments.
Authors:Branko Mitic, Philipp Seeböck, Helmut Prosch, Georg Langs
Title: AREPAS: Anomaly Detection in Fine-Grained Anatomy with Reconstruction-Based Semantic Patch-Scoring
Abstract:
Early detection of newly emerging diseases, lesion severity assessment, differentiation of medical conditions and automated screening are examples for the wide applicability and importance of anomaly detection (AD) and unsupervised segmentation in medicine. Normal fine-grained tissue variability such as present in pulmonary anatomy is a major challenge for existing generative AD methods. Here, we propose a novel generative AD approach addressing this issue. It consists of an image-to-image translation for anomaly-free reconstruction and a subsequent patch similarity scoring between observed and generated image-pairs for precise anomaly localization. We validate the new method on chest computed tomography (CT) scans for the detection and segmentation of infectious disease lesions. To assess generalizability, we evaluate the method on an ischemic stroke lesion segmentation task in T1-weighted brain MRI. Results show improved pixel-level anomaly segmentation in both chest CTs and brain MRIs, with relative DICE score improvements of +1.9% and +4.4%, respectively, compared to other state-of-the-art reconstruction-based methods.
Authors:Meryem Malak Dif, Mouhamed Amine Bouchiha, Abdelaziz Amara Korba, Yacine Ghamri-Doudane
Title: Towards Trustworthy Agentic IoEV: AI Agents for Explainable Cyberthreat Mitigation and State Analytics
Abstract:
The Internet of Electric Vehicles (IoEV) envisions a tightly coupled ecosystem of electric vehicles (EVs), charging infrastructure, and grid services, yet it remains vulnerable to cyberattacks, unreliable battery-state predictions, and opaque decision processes that erode trust and performance. To address these challenges, we introduce a novel Agentic Artificial Intelligence (AAI) framework tailored for IoEV, where specialized agents collaborate to deliver autonomous threat mitigation, robust analytics, and interpretable decision support. Specifically, we design an AAI architecture comprising dedicated agents for cyber-threat detection and response at charging stations, real-time State of Charge (SoC) estimation, and State of Health (SoH) anomaly detection, all coordinated through a shared, explainable reasoning layer; develop interpretable threat-mitigation mechanisms that proactively identify and neutralize attacks on both physical charging points and learning components; propose resilient SoC and SoH models that leverage continuous and adversarial-aware learning to produce accurate, uncertainty-aware forecasts with human-readable explanations; and implement a three-agent pipeline, where each agent uses LLM-driven reasoning and dynamic tool invocation to interpret intent, contextualize tasks, and execute formal optimizations for user-centric assistance. Finally, we validate our framework through comprehensive experiments across diverse IoEV scenarios, demonstrating significant improvements in security and prediction accuracy. All datasets, models, and code will be released publicly.
Authors:Zexin Wang, Jingjing Li, Quan Zhou, Haotian Si, Yuanhao Liu, Jianhui Li, Gaogang Xie, Fei Sun, Dan Pei, Changhua Pei
Title: A Survey on AgentOps: Categorization, Challenges, and Future Directions
Abstract:
As the reasoning capabilities of Large Language Models (LLMs) continue to advance, LLM-based agent systems offer advantages in flexibility and interpretability over traditional systems, garnering increasing attention. However, despite the widespread research interest and industrial application of agent systems, these systems, like their traditional counterparts, frequently encounter anomalies. These anomalies lead to instability and insecurity, hindering their further development. Therefore, a comprehensive and systematic approach to the operation and maintenance of agent systems is urgently needed. Unfortunately, current research on the operations of agent systems is sparse. To address this gap, we have undertaken a survey on agent system operations with the aim of establishing a clear framework for the field, defining the challenges, and facilitating further development. Specifically, this paper begins by systematically defining anomalies within agent systems, categorizing them into intra-agent anomalies and inter-agent anomalies. Next, we introduce a novel and comprehensive operational framework for agent systems, dubbed Agent System Operations (AgentOps). We provide detailed definitions and explanations of its four key stages: monitoring, anomaly detection, root cause analysis, and resolution.
Authors:Weicong Chen, Vikash Singh, Zahra Rahmani, Debargha Ganguly, Mohsen Hariri, Vipin Chaudhary
Title: $K^4$: Online Log Anomaly Detection Via Unsupervised Typicality Learning
Abstract:
Existing Log Anomaly Detection (LogAD) methods are often slow, dependent on error-prone parsing, and use unrealistic evaluation protocols. We introduce $K^4$, an unsupervised and parser-independent framework for high-performance online detection. $K^4$ transforms arbitrary log embeddings into compact four-dimensional descriptors (Precision, Recall, Density, Coverage) using efficient k-nearest neighbor (k-NN) statistics. These descriptors enable lightweight detectors to accurately score anomalies without retraining. Using a more realistic online evaluation protocol, $K^4$ sets a new state-of-the-art (AUROC: 0.995-0.999), outperforming baselines by large margins while being orders of magnitude faster, with training under 4 seconds and inference as low as 4 $μ$s.
Authors:Junliang Luo, Katrin Tinn, Samuel Ferreira Duran, Di Wu, Xue Liu
Title: Transaction Profiling and Address Role Inference in Tokenized U.S. Treasuries
Abstract:
Tokenized U.S. Treasuries have emerged as a prominent subclass of real-world assets (RWAs), offering cryptographically enforced, yield-bearing instruments collateralized by sovereign debt and deployed across multiple blockchain networks. While the market has expanded rapidly, empirical analyses of transaction-level behaviour remain limited. This paper conducts a quantitative, function-level dissection of U.S. Treasury-backed RWA tokens including BUIDL, BENJI, and USDY, across multi-chain: mostly Ethereum and Layer-2s. We analyze decoded contract calls to isolate core functional primitives such as issuance, redemption, transfer, and bridge activity, revealing segmentation in behaviour between institutional actors and retail users. To model address-level economic roles, we introduce a curvature-aware representation learning framework using Poincaré embeddings and liquidity-based graph features. Our method outperforms baseline models on our RWA Treasury dataset in role inference and generalizes to downstream tasks such as anomaly detection and wallet classification in broader blockchain transaction networks. These findings provide a structured understanding of functional heterogeneity and participant roles in tokenized Treasury in a transaction-level perspective, contributing new empirical evidence to the study of on-chain financialization.
Authors:Alexander Bakhtin, Jesse Nyyssölä, Yuqing Wang, Noman Ahmad, Ke Ping, Matteo Esposito, Mika Mäntylä, Davide Taibi
Title: LO2: Microservice API Anomaly Dataset of Logs and Metrics
Abstract:
Context. Microservice-based systems have gained significant attention over the past years. A critical factor for understanding and analyzing the behavior of these systems is the collection of monitoring data such as logs, metrics, and traces. These data modalities can be used for anomaly detection and root cause analysis of failures. In particular, multi-modal methods utilizing several types of this data at once have gained traction in the research community since these three modalities capture different dimensions of system behavior. Aim. We provide a dataset that supports research on anomaly detection and architectural degradation in microservice systems. We generate a comprehensive dataset of logs, metrics, and traces from a production microservice system to enable the exploration of multi-modal fusion methods that integrate multiple data modalities. Method. We dynamically tested the various APIs of the MS-based system, implementing the OAuth2.0 protocol using the Locust tool. For each execution of the prepared test suite, we collect logs and performance metrics for correct and erroneous calls with data labeled according to the error triggered during the call. Contributions. We collected approximately 657,000 individual log files, totaling over two billion log lines. In addition, we collected more than 45 million individual metric files that contain 485 unique metrics. We provide an initial analysis of logs, identify key metrics through PCA, and discuss challenges in collecting traces for this system. Moreover, we highlight the possibilities for making a more fine-grained version of the data set. This work advances anomaly detection in microservice systems using multiple data sources.
Authors:Ashutosh Ghimire, Ghazal Ghajari, Karma Gurung, Love K. Sah, Fathi Amsaad
Title: Enhancing Cybersecurity in Critical Infrastructure with LLM-Assisted Explainable IoT Systems
Abstract:
Ensuring the security of critical infrastructure has become increasingly vital with the proliferation of Internet of Things (IoT) systems. However, the heterogeneous nature of IoT data and the lack of human-comprehensible insights from anomaly detection models remain significant challenges. This paper presents a hybrid framework that combines numerical anomaly detection using Autoencoders with Large Language Models (LLMs) for enhanced preprocessing and interpretability. Two preprocessing approaches are implemented: a traditional method utilizing Principal Component Analysis (PCA) to reduce dimensionality and an LLM-assisted method where GPT-4 dynamically recommends feature selection, transformation, and encoding strategies. Experimental results on the KDDCup99 10% corrected dataset demonstrate that the LLM-assisted preprocessing pipeline significantly improves anomaly detection performance. The macro-average F1 score increased from 0.49 in the traditional PCA-based approach to 0.98 with LLM-driven insights. Additionally, the LLM generates natural language explanations for detected anomalies, providing contextual insights into their causes and implications. This framework highlights the synergy between numerical AI models and LLMs, delivering an accurate, interpretable, and efficient solution for IoT cybersecurity in critical infrastructure.
Authors:Ghazal Ghajari, Ashutosh Ghimire, Elaheh Ghajari, Fathi Amsaad
Title: Network Anomaly Detection for IoT Using Hyperdimensional Computing on NSL-KDD
Abstract:
With the rapid growth of IoT devices, ensuring robust network security has become a critical challenge. Traditional intrusion detection systems (IDSs) often face limitations in detecting sophisticated attacks within high-dimensional and complex data environments. This paper presents a novel approach to network anomaly detection using hyperdimensional computing (HDC) techniques, specifically applied to the NSL-KDD dataset. The proposed method leverages the efficiency of HDC in processing large-scale data to identify both known and unknown attack patterns. The model achieved an accuracy of 91.55% on the KDDTrain+ subset, outperforming traditional approaches. These comparative evaluations underscore the model's superior performance, highlighting its potential in advancing anomaly detection for IoT networks and contributing to more secure and intelligent cybersecurity solutions.
Authors:Yiyue Li, Shaoting Zhang, Kang Li, Qicheng Lao
Title: One-to-Normal: Anomaly Personalization for Few-shot Anomaly Detection
Abstract:
Traditional Anomaly Detection (AD) methods have predominantly relied on unsupervised learning from extensive normal data. Recent AD methods have evolved with the advent of large pre-trained vision-language models, enhancing few-shot anomaly detection capabilities. However, these latest AD methods still exhibit limitations in accuracy improvement. One contributing factor is their direct comparison of a query image's features with those of few-shot normal images. This direct comparison often leads to a loss of precision and complicates the extension of these techniques to more complex domains--an area that remains underexplored in a more refined and comprehensive manner. To address these limitations, we introduce the anomaly personalization method, which performs a personalized one-to-normal transformation of query images using an anomaly-free customized generation model, ensuring close alignment with the normal manifold. Moreover, to further enhance the stability and robustness of prediction results, we propose a triplet contrastive anomaly inference strategy, which incorporates a comprehensive comparison between the query and generated anomaly-free data pool and prompt information. Extensive evaluations across eleven datasets in three domains demonstrate our model's effectiveness compared to the latest AD methods. Additionally, our method has been proven to transfer flexibly to other AD methods, with the generated image data effectively improving the performance of other AD methods.
Authors:Weiqi Chen, Zhiqiang Zhou, Qingsong Wen, Liang Sun
Title: GraphSubDetector: Time Series Subsequence Anomaly Detection via Density-Aware Adaptive Graph Neural Network
Abstract:
Time series subsequence anomaly detection is an important task in a large variety of real-world applications ranging from health monitoring to AIOps, and is challenging due to the following reasons: 1) how to effectively learn complex dynamics and dependencies in time series; 2) diverse and complicated anomalous subsequences as well as the inherent variance and noise of normal patterns; 3) how to determine the proper subsequence length for effective detection, which is a required parameter for many existing algorithms. In this paper, we present a novel approach to subsequence anomaly detection, namely GraphSubDetector. First, it adaptively learns the appropriate subsequence length with a length selection mechanism that highlights the characteristics of both normal and anomalous patterns. Second, we propose a density-aware adaptive graph neural network (DAGNN), which can generate further robust representations against variance of normal data for anomaly detection by message passing between subsequences. The experimental results demonstrate the effectiveness of the proposed algorithm, which achieves superior performance on multiple time series anomaly benchmark datasets compared to state-of-the-art algorithms.
Authors:Tri Cao, Minh-Huy Trinh, Ailin Deng, Quoc-Nam Nguyen, Khoa Duong, Ngai-Man Cheung, Bryan Hooi
Title: Are Anomaly Scores Telling the Whole Story? A Benchmark for Multilevel Anomaly Detection
Abstract:
Anomaly detection (AD) is a machine learning task that identifies anomalies by learning patterns from normal training data. In many real-world scenarios, anomalies vary in severity, from minor anomalies with little risk to severe abnormalities requiring immediate attention. However, existing models primarily operate in a binary setting, and the anomaly scores they produce are usually based on the deviation of data points from normal data, which may not accurately reflect practical severity. In this paper, we address this gap by making three key contributions. First, we propose a novel setting, Multilevel AD (MAD), in which the anomaly score represents the severity of anomalies in real-world applications, and we highlight its diverse applications across various domains. Second, we introduce a novel benchmark, MAD-Bench, that evaluates models not only on their ability to detect anomalies, but also on how effectively their anomaly scores reflect severity. This benchmark incorporates multiple types of baselines and real-world applications involving severity. Finally, we conduct a comprehensive performance analysis on MAD-Bench. We evaluate models on their ability to assign severity-aligned scores, investigate the correspondence between their performance on binary and multilevel detection, and study their robustness. This analysis offers key insights into improving AD models for practical severity alignment. The code framework and datasets used for the benchmark will be made publicly available.
Authors:Mengxuan Li, Ke Liu, Hongyang Chen, Jiajun Bu, Hongwei Wang, Haishuai Wang
Title: TSINR: Capturing Temporal Continuity via Implicit Neural Representations for Time Series Anomaly Detection
Abstract:
Time series anomaly detection aims to identify unusual patterns in data or deviations from systems' expected behavior. The reconstruction-based methods are the mainstream in this task, which learn point-wise representation via unsupervised learning. However, the unlabeled anomaly points in training data may cause these reconstruction-based methods to learn and reconstruct anomalous data, resulting in the challenge of capturing normal patterns. In this paper, we propose a time series anomaly detection method based on implicit neural representation (INR) reconstruction, named TSINR, to address this challenge. Due to the property of spectral bias, TSINR enables prioritizing low-frequency signals and exhibiting poorer performance on high-frequency abnormal data. Specifically, we adopt INR to parameterize time series data as a continuous function and employ a transformer-based architecture to predict the INR of given data. As a result, the proposed TSINR method achieves the advantage of capturing the temporal continuity and thus is more sensitive to discontinuous anomaly data. In addition, we further design a novel form of INR continuous function to learn inter- and intra-channel information, and leverage a pre-trained large language model to amplify the intense fluctuations in anomalies. Extensive experiments demonstrate that TSINR achieves superior overall performance on both univariate and multivariate time series anomaly detection benchmarks compared to other state-of-the-art reconstruction-based methods. Our codes are available.
Authors:Quan Zhou, Changhua Pei, Fei Sun, Jing Han, Zhengwei Gao, Dan Pei, Haiming Zhang, Gaogang Xie, Jianhui Li
Title: KAN-AD: Time Series Anomaly Detection with Kolmogorov-Arnold Networks
Abstract:
Time series anomaly detection (TSAD) underpins real-time monitoring in cloud services and web systems, allowing rapid identification of anomalies to prevent costly failures. Most TSAD methods driven by forecasting models tend to overfit by emphasizing minor fluctuations. Our analysis reveals that effective TSAD should focus on modeling "normal" behavior through smooth local patterns. To achieve this, we reformulate time series modeling as approximating the series with smooth univariate functions. The local smoothness of each univariate function ensures that the fitted time series remains resilient against local disturbances. However, a direct KAN implementation proves susceptible to these disturbances due to the inherently localized characteristics of B-spline functions. We thus propose KAN-AD, replacing B-splines with truncated Fourier expansions and introducing a novel lightweight learning mechanism that emphasizes global patterns while staying robust to local disturbances. On four popular TSAD benchmarks, KAN-AD achieves an average 15% improvement in detection accuracy (with peaks exceeding 27%) over state-of-the-art baselines. Remarkably, it requires fewer than 1,000 trainable parameters, resulting in a 50% faster inference speed compared to the original KAN, demonstrating the approach's efficiency and practical viability.
Authors:Branko Mitic, Philipp Seeböck, Jennifer Straub, Helmut Prosch, Georg Langs
Title: Detection of Emerging Infectious Diseases in Lung CT based on Spatial Anomaly Patterns
Abstract:
Fast detection of emerging diseases is important for containing their spread and treating patients effectively. Local anomalies are relevant, but often novel diseases involve familiar disease patterns in new spatial distributions. Therefore, established local anomaly detection approaches may fail to identify them as new. Here, we present a novel approach to detect the emergence of new disease phenotypes exhibiting distinct patterns of the spatial distribution of lesions. We first identify anomalies in lung CT data, and then compare their distribution in a continually acquired new patient cohorts with historic patient population observed over a long prior period. We evaluate how accumulated evidence collected in the stream of patients is able to detect the onset of an emerging disease. In a gram-matrix based representation derived from the intermediate layers of a three-dimensional convolutional neural network, newly emerging clusters indicate emerging diseases.
Authors:Zhixian Wang, Linxiao Yang, Liang Sun, Qingsong Wen, Yi Wang
Title: Task-oriented Time Series Imputation Evaluation via Generalized Representers
Abstract:
Time series analysis is widely used in many fields such as power energy, economics, and transportation, including different tasks such as forecasting, anomaly detection, classification, etc. Missing values are widely observed in these tasks, and often leading to unpredictable negative effects on existing methods, hindering their further application. In response to this situation, existing time series imputation methods mainly focus on restoring sequences based on their data characteristics, while ignoring the performance of the restored sequences in downstream tasks. Considering different requirements of downstream tasks (e.g., forecasting), this paper proposes an efficient downstream task-oriented time series imputation evaluation approach. By combining time series imputation with neural network models used for downstream tasks, the gain of different imputation strategies on downstream tasks is estimated without retraining, and the most favorable imputation value for downstream tasks is given by combining different imputation strategies according to the estimated gain.
Authors:Patrick Knab, Sascha Marton, Christian Bartelt, Robert Fuder
Title: Interpreting Outliers in Time Series Data through Decoding Autoencoder
Abstract:
Outlier detection is a crucial analytical tool in various fields. In critical systems like manufacturing, malfunctioning outlier detection can be costly and safety-critical. Therefore, there is a significant need for explainable artificial intelligence (XAI) when deploying opaque models in such environments. This study focuses on manufacturing time series data from a German automotive supply industry. We utilize autoencoders to compress the entire time series and then apply anomaly detection techniques to its latent features. For outlier interpretation, we (i) adopt widely used XAI techniques to the autoencoder's encoder. Additionally, (ii) we propose AEE, Aggregated Explanatory Ensemble, a novel approach that fuses explanations of multiple XAI techniques into a single, more expressive interpretation. For evaluation of explanations, (iii) we propose a technique to measure the quality of encoder explanations quantitatively. Furthermore, we qualitatively assess the effectiveness of outlier explanations with domain expertise.
Authors:Nadeem Nazer, Hongkuan Zhou, Lavdim Halilaj, Ylli Sadikaj, Steffen Staab
Title: Defect-aware Hybrid Prompt Optimization via Progressive Tuning for Zero-Shot Multi-type Anomaly Detection and Segmentation
Abstract:
Recent vision language models (VLMs) like CLIP have demonstrated impressive anomaly detection performance under significant distribution shift by utilizing high-level semantic information through text prompts. However, these models often neglect fine-grained details, such as which kind of anomalies, like "hole", "cut", "scratch" that could provide more specific insight into the nature of anomalies. We argue that recognizing fine-grained anomaly types 1) enriches the representation of "abnormal" with structured semantics, narrowing the gap between coarse anomaly signals and fine-grained defect categories; 2) enables manufacturers to understand the root causes of the anomaly and implement more targeted and appropriate corrective measures quickly. While incorporating such detailed semantic information is crucial, designing handcrafted prompts for each defect type is both time-consuming and susceptible to human bias. For this reason, we introduce DAPO, a novel approach for Defect-aware Prompt Optimization based on progressive tuning for the zero-shot multi-type and binary anomaly detection and segmentation under distribution shifts. Our approach aligns anomaly-relevant image features with their corresponding text semantics by learning hybrid defect-aware prompts with both fixed textual anchors and learnable token embeddings. We conducted experiments on public benchmarks (MPDD, VisA, MVTec-AD, MAD, and Real-IAD) and an internal dataset. The results suggest that compared to the baseline models, DAPO achieves a 3.7% average improvement in AUROC and average precision metrics at the image level under distribution shift, and a 6.5% average improvement in localizing novel anomaly types under zero-shot settings.
Authors:Fan Liu, Behrooz Farkiani, Patrick Crowley
Title: Time-Series Foundation Models for ISP Traffic Forecasting
Abstract:
Accurate network-traffic forecasting enables proactive capacity planning and anomaly detection in Internet Service Provider (ISP) networks. Recent advances in time-series foundation models (TSFMs) have demonstrated strong zero-shot and few-shot generalization across diverse domains, yet their effectiveness for computer networking remains unexplored. This paper presents a systematic evaluation of a TSFM, IBM's Tiny Time Mixer (TTM), on the CESNET-TimeSeries24 dataset, a 40-week real-world ISP telemetry corpus. We assess TTM under zero-shot and few-shot settings across multiple forecasting horizons (hours to days), aggregation hierarchies (institutions, subnets, IPs), and temporal resolutions (10-minute and hourly). Results show that TTM achieves consistent accuracy (RMSE 0.026-0.057) and stable $R^2$ scores across horizons and context lengths, outperforming or matching fully trained deep learning baselines such as GRU and LSTM. Inference latency remains under 0.05s per 100 points on a single MacBook Pro using CPU-only computation, confirming deployability without dedicated GPU or MPS acceleration. These findings highlight the potential of pretrained TSFMs to enable scalable, efficient, and training-free forecasting for modern network monitoring and management systems.
Authors:Bingyang Guo, Hongjie Li, Ruiyun Yu, Hanzhe Liang, Jinbao Wang
Title: IEC3D-AD: A 3D Dataset of Industrial Equipment Components for Unsupervised Point Cloud Anomaly Detection
Abstract:
3D anomaly detection (3D-AD) plays a critical role in industrial manufacturing, particularly in ensuring the reliability and safety of core equipment components. Although existing 3D datasets like Real3D-AD and MVTec 3D-AD offer broad application support, they fall short in capturing the complexities and subtle defects found in real industrial environments. This limitation hampers precise anomaly detection research, especially for industrial equipment components (IEC) such as bearings, rings, and bolts. To address this challenge, we have developed a point cloud anomaly detection dataset (IEC3D-AD) specific to real industrial scenarios. This dataset is directly collected from actual production lines, ensuring high fidelity and relevance. Compared to existing datasets, IEC3D-AD features significantly improved point cloud resolution and defect annotation granularity, facilitating more demanding anomaly detection tasks. Furthermore, inspired by generative 2D-AD methods, we introduce a novel 3D-AD paradigm (GMANet) on IEC3D-AD. This paradigm generates synthetic point cloud samples based on geometric morphological analysis, then reduces the margin and increases the overlap between normal and abnormal point-level features through spatial discrepancy optimization. Extensive experiments demonstrate the effectiveness of our method on both IEC3D-AD and other datasets.
Authors:Hangting Ye, Jinmeng Li, He Zhao, Mingchen Zhuge, Dandan Guo, Yi Chang, Hongyuan Zha
Title: LLM as an Algorithmist: Enhancing Anomaly Detectors via Programmatic Synthesis
Abstract:
Existing anomaly detection (AD) methods for tabular data usually rely on some assumptions about anomaly patterns, leading to inconsistent performance in real-world scenarios. While Large Language Models (LLMs) show remarkable reasoning capabilities, their direct application to tabular AD is impeded by fundamental challenges, including difficulties in processing heterogeneous data and significant privacy risks. To address these limitations, we propose LLM-DAS, a novel framework that repositions the LLM from a ``data processor'' to an ``algorithmist''. Instead of being exposed to raw data, our framework leverages the LLM's ability to reason about algorithms. It analyzes a high-level description of a given detector to understand its intrinsic weaknesses and then generates detector-specific, data-agnostic Python code to synthesize ``hard-to-detect'' anomalies that exploit these vulnerabilities. This generated synthesis program, which is reusable across diverse datasets, is then instantiated to augment training data, systematically enhancing the detector's robustness by transforming the problem into a more discriminative two-class classification task. Extensive experiments on 36 TAD benchmarks show that LLM-DAS consistently boosts the performance of mainstream detectors. By bridging LLM reasoning with classic AD algorithms via programmatic synthesis, LLM-DAS offers a scalable, effective, and privacy-preserving approach to patching the logical blind spots of existing detectors.
Authors:Ali Abedi, Charlene H. Chu, Shehroz S. Khan
Title: Benchmarking Early Agitation Prediction in Community-Dwelling People with Dementia Using Multimodal Sensors and Machine Learning
Abstract:
Agitation is one of the most common responsive behaviors in people living with dementia, particularly among those residing in community settings without continuous clinical supervision. Timely prediction of agitation can enable early intervention, reduce caregiver burden, and improve the quality of life for both patients and caregivers. This study aimed to develop and benchmark machine learning approaches for the early prediction of agitation in community-dwelling older adults with dementia using multimodal sensor data. A new set of agitation-related contextual features derived from activity data was introduced and employed for agitation prediction. A wide range of machine learning and deep learning models was evaluated across multiple problem formulations, including binary classification for single-timestamp tabular sensor data and multi-timestamp sequential sensor data, as well as anomaly detection for single-timestamp tabular sensor data. The study utilized the Technology Integrated Health Management (TIHM) dataset, the largest publicly available dataset for remote monitoring of people living with dementia, comprising 2,803 days of in-home activity, physiology, and sleep data. The most effective setting involved binary classification of sensor data using the current 6-hour timestamp to predict agitation at the subsequent timestamp. Incorporating additional information, such as time of day and agitation history, further improved model performance, with the highest AUC-ROC of 0.9720 and AUC-PR of 0.4320 achieved by the light gradient boosting machine. This work presents the first comprehensive benchmarking of state-of-the-art techniques for agitation prediction in community-based dementia care using privacy-preserving sensor data. The approach enables accurate, explainable, and efficient agitation prediction, supporting proactive dementia care and aging in place.
Authors:Inmaculada Santamaria-Valenzuela, Victor Rodriguez-Fernandez, Javier Huertas-Tato, Jong Hyuk Park, David Camacho
Title: Decoding Latent Spaces: Assessing the Interpretability of Time Series Foundation Models for Visual Analytics
Abstract:
The present study explores the interpretability of latent spaces produced by time series foundation models, focusing on their potential for visual analysis tasks. Specifically, we evaluate the MOMENT family of models, a set of transformer-based, pre-trained architectures for multivariate time series tasks such as: imputation, prediction, classification, and anomaly detection. We evaluate the capacity of these models on five datasets to capture the underlying structures in time series data within their latent space projection and validate whether fine tuning improves the clarity of the resulting embedding spaces. Notable performance improvements in terms of loss reduction were observed after fine tuning. Visual analysis shows limited improvement in the interpretability of the embeddings, requiring further work. Results suggest that, although Time Series Foundation Models such as MOMENT are robust, their latent spaces may require additional methodological refinements to be adequately interpreted, such as alternative projection techniques, loss functions, or data preprocessing strategies. Despite the limitations of MOMENT, foundation models supose a big reduction in execution time and so a great advance for interactive visual analytics.
Authors:Ylli Sadikaj, Hongkuan Zhou, Lavdim Halilaj, Stefan Schmid, Steffen Staab, Claudia Plant
Title: MultiADS: Defect-aware Supervision for Multi-type Anomaly Detection and Segmentation in Zero-Shot Learning
Abstract:
Precise optical inspection in industrial applications is crucial for minimizing scrap rates and reducing the associated costs. Besides merely detecting if a product is anomalous or not, it is crucial to know the distinct type of defect, such as a bent, cut, or scratch. The ability to recognize the "exact" defect type enables automated treatments of the anomalies in modern production lines. Current methods are limited to solely detecting whether a product is defective or not without providing any insights on the defect type, nevertheless detecting and identifying multiple defects. We propose MultiADS, a zero-shot learning approach, able to perform Multi-type Anomaly Detection and Segmentation. The architecture of MultiADS comprises CLIP and extra linear layers to align the visual- and textual representation in a joint feature space. To the best of our knowledge, our proposal, is the first approach to perform a multi-type anomaly segmentation task in zero-shot learning. Contrary to the other baselines, our approach i) generates specific anomaly masks for each distinct defect type, ii) learns to distinguish defect types, and iii) simultaneously identifies multiple defect types present in an anomalous product. Additionally, our approach outperforms zero/few-shot learning SoTA methods on image-level and pixel-level anomaly detection and segmentation tasks on five commonly used datasets: MVTec-AD, Visa, MPDD, MAD and Real-IAD.
Authors:Kai Li, Zhengyang Zhang, Azadeh Pourkabirian, Wei Ni, Falko Dressler, Ozgur B. Akan
Title: Towards Resilient Federated Learning in CyberEdge Networks: Recent Advances and Future Trends
Abstract:
In this survey, we investigate the most recent techniques of resilient federated learning (ResFL) in CyberEdge networks, focusing on joint training with agglomerative deduction and feature-oriented security mechanisms. We explore adaptive hierarchical learning strategies to tackle non-IID data challenges, improving scalability and reducing communication overhead. Fault tolerance techniques and agglomerative deduction mechanisms are studied to detect unreliable devices, refine model updates, and enhance convergence stability. Unlike existing FL security research, we comprehensively analyze feature-oriented threats, such as poisoning, inference, and reconstruction attacks that exploit model features. Moreover, we examine resilient aggregation techniques, anomaly detection, and cryptographic defenses, including differential privacy and secure multi-party computation, to strengthen FL security. In addition, we discuss the integration of 6G, large language models (LLMs), and interoperable learning frameworks to enhance privacy-preserving and decentralized cross-domain training. These advancements offer ultra-low latency, artificial intelligence (AI)-driven network management, and improved resilience against adversarial attacks, fostering the deployment of secure ResFL in CyberEdge networks.
Authors:Chang Tian, Mingzhe Xing, Zenglin Shi, Matthew B. Blaschko, Yinliang Yue, Marie-Francine Moens
Title: Using Causality for Enhanced Prediction of Web Traffic Time Series
Abstract:
Predicting web service traffic has significant social value, as it can be applied to various practical scenarios, including but not limited to dynamic resource scaling, load balancing, system anomaly detection, service-level agreement compliance, and fraud detection. Web service traffic is characterized by frequent and drastic fluctuations over time and are influenced by heterogeneous web user behaviors, making accurate prediction a challenging task. Previous research has extensively explored statistical approaches, and neural networks to mine features from preceding service traffic time series for prediction. However, these methods have largely overlooked the causal relationships between services. Drawing inspiration from causality in ecological systems, we empirically recognize the causal relationships between web services. To leverage these relationships for improved web service traffic prediction, we propose an effective neural network module, CCMPlus, designed to extract causal relationship features across services. This module can be seamlessly integrated with existing time series models to consistently enhance the performance of web service traffic predictions. We theoretically justify that the causal correlation matrix generated by the CCMPlus module captures causal relationships among services. Empirical results on real-world datasets from Microsoft Azure, Alibaba Group, and Ant Group confirm that our method surpasses state-of-the-art approaches in Mean Squared Error (MSE) and Mean Absolute Error (MAE) for predicting service traffic time series. These findings highlight the efficacy of leveraging causal relationships for improved predictions.
Authors:Feiyi Chen, Leilei Zhang, Guansong Pang, Roger Zimmermann, Shuiguang Deng
Title: Synergizing Large Language Models and Task-specific Models for Time Series Anomaly Detection
Abstract:
In anomaly detection, methods based on large language models (LLMs) can incorporate expert knowledge by reading professional document, while task-specific small models excel at extracting normal data patterns and detecting value fluctuations from training data of target applications. Inspired by the human nervous system, where the brain stores expert knowledge and the peripheral nervous system and spinal cord handle specific tasks like withdrawal and knee-jerk reflexes, we propose CoLLaTe, a framework designed to facilitate collaboration between LLMs and task-specific models, leveraging the strengths of both models for anomaly detection. In particular, we first formulate the collaboration process and identify two key challenges in the collaboration: (1) the misalignment between the expression domains of the LLMs and task-specific small models, and (2) error accumulation arising from the predictions of both models. To address these challenges, we then introduce two key components in CoLLaTe: a model alignment module and a collaborative loss function. Through theoretical analysis and experimental validation, we demonstrate that these components effectively mitigate the identified challenges and achieve better performance than both LLM-based and task-specific models.
Authors:Yunhe Pang, Bo Chen, Fanjin Zhang, Yanghui Rao, Evgeny Kharlamov, Jie Tang
Title: GuARD: Effective Anomaly Detection through a Text-Rich and Graph-Informed Language Model
Abstract:
Anomaly detection on text-rich graphs is widely prevalent in real life, such as detecting incorrectly assigned academic papers to authors and detecting bots in social networks. The remarkable capabilities of large language models (LLMs) pave a new revenue by utilizing rich-text information for effective anomaly detection. However, simply introducing rich texts into LLMs can obscure essential detection cues and introduce high fine-tuning costs. Moreover, LLMs often overlook the intrinsic structural bias of graphs which is vital for distinguishing normal from abnormal node patterns. To this end, this paper introduces GuARD, a text-rich and graph-informed language model that combines key structural features from graph-based methods with fine-grained semantic attributes extracted via small language models for effective anomaly detection on text-rich graphs. GuARD is optimized with the progressive multi-modal multi-turn instruction tuning framework in the task-guided instruction tuning regime tailed to incorporate both rich-text and structural modalities. Extensive experiments on four datasets reveal that GuARD outperforms graph-based and LLM-based anomaly detection methods, while offering up to 5$\times$ times speedup in training and 5$\times$ times speedup in inference over vanilla long-context LLMs on the large-scale WhoIsWho dataset.
Authors:Duneesha Fernando, Maria A. Rodriguez, Rajkumar Buyya
Title: iAnomaly: A Toolkit for Generating Performance Anomaly Datasets in Edge-Cloud Integrated Computing Environments
Abstract:
Microservice architectures are increasingly used to modularize IoT applications and deploy them in distributed and heterogeneous edge computing environments. Over time, these microservice-based IoT applications are susceptible to performance anomalies caused by resource hogging (e.g., CPU or memory), resource contention, etc., which can negatively impact their Quality of Service and violate their Service Level Agreements. Existing research on performance anomaly detection in edge computing environments is limited primarily due to the absence of publicly available edge performance anomaly datasets or due to the lack of accessibility of real edge setups to generate necessary data. To address this gap, we propose iAnomaly: a full-system emulator equipped with open-source tools and fully automated dataset generation capabilities to generate labeled normal and anomaly data based on user-defined configurations. We also release a performance anomaly dataset generated using iAnomaly, which captures performance data for several microservice-based IoT applications with heterogeneous QoS and resource requirements while introducing a variety of anomalies. This dataset effectively represents the characteristics found in real edge environments, and the anomalous data in the dataset adheres to the required standards of a high-quality performance anomaly dataset.
Authors:Mulugeta Weldezgina Asres, Lei Jiao, Christian Walter Omlin
Title: Low-Latency Video Anonymization for Crowd Anomaly Detection: Privacy vs. Performance
Abstract:
Recent advancements in artificial intelligence promise ample potential in monitoring applications with surveillance cameras. However, concerns about privacy and model bias have made it challenging to utilize them in public. Although de-identification approaches have been proposed in the literature, aiming to achieve a certain level of anonymization, most of them employ deep learning models that are computationally demanding for real-time edge deployment. In this study, we revisit conventional anonymization solutions for privacy protection and real-time video anomaly detection (VAD) applications. We propose a novel lightweight adaptive anonymization for VAD (LA3D) that employs dynamic adjustment to enhance privacy protection. We evaluated the approaches on publicly available privacy and VAD data sets to examine the strengths and weaknesses of the different anonymization techniques and highlight the promising efficacy of our approach. Our experiment demonstrates that LA3D enables substantial improvement in the privacy anonymization capability without majorly degrading VAD efficacy.
Authors:Shiyu Wang, Jiawei Li, Xiaoming Shi, Zhou Ye, Baichuan Mo, Wenze Lin, Shengtong Ju, Zhixuan Chu, Ming Jin
Title: TimeMixer++: A General Time Series Pattern Machine for Universal Predictive Analysis
Abstract:
Time series analysis plays a critical role in numerous applications, supporting tasks such as forecasting, classification, anomaly detection, and imputation. In this work, we present the time series pattern machine (TSPM), a model designed to excel in a broad range of time series tasks through powerful representation and pattern extraction capabilities. Traditional time series models often struggle to capture universal patterns, limiting their effectiveness across diverse tasks. To address this, we define multiple scales in the time domain and various resolutions in the frequency domain, employing various mixing strategies to extract intricate, task-adaptive time series patterns. Specifically, we introduce a general-purpose TSPM that processes multi-scale time series using (1) multi-resolution time imaging (MRTI), (2) time image decomposition (TID), (3) multi-scale mixing (MCM), and (4) multi-resolution mixing (MRM) to extract comprehensive temporal patterns. MRTI transforms multi-scale time series into multi-resolution time images, capturing patterns across both temporal and frequency domains. TID leverages dual-axis attention to extract seasonal and trend patterns, while MCM hierarchically aggregates these patterns across scales. MRM adaptively integrates all representations across resolutions. This method achieves state-of-the-art performance across 8 time series analytical tasks, consistently surpassing both general-purpose and task-specific models. Our work marks a promising step toward the next generation of TSPMs, paving the way for further advancements in time series analysis.
Authors:Aryan Esmailpour, Stavros Sintos
Title: Improved Approximation Algorithms for Relational Clustering
Abstract:
Clustering plays a crucial role in computer science, facilitating data analysis and problem-solving across numerous fields. By partitioning large datasets into meaningful groups, clustering reveals hidden structures and relationships within the data, aiding tasks such as unsupervised learning, classification, anomaly detection, and recommendation systems. Particularly in relational databases, where data is distributed across multiple tables, efficient clustering is essential yet challenging due to the computational complexity of joining tables. This paper addresses this challenge by introducing efficient algorithms for $k$-median and $k$-means clustering on relational data without the need for pre-computing the join query results. For the relational $k$-median clustering, we propose the first efficient relative approximation algorithm. For the relational $k$-means clustering, our algorithm significantly improves both the approximation factor and the running time of the known relational $k$-means clustering algorithms, which suffer either from large constant approximation factors, or expensive running time. Given a join query $Q$ and a database instance $D$ of $O(N)$ tuples, for both $k$-median and $k$-means clustering on the results of $Q$ on $D$, we propose randomized $(1+\varepsilon)γ$-approximation algorithms that run in roughly $O(k^2N^{\mathsf{fhw}})+T_γ(k^2)$ time, where $\varepsilon\in (0,1)$ is a constant parameter decided by the user, $\mathsf{fhw}$ is the fractional hyper-tree width of $Q$, while $γ$ and $T_γ(x)$ are respectively the approximation factor and the running time of a traditional clustering algorithm in the standard computational setting over $x$ points.
Authors:Kate Qi Zhou, Yan Qin, Chau Yuen
Title: Graph neural network-based lithium-ion battery state of health estimation using partial discharging curve
Abstract:
Data-driven methods have gained extensive attention in estimating the state of health (SOH) of lithium-ion batteries. Accurate SOH estimation requires degradation-relevant features and alignment of statistical distributions between training and testing datasets. However, current research often overlooks these needs and relies on arbitrary voltage segment selection. To address these challenges, this paper introduces an innovative approach leveraging spatio-temporal degradation dynamics via graph convolutional networks (GCNs). Our method systematically selects discharge voltage segments using the Matrix Profile anomaly detection algorithm, eliminating the need for manual selection and preventing information loss. These selected segments form a fundamental structure integrated into the GCN-based SOH estimation model, capturing inter-cycle dynamics and mitigating statistical distribution incongruities between offline training and online testing data. Validation with a widely accepted open-source dataset demonstrates that our method achieves precise SOH estimation, with a root mean squared error of less than 1%.
Authors:Gyuyeon Na, Minjung Park, Soyoun Kim, Jungbin Shin, Sangmi Chai
Title: Knowledge-Integrated Representation Learning for Crypto Anomaly Detection under Extreme Label Scarcity; Relational Domain-Logic Integration with Retrieval-Grounded Context and Path-Level Explanations
Abstract:
Detecting anomalous trajectories in decentralized crypto networks is fundamentally challenged by extreme label scarcity and the adaptive evasion strategies of illicit actors. While Graph Neural Networks (GNNs) effectively capture local structural patterns, they struggle to internalize multi hop, logic driven motifs such as fund dispersal and layering that characterize sophisticated money laundering, limiting their forensic accountability under regulations like the FATF Travel Rule. To address this limitation, we propose Relational Domain Logic Integration (RDLI), a framework that embeds expert derived heuristics as differentiable, logic aware latent signals within representation learning. Unlike static rule based approaches, RDLI enables the detection of complex transactional flows that evade standard message passing. To further account for market volatility, we incorporate a Retrieval Grounded Context (RGC) module that conditions anomaly scoring on regulatory and macroeconomic context, mitigating false positives caused by benign regime shifts. Under extreme label scarcity (0.01%), RDLI outperforms state of the art GNN baselines by 28.9% in F1 score. A micro expert user study further confirms that RDLI path level explanations significantly improve trustworthiness, perceived usefulness, and clarity compared to existing methods, highlighting the importance of integrating domain logic with contextual grounding for both accuracy and explainability.
Authors:Shihao Li, Jiachen Li, Dongmei Chen
Title: Natural Geometry of Robust Data Attribution: From Convex Models to Deep Networks
Abstract:
Data attribution methods identify which training examples are responsible for a model's predictions, but their sensitivity to distributional perturbations undermines practical reliability. We present a unified framework for certified robust attribution that extends from convex models to deep networks. For convex settings, we derive Wasserstein-Robust Influence Functions (W-RIF) with provable coverage guarantees. For deep networks, we demonstrate that Euclidean certification is rendered vacuous by spectral amplification -- a mechanism where the inherent ill-conditioning of deep representations inflates Lipschitz bounds by over $10{,}000\times$. This explains why standard TRAK scores, while accurate point estimates, are geometrically fragile: naive Euclidean robustness analysis yields 0\% certification. Our key contribution is the Natural Wasserstein metric, which measures perturbations in the geometry induced by the model's own feature covariance. This eliminates spectral amplification, reducing worst-case sensitivity by $76\times$ and stabilizing attribution estimates. On CIFAR-10 with ResNet-18, Natural W-TRAK certifies 68.7\% of ranking pairs compared to 0\% for Euclidean baselines -- to our knowledge, the first non-vacuous certified bounds for neural network attribution. Furthermore, we prove that the Self-Influence term arising from our analysis equals the Lipschitz constant governing attribution stability, providing theoretical grounding for leverage-based anomaly detection. Empirically, Self-Influence achieves 0.970 AUROC for label noise detection, identifying 94.1\% of corrupted labels by examining just the top 20\% of training data.
Authors:Sidahmed Benabderrahmane, James Cheney, Talal Rahwan
Title: Ranking-Enhanced Anomaly Detection Using Active Learning-Assisted Attention Adversarial Dual AutoEncoders
Abstract:
Advanced Persistent Threats (APTs) pose a significant challenge in cybersecurity due to their stealthy and long-term nature. Modern supervised learning methods require extensive labeled data, which is often scarce in real-world cybersecurity environments. In this paper, we propose an innovative approach that leverages AutoEncoders for unsupervised anomaly detection, augmented by active learning to iteratively improve the detection of APT anomalies. By selectively querying an oracle for labels on uncertain or ambiguous samples, we minimize labeling costs while improving detection rates, enabling the model to improve its detection accuracy with minimal data while reducing the need for extensive manual labeling. We provide a detailed formulation of the proposed Attention Adversarial Dual AutoEncoder-based anomaly detection framework and show how the active learning loop iteratively enhances the model. The framework is evaluated on real-world imbalanced provenance trace databases produced by the DARPA Transparent Computing program, where APT-like attacks constitute as little as 0.004\% of the data. The datasets span multiple operating systems, including Android, Linux, BSD, and Windows, and cover two attack scenarios. The results have shown significant improvements in detection rates during active learning and better performance compared to other existing approaches.
Authors:Jie Li, Hongyi Cai, Mingkang Dong, Muxin Pu, Shan You, Fei Wang, Tao Huang
Title: Pistachio: Towards Synthetic, Balanced, and Long-Form Video Anomaly Benchmarks
Abstract:
Automatically detecting abnormal events in videos is crucial for modern autonomous systems, yet existing Video Anomaly Detection (VAD) benchmarks lack the scene diversity, balanced anomaly coverage, and temporal complexity needed to reliably assess real-world performance. Meanwhile, the community is increasingly moving toward Video Anomaly Understanding (VAU), which requires deeper semantic and causal reasoning but remains difficult to benchmark due to the heavy manual annotation effort it demands. In this paper, we introduce Pistachio, a new VAD/VAU benchmark constructed entirely through a controlled, generation-based pipeline. By leveraging recent advances in video generation models, Pistachio provides precise control over scenes, anomaly types, and temporal narratives, effectively eliminating the biases and limitations of Internet-collected datasets. Our pipeline integrates scene-conditioned anomaly assignment, multi-step storyline generation, and a temporally consistent long-form synthesis strategy that produces coherent 41-second videos with minimal human intervention. Extensive experiments demonstrate the scale, diversity, and complexity of Pistachio, revealing new challenges for existing methods and motivating future research on dynamic and multi-event anomaly understanding.
Authors:Zahra Zamanzadeh Darban, Qizhou Wang, Charu C. Aggarwal, Geoffrey I. Webb, Ehsan Abbasnejad, Mahsa Salehi
Title: CEDL: Centre-Enhanced Discriminative Learning for Anomaly Detection
Abstract:
Supervised anomaly detection methods perform well in identifying known anomalies that are well represented in the training set. However, they often struggle to generalise beyond the training distribution due to decision boundaries that lack a clear definition of normality. Existing approaches typically address this by regularising the representation space during training, leading to separate optimisation in latent and label spaces. The learned normality is therefore not directly utilised at inference, and their anomaly scores often fall within arbitrary ranges that require explicit mapping or calibration for probabilistic interpretation. To achieve unified learning of geometric normality and label discrimination, we propose Centre-Enhanced Discriminative Learning (CEDL), a novel supervised anomaly detection framework that embeds geometric normality directly into the discriminative objective. CEDL reparameterises the conventional sigmoid-derived prediction logit through a centre-based radial distance function, unifying geometric and discriminative learning in a single end-to-end formulation. This design enables interpretable, geometry-aware anomaly scoring without post-hoc thresholding or reference calibration. Extensive experiments on tabular, time-series, and image data demonstrate that CEDL achieves competitive and balanced performance across diverse real-world anomaly detection tasks, validating its effectiveness and broad applicability.
Authors:Alessio Arcudi, Alessandro Ferreri, Francesco Borsatti, Gian Antonio Susto
Title: Function Based Isolation Forest (FuBIF): A Unifying Framework for Interpretable Isolation-Based Anomaly Detection
Abstract:
Anomaly Detection (AD) is evolving through algorithms capable of identifying outliers in complex datasets. The Isolation Forest (IF), a pivotal AD technique, exhibits adaptability limitations and biases. This paper introduces the Function-based Isolation Forest (FuBIF), a generalization of IF that enables the use of real-valued functions for dataset branching, significantly enhancing the flexibility of evaluation tree construction. Complementing this, the FuBIF Feature Importance (FuBIFFI) algorithm extends the interpretability in IF-based approaches by providing feature importance scores across possible FuBIF models. This paper details the operational framework of FuBIF, evaluates its performance against established methods, and explores its theoretical contributions. An open-source implementation is provided to encourage further research and ensure reproducibility.
Authors:Gaia Grosso, Sai Sumedh R. Hindupur, Thomas Fel, Samuel Bright-Thonney, Philip Harris, Demba Ba
Title: Sparse, self-organizing ensembles of local kernels detect rare statistical anomalies
Abstract:
Modern artificial intelligence has revolutionized our ability to extract rich and versatile data representations across scientific disciplines. Yet, the statistical properties of these representations remain poorly controlled, causing misspecified anomaly detection (AD) methods to falter. Weak or rare signals can remain hidden within the apparent regularity of normal data, creating a gap in our ability to detect and interpret anomalies. We examine this gap and identify a set of structural desiderata for detection methods operating under minimal prior information: sparsity, to enforce parsimony; locality, to preserve geometric sensitivity; and competition, to promote efficient allocation of model capacity. These principles define a class of self-organizing local kernels that adaptively partition the representation space around regions of statistical imbalance. As an instantiation of these principles, we introduce SparKer, a sparse ensemble of Gaussian kernels trained within a semi-supervised Neyman--Pearson framework to locally model the likelihood ratio between a sample that may contain anomalies and a nominal, anomaly-free reference. We provide theoretical insights into the mechanisms that drive detection and self-organization in the proposed model, and demonstrate the effectiveness of this approach on realistic high-dimensional problems of scientific discovery, open-world novelty detection, intrusion detection, and generative-model validation. Our applications span both the natural- and computer-science domains. We demonstrate that ensembles containing only a handful of kernels can identify statistically significant anomalous locations within representation spaces of thousands of dimensions, underscoring both the interpretability, efficiency and scalability of the proposed approach.
Authors:Gyuyeon Na, Minjung Park, Hyeonjeong Cha, Sangmi Chai
Title: Human-Centered LLM-Agent System for Detecting Anomalous Digital Asset Transactions
Abstract:
We present HCLA, a human-centered multi-agent system for anomaly detection in digital asset transactions. The system links three roles: Parsing, Detection, and Explanation, into a conversational workflow that lets non-experts ask questions in natural language, inspect structured analytics, and obtain context-aware rationales. Implemented with an open-source web UI, HCLA translates user intents into a schema for a classical detector (XGBoost in our prototype) and returns narrative explanations grounded in the underlying features. On a labeled Bitcoin mixing dataset (Wasabi Wallet, 2020-2024), the baseline detector reaches strong accuracy, while HCLA adds interpretability and interactive refinement. We describe the architecture, interaction loop, dataset, evaluation protocol, and limitations, and discuss how a human-in-the-loop design improves transparency and trust in financial forensics.
Authors:Junyi Xie, Jina Kim, Yao-Yi Chiang, Lingyi Zhao, Khurram Shafique
Title: BeSTAD: Behavior-Aware Spatio-Temporal Anomaly Detection for Human Mobility Data
Abstract:
Traditional anomaly detection in human mobility has primarily focused on trajectory-level analysis, identifying statistical outliers or spatiotemporal inconsistencies across aggregated movement traces. However, detecting individual-level anomalies, i.e., unusual deviations in a person's mobility behavior relative to their own historical patterns, within datasets encompassing large populations remains a significant challenge. In this paper, we present BeSTAD (Behavior-aware Spatio-Temporal Anomaly Detection for Human Mobility Data), an unsupervised framework that captures individualized behavioral signatures across large populations and uncovers fine-grained anomalies by jointly modeling spatial context and temporal dynamics. BeSTAD learns semantically enriched mobility representations that integrate location meaning and temporal patterns, enabling the detection of subtle deviations in individual movement behavior. BeSTAD further employs a behavior-cluster-aware modeling mechanism that builds personalized behavioral profiles from normal activity and identifies anomalies through cross-period behavioral comparison with consistent semantic alignment. Building on prior work in mobility behavior clustering, this approach enables not only the detection of behavioral shifts and deviations from established routines but also the identification of individuals exhibiting such changes within large-scale mobility datasets. By learning individual behaviors directly from unlabeled data, BeSTAD advances anomaly detection toward personalized and interpretable mobility analysis.
Authors:Guolei Zeng, Hezhe Qiao, Guoguo Ai, Jinsong Guo, Guansong Pang
Title: Normality Calibration in Semi-supervised Graph Anomaly Detection
Abstract:
Graph anomaly detection (GAD) has attracted growing interest for its crucial ability to uncover irregular patterns in broad applications. Semi-supervised GAD, which assumes a subset of annotated normal nodes available during training, is among the most widely explored application settings. However, the normality learned by existing semi-supervised GAD methods is limited to the labeled normal nodes, often inclining to overfitting the given patterns. These can lead to high detection errors, such as high false positives. To overcome this limitation, we propose GraphNC , a graph normality calibration framework that leverages both labeled and unlabeled data to calibrate the normality from a teacher model (a pre-trained semi-supervised GAD model) jointly in anomaly score and node representation spaces. GraphNC includes two main components, anomaly score distribution alignment (ScoreDA) and perturbation-based normality regularization (NormReg). ScoreDA optimizes the anomaly scores of our model by aligning them with the score distribution yielded by the teacher model. Due to accurate scores in most of the normal nodes and part of the anomaly nodes in the teacher model, the score alignment effectively pulls the anomaly scores of the normal and abnormal classes toward the two ends, resulting in more separable anomaly scores. Nevertheless, there are inaccurate scores from the teacher model. To mitigate the misleading by these scores, NormReg is designed to regularize the graph normality in the representation space, making the representations of normal nodes more compact by minimizing a perturbation-guided consistency loss solely on the labeled nodes.
Authors:Amin Jalali, Milad Soltany, Michael Greenspan, Ali Etemad
Title: Learning Time-Series Representations by Hierarchical Uniformity-Tolerance Latent Balancing
Abstract:
We propose TimeHUT, a novel method for learning time-series representations by hierarchical uniformity-tolerance balancing of contrastive representations. Our method uses two distinct losses to learn strong representations with the aim of striking an effective balance between uniformity and tolerance in the embedding space. First, TimeHUT uses a hierarchical setup to learn both instance-wise and temporal information from input time-series. Next, we integrate a temperature scheduler within the vanilla contrastive loss to balance the uniformity and tolerance characteristics of the embeddings. Additionally, a hierarchical angular margin loss enforces instance-wise and temporal contrast losses, creating geometric margins between positive and negative pairs of temporal sequences. This approach improves the coherence of positive pairs and their separation from the negatives, enhancing the capture of temporal dependencies within a time-series sample. We evaluate our approach on a wide range of tasks, namely 128 UCR and 30 UAE datasets for univariate and multivariate classification, as well as Yahoo and KPI datasets for anomaly detection. The results demonstrate that TimeHUT outperforms prior methods by considerable margins on classification, while obtaining competitive results for anomaly detection. Finally, detailed sensitivity and ablation studies are performed to evaluate different components and hyperparameters of our method.
Authors:Gyuyeon Na, Minjung Park, Hyeonjeong Cha, Soyoun Kim, Sunyoung Moon, Sua Lee, Jaeyoung Choi, Hyemin Lee, Sangmi Chai
Title: Hybrid GCN-GRU Model for Anomaly Detection in Cryptocurrency Transactions
Abstract:
Blockchain transaction networks are complex, with evolving temporal patterns and inter-node relationships. To detect illicit activities, we propose a hybrid GCN-GRU model that captures both structural and sequential features. Using real Bitcoin transaction data (2020-2024), our model achieved 0.9470 Accuracy and 0.9807 AUC-ROC, outperforming all baselines.
Authors:Margarida Ferreira, Victor Nicolet, Luan Pham, Joey Dodds, Daniel Kroening, Ines Lynce, Ruben Martins
Title: Hypergraph-Guided Regex Filter Synthesis for Event-Based Anomaly Detection
Abstract:
We propose HyGLAD, a novel algorithm that automatically builds a set of interpretable patterns that model event data. These patterns can then be used to detect event-based anomalies in a stationary system, where any deviation from past behavior may indicate malicious activity. The algorithm infers equivalence classes of entities with similar behavior observed from the events, and then builds regular expressions that capture the values of those entities. As opposed to deep-learning approaches, the regular expressions are directly interpretable, which also translates to interpretable anomalies. We evaluate HyGLAD against all 7 unsupervised anomaly detection methods from DeepOD on five datasets from real-world systems. The experimental results show that on average HyGLAD outperforms existing deep-learning methods while being an order of magnitude more efficient in training and inference (single CPU vs GPU). Precision improved by 1.2x and recall by 1.3x compared to the second-best baseline.
Authors:Sidahmed Benabderrahmane, Talal Rahwan
Title: Adversarial Augmentation and Active Sampling for Robust Cyber Anomaly Detection
Abstract:
Advanced Persistent Threats (APTs) present a considerable challenge to cybersecurity due to their stealthy, long-duration nature. Traditional supervised learning methods typically require large amounts of labeled data, which is often scarce in real-world scenarios. This paper introduces a novel approach that combines AutoEncoders for anomaly detection with active learning to iteratively enhance APT detection. By selectively querying an oracle for labels on uncertain or ambiguous samples, our method reduces labeling costs while improving detection accuracy, enabling the model to effectively learn with minimal data and reduce reliance on extensive manual labeling. We present a comprehensive formulation of the Attention Adversarial Dual AutoEncoder-based anomaly detection framework and demonstrate how the active learning loop progressively enhances the model's performance. The framework is evaluated on real-world, imbalanced provenance trace data from the DARPA Transparent Computing program, where APT-like attacks account for just 0.004\% of the data. The datasets, which cover multiple operating systems including Android, Linux, BSD, and Windows, are tested in two attack scenarios. The results show substantial improvements in detection rates during active learning, outperforming existing methods.
Authors:Hao Ju, Hu Zhang, Zhedong Zheng
Title: AnomalyLMM: Bridging Generative Knowledge and Discriminative Retrieval for Text-Based Person Anomaly Search
Abstract:
With growing public safety demands, text-based person anomaly search has emerged as a critical task, aiming to retrieve individuals with abnormal behaviors via natural language descriptions. Unlike conventional person search, this task presents two unique challenges: (1) fine-grained cross-modal alignment between textual anomalies and visual behaviors, and (2) anomaly recognition under sparse real-world samples. While Large Multi-modal Models (LMMs) excel in multi-modal understanding, their potential for fine-grained anomaly retrieval remains underexplored, hindered by: (1) a domain gap between generative knowledge and discriminative retrieval, and (2) the absence of efficient adaptation strategies for deployment. In this work, we propose AnomalyLMM, the first framework that harnesses LMMs for text-based person anomaly search. Our key contributions are: (1) A novel coarse-to-fine pipeline integrating LMMs to bridge generative world knowledge with retrieval-centric anomaly detection; (2) A training-free adaptation cookbook featuring masked cross-modal prompting, behavioral saliency prediction, and knowledge-aware re-ranking, enabling zero-shot focus on subtle anomaly cues. As the first study to explore LMMs for this task, we conduct a rigorous evaluation on the PAB dataset, the only publicly available benchmark for text-based person anomaly search, with its curated real-world anomalies covering diverse scenarios (e.g., falling, collision, and being hit). Experiments show the effectiveness of the proposed method, surpassing the competitive baseline by +0.96% Recall@1 accuracy. Notably, our method reveals interpretable alignment between textual anomalies and visual behaviors, validated via qualitative analysis. Our code and models will be released for future research.
Authors:Minjung Park, Gyuyeon Na, Soyoun Kim, Sunyoung Moon, HyeonJeong Cha, Sangmi Chai
Title: HyPV-LEAD: Proactive Early-Warning of Cryptocurrency Anomalies through Data-Driven Structural-Temporal Modeling
Abstract:
Abnormal cryptocurrency transactions - such as mixing services, fraudulent transfers, and pump-and-dump operations -- pose escalating risks to financial integrity but remain notoriously difficult to detect due to class imbalance, temporal volatility, and complex network dependencies. Existing approaches are predominantly model-centric and post hoc, flagging anomalies only after they occur and thus offering limited preventive value. This paper introduces HyPV-LEAD (Hyperbolic Peak-Valley Lead-time Enabled Anomaly Detection), a data-driven early-warning framework that explicitly incorporates lead time into anomaly detection. Unlike prior methods, HyPV-LEAD integrates three innovations: (1) window-horizon modeling to guarantee actionable lead-time alerts, (2) Peak-Valley (PV) sampling to mitigate class imbalance while preserving temporal continuity, and (3) hyperbolic embedding to capture the hierarchical and scale-free properties of blockchain transaction networks. Empirical evaluation on large-scale Bitcoin transaction data demonstrates that HyPV-LEAD consistently outperforms state-of-the-art baselines, achieving a PR-AUC of 0.9624 with significant gains in precision and recall. Ablation studies further confirm that each component - PV sampling, hyperbolic embedding, and structural-temporal modeling - provides complementary benefits, with the full framework delivering the highest performance. By shifting anomaly detection from reactive classification to proactive early-warning, HyPV-LEAD establishes a robust foundation for real-time risk management, anti-money laundering (AML) compliance, and financial security in dynamic blockchain environments.
Authors:Sidahmed Benabderrahmane, Talal Rahwan
Title: Metric Matters: A Formal Evaluation of Similarity Measures in Active Learning for Cyber Threat Intelligence
Abstract:
Advanced Persistent Threats (APTs) pose a severe challenge to cyber defense due to their stealthy behavior and the extreme class imbalance inherent in detection datasets. To address these issues, we propose a novel active learning-based anomaly detection framework that leverages similarity search to iteratively refine the decision space. Built upon an Attention-Based Autoencoder, our approach uses feature-space similarity to identify normal-like and anomaly-like instances, thereby enhancing model robustness with minimal oracle supervision. Crucially, we perform a formal evaluation of various similarity measures to understand their influence on sample selection and anomaly ranking effectiveness. Through experiments on diverse datasets, including DARPA Transparent Computing APT traces, we demonstrate that the choice of similarity metric significantly impacts model convergence, anomaly detection accuracy, and label efficiency. Our results offer actionable insights for selecting similarity functions in active learning pipelines tailored for threat intelligence and cyber defense.
Authors:Jinkun Zhao, Yuanshuai Wang, Xingjian Zhang, Ruibo Chen, Xingchuang Liao, Junle Wang, Lei Huang, Kui Zhang, Wenjun Wu
Title: CoE-Ops: Collaboration of LLM-based Experts for AIOps Question-Answering
Abstract:
With the rapid evolution of artificial intelligence, AIOps has emerged as a prominent paradigm in DevOps. Lots of work has been proposed to improve the performance of different AIOps phases. However, constrained by domain-specific knowledge, a single model can only handle the operation requirement of a specific task,such as log parser,root cause analysis. Meanwhile, combining multiple models can achieve more efficient results, which have been proved in both previous ensemble learning and the recent LLM training domain. Inspired by these works,to address the similar challenges in AIOPS, this paper first proposes a collaboration-of-expert framework(CoE-Ops) incorporating a general-purpose large language model task classifier. A retrieval-augmented generation mechanism is introduced to improve the framework's capability in handling both Question-Answering tasks with high-level(Code,build,Test,etc.) and low-level(fault analysis,anomaly detection,etc.). Finally, the proposed method is implemented in the AIOps domain, and extensive experiments are conducted on the DevOps-EVAL dataset. Experimental results demonstrate that CoE-Ops achieves a 72% improvement in routing accuracy for high-level AIOps tasks compared to existing CoE methods, delivers up to 8% accuracy enhancement over single AIOps models in DevOps problem resolution, and outperforms larger-scale Mixture-of-Experts (MoE) models by up to 14% in accuracy.
Authors:Thesath Wijayasiri, Kar Wai Fok, Vrizlynn L. L. Thing
Title: Enhanced Consistency Bi-directional GAN(CBiGAN) for Malware Anomaly Detection
Abstract:
Static analysis, a cornerstone technique in cybersecurity, offers a noninvasive method for detecting malware by analyzing dormant software without executing potentially harmful code. However, traditional static analysis often relies on biased or outdated datasets, leading to gaps in detection capabilities against emerging malware threats. To address this, our study focuses on the binary content of files as key features for malware detection. These binary contents are transformed and represented as images, which then serve as inputs to deep learning models. This method takes into account the visual patterns within the binary data, allowing the model to analyze potential malware effectively. This paper introduces the application of the CBiGAN in the domain of malware anomaly detection. Our approach leverages the CBiGAN for its superior latent space mapping capabilities, critical for modeling complex malware patterns by utilizing a reconstruction error-based anomaly detection method. We utilized several datasets including both portable executable (PE) files as well as Object Linking and Embedding (OLE) files. We then evaluated our model against a diverse set of both PE and OLE files, including self-collected malicious executables from 214 malware families. Our findings demonstrate the robustness of this innovative approach, with the CBiGAN achieving high Area Under the Curve (AUC) results with good generalizability, thereby confirming its capability to distinguish between benign and diverse malicious files with reasonably high accuracy.
Authors:Adriano Torres, Sebastian Baltes, Christoph Treude, Markus Wagner
Title: Information-Theoretic Detection of Unusual Source Code Changes
Abstract:
The code base of software projects evolves essentially through inserting and removing information to and from the source code. We can measure this evolution via the elements of information - tokens, words, nodes - of the respective representation of the code. In this work, we approach the measurement of the information content of the source code of open-source projects from an information-theoretic standpoint. Our focus is on the entropy of two fundamental representations of code: tokens and abstract syntax tree nodes, from which we derive definitions of textual and structural entropy. We proceed with an empirical assessment where we evaluate the evolution patterns of the entropy of 95 actively maintained open source projects. We calculate the statistical relationships between our derived entropy metrics and classic methods of measuring code complexity and learn that entropy may capture different dimensions of complexity than classic metrics. Finally, we conduct entropy-based anomaly detection of unusual changes to demonstrate that our approach may effectively recognise unusual source code change events with over 60% precision, and lay the groundwork for improvements to information-theoretic measurement of source code evolution, thus paving the way for a new approach to statically gauging program complexity throughout its development.
Authors:Chris Misa, Ram Durairajan, Arpit Gupta, Reza Rejaie, Walter Willinger
Title: The Multifractal IP Address Structure: Physical Explanation and Implications
Abstract:
The structure of IP addresses observed in Internet traffic plays a critical role for a wide range of networking problems of current interest. For example, modern network telemetry systems that take advantage of existing data plane technologies for line rate traffic monitoring and processing cannot afford to waste precious data plane resources on traffic that comes from "uninteresting" regions of the IP address space. However, there is currently no well-established structural model or analysis toolbox that enables a first-principles approach to the specific problem of identifying "uninteresting" regions of the address space or the myriad of other networking problems that prominently feature IP addresses. To address this key missing piece, we present in this paper a first-of-its-kind empirically validated physical explanation for why the observed IP address structure in measured Internet traffic is multifractal in nature. Our root cause analysis overcomes key limitations of mostly forgotten findings from ~20 years ago and demonstrates that the Internet processes and mechanisms responsible for how IP addresses are allocated, assigned, and used in today's Internet are consistent with and well modeled by a class of evocative mathematical models called conservative cascades. We complement this root cause analysis with the development of an improved toolbox that is tailor-made for analyzing finite and discrete sets of IP addresses and includes statistical estimators that engender high confidence in the inferences they produce. We illustrate the use of this toolbox in the context of a novel address structure anomaly detection method we designed and conclude with a discussion of a range of challenging open networking problems that are motivated or inspired by our findings.
Authors:Yuanbin Qian, Shuhan Ye, Chong Wang, Xiaojie Cai, Jiangbo Qian, Jiafei Wu
Title: UCF-Crime-DVS: A Novel Event-Based Dataset for Video Anomaly Detection with Spiking Neural Networks
Abstract:
Video anomaly detection plays a significant role in intelligent surveillance systems. To enhance model's anomaly recognition ability, previous works have typically involved RGB, optical flow, and text features. Recently, dynamic vision sensors (DVS) have emerged as a promising technology, which capture visual information as discrete events with a very high dynamic range and temporal resolution. It reduces data redundancy and enhances the capture capacity of moving objects compared to conventional camera. To introduce this rich dynamic information into the surveillance field, we created the first DVS video anomaly detection benchmark, namely UCF-Crime-DVS. To fully utilize this new data modality, a multi-scale spiking fusion network (MSF) is designed based on spiking neural networks (SNNs). This work explores the potential application of dynamic information from event data in video anomaly detection. Our experiments demonstrate the effectiveness of our framework on UCF-Crime-DVS and its superior performance compared to other models, establishing a new baseline for SNN-based weakly supervised video anomaly detection.
Authors:Romain Hermary, Vincent Gaudillière, Abd El Rahman Shabayek, Djamila Aouada
Title: Removing Geometric Bias in One-Class Anomaly Detection with Adaptive Feature Perturbation
Abstract:
One-class anomaly detection aims to detect objects that do not belong to a predefined normal class. In practice training data lack those anomalous samples; hence state-of-the-art methods are trained to discriminate between normal and synthetically-generated pseudo-anomalous data. Most methods use data augmentation techniques on normal images to simulate anomalies. However the best-performing ones implicitly leverage a geometric bias present in the benchmarking datasets. This limits their usability in more general conditions. Others are relying on basic noising schemes that may be suboptimal in capturing the underlying structure of normal data. In addition most still favour the image domain to generate pseudo-anomalies training models end-to-end from only the normal class and overlooking richer representations of the information. To overcome these limitations we consider frozen yet rich feature spaces given by pretrained models and create pseudo-anomalous features with a novel adaptive linear feature perturbation technique. It adapts the noise distribution to each sample applies decaying linear perturbations to feature vectors and further guides the classification process using a contrastive learning objective. Experimental evaluation conducted on both standard and geometric bias-free datasets demonstrates the superiority of our approach with respect to comparable baselines. The codebase is accessible via our public repository.
Authors:Mizuki Niihori, Teruyuki Katsuoka, Tomohiro Shiraishi, Shuichi Nishino, Ichiro Takeuchi
Title: Statistically Significant $k$NNAD by Selective Inference
Abstract:
In this paper, we investigate the problem of unsupervised anomaly detection using the k-Nearest Neighbor method. The k-Nearest Neighbor Anomaly Detection (kNNAD) is a simple yet effective approach for identifying anomalies across various domains and fields. A critical challenge in anomaly detection, including kNNAD, is appropriately quantifying the reliability of detected anomalies. To address this, we formulate kNNAD as a statistical hypothesis test and quantify the probability of false detection using $p$-values. The main technical challenge lies in performing both anomaly detection and statistical testing on the same data, which hinders correct $p$-value calculation within the conventional statistical testing framework. To resolve this issue, we introduce a statistical hypothesis testing framework called Selective Inference (SI) and propose a method named Statistically Significant NNAD (Stat-kNNAD). By leveraging SI, the Stat-kNNAD method ensures that detected anomalies are statistically significant with theoretical guarantees. The proposed Stat-kNNAD method is applicable to anomaly detection in both the original feature space and latent feature spaces derived from deep learning models. Through numerical experiments on synthetic data and applications to industrial product anomaly detection, we demonstrate the validity and effectiveness of the Stat-kNNAD method.
Authors:Sidahmed Benabderrahmane, Petko Valtchev, James Cheney, Talal Rahwan
Title: APT-LLM: Embedding-Based Anomaly Detection of Cyber Advanced Persistent Threats Using Large Language Models
Abstract:
Advanced Persistent Threats (APTs) pose a major cybersecurity challenge due to their stealth and ability to mimic normal system behavior, making detection particularly difficult in highly imbalanced datasets. Traditional anomaly detection methods struggle to effectively differentiate APT-related activities from benign processes, limiting their applicability in real-world scenarios. This paper introduces APT-LLM, a novel embedding-based anomaly detection framework that integrates large language models (LLMs) -- BERT, ALBERT, DistilBERT, and RoBERTa -- with autoencoder architectures to detect APTs. Unlike prior approaches, which rely on manually engineered features or conventional anomaly detection models, APT-LLM leverages LLMs to encode process-action provenance traces into semantically rich embeddings, capturing nuanced behavioral patterns. These embeddings are analyzed using three autoencoder architectures -- Baseline Autoencoder (AE), Variational Autoencoder (VAE), and Denoising Autoencoder (DAE) -- to model normal process behavior and identify anomalies. The best-performing model is selected for comparison against traditional methods. The framework is evaluated on real-world, highly imbalanced provenance trace datasets from the DARPA Transparent Computing program, where APT-like attacks constitute as little as 0.004\% of the data across multiple operating systems (Android, Linux, BSD, and Windows) and attack scenarios. Results demonstrate that APT-LLM significantly improves detection performance under extreme imbalance conditions, outperforming existing anomaly detection methods and highlighting the effectiveness of LLM-based feature extraction in cybersecurity.
Authors:Hezhe Qiao, Chaoxi Niu, Ling Chen, Guansong Pang
Title: AnomalyGFM: Graph Foundation Model for Zero/Few-shot Anomaly Detection
Abstract:
Graph anomaly detection (GAD) aims to identify abnormal nodes that differ from the majority of the nodes in a graph, which has been attracting significant attention in recent years. Existing generalist graph models have achieved remarkable success in different graph tasks but struggle to generalize to the GAD task. This limitation arises from their difficulty in learning generalized knowledge for capturing the inherently infrequent, irregular and heterogeneous abnormality patterns in graphs from different domains. To address this challenge, we propose AnomalyGFM, a GAD-oriented graph foundation model that supports zero-shot inference and few-shot prompt tuning for GAD in diverse graph datasets. One key insight is that graph-agnostic representations for normal and abnormal classes are required to support effective zero/few-shot GAD across different graphs. Motivated by this, AnomalyGFM is pre-trained to align data-independent, learnable normal and abnormal class prototypes with node representation residuals (i.e., representation deviation of a node from its neighbors). The residual features essentially project the node information into a unified feature space where we can effectively measure the abnormality of nodes from different graphs in a consistent way. This provides a driving force for the learning of graph-agnostic, discriminative prototypes for the normal and abnormal classes, which can be used to enable zero-shot GAD on new graphs, including very large-scale graphs. If there are few-shot labeled normal nodes available in the new graphs, AnomalyGFM can further support prompt tuning to leverage these nodes for better adaptation. Comprehensive experiments on 11 widely-used GAD datasets with real anomalies, demonstrate that AnomalyGFM significantly outperforms state-of-the-art competing methods under both zero- and few-shot GAD settings.
Authors:Zahra Zamanzadeh Darban, Qizhou Wang, Geoffrey I. Webb, Shirui Pan, Charu C. Aggarwal, Mahsa Salehi
Title: GenIAS: Generator for Instantiating Anomalies in time Series
Abstract:
A recent and promising approach for building time series anomaly detection (TSAD) models is to inject synthetic samples of anomalies within real data sets. The existing injection mechanisms have significant limitations - most of them rely on ad hoc, hand-crafted strategies which fail to capture the natural diversity of anomalous patterns, or are restricted to univariate time series settings. To address these challenges, we design a generative model for TSAD using a variational autoencoder, which is referred to as a Generator for Instantiating Anomalies in Time Series (GenIAS). GenIAS is designed to produce diverse and realistic synthetic anomalies for TSAD tasks. By employing a novel learned perturbation mechanism in the latent space and injecting the perturbed patterns in different segments of time series, GenIAS can generate anomalies with greater diversity and varying scales. Further, guided by a new triplet loss function, which uses a min-max margin and a new variance-scaling approach to further enforce the learning of compact normal patterns, GenIAS ensures that anomalies are distinct from normal samples while remaining realistic. The approach is effective for both univariate and multivariate time series. We demonstrate the diversity and realism of the generated anomalies. Our extensive experiments demonstrate that GenIAS - when integrated into a TSAD task - consistently outperforms seventeen traditional and deep anomaly detection models, thereby highlighting the potential of generative models for time series anomaly generation.
Authors:Abdellah Zakaria Sellam, Ilyes Benaissa, Abdelmalik Taleb-Ahmed, Luigi Patrono, Cosimo Distante
Title: Mamba Adaptive Anomaly Transformer with association discrepancy for time series
Abstract:
Anomaly detection in time series is essential for industrial monitoring and environmental sensing, yet distinguishing anomalies from complex patterns remains challenging. Existing methods like the Anomaly Transformer and DCdetector have progressed, but they face limitations such as sensitivity to short-term contexts and inefficiency in noisy, non-stationary environments. To overcome these issues, we introduce MAAT, an improved architecture that enhances association discrepancy modeling and reconstruction quality. MAAT features Sparse Attention, efficiently capturing long-range dependencies by focusing on relevant time steps, thereby reducing computational redundancy. Additionally, a Mamba-Selective State Space Model is incorporated into the reconstruction module, utilizing a skip connection and Gated Attention to improve anomaly localization and detection performance. Extensive experiments show that MAAT significantly outperforms previous methods, achieving better anomaly distinguishability and generalization across various time series applications, setting a new standard for unsupervised time series anomaly detection in real-world scenarios.
Authors:Teruyuki Katsuoka, Tomohiro Shiraishi, Daiki Miwa, Shuichi Nishino, Ichiro Takeuchi
Title: si4onnx: A Python package for Selective Inference in Deep Learning Models
Abstract:
In this paper, we introduce si4onnx, a package for performing selective inference on deep learning models. Techniques such as CAM in XAI and reconstruction-based anomaly detection using VAE can be interpreted as methods for identifying significant regions within input images. However, the identified regions may not always carry meaningful significance. Therefore, evaluating the statistical significance of these regions represents a crucial challenge in establishing the reliability of AI systems. si4onnx is a Python package that enables straightforward implementation of hypothesis testing with controlled type I error rates through selective inference. It is compatible with deep learning models constructed using common frameworks such as PyTorch and TensorFlow.
Authors:Ahmadreza Eslaminia, Adrian Jackson, Beitong Tian, Avi Stern, Hallie Gordon, Rajiv Malhotra, Klara Nahrstedt, Chenhui Shao
Title: FDM-Bench: A Comprehensive Benchmark for Evaluating Large Language Models in Additive Manufacturing Tasks
Abstract:
Fused Deposition Modeling (FDM) is a widely used additive manufacturing (AM) technique valued for its flexibility and cost-efficiency, with applications in a variety of industries including healthcare and aerospace. Recent developments have made affordable FDM machines accessible and encouraged adoption among diverse users. However, the design, planning, and production process in FDM require specialized interdisciplinary knowledge. Managing the complex parameters and resolving print defects in FDM remain challenging. These technical complexities form the most critical barrier preventing individuals without technical backgrounds and even professional engineers without training in other domains from participating in AM design and manufacturing. Large Language Models (LLMs), with their advanced capabilities in text and code processing, offer the potential for addressing these challenges in FDM. However, existing research on LLM applications in this field is limited, typically focusing on specific use cases without providing comprehensive evaluations across multiple models and tasks. To this end, we introduce FDM-Bench, a benchmark dataset designed to evaluate LLMs on FDM-specific tasks. FDM-Bench enables a thorough assessment by including user queries across various experience levels and G-code samples that represent a range of anomalies. We evaluate two closed-source models (GPT-4o and Claude 3.5 Sonnet) and two open-source models (Llama-3.1-70B and Llama-3.1-405B) on FDM-Bench. A panel of FDM experts assess the models' responses to user queries in detail. Results indicate that closed-source models generally outperform open-source models in G-code anomaly detection, whereas Llama-3.1-405B demonstrates a slight advantage over other models in responding to user queries. These findings underscore FDM-Bench's potential as a foundational tool for advancing research on LLM capabilities in FDM.
Authors:Haoji Hu, Jina Kim, Jinwei Zhou, Sofia Kirsanova, JangHyeon Lee, Yao-Yi Chiang
Title: Context-Aware Trajectory Anomaly Detection
Abstract:
Trajectory anomaly detection is crucial for effective decision-making in urban and human mobility management. Existing methods of trajectory anomaly detection generally focus on training a trajectory generative model and evaluating the likelihood of reconstructing a given trajectory. However, previous work often lacks important contextual information on the trajectory, such as the agent's information (e.g., agent ID) or geographic information (e.g., Points of Interest (POI)), which could provide additional information on accurately capturing anomalous behaviors. To fill this gap, we propose a context-aware anomaly detection approach that models contextual information related to trajectories. The proposed method is based on a trajectory reconstruction framework guided by contextual factors such as agent ID and contextual POI embedding. The injection of contextual information aims to improve the performance of anomaly detection. We conducted experiments in two cities and demonstrated that the proposed approach significantly outperformed existing methods by effectively modeling contextual information. Overall, this paper paves a new direction for advancing trajectory anomaly detection.
Authors:Harshavardhan Kamarthi, Harshil Shah, Henry Milner, Sayan Sinha, Yan Li, B. Aditya Prakash, Vyas Sekar
Title: AHA: Scalable Alternative History Analysis for Operational Timeseries Applications
Abstract:
Many operational systems collect high-dimensional timeseries data about users/systems on key performance metrics. For instance, ISPs, content distribution networks, and video delivery services collect quality of experience metrics for user sessions associated with metadata (e.g., location, device, ISP). Over such historical data, operators and data analysts often need to run retrospective analysis; e.g., analyze anomaly detection algorithms, experiment with different configurations for alerts, evaluate new algorithms, and so on. We refer to this class of workloads as alternative history analysis for operational datasets. We show that in such settings, traditional data processing solutions (e.g., data warehouses, sampling, sketching, big-data systems) either pose high operational costs or do not guarantee accurate replay. We design and implement a system, called AHA (Alternative History Analytics), that overcomes both challenges to provide cost efficiency and fidelity for high-dimensional data. The design of AHA is based on analytical and empirical insights about such workloads: 1) the decomposability of underlying statistics; 2) sparsity in terms of active number of subpopulations over attribute-value combinations; and 3) efficiency structure of aggregation operations in modern analytics databases. Using multiple real-world datasets and as well as case-studies on production pipelines at a large video analytics company, we show that AHA provides 100% accuracy for a broad range of downstream tasks and up to 85x lower total cost of ownership (i.e., compute + storage) compared to conventional methods.
Authors:Jianling Gao, Chongyang Tao, Xuelian Lin, Junfeng Liu, Shuai Ma
Title: SetAD: Semi-Supervised Anomaly Learning in Contextual Sets
Abstract:
Semi-supervised anomaly detection (AD) has shown great promise by effectively leveraging limited labeled data. However, existing methods are typically structured around scoring individual points or simple pairs. Such {point- or pair-centric} view not only overlooks the contextual nature of anomalies, which are defined by their deviation from a collective group, but also fails to exploit the rich supervisory signals that can be generated from the combinatorial composition of sets. Consequently, such models struggle to exploit the high-order interactions within the data, which are critical for learning discriminative representations. To address these limitations, we propose SetAD, a novel framework that reframes semi-supervised AD as a Set-level Anomaly Detection task. SetAD employs an attention-based set encoder trained via a graded learning objective, where the model learns to quantify the degree of anomalousness within an entire set. This approach directly models the complex group-level interactions that define anomalies. Furthermore, to enhance robustness and score calibration, we propose a context-calibrated anomaly scoring mechanism, which assesses a point's anomaly score by aggregating its normalized deviations from peer behavior across multiple, diverse contextual sets. Extensive experiments on 10 real-world datasets demonstrate that SetAD significantly outperforms state-of-the-art models. Notably, we show that our model's performance consistently improves with increasing set size, providing strong empirical support for the set-based formulation of anomaly detection.
Authors:Yang Xu, Hang Zhang, Yixiao Ma, Ye Zhu, Kai Ming Ting
Title: SCoNE: Spherical Consistent Neighborhoods Ensemble for Effective and Efficient Multi-View Anomaly Detection
Abstract:
The core problem in multi-view anomaly detection is to represent local neighborhoods of normal instances consistently across all views. Recent approaches consider a representation of local neighborhood in each view independently, and then capture the consistent neighbors across all views via a learning process. They suffer from two key issues. First, there is no guarantee that they can capture consistent neighbors well, especially when the same neighbors are in regions of varied densities in different views, resulting in inferior detection accuracy. Second, the learning process has a high computational cost of $\mathcal{O}(N^2)$, rendering them inapplicable for large datasets. To address these issues, we propose a novel method termed \textbf{S}pherical \textbf{C}onsistent \textbf{N}eighborhoods \textbf{E}nsemble (SCoNE). It has two unique features: (a) the consistent neighborhoods are represented with multi-view instances directly, requiring no intermediate representations as used in existing approaches; and (b) the neighborhoods have data-dependent properties, which lead to large neighborhoods in sparse regions and small neighborhoods in dense regions. The data-dependent properties enable local neighborhoods in different views to be represented well as consistent neighborhoods, without learning. This leads to $\mathcal{O}(N)$ time complexity. Empirical evaluations show that SCoNE has superior detection accuracy and runs orders-of-magnitude faster in large datasets than existing approaches.
Authors:Zhichen Lai, Hua Lu, Huan Li, Jialiang Li, Christian S. Jensen
Title: MovSemCL: Movement-Semantics Contrastive Learning for Trajectory Similarity
Abstract:
Trajectory similarity computation is fundamental functionality that is used for, e.g., clustering, prediction, and anomaly detection. However, existing learning-based methods exhibit three key limitations: (1) insufficient modeling of trajectory semantics and hierarchy, lacking both movement dynamics extraction and multi-scale structural representation; (2) high computational costs due to point-wise encoding; and (3) use of physically implausible augmentations that distort trajectory semantics. To address these issues, we propose MovSemCL, a movement-semantics contrastive learning framework for trajectory similarity computation. MovSemCL first transforms raw GPS trajectories into movement-semantics features and then segments them into patches. Next, MovSemCL employs intra- and inter-patch attentions to encode local as well as global trajectory patterns, enabling efficient hierarchical representation and reducing computational costs. Moreover, MovSemCL includes a curvature-guided augmentation strategy that preserves informative segments (e.g., turns and intersections) and masks redundant ones, generating physically plausible augmented views. Experiments on real-world datasets show that MovSemCL is capable of outperforming state-of-the-art methods, achieving mean ranks close to the ideal value of 1 at similarity search tasks and improvements by up to 20.3% at heuristic approximation, while reducing inference latency by up to 43.4%.
Authors:Urslla Uchechi Izuazu, Mounir Bensalem, Admela Jukan
Title: A Secured Intent-Based Networking (sIBN) with Data-Driven Time-Aware Intrusion Detection
Abstract:
While Intent-Based Networking (IBN) promises operational efficiency through autonomous and abstraction-driven network management, a critical unaddressed issue lies in IBN's implicit trust in the integrity of intent ingested by the network. This inherent assumption of data reliability creates a blind spot exploitable by Man-in-the-Middle (MitM) attacks, where an adversary intercepts and alters intent before it is enacted, compelling the network to orchestrate malicious configurations. This study proposes a secured IBN (sIBN) system with data driven intrusion detection method designed to secure legitimate user intent from adversarial tampering. The proposed intent intrusion detection system uses a ML model applied for network behavioral anomaly detection to reveal temporal patterns of intent tampering. This is achieved by leveraging a set of original behavioral metrics and newly engineered time-aware features, with the model's hyperparameters fine-tuned through the randomized search cross-validation (RSCV) technique. Numerical results based on real-world data sets, show the effectiveness of sIBN, achieving the best performance across standard evaluation metrics, in both binary and multi classification tasks, while maintaining low error rates.
Authors:Tarun Kumar Biswas, Ashrafun Zannat, Waqas Ishtiaq, Md. Alamgir Hossain
Title: A Novel Unified Lightweight Temporal-Spatial Transformer Approach for Intrusion Detection in Drone Networks
Abstract:
The growing integration of drones across commercial, industrial, and civilian domains has introduced significant cybersecurity challenges, particularly due to the susceptibility of drone networks to a wide range of cyberattacks. Existing intrusion detection mechanisms often lack the adaptability, efficiency, and generalizability required for the dynamic and resource constrained environments in which drones operate. This paper proposes TSLT-Net, a novel lightweight and unified Temporal Spatial Transformer based intrusion detection system tailored specifically for drone networks. By leveraging self attention mechanisms, TSLT-Net effectively models both temporal patterns and spatial dependencies in network traffic, enabling accurate detection of diverse intrusion types. The framework includes a streamlined preprocessing pipeline and supports both multiclass attack classification and binary anomaly detection within a single architecture. Extensive experiments conducted on the ISOT Drone Anomaly Detection Dataset, consisting of more than 2.3 million labeled records, demonstrate the superior performance of TSLT-Net with 99.99 percent accuracy in multiclass detection and 100 percent in binary anomaly detection, while maintaining a minimal memory footprint of only 0.04 MB and 9722 trainable parameters. These results establish TSLT-Net as an effective and scalable solution for real time drone cybersecurity, particularly suitable for deployment on edge devices in mission critical UAV systems.
Authors:Lorenzo Guerra, Thomas Chapuis, Guillaume Duc, Pavlo Mozharovskyi, Van-Tam Nguyen
Title: Self-Supervised Learning of Graph Representations for Network Intrusion Detection
Abstract:
Detecting intrusions in network traffic is a challenging task, particularly under limited supervision and constantly evolving attack patterns. While recent works have leveraged graph neural networks for network intrusion detection, they often decouple representation learning from anomaly detection, limiting the utility of the embeddings for identifying attacks. We propose GraphIDS, a self-supervised intrusion detection model that unifies these two stages by learning local graph representations of normal communication patterns through a masked autoencoder. An inductive graph neural network embeds each flow with its local topological context to capture typical network behavior, while a Transformer-based encoder-decoder reconstructs these embeddings, implicitly learning global co-occurrence patterns via self-attention without requiring explicit positional information. During inference, flows with unusually high reconstruction errors are flagged as potential intrusions. This end-to-end framework ensures that embeddings are directly optimized for the downstream task, facilitating the recognition of malicious traffic. On diverse NetFlow benchmarks, GraphIDS achieves up to 99.98% PR-AUC and 99.61% macro F1-score, outperforming baselines by 5-25 percentage points.
Authors:Ali K. AlShami, Ryan Rabinowitz, Maged Shoman, Jianwu Fang, Lukas Picek, Shao-Yuan Lo, Steve Cruz, Khang Nhut Lam, Nachiket Kamod, Lei-Lei Li, Jugal Kalita, Terrance E. Boult
Title: 2COOOL: 2nd Workshop on the Challenge Of Out-Of-Label Hazards in Autonomous Driving
Abstract:
As the computer vision community advances autonomous driving algorithms, integrating vision-based insights with sensor data remains essential for improving perception, decision making, planning, prediction, simulation, and control. Yet we must ask: Why don't we have entirely safe self-driving cars yet? A key part of the answer lies in addressing novel scenarios, one of the most critical barriers to real-world deployment. Our 2COOOL workshop provides a dedicated forum for researchers and industry experts to push the state of the art in novelty handling, including out-of-distribution hazard detection, vision-language models for hazard understanding, new benchmarking and methodologies, and safe autonomous driving practices. The 2nd Workshop on the Challenge of Out-of-Label Hazards in Autonomous Driving (2COOOL) will be held at the International Conference on Computer Vision (ICCV) 2025 in Honolulu, Hawaii, on October 19, 2025. We aim to inspire the development of new algorithms and systems for hazard avoidance, drawing on ideas from anomaly detection, open-set recognition, open-vocabulary modeling, domain adaptation, and related fields. Building on the success of its inaugural edition at the Winter Conference on Applications of Computer Vision (WACV) 2025, the workshop will feature a mix of academic and industry participation.
Authors:Yifan Wei, Anwar Said, Waseem Abbas, Xenofon Koutsoukos
Title: Robust Anomaly Detection with Graph Neural Networks using Controllability
Abstract:
Anomaly detection in complex domains poses significant challenges due to the need for extensive labeled data and the inherently imbalanced nature of anomalous versus benign samples. Graph-based machine learning models have emerged as a promising solution that combines attribute and relational data to uncover intricate patterns. However, the scarcity of anomalous data exacerbates the challenge, which requires innovative strategies to enhance model learning with limited information. In this paper, we hypothesize that the incorporation of the influence of the nodes, quantified through average controllability, can significantly improve the performance of anomaly detection. We propose two novel approaches to integrate average controllability into graph-based frameworks: (1) using average controllability as an edge weight and (2) encoding it as a one-hot edge attribute vector. Through rigorous evaluation on real-world and synthetic networks with six state-of-the-art baselines, our proposed methods demonstrate improved performance in identifying anomalies, highlighting the critical role of controllability measures in enhancing the performance of graph machine learning models. This work underscores the potential of integrating average controllability as additional metrics to address the challenges of anomaly detection in sparse and imbalanced datasets.
Authors:An Le, Hung Nguyen, Sungbal Seo, You-Suk Bae, Truong Nguyen
Title: Biorthogonal Tunable Wavelet Unit with Lifting Scheme in Convolutional Neural Network
Abstract:
This work introduces a novel biorthogonal tunable wavelet unit constructed using a lifting scheme that relaxes both the orthogonality and equal filter length constraints, providing greater flexibility in filter design. The proposed unit enhances convolution, pooling, and downsampling operations, leading to improved image classification and anomaly detection in convolutional neural networks (CNN). When integrated into an 18-layer residual neural network (ResNet-18), the approach improved classification accuracy on CIFAR-10 by 2.12% and on the Describable Textures Dataset (DTD) by 9.73%, demonstrating its effectiveness in capturing fine-grained details. Similar improvements were observed in ResNet-34. For anomaly detection in the hazelnut category of the MVTec Anomaly Detection dataset, the proposed method achieved competitive and wellbalanced performance in both segmentation and detection tasks, outperforming existing approaches in terms of accuracy and robustness.
Authors:Filippo Leveni, Luca Magri, Cesare Alippi, Giacomo Boracchi
Title: Preference Isolation Forest for Structure-based Anomaly Detection
Abstract:
We address the problem of detecting anomalies as samples that do not conform to structured patterns represented by low-dimensional manifolds. To this end, we conceive a general anomaly detection framework called Preference Isolation Forest (PIF), that combines the benefits of adaptive isolation-based methods with the flexibility of preference embedding. The key intuition is to embed the data into a high-dimensional preference space by fitting low-dimensional manifolds, and to identify anomalies as isolated points. We propose three isolation approaches to identify anomalies: $i$) Voronoi-iForest, the most general solution, $ii$) RuzHash-iForest, that avoids explicit computation of distances via Local Sensitive Hashing, and $iii$) Sliding-PIF, that leverages a locality prior to improve efficiency and effectiveness.
Authors:Filippo Leveni, Luca Magri, Giacomo Boracchi, Cesare Alippi
Title: PIF: Anomaly detection via preference embedding
Abstract:
We address the problem of detecting anomalies with respect to structured patterns. To this end, we conceive a novel anomaly detection method called PIF, that combines the advantages of adaptive isolation methods with the flexibility of preference embedding. Specifically, we propose to embed the data in a high dimensional space where an efficient tree-based method, PI-Forest, is employed to compute an anomaly score. Experiments on synthetic and real datasets demonstrate that PIF favorably compares with state-of-the-art anomaly detection techniques, and confirm that PI-Forest is better at measuring arbitrary distances and isolate points in the preference space.
Authors:Adrian Rebmann, Fabian David Schmidt, Goran Glavaš, Han van der Aa
Title: On the Potential of Large Language Models to Solve Semantics-Aware Process Mining Tasks
Abstract:
Large language models (LLMs) have shown to be valuable tools for tackling process mining tasks. Existing studies report on their capability to support various data-driven process analyses and even, to some extent, that they are able to reason about how processes work. This reasoning ability suggests that there is potential for LLMs to tackle semantics-aware process mining tasks, which are tasks that rely on an understanding of the meaning of activities and their relationships. Examples of these include process discovery, where the meaning of activities can indicate their dependency, whereas in anomaly detection the meaning can be used to recognize process behavior that is abnormal. In this paper, we systematically explore the capabilities of LLMs for such tasks. Unlike prior work, which largely evaluates LLMs in their default state, we investigate their utility through both in-context learning and supervised fine-tuning. Concretely, we define five process mining tasks requiring semantic understanding and provide extensive benchmarking datasets for evaluation. Our experiments reveal that while LLMs struggle with challenging process mining tasks when used out of the box or with minimal in-context examples, they achieve strong performance when fine-tuned for these tasks across a broad range of process types and industries.
Authors:Zhiwei Yang, Chen Gao, Jing Liu, Peng Wu, Guansong Pang, Mike Zheng Shou
Title: AssistPDA: An Online Video Surveillance Assistant for Video Anomaly Prediction, Detection, and Analysis
Abstract:
The rapid advancements in large language models (LLMs) have spurred growing interest in LLM-based video anomaly detection (VAD). However, existing approaches predominantly focus on video-level anomaly question answering or offline detection, ignoring the real-time nature essential for practical VAD applications. To bridge this gap and facilitate the practical deployment of LLM-based VAD, we introduce AssistPDA, the first online video anomaly surveillance assistant that unifies video anomaly prediction, detection, and analysis (VAPDA) within a single framework. AssistPDA enables real-time inference on streaming videos while supporting interactive user engagement. Notably, we introduce a novel event-level anomaly prediction task, enabling proactive anomaly forecasting before anomalies fully unfold. To enhance the ability to model intricate spatiotemporal relationships in anomaly events, we propose a Spatio-Temporal Relation Distillation (STRD) module. STRD transfers the long-term spatiotemporal modeling capabilities of vision-language models (VLMs) from offline settings to real-time scenarios. Thus it equips AssistPDA with a robust understanding of complex temporal dependencies and long-sequence memory. Additionally, we construct VAPDA-127K, the first large-scale benchmark designed for VLM-based online VAPDA. Extensive experiments demonstrate that AssistPDA outperforms existing offline VLM-based approaches, setting a new state-of-the-art for real-time VAPDA. Our dataset and code will be open-sourced to facilitate further research in the community.
Authors:Fei Li, Wenxuan Liu, Jingjing Chen, Ruixu Zhang, Yuran Wang, Xian Zhong, Zheng Wang
Title: Anomize: Better Open Vocabulary Video Anomaly Detection
Abstract:
Open Vocabulary Video Anomaly Detection (OVVAD) seeks to detect and classify both base and novel anomalies. However, existing methods face two specific challenges related to novel anomalies. The first challenge is detection ambiguity, where the model struggles to assign accurate anomaly scores to unfamiliar anomalies. The second challenge is categorization confusion, where novel anomalies are often misclassified as visually similar base instances. To address these challenges, we explore supplementary information from multiple sources to mitigate detection ambiguity by leveraging multiple levels of visual data alongside matching textual information. Furthermore, we propose incorporating label relations to guide the encoding of new labels, thereby improving alignment between novel videos and their corresponding labels, which helps reduce categorization confusion. The resulting Anomize framework effectively tackles these issues, achieving superior performance on UCF-Crime and XD-Violence datasets, demonstrating its effectiveness in OVVAD.
Authors:Gideon Stein, Maha Shadaydeh, Jan Blunk, Niklas Penzel, Joachim Denzler
Title: CausalRivers -- Scaling up benchmarking of causal discovery for real-world time-series
Abstract:
Causal discovery, or identifying causal relationships from observational data, is a notoriously challenging task, with numerous methods proposed to tackle it. Despite this, in-the-wild evaluation of these methods is still lacking, as works frequently rely on synthetic data evaluation and sparse real-world examples under critical theoretical assumptions. Real-world causal structures, however, are often complex, making it hard to decide on a proper causal discovery strategy. To bridge this gap, we introduce CausalRivers, the largest in-the-wild causal discovery benchmarking kit for time-series data to date. CausalRivers features an extensive dataset on river discharge that covers the eastern German territory (666 measurement stations) and the state of Bavaria (494 measurement stations). It spans the years 2019 to 2023 with a 15-minute temporal resolution. Further, we provide additional data from a flood around the Elbe River, as an event with a pronounced distributional shift. Leveraging multiple sources of information and time-series meta-data, we constructed two distinct causal ground truth graphs (Bavaria and eastern Germany). These graphs can be sampled to generate thousands of subgraphs to benchmark causal discovery across diverse and challenging settings. To demonstrate the utility of CausalRivers, we evaluate several causal discovery approaches through a set of experiments to identify areas for improvement. CausalRivers has the potential to facilitate robust evaluations and comparisons of causal discovery methods. Besides this primary purpose, we also expect that this dataset will be relevant for connected areas of research, such as time-series forecasting and anomaly detection. Based on this, we hope to push benchmark-driven method development that fosters advanced techniques for causal discovery, as is the case for many other areas of machine learning.
Authors:Tzoulio Chamiti, Nikolaos Passalis, Anastasios Tefas
Title: Large Models in Dialogue for Active Perception and Anomaly Detection
Abstract:
Autonomous aerial monitoring is an important task aimed at gathering information from areas that may not be easily accessible by humans. At the same time, this task often requires recognizing anomalies from a significant distance or not previously encountered in the past. In this paper, we propose a novel framework that leverages the advanced capabilities provided by Large Language Models (LLMs) to actively collect information and perform anomaly detection in novel scenes. To this end, we propose an LLM based model dialogue approach, in which two deep learning models engage in a dialogue to actively control a drone to increase perception and anomaly detection accuracy. We conduct our experiments in a high fidelity simulation environment where an LLM is provided with a predetermined set of natural language movement commands mapped into executable code functions. Additionally, we deploy a multimodal Visual Question Answering (VQA) model charged with the task of visual question answering and captioning. By engaging the two models in conversation, the LLM asks exploratory questions while simultaneously flying a drone into different parts of the scene, providing a novel way to implement active perception. By leveraging LLMs reasoning ability, we output an improved detailed description of the scene going beyond existing static perception approaches. In addition to information gathering, our approach is utilized for anomaly detection and our results demonstrate the proposed methods effectiveness in informing and alerting about potential hazards.
Authors:Srikar Yellapragada, Kowshik Thopalli, Vivek Narayanaswamy, Wesam Sakla, Yang Liu, Yamen Mubarka, Dimitris Samaras, Jayaraman J. Thiagarajan
Title: Leveraging Registers in Vision Transformers for Robust Adaptation
Abstract:
Vision Transformers (ViTs) have shown success across a variety of tasks due to their ability to capture global image representations. Recent studies have identified the existence of high-norm tokens in ViTs, which can interfere with unsupervised object discovery. To address this, the use of "registers" which are additional tokens that isolate high norm patch tokens while capturing global image-level information has been proposed. While registers have been studied extensively for object discovery, their generalization properties particularly in out-of-distribution (OOD) scenarios, remains underexplored. In this paper, we examine the utility of register token embeddings in providing additional features for improving generalization and anomaly rejection. To that end, we propose a simple method that combines the special CLS token embedding commonly employed in ViTs with the average-pooled register embeddings to create feature representations which are subsequently used for training a downstream classifier. We find that this enhances OOD generalization and anomaly rejection, while maintaining in-distribution (ID) performance. Extensive experiments across multiple ViT backbones trained with and without registers reveal consistent improvements of 2-4\% in top-1 OOD accuracy and a 2-3\% reduction in false positive rates for anomaly detection. Importantly, these gains are achieved without additional computational overhead.
Authors:Saba Fathi Rabooki, Bowen Li, Falih Gozi Febrinanto, Ciyuan Peng, Elham Naghizade, Fengling Han, Feng Xia
Title: GraphDART: Graph Distillation for Efficient Advanced Persistent Threat Detection
Abstract:
Cyber-physical-social systems (CPSSs) have emerged in many applications over recent decades, requiring increased attention to security concerns. The rise of sophisticated threats like Advanced Persistent Threats (APTs) makes ensuring security in CPSSs particularly challenging. Provenance graph analysis has proven effective for tracing and detecting anomalies within systems, but the sheer size and complexity of these graphs hinder the efficiency of existing methods, especially those relying on graph neural networks (GNNs). To address these challenges, we present GraphDART, a modular framework designed to distill provenance graphs into compact yet informative representations, enabling scalable and effective anomaly detection. GraphDART can take advantage of diverse graph distillation techniques, including classic and modern graph distillation methods, to condense large provenance graphs while preserving essential structural and contextual information. This approach significantly reduces computational overhead, allowing GNNs to learn from distilled graphs efficiently and enhance detection performance. Extensive evaluations on benchmark datasets demonstrate the robustness of GraphDART in detecting malicious activities across cyber-physical-social systems. By optimizing computational efficiency, GraphDART provides a scalable and practical solution to safeguard interconnected environments against APTs.
Authors:Sihan Wang, Shangqi Gao, Fuping Wu, Xiahai Zhuang
Title: InDeed: Interpretable image deep decomposition with guaranteed generalizability
Abstract:
Image decomposition aims to analyze an image into elementary components, which is essential for numerous downstream tasks and also by nature provides certain interpretability to the analysis. Deep learning can be powerful for such tasks, but surprisingly their combination with a focus on interpretability and generalizability is rarely explored. In this work, we introduce a novel framework for interpretable deep image decomposition, combining hierarchical Bayesian modeling and deep learning to create an architecture-modularized and model-generalizable deep neural network (DNN). The proposed framework includes three steps: (1) hierarchical Bayesian modeling of image decomposition, (2) transforming the inference problem into optimization tasks, and (3) deep inference via a modularized Bayesian DNN. We further establish a theoretical connection between the loss function and the generalization error bound, which inspires a new test-time adaptation approach for out-of-distribution scenarios. We instantiated the application using two downstream tasks, \textit{i.e.}, image denoising, and unsupervised anomaly detection, and the results demonstrated improved generalizability as well as interpretability of our methods. The source code will be released upon the acceptance of this paper.
Authors:Ali K. AlShami, Ananya Kalita, Ryan Rabinowitz, Khang Lam, Rishabh Bezbarua, Terrance Boult, Jugal Kalita
Title: COOOL: Challenge Of Out-Of-Label A Novel Benchmark for Autonomous Driving
Abstract:
As the Computer Vision community rapidly develops and advances algorithms for autonomous driving systems, the goal of safer and more efficient autonomous transportation is becoming increasingly achievable. However, it is 2024, and we still do not have fully self-driving cars. One of the remaining core challenges lies in addressing the novelty problem, where self-driving systems still struggle to handle previously unseen situations on the open road. With our Challenge of Out-Of-Label (COOOL) benchmark, we introduce a novel dataset for hazard detection, offering versatile evaluation metrics applicable across various tasks, including novelty-adjacent domains such as Anomaly Detection, Open-Set Recognition, Open Vocabulary, and Domain Adaptation. COOOL comprises over 200 collections of dashcam-oriented videos, annotated by human labelers to identify objects of interest and potential driving hazards. It includes a diverse range of hazards and nuisance objects. Due to the dataset's size and data complexity, COOOL serves exclusively as an evaluation benchmark.
Authors:Henry Onyeka, Emmanuel Samson, Liang Hong, Tariqul Islam, Imtiaz Ahmed, Kamrul Hasan
Title: SD-CGAN: Conditional Sinkhorn Divergence GAN for DDoS Anomaly Detection in IoT Networks
Abstract:
The increasing complexity of IoT edge networks presents significant challenges for anomaly detection, particularly in identifying sophisticated Denial-of-Service (DoS) attacks and zero-day exploits under highly dynamic and imbalanced traffic conditions. This paper proposes SD-CGAN, a Conditional Generative Adversarial Network framework enhanced with Sinkhorn Divergence, tailored for robust anomaly detection in IoT edge environments. The framework incorporates CTGAN-based synthetic data augmentation to address class imbalance and leverages Sinkhorn Divergence as a geometry-aware loss function to improve training stability and reduce mode collapse. The model is evaluated on exploitative attack subsets from the CICDDoS2019 dataset and compared against baseline deep learning and GAN-based approaches. Results show that SD-CGAN achieves superior detection accuracy, precision, recall, and F1-score while maintaining computational efficiency suitable for deployment in edge-enabled IoT environments.
Authors:Simone Mungari, Albert Bifet, Giuseppe Manco, Bernhard Pfahringer
Title: ARES: Anomaly Recognition Model For Edge Streams
Abstract:
Many real-world scenarios involving streaming information can be represented as temporal graphs, where data flows through dynamic changes in edges over time. Anomaly detection in this context has the objective of identifying unusual temporal connections within the graph structure. Detecting edge anomalies in real time is crucial for mitigating potential risks. Unlike traditional anomaly detection, this task is particularly challenging due to concept drifts, large data volumes, and the need for real-time response. To face these challenges, we introduce ARES, an unsupervised anomaly detection framework for edge streams. ARES combines Graph Neural Networks (GNNs) for feature extraction with Half-Space Trees (HST) for anomaly scoring. GNNs capture both spike and burst anomalous behaviors within streams by embedding node and edge properties in a latent space, while HST partitions this space to isolate anomalies efficiently. ARES operates in an unsupervised way without the need for prior data labeling. To further validate its detection capabilities, we additionally incorporate a simple yet effective supervised thresholding mechanism. This approach leverages statistical dispersion among anomaly scores to determine the optimal threshold using a minimal set of labeled data, ensuring adaptability across different domains. We validate ARES through extensive evaluations across several real-world cyber-attack scenarios, comparing its performance against existing methods while analyzing its space and time complexity.
Authors:Joseph Fioresi, Ishan Rajendrakumar Dave, Mubarak Shah
Title: Privacy Beyond Pixels: Latent Anonymization for Privacy-Preserving Video Understanding
Abstract:
We introduce a novel formulation of visual privacy preservation for video foundation models that operates entirely in the latent space. While spatio-temporal features learned by foundation models have deepened general understanding of video content, sharing or storing these extracted visual features for downstream tasks inadvertently reveals sensitive personal information like skin color, gender, or clothing. Current privacy preservation methods focus on input-pixel-level anonymization, which requires retraining the entire utility video model and results in task-specific anonymization, making them unsuitable for recent video foundational models. To address these challenges, we introduce a lightweight Anonymizing Adapter Module (AAM) that removes private information from video features while retaining general task utility. AAM can be applied in a plug-and-play fashion to frozen video encoders, minimizing the computational burden of finetuning and re-extracting features. Our framework employs three newly designed training objectives: (1) a clip-level self-supervised privacy objective to reduce mutual information between static clips, (2) a co-training objective to retain utility across seen tasks, and (3) a latent consistency loss for generalization on unseen tasks. Our extensive evaluations demonstrate a significant 35% reduction in privacy leakage while maintaining near-baseline utility performance across various downstream tasks: Action Recognition (Kinetics400, UCF101, HMDB51), Temporal Action Detection (THUMOS14), and Anomaly Detection (UCF-Crime). We also provide an analysis on anonymization for sensitive temporal attribute recognition. Additionally, we propose new protocols for assessing gender bias in action recognition models, showing that our method effectively mitigates such biases and promotes more equitable video understanding.
Authors:Kwonyeol Park, Hyuckjin Choi, Beomsoo Ko, Minje Kim, Gyoseung Lee, Daecheol Kwon, Hyunjae Park, Byungseung Kim, Min-Ho Shin, Junil Choi
Title: Anomaly Detection-Based UE-Centric Inter-Cell Interference Suppression
Abstract:
The increasing spectral reuse can cause significant performance degradation due to interference from neighboring cells. In such scenarios, developing effective interference suppression schemes is necessary to improve overall system performance. To tackle this issue, we propose a novel user equipment-centric interference suppression scheme, which effectively detects inter-cell interference (ICI) and subsequently applies interference whitening to mitigate ICI. The proposed scheme, named Z-refined deep support vector data description, exploits a one-class classification-based anomaly detection technique. Numerical results verify that the proposed scheme outperforms various baselines in terms of interference detection performance with limited time or frequency resources for training and is comparable to the performance based on an ideal genie-aided interference suppression scheme. Furthermore, we demonstrate through test equipment experiments using a commercial fifth-generation modem chipset that the proposed scheme shows performance improvements across various 3rd generation partnership project standard channel environments, including tapped delay line-A, -B, and -C models.
Authors:Jingqi Wu, Hanxi Li, Lin Yuanbo Wu, Hao Chen, Deyin Liu, Peng Wang
Title: Towards Efficient Pixel Labeling for Industrial Anomaly Detection and Localization
Abstract:
Industrial product inspection is often performed using Anomaly Detection (AD) frameworks trained solely on non-defective samples. Although defective samples can be collected during production, leveraging them usually requires pixel-level annotations, limiting scalability. To address this, we propose ADClick, an Interactive Image Segmentation (IIS) algorithm for industrial anomaly detection. ADClick generates pixel-wise anomaly annotations from only a few user clicks and a brief textual description, enabling precise and efficient labeling that significantly improves AD model performance (e.g., AP = 96.1\% on MVTec AD). We further introduce ADClick-Seg, a cross-modal framework that aligns visual features and textual prompts via a prototype-based approach for anomaly detection and localization. By combining pixel-level priors with language-guided cues, ADClick-Seg achieves state-of-the-art results on the challenging ``Multi-class'' AD task (AP = 80.0\%, PRO = 97.5\%, Pixel-AUROC = 99.1\% on MVTec AD).
Authors:Abhigya Verma, Sriram Puttagunta, Seganrasan Subramanian, Sravan Ramachandran
Title: GRAFT: GRaPH and Table Reasoning for Textual Alignment -- A Benchmark for Structured Instruction Following and Visual Reasoning
Abstract:
GRAFT is a structured multimodal benchmark for evaluating models on instruction-following, visual reasoning, and visual-textual alignment tasks. It features programmatically generated charts and synthetically rendered tables, created with Python visualization libraries to ensure control over data semantics, structure, and clarity. Each GRAFT instance pairs a chart or table image with a systematically generated, multi-step analytical question based solely on visual content. Answers are provided in structured formats such as JSON or YAML, supporting consistent evaluation of both reasoning and output format. The benchmark introduces a taxonomy of reasoning types including comparison, trend identification, ranking, aggregation, proportion estimation, and anomaly detection to enable comprehensive assessment. Reference answers follow strict factual and formatting guidelines for precise, aspect-based evaluation. GRAFT offers a unified, scalable framework for fine-grained benchmarking of multimodal models on visually grounded, structured reasoning tasks, setting a new evaluation standard in this field.
Authors:Maria Teresa Rossi, Leonardo Mariani, Oliviero Riganelli
Title: From PREVENTion to REACTion: Enhancing Failure Resolution in Naval Systems
Abstract:
Complex and large industrial systems often misbehave, for instance, due to wear, misuse, or faults. To cope with these incidents, it is important to timely detect their occurrences, localize the sources of the problems, and implement the appropriate countermeasures. This paper reports our experience with a state-of-the-art failure prediction method, PREVENT, and its extension with a troubleshooting module, REACT, applied to naval systems developed by Fincantieri. Our results show how to integrate anomaly detection with troubleshooting procedures. We conclude by discussing a lesson learned, which may help deploy and extend these analyses to other industrial products.
Authors:Hanxi Li, Jingqi Wu, Lin Yuanbo Wu, Mingliang Li, Deyin Liu, Jialie Shen, Chunhua Shen
Title: Self-Navigated Residual Mamba for Universal Industrial Anomaly Detection
Abstract:
In this paper, we propose Self-Navigated Residual Mamba (SNARM), a novel framework for universal industrial anomaly detection that leverages ``self-referential learning'' within test images to enhance anomaly discrimination. Unlike conventional methods that depend solely on pre-trained features from normal training data, SNARM dynamically refines anomaly detection by iteratively comparing test patches against adaptively selected in-image references. Specifically, we first compute the ``inter-residuals'' features by contrasting test image patches with the training feature bank. Patches exhibiting small-norm residuals (indicating high normality) are then utilized as self-generated reference patches to compute ``intra-residuals'', amplifying discriminative signals. These inter- and intra-residual features are concatenated and fed into a novel Mamba module with multiple heads, which are dynamically navigated by residual properties to focus on anomalous regions. Finally, AD results are obtained by aggregating the outputs of a self-navigated Mamba in an ensemble learning paradigm. Extensive experiments on MVTec AD, MVTec 3D, and VisA benchmarks demonstrate that SNARM achieves state-of-the-art (SOTA) performance, with notable improvements in all metrics, including Image-AUROC, Pixel-AURC, PRO, and AP.
Authors:Nicholas A. Pearson, Francesca Zanello, Davide Russo, Luca Bortolussi, Francesca Cairoli
Title: CoCAI: Copula-based Conformal Anomaly Identification for Multivariate Time-Series
Abstract:
We propose a novel framework that harnesses the power of generative artificial intelligence and copula-based modeling to address two critical challenges in multivariate time-series analysis: delivering accurate predictions and enabling robust anomaly detection. Our method, Copula-based Conformal Anomaly Identification for Multivariate Time-Series (CoCAI), leverages a diffusion-based model to capture complex dependencies within the data, enabling high quality forecasting. The model's outputs are further calibrated using a conformal prediction technique, yielding predictive regions which are statistically valid, i.e., cover the true target values with a desired confidence level. Starting from these calibrated forecasts, robust outlier detection is performed by combining dimensionality reduction techniques with copula-based modeling, providing a statistically grounded anomaly score. CoCAI benefits from an offline calibration phase that allows for minimal overhead during deployment and delivers actionable results rooted in established theoretical foundations. Empirical tests conducted on real operational data derived from water distribution and sewerage systems confirm CoCAI's effectiveness in accurately forecasting target sequences of data and in identifying anomalous segments within them.
Authors:Ailiya Borjigin, Wei Zhou, Cong He
Title: AI-Governed Agent Architecture for Web-Trustworthy Tokenization of Alternative Assets
Abstract:
Alternative Assets tokenization is transforming non-traditional financial instruments are represented and traded on the web. However, ensuring trustworthiness in web-based tokenized ecosystems poses significant challenges, from verifying off-chain asset data to enforcing regulatory compliance. This paper proposes an AI-governed agent architecture that integrates intelligent agents with blockchain to achieve web-trustworthy tokenization of alternative assets. In the proposed architecture, autonomous agents orchestrate the tokenization process (asset verification, valuation, compliance checking, and lifecycle management), while an AI-driven governance layer monitors agent behavior and enforces trust through adaptive policies and cryptoeconomic incentives. We demonstrate that this approach enhances transparency, security, and compliance in asset tokenization, addressing key concerns around data authenticity and fraud. A case study on tokenizing real estate assets illustrates how the architecture mitigates risks (e.g., fraudulent listings and money laundering) through real-time AI anomaly detection and on-chain enforcement. Our evaluation and analysis suggest that combining AI governance with multi-agent systems and blockchain can significantly bolster trust in tokenized asset ecosystems. This work offers a novel framework for trustworthy asset tokenization on the web and provides insights for practitioners aiming to deploy secure, compliant tokenization platforms.
Authors:Genís Castillo Gómez-Raya, Álmos Veres-Vitályos, Filip Lemic, Pablo Royo, Mario Montagud, Sergi Fernández, Sergi Abadal, Xavier Costa-Pérez
Title: Experimental Assessment of Neural 3D Reconstruction for Small UAV-based Applications
Abstract:
The increasing miniaturization of Unmanned Aerial Vehicles (UAVs) has expanded their deployment potential to indoor and hard-to-reach areas. However, this trend introduces distinct challenges, particularly in terms of flight dynamics and power consumption, which limit the UAVs' autonomy and mission capabilities. This paper presents a novel approach to overcoming these limitations by integrating Neural 3D Reconstruction (N3DR) with small UAV systems for fine-grained 3-Dimensional (3D) digital reconstruction of small static objects. Specifically, we design, implement, and evaluate an N3DR-based pipeline that leverages advanced models, i.e., Instant-ngp, Nerfacto, and Splatfacto, to improve the quality of 3D reconstructions using images of the object captured by a fleet of small UAVs. We assess the performance of the considered models using various imagery and pointcloud metrics, comparing them against the baseline Structure from Motion (SfM) algorithm. The experimental results demonstrate that the N3DR-enhanced pipeline significantly improves reconstruction quality, making it feasible for small UAVs to support high-precision 3D mapping and anomaly detection in constrained environments. In more general terms, our results highlight the potential of N3DR in advancing the capabilities of miniaturized UAV systems.
Authors:Matthew Lau, Tian-Yi Zhou, Xiangchi Yuan, Jizhou Chen, Wenke Lee, Xiaoming Huo
Title: Bridging Unsupervised and Semi-Supervised Anomaly Detection: A Theoretically-Grounded and Practical Framework with Synthetic Anomalies
Abstract:
Anomaly detection (AD) is a critical task across domains such as cybersecurity and healthcare. In the unsupervised setting, an effective and theoretically-grounded principle is to train classifiers to distinguish normal data from (synthetic) anomalies. We extend this principle to semi-supervised AD, where training data also include a limited labeled subset of anomalies possibly present in test time. We propose a theoretically-grounded and empirically effective framework for semi-supervised AD that combines known and synthetic anomalies during training. To analyze semi-supervised AD, we introduce the first mathematical formulation of semi-supervised AD, which generalizes unsupervised AD. Here, we show that synthetic anomalies enable (i) better anomaly modeling in low-density regions and (ii) optimal convergence guarantees for neural network classifiers -- the first theoretical result for semi-supervised AD. We empirically validate our framework on five diverse benchmarks, observing consistent performance gains. These improvements also extend beyond our theoretical framework to other classification-based AD methods, validating the generalizability of the synthetic anomaly principle in AD.
Authors:Ziqing Zhou, Yurui Pan, Lidong Wang, Wenbing Zhu, Mingmin Chi, Dong Wu, Bo Peng
Title: Pro-AD: Learning Comprehensive Prototypes with Prototype-based Constraint for Multi-class Unsupervised Anomaly Detection
Abstract:
Prototype-based reconstruction methods for unsupervised anomaly detection utilize a limited set of learnable prototypes which only aggregates insufficient normal information, resulting in undesirable reconstruction. However, increasing the number of prototypes may lead to anomalies being well reconstructed through the attention mechanism, which we refer to as the "Soft Identity Mapping" problem. In this paper, we propose Pro-AD to address these issues and fully utilize the prototypes to boost the performance of anomaly detection. Specifically, we first introduce an expanded set of learnable prototypes to provide sufficient capacity for semantic information. Then we employ a Dynamic Bidirectional Decoder which integrates the process of the normal information aggregation and the target feature reconstruction via prototypes, with the aim of allowing the prototypes to aggregate more comprehensive normal semantic information from different levels of the image features and the target feature reconstruction to not only utilize its contextual information but also dynamically leverage the learned comprehensive prototypes. Additionally, to prevent the anomalies from being well reconstructed using sufficient semantic information through the attention mechanism, Pro-AD introduces a Prototype-based Constraint that applied within the target feature reconstruction process of the decoder, which further improves the performance of our approach. Extensive experiments on multiple challenging benchmarks demonstrate that our Pro-AD achieve state-of-the-art performance, highlighting its superior robustness and practical effectiveness for Multi-class Unsupervised Anomaly Detection task.
Authors:Yuxuan Cao, Jiarong Xu, Chen Zhao, Jiaan Wang, Carl Yang, Chunping Wang, Yang Yang
Title: How to Use Graph Data in the Wild to Help Graph Anomaly Detection?
Abstract:
In recent years, graph anomaly detection has found extensive applications in various domains such as social, financial, and communication networks. However, anomalies in graph-structured data present unique challenges, including label scarcity, ill-defined anomalies, and varying anomaly types, making supervised or semi-supervised methods unreliable. Researchers often adopt unsupervised approaches to address these challenges, assuming that anomalies deviate significantly from the normal data distribution. Yet, when the available data is insufficient, capturing the normal distribution accurately and comprehensively becomes difficult. To overcome this limitation, we propose to utilize external graph data (i.e., graph data in the wild) to help anomaly detection tasks. This naturally raises the question: How can we use external data to help graph anomaly detection tasks? To answer this question, we propose a framework called Wild-GAD. It is built upon a unified database, UniWildGraph, which comprises a large and diverse collection of graph data with broad domain coverage, ample data volume, and a unified feature space. Further, we develop selection criteria based on representativity and diversity to identify the most suitable external data for anomaly detection task. Extensive experiments on six real-world datasets demonstrate the effectiveness of Wild-GAD. Compared to the baseline methods, our framework has an average 18% AUCROC and 32% AUCPR improvement over the best-competing methods.
Authors:Ziteng Yang, Jingzehua Xu, Yanshu Li, Zepeng Li, Yeqiang Wang, Xinghui Li
Title: ViP$^2$-CLIP: Visual-Perception Prompting with Unified Alignment for Zero-Shot Anomaly Detection
Abstract:
Zero-shot anomaly detection (ZSAD) aims to detect anomalies without any target domain training samples, relying solely on external auxiliary data. Existing CLIP-based methods attempt to activate the model's ZSAD potential via handcrafted or static learnable prompts. The former incur high engineering costs and limited semantic coverage, whereas the latter apply identical descriptions across diverse anomaly types, thus fail to adapt to complex variations. Furthermore, since CLIP is originally pretrained on large-scale classification tasks, its anomaly segmentation quality is highly sensitive to the exact wording of class names, severely constraining prompting strategies that depend on class labels. To address these challenges, we introduce ViP$^{2}$-CLIP. The key insight of ViP$^{2}$-CLIP is a Visual-Perception Prompting (ViP-Prompt) mechanism, which fuses global and multi-scale local visual context to adaptively generate fine-grained textual prompts, eliminating manual templates and class-name priors. This design enables our model to focus on precise abnormal regions, making it particularly valuable when category labels are ambiguous or privacy-constrained. Extensive experiments on 15 industrial and medical benchmarks demonstrate that ViP$^{2}$-CLIP achieves state-of-the-art performance and robust cross-domain generalization.
Authors:Filippo Leveni, Guilherme Weigert Cassales, Bernhard Pfahringer, Albert Bifet, Giacomo Boracchi
Title: Online Isolation Forest
Abstract:
The anomaly detection literature is abundant with offline methods, which require repeated access to data in memory, and impose impractical assumptions when applied to a streaming context. Existing online anomaly detection methods also generally fail to address these constraints, resorting to periodic retraining to adapt to the online context. We propose Online-iForest, a novel method explicitly designed for streaming conditions that seamlessly tracks the data generating process as it evolves over time. Experimental validation on real-world datasets demonstrated that Online-iForest is on par with online alternatives and closely rivals state-of-the-art offline anomaly detection techniques that undergo periodic retraining. Notably, Online-iForest consistently outperforms all competitors in terms of efficiency, making it a promising solution in applications where fast identification of anomalies is of primary importance such as cybersecurity, fraud and fault detection.
Authors:Ali Senol, Garima Agrawal, Huan Liu
Title: Joint Detection of Fraud and Concept Drift inOnline Conversations with LLM-Assisted Judgment
Abstract:
Detecting fake interactions in digital communication platforms remains a challenging and insufficiently addressed problem. These interactions may appear as harmless spam or escalate into sophisticated scam attempts, making it difficult to flag malicious intent early. Traditional detection methods often rely on static anomaly detection techniques that fail to adapt to dynamic conversational shifts. One key limitation is the misinterpretation of benign topic transitions referred to as concept drift as fraudulent behavior, leading to either false alarms or missed threats. We propose a two stage detection framework that first identifies suspicious conversations using a tailored ensemble classification model. To improve the reliability of detection, we incorporate a concept drift analysis step using a One Class Drift Detector (OCDD) to isolate conversational shifts within flagged dialogues. When drift is detected, a large language model (LLM) assesses whether the shift indicates fraudulent manipulation or a legitimate topic change. In cases where no drift is found, the behavior is inferred to be spam like. We validate our framework using a dataset of social engineering chat scenarios and demonstrate its practical advantages in improving both accuracy and interpretability for real time fraud detection. To contextualize the trade offs, we compare our modular approach against a Dual LLM baseline that performs detection and judgment using different language models.
Authors:Haocheng Meng, Shaocheng Luo, Zhenyuan Liang, Qing Huang, Amir Khazraei, Miroslav Pajic
Title: MARS: Defending Unmanned Aerial Vehicles From Attacks on Inertial Sensors with Model-based Anomaly Detection and Recovery
Abstract:
Unmanned Aerial Vehicles (UAVs) rely on measurements from Inertial Measurement Units (IMUs) to maintain stable flight. However, IMUs are susceptible to physical attacks, including acoustic resonant and electromagnetic interference attacks, resulting in immediate UAV crashes. Consequently, we introduce a Model-based Anomaly detection and Recovery System (MARS) that enables UAVs to quickly detect adversarial attacks on inertial sensors and achieve dynamic flight recovery. MARS features an attack-resilient state estimator based on the Extended Kalman Filter, which incorporates position, velocity, heading, and rotor speed measurements to reconstruct accurate attitude and angular velocity information for UAV control. Moreover, a statistical anomaly detection system monitors IMU sensor data, raising a system-level alert if an attack is detected. Upon receiving the alert, a multi-stage dynamic flight recovery strategy suspends the ongoing mission, stabilizes the drone in a hovering condition, and then resumes tasks under the resilient control. Experimental results in PX4 software-in-the-loop environments as well as real-world MARS-PX4 autopilot-equipped drones demonstrate the superiority of our approach over existing IMU-defense frameworks, showcasing the ability of the UAVs to survive attacks and complete the missions.
Authors:Yihang Liu, Lianghua He, Ying Wen, Longzhen Yang, Hongzhou Chen
Title: AFiRe: Anatomy-Driven Self-Supervised Learning for Fine-Grained Representation in Radiographic Images
Abstract:
Current self-supervised methods, such as contrastive learning, predominantly focus on global discrimination, neglecting the critical fine-grained anatomical details required for accurate radiographic analysis. To address this challenge, we propose an Anatomy-driven self-supervised framework for enhancing Fine-grained Representation in radiographic image analysis (AFiRe). The core idea of AFiRe is to align the anatomical consistency with the unique token-processing characteristics of Vision Transformer. Specifically, AFiRe synergistically performs two self-supervised schemes: (i) Token-wise anatomy-guided contrastive learning, which aligns image tokens based on structural and categorical consistency, thereby enhancing fine-grained spatial-anatomical discrimination; (ii) Pixel-level anomaly-removal restoration, which particularly focuses on local anomalies, thereby refining the learned discrimination with detailed geometrical information. Additionally, we propose Synthetic Lesion Mask to enhance anatomical diversity while preserving intra-consistency, which is typically corrupted by traditional data augmentations, such as Cropping and Affine transformations. Experimental results show that AFiRe: (i) provides robust anatomical discrimination, achieving more cohesive feature clusters compared to state-of-the-art contrastive learning methods; (ii) demonstrates superior generalization, surpassing 7 radiography-specific self-supervised methods in multi-label classification tasks with limited labeling; and (iii) integrates fine-grained information, enabling precise anomaly detection using only image-level annotations.
Authors:Ziyun Liang, Xiaoqing Guo, Wentian Xu, Yasin Ibrahim, Natalie Voets, Pieter M Pretorius, J. Alison Noble, Konstantinos Kamnitsas
Title: IterMask3D: Unsupervised Anomaly Detection and Segmentation with Test-Time Iterative Mask Refinement in 3D Brain MR
Abstract:
Unsupervised anomaly detection and segmentation methods train a model to learn the training distribution as 'normal'. In the testing phase, they identify patterns that deviate from this normal distribution as 'anomalies'. To learn the `normal' distribution, prevailing methods corrupt the images and train a model to reconstruct them. During testing, the model attempts to reconstruct corrupted inputs based on the learned 'normal' distribution. Deviations from this distribution lead to high reconstruction errors, which indicate potential anomalies. However, corrupting an input image inevitably causes information loss even in normal regions, leading to suboptimal reconstruction and an increased risk of false positives. To alleviate this, we propose IterMask3D, an iterative spatial mask-refining strategy designed for 3D brain MRI. We iteratively spatially mask areas of the image as corruption and reconstruct them, then shrink the mask based on reconstruction error. This process iteratively unmasks 'normal' areas to the model, whose information further guides reconstruction of 'normal' patterns under the mask to be reconstructed accurately, reducing false positives. In addition, to achieve better reconstruction performance, we also propose using high-frequency image content as additional structural information to guide the reconstruction of the masked area. Extensive experiments on the detection of both synthetic and real-world imaging artifacts, as well as segmentation of various pathological lesions across multiple MRI sequences, consistently demonstrate the effectiveness of our proposed method.
Authors:Zakaria Laskar, Tomas Vojir, Matej Grcic, Iaroslav Melekhov, Shankar Gangisettye, Juho Kannala, Jiri Matas, Giorgos Tolias, C. V. Jawahar
Title: A Dataset for Semantic Segmentation in the Presence of Unknowns
Abstract:
Before deployment in the real-world deep neural networks require thorough evaluation of how they handle both knowns, inputs represented in the training data, and unknowns (anomalies). This is especially important for scene understanding tasks with safety critical applications, such as in autonomous driving. Existing datasets allow evaluation of only knowns or unknowns - but not both, which is required to establish "in the wild" suitability of deep neural network models. To bridge this gap, we propose a novel anomaly segmentation dataset, ISSU, that features a diverse set of anomaly inputs from cluttered real-world environments. The dataset is twice larger than existing anomaly segmentation datasets, and provides a training, validation and test set for controlled in-domain evaluation. The test set consists of a static and temporal part, with the latter comprised of videos. The dataset provides annotations for both closed-set (knowns) and anomalies, enabling closed-set and open-set evaluation. The dataset covers diverse conditions, such as domain and cross-sensor shift, illumination variation and allows ablation of anomaly detection methods with respect to these variations. Evaluation results of current state-of-the-art methods confirm the need for improvements especially in domain-generalization, small and large object segmentation.
Authors:Yurui Pan, Lidong Wang, Yuchao Chen, Wenbing Zhu, Bo Peng, Mingmin Chi
Title: PA-CLIP: Enhancing Zero-Shot Anomaly Detection through Pseudo-Anomaly Awareness
Abstract:
In industrial anomaly detection (IAD), accurately identifying defects amidst diverse anomalies and under varying imaging conditions remains a significant challenge. Traditional approaches often struggle with high false-positive rates, frequently misclassifying normal shadows and surface deformations as defects, an issue that becomes particularly pronounced in products with complex and intricate surface features. To address these challenges, we introduce PA-CLIP, a zero-shot anomaly detection method that reduces background noise and enhances defect detection through a pseudo-anomaly-based framework. The proposed method integrates a multiscale feature aggregation strategy for capturing detailed global and local information, two memory banks for distinguishing background information, including normal patterns and pseudo-anomalies, from true anomaly features, and a decision-making module designed to minimize false positives caused by environmental variations while maintaining high defect sensitivity. Demonstrated on the MVTec AD and VisA datasets, PA-CLIP outperforms existing zero-shot methods, providing a robust solution for industrial defect detection.
Authors:Ehsan Hallaji, Roozbeh Razavi-Far, Mehrdad Saif
Title: TrustChain: A Blockchain Framework for Auditing and Verifying Aggregators in Decentralized Federated Learning
Abstract:
The server-less nature of Decentralized Federated Learning (DFL) requires allocating the aggregation role to specific participants in each federated round. Current DFL architectures ensure the trustworthiness of the aggregator node upon selection. However, most of these studies overlook the possibility that the aggregating node may turn rogue and act maliciously after being nominated. To address this problem, this paper proposes a DFL structure, called TrustChain, that scores the aggregators before selection based on their past behavior and additionally audits them after the aggregation. To do this, the statistical independence between the client updates and the aggregated model is continuously monitored using the Hilbert-Schmidt Independence Criterion (HSIC). The proposed method relies on several principles, including blockchain, anomaly detection, and concept drift analysis. The designed structure is evaluated on several federated datasets and attack scenarios with different numbers of Byzantine nodes.
Authors:Jiaxing Qi, Chang Zeng, Zhongzhi Luan, Shaohan Huang, Shu Yang, Yao Lu, Hailong Yang, Depei Qian
Title: Beyond Window-Based Detection: A Graph-Centric Framework for Discrete Log Anomaly Detection
Abstract:
Detecting anomalies in discrete event logs is critical for ensuring system reliability, security, and efficiency. Traditional window-based methods for log anomaly detection often suffer from context bias and fuzzy localization, which hinder their ability to precisely and efficiently identify anomalies. To address these challenges, we propose a graph-centric framework, TempoLog, which leverages multi-scale temporal graph networks for discrete log anomaly detection. Unlike conventional methods, TempoLog constructs continuous-time dynamic graphs directly from event logs, eliminating the need for fixed-size window grouping. By representing log templates as nodes and their temporal relationships as edges, the framework dynamically captures both local and global dependencies across multiple temporal scales. Additionally, a semantic-aware model enhances detection by incorporating rich contextual information. Extensive experiments on public datasets demonstrate that our method achieves state-of-the-art performance in event-level anomaly detection, significantly outperforming existing approaches in both accuracy and efficiency.
Authors:Jiaxing Qi, Chang Zeng, Zhongzhi Luan, Shaohan Huang, Shu Yang, Yao Lu, Bin Han, Hailong Yang, Depei Qian
Title: Quantum Machine Learning in Log-based Anomaly Detection: Challenges and Opportunities
Abstract:
Log-based anomaly detection (LogAD) is the main component of Artificial Intelligence for IT Operations (AIOps), which can detect anomalous that occur during the system on-the-fly. Existing methods commonly extract log sequence features using classical machine learning techniques to identify whether a new sequence is an anomaly or not. However, these classical approaches often require trade-offs between efficiency and accuracy. The advent of quantum machine learning (QML) offers a promising alternative. By transforming parts of classical machine learning computations into parameterized quantum circuits (PQCs), QML can significantly reduce the number of trainable parameters while maintaining accuracy comparable to classical counterparts. In this work, we introduce a unified framework, \ourframework{}, for evaluating QML models in the context of LogAD. This framework incorporates diverse log data, integrated QML models, and comprehensive evaluation metrics. State-of-the-art methods such as DeepLog, LogAnomaly, and LogRobust, along with their quantum-transformed counterparts, are included in our framework.Beyond standard metrics like F1 score, precision, and recall, our evaluation extends to factors critical to QML performance, such as specificity, the number of circuits, circuit design, and quantum state encoding. Using \ourframework{}, we conduct extensive experiments to assess the performance of these models and their quantum counterparts, uncovering valuable insights and paving the way for future research in QML model selection and design for LogAD.
Authors:Yifu Cai, Arjun Choudhry, Mononito Goswami, Artur Dubrawski
Title: TimeSeriesExam: A time series understanding exam
Abstract:
Large Language Models (LLMs) have recently demonstrated a remarkable ability to model time series data. These capabilities can be partly explained if LLMs understand basic time series concepts. However, our knowledge of what these models understand about time series data remains relatively limited. To address this gap, we introduce TimeSeriesExam, a configurable and scalable multiple-choice question exam designed to assess LLMs across five core time series understanding categories: pattern recognition, noise understanding, similarity analysis, anomaly detection, and causality analysis. TimeSeriesExam comprises of over 700 questions, procedurally generated using 104 carefully curated templates and iteratively refined to balance difficulty and their ability to discriminate good from bad models. We test 7 state-of-the-art LLMs on the TimeSeriesExam and provide the first comprehensive evaluation of their time series understanding abilities. Our results suggest that closed-source models such as GPT-4 and Gemini understand simple time series concepts significantly better than their open-source counterparts, while all models struggle with complex concepts such as causality analysis. We believe that the ability to programatically generate questions is fundamental to assessing and improving LLM's ability to understand and reason about time series data.
Authors:Youpeng Li, Xinda Wang, Fuxun Yu, Lichao Sun, Wenbin Zhang, Xuyu Wang
Title: FedCAP: Robust Federated Learning via Customized Aggregation and Personalization
Abstract:
Federated learning (FL), an emerging distributed machine learning paradigm, has been applied to various privacy-preserving scenarios. However, due to its distributed nature, FL faces two key issues: the non-independent and identical distribution (non-IID) of user data and vulnerability to Byzantine threats. To address these challenges, in this paper, we propose FedCAP, a robust FL framework against both data heterogeneity and Byzantine attacks. The core of FedCAP is a model update calibration mechanism to help a server capture the differences in the direction and magnitude of model updates among clients. Furthermore, we design a customized model aggregation rule that facilitates collaborative training among similar clients while accelerating the model deterioration of malicious clients. With a Euclidean norm-based anomaly detection mechanism, the server can quickly identify and permanently remove malicious clients. Moreover, the impact of data heterogeneity and Byzantine attacks can be further mitigated through personalization on the client side. We conduct extensive experiments, comparing multiple state-of-the-art baselines, to demonstrate that FedCAP performs well in several non-IID settings and shows strong robustness under a series of poisoning attacks.
Authors:Alejandro Ascarate, Leo Lebrat, Rodrigo Santa Cruz, Clinton Fookes, Olivier Salvado
Title: VAE with Hyperspherical Coordinates: Improving Anomaly Detection from Hypervolume-Compressed Latent Space
Abstract:
Variational autoencoders (VAE) encode data into lower-dimensional latent vectors before decoding those vectors back to data. Once trained, one can hope to detect out-of-distribution (abnormal) latent vectors, but several issues arise when the latent space is high dimensional. This includes an exponential growth of the hypervolume with the dimension, which severely affects the generative capacity of the VAE. In this paper, we draw insights from high dimensional statistics: in these regimes, the latent vectors of a standard VAE are distributed on the `equators' of a hypersphere, challenging the detection of anomalies. We propose to formulate the latent variables of a VAE using hyperspherical coordinates, which allows compressing the latent vectors towards a given direction on the hypersphere, thereby allowing for a more expressive approximate posterior. We show that this improves both the fully unsupervised and OOD anomaly detection ability of the VAE, achieving the best performance on the datasets we considered, outperforming existing methods. For the unsupervised and OOD modalities, respectively, these are: i) detecting unusual landscape from the Mars Rover camera and unusual Galaxies from ground based imagery (complex, real world datasets); ii) standard benchmarks like Cifar10 and subsets of ImageNet as the in-distribution (ID) class.
Authors:Yang Liu, Yixing Luo, Xiaofeng Li, Xiaogang Dong, Bin Gu, Zhi Jin
Title: Evaluating Large Language Models for Time Series Anomaly Detection in Aerospace Software
Abstract:
Time series anomaly detection (TSAD) is essential for ensuring the safety and reliability of aerospace software systems. Although large language models (LLMs) provide a promising training-free alternative to unsupervised approaches, their effectiveness in aerospace settings remains under-examined because of complex telemetry, misaligned evaluation metrics, and the absence of domain knowledge. To address this gap, we introduce ATSADBench, the first benchmark for aerospace TSAD. ATSADBench comprises nine tasks that combine three pattern-wise anomaly types, univariate and multivariate signals, and both in-loop and out-of-loop feedback scenarios, yielding 108,000 data points. Using this benchmark, we systematically evaluate state-of-the-art open-source LLMs under two paradigms: Direct, which labels anomalies within sliding windows, and Prediction-Based, which detects anomalies from prediction errors. To reflect operational needs, we reformulate evaluation at the window level and propose three user-oriented metrics: Alarm Accuracy (AA), Alarm Latency (AL), and Alarm Contiguity (AC), which quantify alarm correctness, timeliness, and credibility. We further examine two enhancement strategies, few-shot learning and retrieval-augmented generation (RAG), to inject domain knowledge. The evaluation results show that (1) LLMs perform well on univariate tasks but struggle with multivariate telemetry, (2) their AA and AC on multivariate tasks approach random guessing, (3) few-shot learning provides modest gains whereas RAG offers no significant improvement, and (4) in practice LLMs can detect true anomaly onsets yet sometimes raise false alarms, which few-shot prompting mitigates but RAG exacerbates. These findings offer guidance for future LLM-based TSAD in aerospace software.
Authors:Hoang M. Ngo, Tre' R. Jeter, Jung Taek Seo, My T. Thai
Title: QUPID: A Partitioned Quantum Neural Network for Anomaly Detection in Smart Grid
Abstract:
Smart grid infrastructures have revolutionized energy distribution, but their day-to-day operations require robust anomaly detection methods to counter risks associated with cyber-physical threats and system faults potentially caused by natural disasters, equipment malfunctions, and cyber attacks. Conventional machine learning (ML) models are effective in several domains, yet they struggle to represent the complexities observed in smart grid systems. Furthermore, traditional ML models are highly susceptible to adversarial manipulations, making them increasingly unreliable for real-world deployment. Quantum ML (QML) provides a unique advantage, utilizing quantum-enhanced feature representations to model the intricacies of the high-dimensional nature of smart grid systems while demonstrating greater resilience to adversarial manipulation. In this work, we propose QUPID, a partitioned quantum neural network (PQNN) that outperforms traditional state-of-the-art ML models in anomaly detection. We extend our model to R-QUPID that even maintains its performance when including differential privacy (DP) for enhanced robustness. Moreover, our partitioning framework addresses a significant scalability problem in QML by efficiently distributing computational workloads, making quantum-enhanced anomaly detection practical in large-scale smart grid environments. Our experimental results across various scenarios exemplifies the efficacy of QUPID and R-QUPID to significantly improve anomaly detection capabilities and robustness compared to traditional ML approaches.
Authors:Shaghayegh Emami, Cecilia Tosciri, Giovanna Salvi, Zixin Ding, Yuxin Chen, Abhijith Gandrakota, Christian Herwig, David W. Miller, Jennifer Ngadiuba, Nhan Tran
Title: Towards a Self-Driving Trigger at the LHC: Adaptive Response in Real Time
Abstract:
Real-time data filtering and selection -- or trigger -- systems at high-throughput scientific facilities such as the experiments at the Large Hadron Collider (LHC) must process extremely high-rate data streams under stringent bandwidth, latency, and storage constraints. Yet these systems are typically designed as static, hand-tuned menus of selection criteria grounded in prior knowledge and simulation. In this work, we further explore the concept of a self-driving trigger, an autonomous data-filtering framework that reallocates resources and adjusts thresholds dynamically in real-time to optimize signal efficiency, rate stability, and computational cost as instrumentation and environmental conditions evolve. We introduce a benchmark ecosystem to emulate realistic collider scenarios and demonstrate real-time optimization of a menu including canonical energy sum triggers as well as modern anomaly-detection algorithms that target non-standard event topologies using machine learning. Using simulated data streams and publicly available collision data from the Compact Muon Solenoid (CMS) experiment, we demonstrate the capability to dynamically and automatically optimize trigger performance under specific cost objectives without manual retuning. Our adaptive strategy shifts trigger design from static menus with heuristic tuning to intelligent, automated, data-driven control, unlocking greater flexibility and discovery potential in future high-energy physics analyses.
Authors:Mingqi Lv, Shanshan Zhang, Haiwen Liu, Tieming Chen, Tiantian Zhu
Title: APT-MCL: An Adaptive APT Detection System Based on Multi-View Collaborative Provenance Graph Learning
Abstract:
Advanced persistent threats (APTs) are stealthy and multi-stage, making single-point defenses (e.g., malware- or traffic-based detectors) ill-suited to capture long-range and cross-entity attack semantics. Provenance-graph analysis has become a prominent approach for APT detection. However, its practical deployment is hampered by (i) the scarcity of APT samples, (ii) the cost and difficulty of fine-grained APT sample labeling, and (iii) the diversity of attack tactics and techniques. Aiming at these problems, this paper proposes APT-MCL, an intelligent APT detection system based on Multi-view Collaborative provenance graph Learning. It adopts an unsupervised learning strategy to discover APT attacks at the node level via anomaly detection. After that, it creates multiple anomaly detection sub-models based on multi-view features and integrates them within a collaborative learning framework to adapt to diverse attack scenarios. Extensive experiments on three real-world APT datasets validate the approach: (i) multi-view features improve cross-scenario generalization, and (ii) co-training substantially boosts node-level detection under label scarcity, enabling practical deployment on diverse attack scenarios.
Authors:Yang Cao, Sikun Yang, Xuyun Zhang, Yujiu Yang
Title: Stochastic Voronoi Ensembles for Anomaly Detection
Abstract:
Anomaly detection aims to identify data instances that deviate significantly from majority of data, which has been widely used in fraud detection, network security, and industrial quality control. Existing methods struggle with datasets exhibiting varying local densities: distance-based methods miss local anomalies, while density-based approaches require careful parameter selection and incur quadratic time complexity. We observe that local anomalies, though indistinguishable under global analysis, become conspicuous when the data space is decomposed into restricted regions and each region is examined independently. Leveraging this geometric insight, we propose SVEAD (Stochastic Voronoi Ensembles Anomaly Detector), which constructs ensemble random Voronoi diagrams and scores points by normalized cell-relative distances weighted by local scale. The proposed method achieves linear time complexity and constant space complexity. Experiments on 45 datasets demonstrate that SVEAD outperforms 12 state-of-the-art approaches.
Authors:Qingyuan Hu, Christopher M. Poskitt, Jun Sun, Yuqi Chen
Title: Developing a Strong CPS Defender: An Evolutionary Approach
Abstract:
Cyber-physical systems (CPSs) are used extensively in critical infrastructure, underscoring the need for anomaly detection systems that are able to catch even the most motivated attackers. Traditional anomaly detection techniques typically do `one-off' training on datasets crafted by experts or generated by fuzzers, potentially limiting their ability to generalize to unseen and more subtle attack strategies. Stopping at this point misses a key opportunity: a defender can actively challenge the attacker to find more nuanced attacks, which in turn can lead to more effective detection capabilities. Building on this concept, we propose Evo-Defender, an evolutionary framework that iteratively strengthens CPS defenses through a dynamic attacker-defender interaction. Evo-Defender includes a smart attacker that employs guided fuzzing to explore diverse, non-redundant attack strategies, while the self-evolving defender uses incremental learning to adapt to new attack patterns. We implement Evo-Defender on two realistic CPS testbeds: the Tennessee Eastman process and a Robotic Arm Assembly Workstation, injecting over 600 attack scenarios. In end-to-end attack detection experiments, Evo-Defender achieves up to 2.7% higher performance than state-of-the-art baselines on unseen scenarios, while utilizing training data more efficiently for faster and more robust detection.
Authors:Shivani Mruthyunjaya, Anandi Dutta, Kazi Sifatul Islam
Title: Introducing AI-Driven IoT Energy Management Framework
Abstract:
Power consumption has become a critical aspect of modern life due to the consistent reliance on technological advancements. Reducing power consumption or following power usage predictions can lead to lower monthly costs and improved electrical reliability. The proposal of a holistic framework to establish a foundation for IoT systems with a focus on contextual decision making, proactive adaptation, and scalable structure. A structured process for IoT systems with accuracy and interconnected development would support reducing power consumption and support grid stability. This study presents the feasibility of this proposal through the application of each aspect of the framework. This system would have long term forecasting, short term forecasting, anomaly detection, and consideration of qualitative data with any energy management decisions taken. Performance was evaluated on Power Consumption Time Series data to display the direct application of the framework.
Authors:Marie Hein, Gregor Kasieczka, Michael Krämer, Louis Moureaux, Alexander Mück, David Shih
Title: How to pick the best anomaly detector?
Abstract:
Anomaly detection has the potential to discover new physics in unexplored regions of the data. However, choosing the best anomaly detector for a given data set in a model-agnostic way is an important challenge which has hitherto largely been neglected. In this paper, we introduce the data-driven ARGOS metric, which has a sound theoretical foundation and is empirically shown to robustly select the most sensitive anomaly detection model given the data. Focusing on weakly-supervised, classifier-based anomaly detection methods, we show that the ARGOS metric outperforms other model selection metrics previously used in the literature, in particular the binary cross-entropy loss. We explore several realistic applications, including hyperparameter tuning as well as architecture and feature selection, and in all cases we demonstrate that ARGOS is robust to the noisy conditions of anomaly detection.
Authors:Junya Shiraishi, Jiechen Chen, Osvaldo Simeone, Petar Popovski
Title: Online Reliable Anomaly Detection via Neuromorphic Sensing and Communications
Abstract:
This paper proposes a low-power online anomaly detection framework based on neuromorphic wireless sensor networks, encompassing possible use cases such as brain-machine interfaces and remote environmental monitoring. In the considered system, a central reader node actively queries a subset of neuromorphic sensor nodes (neuro-SNs) at each time frame. The neuromorphic sensors are event-driven, producing spikes in correspondence to relevant changes in the monitored system. The queried neuro-SNs respond to the reader with impulse radio (IR) transmissions that directly encode the sensed local events. The reader processes these event-driven signals to determine whether the monitored environment is in a normal or anomalous state, while rigorously controlling the false discovery rate (FDR) of detections below a predefined threshold. The proposed approach employs an online hypothesis testing method with e-values to maintain FDR control without requiring knowledge of the anomaly rate, and it dynamically optimizes the sensor querying strategy by casting it as a best-arm identification problem in a multi-armed bandit framework. Extensive performance evaluation demonstrates that the proposed method can reliably detect anomalies under stringent FDR requirements, while efficiently scheduling sensor communications and achieving low detection latency.
Authors:Yang Cao, Sikun Yang, Hao Tian, Kai He, Lianyong Qi, Ming Liu, Yujiu Yang
Title: Isolation-based Spherical Ensemble Representations for Anomaly Detection
Abstract:
Anomaly detection is a critical task in data mining and management with applications spanning fraud detection, network security, and log monitoring. Despite extensive research, existing unsupervised anomaly detection methods still face fundamental challenges including conflicting distributional assumptions, computational inefficiency, and difficulty handling different anomaly types. To address these problems, we propose ISER (Isolation-based Spherical Ensemble Representations) that extends existing isolation-based methods by using hypersphere radii as proxies for local density characteristics while maintaining linear time and constant space complexity. ISER constructs ensemble representations where hypersphere radii encode density information: smaller radii indicate dense regions while larger radii correspond to sparse areas. We introduce a novel similarity-based scoring method that measures pattern consistency by comparing ensemble representations against a theoretical anomaly reference pattern. Additionally, we enhance the performance of Isolation Forest by using ISER and adapting the scoring function to address axis-parallel bias and local anomaly detection limitations. Comprehensive experiments on 22 real-world datasets demonstrate ISER's superior performance over 11 baseline methods.
Authors:Xiangyu Dong, Xingyi Zhang, Sibo Wang
Title: FracAug: Fractional Augmentation boost Graph-level Anomaly Detection under Limited Supervision
Abstract:
Graph-level anomaly detection (GAD) is critical in diverse domains such as drug discovery, yet high labeling costs and dataset imbalance hamper the performance of Graph Neural Networks (GNNs). To address these issues, we propose FracAug, an innovative plug-in augmentation framework that enhances GNNs by generating semantically consistent graph variants and pseudo-labeling with mutual verification. Unlike previous heuristic methods, FracAug learns semantics within given graphs and synthesizes fractional variants, guided by a novel weighted distance-aware margin loss. This captures multi-scale topology to generate diverse, semantic-preserving graphs unaffected by data imbalance. Then, FracAug utilizes predictions from both original and augmented graphs to pseudo-label unlabeled data, iteratively expanding the training set. As a model-agnostic module compatible with various GNNs, FracAug demonstrates remarkable universality and efficacy: experiments across 14 GNNs on 12 real-world datasets show consistent gains, boosting average AUROC, AUPRC, and F1-score by up to 5.72%, 7.23%, and 4.18%, respectively.
Authors:Dongqi Zheng, Wenjin Fu, Guangzong Chen
Title: A Real-Time On-Device Defect Detection Framework for Laser Power-Meter Sensors via Unsupervised Learning
Abstract:
We present an automated vision-based system for defect detection and classification of laser power meter sensor coatings. Our approach addresses the critical challenge of identifying coating defects such as thermal damage and scratches that can compromise laser energy measurement accuracy in medical and industrial applications. The system employs an unsupervised anomaly detection framework that trains exclusively on ``good'' sensor images to learn normal coating distribution patterns, enabling detection of both known and novel defect types without requiring extensive labeled defect datasets. Our methodology consists of three key components: (1) a robust preprocessing pipeline using Laplacian edge detection and K-means clustering to segment the area of interest, (2) synthetic data augmentation via StyleGAN2, and (3) a UFlow-based neural network architecture for multi-scale feature extraction and anomaly map generation. Experimental evaluation on 366 real sensor images demonstrates $93.8\%$ accuracy on defective samples and $89.3\%$ accuracy on good samples, with image-level AUROC of 0.957 and pixel-level AUROC of 0.961. The system provides potential annual cost savings through automated quality control and processing times of 0.5 seconds per image in on-device implementation.
Authors:Tiejun Wang, Rui Wang, Xudong Mou, Mengyuan Ma, Tianyu Wo, Renyu Yang, Xudong Liu
Title: An Improved Time Series Anomaly Detection by Applying Structural Similarity
Abstract:
Effective anomaly detection in time series is pivotal for modern industrial applications and financial systems. Due to the scarcity of anomaly labels and the high cost of manual labeling, reconstruction-based unsupervised approaches have garnered considerable attention. However, accurate anomaly detection remains an unsettled challenge, since the optimization objectives of reconstruction-based methods merely rely on point-by-point distance measures, ignoring the potential structural characteristics of time series and thus failing to tackle complex pattern-wise anomalies. In this paper, we propose StrAD, a novel structure-enhanced anomaly detection approach to enrich the optimization objective by incorporating structural information hidden in the time series and steering the data reconstruction procedure to better capture such structural features. StrAD accommodates the trend, seasonality, and shape in the optimization objective of the reconstruction model to learn latent structural characteristics and capture the intrinsic pattern variation of time series. The proposed structure-aware optimization objective mechanism can assure the alignment between the original data and the reconstructed data in terms of structural features, thereby keeping consistency in global fluctuation and local characteristics. The mechanism is pluggable and applicable to any reconstruction-based methods, enhancing the model sensitivity to both point-wise anomalies and pattern-wise anomalies. Experimental results show that StrAD improves the performance of state-of-the-art reconstruction-based models across five real-world anomaly detection datasets.
Authors:Yeonju Lee, Rui Qi Chen, Joseph Oboamah, Po Nien Su, Wei-zhen Liang, Yeyin Shi, Lu Gan, Yongsheng Chen, Xin Qiao, Jing Li
Title: SPADE: A Large Language Model Framework for Soil Moisture Pattern Recognition and Anomaly Detection in Precision Agriculture
Abstract:
Accurate interpretation of soil moisture patterns is critical for irrigation scheduling and crop management, yet existing approaches for soil moisture time-series analysis either rely on threshold-based rules or data-hungry machine learning or deep learning models that are limited in adaptability and interpretability. In this study, we introduce SPADE (Soil moisture Pattern and Anomaly DEtection), an integrated framework that leverages large language models (LLMs) to jointly detect irrigation patterns and anomalies in soil moisture time-series data. SPADE utilizes ChatGPT-4.1 for its advanced reasoning and instruction-following capabilities, enabling zero-shot analysis without requiring task-specific annotation or fine-tuning. By converting time-series data into a textual representation and designing domain-informed prompt templates, SPADE identifies irrigation events, estimates net irrigation gains, detects, classifies anomalies, and produces structured, interpretable reports. Experiments were conducted on real-world soil moisture sensor data from commercial and experimental farms cultivating multiple crops across the United States. Results demonstrate that SPADE outperforms the existing method in anomaly detection, achieving higher recall and F1 scores and accurately classifying anomaly types. Furthermore, SPADE achieved high precision and recall in detecting irrigation events, indicating its strong capability to capture irrigation patterns accurately. SPADE's reports provide interpretability and usability of soil moisture analytics. This study highlights the potential of LLMs as scalable, adaptable tools for precision agriculture, which is capable of integrating qualitative knowledge and data-driven reasoning to produce actionable insights for accurate soil moisture monitoring and improved irrigation scheduling from soil moisture time-series data.
Authors:Renan Souza, Timothy Poteet, Brian Etz, Daniel Rosendo, Amal Gueroudji, Woong Shin, Prasanna Balaprakash, Rafael Ferreira da Silva
Title: LLM Agents for Interactive Workflow Provenance: Reference Architecture and Evaluation Methodology
Abstract:
Modern scientific discovery increasingly relies on workflows that process data across the Edge, Cloud, and High Performance Computing (HPC) continuum. Comprehensive and in-depth analyses of these data are critical for hypothesis validation, anomaly detection, reproducibility, and impactful findings. Although workflow provenance techniques support such analyses, at large scale, the provenance data become complex and difficult to analyze. Existing systems depend on custom scripts, structured queries, or static dashboards, limiting data interaction. In this work, we introduce an evaluation methodology, reference architecture, and open-source implementation that leverages interactive Large Language Model (LLM) agents for runtime data analysis. Our approach uses a lightweight, metadata-driven design that translates natural language into structured provenance queries. Evaluations across LLaMA, GPT, Gemini, and Claude, covering diverse query classes and a real-world chemistry workflow, show that modular design, prompt tuning, and Retrieval-Augmented Generation (RAG) enable accurate and insightful LLM agent responses beyond recorded provenance.
Authors:Abigail R. Cohen, Yuming Sun, Zhihao Qin, Harsh S. Muriki, Zihao Xiao, Yeonju Lee, Matthew Housley, Andrew F. Sharkey, Rhuanito S. Ferrarezi, Jing Li, Lu Gan, Yongsheng Chen
Title: Modular, On-Site Solutions with Lightweight Anomaly Detection for Sustainable Nutrient Management in Agriculture
Abstract:
Efficient nutrient management is critical for crop growth and sustainable resource consumption (e.g., nitrogen, energy). Current approaches require lengthy analyses, preventing real-time optimization; similarly, imaging facilitates rapid phenotyping but can be computationally intensive, preventing deployment under resource constraints. This study proposes a flexible, tiered pipeline for anomaly detection and status estimation (fresh weight, dry mass, and tissue nutrients), including a comprehensive energy analysis of approaches that span the efficiency-accuracy spectrum. Using a nutrient depletion experiment with three treatments (T1-100%, T2-50%, and T3-25% fertilizer strength) and multispectral imaging (MSI), we developed a hierarchical pipeline using an autoencoder (AE) for early warning. Further, we compared two status estimation modules of different complexity for more detailed analysis: vegetation index (VI) features with machine learning (Random Forest, RF) and raw whole-image deep learning (Vision Transformer, ViT). Results demonstrated high-efficiency anomaly detection (73% net detection of T3 samples 9 days after transplanting) at substantially lower energy than embodied energy in wasted nitrogen. The state estimation modules show trade-offs, with ViT outperforming RF on phosphorus and calcium estimation (R2 0.61 vs. 0.58, 0.48 vs. 0.35) at higher energy cost. With our modular pipeline, this work opens opportunities for edge diagnostics and practical opportunities for agricultural sustainability.
Authors:Zhijie Zhong, Zhiwen Yu, Yiu-ming Cheung, Kaixiang Yang
Title: CCE: Confidence-Consistency Evaluation for Time Series Anomaly Detection
Abstract:
Time Series Anomaly Detection metrics serve as crucial tools for model evaluation. However, existing metrics suffer from several limitations: insufficient discriminative power, strong hyperparameter dependency, sensitivity to perturbations, and high computational overhead. This paper introduces Confidence-Consistency Evaluation (CCE), a novel evaluation metric that simultaneously measures prediction confidence and uncertainty consistency. By employing Bayesian estimation to quantify the uncertainty of anomaly scores, we construct both global and event-level confidence and consistency scores for model predictions, resulting in a concise CCE metric. Theoretically and experimentally, we demonstrate that CCE possesses strict boundedness, Lipschitz robustness against score perturbations, and linear time complexity $\mathcal{O}(n)$. Furthermore, we establish RankEval, a benchmark for comparing the ranking capabilities of various metrics. RankEval represents the first standardized and reproducible evaluation pipeline that enables objective comparison of evaluation metrics. Both CCE and RankEval implementations are fully open-source.
Authors:Shuo Liu, Di Yao, Yan Lin, Gao Cong, Jingping Bi
Title: Traj-MLLM: Can Multimodal Large Language Models Reform Trajectory Data Mining?
Abstract:
Building a general model capable of analyzing human trajectories across different geographic regions and different tasks becomes an emergent yet important problem for various applications. However, existing works suffer from the generalization problem, \ie, they are either restricted to train for specific regions or only suitable for a few tasks. Given the recent advances of multimodal large language models (MLLMs), we raise the question: can MLLMs reform current trajectory data mining and solve the problem? Nevertheless, due to the modality gap of trajectory, how to generate task-independent multimodal trajectory representations and how to adapt flexibly to different tasks remain the foundational challenges. In this paper, we propose \texttt{Traj-MLLM}}, which is the first general framework using MLLMs for trajectory data mining. By integrating multiview contexts, \texttt{Traj-MLLM}} transforms raw trajectories into interleaved image-text sequences while preserving key spatial-temporal characteristics, and directly utilizes the reasoning ability of MLLMs for trajectory analysis. Additionally, a prompt optimization method is proposed to finalize data-invariant prompts for task adaptation. Extensive experiments on four publicly available datasets show that \texttt{Traj-MLLM}} outperforms state-of-the-art baselines by $48.05\%$, $15.52\%$, $51.52\%$, $1.83\%$ on travel time estimation, mobility prediction, anomaly detection and transportation mode identification, respectively. \texttt{Traj-MLLM}} achieves these superior performances without requiring any training data or fine-tuning the MLLM backbones.
Authors:Muhammad Aqeel, Danijel Skocaj, Marco Cristani, Francesco Setti
Title: A Contrastive Learning-Guided Confident Meta-learning for Zero Shot Anomaly Detection
Abstract:
Industrial and medical anomaly detection faces critical challenges from data scarcity and prohibitive annotation costs, particularly in evolving manufacturing and healthcare settings. To address this, we propose CoZAD, a novel zero-shot anomaly detection framework that integrates soft confident learning with meta-learning and contrastive feature representation. Unlike traditional confident learning that discards uncertain samples, our method assigns confidence-based weights to all training data, preserving boundary information while emphasizing prototypical normal patterns. The framework quantifies data uncertainty through IQR-based thresholding and model uncertainty via covariance based regularization within a Model-Agnostic Meta-Learning. Contrastive learning creates discriminative feature spaces where normal patterns form compact clusters, enabling rapid domain adaptation. Comprehensive evaluation across 10 datasets spanning industrial and medical domains demonstrates state-of-the-art performance, outperforming existing methods on 6 out of 7 industrial benchmarks with notable improvements on texture-rich datasets (99.2% I-AUROC on DTD-Synthetic, 97.2% on BTAD) and pixellevel localization (96.3% P-AUROC on MVTec-AD). The framework eliminates dependence on vision-language alignments or model ensembles, making it valuable for resourceconstrained environments requiring rapid deployment.
Authors:Muhammad Aqeel, Shakiba Sharifi, Marco Cristani, Francesco Setti
Title: Robust Anomaly Detection in Industrial Environments via Meta-Learning
Abstract:
Anomaly detection is fundamental for ensuring quality control and operational efficiency in industrial environments, yet conventional approaches face significant challenges when training data contains mislabeled samples-a common occurrence in real-world scenarios. This paper presents RAD, a robust anomaly detection framework that integrates Normalizing Flows with Model-Agnostic Meta-Learning to address the critical challenge of label noise in industrial settings. Our approach employs a bi-level optimization strategy where meta-learning enables rapid adaptation to varying noise conditions, while uncertainty quantification guides adaptive L2 regularization to maintain model stability. The framework incorporates multiscale feature processing through pretrained feature extractors and leverages the precise likelihood estimation capabilities of Normalizing Flows for robust anomaly scoring. Comprehensive evaluation on MVTec-AD and KSDD2 datasets demonstrates superior performance, achieving I-AUROC scores of 95.4% and 94.6% respectively under clean conditions, while maintaining robust detection capabilities above 86.8% and 92.1% even when 50% of training samples are mislabeled. The results highlight RAD's exceptional resilience to noisy training conditions and its ability to detect subtle anomalies across diverse industrial scenarios, making it a practical solution for real-world anomaly detection applications where perfect data curation is challenging.
Authors:Zengyi Wo, Wenjun Wang, Minglai Shao, Chang Liu, Yumeng Wang, Yueheng Sun
Title: Addressing Graph Anomaly Detection via Causal Edge Separation and Spectrum
Abstract:
In the real world, anomalous entities often add more legitimate connections while hiding direct links with other anomalous entities, leading to heterophilic structures in anomalous networks that most GNN-based techniques fail to address. Several works have been proposed to tackle this issue in the spatial domain. However, these methods overlook the complex relationships between node structure encoding, node features, and their contextual environment and rely on principled guidance, research on solving spectral domain heterophilic problems remains limited. This study analyzes the spectral distribution of nodes with different heterophilic degrees and discovers that the heterophily of anomalous nodes causes the spectral energy to shift from low to high frequencies. To address the above challenges, we propose a spectral neural network CES2-GAD based on causal edge separation for anomaly detection on heterophilic graphs. Firstly, CES2-GAD will separate the original graph into homophilic and heterophilic edges using causal interventions. Subsequently, various hybrid-spectrum filters are used to capture signals from the segmented graphs. Finally, representations from multiple signals are concatenated and input into a classifier to predict anomalies. Extensive experiments with real-world datasets have proven the effectiveness of the method we proposed.
Authors:Muhammad Aqeel, Shakiba Sharifi, Marco Cristani, Francesco Setti
Title: Towards Real Unsupervised Anomaly Detection Via Confident Meta-Learning
Abstract:
So-called unsupervised anomaly detection is better described as semi-supervised, as it assumes all training data are nominal. This assumption simplifies training but requires manual data curation, introducing bias and limiting adaptability. We propose Confident Meta-learning (CoMet), a novel training strategy that enables deep anomaly detection models to learn from uncurated datasets where nominal and anomalous samples coexist, eliminating the need for explicit filtering. Our approach integrates Soft Confident Learning, which assigns lower weights to low-confidence samples, and Meta-Learning, which stabilizes training by regularizing updates based on training validation loss covariance. This prevents overfitting and enhances robustness to noisy data. CoMet is model-agnostic and can be applied to any anomaly detection method trainable via gradient descent. Experiments on MVTec-AD, VIADUCT, and KSDD2 with two state-of-the-art models demonstrate the effectiveness of our approach, consistently improving over the baseline methods, remaining insensitive to anomalies in the training set, and setting a new state-of-the-art across all datasets.
Authors:Jiahang Zhang, Mingtong Chen, Zhengbao Yang
Title: Gait Recognition Based on Tiny ML and IMU Sensors
Abstract:
This project presents the development of a gait recognition system using Tiny Machine Learning (Tiny ML) and Inertial Measurement Unit (IMU) sensors. The system leverages the XIAO-nRF52840 Sense microcontroller and the LSM6DS3 IMU sensor to capture motion data, including acceleration and angular velocity, from four distinct activities: walking, stationary, going upstairs, and going downstairs. The data collected is processed through Edge Impulse, an edge AI platform, which enables the training of machine learning models that can be deployed directly onto the microcontroller for real-time activity classification.The data preprocessing step involves extracting relevant features from the raw sensor data using techniques such as sliding windows and data normalization, followed by training a Deep Neural Network (DNN) classifier for activity recognition. The model achieves over 80% accuracy on a test dataset, demonstrating its ability to classify the four activities effectively. Additionally, the platform enables anomaly detection, further enhancing the robustness of the system. The integration of Tiny ML ensures low-power operation, making it suitable for battery-powered or energy-harvesting devices.
Authors:Matteo Cederle, Andrea Mazzucco, Andrea Demartini, Eugenio Mazza, Eugenia Suriani, Federico Vitti, Gian Antonio Susto
Title: Explainable Anomaly Detection for Electric Vehicles Charging Stations
Abstract:
Electric vehicles (EV) charging stations are one of the critical infrastructures needed to support the transition to renewable-energy-based mobility, but ensuring their reliability and efficiency requires effective anomaly detection to identify irregularities in charging behavior. However, in such a productive scenario, it is also crucial to determine the underlying cause behind the detected anomalies. To achieve this goal, this study investigates unsupervised anomaly detection techniques for EV charging infrastructure, integrating eXplainable Artificial Intelligence techniques to enhance interpretability and uncover root causes of anomalies. Using real-world sensors and charging session data, this work applies Isolation Forest to detect anomalies and employs the Depth-based Isolation Forest Feature Importance (DIFFI) method to identify the most important features contributing to such anomalies. The efficacy of the proposed approach is evaluated in a real industrial case.
Authors:Elnur Isgandarov, Matteo Cederle, Federico Chiariotti, Gian Antonio Susto
Title: Towards Explainable Anomaly Detection in Shared Mobility Systems
Abstract:
Shared mobility systems, such as bike-sharing networks, play a crucial role in urban transportation. Identifying anomalies in these systems is essential for optimizing operations, improving service reliability, and enhancing user experience. This paper presents an interpretable anomaly detection framework that integrates multi-source data, including bike-sharing trip records, weather conditions, and public transit availability. The Isolation Forest algorithm is employed for unsupervised anomaly detection, along with the Depth-based Isolation Forest Feature Importance (DIFFI) algorithm providing interpretability. Results show that station-level analysis offers a robust understanding of anomalies, highlighting the influence of external factors such as adverse weather and limited transit availability. Our findings contribute to improving decision-making in shared mobility operations.
Authors:Muhammad Aqeel, Federico Leonardi, Francesco Setti
Title: ExDD: Explicit Dual Distribution Learning for Surface Defect Detection via Diffusion Synthesis
Abstract:
Industrial defect detection systems face critical limitations when confined to one-class anomaly detection paradigms, which assume uniform outlier distributions and struggle with data scarcity in realworld manufacturing environments. We present ExDD (Explicit Dual Distribution), a novel framework that transcends these limitations by explicitly modeling dual feature distributions. Our approach leverages parallel memory banks that capture the distinct statistical properties of both normality and anomalous patterns, addressing the fundamental flaw of uniform outlier assumptions. To overcome data scarcity, we employ latent diffusion models with domain-specific textual conditioning, generating in-distribution synthetic defects that preserve industrial context. Our neighborhood-aware ratio scoring mechanism elegantly fuses complementary distance metrics, amplifying signals in regions exhibiting both deviation from normality and similarity to known defect patterns. Experimental validation on KSDD2 demonstrates superior performance (94.2% I-AUROC, 97.7% P-AUROC), with optimal augmentation at 100 synthetic samples.
Authors:Yiming Xu, Zhen Peng, Bin Shi, Xu Hua, Bo Dong, Song Wang, Chen Chen
Title: Revisiting Graph Contrastive Learning on Anomaly Detection: A Structural Imbalance Perspective
Abstract:
The superiority of graph contrastive learning (GCL) has prompted its application to anomaly detection tasks for more powerful risk warning systems. Unfortunately, existing GCL-based models tend to excessively prioritize overall detection performance while neglecting robustness to structural imbalance, which can be problematic for many real-world networks following power-law degree distributions. Particularly, GCL-based methods may fail to capture tail anomalies (abnormal nodes with low degrees). This raises concerns about the security and robustness of current anomaly detection algorithms and therefore hinders their applicability in a variety of realistic high-risk scenarios. To the best of our knowledge, research on the robustness of graph anomaly detection to structural imbalance has received little scrutiny. To address the above issues, this paper presents a novel GCL-based framework named AD-GCL. It devises the neighbor pruning strategy to filter noisy edges for head nodes and facilitate the detection of genuine tail nodes by aligning from head nodes to forged tail nodes. Moreover, AD-GCL actively explores potential neighbors to enlarge the receptive field of tail nodes through anomaly-guided neighbor completion. We further introduce intra- and inter-view consistency loss of the original and augmentation graph for enhanced representation. The performance evaluation of the whole, head, and tail nodes on multiple datasets validates the comprehensive superiority of the proposed AD-GCL in detecting both head anomalies and tail anomalies.
Authors:Xiaoyun Zhang, Jingqing Ruan, Xing Ma, Yawen Zhu, Jiansong Chen, Ke Zeng, Xunliang Cai
Title: Reasoner for Real-World Event Detection: Scaling Reinforcement Learning via Adaptive Perplexity-Aware Sampling Strategy
Abstract:
Detecting abnormal events in real-world customer service dialogues is highly challenging due to the complexity of business data and the dynamic nature of customer interactions. Moreover, models must demonstrate strong out-of-domain (OOD) generalization to enable rapid adaptation across different business scenarios and maximize commercial value. In this work, we propose a novel Adaptive Perplexity-Aware Reinforcement Learning (APARL) framework that leverages the advanced reasoning capabilities of large language models for abnormal event detection. APARL introduces a dual-loop dynamic curriculum learning architecture, enabling the model to progressively focus on more challenging samples as its proficiency increases. This design effectively addresses performance bottlenecks and significantly enhances OOD transferability. Extensive evaluations on food delivery dialogue tasks show that our model achieves significantly enhanced adaptability and robustness, attaining the highest F1 score with an average improvement of 17.19\%, and an average improvement of 9.59\% in OOD transfer tests. This method provides a superior solution for industrial deployment of anomaly detection models, contributing to improved operational efficiency and commercial benefits.
Authors:Xiaona Zhou, Constantin Brif, Ismini Lourentzou
Title: mTSBench: Benchmarking Multivariate Time Series Anomaly Detection and Model Selection at Scale
Abstract:
Multivariate time series anomaly detection (MTS-AD) is critical in domains like healthcare, cybersecurity, and industrial monitoring, yet remains challenging due to complex inter-variable dependencies, temporal dynamics, and sparse anomaly labels. We introduce mTSBench, the largest benchmark to date for MTS-AD and unsupervised model selection, spanning 344 labeled time series across 19 datasets and 12 diverse application domains. mTSBench evaluates 24 anomaly detection methods, including large language model (LLM)-based detectors for multivariate time series, and systematically benchmarks unsupervised model selection techniques under standardized conditions. Consistent with prior findings, our results confirm that no single detector excels across datasets, underscoring the importance of model selection. However, even state-of-the-art selection methods remain far from optimal, revealing critical gaps. mTSBench provides a unified evaluation suite to enable rigorous, reproducible comparisons and catalyze future advances in adaptive anomaly detection and robust model selection.
Authors:Tae-Seong Han, Jae-Wook Heo, Hakseung Kim, Cheol-Hui Lee, Hyub Huh, Eue-Keun Choi, Hye Jin Kim, Dong-Joo Kim
Title: Diffusion-Based Electrocardiography Noise Quantification via Anomaly Detection
Abstract:
Electrocardiography (ECG) signals are frequently degraded by noise, limiting their clinical reliability in both conventional and wearable settings. Existing methods for addressing ECG noise, relying on artifact classification or denoising, are constrained by annotation inconsistencies and poor generalizability. Here, we address these limitations by reframing ECG noise quantification as an anomaly detection task. We propose a diffusion-based framework trained to model the normative distribution of clean ECG signals, identifying deviations as noise without requiring explicit artifact labels. To robustly evaluate performance and mitigate label inconsistencies, we introduce a distribution-based metric using the Wasserstein-1 distance ($W_1$). Our model achieved a macro-average $W_1$ score of 1.308, outperforming the next-best method by over 48\%. External validation confirmed strong generalizability, facilitating the exclusion of noisy segments to improve diagnostic accuracy and support timely clinical intervention. This approach enhances real-time ECG monitoring and broadens ECG applicability in digital health technologies.
Authors:Xudong Wang, Ziheng Sun, Chris Ding, Jicong Fan
Title: Learnable Kernel Density Estimation for Graphs
Abstract:
This work proposes a framework LGKDE that learns kernel density estimation for graphs. The key challenge in graph density estimation lies in effectively capturing both structural patterns and semantic variations while maintaining theoretical guarantees. Combining graph kernels and kernel density estimation (KDE) is a standard approach to graph density estimation, but has unsatisfactory performance due to the handcrafted and fixed features of kernels. Our method LGKDE leverages graph neural networks to represent each graph as a discrete distribution and utilizes maximum mean discrepancy to learn the graph metric for multi-scale KDE, where all parameters are learned by maximizing the density of graphs relative to the density of their well-designed perturbed counterparts. The perturbations are conducted on both node features and graph spectra, which helps better characterize the boundary of normal density regions. Theoretically, we establish consistency and convergence guarantees for LGKDE, including bounds on the mean integrated squared error, robustness, and complexity. We validate LGKDE by demonstrating its effectiveness in recovering the underlying density of synthetic graph distributions and applying it to graph anomaly detection across diverse benchmark datasets. Extensive empirical evaluation shows that LGKDE demonstrates superior performance compared to state-of-the-art baselines on most benchmark datasets.
Authors:Muhammad Aqeel, Shakiba Sharifi, Marco Cristani, Francesco Setti
Title: Meta Learning-Driven Iterative Refinement for Robust Anomaly Detection in Industrial Inspection
Abstract:
This study investigates the performance of robust anomaly detection models in industrial inspection, focusing particularly on their ability to handle noisy data. We propose to leverage the adaptation ability of meta learning approaches to identify and reject noisy training data to improve the learning process. In our model, we employ Model Agnostic Meta Learning (MAML) and an iterative refinement process through an Inter-Quartile Range rejection scheme to enhance their adaptability and robustness. This approach significantly improves the models capability to distinguish between normal and defective conditions. Our results of experiments conducted on well known MVTec and KSDD2 datasets demonstrate that the proposed method not only excels in environments with substantial noise but can also contribute in case of a clear training set, isolating those samples that are relatively out of distribution, thus offering significant improvements over traditional models.
Authors:Ildar N. Idrisov, Divine Okeke, Abdullatif Albaseer, Mohamed Abdallah, Federico M. Ibanez
Title: Leveraging Digital Twin and Machine Learning Techniques for Anomaly Detection in Power Electronics Dominated Grid
Abstract:
Modern power grids are transitioning towards power electronics-dominated grids (PEDG) due to the increasing integration of renewable energy sources and energy storage systems. This shift introduces complexities in grid operation and increases vulnerability to cyberattacks. This research explores the application of digital twin (DT) technology and machine learning (ML) techniques for anomaly detection in PEDGs. A DT can accurately track and simulate the behavior of the physical grid in real-time, providing a platform for monitoring and analyzing grid operations, with extended amount of data about dynamic power flow along the whole power system. By integrating ML algorithms, the DT can learn normal grid behavior and effectively identify anomalies that deviate from established patterns, enabling early detection of potential cyberattacks or system faults. This approach offers a comprehensive and proactive strategy for enhancing cybersecurity and ensuring the stability and reliability of PEDGs.
Authors:Yang Cao, Sikun Yang, Chen Li, Haolong Xiang, Lianyong Qi, Bo Liu, Rongsheng Li, Ming Liu
Title: TAD-Bench: A Comprehensive Benchmark for Embedding-Based Text Anomaly Detection
Abstract:
Text anomaly detection is crucial for identifying spam, misinformation, and offensive language in natural language processing tasks. Despite the growing adoption of embedding-based methods, their effectiveness and generalizability across diverse application scenarios remain under-explored. To address this, we present TAD-Bench, a comprehensive benchmark designed to systematically evaluate embedding-based approaches for text anomaly detection. TAD-Bench integrates multiple datasets spanning different domains, combining state-of-the-art embeddings from large language models with a variety of anomaly detection algorithms. Through extensive experiments, we analyze the interplay between embeddings and detection methods, uncovering their strengths, weaknesses, and applicability to different tasks. These findings offer new perspectives on building more robust, efficient, and generalizable anomaly detection systems for real-world applications.
Authors:Yaxuan Wang, Hao Cheng, Jing Xiong, Qingsong Wen, Han Jia, Ruixuan Song, Liyuan Zhang, Zhaowei Zhu, Yang Liu
Title: Noise-Resilient Point-wise Anomaly Detection in Time Series Using Weak Segment Labels
Abstract:
Detecting anomalies in temporal data has gained significant attention across various real-world applications, aiming to identify unusual events and mitigate potential hazards. In practice, situations often involve a mix of segment-level labels (detected abnormal events with segments of time points) and unlabeled data (undetected events), while the ideal algorithmic outcome should be point-level predictions. Therefore, the huge label information gap between training data and targets makes the task challenging. In this study, we formulate the above imperfect information as noisy labels and propose NRdetector, a noise-resilient framework that incorporates confidence-based sample selection, robust segment-level learning, and data-centric point-level detection for multivariate time series anomaly detection. Particularly, to bridge the information gap between noisy segment-level labels and missing point-level labels, we develop a novel loss function that can effectively mitigate the label noise and consider the temporal features. It encourages the smoothness of consecutive points and the separability of points from segments with different labels. Extensive experiments on real-world multivariate time series datasets with 11 different evaluation metrics demonstrate that NRdetector consistently achieves robust results across multiple real-world datasets, outperforming various baselines adapted to operate in our setting.
Authors:Wenbin Li, Di Yao, Chang Gong, Xiaokai Chu, Quanliang Jing, Xiaolei Zhou, Yuxuan Zhang, Yunxia Fan, Jingping Bi
Title: CausalTAD: Causal Implicit Generative Model for Debiased Online Trajectory Anomaly Detection
Abstract:
Trajectory anomaly detection, aiming to estimate the anomaly risk of trajectories given the Source-Destination (SD) pairs, has become a critical problem for many real-world applications. Existing solutions directly train a generative model for observed trajectories and calculate the conditional generative probability $P({T}|{C})$ as the anomaly risk, where ${T}$ and ${C}$ represent the trajectory and SD pair respectively. However, we argue that the observed trajectories are confounded by road network preference which is a common cause of both SD distribution and trajectories. Existing methods ignore this issue limiting their generalization ability on out-of-distribution trajectories. In this paper, we define the debiased trajectory anomaly detection problem and propose a causal implicit generative model, namely CausalTAD, to solve it. CausalTAD adopts do-calculus to eliminate the confounding bias of road network preference and estimates $P({T}|do({C}))$ as the anomaly criterion. Extensive experiments show that CausalTAD can not only achieve superior performance on trained trajectories but also generally improve the performance of out-of-distribution data, with improvements of $2.1\% \sim 5.7\%$ and $10.6\% \sim 32.7\%$ respectively.
Authors:Xi Ding, Lei Wang
Title: Quo Vadis, Anomaly Detection? LLMs and VLMs in the Spotlight
Abstract:
Video anomaly detection (VAD) has witnessed significant advancements through the integration of large language models (LLMs) and vision-language models (VLMs), addressing critical challenges such as interpretability, temporal reasoning, and generalization in dynamic, open-world scenarios. This paper presents an in-depth review of cutting-edge LLM-/VLM-based methods in 2024, focusing on four key aspects: (i) enhancing interpretability through semantic insights and textual explanations, making visual anomalies more understandable; (ii) capturing intricate temporal relationships to detect and localize dynamic anomalies across video frames; (iii) enabling few-shot and zero-shot detection to minimize reliance on large, annotated datasets; and (iv) addressing open-world and class-agnostic anomalies by using semantic understanding and motion features for spatiotemporal coherence. We highlight their potential to redefine the landscape of VAD. Additionally, we explore the synergy between visual and textual modalities offered by LLMs and VLMs, highlighting their combined strengths and proposing future directions to fully exploit the potential in enhancing video anomaly detection.
Authors:Shuo Liu, Wenbin Li, Di Yao, Jingping Bi
Title: Effective and Efficient Representation Learning for Flight Trajectories
Abstract:
Flight trajectory data plays a vital role in the traffic management community, especially for downstream tasks such as trajectory prediction, flight recognition, and anomaly detection. Existing works often utilize handcrafted features and design models for different tasks individually, which heavily rely on domain expertise and are hard to extend. We argue that different flight analysis tasks share the same useful features of the trajectory. Jointly learning a unified representation for flight trajectories could be beneficial for improving the performance of various tasks. However, flight trajectory representation learning (TRL) faces two primary challenges, \ie unbalanced behavior density and 3D spatial continuity, which disable recent general TRL methods. In this paper, we propose Flight2Vec , a flight-specific representation learning method to address these challenges. Specifically, a behavior-adaptive patching mechanism is used to inspire the learned representation to pay more attention to behavior-dense segments. Moreover, we introduce a motion trend learning technique that guides the model to memorize not only the precise locations, but also the motion trend to generate better representations. Extensive experimental results demonstrate that Flight2Vec significantly improves performance in downstream tasks such as flight trajectory prediction, flight recognition, and anomaly detection.
Authors:Lin-Feng Mei, Wang-Ji Yan
Title: DPGIIL: Dirichlet Process-Deep Generative Model-Integrated Incremental Learning for Clustering in Transmissibility-based Online Structural Anomaly Detection
Abstract:
Clustering based on vibration responses, such as transmissibility functions (TFs), is promising in structural anomaly detection, but most existing approaches struggle with determining the optimal cluster number and handling high-dimensional streaming data, while their shallow structures also make them sensitive to manually-engineered feature quality. To bridge this gap, this work proposes the Dirichlet process-deep generative model-integrated incremental learning (DPGIIL) for clustering by combining the advantages of deep generative models (DGMs) in representation learning and the Dirichlet process mixture model (DPMM) in identifying distinct patterns in observed data. By introducing a DPMM prior into the latent space of DGMs, DPGIIL automatically captures dissimilarities in extracted latent representations, enabling both generative modeling and clustering. Within the context of variational Bayesian inference, a lower bound on the log marginal likelihood of DPGIIL, tighter than the evidence lower bound given sufficient training data, is derived analytically, which enables the joint optimization of DGM and DPMM parameters, thereby allowing the DPMM to regularize the DGM's feature extraction process. Additionally, a greedy split-merge scheme-based coordinate ascent variational inference method is devised to accelerate the optimization. The summary statistics of the DPMM, along with the network parameters, are used to retain information about previous data for incremental learning. Notably, this study uses variational autoencoder (VAE) within DPGIIL as an illustrative example, while this framework is adaptable to other DGMs. Two case studies show that the proposed method outperforms some state-of-the-art approaches in structural anomaly detection and clustering, while also dynamically generating new clusters to indicate the emergence of new structural conditions for online monitoring.
Authors:Mohammadreza Kouchaki, Minglong Zhang, Aly S. Abdalla, Guangchen Lan, Christopher G. Brinton, Vuk Marojevic
Title: Enhanced Real-Time Threat Detection in 5G Networks: A Self-Attention RNN Autoencoder Approach for Spectral Intrusion Analysis
Abstract:
In the rapidly evolving landscape of 5G technology, safeguarding Radio Frequency (RF) environments against sophisticated intrusions is paramount, especially in dynamic spectrum access and management. This paper presents an enhanced experimental model that integrates a self-attention mechanism with a Recurrent Neural Network (RNN)-based autoencoder for the detection of anomalous spectral activities in 5G networks at the waveform level. Our approach, grounded in time-series analysis, processes in-phase and quadrature (I/Q) samples to identify irregularities that could indicate potential jamming attacks. The model's architecture, augmented with a self-attention layer, extends the capabilities of RNN autoencoders, enabling a more nuanced understanding of temporal dependencies and contextual relationships within the RF spectrum. Utilizing a simulated 5G Radio Access Network (RAN) test-bed constructed with srsRAN 5G and Software Defined Radios (SDRs), we generated a comprehensive stream of data that reflects real-world RF spectrum conditions and attack scenarios. The model is trained to reconstruct standard signal behavior, establishing a normative baseline against which deviations, indicative of security threats, are identified. The proposed architecture is designed to balance between detection precision and computational efficiency, so the LSTM network, enriched with self-attention, continues to optimize for minimal execution latency and power consumption. Conducted on a real-world SDR-based testbed, our results demonstrate the model's improved performance and accuracy in threat detection. Keywords: self-attention, real-time intrusion detection, RNN autoencoder, Transformer architecture, LSTM, time series anomaly detection, 5G Security, spectrum access security.
Authors:Nikolaos Pavlidis, Vasileios Perifanis, Eleni Briola, Christos-Chrysanthos Nikolaidis, Eleftheria Katsiri, Pavlos S. Efraimidis, Despina Elisabeth Filippidou
Title: Federated Anomaly Detection for Early-Stage Diagnosis of Autism Spectrum Disorders using Serious Game Data
Abstract:
Early identification of Autism Spectrum Disorder (ASD) is considered critical for effective intervention to mitigate emotional, financial and societal burdens. Although ASD belongs to a group of neurodevelopmental disabilities that are not curable, researchers agree that targeted interventions during childhood can drastically improve the overall well-being of individuals. However, conventional ASD detection methods such as screening tests, are often costly and time-consuming. This study presents a novel semi-supervised approach for ASD detection using AutoEncoder-based Machine Learning (ML) methods due to the challenge of obtaining ground truth labels for the associated task. Our approach utilizes data collected manually through a serious game specifically designed for this purpose. Since the sensitive data collected by the gamified application are susceptible to privacy leakage, we developed a Federated Learning (FL) framework that can enhance user privacy without compromising the overall performance of the ML models. The framework is further enhanced with Fully Homomorphic Encryption (FHE) during model aggregation to minimize the possibility of inference attacks and client selection mechanisms as well as state-of-the-art aggregators to improve the model's predictive accuracy. Our results demonstrate that semi-supervised FL can effectively predict an ASD risk indicator for each case while simultaneously addressing privacy concerns.
Authors:Ali Zia, Usman Ali, Umer Ramzan, Abdul Rehman, Abdelwahed Khamis, Wei Xiang
Title: Test-Time Adaptation for Anomaly Segmentation via Topology-Aware Optimal Transport Chaining
Abstract:
Deep topological data analysis (TDA) offers a principled framework for capturing structural invariants such as connectivity and cycles that persist across scales, making it a natural fit for anomaly segmentation (AS). Unlike thresholdbased binarisation, which produces brittle masks under distribution shift, TDA allows anomalies to be characterised as disruptions to global structure rather than local fluctuations. We introduce TopoOT, a topology-aware optimal transport (OT) framework that integrates multi-filtration persistence diagrams (PDs) with test-time adaptation (TTA). Our key innovation is Optimal Transport Chaining, which sequentially aligns PDs across thresholds and filtrations, yielding geodesic stability scores that identify features consistently preserved across scales. These stabilityaware pseudo-labels supervise a lightweight head trained online with OT-consistency and contrastive objectives, ensuring robust adaptation under domain shift. Across standard 2D and 3D anomaly detection benchmarks, TopoOT achieves state-of-the-art performance, outperforming the most competitive methods by up to +24.1% mean F1 on 2D datasets and +10.2% on 3D AS benchmarks.
Authors:Darshan Deshpande, Anand Kannappan, Rebecca Qian
Title: Benchmarking Reward Hack Detection in Code Environments via Contrastive Analysis
Abstract:
Recent advances in reinforcement learning for code generation have made robust environments essential to prevent reward hacking. As LLMs increasingly serve as evaluators in code-based RL, their ability to detect reward hacking remains understudied. In this paper, we propose a novel taxonomy of reward exploits spanning across 54 categories and introduce TRACE (Testing Reward Anomalies in Code Environments), a synthetically curated and human-verified benchmark containing 517 testing trajectories. Unlike prior work that evaluates reward hack detection in isolated classification scenarios, we contrast these evaluations with a more realistic, contrastive anomaly detection setup on TRACE. Our experiments reveal that models capture reward hacks more effectively in contrastive settings than in isolated classification settings, with GPT-5.2 with highest reasoning mode achieving the best detection rate at 63%, up from 45% in isolated settings on TRACE. Building on this insight, we demonstrate that state-of-the-art models struggle significantly more with semantically contextualized reward hacks compared to syntactically contextualized ones. We further conduct qualitative analyses of model behaviors, as well as ablation studies showing that the ratio of benign to hacked trajectories and analysis cluster sizes substantially impact detection performance. We release the benchmark and evaluation harness to enable the community to expand TRACE and evaluate their models.
Authors:Mohammadhossein Homaei, Iman Khazrak, Ruben Molano, Andres Caro, Mar Avila
Title: Graph Attention Networks with Physical Constraints for Anomaly Detection
Abstract:
Water distribution systems (WDSs) face increasing cyber-physical risks, which make reliable anomaly detection essential. Many data-driven models ignore network topology and are hard to interpret, while model-based ones depend strongly on parameter accuracy. This work proposes a hydraulic-aware graph attention network using normalized conservation law violations as features. It combines mass and energy balance residuals with graph attention and bidirectional LSTM to learn spatio-temporal patterns. A multi-scale module aggregates detection scores from node to network level. On the BATADAL dataset, it reaches $F1=0.979$, showing $3.3$pp gain and high robustness under $15\%$ parameter noise.
Authors:Chenhao Fu, Han Fang, Xiuzheng Zheng, Wenbo Wei, Yonghua Li, Hao Sun, Xuelong Li
Title: SSVP: Synergistic Semantic-Visual Prompting for Industrial Zero-Shot Anomaly Detection
Abstract:
Zero-Shot Anomaly Detection (ZSAD) leverages Vision-Language Models (VLMs) to enable supervision-free industrial inspection. However, existing ZSAD paradigms are constrained by single visual backbones, which struggle to balance global semantic generalization with fine-grained structural discriminability. To bridge this gap, we propose Synergistic Semantic-Visual Prompting (SSVP), that efficiently fuses diverse visual encodings to elevate model's fine-grained perception. Specifically, SSVP introduces the Hierarchical Semantic-Visual Synergy (HSVS) mechanism, which deeply integrates DINOv3's multi-scale structural priors into the CLIP semantic space. Subsequently, the Vision-Conditioned Prompt Generator (VCPG) employs cross-modal attention to guide dynamic prompt generation, enabling linguistic queries to precisely anchor to specific anomaly patterns. Furthermore, to address the discrepancy between global scoring and local evidence, the Visual-Text Anomaly Mapper (VTAM) establishes a dual-gated calibration paradigm. Extensive evaluations on seven industrial benchmarks validate the robustness of our method; SSVP achieves state-of-the-art performance with 93.0% Image-AUROC and 92.2% Pixel-AUROC on MVTec-AD, significantly outperforming existing zero-shot approaches.
Authors:Prasanjit Dubey, Aritra Guha, Zhengyi Zhou, Qiong Wu, Xiaoming Huo, Paromita Dubey
Title: LLmFPCA-detect: LLM-powered Multivariate Functional PCA for Anomaly Detection in Sparse Longitudinal Texts
Abstract:
Sparse longitudinal (SL) textual data arises when individuals generate text repeatedly over time (e.g., customer reviews, occasional social media posts, electronic medical records across visits), but the frequency and timing of observations vary across individuals. These complex textual data sets have immense potential to inform future policy and targeted recommendations. However, because SL text data lack dedicated methods and are noisy, heterogeneous, and prone to anomalies, detecting and inferring key patterns is challenging. We introduce LLmFPCA-detect, a flexible framework that pairs LLM-based text embeddings with functional data analysis to detect clusters and infer anomalies in large SL text datasets. First, LLmFPCA-detect embeds each piece of text into an application-specific numeric space using LLM prompts. Sparse multivariate functional principal component analysis (mFPCA) conducted in the numeric space forms the workhorse to recover primary population characteristics, and produces subject-level scores which, together with baseline static covariates, facilitate data segmentation, unsupervised anomaly detection and inference, and enable other downstream tasks. In particular, we leverage LLMs to perform dynamic keyword profiling guided by the data segments and anomalies discovered by LLmFPCA-detect, and we show that cluster-specific functional PC scores from LLmFPCA-detect, used as features in existing pipelines, help boost prediction performance. We support the stability of LLmFPCA-detect with experiments and evaluate it on two different applications using public datasets, Amazon customer-review trajectories, and Wikipedia talk-page comment streams, demonstrating utility across domains and outperforming state-of-the-art baselines.
Authors:Xuechun Liu, Heli Sun, Xuecheng Wu, Ruichen Cao, Yunyun Shi, Dingkang Yang, Haoran Li
Title: DARTs: A Dual-Path Robust Framework for Anomaly Detection in High-Dimensional Multivariate Time Series
Abstract:
Multivariate time series anomaly detection (MTSAD) aims to accurately identify and localize complex abnormal patterns in the large-scale industrial control systems. While existing approaches excel in recognizing the distinct patterns under the low-dimensional scenarios, they often fail to robustly capture long-range spatiotemporal dependencies when learning representations from the high-dimensional noisy time series. To address these limitations, we propose DARTs, a robust long short-term dual-path framework with window-aware spatiotemporal soft fusion mechanism, which can be primarily decomposed into three complementary components. Specifically, in the short-term path, we introduce a Multi-View Sparse Graph Learner and a Diffusion Multi-Relation Graph Unit that collaborate to adaptively capture hierarchical discriminative short-term spatiotemporal patterns in the high-noise time series. While in the long-term path, we design a Multi-Scale Spatiotemporal Graph Constructor to model salient long-term dynamics within the high-dimensional representation space. Finally, a window-aware spatiotemporal soft-fusion mechanism is introduced to filter the residual noise while seamlessly integrating anomalous patterns. Extensive qualitative and quantitative experimental results across mainstream datasets demonstrate the superiority and robustness of our proposed DARTs. A series of ablation studies are also conducted to explore the crucial design factors of our proposed components. Our code and model will be made publicly open soon.
Authors:Swati Kumari, Shiva Raj Pokhrel, Swathi Chandrasekhar, Navneet Singh, Hridoy Sankar Dutta, Adnan Anwar, Sutharshan Rajasegarar, Robin Doss
Title: Modeling Wavelet Transformed Quantum Support Vector for Network Intrusion Detection
Abstract:
Network traffic anomaly detection is a critical cy- bersecurity challenge requiring robust solutions for complex Internet of Things (IoT) environments. We present a novel hybrid quantum-classical framework integrating an enhanced Quantum Support Vector Machine (QSVM) with the Quantum Haar Wavelet Packet Transform (QWPT) for superior anomaly classification under realistic noisy intermediate-scale Quantum conditions. Our methodology employs amplitude-encoded quan- tum state preparation, multi-level QWPT feature extraction, and behavioral analysis via Shannon Entropy profiling and Chi-square testing. Features are classified using QSVM with fidelity-based quantum kernels optimized through hybrid train- ing with simultaneous perturbation stochastic approximation (SPSA) optimizer. Evaluation under noiseless and depolarizing noise conditions demonstrates exceptional performance: 96.67% accuracy on BoT-IoT and 89.67% on IoT-23 datasets, surpassing quantum autoencoder approaches by over 7 percentage points.
Authors:Swathi Chandrasekhar, Shiva Raj Pokhrel, Swati Kumari, Navneet Singh
Title: Modeling Quantum Autoencoder Trainable Kernel for IoT Anomaly Detection
Abstract:
Escalating cyber threats and the high-dimensional complexity of IoT traffic have outpaced classical anomaly detection methods. While deep learning offers improvements, computational bottlenecks limit real-time deployment at scale. We present a quantum autoencoder (QAE) framework that compresses network traffic into discriminative latent representations and employs quantum support vector classification (QSVC) for intrusion detection. Evaluated on three datasets, our approach achieves improved accuracy on ideal simulators and on the IBM Quantum hardware demonstrating practical quantum advantage on current NISQ devices. Crucially, moderate depolarizing noise acts as implicit regularization, stabilizing training and enhancing generalization. This work establishes quantum machine learning as a viable, hardware-ready solution for real-world cybersecurity challenges.
Authors:Francesco Vitale, Francesco Flammini, Mauro Caporuscio, Nicola Mazzocca
Title: Architecting software monitors for control-flow anomaly detection through large language models and conformance checking
Abstract:
Context: Ensuring high levels of dependability in modern computer-based systems has become increasingly challenging due to their complexity. Although systems are validated at design time, their behavior can be different at run-time, possibly showing control-flow anomalies due to "unknown unknowns". Objective: We aim to detect control-flow anomalies through software monitoring, which verifies run-time behavior by logging software execution and detecting deviations from expected control flow. Methods: We propose a methodology to develop software monitors for control-flow anomaly detection through Large Language Models (LLMs) and conformance checking. The methodology builds on existing software development practices to maintain traditional V&V while providing an additional level of robustness and trustworthiness. It leverages LLMs to link design-time models and implementation code, automating source-code instrumentation. The resulting event logs are analyzed via conformance checking, an explainable and effective technique for control-flow anomaly detection. Results: We test the methodology on a case-study scenario from the European Railway Traffic Management System / European Train Control System (ERTMS/ETCS), which is a railway standard for modern interoperable railways. The results obtained from the ERTMS/ETCS case study demonstrate that LLM-based source-code instrumentation can achieve up to 84.775% control-flow coverage of the reference design-time process model, while the subsequent conformance checking-based anomaly detection reaches a peak performance of 96.610% F1-score and 93.515% AUC. Conclusion: Incorporating domain-specific knowledge to guide LLMs in source-code instrumentation significantly allowed obtaining reliable and quality software logs and enabled effective control-flow anomaly detection through conformance checking.
Authors:Konstantinos A. Lizos, Leandros Maglaras, Elena Petrovik, Saied M. Abd El-atty, Georgios Tsachtsiris, Mohamed Amine Ferrag
Title: Reliability and Resilience of AI-Driven Critical Network Infrastructure under Cyber-Physical Threats
Abstract:
The increasing reliance on AI-driven 5G/6G network infrastructures for mission-critical services highlights the need for reliability and resilience against sophisticated cyber-physical threats. These networks are highly exposed to novel attack surfaces due to their distributed intelligence, virtualized resources, and cross-domain integration. This paper proposes a fault-tolerant and resilience-aware framework that integrates AI-driven anomaly detection, adaptive routing, and redundancy mechanisms to mitigate cascading failures under cyber-physical attack conditions. A comprehensive validation is carried out using NS-3 simulations, where key performance indicators such as reliability, latency, resilience index, and packet loss rate are analyzed under various attack scenarios. The deduced results demonstrate that the proposed framework significantly improves fault recovery, stabilizes packet delivery, and reduces service disruption compared to baseline approaches.
Authors:Zhong Li, Qi Huang, Yuxuan Zhu, Lincen Yang, Mohammad Mohammadi Amiri, Niki van Stein, Matthijs van Leeuwen
Title: Scalable, Explainable and Provably Robust Anomaly Detection with One-Step Flow Matching
Abstract:
We introduce Time-Conditioned Contraction Matching (TCCM), a novel method for semi-supervised anomaly detection in tabular data. TCCM is inspired by flow matching, a recent generative modeling framework that learns velocity fields between probability distributions and has shown strong performance compared to diffusion models and generative adversarial networks. Instead of directly applying flow matching as originally formulated, TCCM builds on its core idea -- learning velocity fields between distributions -- but simplifies the framework by predicting a time-conditioned contraction vector toward a fixed target (the origin) at each sampled time step. This design offers three key advantages: (1) a lightweight and scalable training objective that removes the need for solving ordinary differential equations during training and inference; (2) an efficient scoring strategy called one time-step deviation, which quantifies deviation from expected contraction behavior in a single forward pass, addressing the inference bottleneck of existing continuous-time models such as DTE (a diffusion-based model with leading anomaly detection accuracy but heavy inference cost); and (3) explainability and provable robustness, as the learned velocity field operates directly in input space, making the anomaly score inherently feature-wise attributable; moreover, the score function is Lipschitz-continuous with respect to the input, providing theoretical guarantees under small perturbations. Extensive experiments on the ADBench benchmark show that TCCM strikes a favorable balance between detection accuracy and inference cost, outperforming state-of-the-art methods -- especially on high-dimensional and large-scale datasets. The source code is available at our GitHub repository.
Authors:Yue Zheng, Xiufang Shi, Jiming Chen, Yuanchao Shu
Title: Cerberus: Real-Time Video Anomaly Detection via Cascaded Vision-Language Models
Abstract:
Video anomaly detection (VAD) has rapidly advanced by recent development of Vision-Language Models (VLMs). While these models offer superior zero-shot detection capabilities, their immense computational cost and unstable visual grounding performance hinder real-time deployment. To overcome these challenges, we introduce Cerberus, a two-stage cascaded system designed for efficient yet accurate real-time VAD. Cerberus learns normal behavioral rules offline, and combines lightweight filtering with fine-grained VLM reasoning during online inference. The performance gains of Cerberus come from two key innovations: motion mask prompting and rule-based deviation detection. The former directs the VLM's attention to regions relevant to motion, while the latter identifies anomalies as deviations from learned norms rather than enumerating possible anomalies. Extensive evaluations on four datasets show that Cerberus on average achieves 57.68 fps on an NVIDIA L40S GPU, a 151.79$\times$ speedup, and 97.2\% accuracy comparable to the state-of-the-art VLM-based VAD methods, establishing it as a practical solution for real-time video analytics.
Authors:Gerard Comas-Quiles, Carles Garcia-Cabrera, Julia Dietlmeier, Noel E. O'Connor, Ferran Marques
Title: Towards Label-Free Brain Tumor Segmentation: Unsupervised Learning with Multimodal MRI
Abstract:
Unsupervised anomaly detection (UAD) presents a complementary alternative to supervised learning for brain tumor segmentation in magnetic resonance imaging (MRI), particularly when annotated datasets are limited, costly, or inconsistent. In this work, we propose a novel Multimodal Vision Transformer Autoencoder (MViT-AE) trained exclusively on healthy brain MRIs to detect and localize tumors via reconstruction-based error maps. This unsupervised paradigm enables segmentation without reliance on manual labels, addressing a key scalability bottleneck in neuroimaging workflows. Our method is evaluated in the BraTS-GoAT 2025 Lighthouse dataset, which includes various types of tumors such as gliomas, meningiomas, and pediatric brain tumors. To enhance performance, we introduce a multimodal early-late fusion strategy that leverages complementary information across multiple MRI sequences, and a post-processing pipeline that integrates the Segment Anything Model (SAM) to refine predicted tumor contours. Despite the known challenges of UAD, particularly in detecting small or non-enhancing lesions, our method achieves clinically meaningful tumor localization, with lesion-wise Dice Similarity Coefficient of 0.437 (Whole Tumor), 0.316 (Tumor Core), and 0.350 (Enhancing Tumor) on the test set, and an anomaly Detection Rate of 89.4% on the validation set. These findings highlight the potential of transformer-based unsupervised models to serve as scalable, label-efficient tools for neuro-oncological imaging.
Authors:Mohammadhossein Homaei, Mehran Tarif, Mar Avilla, Andres Caro
Title: Causal Digital Twins for Cyber-Physical Security: A Framework for Robust Anomaly Detection in Industrial Control Systems
Abstract:
Industrial Control Systems (ICS) face growing cyber-physical attacks that exploit both network vulnerabilities and physical processes. Current anomaly detection methods rely on correlation-based analysis, which cannot separate true causal relationships from spurious associations. This limitation results in high false alarm rates and poor root cause analysis. We propose a novel Causal Digital Twin (CDT) framework for cyber-physical security in medium-scale ICS. Our method combines causal inference theory with digital twin modeling. The framework enables three types of causal reasoning: association for pattern detection, intervention for understanding system responses, and counterfactual analysis for attack prevention planning. We evaluate our framework on three industrial datasets: SWaT, WADI, and HAI, with validation through physical constraint compliance (90.8\%) and synthetic ground truth testing (structural Hamming distance 0.13). Results show significant improvements over seven baseline methods. Our CDT achieves F1-scores are $0.944 \pm 0.014$ for SWaT, $0.902 \pm 0.021$ for WADI, and $0.923 \pm 0.018$ for HAI with statistical significance ($p < 0.0024$, Bonferroni corrected). The framework reduces false positives by \SI{74}{\percent} and achieves \SI{78.4}{\percent} root cause analysis accuracy compared to \SI{48.7}{\percent} for existing methods. Counterfactual analysis enables defense strategies that reduce attack success by \SI{73.2}{\percent}. The system keeps real-time performance with \SI{3.2}{ms} latency, which is suitable for industrial deployment, while providing interpretable explanations for operators.
Authors:Zhouruixing Zhu, Zhihan Jiang, Tianyi Yang, Pinjia He
Title: UniSage: A Unified and Post-Analysis-Aware Sampling for Microservices
Abstract:
Traces and logs are essential for observability and fault diagnosis in modern distributed systems. However, their ever-growing volume introduces substantial storage overhead and complicates troubleshooting. Existing approaches typically adopt a sample-before-analysis paradigm: even when guided by data heuristics, they inevitably discard failure-related information and hinder transparency in diagnosing system behavior. To address this, we introduce UniSage, the first unified framework to sample both traces and logs using a post-analysis-aware paradigm. Instead of discarding data upfront, UniSagefirst performs lightweight and multi-modal anomaly detection and root cause analysis (RCA) on the complete data stream. This process yields fine-grained, service-level diagnostic insights that guide a dual-pillar sampling strategy for handling both normal and anomalous scenarios: an analysis-guided sampler prioritizes data implicated by RCA, while an edge-case-based sampler ensures rare but critical behaviors are captured. Together, these pillars ensure comprehensive coverage of critical signals without excessive redundancy. Extensive experiments demonstrate that UniSage significantly outperforms state-of-the-art baselines. At a 2.5% sampling rate, it captures 56.5% of critical traces and 96.25% of relevant logs, while improving the accuracy (AC@1) of downstream root cause analysis by 42.45%. Furthermore, its efficient pipeline processes 10 minutes of telemetry data in under 5 seconds, demonstrating its practicality for production environments.
Authors:Konstantinos Vasili, Zachery T. Dahm, Stylianos Chatzidakis
Title: Explainable Unsupervised Multi-Anomaly Detection and Temporal Localization in Nuclear Times Series Data with a Dual Attention-Based Autoencoder
Abstract:
The nuclear industry is advancing toward more new reactor designs, with next-generation reactors expected to be smaller in scale and power output. These systems have the potential to produce large volumes of information in the form of multivariate time-series data, which could be used for enhanced real-time monitoring and control. In this context, the development of remote autonomous or semi-autonomous control systems for reactor operation has gained significant interest. A critical first step toward such systems is an accurate diagnostics module capable of detecting and localizing anomalies within the reactor system. Recent studies have proposed various ML and DL approaches for anomaly detection in the nuclear domain. Despite promising results, key challenges remain, including limited to no explainability, lack of access to real-world data, and scarcity of abnormal events, which impedes benchmarking and characterization. Most existing studies treat these methods as black boxes, while recent work highlights the need for greater interpretability of ML/DL outputs in safety-critical domains. Here, we propose an unsupervised methodology based on an LSTM autoencoder with a dual attention mechanism for characterization of abnormal events in a real-world reactor radiation area monitoring system. The framework includes not only detection but also localization of the event and was evaluated using real-world datasets of increasing complexity from the PUR-1 research reactor. The attention mechanisms operate in both the feature and temporal dimensions, where the feature attention assigns weights to radiation sensors exhibiting abnormal patterns, while time attention highlights the specific timesteps where irregularities occur, thus enabling localization. By combining the results, the framework can identify both the affected sensors and the duration of each anomaly within a single unified network.
Authors:Francesco Vitale, Tommaso Zoppi, Francesco Flammini, Nicola Mazzocca
Title: Run-Time Monitoring of ERTMS/ETCS Control Flow by Process Mining
Abstract:
Ensuring the resilience of computer-based railways is increasingly crucial to account for uncertainties and changes due to the growing complexity and criticality of those systems. Although their software relies on strict verification and validation processes following well-established best-practices and certification standards, anomalies can still occur at run-time due to residual faults, system and environmental modifications that were unknown at design-time, or other emergent cyber-threat scenarios. This paper explores run-time control-flow anomaly detection using process mining to enhance the resilience of ERTMS/ETCS L2 (European Rail Traffic Management System / European Train Control System Level 2). Process mining allows learning the actual control flow of the system from its execution traces, thus enabling run-time monitoring through online conformance checking. In addition, anomaly localization is performed through unsupervised machine learning to link relevant deviations to critical system components. We test our approach on a reference ERTMS/ETCS L2 scenario, namely the RBC/RBC Handover, to show its capability to detect and localize anomalies with high accuracy, efficiency, and explainability.
Authors:Douglas Liao, Jiping Luo, Jens Vevstad, Nikolaos Pappas
Title: RANGAN: GAN-empowered Anomaly Detection in 5G Cloud RAN
Abstract:
Radio Access Network (RAN) systems are inherently complex, requiring continuous monitoring to prevent performance degradation and ensure optimal user experience. The RAN leverages numerous key performance indicators (KPIs) to evaluate system performance, generating vast amounts of data each second. This immense data volume can make troubleshooting and accurate diagnosis of performance anomalies more difficult. Furthermore, the highly dynamic nature of RAN performance demands adaptive methodologies capable of capturing temporal dependencies to detect anomalies reliably. In response to these challenges, we introduce \textbf{RANGAN}, an anomaly detection framework that integrates a Generative Adversarial Network (GAN) with a transformer architecture. To enhance the capability of capturing temporal dependencies within the data, RANGAN employs a sliding window approach during data preprocessing. We rigorously evaluated RANGAN using the publicly available RAN performance dataset from the Spotlight project \cite{sun-2024}. Experimental results demonstrate that RANGAN achieves promising detection accuracy, notably attaining an F1-score of up to $83\%$ in identifying network contention issues.
Authors:YongKyung Oh, Seungsu Kam, Dong-Young Lim, Sungil Kim
Title: Modeling Irregular Astronomical Time Series with Neural Stochastic Delay Differential Equations
Abstract:
Astronomical time series from large-scale surveys like LSST are often irregularly sampled and incomplete, posing challenges for classification and anomaly detection. We introduce a new framework based on Neural Stochastic Delay Differential Equations (Neural SDDEs) that combines stochastic modeling with neural networks to capture delayed temporal dynamics and handle irregular observations. Our approach integrates a delay-aware neural architecture, a numerical solver for SDDEs, and mechanisms to robustly learn from noisy, sparse sequences. Experiments on irregularly sampled astronomical data demonstrate strong classification accuracy and effective detection of novel astrophysical events, even with partial labels. This work highlights Neural SDDEs as a principled and practical tool for time series analysis under observational constraints.
Authors:Aleksei Liuliakov, Alexander Schulz, Luca Hermes, Barbara Hammer
Title: One-Class Intrusion Detection with Dynamic Graphs
Abstract:
With the growing digitalization all over the globe, the relevance of network security becomes increasingly important. Machine learning-based intrusion detection constitutes a promising approach for improving security, but it bears several challenges. These include the requirement to detect novel and unseen network events, as well as specific data properties, such as events over time together with the inherent graph structure of network communication. In this work, we propose a novel intrusion detection method, TGN-SVDD, which builds upon modern dynamic graph modelling and deep anomaly detection. We demonstrate its superiority over several baselines for realistic intrusion detection data and suggest a more challenging variant of the latter.
Authors:Zachery Dahm, Vasileios Theos, Konstantinos Vasili, William Richards, Konstantinos Gkouliaras, Stylianos Chatzidakis
Title: A One-Class Explainable AI Framework for Identification of Non-Stationary Concurrent False Data Injections in Nuclear Reactor Signals
Abstract:
The transition of next generation advanced nuclear reactor systems from analog to fully digital instrumentation and control will necessitate robust mechanisms to safeguard against potential data integrity threats. One challenge is the real-time characterization of false data injections, which can mask sensor signals and potentially disrupt reactor control systems. While significant progress has been made in anomaly detection within reactor systems, potential false data injections have been shown to bypass conventional linear time-invariant state estimators and failure detectors based on statistical thresholds. The dynamic, nonlinear, multi-variate nature of sensor signals, combined with inherent noise and limited availability of real-world training data, makes the characterization of such threats and more importantly their differentiation from anticipated process anomalies particularly challenging. In this paper, we present an eXplainable AI (XAI) framework for identifying non-stationary concurrent replay attacks in nuclear reactor signals with minimal training data. The proposed framework leverages progress on recurrent neural networks and residual analysis coupled with a modified SHAP algorithm and rule-based correlations. The recurrent neural networks are trained only on normal operational data while for residual analysis we introduce an adaptive windowing technique to improve detection accuracy. We successfully benchmarked this framework on a real-world dataset from Purdue's nuclear reactor (PUR-1). We were able to detect false data injections with accuracy higher than 0.93 and less than 0.01 false positives, differentiate from expected process anomalies, and to identify the origin of the falsified signals.
Authors:Aydin Zaboli, Junho Hong
Title: Generative AI for Cybersecurity of Energy Management Systems: Methods, Challenges, and Future Directions
Abstract:
This paper elaborates on an extensive security framework specifically designed for energy management systems (EMSs), which effectively tackles the dynamic environment of cybersecurity vulnerabilities and/or system problems (SPs), accomplished through the incorporation of novel methodologies. A comprehensive multi-point attack/error model is initially proposed to systematically identify vulnerabilities throughout the entire EMS data processing pipeline, including post state estimation (SE) stealth attacks, EMS database manipulation, and human-machine interface (HMI) display corruption according to the real-time database (RTDB) storage. This framework acknowledges the interconnected nature of modern attack vectors, which utilize various phases of supervisory control and data acquisition (SCADA) data flow. Then, generative AI (GenAI)-based anomaly detection systems (ADSs) for EMSs are proposed for the first time in the power system domain to handle the scenarios. Further, a set-of-mark generative intelligence (SoM-GI) framework, which leverages multimodal analysis by integrating visual markers with rules considering the GenAI capabilities, is suggested to overcome inherent spatial reasoning limitations. The SoM-GI methodology employs systematic visual indicators to enable accurate interpretation of segmented HMI displays and detect visual anomalies that numerical methods fail to identify. Validation on the IEEE 14-Bus system shows the framework's effectiveness across scenarios, while visual analysis identifies inconsistencies. This integrated approach combines numerical analysis with visual pattern recognition and linguistic rules to protect against cyber threats and system errors.
Authors:Konstantinos Vasili, Zachery T. Dahm, Stylianos Chatzidakis
Title: An Unsupervised Deep XAI Framework for Localization of Concurrent Replay Attacks in Nuclear Reactor Signals
Abstract:
Next generation advanced nuclear reactors are expected to be smaller both in size and power output, relying extensively on fully digital instrumentation and control systems. These reactors will generate a large flow of information in the form of multivariate time series data, conveying simultaneously various non linear cyber physical, process, control, sensor, and operational states. Ensuring data integrity against deception attacks is becoming increasingly important for networked communication and a requirement for safe and reliable operation. Current efforts to address replay attacks, almost universally focus on watermarking or supervised anomaly detection approaches without further identifying and characterizing the root cause of the anomaly. In addition, these approaches rely mostly on synthetic data with uncorrelated Gaussian process and measurement noise and full state feedback or are limited to univariate signals, signal stationarity, linear quadratic regulators, or other linear-time invariant state-space which may fail to capture any unmodeled system dynamics. In the realm of regulated nuclear cyber-physical systems, additional work is needed on characterization of replay attacks and explainability of predictions using real data. Here, we propose an unsupervised explainable AI framework based on a combination of autoencoder and customized windowSHAP algorithm to fully characterize real-time replay attacks, i.e., detection, source identification, timing and type, of increasing complexity during a dynamic time evolving reactor process. The proposed XAI framework was benchmarked on several real world datasets from Purdue's nuclear reactor PUR-1 with up to six signals concurrently being replayed. In all cases, the XAI framework was able to detect and identify the source and number of signals being replayed and the duration of the falsification with 95 percent or better accuracy.
Authors:Aydin Zaboli, Junho Hong
Title: Generative AI for Critical Infrastructure in Smart Grids: A Unified Framework for Synthetic Data Generation and Anomaly Detection
Abstract:
In digital substations, security events pose significant challenges to the sustained operation of power systems. To mitigate these challenges, the implementation of robust defense strategies is critically important. A thorough process of anomaly identification and detection in information and communication technology (ICT) frameworks is crucial to ensure secure and reliable communication and coordination between interconnected devices within digital substations. Hence, this paper addresses the critical cybersecurity challenges confronting IEC61850-based digital substations within modern smart grids, where the integration of advanced communication protocols, e.g., generic object-oriented substation event (GOOSE), has enhanced energy management and introduced significant vulnerabilities to cyberattacks. Focusing on the limitations of traditional anomaly detection systems (ADSs) in detecting threats, this research proposes a transformative approach by leveraging generative AI (GenAI) to develop robust ADSs. The primary contributions include the suggested advanced adversarial traffic mutation (AATM) technique to generate synthesized and balanced datasets for GOOSE messages, ensuring protocol compliance and enabling realistic zero-day attack pattern creation to address data scarcity. Then, the implementation of GenAI-based ADSs incorporating the task-oriented dialogue (ToD) processes has been explored for improved detection of attack patterns. Finally, a comparison of the GenAI-based ADS with machine learning (ML)-based ADSs has been implemented to showcase the outperformance of the GenAI-based frameworks considering the AATM-generated GOOSE datasets and standard/advanced performance evaluation metrics.
Authors:Fatemeh Moradi, Mehran Tarif, Mohammadhossein Homaei
Title: Semi-Supervised Supply Chain Fraud Detection with Unsupervised Pre-Filtering
Abstract:
Detecting fraud in modern supply chains is a growing challenge, driven by the complexity of global networks and the scarcity of labeled data. Traditional detection methods often struggle with class imbalance and limited supervision, reducing their effectiveness in real-world applications. This paper proposes a novel two-phase learning framework to address these challenges. In the first phase, the Isolation Forest algorithm performs unsupervised anomaly detection to identify potential fraud cases and reduce the volume of data requiring further analysis. In the second phase, a self-training Support Vector Machine (SVM) refines the predictions using both labeled and high-confidence pseudo-labeled samples, enabling robust semi-supervised learning. The proposed method is evaluated on the DataCo Smart Supply Chain Dataset, a comprehensive real-world supply chain dataset with fraud indicators. It achieves an F1-score of 0.817 while maintaining a false positive rate below 3.0%. These results demonstrate the effectiveness and efficiency of combining unsupervised pre-filtering with semi-supervised refinement for supply chain fraud detection under real-world constraints, though we acknowledge limitations regarding concept drift and the need for comparison with deep learning approaches.
Authors:Giacomo D'Amicantonio, Snehashis Majhi, Quan Kong, Lorenzo Garattoni, Gianpiero Francesca, François Bremond, Egor Bondarev
Title: Mixture of Experts Guided by Gaussian Splatters Matters: A new Approach to Weakly-Supervised Video Anomaly Detection
Abstract:
Video Anomaly Detection (VAD) is a challenging task due to the variability of anomalous events and the limited availability of labeled data. Under the Weakly-Supervised VAD (WSVAD) paradigm, only video-level labels are provided during training, while predictions are made at the frame level. Although state-of-the-art models perform well on simple anomalies (e.g., explosions), they struggle with complex real-world events (e.g., shoplifting). This difficulty stems from two key issues: (1) the inability of current models to address the diversity of anomaly types, as they process all categories with a shared model, overlooking category-specific features; and (2) the weak supervision signal, which lacks precise temporal information, limiting the ability to capture nuanced anomalous patterns blended with normal events. To address these challenges, we propose Gaussian Splatting-guided Mixture of Experts (GS-MoE), a novel framework that employs a set of expert models, each specialized in capturing specific anomaly types. These experts are guided by a temporal Gaussian splatting loss, enabling the model to leverage temporal consistency and enhance weak supervision. The Gaussian splatting approach encourages a more precise and comprehensive representation of anomalies by focusing on temporal segments most likely to contain abnormal events. The predictions from these specialized experts are integrated through a mixture-of-experts mechanism to model complex relationships across diverse anomaly patterns. Our approach achieves state-of-the-art performance, with a 91.58% AUC on the UCF-Crime dataset, and demonstrates superior results on XD-Violence and MSAD datasets. By leveraging category-specific expertise and temporal guidance, GS-MoE sets a new benchmark for VAD under weak supervision.
Authors:Zi Wang, Katsuya Hotta, Koichiro Kamide, Yawen Zou, Chao Zhang, Jun Yu
Title: 3DKeyAD: High-Resolution 3D Point Cloud Anomaly Detection via Keypoint-Guided Point Clustering
Abstract:
High-resolution 3D point clouds are highly effective for detecting subtle structural anomalies in industrial inspection. However, their dense and irregular nature imposes significant challenges, including high computational cost, sensitivity to spatial misalignment, and difficulty in capturing localized structural differences. This paper introduces a registration-based anomaly detection framework that combines multi-prototype alignment with cluster-wise discrepancy analysis to enable precise 3D anomaly localization. Specifically, each test sample is first registered to multiple normal prototypes to enable direct structural comparison. To evaluate anomalies at a local level, clustering is performed over the point cloud, and similarity is computed between features from the test sample and the prototypes within each cluster. Rather than selecting cluster centroids randomly, a keypoint-guided strategy is employed, where geometrically informative points are chosen as centroids. This ensures that clusters are centered on feature-rich regions, enabling more meaningful and stable distance-based comparisons. Extensive experiments on the Real3D-AD benchmark demonstrate that the proposed method achieves state-of-the-art performance in both object-level and point-level anomaly detection, even using only raw features.
Authors:Aayushma Pant, Arbind Agrahari Baniya, Tsz-Kwan Lee, Sunil Aryal
Title: Hyperspectral Anomaly Detection Methods: A Survey and Comparative Study
Abstract:
Hyperspectral images are high-dimensional datasets comprising hundreds of contiguous spectral bands, enabling detailed analysis of materials and surfaces. Hyperspectral anomaly detection (HAD) refers to the technique of identifying and locating anomalous targets in such data without prior information about a hyperspectral scene or target spectrum. This technology has seen rapid advancements in recent years, with applications in agriculture, defence, military surveillance, and environmental monitoring. Despite this significant progress, existing HAD methods continue to face challenges such as high computational complexity, sensitivity to noise, and limited generalisation across diverse datasets. This study presents a comprehensive comparison of various HAD techniques, categorising them into statistical models, representation-based methods, classical machine learning approaches, and deep learning models. We evaluated these methods across 17 benchmarking datasets using different performance metrics, such as ROC, AUC, and separability map to analyse detection accuracy, computational efficiency, their strengths, limitations, and directions for future research. Our findings highlight that deep learning models achieved the highest detection accuracy, while statistical models demonstrated exceptional speed across all datasets. This survey aims to provide valuable insights for researchers and practitioners working to advance the field of hyperspectral anomaly detection methods.
Authors:N. P. García-de-la-Puente, Rocío del Amor, Fernando García-Torres, Niels Møller Israelsen, Coraline Lapre, Christian Rosenberg Petersen, Ole Bang, Dominik Brouczek, Martin Schwentenwein, Kevin Neumann, Niels Benson, Valery Naranjo
Title: MID-INFRARED (MIR) OCT-based inspection in industry
Abstract:
This paper aims to evaluate mid-infrared (MIR) Optical Coherence Tomography (OCT) systems as a tool to penetrate different materials and detect sub-surface irregularities. This is useful for monitoring production processes, allowing Non-Destructive Inspection Techniques of great value to the industry. In this exploratory study, several acquisitions are made on composite and ceramics to know the capabilities of the system. In addition, it is assessed which preprocessing and AI-enhanced vision algorithms can be anomaly-detection methodologies capable of detecting abnormal zones in the analyzed objects. Limitations and criteria for the selection of optimal parameters will be discussed, as well as strengths and weaknesses will be highlighted.
Authors:Prathyush Kumar Reddy Lebaku, Lu Gao, Yunpeng Zhang, Zhixia Li, Yongxin Liu, Tanvir Arafin
Title: Cybersecurity-Focused Anomaly Detection in Connected Autonomous Vehicles Using Machine Learning
Abstract:
Anomaly detection in connected autonomous vehicles (CAVs) is crucial for maintaining safe and reliable transportation networks, as CAVs can be susceptible to sensor malfunctions, cyber-attacks, and unexpected environmental disruptions. This study explores an anomaly detection approach by simulating vehicle behavior, generating a dataset that represents typical and atypical vehicular interactions. The dataset includes time-series data of position, speed, and acceleration for multiple connected autonomous vehicles. We utilized machine learning models to effectively identify abnormal driving patterns. First, we applied a stacked Long Short-Term Memory (LSTM) model to capture temporal dependencies and sequence-based anomalies. The stacked LSTM model processed the sequential data to learn standard driving behaviors. Additionally, we deployed a Random Forest model to support anomaly detection by offering ensemble-based predictions, which enhanced model interpretability and performance. The Random Forest model achieved an R2 of 0.9830, MAE of 5.746, and a 95th percentile anomaly threshold of 14.18, while the stacked LSTM model attained an R2 of 0.9998, MAE of 82.425, and a 95th percentile anomaly threshold of 265.63. These results demonstrate the models' effectiveness in accurately predicting vehicle trajectories and detecting anomalies in autonomous driving scenarios.
Authors:Francesco Vitale, Nicola Dall'Ora, Sebastiano Gaiardelli, Enrico Fraccaroli, Nicola Mazzocca, Franco Fummi
Title: Process mining-driven modeling and simulation to enhance fault diagnosis in cyber-physical systems
Abstract:
Fault diagnosis in Cyber-Physical Systems (CPSs) is essential for ensuring system dependability and operational efficiency by accurately detecting anomalies and identifying their root causes. However, the manual modeling of faulty behaviors often demands extensive domain expertise and produces models that are complex, error-prone, and difficult to interpret. To address this challenge, we present a novel unsupervised fault diagnosis methodology that integrates collective anomaly detection in multivariate time series, process mining, and stochastic simulation. Initially, collective anomalies are detected from low-level sensor data using multivariate time-series analysis. These anomalies are then transformed into structured event logs, enabling the discovery of interpretable process models through process mining. By incorporating timing distributions into the extracted Petri nets, the approach supports stochastic simulation of faulty behaviors, thereby enhancing root cause analysis and behavioral understanding. The methodology is validated using the Robotic Arm Dataset (RoAD), a widely recognized benchmark in smart manufacturing. Experimental results demonstrate its effectiveness in modeling, simulating, and classifying faulty behaviors in CPSs. This enables the creation of comprehensive fault dictionaries that support predictive maintenance and the development of digital twins for industrial environments.
Authors:Shiwei Lin, Chenxu Wang, Xiaozhen Ding, Yi Wang, Boyuan Du, Lei Song, Chenggang Wang, Huaping Liu
Title: A VLM-based Method for Visual Anomaly Detection in Robotic Scientific Laboratories
Abstract:
In robot scientific laboratories, visual anomaly detection is important for the timely identification and resolution of potential faults or deviations. It has become a key factor in ensuring the stability and safety of experimental processes. To address this challenge, this paper proposes a VLM-based visual reasoning approach that supports different levels of supervision through four progressively informative prompt configurations. To systematically evaluate its effectiveness, we construct a visual benchmark tailored for process anomaly detection in scientific workflows. Experiments on two representative vision-language models show that detection accuracy improves as more contextual information is provided, confirming the effectiveness and adaptability of the proposed reasoning approach for process anomaly detection in scientific workflows. Furthermore, real-world validations at selected experimental steps confirm that first-person visual observation can effectively identify process-level anomalies. This work provides both a data-driven foundation and an evaluation framework for vision anomaly detection in scientific experiment workflows.
Authors:Snehashis Majhi, Giacomo D'Amicantonio, Antitza Dantcheva, Quan Kong, Lorenzo Garattoni, Gianpiero Francesca, Egor Bondarev, Francois Bremond
Title: Just Dance with $π$! A Poly-modal Inductor for Weakly-supervised Video Anomaly Detection
Abstract:
Weakly-supervised methods for video anomaly detection (VAD) are conventionally based merely on RGB spatio-temporal features, which continues to limit their reliability in real-world scenarios. This is due to the fact that RGB-features are not sufficiently distinctive in setting apart categories such as shoplifting from visually similar events. Therefore, towards robust complex real-world VAD, it is essential to augment RGB spatio-temporal features by additional modalities. Motivated by this, we introduce the Poly-modal Induced framework for VAD: "PI-VAD", a novel approach that augments RGB representations by five additional modalities. Specifically, the modalities include sensitivity to fine-grained motion (Pose), three dimensional scene and entity representation (Depth), surrounding objects (Panoptic masks), global motion (optical flow), as well as language cues (VLM). Each modality represents an axis of a polygon, streamlined to add salient cues to RGB. PI-VAD includes two plug-in modules, namely Pseudo-modality Generation module and Cross Modal Induction module, which generate modality-specific prototypical representation and, thereby, induce multi-modal information into RGB cues. These modules operate by performing anomaly-aware auxiliary tasks and necessitate five modality backbones -- only during training. Notably, PI-VAD achieves state-of-the-art accuracy on three prominent VAD datasets encompassing real-world scenarios, without requiring the computational overhead of five modality backbones at inference.
Authors:Ivan Tan, Wei Minn, Christopher M. Poskitt, Lwin Khin Shar, Lingxiao Jiang
Title: Runtime Anomaly Detection for Drones: An Integrated Rule-Mining and Unsupervised-Learning Approach
Abstract:
UAVs, commonly referred to as drones, have witnessed a remarkable surge in popularity due to their versatile applications. These cyber-physical systems depend on multiple sensor inputs, such as cameras, GPS receivers, accelerometers, and gyroscopes, with faults potentially leading to physical instability and serious safety concerns. To mitigate such risks, anomaly detection has emerged as a crucial safeguarding mechanism, capable of identifying the physical manifestations of emerging issues and allowing operators to take preemptive action at runtime. Recent anomaly detection methods based on LSTM neural networks have shown promising results, but three challenges persist: the need for models that can generalise across the diverse mission profiles of drones; the need for interpretability, enabling operators to understand the nature of detected problems; and the need for capturing domain knowledge that is difficult to infer solely from log data. Motivated by these challenges, this paper introduces RADD, an integrated approach to anomaly detection in drones that combines rule mining and unsupervised learning. In particular, we leverage rules (or invariants) to capture expected relationships between sensors and actuators during missions, and utilise unsupervised learning techniques to cover more subtle relationships that the rules may have missed. We implement this approach using the ArduPilot drone software in the Gazebo simulator, utilising 44 rules derived across the main phases of drone missions, in conjunction with an ensemble of five unsupervised learning models. We find that our integrated approach successfully detects 93.84% of anomalies over six types of faults with a low false positive rate (2.33%), and can be deployed effectively at runtime. Furthermore, RADD outperforms a state-of-the-art LSTM-based method in detecting the different types of faults evaluated in our study.
Authors:Amirmohammad Farzaneh, Osvaldo Simeone
Title: Context-Aware Online Conformal Anomaly Detection with Prediction-Powered Data Acquisition
Abstract:
Online anomaly detection is essential in fields such as cybersecurity, healthcare, and industrial monitoring, where promptly identifying deviations from expected behavior can avert critical failures or security breaches. While numerous anomaly scoring methods based on supervised or unsupervised learning have been proposed, current approaches typically rely on a continuous stream of real-world calibration data to provide assumption-free guarantees on the false discovery rate (FDR). To address the inherent challenges posed by limited real calibration data, we introduce context-aware prediction-powered conformal online anomaly detection (C-PP-COAD). Our framework strategically leverages synthetic calibration data to mitigate data scarcity, while adaptively integrating real data based on contextual cues. C-PP-COAD utilizes conformal p-values, active p-value statistics, and online FDR control mechanisms to maintain rigorous and reliable anomaly detection performance over time. Experiments conducted on both synthetic and real-world datasets demonstrate that C-PP-COAD significantly reduces dependency on real calibration data without compromising guaranteed FDR control.
Authors:Kilian Tscharke, Maximilian Wendlinger, Sebastian Issel, Pascal Debus
Title: Quantum Support Vector Regression for Robust Anomaly Detection
Abstract:
Anomaly Detection (AD) is critical in data analysis, particularly within the domain of IT security. In recent years, Machine Learning (ML) algorithms have emerged as a powerful tool for AD in large-scale data. In this study, we explore the potential of quantum ML approaches, specifically quantum kernel methods, for the application to robust AD. We build upon previous work on Quantum Support Vector Regression (QSVR) for semisupervised AD by conducting a comprehensive benchmark on IBM quantum hardware using eleven datasets. Our results demonstrate that QSVR achieves strong classification performance and even outperforms the noiseless simulation on two of these datasets. Moreover, we investigate the influence of - in the NISQ-era inevitable - quantum noise on the performance of the QSVR. Our findings reveal that the model exhibits robustness to depolarizing, phase damping, phase flip, and bit flip noise, while amplitude damping and miscalibration noise prove to be more disruptive. Finally, we explore the domain of Quantum Adversarial Machine Learning and demonstrate that QSVR is highly vulnerable to adversarial attacks and that noise does not improve the adversarial robustness of the model.
Authors:Mohammadhossein Homaei, Victor Gonzalez Morales, Oscar Mogollon-Gutierrez, Andres Caro
Title: The Dark Side of Digital Twins: Adversarial Attacks on AI-Driven Water Forecasting
Abstract:
Digital twins (DTs) are improving water distribution systems by using real-time data, analytics, and prediction models to optimize operations. This paper presents a DT platform designed for a Spanish water supply network, utilizing Long Short-Term Memory (LSTM) networks to predict water consumption. However, machine learning models are vulnerable to adversarial attacks, such as the Fast Gradient Sign Method (FGSM) and Projected Gradient Descent (PGD). These attacks manipulate critical model parameters, injecting subtle distortions that degrade forecasting accuracy. To further exploit these vulnerabilities, we introduce a Learning Automata (LA) and Random LA-based approach that dynamically adjusts perturbations, making adversarial attacks more difficult to detect. Experimental results show that this approach significantly impacts prediction reliability, causing the Mean Absolute Percentage Error (MAPE) to rise from 26% to over 35%. Moreover, adaptive attack strategies amplify this effect, highlighting cybersecurity risks in AI-driven DTs. These findings emphasize the urgent need for robust defenses, including adversarial training, anomaly detection, and secure data pipelines.
Authors:Mi Zheng, Guanglei Yang, Zitong Huang, Zhenhua Guo, Kevin Han, Wangmeng Zuo
Title: Segmenting Objectiveness and Task-awareness Unknown Region for Autonomous Driving
Abstract:
With the emergence of transformer-based architectures and large language models (LLMs), the accuracy of road scene perception has substantially advanced. Nonetheless, current road scene segmentation approaches are predominantly trained on closed-set data, resulting in insufficient detection capabilities for out-of-distribution (OOD) objects. To overcome this limitation, road anomaly detection methods have been proposed. However, existing methods primarily depend on image inpainting and OOD distribution detection techniques, facing two critical issues: (1) inadequate consideration of the objectiveness attributes of anomalous regions, causing incomplete segmentation when anomalous objects share similarities with known classes, and (2) insufficient attention to environmental constraints, leading to the detection of anomalies irrelevant to autonomous driving tasks. In this paper, we propose a novel framework termed Segmenting Objectiveness and Task-Awareness (SOTA) for autonomous driving scenes. Specifically, SOTA enhances the segmentation of objectiveness through a Semantic Fusion Block (SFB) and filters anomalies irrelevant to road navigation tasks using a Scene-understanding Guided Prompt-Context Adaptor (SG-PCA). Extensive empirical evaluations on multiple benchmark datasets, including Fishyscapes Lost and Found, Segment-Me-If-You-Can, and RoadAnomaly, demonstrate that the proposed SOTA consistently improves OOD detection performance across diverse detectors, achieving robust and accurate segmentation outcomes.
Authors:Stefan Jonas, Angela Meyer
Title: Fault Detection in New Wind Turbines with Limited Data by Generative Transfer Learning
Abstract:
Intelligent condition monitoring of wind turbines is essential for reducing downtimes. Machine learning models trained on wind turbine operation data are commonly used to detect anomalies and, eventually, operation faults. However, data-driven normal behavior models (NBMs) require a substantial amount of training data, as NBMs trained with scarce data may result in unreliable fault detection. To overcome this limitation, we present a novel generative deep transfer learning approach to make SCADA samples from one wind turbine lacking training data resemble SCADA data from wind turbines with representative training data. Through CycleGAN-based domain mapping, our method enables the application of an NBM trained on an existing wind turbine to a new one with severely limited data. We demonstrate our approach on field data mapping SCADA samples across 7 substantially different WTs. Our findings show significantly improved fault detection in wind turbines with scarce data. Our method achieves the most similar anomaly scores to an NBM trained with abundant data, outperforming NBMs trained on scarce training data with improvements of +10.3% in F1-score when 1 month of training data is available and +16.8% when 2 weeks are available. The domain mapping approach outperforms conventional fine-tuning at all considered degrees of data scarcity, ranging from 1 to 8 weeks of training data. The proposed technique enables earlier and more reliable fault detection in newly installed wind farms, demonstrating a novel and promising research direction to improve anomaly detection when faced with training data scarcity.
Authors:Kilian Tscharke, Maximilian Wendlinger, Afrae Ahouzi, Pallavi Bhardwaj, Kaweh Amoi-Taleghani, Michael Schrödl-Baumann, Pascal Debus
Title: Quantum Autoencoder for Multivariate Time Series Anomaly Detection
Abstract:
Anomaly Detection (AD) defines the task of identifying observations or events that deviate from typical - or normal - patterns, a critical capability in IT security for recognizing incidents such as system misconfigurations, malware infections, or cyberattacks. In enterprise environments like SAP HANA Cloud systems, this task often involves monitoring high-dimensional, multivariate time series (MTS) derived from telemetry and log data. With the advent of quantum machine learning offering efficient calculations in high-dimensional latent spaces, many avenues open for dealing with such complex data. One approach is the Quantum Autoencoder (QAE), an emerging and promising method with potential for application in both data compression and AD. However, prior applications of QAEs to time series AD have been restricted to univariate data, limiting their relevance for real-world enterprise systems. In this work, we introduce a novel QAE-based framework designed specifically for MTS AD towards enterprise scale. We theoretically develop and experimentally validate the architecture, demonstrating that our QAE achieves performance competitive with neural-network-based autoencoders while requiring fewer trainable parameters. We evaluate our model on datasets that closely reflect SAP system telemetry and show that the proposed QAE is a viable and efficient alternative for semisupervised AD in real-world enterprise settings.
Authors:Joshua S. Harvey, Joshua Rosaler, Mingshu Li, Dhruv Desai, Dhagash Mehta
Title: Explainable Unsupervised Anomaly Detection with Random Forest
Abstract:
We describe the use of an unsupervised Random Forest for similarity learning and improved unsupervised anomaly detection. By training a Random Forest to discriminate between real data and synthetic data sampled from a uniform distribution over the real data bounds, a distance measure is obtained that anisometrically transforms the data, expanding distances at the boundary of the data manifold. We show that using distances recovered from this transformation improves the accuracy of unsupervised anomaly detection, compared to other commonly used detectors, demonstrated over a large number of benchmark datasets. As well as improved performance, this method has advantages over other unsupervised anomaly detection methods, including minimal requirements for data preprocessing, native handling of missing data, and potential for visualizations. By relating outlier scores to partitions of the Random Forest, we develop a method for locally explainable anomaly predictions in terms of feature importance.
Authors:Zhuoran Tan, Qiyuan Wang, Christos Anagnostopoulos, Shameem P. Parambath, Jeremy Singer, Sam Temple
Title: Distributed Log-driven Anomaly Detection System based on Evolving Decision Making
Abstract:
Effective anomaly detection from logs is crucial for enhancing cybersecurity defenses by enabling the early identification of threats. Despite advances in anomaly detection, existing systems often fall short in areas such as post-detection validation, scalability, and effective maintenance. These limitations not only hinder the detection of new threats but also impair overall system performance. To address these challenges, we propose CEDLog, a novel practical framework that integrates Elastic Weight Consolidation (EWC) for continual learning and implements distributed computing for scalable processing by integrating Apache Airflow and Dask. In CEDLog, anomalies are detected through the synthesis of Multi-layer Perceptron (MLP) and Graph Convolutional Networks (GCNs) using critical features present in event logs. Through comparisons with update strategies on large-scale datasets, we demonstrate the strengths of CEDLog, showcasing efficient updates and low false positives
Authors:Zhiyu Liang, Dongrui Cai, Chenyuan Zhang, Zheng Liang, Chen Liang, Bo Zheng, Shi Qiu, Jin Wang, Hongzhi Wang
Title: KDSelector: A Knowledge-Enhanced and Data-Efficient Model Selector Learning Framework for Time Series Anomaly Detection
Abstract:
Model selection has been raised as an essential problem in the area of time series anomaly detection (TSAD), because there is no single best TSAD model for the highly heterogeneous time series in real-world applications. However, despite the success of existing model selection solutions that train a classification model (especially neural network, NN) using historical data as a selector to predict the correct TSAD model for each series, the NN-based selector learning methods used by existing solutions do not make full use of the knowledge in the historical data and require iterating over all training samples, which limits the accuracy and training speed of the selector. To address these limitations, we propose KDSelector, a novel knowledge-enhanced and data-efficient framework for learning the NN-based TSAD model selector, of which three key components are specifically designed to integrate available knowledge into the selector and dynamically prune less important and redundant samples during the learning. We develop a TSAD model selection system with KDSelector as the internal, to demonstrate how users improve the accuracy and training speed of their selectors by using KDSelector as a plug-and-play module. Our demonstration video is hosted at https://youtu.be/2uqupDWvTF0.
Authors:R. Spencer Hallyburton, David Hunt, Yiwei He, Judy He, Miroslav Pajic
Title: Probabilistic Segmentation for Robust Field of View Estimation
Abstract:
Attacks on sensing and perception threaten the safe deployment of autonomous vehicles (AVs). Security-aware sensor fusion helps mitigate threats but requires accurate field of view (FOV) estimation which has not been evaluated autonomy. To address this gap, we adapt classical computer graphics algorithms to develop the first autonomy-relevant FOV estimators and create the first datasets with ground truth FOV labels. Unfortunately, we find that these approaches are themselves highly vulnerable to attacks on sensing. To improve robustness of FOV estimation against attacks, we propose a learning-based segmentation model that captures FOV features, integrates Monte Carlo dropout (MCD) for uncertainty quantification, and performs anomaly detection on confidence maps. We illustrate through comprehensive evaluations attack resistance and strong generalization across environments. Architecture trade studies demonstrate the model is feasible for real-time deployment in multiple applications.
Authors:Fuyun Wang, Tong Zhang, Yuanzhi Wang, Yide Qiu, Xin Liu, Xu Guo, Zhen Cui
Title: Distribution Prototype Diffusion Learning for Open-set Supervised Anomaly Detection
Abstract:
In Open-set Supervised Anomaly Detection (OSAD), the existing methods typically generate pseudo anomalies to compensate for the scarcity of observed anomaly samples, while overlooking critical priors of normal samples, leading to less effective discriminative boundaries. To address this issue, we propose a Distribution Prototype Diffusion Learning (DPDL) method aimed at enclosing normal samples within a compact and discriminative distribution space. Specifically, we construct multiple learnable Gaussian prototypes to create a latent representation space for abundant and diverse normal samples and learn a Schrödinger bridge to facilitate a diffusive transition toward these prototypes for normal samples while steering anomaly samples away. Moreover, to enhance inter-sample separation, we design a dispersion feature learning way in hyperspherical space, which benefits the identification of out-of-distribution anomalies. Experimental results demonstrate the effectiveness and superiority of our proposed DPDL, achieving state-of-the-art performance on 9 public datasets.
Authors:Francesco Vitale, Marco Pegoraro, Wil M. P. van der Aalst, Nicola Mazzocca
Title: Control-flow anomaly detection by process mining-based feature extraction and dimensionality reduction
Abstract:
The business processes of organizations may deviate from normal control flow due to disruptive anomalies, including unknown, skipped, and wrongly-ordered activities. To identify these control-flow anomalies, process mining can check control-flow correctness against a reference process model through conformance checking, an explainable set of algorithms that allows linking any deviations with model elements. However, the effectiveness of conformance checking-based techniques is negatively affected by noisy event data and low-quality process models. To address these shortcomings and support the development of competitive and explainable conformance checking-based techniques for control-flow anomaly detection, we propose a novel process mining-based feature extraction approach with alignment-based conformance checking. This variant aligns the deviating control flow with a reference process model; the resulting alignment can be inspected to extract additional statistics such as the number of times a given activity caused mismatches. We integrate this approach into a flexible and explainable framework for developing techniques for control-flow anomaly detection. The framework combines process mining-based feature extraction and dimensionality reduction to handle high-dimensional feature sets, achieve detection effectiveness, and support explainability. The results show that the framework techniques implementing our approach outperform the baseline conformance checking-based techniques while maintaining the explainable nature of conformance checking. We also provide an explanation of why existing conformance checking-based techniques may be ineffective.
Authors:Paula Ruiz-Barroso, Francisco M. Castro, José Miranda, Denisa-Andreea Constantinescu, David Atienza, Nicolás Guil
Title: FADE: Forecasting for Anomaly Detection on ECG
Abstract:
Cardiovascular diseases, a leading cause of noncommunicable disease-related deaths, require early and accurate detection to improve patient outcomes. Taking advantage of advances in machine learning and deep learning, multiple approaches have been proposed in the literature to address the challenge of detecting ECG anomalies. Typically, these methods are based on the manual interpretation of ECG signals, which is time consuming and depends on the expertise of healthcare professionals. The objective of this work is to propose a deep learning system, FADE, designed for normal ECG forecasting and anomaly detection, which reduces the need for extensive labeled datasets and manual interpretation. FADE has been trained in a self-supervised manner with a novel morphological inspired loss function. Unlike conventional models that learn from labeled anomalous ECG waveforms, our approach predicts the future of normal ECG signals, thus avoiding the need for extensive labeled datasets. Using a novel distance function to compare forecasted ECG signals with actual sensor data, our method effectively identifies cardiac anomalies. Additionally, this approach can be adapted to new contexts through domain adaptation techniques. To evaluate our proposal, we performed a set of experiments using two publicly available datasets: MIT-BIH NSR and MIT-BIH Arrythmia. The results demonstrate that our system achieves an average accuracy of 83.84% in anomaly detection, while correctly classifying normal ECG signals with an accuracy of 85.46%. Our proposed approach exhibited superior performance in the early detection of cardiac anomalies in ECG signals, surpassing previous methods that predominantly identify a limited range of anomalies. FADE effectively detects both abnormal heartbeats and arrhythmias, offering significant advantages in healthcare through cost reduction or processing of large-scale ECG data.
Authors:Mahshid Rezakhani, Tolunay Seyfi, Fatemeh Afghah
Title: A Transfer Learning Framework for Anomaly Detection in Multivariate IoT Traffic Data
Abstract:
In recent years, rapid technological advancements and expanded Internet access have led to a significant rise in anomalies within network traffic and time-series data. Prompt detection of these irregularities is crucial for ensuring service quality, preventing financial losses, and maintaining robust security standards. While machine learning algorithms have shown promise in achieving high accuracy for anomaly detection, their performance is often constrained by the specific conditions of their training data. A persistent challenge in this domain is the scarcity of labeled data for anomaly detection in time-series datasets. This limitation hampers the training efficacy of both traditional machine learning and advanced deep learning models. To address this, unsupervised transfer learning emerges as a viable solution, leveraging unlabeled data from a source domain to identify anomalies in an unlabeled target domain. However, many existing approaches still depend on a small amount of labeled data from the target domain. To overcome these constraints, we propose a transfer learning-based model for anomaly detection in multivariate time-series datasets. Unlike conventional methods, our approach does not require labeled data in either the source or target domains. Empirical evaluations on novel intrusion detection datasets demonstrate that our model outperforms existing techniques in accurately identifying anomalies within an entirely unlabeled target domain.
Authors:Chunheng Zhao, Stefano Longari, Michele Carminati, Pierluigi Pisu
Title: An Anomaly Detection System Based on Generative Classifiers for Controller Area Network
Abstract:
As electronic systems become increasingly complex and prevalent in modern vehicles, securing onboard networks is crucial, particularly as many of these systems are safety-critical. Researchers have demonstrated that modern vehicles are susceptible to various types of attacks, enabling attackers to gain control and compromise safety-critical electronic systems. Consequently, several Intrusion Detection Systems (IDSs) have been proposed in the literature to detect such cyber-attacks on vehicles. This paper introduces a novel generative classifier-based Intrusion Detection System (IDS) designed for anomaly detection in automotive networks, specifically focusing on the Controller Area Network (CAN). Leveraging variational Bayes, our proposed IDS utilizes a deep latent variable model to construct a causal graph for conditional probabilities. An auto-encoder architecture is utilized to build the classifier to estimate conditional probabilities, which contribute to the final prediction probabilities through Bayesian inference. Comparative evaluations against state-of-the-art IDSs on a public Car-hacking dataset highlight our proposed classifier's superior performance in improving detection accuracy and F1-score. The proposed IDS demonstrates its efficacy by outperforming existing models with limited training data, providing enhanced security assurance for automotive systems.
Authors:Jos Wigchert, Savio Sciancalepore, Gabriele Oligeri
Title: Detection of Aerial Spoofing Attacks to LEO Satellite Systems via Deep Learning
Abstract:
Detecting spoofing attacks to Low-Earth-Orbit (LEO) satellite systems is a cornerstone to assessing the authenticity of the received information and guaranteeing robust service delivery in several application domains. The solutions available today for spoofing detection either rely on additional communication systems, receivers, and antennas, or require mobile deployments. Detection systems working at the Physical (PHY) layer of the satellite communication link also require time-consuming and energy-hungry training processes on all satellites of the constellation, and rely on the availability of spoofed data, which are often challenging to collect. Moreover, none of such contributions investigate the feasibility of aerial spoofing attacks launched via drones operating at various altitudes. In this paper, we propose a new spoofing detection technique for LEO satellite constellation systems, applying anomaly detection on the received PHY signal via autoencoders. We validate our solution through an extensive measurement campaign involving the deployment of an actual spoofer (Software-Defined Radio) installed on a drone and injecting rogue IRIDIUM messages while flying at different altitudes with various movement patterns. Our results demonstrate that the proposed technique can reliably detect LEO spoofing attacks launched at different altitudes, while state-of-the-art competing approaches simply fail. We also release the collected data as open source, fostering further research on satellite security.
Authors:Hamidreza Fereidouni, Abdelhakim Senhaji Hafid, Dimitrios Makrakis, Yaser Baseri
Title: F-RBA: A Federated Learning-based Framework for Risk-based Authentication
Abstract:
The proliferation of Internet services has led to an increasing need to protect private data. User authentication serves as a crucial mechanism to ensure data security. Although robust authentication forms the cornerstone of remote service security, it can still leave users vulnerable to credential disclosure, device-theft attacks, session hijacking, and inadequate adaptive security measures. Risk-based Authentication (RBA) emerges as a potential solution, offering a multi-level authentication approach that enhances user experience without compromising security. In this paper, we propose a Federated Risk-based Authentication (F-RBA) framework that leverages Federated Learning to ensure privacy-centric training, keeping user data local while distributing learning across devices. Whereas traditional approaches rely on centralized storage, F-RBA introduces a distributed architecture where risk assessment occurs locally on users' devices. The framework's core innovation lies in its similarity-based feature engineering approach, which addresses the heterogeneous data challenges inherent in federated settings, a significant advancement for distributed authentication. By facilitating real-time risk evaluation across devices while maintaining unified user profiles, F-RBA achieves a balance between data protection, security, and scalability. Through its federated approach, F-RBA addresses the cold-start challenge in risk model creation, enabling swift adaptation to new users without compromising security. Empirical evaluation using a real-world multi-user dataset demonstrates the framework's effectiveness, achieving a superior true positive rate for detecting suspicious logins compared to conventional unsupervised anomaly detection models. This research introduces a new paradigm for privacy-focused RBA in distributed digital environments, facilitating advancements in federated security systems.
Authors:Sara Pohland, Claire Tomlin
Title: PaRCE: Probabilistic and Reconstruction-based Competency Estimation for CNN-based Image Classification
Abstract:
Convolutional neural networks (CNNs) are extremely popular and effective for image classification tasks but tend to be overly confident in their predictions. Various works have sought to quantify uncertainty associated with these models, detect out-of-distribution (OOD) inputs, or identify anomalous regions in an image, but limited work has sought to develop a holistic approach that can accurately estimate perception model confidence across various sources of uncertainty. We develop a probabilistic and reconstruction-based competency estimation (PaRCE) method and compare it to existing approaches for uncertainty quantification and OOD detection. We find that our method can best distinguish between correctly classified, misclassified, and OOD samples with anomalous regions, as well as between samples with visual image modifications resulting in high, medium, and low prediction accuracy. We describe how to extend our approach for anomaly localization tasks and demonstrate the ability of our approach to distinguish between regions in an image that are familiar to the perception model from those that are unfamiliar. We find that our method generates interpretable scores that most reliably capture a holistic notion of perception model confidence.
Authors:Aydin Zaboli, Seong Lok Choi, Junho Hong
Title: Leveraging Conversational Generative AI for Anomaly Detection in Digital Substations
Abstract:
This study addresses critical challenges of cybersecurity in digital substations by proposing an innovative task-oriented dialogue (ToD) system for anomaly detection (AD) in multicast messages, specifically, generic object oriented substation event (GOOSE) and sampled value (SV) datasets. Leveraging generative artificial intelligence (GenAI) technology, the proposed framework demonstrates superior error reduction, scalability, and adaptability compared with traditional human-in-the-loop (HITL) processes. Notably, this methodology offers significant advantages over machine learning (ML) techniques in terms of efficiency and implementation speed when confronting novel and/or unknown cyber threats, while also maintaining model complexity and precision. The research employs advanced performance metrics to conduct a comparative assessment between the proposed AD and HITL-based AD frameworks, utilizing a hardware-in-the-loop (HIL) testbed for generating and extracting features of IEC61850 communication messages. This approach presents a promising solution for enhancing the reliability of power system operations in the face of evolving cybersecurity challenges.
Authors:Sabbir M. Saleh, Ibrahim Mohammed Sayem, Nazim Madhavji, John Steinbacher
Title: Advancing Software Security and Reliability in Cloud Platforms through AI-based Anomaly Detection
Abstract:
Continuous Integration/Continuous Deployment (CI/CD) is fundamental for advanced software development, supporting faster and more efficient delivery of code changes into cloud environments. However, security issues in the CI/CD pipeline remain challenging, and incidents (e.g., DDoS, Bot, Log4j, etc.) are happening over the cloud environments. While plenty of literature discusses static security testing and CI/CD practices, only a few deal with network traffic pattern analysis to detect different cyberattacks. This research aims to enhance CI/CD pipeline security by implementing anomaly detection through AI (Artificial Intelligence) support. The goal is to identify unusual behaviour or variations from network traffic patterns in pipeline and cloud platforms. The system shall integrate into the workflow to continuously monitor pipeline activities and cloud infrastructure. Additionally, it aims to explore adaptive response mechanisms to mitigate the detected anomalies or security threats. This research employed two popular network traffic datasets, CSE-CIC-IDS2018 and CSE-CIC-IDS2017. We implemented a combination of Convolution Neural Network(CNN) and Long Short-Term Memory (LSTM) to detect unusual traffic patterns. We achieved an accuracy of 98.69% and 98.30% and generated log files in different CI/CD pipeline stages that resemble the network anomalies affected to address security challenges in modern DevOps practices, contributing to advancing software security and reliability.
Authors:Jiaxin Zhuang, Leon Yan, Zhenwei Zhang, Ruiqi Wang, Jiawei Zhang, Yuantao Gu
Title: See it, Think it, Sorted: Large Multimodal Models are Few-shot Time Series Anomaly Analyzers
Abstract:
Time series anomaly detection (TSAD) is becoming increasingly vital due to the rapid growth of time series data across various sectors. Anomalies in web service data, for example, can signal critical incidents such as system failures or server malfunctions, necessitating timely detection and response. However, most existing TSAD methodologies rely heavily on manual feature engineering or require extensive labeled training data, while also offering limited interpretability. To address these challenges, we introduce a pioneering framework called the Time Series Anomaly Multimodal Analyzer (TAMA), which leverages the power of Large Multimodal Models (LMMs) to enhance both the detection and interpretation of anomalies in time series data. By converting time series into visual formats that LMMs can efficiently process, TAMA leverages few-shot in-context learning capabilities to reduce dependence on extensive labeled datasets. Our methodology is validated through rigorous experimentation on multiple real-world datasets, where TAMA consistently outperforms state-of-the-art methods in TSAD tasks. Additionally, TAMA provides rich, natural language-based semantic analysis, offering deeper insights into the nature of detected anomalies. Furthermore, we contribute one of the first open-source datasets that includes anomaly detection labels, anomaly type labels, and contextual description, facilitating broader exploration and advancement within this critical field. Ultimately, TAMA not only excels in anomaly detection but also provides a comprehensive approach for understanding the underlying causes of anomalies, pushing TSAD forward through innovative methodologies and insights.
Authors:Subhadip Ghosh, Aydin Zaboli, Junho Hong, Jaerock Kwon
Title: A Physics-Based Context-Aware Approach for Anomaly Detection in Teleoperated Driving Operations Under False Data Injection Attacks
Abstract:
Teleoperated driving (ToD) systems are a special type of cyber-physical system (CPS) where the operator remotely controls the steering, acceleration, and braking actions of the vehicle. Malicious actors may inject false data into communication channels to manipulate the teleoperator's driving commands to cause harm. Hence, protection of this communication is necessary for a safe operation of the target vehicle. However, according to the National Institute of Standards and Technology (NIST) cybersecurity framework, protection is not enough, and detecting an attack is necessary. Moreover, UN R155 mandates that vehicle fleets detect and log security incidents. Thus, the cyber-physical threats of ToD are modeled using the attack-centric approach in this paper. Then, an attack model with false data injection (FDI) on the steering control command is created from real vehicle data. A risk of this attack model is assessed for a last-mile delivery (LMD) application. Finally, a physics-based context-aware anomaly detection system (PCADS) is proposed to detect such false injection attacks, and preliminary experimental results are presented to validate the model.
Authors:Yizhe Liu, Yan Song Hu, Yuhao Chen, John Zelek
Title: SplatPose+: Real-time Image-Based Pose-Agnostic 3D Anomaly Detection
Abstract:
Image-based Pose-Agnostic 3D Anomaly Detection is an important task that has emerged in industrial quality control. This task seeks to find anomalies from query images of a tested object given a set of reference images of an anomaly-free object. The challenge is that the query views (a.k.a poses) are unknown and can be different from the reference views. Currently, new methods such as OmniposeAD and SplatPose have emerged to bridge the gap by synthesizing pseudo reference images at the query views for pixel-to-pixel comparison. However, none of these methods can infer in real-time, which is critical in industrial quality control for massive production. For this reason, we propose SplatPose+, which employs a hybrid representation consisting of a Structure from Motion (SfM) model for localization and a 3D Gaussian Splatting (3DGS) model for Novel View Synthesis. Although our proposed pipeline requires the computation of an additional SfM model, it offers real-time inference speeds and faster training compared to SplatPose. Quality-wise, we achieved a new SOTA on the Pose-agnostic Anomaly Detection benchmark with the Multi-Pose Anomaly Detection (MAD-SIM) dataset.
Authors:Minxuan Duan, Yinlong Qian, Lingyi Zhao, Zihao Zhou, Zeeshan Rasheed, Rose Yu, Khurram Shafique
Title: Back to Bayesics: Uncovering Human Mobility Distributions and Anomalies with an Integrated Statistical and Neural Framework
Abstract:
Existing methods for anomaly detection often fall short due to their inability to handle the complexity, heterogeneity, and high dimensionality inherent in real-world mobility data. In this paper, we propose DeepBayesic, a novel framework that integrates Bayesian principles with deep neural networks to model the underlying multivariate distributions from sparse and complex datasets. Unlike traditional models, DeepBayesic is designed to manage heterogeneous inputs, accommodating both continuous and categorical data to provide a more comprehensive understanding of mobility patterns. The framework features customized neural density estimators and hybrid architectures, allowing for flexibility in modeling diverse feature distributions and enabling the use of specialized neural networks tailored to different data types. Our approach also leverages agent embeddings for personalized anomaly detection, enhancing its ability to distinguish between normal and anomalous behaviors for individual agents. We evaluate our approach on several mobility datasets, demonstrating significant improvements over state-of-the-art anomaly detection methods. Our results indicate that incorporating personalization and advanced sequence modeling techniques can substantially enhance the ability to detect subtle and complex anomalies in spatiotemporal event sequences.
Authors:Qingyue Cao, Bo Jin, Changwei Gong, Xin Tong, Wenzheng Li, Xiaodong Zhou
Title: Multi-Head Spectral-Adaptive Graph Anomaly Detection
Abstract:
Graph anomaly detection technology has broad applications in financial fraud and risk control. However, existing graph anomaly detection methods often face significant challenges when dealing with complex and variable abnormal patterns, as anomalous nodes are often disguised and mixed with normal nodes, leading to the coexistence of homophily and heterophily in the graph domain. Recent spectral graph neural networks have made notable progress in addressing this issue; however, current techniques typically employ fixed, globally shared filters. This 'one-size-fits-all' approach can easily cause over-smoothing, erasing critical high-frequency signals needed for fraud detection, and lacks adaptive capabilities for different graph instances. To solve this problem, we propose a Multi-Head Spectral-Adaptive Graph Neural Network (MHSA-GNN). The core innovation is the design of a lightweight hypernetwork that, conditioned on a 'spectral fingerprint' containing structural statistics and Rayleigh quotient features, dynamically generates Chebyshev filter parameters tailored to each instance. This enables a customized filtering strategy for each node and its local subgraph. Additionally, to prevent mode collapse in the multi-head mechanism, we introduce a novel dual regularization strategy that combines teacher-student contrastive learning (TSC) to ensure representation accuracy and Barlow Twins diversity loss (BTD) to enforce orthogonality among heads. Extensive experiments on four real-world datasets demonstrate that our method effectively preserves high-frequency abnormal signals and significantly outperforms existing state-of-the-art methods, especially showing excellent robustness on highly heterogeneous datasets.
Authors:Siva Sai, Ishika Goyal, Shubham Sharma, Sri Harshita Manuri, Vinay Chamola, Rajkumar Buyya
Title: Quantum Machine Learning for Cybersecurity: A Taxonomy and Future Directions
Abstract:
The increasing number of cyber threats and rapidly evolving tactics, as well as the high volume of data in recent years, have caused classical machine learning, rules, and signature-based defence strategies to fail, rendering them unable to keep up. An alternative, Quantum Machine Learning (QML), has recently emerged, making use of computations based on quantum mechanics. It offers better encoding and processing of high-dimensional structures for certain problems. This survey provides a comprehensive overview of QML techniques relevant to the domain of security, such as Quantum Neural Networks (QNNs), Quantum Support Vector Machines (QSVMs), Variational Quantum Circuits (VQCs), and Quantum Generative Adversarial Networks (QGANs), and discusses the contributions of this paper in relation to existing research in the field and how it improves over them. It also maps these methods across supervised, unsupervised, and generative learning paradigms, and to core cybersecurity tasks, including intrusion and anomaly detection, malware and botnet classification, and encrypted-traffic analytics. It also discusses their application in the domain of cloud computing security, where QML can enhance secure and scalable operations. Many limitations of QML in the domain of cybersecurity have also been discussed, along with the directions for addressing them.
Authors:Shun Maeda, Chunzhi Gu, Koichiro Kamide, Katsuya Hotta, Shangce Gao, Chao Zhang
Title: 3D Human-Human Interaction Anomaly Detection
Abstract:
Human-centric anomaly detection (AD) has been primarily studied to specify anomalous behaviors in a single person. However, as humans by nature tend to act in a collaborative manner, behavioral anomalies can also arise from human-human interactions. Detecting such anomalies using existing single-person AD models is prone to low accuracy, as these approaches are typically not designed to capture the complex and asymmetric dynamics of interactions. In this paper, we introduce a novel task, Human-Human Interaction Anomaly Detection (H2IAD), which aims to identify anomalous interactive behaviors within collaborative 3D human actions. To address H2IAD, we then propose Interaction Anomaly Detection Network (IADNet), which is formalized with a Temporal Attention Sharing Module (TASM). Specifically, in designing TASM, we share the encoded motion embeddings across both people such that collaborative motion correlations can be effectively synchronized. Moreover, we notice that in addition to temporal dynamics, human interactions are also characterized by spatial configurations between two people. We thus introduce a Distance-Based Relational Encoding Module (DREM) to better reflect social cues in H2IAD. The normalizing flow is eventually employed for anomaly scoring. Extensive experiments on human-human motion benchmarks demonstrate that IADNet outperforms existing Human-centric AD baselines in H2IAD.
Authors:Sven Groppe, Valter Uotila, Jinghua Groppe
Title: Opportunities and Challenges for Data Quality in the Era of Quantum Computing
Abstract:
In an era where data underpins decision-making across science, politics, and economics, ensuring high data quality is of paramount importance. Conventional computing algorithms for enhancing data quality, including anomaly detection, demand substantial computational resources, lengthy processing times, and extensive training datasets. This work aims to explore the potential advantages of quantum computing for enhancing data quality, with a particular focus on detection. We begin by examining quantum techniques that could replace key subroutines in conventional anomaly detection frameworks to mitigate their computational intensity. We then provide practical demonstrations of quantum-based anomaly detection methods, highlighting their capabilities. We present a technical implementation for detecting volatility regime changes in stock market data using quantum reservoir computing, which is a special type of quantum machine learning model. The experimental results indicate that quantum-based embeddings are a competitive alternative to classical ones in this particular example. Finally, we identify unresolved challenges and limitations in applying quantum computing to data quality tasks. Our findings open up new avenues for innovative research and commercial applications that aim to advance data quality through quantum technologies.
Authors:He Huang, Zixuan Hu, Dongxiao Li, Yao Xiao, Ling-Yu Duan
Title: Sparse Reasoning is Enough: Biological-Inspired Framework for Video Anomaly Detection with Large Pre-trained Models
Abstract:
Video anomaly detection (VAD) plays a vital role in real-world applications such as security surveillance, autonomous driving, and industrial monitoring. Recent advances in large pre-trained models have opened new opportunities for training-free VAD by leveraging rich prior knowledge and general reasoning capabilities. However, existing studies typically rely on dense frame-level inference, incurring high computational costs and latency. This raises a fundamental question: Is dense reasoning truly necessary when using powerful pre-trained models in VAD systems? To answer this, we propose ReCoVAD, a novel framework inspired by the dual reflex and conscious pathways of the human nervous system, enabling selective frame processing to reduce redundant computation. ReCoVAD consists of two core pathways: (i) a Reflex pathway that uses a lightweight CLIP-based module to fuse visual features with prototype prompts and produce decision vectors, which query a dynamic memory of past frames and anomaly scores for fast response; and (ii) a Conscious pathway that employs a medium-scale vision-language model to generate textual event descriptions and refined anomaly scores for novel frames. It continuously updates the memory and prototype prompts, while an integrated large language model periodically reviews accumulated descriptions to identify unseen anomalies, correct errors, and refine prototypes. Extensive experiments show that ReCoVAD achieves state-of-the-art training-free performance while processing only 28.55\% and 16.04\% of the frames used by previous methods on the UCF-Crime and XD-Violence datasets, demonstrating that sparse reasoning is sufficient for effective large-model-based VAD.
Authors:Zeng Zhang, Wenjie Yin, Xiaoqi Li
Title: A Novel GPT-Based Framework for Anomaly Detection in System Logs
Abstract:
Identification of anomalous events within system logs constitutes a pivotal element within the frame- work of cybersecurity defense strategies. However, this process faces numerous challenges, including the management of substantial data volumes, the distribution of anomalies, and the precision of con- ventional methods. To address this issue, the present paper puts forward a proposal for an intelligent detection method for system logs based on Genera- tive Pre-trained Transformers (GPT). The efficacy of this approach is attributable to a combination of structured input design and a Focal Loss op- timization strategy, which collectively result in a substantial enhancement of the performance of log anomaly detection. The initial approach involves the conversion of raw logs into event ID sequences through the use of the Drain parser. Subsequently, the Focal Loss loss function is employed to address the issue of class imbalance. The experimental re- sults demonstrate that the optimized GPT-2 model significantly outperforms the unoptimized model in a range of key metrics, including precision, recall, and F1 score. In specific tasks, comparable or superior performance has been demonstrated to that of the GPT-3.5 API.
Authors:Ana Lawry Aguila, Peirong Liu, Marina Crespo Aguirre, Juan Eugenio Iglesias
Title: Generating healthy counterfactuals with denoising diffusion bridge models
Abstract:
Generating healthy counterfactuals from pathological images holds significant promise in medical imaging, e.g., in anomaly detection or for application of analysis tools that are designed for healthy scans. These counterfactuals should represent what a patient's scan would plausibly look like in the absence of pathology, preserving individual anatomical characteristics while modifying only the pathological regions. Denoising diffusion probabilistic models (DDPMs) have become popular methods for generating healthy counterfactuals of pathology data. Typically, this involves training on solely healthy data with the assumption that a partial denoising process will be unable to model disease regions and will instead reconstruct a closely matched healthy counterpart. More recent methods have incorporated synthetic pathological images to better guide the diffusion process. However, it remains challenging to guide the generative process in a way that effectively balances the removal of anomalies with the retention of subject-specific features. To solve this problem, we propose a novel application of denoising diffusion bridge models (DDBMs) - which, unlike DDPMs, condition the diffusion process not only on the initial point (i.e., the healthy image), but also on the final point (i.e., a corresponding synthetically generated pathological image). Treating the pathological image as a structurally informative prior enables us to generate counterfactuals that closely match the patient's anatomy while selectively removing pathology. The results show that our DDBM outperforms previously proposed diffusion models and fully supervised approaches at segmentation and anomaly detection tasks.
Authors:Yanning Hou, Ke Xu, Junfa Li, Yanran Ruan, Jianfeng Qiu
Title: Enhancing Zero-Shot Anomaly Detection: CLIP-SAM Collaboration with Cascaded Prompts
Abstract:
Recently, the powerful generalization ability exhibited by foundation models has brought forth new solutions for zero-shot anomaly segmentation tasks. However, guiding these foundation models correctly to address downstream tasks remains a challenge. This paper proposes a novel two-stage framework, for zero-shot anomaly segmentation tasks in industrial anomaly detection. This framework excellently leverages the powerful anomaly localization capability of CLIP and the boundary perception ability of SAM.(1) To mitigate SAM's inclination towards object segmentation, we propose the Co-Feature Point Prompt Generation (PPG) module. This module collaboratively utilizes CLIP and SAM to generate positive and negative point prompts, guiding SAM to focus on segmenting anomalous regions rather than the entire object. (2) To further optimize SAM's segmentation results and mitigate rough boundaries and isolated noise, we introduce the Cascaded Prompts for SAM (CPS) module. This module employs hybrid prompts cascaded with a lightweight decoder of SAM, achieving precise segmentation of anomalous regions. Across multiple datasets, consistent experimental validation demonstrates that our approach achieves state-of-the-art zero-shot anomaly segmentation results. Particularly noteworthy is our performance on the Visa dataset, where we outperform the state-of-the-art methods by 10.3\% and 7.7\% in terms of {$F_1$-max} and AP metrics, respectively.
Authors:Laura Weihl, Nejc Novak, Stefan H. Bengtson, Malte Pedersen
Title: Uncovering Anomalous Events for Marine Environmental Monitoring via Visual Anomaly Detection
Abstract:
Underwater video monitoring is a promising strategy for assessing marine biodiversity, but the vast volume of uneventful footage makes manual inspection highly impractical. In this work, we explore the use of visual anomaly detection (VAD) based on deep neural networks to automatically identify interesting or anomalous events. We introduce AURA, the first multi-annotator benchmark dataset for underwater VAD, and evaluate four VAD models across two marine scenes. We demonstrate the importance of robust frame selection strategies to extract meaningful video segments. Our comparison against multiple annotators reveals that VAD performance of current models varies dramatically and is highly sensitive to both the amount of training data and the variability in visual content that defines "normal" scenes. Our results highlight the value of soft and consensus labels and offer a practical approach for supporting scientific exploration and scalable biodiversity monitoring.
Authors:Faried Abu Zaid, Tim Katzke, Emmanuel Müller, Daniel Neider
Title: On Uniformly Scaling Flows: A Density-Aligned Approach to Deep One-Class Classification
Abstract:
Unsupervised anomaly detection is often framed around two widely studied paradigms. Deep one-class classification, exemplified by Deep SVDD, learns compact latent representations of normality, while density estimators realized by normalizing flows directly model the likelihood of nominal data. In this work, we show that uniformly scaling flows (USFs), normalizing flows with a constant Jacobian determinant, precisely connect these approaches. Specifically, we prove how training a USF via maximum-likelihood reduces to a Deep SVDD objective with a unique regularization that inherently prevents representational collapse. This theoretical bridge implies that USFs inherit both the density faithfulness of flows and the distance-based reasoning of one-class methods. We further demonstrate that USFs induce a tighter alignment between negative log-likelihood and latent norm than either Deep SVDD or non-USFs, and how recent hybrid approaches combining one-class objectives with VAEs can be naturally extended to USFs. Consequently, we advocate using USFs as a drop-in replacement for non-USFs in modern anomaly detection architectures. Empirically, this substitution yields consistent performance gains and substantially improved training stability across multiple benchmarks and model backbones for both image-level and pixel-level detection. These results unify two major anomaly detection paradigms, advancing both theoretical understanding and practical performance.
Authors:Sizhe Ma, Katherine A. Flanigan, Mario Bergés, James D. Brooks
Title: Transformer-Based Indirect Structural Health Monitoring of Rail Infrastructure with Attention-Driven Detection and Localization of Transient Defects
Abstract:
Indirect structural health monitoring (iSHM) for broken rail detection using onboard sensors presents a cost-effective paradigm for railway track assessment, yet reliably detecting small, transient anomalies (2-10 cm) remains a significant challenge due to complex vehicle dynamics, signal noise, and the scarcity of labeled data limiting supervised approaches. This study addresses these issues through unsupervised deep learning. We introduce an incremental synthetic data benchmark designed to systematically evaluate model robustness against progressively complex challenges like speed variations, multi-channel inputs, and realistic noise patterns encountered in iSHM. Using this benchmark, we evaluate several established unsupervised models alongside our proposed Attention-Focused Transformer. Our model employs a self-attention mechanism, trained via reconstruction but innovatively deriving anomaly scores primarily from deviations in learned attention weights, aiming for both effectiveness and computational efficiency. Benchmarking results reveal that while transformer-based models generally outperform others, all tested models exhibit significant vulnerability to high-frequency localized noise, identifying this as a critical bottleneck for practical deployment. Notably, our proposed model achieves accuracy comparable to the state-of-the-art solution while demonstrating better inference speed. This highlights the crucial need for enhanced noise robustness in future iSHM models and positions our more efficient attention-based approach as a promising foundation for developing practical onboard anomaly detection systems.
Authors:Kristoffer Christensen, Bo Nørregaard Jørgensen, Zheng Grace Ma
Title: A Visual Diagnostics Framework for District Heating Data: Enhancing Data Quality for AI-Driven Heat Consumption Prediction
Abstract:
High-quality data is a prerequisite for training reliable Artificial Intelligence (AI) models in the energy domain. In district heating networks, sensor and metering data often suffer from noise, missing values, and temporal inconsistencies, which can significantly degrade model performance. This paper presents a systematic approach for evaluating and improving data quality using visual diagnostics, implemented through an interactive web-based dashboard. The dashboard employs Python-based visualization techniques, including time series plots, heatmaps, box plots, histograms, correlation matrices, and anomaly-sensitive KPIs such as skewness and anomaly detection based on the modified z-scores. These tools al-low human experts to inspect and interpret data anomalies, enabling a human-in-the-loop strategy for data quality assessment. The methodology is demonstrated on a real-world dataset from a Danish district heating provider, covering over four years of hourly data from nearly 7000 meters. The findings show how visual analytics can uncover systemic data issues and, in the future, guide data cleaning strategies that enhance the accuracy, stability, and generalizability of Long Short-Term Memory and Gated Recurrent Unit models for heat demand forecasting. The study contributes to a scalable, generalizable framework for visual data inspection and underlines the critical role of data quality in AI-driven energy management systems.
Authors:Andriy Enttsel, Alex Marchioni, Andrea Zanellini, Mauro Mangia, Gianluca Setti, Riccardo Rovatti
Title: RDD: Pareto Analysis of the Rate-Distortion-Distinguishability Trade-off
Abstract:
Extensive monitoring systems generate data that is usually compressed for network transmission. This compressed data might then be processed in the cloud for tasks such as anomaly detection. However, compression can potentially impair the detector's ability to distinguish between regular and irregular patterns due to information loss. Here we extend the information-theoretic framework introduced in [1] to simultaneously address the trade-off between the three features on which the effectiveness of the system depends: the effectiveness of compression, the amount of distortion it introduces, and the distinguishability between compressed normal signals and compressed anomalous signals. We leverage a Gaussian assumption to draw curves showing how moving on a Pareto surface helps administer such a trade-off better than simply relying on optimal rate-distortion compression and hoping that compressed signals can be distinguished from each other.
Authors:Karim Khamaisi, Nicolas Keller, Stefan Krummenacher, Valentin Huber, Bernhard Fässler, Bruno Rodrigues
Title: From Noise to Knowledge: A Comparative Study of Acoustic Anomaly Detection Models in Pumped-storage Hydropower Plants
Abstract:
In the context of industrial factories and energy producers, unplanned outages are highly costly and difficult to service. However, existing acoustic-anomaly detection studies largely rely on generic industrial or synthetic datasets, with few focused on hydropower plants due to limited access. This paper presents a comparative analysis of acoustic-based anomaly detection methods, as a way to improve predictive maintenance in hydropower plants. We address key challenges in the acoustic preprocessing under highly noisy conditions before extracting time- and frequency-domain features. Then, we benchmark three machine learning models: LSTM AE, K-Means, and OC-SVM, which are tested on two real-world datasets from the Rodundwerk II pumped-storage plant in Austria, one with induced anomalies and one with real-world conditions. The One-Class SVM achieved the best trade-off of accuracy (ROC AUC 0.966-0.998) and minimal training time, while the LSTM autoencoder delivered strong detection (ROC AUC 0.889-0.997) at the expense of higher computational cost.
Authors:Ammar Kamoona, Hui Song, Ali Moradi Amani, Mahdi Jalili, Xinghuo Yu, Peter McTaggart
Title: Electric Vehicle Identification from Behind Smart Meter Data
Abstract:
Electric vehicle (EV) charging loads identification from behind smart meter recordings is an indispensable aspect that enables effective decision-making for energy distributors to reach an informed and intelligent decision about the power grid's reliability. When EV charging happens behind the meter (BTM), the charging occurs on the customer side of the meter, which measures the overall electricity consumption. In other words, the charging of the EV is considered part of the customer's load and not separately measured by the Distribution Network Operators (DNOs). DNOs require complete knowledge about the EV presence in their network. Identifying the EV charging demand is essential to better plan and manage the distribution grid. Unlike supervised methods, this paper addresses the problem of EV charging load identification in a non-nonintrusive manner from low-frequency smart meter using an unsupervised learning approach based on anomaly detection technique. Our approach does not require prior knowledge of EV charging profiles. It only requires real power consumption data of non-EV users, which are abundant in practice. We propose a deep temporal convolution encoding decoding (TAE) network. The TAE is applied to power consumption from smart BTM from Victorian households in Australia, and the TAE shows superior performance in identifying households with EVs.
Authors:Rani Naaman, Felipe Gohring de Magalhaes, Jean-Yves Ouattara, Gabriela Nicolescu
Title: Quantum Enhanced Anomaly Detection for ADS-B Data using Hybrid Deep Learning
Abstract:
The emerging field of Quantum Machine Learning (QML) has shown promising advantages in accelerating processing speed and effectively handling the high dimensionality associated with complex datasets. Quantum Computing (QC) enables more efficient data manipulation through the quantum properties of superposition and entanglement. In this paper, we present a novel approach combining quantum and classical machine learning techniques to explore the impact of quantum properties for anomaly detection in Automatic Dependent Surveillance-Broadcast (ADS-B) data. We compare the performance of a Hybrid-Fully Connected Quantum Neural Network (H-FQNN) with different loss functions and use a publicly available ADS-B dataset to evaluate the performance. The results demonstrate competitive performance in detecting anomalies, with accuracies ranging from 90.17% to 94.05%, comparable to the performance of a traditional Fully Connected Neural Network (FNN) model, which achieved accuracies between 91.50% and 93.37%.
Authors:Linchun Wu, Qin Zou, Xianbiao Qi, Bo Du, Zhongyuan Wang, Qingquan Li
Title: Double Helix Diffusion for Cross-Domain Anomaly Image Generation
Abstract:
Visual anomaly inspection is critical in manufacturing, yet hampered by the scarcity of real anomaly samples for training robust detectors. Synthetic data generation presents a viable strategy for data augmentation; however, current methods remain constrained by two principal limitations: 1) the generation of anomalies that are structurally inconsistent with the normal background, and 2) the presence of undesirable feature entanglement between synthesized images and their corresponding annotation masks, which undermines the perceptual realism of the output. This paper introduces Double Helix Diffusion (DH-Diff), a novel cross-domain generative framework designed to simultaneously synthesize high-fidelity anomaly images and their pixel-level annotation masks, explicitly addressing these challenges. DH-Diff employs a unique architecture inspired by a double helix, cycling through distinct modules for feature separation, connection, and merging. Specifically, a domain-decoupled attention mechanism mitigates feature entanglement by enhancing image and annotation features independently, and meanwhile a semantic score map alignment module ensures structural authenticity by coherently integrating anomaly foregrounds. DH-Diff offers flexible control via text prompts and optional graphical guidance. Extensive experiments demonstrate that DH-Diff significantly outperforms state-of-the-art methods in diversity and authenticity, leading to significant improvements in downstream anomaly detection performance.
Authors:Sascha Diefenbacher, Anna Hallin, Gregor Kasieczka, Michael Krämer, Anne Lauscher, Tim Lukas
Title: Agents of Discovery
Abstract:
The substantial data volumes encountered in modern particle physics and other domains of fundamental physics research allow (and require) the use of increasingly complex data analysis tools and workflows. While the use of machine learning (ML) tools for data analysis has recently proliferated, these tools are typically special-purpose algorithms that rely, for example, on encoded physics knowledge to reach optimal performance. In this work, we investigate a new and orthogonal direction: Using recent progress in large language models (LLMs) to create a team of agents -- instances of LLMs with specific subtasks -- that jointly solve data analysis-based research problems in a way similar to how a human researcher might: by creating code to operate standard tools and libraries (including ML systems) and by building on results of previous iterations. If successful, such agent-based systems could be deployed to automate routine analysis components to counteract the increasing complexity of modern tool chains. To investigate the capabilities of current-generation commercial LLMs, we consider the task of anomaly detection via the publicly available and highly-studied LHC Olympics dataset. Several current models by OpenAI (GPT-4o, o4-mini, GPT-4.1, and GPT-5) are investigated and their stability tested. Overall, we observe the capacity of the agent-based system to solve this data analysis problem. The best agent-created solutions mirror the performance of human state-of-the-art results.
Authors:Johan Andreas Balle Rubak, Khuram Naveed, Sanyam Jain, Lukas Esterle, Alexandros Iosifidis, Ruben Pauwels
Title: Impact of Labeling Inaccuracy and Image Noise on Tooth Segmentation in Panoramic Radiographs using Federated, Centralized and Local Learning
Abstract:
Objectives: Federated learning (FL) may mitigate privacy constraints, heterogeneous data quality, and inconsistent labeling in dental diagnostic AI. We compared FL with centralized (CL) and local learning (LL) for tooth segmentation in panoramic radiographs across multiple data corruption scenarios. Methods: An Attention U-Net was trained on 2066 radiographs from six institutions across four settings: baseline (unaltered data); label manipulation (dilated/missing annotations); image-quality manipulation (additive Gaussian noise); and exclusion of a faulty client with corrupted data. FL was implemented via the Flower AI framework. Per-client training- and validation-loss trajectories were monitored for anomaly detection and a set of metrics (Dice, IoU, HD, HD95 and ASSD) was evaluated on a hold-out test set. From these metrics significance results were reported through Wilcoxon signed-rank test. CL and LL served as comparators. Results: Baseline: FL achieved a median Dice of 0.94889 (ASSD: 1.33229), slightly better than CL at 0.94706 (ASSD: 1.37074) and LL at 0.93557-0.94026 (ASSD: 1.51910-1.69777). Label manipulation: FL maintained the best median Dice score at 0.94884 (ASSD: 1.46487) versus CL's 0.94183 (ASSD: 1.75738) and LL's 0.93003-0.94026 (ASSD: 1.51910-2.11462). Image noise: FL led with Dice at 0.94853 (ASSD: 1.31088); CL scored 0.94787 (ASSD: 1.36131); LL ranged from 0.93179-0.94026 (ASSD: 1.51910-1.77350). Faulty-client exclusion: FL reached Dice at 0.94790 (ASSD: 1.33113) better than CL's 0.94550 (ASSD: 1.39318). Loss-curve monitoring reliably flagged the corrupted site. Conclusions: FL matches or exceeds CL and outperforms LL across corruption scenarios while preserving privacy. Per-client loss trajectories provide an effective anomaly-detection mechanism and support FL as a practical, privacy-preserving approach for scalable clinical AI deployment.
Authors:Koichiro Kamide, Shunsuke Sakai, Shun Maeda, Chunzhi Gu, Chao Zhang
Title: Few-shot Human Action Anomaly Detection via a Unified Contrastive Learning Framework
Abstract:
Human Action Anomaly Detection (HAAD) aims to identify anomalous actions given only normal action data during training. Existing methods typically follow a one-model-per-category paradigm, requiring separate training for each action category and a large number of normal samples. These constraints hinder scalability and limit applicability in real-world scenarios, where data is often scarce or novel categories frequently appear. To address these limitations, we propose a unified framework for HAAD that is compatible with few-shot scenarios. Our method constructs a category-agnostic representation space via contrastive learning, enabling AD by comparing test samples with a given small set of normal examples (referred to as the support set). To improve inter-category generalization and intra-category robustness, we introduce a generative motion augmentation strategy harnessing a diffusion-based foundation model for creating diverse and realistic training samples. Notably, to the best of our knowledge, our work is the first to introduce such a strategy specifically tailored to enhance contrastive learning for action AD. Extensive experiments on the HumanAct12 dataset demonstrate the state-of-the-art effectiveness of our approach under both seen and unseen category settings, regarding training efficiency and model scalability for few-shot HAAD.
Authors:Yuxi Wang, Heyao Liu, Nyutian Long, Guanzi Yao
Title: Federated Anomaly Detection for Multi-Tenant Cloud Platforms with Personalized Modeling
Abstract:
This paper proposes an anomaly detection method based on federated learning to address key challenges in multi-tenant cloud environments, including data privacy leakage, heterogeneous resource behavior, and the limitations of centralized modeling. The method establishes a federated training framework involving multiple tenants. Each tenant trains the model locally using private resource usage data. Through parameter aggregation, a global model is optimized, enabling cross-tenant collaborative anomaly detection while preserving data privacy. To improve adaptability to diverse resource usage patterns, a personalized parameter adjustment mechanism is introduced. This allows the model to retain tenant-specific feature representations while sharing global knowledge. In the model output stage, the Mahalanobis distance is used to compute anomaly scores. This enhances both the accuracy and stability of anomaly detection. The experiments use real telemetry data from a cloud platform to construct a simulated multi-tenant environment. The study evaluates the model's performance under varying participation rates and noise injection levels. These comparisons demonstrate the proposed method's robustness and detection accuracy. Experimental results show that the proposed method outperforms existing mainstream models across key metrics such as Precision, Recall, and F1-Score. It also maintains stable performance in various complex scenarios. These findings highlight the method's practical potential for intelligent resource monitoring and anomaly diagnosis in cloud computing environments.
Authors:Kunlan Xiang, Haomiao Yang, Meng Hao, Wenbo Jiang, Haoxin Wang, Shiyue Huang, Shaofeng Li, Yijing Liu, Ji Guo, Dusit Niyato
Title: BadTime: An Effective Backdoor Attack on Multivariate Long-Term Time Series Forecasting
Abstract:
Multivariate long-term time series forecasting (MLTSF) models are increasingly deployed in critical domains such as climate, finance, and transportation. Despite their growing importance, the security of MLTSF models against backdoor attacks remains entirely unexplored. To bridge this gap, we propose BadTime, the first effective backdoor attack tailored for MLTSF. BadTime can manipulate hundreds of future predictions toward a target pattern by injecting a subtle trigger. BadTime addresses two key challenges that arise uniquely in MLTSF: (i) the rapid dilution of local triggers over long horizons, and (ii) the extreme sparsity of backdoor signals under stealth constraints. To counter dilution, BadTime leverages inter-variable correlations, temporal lags, and data-driven initialization to design a distributed, lag-aware trigger that ensures effective influence over long-range forecasts. To overcome sparsity, it introduces a hybrid strategy to select valuable poisoned samples and a decoupled backdoor training objective that adaptively adjusts the model's focus on the sparse backdoor signal, ensuring reliable learning at a poisoning rate as low as 1%. Extensive experiments show that BadTime significantly outperforms state-of-the-art (SOTA) backdoor attacks on time series forecasting by extending the attackable horizon from at most 12 timesteps to 720 timesteps (a 60-fold improvement), reducing MAE by over 50% on target variables, and boosting stealthiness by more than 3-fold under anomaly detection.
Authors:Ana Lawry Aguila, Ayodeji Ijishakin, Juan Eugenio Iglesias, Tomomi Takenaga, Yukihiro Nomura, Takeharu Yoshikawa, Osamu Abe, Shouhei Hanaoka
Title: CADD: Context aware disease deviations via restoration of brain images using normative conditional diffusion models
Abstract:
Applying machine learning to real-world medical data, e.g. from hospital archives, has the potential to revolutionize disease detection in brain images. However, detecting pathology in such heterogeneous cohorts is a difficult challenge. Normative modeling, a form of unsupervised anomaly detection, offers a promising approach to studying such cohorts where the ``normal'' behavior is modeled and can be used at subject level to detect deviations relating to disease pathology. Diffusion models have emerged as powerful tools for anomaly detection due to their ability to capture complex data distributions and generate high-quality images. Their performance relies on image restoration; differences between the original and restored images highlight potential abnormalities. However, unlike normative models, these diffusion model approaches do not incorporate clinical information which provides important context to guide the disease detection process. Furthermore, standard approaches often poorly restore healthy regions, resulting in poor reconstructions and suboptimal detection performance. We present CADD, the first conditional diffusion model for normative modeling in 3D images. To guide the healthy restoration process, we propose a novel inference inpainting strategy which balances anomaly removal with retention of subject-specific features. Evaluated on three challenging datasets, including clinical scans, which may have lower contrast, thicker slices, and motion artifacts, CADD achieves state-of-the-art performance in detecting neurological abnormalities in heterogeneous cohorts.
Authors:Hengxin Ruan, Qiufan Lin, Shupei Chen, Yang Wang, Wei Zhang
Title: Investigation on deep learning-based galaxy image translation models
Abstract:
Galaxy image translation is an important application in galaxy physics and cosmology. With deep learning-based generative models, image translation has been performed for image generation, data quality enhancement, information extraction, and generalized for other tasks such as deblending and anomaly detection. However, most endeavors on image translation primarily focus on the pixel-level and morphology-level statistics of galaxy images. There is a lack of discussion on the preservation of complex high-order galaxy physical information, which would be more challenging but crucial for studies that rely on high-fidelity image translation. Therefore, we investigated the effectiveness of generative models in preserving high-order physical information (represented by spectroscopic redshift) along with pixel-level and morphology-level information. We tested four representative models, i.e. a Swin Transformer, an SRGAN, a capsule network, and a diffusion model, using the SDSS and CFHTLS galaxy images. We found that these models show different levels of incapabilities in retaining redshift information, even if the global structures of galaxies and morphology-level statistics can be roughly reproduced. In particular, the cross-band peak fluxes of galaxies were found to contain meaningful redshift information, whereas they are subject to noticeable uncertainties in the translation of images, which may substantially be due to the nature of many-to-many mapping. Nonetheless, imperfect translated images may still contain a considerable amount of information and thus hold promise for downstream applications for which high image fidelity is not strongly required. Our work can facilitate further research on how complex physical information is manifested on galaxy images, and it provides implications on the development of image translation models for scientific use.
Authors:Timur Sattarov, Marco Schreyer, Damian Borth
Title: Diffusion-Scheduled Denoising Autoencoders for Anomaly Detection in Tabular Data
Abstract:
Anomaly detection in tabular data remains challenging due to complex feature interactions and the scarcity of anomalous examples. Denoising autoencoders rely on fixed-magnitude noise, limiting adaptability to diverse data distributions. Diffusion models introduce scheduled noise and iterative denoising, but lack explicit reconstruction mappings. We propose the Diffusion-Scheduled Denoising Autoencoder (DDAE), a framework that integrates diffusion-based noise scheduling and contrastive learning into the encoding process to improve anomaly detection. We evaluated DDAE on 57 datasets from ADBench. Our method outperforms in semi-supervised settings and achieves competitive results in unsupervised settings, improving PR-AUC by up to 65% (9%) and ROC-AUC by 16% (6%) over state-of-the-art autoencoder (diffusion) model baselines. We observed that higher noise levels benefit unsupervised training, while lower noise with linear scheduling is optimal in semi-supervised settings. These findings underscore the importance of principled noise strategies in tabular anomaly detection.
Authors:Yiming Xu, Xu Hua, Zhen Peng, Bin Shi, Jiarun Chen, Xingbo Fu, Song Wang, Bo Dong
Title: Text-Attributed Graph Anomaly Detection via Multi-Scale Cross- and Uni-Modal Contrastive Learning
Abstract:
The widespread application of graph data in various high-risk scenarios has increased attention to graph anomaly detection (GAD). Faced with real-world graphs that often carry node descriptions in the form of raw text sequences, termed text-attributed graphs (TAGs), existing graph anomaly detection pipelines typically involve shallow embedding techniques to encode such textual information into features, and then rely on complex self-supervised tasks within the graph domain to detect anomalies. However, this text encoding process is separated from the anomaly detection training objective in the graph domain, making it difficult to ensure that the extracted textual features focus on GAD-relevant information, seriously constraining the detection capability. How to seamlessly integrate raw text and graph topology to unleash the vast potential of cross-modal data in TAGs for anomaly detection poses a challenging issue. This paper presents a novel end-to-end paradigm for text-attributed graph anomaly detection, named CMUCL. We simultaneously model data from both text and graph structures, and jointly train text and graph encoders by leveraging cross-modal and uni-modal multi-scale consistency to uncover potential anomaly-related information. Accordingly, we design an anomaly score estimator based on inconsistency mining to derive node-specific anomaly scores. Considering the lack of benchmark datasets tailored for anomaly detection on TAGs, we release 8 datasets to facilitate future research. Extensive evaluations show that CMUCL significantly advances in text-attributed graph anomaly detection, delivering an 11.13% increase in average accuracy (AP) over the suboptimal.
Authors:Yiming Xu, Jiarun Chen, Zhen Peng, Zihan Chen, Qika Lin, Lan Ma, Bin Shi, Bo Dong
Title: Court of LLMs: Evidence-Augmented Generation via Multi-LLM Collaboration for Text-Attributed Graph Anomaly Detection
Abstract:
The natural combination of intricate topological structures and rich textual information in text-attributed graphs (TAGs) opens up a novel perspective for graph anomaly detection (GAD). However, existing GAD methods primarily focus on designing complex optimization objectives within the graph domain, overlooking the complementary value of the textual modality, whose features are often encoded by shallow embedding techniques, such as bag-of-words or skip-gram, so that semantic context related to anomalies may be missed. To unleash the enormous potential of textual modality, large language models (LLMs) have emerged as promising alternatives due to their strong semantic understanding and reasoning capabilities. Nevertheless, their application to TAG anomaly detection remains nascent, and they struggle to encode high-order structural information inherent in graphs due to input length constraints. For high-quality anomaly detection in TAGs, we propose CoLL, a novel framework that combines LLMs and graph neural networks (GNNs) to leverage their complementary strengths. CoLL employs multi-LLM collaboration for evidence-augmented generation to capture anomaly-relevant contexts while delivering human-readable rationales for detected anomalies. Moreover, CoLL integrates a GNN equipped with a gating mechanism to adaptively fuse textual features with evidence while preserving high-order topological information. Extensive experiments demonstrate the superiority of CoLL, achieving an average improvement of 13.37% in AP. This study opens a new avenue for incorporating LLMs in advancing GAD.
Authors:Luis Roque, Carlos Soares, Vitor Cerqueira, Luis Torgo
Title: L-GTA: Latent Generative Modeling for Time Series Augmentation
Abstract:
Data augmentation is gaining importance across various aspects of time series analysis, from forecasting to classification and anomaly detection tasks. We introduce the Latent Generative Transformer Augmentation (L-GTA) model, a generative approach using a transformer-based variational recurrent autoencoder. This model uses controlled transformations within the latent space of the model to generate new time series that preserve the intrinsic properties of the original dataset. L-GTA enables the application of diverse transformations, ranging from simple jittering to magnitude warping, and combining these basic transformations to generate more complex synthetic time series datasets. Our evaluation of several real-world datasets demonstrates the ability of L-GTA to produce more reliable, consistent, and controllable augmented data. This translates into significant improvements in predictive accuracy and similarity measures compared to direct transformation methods.
Authors:Syed Danial Ali Shah, Maryam Hafeez, Abdelaziz Salama, Syed Ali Raza Zaidi
Title: Proactive AI-and-RAN Workload Orchestration in O-RAN Architectures for 6G Networks
Abstract:
The vision of AI-RAN convergence, as advocated by the AI-RAN Alliance, aims to unlock a unified 6G platform capable of seamlessly supporting AI and RAN workloads over shared infrastructure. However, the architectural framework and intelligent resource orchestration strategies necessary to realize this vision remain largely unexplored. In this paper, we propose a Converged AI-and-ORAN Architectural (CAORA) framework based on O-RAN specifications, enabling the dynamic coexistence of real-time RAN and computationally intensive AI workloads. We design custom xApps within the Near-Real-Time RAN Intelligent Controller (NRT-RIC) to monitor RAN KPIs and expose radio analytics to an End-to-End (E2E) orchestrator via the recently introduced Y1 interface. The orchestrator incorporates workload forecasting and anomaly detection modules, augmenting a Soft Actor-Critic (SAC) reinforcement learning agent that proactively manages resource allocation, including Multi-Instance GPU (MIG) partitioning. Using real-world 5G traffic traces from Barcelona, our trace-driven simulations demonstrate that CAORA achieves near 99\% fulfillment of RAN demands, supports dynamic AI workloads, and maximizes infrastructure utilization even under highly dynamic conditions. Our results reveal that predictive orchestration significantly improves system adaptability, resource efficiency, and service continuity, offering a viable blueprint for future AI-and-RAN converged 6G systems.
Authors:Yanning Hou, Yanran Ruan, Junfa Li, Shanshan Wang, Jianfeng Qiu, Ke Xu
Title: StackCLIP: Clustering-Driven Stacked Prompt in Zero-Shot Industrial Anomaly Detection
Abstract:
Enhancing the alignment between text and image features in the CLIP model is a critical challenge in zero-shot industrial anomaly detection tasks. Recent studies predominantly utilize specific category prompts during pretraining, which can cause overfitting to the training categories and limit model generalization. To address this, we propose a method that transforms category names through multicategory name stacking to create stacked prompts, forming the basis of our StackCLIP model. Our approach introduces two key components. The Clustering-Driven Stacked Prompts (CSP) module constructs generic prompts by stacking semantically analogous categories, while utilizing multi-object textual feature fusion to amplify discriminative anomalies among similar objects. The Ensemble Feature Alignment (EFA) module trains knowledge-specific linear layers tailored for each stack cluster and adaptively integrates them based on the attributes of test categories. These modules work together to deliver superior training speed, stability, and convergence, significantly boosting anomaly segmentation performance. Additionally, our stacked prompt framework offers robust generalization across classification tasks. To further improve performance, we introduce the Regulating Prompt Learning (RPL) module, which leverages the generalization power of stacked prompts to refine prompt learning, elevating results in anomaly detection classification tasks. Extensive testing on seven industrial anomaly detection datasets demonstrates that our method achieves state-of-the-art performance in both zero-shot anomaly detection and segmentation tasks.
Authors:Anja Delić, Matej Grcić, Siniša Šegvić
Title: Sequential keypoint density estimator: an overlooked baseline of skeleton-based video anomaly detection
Abstract:
Detecting anomalous human behaviour is an important visual task in safety-critical applications such as healthcare monitoring, workplace safety, or public surveillance. In these contexts, abnormalities are often reflected with unusual human poses. Thus, we propose SeeKer, a method for detecting anomalies in sequences of human skeletons. Our method formulates the skeleton sequence density through autoregressive factorization at the keypoint level. The corresponding conditional distributions represent probable keypoint locations given prior skeletal motion. We formulate the joint distribution of the considered skeleton as causal prediction of conditional Gaussians across its constituent keypoints. A skeleton is flagged as anomalous if its keypoint locations surprise our model (i.e. receive a low density). In practice, our anomaly score is a weighted sum of per-keypoint log-conditionals, where the weights account for the confidence of the underlying keypoint detector. Despite its conceptual simplicity, SeeKer surpasses all previous methods on the UBnormal and MSAD-HR datasets while delivering competitive performance on the ShanghaiTech dataset.
Authors:Chi Lung Cheng, Ranit Das, Runze Li, Radha Mastandrea, Vinicius Mikuni, Benjamin Nachman, David Shih, Gup Singh
Title: Generator Based Inference (GBI)
Abstract:
Statistical inference in physics is often based on samples from a generator (sometimes referred to as a ``forward model") that emulate experimental data and depend on parameters of the underlying theory. Modern machine learning has supercharged this workflow to enable high-dimensional and unbinned analyses to utilize much more information than ever before. We propose a general framework for describing the integration of machine learning with generators called Generator Based Inference (GBI). A well-studied special case of this setup is Simulation Based Inference (SBI) where the generator is a physics-based simulator. In this work, we examine other methods within the GBI toolkit that use data-driven methods to build the generator. In particular, we focus on resonant anomaly detection, where the generator describing the background is learned from sidebands. We show how to perform machine learning-based parameter estimation in this context with data-derived generators. This transforms the statistical outputs of anomaly detection to be directly interpretable and the performance on the LHCO community benchmark dataset establishes a new state-of-the-art for anomaly detection sensitivity.
Authors:Kiarash Naghavi Khanghah, Zhiling Chen, Lela Romeo, Qian Yang, Rajiv Malhotra, Farhad Imani, Hongyi Xu
Title: Multimodal RAG-driven Anomaly Detection and Classification in Laser Powder Bed Fusion using Large Language Models
Abstract:
Additive manufacturing enables the fabrication of complex designs while minimizing waste, but faces challenges related to defects and process anomalies. This study presents a novel multimodal Retrieval-Augmented Generation-based framework that automates anomaly detection across various Additive Manufacturing processes leveraging retrieved information from literature, including images and descriptive text, rather than training datasets. This framework integrates text and image retrieval from scientific literature and multimodal generation models to perform zero-shot anomaly identification, classification, and explanation generation in a Laser Powder Bed Fusion setting. The proposed framework is evaluated on four L-PBF manufacturing datasets from Oak Ridge National Laboratory, featuring various printer makes, models, and materials. This evaluation demonstrates the framework's adaptability and generalizability across diverse images without requiring additional training. Comparative analysis using Qwen2-VL-2B and GPT-4o-mini as MLLM within the proposed framework highlights that GPT-4o-mini outperforms Qwen2-VL-2B and proportional random baseline in manufacturing anomalies classification. Additionally, the evaluation of the RAG system confirms that incorporating retrieval mechanisms improves average accuracy by 12% by reducing the risk of hallucination and providing additional information. The proposed framework can be continuously updated by integrating emerging research, allowing seamless adaptation to the evolving landscape of AM technologies. This scalable, automated, and zero-shot-capable framework streamlines AM anomaly analysis, enhancing efficiency and accuracy.
Authors:Yazan Otoum, Arghavan Asad, Amiya Nayak
Title: LLM-Based Threat Detection and Prevention Framework for IoT Ecosystems
Abstract:
The increasing complexity and scale of the Internet of Things (IoT) have made security a critical concern. This paper presents a novel Large Language Model (LLM)-based framework for comprehensive threat detection and prevention in IoT environments. The system integrates lightweight LLMs fine-tuned on IoT-specific datasets (IoT-23, TON_IoT) for real-time anomaly detection and automated, context-aware mitigation strategies optimized for resource-constrained devices. A modular Docker-based deployment enables scalable and reproducible evaluation across diverse network conditions. Experimental results in simulated IoT environments demonstrate significant improvements in detection accuracy, response latency, and resource efficiency over traditional security methods. The proposed framework highlights the potential of LLM-driven, autonomous security solutions for future IoT ecosystems.
Authors:Xiren Zhou, Shikang Liu, Xinyu Yan, Yizhan Fan, Xiangyu Wang, Yu Kang, Jian Cheng, Huanhuan Chen
Title: Reservoir-enhanced Segment Anything Model for Subsurface Diagnosis
Abstract:
Urban roads and infrastructure, vital to city operations, face growing threats from subsurface anomalies like cracks and cavities. Ground Penetrating Radar (GPR) effectively visualizes underground conditions employing electromagnetic (EM) waves; however, accurate anomaly detection via GPR remains challenging due to limited labeled data, varying subsurface conditions, and indistinct target boundaries. Although visually image-like, GPR data fundamentally represent EM waves, with variations within and between waves critical for identifying anomalies. Addressing these, we propose the Reservoir-enhanced Segment Anything Model (Res-SAM), an innovative framework exploiting both visual discernibility and wave-changing properties of GPR data. Res-SAM initially identifies apparent candidate anomaly regions given minimal prompts, and further refines them by analyzing anomaly-induced changing information within and between EM waves in local GPR data, enabling precise and complete anomaly region extraction and category determination. Real-world experiments demonstrate that Res-SAM achieves high detection accuracy (>85%) and outperforms state-of-the-art. Notably, Res-SAM requires only minimal accessible non-target data, avoids intensive training, and incorporates simple human interaction to enhance reliability. Our research provides a scalable, resource-efficient solution for rapid subsurface anomaly detection across diverse environments, improving urban safety monitoring while reducing manual effort and computational cost.
Authors:Yazan Otoum, Arghavan Asad, Amiya Nayak
Title: Blockchain Meets Adaptive Honeypots: A Trust-Aware Approach to Next-Gen IoT Security
Abstract:
Edge computing-based Next-Generation Wireless Networks (NGWN)-IoT offer enhanced bandwidth capacity for large-scale service provisioning but remain vulnerable to evolving cyber threats. Existing intrusion detection and prevention methods provide limited security as adversaries continually adapt their attack strategies. We propose a dynamic attack detection and prevention approach to address this challenge. First, blockchain-based authentication uses the Deoxys Authentication Algorithm (DAA) to verify IoT device legitimacy before data transmission. Next, a bi-stage intrusion detection system is introduced: the first stage uses signature-based detection via an Improved Random Forest (IRF) algorithm. In contrast, the second stage applies feature-based anomaly detection using a Diffusion Convolution Recurrent Neural Network (DCRNN). To ensure Quality of Service (QoS) and maintain Service Level Agreements (SLA), trust-aware service migration is performed using Heap-Based Optimization (HBO). Additionally, on-demand virtual High-Interaction honeypots deceive attackers and extract attack patterns, which are securely stored using the Bimodal Lattice Signature Scheme (BLISS) to enhance signature-based Intrusion Detection Systems (IDS). The proposed framework is implemented in the NS3 simulation environment and evaluated against existing methods across multiple performance metrics, including accuracy, attack detection rate, false negative rate, precision, recall, ROC curve, memory usage, CPU usage, and execution time. Experimental results demonstrate that the framework significantly outperforms existing approaches, reinforcing the security of NGWN-enabled IoT ecosystems
Authors:Guanchun Wang, Xiangrong Zhang, Yifei Zhang, Zelin Peng, Tianyang Zhang, Xu Tang, Licheng Jiao
Title: ACMamba: Fast Unsupervised Anomaly Detection via An Asymmetrical Consensus State Space Model
Abstract:
Unsupervised anomaly detection in hyperspectral images (HSI), aiming to detect unknown targets from backgrounds, is challenging for earth surface monitoring. However, current studies are hindered by steep computational costs due to the high-dimensional property of HSI and dense sampling-based training paradigm, constraining their rapid deployment. Our key observation is that, during training, not all samples within the same homogeneous area are indispensable, whereas ingenious sampling can provide a powerful substitute for reducing costs. Motivated by this, we propose an Asymmetrical Consensus State Space Model (ACMamba) to significantly reduce computational costs without compromising accuracy. Specifically, we design an asymmetrical anomaly detection paradigm that utilizes region-level instances as an efficient alternative to dense pixel-level samples. In this paradigm, a low-cost Mamba-based module is introduced to discover global contextual attributes of regions that are essential for HSI reconstruction. Additionally, we develop a consensus learning strategy from the optimization perspective to simultaneously facilitate background reconstruction and anomaly compression, further alleviating the negative impact of anomaly reconstruction. Theoretical analysis and extensive experiments across eight benchmarks verify the superiority of ACMamba, demonstrating a faster speed and stronger performance over the state-of-the-art.
Authors:Zhiyao Xu, Dan Zhao, Qingsong Zou, Jingyu Xiao, Yong Jiang, Zhenhui Yuan, Qing Li
Title: Synthetic User Behavior Sequence Generation with Large Language Models for Smart Homes
Abstract:
In recent years, as smart home systems have become more widespread, security concerns within these environments have become a growing threat. Currently, most smart home security solutions, such as anomaly detection and behavior prediction models, are trained using fixed datasets that are precollected. However, the process of dataset collection is time-consuming and lacks the flexibility needed to adapt to the constantly evolving smart home environment. Additionally, the collection of personal data raises significant privacy concerns for users. Lately, large language models (LLMs) have emerged as a powerful tool for a wide range of tasks across diverse application domains, thanks to their strong capabilities in natural language processing, reasoning, and problem-solving. In this paper, we propose an LLM-based synthetic dataset generation IoTGen framework to enhance the generalization of downstream smart home intelligent models. By generating new synthetic datasets that reflect changes in the environment, smart home intelligent models can be retrained to overcome the limitations of fixed and outdated data, allowing them to better align with the dynamic nature of real-world home environments. Specifically, we first propose a Structure Pattern Perception Compression (SPPC) method tailored for IoT behavior data, which preserves the most informative content in the data while significantly reducing token consumption. Then, we propose a systematic approach to create prompts and implement data generation to automatically generate IoT synthetic data with normative and reasonable properties, assisting task models in adaptive training to improve generalization and real-world performance.
Authors:Aybars Yunusoglu, Dexter Le, Karn Tiwari, Murat Isik, I. Can Dikmen
Title: Battery State of Health Estimation Using LLM Framework
Abstract:
Battery health monitoring is critical for the efficient and reliable operation of electric vehicles (EVs). This study introduces a transformer-based framework for estimating the State of Health (SoH) and predicting the Remaining Useful Life (RUL) of lithium titanate (LTO) battery cells by utilizing both cycle-based and instantaneous discharge data. Testing on eight LTO cells under various cycling conditions over 500 cycles, we demonstrate the impact of charge durations on energy storage trends and apply Differential Voltage Analysis (DVA) to monitor capacity changes (dQ/dV) across voltage ranges. Our LLM model achieves superior performance, with a Mean Absolute Error (MAE) as low as 0.87\% and varied latency metrics that support efficient processing, demonstrating its strong potential for real-time integration into EVs. The framework effectively identifies early signs of degradation through anomaly detection in high-resolution data, facilitating predictive maintenance to prevent sudden battery failures and enhance energy efficiency.
Authors:Charalampos Shimillas, Kleanthis Malialis, Konstantinos Fokianos, Marios M. Polycarpou
Title: Transformer-based Multivariate Time Series Anomaly Localization
Abstract:
With the growing complexity of Cyber-Physical Systems (CPS) and the integration of Internet of Things (IoT), the use of sensors for online monitoring generates large volume of multivariate time series (MTS) data. Consequently, the need for robust anomaly diagnosis in MTS is paramount to maintaining system reliability and safety. While significant advancements have been made in anomaly detection, localization remains a largely underexplored area, though crucial for intelligent decision-making. This paper introduces a novel transformer-based model for unsupervised anomaly diagnosis in MTS, with a focus on improving localization performance, through an in-depth analysis of the self-attention mechanism's learning behavior under both normal and anomalous conditions. We formulate the anomaly localization problem as a three-stage process: time-step, window, and segment-based. This leads to the development of the Space-Time Anomaly Score (STAS), a new metric inspired by the connection between transformer latent representations and space-time statistical models. STAS is designed to capture individual anomaly behaviors and inter-series dependencies, delivering enhanced localization performance. Additionally, the Statistical Feature Anomaly Score (SFAS) complements STAS by analyzing statistical features around anomalies, with their combination helping to reduce false alarms. Experiments on real world and synthetic datasets illustrate the model's superiority over state-of-the-art methods in both detection and localization tasks.
Authors:Tsun-Hin Cheung, Ka-Chun Fung, Songjiang Lai, Kwan-Ho Lin, Vincent Ng, Kin-Man Lam
Title: Automatic Prompt Generation and Grounding Object Detection for Zero-Shot Image Anomaly Detection
Abstract:
Identifying defects and anomalies in industrial products is a critical quality control task. Traditional manual inspection methods are slow, subjective, and error-prone. In this work, we propose a novel zero-shot training-free approach for automated industrial image anomaly detection using a multimodal machine learning pipeline, consisting of three foundation models. Our method first uses a large language model, i.e., GPT-3. generate text prompts describing the expected appearances of normal and abnormal products. We then use a grounding object detection model, called Grounding DINO, to locate the product in the image. Finally, we compare the cropped product image patches to the generated prompts using a zero-shot image-text matching model, called CLIP, to identify any anomalies. Our experiments on two datasets of industrial product images, namely MVTec-AD and VisA, demonstrate the effectiveness of this method, achieving high accuracy in detecting various types of defects and anomalies without the need for model training. Our proposed model enables efficient, scalable, and objective quality control in industrial manufacturing settings.
Authors:Hossein Kashiani, Niloufar Alipour Talemi, Fatemeh Afghah
Title: ROADS: Robust Prompt-driven Multi-Class Anomaly Detection under Domain Shift
Abstract:
Recent advancements in anomaly detection have shifted focus towards Multi-class Unified Anomaly Detection (MUAD), offering more scalable and practical alternatives compared to traditional one-class-one-model approaches. However, existing MUAD methods often suffer from inter-class interference and are highly susceptible to domain shifts, leading to substantial performance degradation in real-world applications. In this paper, we propose a novel robust prompt-driven MUAD framework, called ROADS, to address these challenges. ROADS employs a hierarchical class-aware prompt integration mechanism that dynamically encodes class-specific information into our anomaly detector to mitigate interference among anomaly classes. Additionally, ROADS incorporates a domain adapter to enhance robustness against domain shifts by learning domain-invariant representations. Extensive experiments on MVTec-AD and VISA datasets demonstrate that ROADS surpasses state-of-the-art methods in both anomaly detection and localization, with notable improvements in out-of-distribution settings.
Authors:Denis Gudovskiy, Tomoyuki Okuno, Yohei Nakata
Title: DFM: Interpolant-free Dual Flow Matching
Abstract:
Continuous normalizing flows (CNFs) can model data distributions with expressive infinite-length architectures. But this modeling involves computationally expensive process of solving an ordinary differential equation (ODE) during maximum likelihood training. Recently proposed flow matching (FM) framework allows to substantially simplify the training phase using a regression objective with the interpolated forward vector field. In this paper, we propose an interpolant-free dual flow matching (DFM) approach without explicit assumptions about the modeled vector field. DFM optimizes the forward and, additionally, a reverse vector field model using a novel objective that facilitates bijectivity of the forward and reverse transformations. Our experiments with the SMAP unsupervised anomaly detection show advantages of DFM when compared to the CNF trained with either maximum likelihood or FM objectives with the state-of-the-art performance metrics.
Authors:Ryan C. Barron, Ves Grantcharov, Selma Wanna, Maksim E. Eren, Manish Bhattarai, Nicholas Solovyev, George Tompkins, Charles Nicholas, Kim Ø. Rasmussen, Cynthia Matuszek, Boian S. Alexandrov
Title: Domain-Specific Retrieval-Augmented Generation Using Vector Stores, Knowledge Graphs, and Tensor Factorization
Abstract:
Large Language Models (LLMs) are pre-trained on large-scale corpora and excel in numerous general natural language processing (NLP) tasks, such as question answering (QA). Despite their advanced language capabilities, when it comes to domain-specific and knowledge-intensive tasks, LLMs suffer from hallucinations, knowledge cut-offs, and lack of knowledge attributions. Additionally, fine tuning LLMs' intrinsic knowledge to highly specific domains is an expensive and time consuming process. The retrieval-augmented generation (RAG) process has recently emerged as a method capable of optimization of LLM responses, by referencing them to a predetermined ontology. It was shown that using a Knowledge Graph (KG) ontology for RAG improves the QA accuracy, by taking into account relevant sub-graphs that preserve the information in a structured manner. In this paper, we introduce SMART-SLIC, a highly domain-specific LLM framework, that integrates RAG with KG and a vector store (VS) that store factual domain specific information. Importantly, to avoid hallucinations in the KG, we build these highly domain-specific KGs and VSs without the use of LLMs, but via NLP, data mining, and nonnegative tensor factorization with automatic model selection. Pairing our RAG with a domain-specific: (i) KG (containing structured information), and (ii) VS (containing unstructured information) enables the development of domain-specific chat-bots that attribute the source of information, mitigate hallucinations, lessen the need for fine-tuning, and excel in highly domain-specific question answering tasks. We pair SMART-SLIC with chain-of-thought prompting agents. The framework is designed to be generalizable to adapt to any specific or specialized domain. In this paper, we demonstrate the question answering capabilities of our framework on a corpus of scientific publications on malware analysis and anomaly detection.
Authors:Tian-Yi Zhou, Matthew Lau, Jizhou Chen, Wenke Lee, Xiaoming Huo
Title: Optimal Classification-based Anomaly Detection with Neural Networks: Theory and Practice
Abstract:
Anomaly detection is an important problem in many application areas, such as network security. Many deep learning methods for unsupervised anomaly detection produce good empirical performance but lack theoretical guarantees. By casting anomaly detection into a binary classification problem, we establish non-asymptotic upper bounds and a convergence rate on the excess risk on rectified linear unit (ReLU) neural networks trained on synthetic anomalies. Our convergence rate on the excess risk matches the minimax optimal rate in the literature. Furthermore, we provide lower and upper bounds on the number of synthetic anomalies that can attain this optimality. For practical implementation, we relax some conditions to improve the search for the empirical risk minimizer, which leads to competitive performance to other classification-based methods for anomaly detection. Overall, our work provides the first theoretical guarantees of unsupervised neural network-based anomaly detectors and empirical insights on how to design them well.
Authors:Chris Stanford, Suman Adari, Xishun Liao, Yueshuai He, Qinhua Jiang, Chenchen Kuai, Jiaqi Ma, Emmanuel Tung, Yinlong Qian, Lingyi Zhao, Zihao Zhou, Zeeshan Rasheed, Khurram Shafique
Title: NUMOSIM: A Synthetic Mobility Dataset with Anomaly Detection Benchmarks
Abstract:
Collecting real-world mobility data is challenging. It is often fraught with privacy concerns, logistical difficulties, and inherent biases. Moreover, accurately annotating anomalies in large-scale data is nearly impossible, as it demands meticulous effort to distinguish subtle and complex patterns. These challenges significantly impede progress in geospatial anomaly detection research by restricting access to reliable data and complicating the rigorous evaluation, comparison, and benchmarking of methodologies. To address these limitations, we introduce a synthetic mobility dataset, NUMOSIM, that provides a controlled, ethical, and diverse environment for benchmarking anomaly detection techniques. NUMOSIM simulates a wide array of realistic mobility scenarios, encompassing both typical and anomalous behaviours, generated through advanced deep learning models trained on real mobility data. This approach allows NUMOSIM to accurately replicate the complexities of real-world movement patterns while strategically injecting anomalies to challenge and evaluate detection algorithms based on how effectively they capture the interplay between demographic, geospatial, and temporal factors. Our goal is to advance geospatial mobility analysis by offering a realistic benchmark for improving anomaly detection and mobility modeling techniques. To support this, we provide open access to the NUMOSIM dataset, along with comprehensive documentation, evaluation metrics, and benchmark results.
Authors:Miao Ye, Jing Cui, Yuan huang, Qian He, Yong Wang, Jiwen Zhang
Title: A Graph Prompt Fine-Tuning Method for WSN Spatio-Temporal Correlation Anomaly Detection
Abstract:
Anomaly detection of multi-temporal modal data in Wireless Sensor Network (WSN) can provide an important guarantee for reliable network operation. Existing anomaly detection methods in multi-temporal modal data scenarios have the problems of insufficient extraction of spatio-temporal correlation features, high cost of anomaly sample category annotation, and imbalance of anomaly samples. In this paper, a graph neural network anomaly detection backbone network incorporating spatio-temporal correlation features and a multi-task self-supervised training strategy of "pre-training - graph prompting - fine-tuning" are designed for the characteristics of WSN graph structure data. First, the anomaly detection backbone network is designed by improving the Mamba model based on a multi-scale strategy and inter-modal fusion method, and combining it with a variational graph convolution module, which is capable of fully extracting spatio-temporal correlation features in the multi-node, multi-temporal modal scenarios of WSNs. Secondly, we design a three-subtask learning "pre-training" method with no-negative comparative learning, prediction, and reconstruction to learn generic features of WSN data samples from unlabeled data, and design a "graph prompting-fine-tuning" mechanism to guide the pre-trained self-supervised learning. The model is fine-tuned through the "graph prompting-fine-tuning" mechanism to guide the pre-trained self-supervised learning model to complete the parameter fine-tuning, thereby reducing the training cost and enhancing the detection generalization performance. The F1 metrics obtained from experiments on the public dataset and the actual collected dataset are up to 91.30% and 92.31%, respectively, which provides better detection performance and generalization ability than existing methods designed by the method.
Authors:Kaichuan Kong, Dongjie Liu, Xiaobo Jin, Shijie Xu, Guanggang Geng
Title: Wavelet-Aware Anomaly Detection in Multi-Channel User Logs via Deviation Modulation and Resolution-Adaptive Attention
Abstract:
Insider threat detection is a key challenge in enterprise security, relying on user activity logs that capture rich and complex behavioral patterns. These logs are often multi-channel, non-stationary, and anomalies are rare, making anomaly detection challenging. To address these issues, we propose a novel framework that integrates wavelet-aware modulation, multi-resolution wavelet decomposition, and resolution-adaptive attention for robust anomaly detection. Our approach first applies a deviation-aware modulation scheme to suppress routine behaviors while amplifying anomalous deviations. Next, discrete wavelet transform (DWT) decomposes the log signals into multi-resolution representations, capturing both long-term trends and short-term anomalies. Finally, a learnable attention mechanism dynamically reweights the most discriminative frequency bands for detection. On the CERT r4.2 benchmark, our approach consistently outperforms existing baselines in precision, recall, and F1 score across various time granularities and scenarios.
Authors:Miao Ye, Ziheng Wang, Yong Wang, Junqi Chen
Title: A Method for Detecting Spatio-temporal Correlation Anomalies of WSN Nodes Based on Topological Information Enhancement and Time-frequency Feature Extraction
Abstract:
Existing anomaly detection methods for Wireless Sensor Networks (WSNs) generally suffer from insufficient ex-traction of spatio-temporal correlation features, reliance on either time-domain or frequency-domain information alone, and high computational overhead. To address these limitations, this paper proposes a topology-enhanced spatio-temporal feature fusion anomaly detection method, TE-MSTAD. First, building upon the RWKV model with linear attention mechanisms, a Cross-modal Feature Extraction (CFE) module is introduced to fully extract spatial correlation features among multiple nodes while reducing computational resource consumption. Second, a strategy is designed to construct an adjacency matrix by jointly learning spatial correlation from time-frequency domain features. Different graph neural networks are integrated to enhance spatial correlation feature extraction, thereby fully capturing spatial relationships among multiple nodes. Finally, a dual-branch network TE-MSTAD is designed for time-frequency domain feature fusion, overcoming the limitations of relying solely on the time or frequency domain to improve WSN anomaly detection performance. Testing on both public and real-world datasets demonstrates that the TE-MSTAD model achieves F1 scores of 92.52% and 93.28%, respectively, exhibiting superior detection performance and generalization capabilities compared to existing methods.
Authors:MD Fatin Ishraque Ayon, Sabrin Nahar, Ataur Rahman, Md. Taslim Arif, Abdul Hasib, A. S. M. Ahsanul Sarkar Akib
Title: An IoT-Enabled Smart Aquarium System for Real-Time Water Quality Monitoring and Automated Feeding
Abstract:
Maintaining optimal water quality in aquariums is critical for aquatic health but remains challenging due to the need for continuous monitoring of multiple parameters. Traditional manual methods are inefficient, labor-intensive, and prone to human error, often leading to suboptimal aquatic conditions. This paper presents an IoT-based smart aquarium system that addresses these limitations by integrating an ESP32 microcontroller with multiple sensors (pH, TDS, temperature, turbidity) and actuators (servo feeder, water pump) for comprehensive real-time water quality monitoring and automated control. The system architecture incorporates edge processing capabilities, cloud connectivity via Blynk IoT platform, and an intelligent alert mechanism with configurable cooldown periods to prevent notification fatigue. Experimental evaluation in a 10-liter aquarium environment demonstrated the system's effectiveness, achieving 96\% average sensor accuracy and 1.2-second response time for anomaly detection. The automated feeding and water circulation modules maintained 97\% operational reliability throughout extended testing, significantly reducing manual intervention while ensuring stable aquatic conditions. This research demonstrates that cost-effective IoT solutions can revolutionize aquarium maintenance, making aquatic ecosystem management more accessible, reliable, and efficient for both residential and commercial applications.
Authors:Bahareh Golchin, Banafsheh Rekabdar, Danielle Justo
Title: LLM-Enhanced Reinforcement Learning for Time Series Anomaly Detection
Abstract:
Detecting anomalies in time series data is crucial for finance, healthcare, sensor networks, and industrial monitoring applications. However, time series anomaly detection often suffers from sparse labels, complex temporal patterns, and costly expert annotation. We propose a unified framework that integrates Large Language Model (LLM)-based potential functions for reward shaping with Reinforcement Learning (RL), Variational Autoencoder (VAE)-enhanced dynamic reward scaling, and active learning with label propagation. An LSTM-based RL agent leverages LLM-derived semantic rewards to guide exploration, while VAE reconstruction errors add unsupervised anomaly signals. Active learning selects the most uncertain samples, and label propagation efficiently expands labeled data. Evaluations on Yahoo-A1 and SMD benchmarks demonstrate that our method achieves state-of-the-art detection accuracy under limited labeling budgets and operates effectively in data-constrained settings. This study highlights the promise of combining LLMs with RL and advanced unsupervised techniques for robust, scalable anomaly detection in real-world applications.
Authors:Zhaolin Cai, Fan Li, Ziwei Zheng, Haixia Bi, Lijun He
Title: HeadHunt-VAD: Hunting Robust Anomaly-Sensitive Heads in MLLM for Tuning-Free Video Anomaly Detection
Abstract:
Video Anomaly Detection (VAD) aims to locate events that deviate from normal patterns in videos. Traditional approaches often rely on extensive labeled data and incur high computational costs. Recent tuning-free methods based on Multimodal Large Language Models (MLLMs) offer a promising alternative by leveraging their rich world knowledge. However, these methods typically rely on textual outputs, which introduces information loss, exhibits normalcy bias, and suffers from prompt sensitivity, making them insufficient for capturing subtle anomalous cues. To address these constraints, we propose HeadHunt-VAD, a novel tuning-free VAD paradigm that bypasses textual generation by directly hunting robust anomaly-sensitive internal attention heads within the frozen MLLM. Central to our method is a Robust Head Identification module that systematically evaluates all attention heads using a multi-criteria analysis of saliency and stability, identifying a sparse subset of heads that are consistently discriminative across diverse prompts. Features from these expert heads are then fed into a lightweight anomaly scorer and a temporal locator, enabling efficient and accurate anomaly detection with interpretable outputs. Extensive experiments show that HeadHunt-VAD achieves state-of-the-art performance among tuning-free methods on two major VAD benchmarks while maintaining high efficiency, validating head-level probing in MLLMs as a powerful and practical solution for real-world anomaly detection.
Authors:Tan Le, Van Le, Sachin Shetty
Title: Quantum-Augmented AI/ML for O-RAN: Hierarchical Threat Detection with Synergistic Intelligence and Interpretability (Technical Report)
Abstract:
Open Radio Access Networks (O-RAN) enhance modularity and telemetry granularity but also widen the cybersecurity attack surface across disaggregated control, user and management planes. We propose a hierarchical defense framework with three coordinated layers-anomaly detection, intrusion confirmation, and multiattack classification-each aligned with O-RAN's telemetry stack. Our approach integrates hybrid quantum computing and machine learning, leveraging amplitude- and entanglement-based feature encodings with deep and ensemble classifiers. We conduct extensive benchmarking across synthetic and real-world telemetry, evaluating encoding depth, architectural variants, and diagnostic fidelity. The framework consistently achieves near-perfect accuracy, high recall, and strong class separability. Multi-faceted evaluation across decision boundaries, probabilistic margins, and latent space geometry confirms its interpretability, robustness, and readiness for slice-aware diagnostics and scalable deployment in near-RT and non-RT RIC domains.
Authors:Saeid Jamshidi, Fatemeh Erfan, Omar Abdul-Wahab, Martine Bellaiche, Foutse Khomh
Title: Lightweight Autoencoder-Isolation Forest Anomaly Detection for Green IoT Edge Gateways
Abstract:
The rapid growth of the Internet of Things (IoT) has given rise to highly diverse and interconnected ecosystems that are increasingly susceptible to sophisticated cyber threats. Conventional anomaly detection schemes often prioritize accuracy while overlooking computational efficiency and environmental impact, which limits their deployment in resource-constrained edge environments. This paper presents \textit{EcoDefender}, a sustainable hybrid anomaly detection framework that integrates \textit{Autoencoder(AE)}-based representation learning with \textit{Isolation Forest(IF)} anomaly scoring. Beyond empirical performance, EcoDefender is supported by a theoretical foundation that establishes formal guarantees for its stability, convergence, robustness, and energy-complexity coupling-thereby linking computational behavior to energy efficiency. Furthermore, experiments on realistic IoT traffic confirm these theoretical insights, achieving up to 94\% detection accuracy with an average CPU usage of only 22\%, 27 ms inference latency, and 30\% lower energy consumption compared to AE-only baselines. By embedding sustainability metrics directly into the security evaluation process, this work demonstrates that reliable anomaly detection and environmental responsibility can coexist within next-generation green IoT infrastructures, aligning with the United Nations Sustainable Development Goals (SDG 9: resilient infrastructure, SDG 13: climate action).
Authors:Bahareh Golchin, Banafsheh Rekabdar
Title: Dynamic Reward Scaling for Multivariate Time Series Anomaly Detection: A VAE-Enhanced Reinforcement Learning Approach
Abstract:
Detecting anomalies in multivariate time series is essential for monitoring complex industrial systems, where high dimensionality, limited labeled data, and subtle dependencies between sensors cause significant challenges. This paper presents a deep reinforcement learning framework that combines a Variational Autoencoder (VAE), an LSTM-based Deep Q-Network (DQN), dynamic reward shaping, and an active learning module to address these issues in a unified learning framework. The main contribution is the implementation of Dynamic Reward Scaling for Multivariate Time Series Anomaly Detection (DRSMT), which demonstrates how each component enhances the detection process. The VAE captures compact latent representations and reduces noise. The DQN enables adaptive, sequential anomaly classification, and the dynamic reward shaping balances exploration and exploitation during training by adjusting the importance of reconstruction and classification signals. In addition, active learning identifies the most uncertain samples for labeling, reducing the need for extensive manual supervision. Experiments on two multivariate benchmarks, namely Server Machine Dataset (SMD) and Water Distribution Testbed (WADI), show that the proposed method outperforms existing baselines in F1-score and AU-PR. These results highlight the effectiveness of combining generative modeling, reinforcement learning, and selective supervision for accurate and scalable anomaly detection in real-world multivariate systems.
Authors:Yizhen Yin, Dapeng Feng, Hongbo Chen, Yuhua Qi
Title: PUL-SLAM: Path-Uncertainty Co-Optimization with Lightweight Stagnation Detection for Efficient Robotic Exploration
Abstract:
Existing Active SLAM methodologies face issues such as slow exploration speed and suboptimal paths. To address these limitations, we propose a hybrid framework combining a Path-Uncertainty Co-Optimization Deep Reinforcement Learning framework and a Lightweight Stagnation Detection mechanism. The Path-Uncertainty Co-Optimization framework jointly optimizes travel distance and map uncertainty through a dual-objective reward function, balancing exploration and exploitation. The Lightweight Stagnation Detection reduces redundant exploration through Lidar Static Anomaly Detection and Map Update Stagnation Detection, terminating episodes on low expansion rates. Experimental results show that compared with the frontier-based method and RRT method, our approach shortens exploration time by up to 65% and reduces path distance by up to 42%, significantly improving exploration efficiency in complex environments while maintaining reliable map completeness. Ablation studies confirm that the collaborative mechanism accelerates training convergence. Empirical validation on a physical robotic platform demonstrates the algorithm's practical applicability and its successful transferability from simulation to real-world environments.
Authors:Dongze Wu, Feng Qiu, Yao Xie
Title: DoFlow: Causal Generative Flows for Interventional and Counterfactual Time-Series Prediction
Abstract:
Time-series forecasting increasingly demands not only accurate observational predictions but also causal forecasting under interventional and counterfactual queries in multivariate systems. We present DoFlow, a flow based generative model defined over a causal DAG that delivers coherent observational and interventional predictions, as well as counterfactuals through the natural encoding and decoding mechanism of continuous normalizing flows (CNFs). We also provide a supporting counterfactual recovery result under certain assumptions. Beyond forecasting, DoFlow provides explicit likelihoods of future trajectories, enabling principled anomaly detection. Experiments on synthetic datasets with various causal DAG and real world hydropower and cancer treatment time series show that DoFlow achieves accurate system-wide observational forecasting, enables causal forecasting over interventional and counterfactual queries, and effectively detects anomalies. This work contributes to the broader goal of unifying causal reasoning and generative modeling for complex dynamical systems.
Authors:Emmanouil Sylligardos, John Paparrizos, Themis Palpanas, Pierre Senellart, Paul Boniol
Title: MSAD: A Deep Dive into Model Selection for Time series Anomaly Detection
Abstract:
Anomaly detection is a fundamental task for time series analytics with important implications for the downstream performance of many applications. Despite increasing academic interest and the large number of methods proposed in the literature, recent benchmarks and evaluation studies demonstrated that no overall best anomaly detection methods exist when applied to very heterogeneous time series datasets. Therefore, the only scalable and viable solution to solve anomaly detection over very different time series collected from diverse domains is to propose a model selection method that will select, based on time series characteristics, the best anomaly detection methods to run. Existing AutoML solutions are, unfortunately, not directly applicable to time series anomaly detection, and no evaluation of time series-based approaches for model selection exists. Towards that direction, this paper studies the performance of time series classification methods used as model selection for anomaly detection. In total, we evaluate 234 model configurations derived from 16 base classifiers across more than 1980 time series, and we propose the first extensive experimental evaluation of time series classification as model selection for anomaly detection. Our results demonstrate that model selection methods outperform every single anomaly detection method while being in the same order of magnitude regarding execution time. This evaluation is the first step to demonstrate the accuracy and efficiency of time series classification algorithms for anomaly detection, and represents a strong baseline that can then be used to guide the model selection step in general AutoML pipelines. Preprint version of an article accepted at the VLDB Journal.
Authors:Songhan Zhang, Yuanhao Lai, Pengfei Zheng, Boxi Yu, Xiaoying Tang, Qiuai Fu, Pinjia He
Title: CLEANet: Robust and Efficient Anomaly Detection in Contaminated Multivariate Time Series
Abstract:
Multivariate time series (MTS) anomaly detection is essential for maintaining the reliability of industrial systems, yet real-world deployment is hindered by two critical challenges: training data contamination (noises and hidden anomalies) and inefficient model inference. Existing unsupervised methods assume clean training data, but contamination distorts learned patterns and degrades detection accuracy. Meanwhile, complex deep models often overfit to contamination and suffer from high latency, limiting practical use. To address these challenges, we propose CLEANet, a robust and efficient anomaly detection framework in contaminated multivariate time series. CLEANet introduces a Contamination-Resilient Training Framework (CRTF) that mitigates the impact of corrupted samples through an adaptive reconstruction weighting strategy combined with clustering-guided contrastive learning, thereby enhancing robustness. To further avoid overfitting on contaminated data and improve computational efficiency, we design a lightweight conjugate MLP that disentangles temporal and cross-feature dependencies. Across five public datasets, CLEANet achieves up to 73.04% higher F1 and 81.28% lower runtime compared with ten state-of-the-art baselines. Furthermore, integrating CRTF into three advanced models yields an average 5.35% F1 gain, confirming its strong generalizability.
Authors:Raghav Sharma, Manan Mehta
Title: Adaptive and Explainable AI Agents for Anomaly Detection in Critical IoT Infrastructure using LLM-Enhanced Contextual Reasoning
Abstract:
Ensuring that critical IoT systems function safely and smoothly depends a lot on finding anomalies quickly. As more complex systems, like smart healthcare, energy grids and industrial automation, appear, it is easier to see the shortcomings of older methods of detection. Monitoring failures usually happen in dynamic, high dimensional situations, especially when data is incomplete, messy or always evolving. Such limits point out the requirement for adaptive, intelligent systems that always improve and think. LLMs are now capable of significantly changing how context is understood and semantic inference is done across all types of data. This proposal suggests using an LLM supported contextual reasoning method along with XAI agents to improve how anomalies are found in significant IoT environments. To discover hidden patterns and notice inconsistencies in data streams, it uses attention methods, avoids dealing with details from every time step and uses memory buffers with meaning. Because no code AI stresses transparency and interpretability, people can check and accept the AI's decisions, helping ensure AI follows company policies. The two architectures are put together in a test that compares the results of the traditional model with those of the suggested LLM enhanced model. Important measures to check are the accuracy of detection, how much inaccurate information is included in the results, how clearly the findings can be read and how fast the system responds under different test situations. The metaheuristic is tested in simulations of real world smart grid and healthcare contexts to check its adaptability and reliability. From the study, we see that the new approach performs much better than most existing models in both accuracy and interpretation, so it could be a good fit for future anomaly detection tasks in IoT
Authors:Tharindu Lakshan Yasarathna, Nhien-An Le-Khac
Title: SoK: Systematic analysis of adversarial threats against deep learning approaches for autonomous anomaly detection systems in SDN-IoT networks
Abstract:
Integrating SDN and the IoT enhances network control and flexibility. DL-based AAD systems improve security by enabling real-time threat detection in SDN-IoT networks. However, these systems remain vulnerable to adversarial attacks that manipulate input data or exploit model weaknesses, significantly degrading detection accuracy. Existing research lacks a systematic analysis of adversarial vulnerabilities specific to DL-based AAD systems in SDN-IoT environments. This SoK study introduces a structured adversarial threat model and a comprehensive taxonomy of attacks, categorising them into data, model, and hybrid-level threats. Unlike previous studies, we systematically evaluate white, black, and grey-box attack strategies across popular benchmark datasets. Our findings reveal that adversarial attacks can reduce detection accuracy by up to 48.4%, with Membership Inference causing the most significant drop. C&W and DeepFool achieve high evasion success rates. However, adversarial training enhances robustness, and its high computational overhead limits the real-time deployment of SDN-IoT applications. We propose adaptive countermeasures, including real-time adversarial mitigation, enhanced retraining mechanisms, and explainable AI-driven security frameworks. By integrating structured threat models, this study offers a more comprehensive approach to attack categorisation, impact assessment, and defence evaluation than previous research. Our work highlights critical vulnerabilities in existing DL-based AAD models and provides practical recommendations for improving resilience, interpretability, and computational efficiency. This study serves as a foundational reference for researchers and practitioners seeking to enhance DL-based AAD security in SDN-IoT networks, offering a systematic adversarial threat model and conceptual defence evaluation based on prior empirical studies.
Authors:Niklas Grambow, Lisa-Marie Fenner, Felipe Kempkes, Philip Hotz, Dingyuan Wan, Jörg Krüger, Kevin Haninger
Title: Anomaly detection for generic failure monitoring in robotic assembly, screwing and manipulation
Abstract:
Out-of-distribution states in robot manipulation often lead to unpredictable robot behavior or task failure, limiting success rates and increasing risk of damage. Anomaly detection (AD) can identify deviations from expected patterns in data, which can be used to trigger failsafe behaviors and recovery strategies. Prior work has applied data-driven AD to time series data in specific robotic tasks, but its transferability across control strategies and task types has not been shown. Leveraging time series data, such as force/torque signals, allows to directly capture robot-environment interactions, crucial for manipulation and online failure detection. Their broad availability, high sampling rates, and low dimensionality enable high temporal resolution and efficient processing. As robotic tasks can have widely signal characteristics and requirements, AD methods which can be applied in the same way to a wide range of tasks is needed, ideally with good data efficiency. We examine three industrial robotic tasks, each presenting several anomalies. Test scenarios in robotic cabling, screwing, and sanding are built, and multimodal time series data is gathered. Several autoencoder-based methods are compared, evaluating generalization across tasks and control methods (diffusion policy, position, and impedance control). This allows us to validate the integration of AD in complex tasks involving tighter tolerances and variation from both the robot and its environment. Additionally, we evaluate data efficiency, detection latency, and task characteristics which support robust detection. The results indicate reliable detection with AUROC exceeding 0.93 in failures in the cabling and screwing task, such as incorrect or misaligned parts and obstructed targets. In the polishing task, only severe failures were reliably detected, while more subtle failure types remained undetected.
Authors:Sourya Saha, Md Nurul Absur, Shima Yousefi, Saptarshi Debroy
Title: Detection of Misreporting Attacks on Software-Defined Immersive Environments
Abstract:
The ability to centrally control network infrastructure using a programmable middleware has made Software-Defined Networking (SDN) ideal for emerging applications, such as immersive environments. However, such flexibility introduces new vulnerabilities, such as switch misreporting led load imbalance, which in turn make such immersive environment vulnerable to severe quality degradation. In this paper, we present a hybrid machine learning (ML)-based network anomaly detection framework that identifies such stealthy misreporting by capturing temporal inconsistencies in switch-reported loads, and thereby counter potentially catastrophic quality degradation of hosted immersive application. The detection system combines unsupervised anomaly scoring with supervised classification to robustly distinguish malicious behavior. Data collected from a realistic testbed deployment under both benign and adversarial conditions is used to train and evaluate the model. Experimental results show that the framework achieves high recall in detecting misreporting behavior, making it effective for early and reliable detection in SDN environments.
Authors:Jiazhen Chen, Mingbin Feng, Tony S. Wirjanto
Title: Prospective Multi-Graph Cohesion for Multivariate Time Series Anomaly Detection
Abstract:
Anomaly detection in high-dimensional time series data is pivotal for numerous industrial applications. Recent advances in multivariate time series anomaly detection (TSAD) have increasingly leveraged graph structures to model inter-variable relationships, typically employing Graph Neural Networks (GNNs). Despite their promising results, existing methods often rely on a single graph representation, which are insufficient for capturing the complex, diverse relationships inherent in multivariate time series. To address this, we propose the Prospective Multi-Graph Cohesion (PMGC) framework for multivariate TSAD. PMGC exploits spatial correlations by integrating a long-term static graph with a series of short-term instance-wise dynamic graphs, regulated through a graph cohesion loss function. Our theoretical analysis shows that this loss function promotes diversity among dynamic graphs while aligning them with the stable long-term relationships encapsulated by the static graph. Additionally, we introduce a "prospective graphing" strategy to mitigate the limitations of traditional forecasting-based TSAD methods, which often struggle with unpredictable future variations. This strategy allows the model to accurately reflect concurrent inter-series relationships under normal conditions, thereby enhancing anomaly detection efficacy. Empirical evaluations on real-world datasets demonstrate the superior performance of our method compared to existing TSAD techniques.
Authors:Diego Gosmar, Deborah A. Dahl
Title: Sentinel Agents for Secure and Trustworthy Agentic AI in Multi-Agent Systems
Abstract:
This paper proposes a novel architectural framework aimed at enhancing security and reliability in multi-agent systems (MAS). A central component of this framework is a network of Sentinel Agents, functioning as a distributed security layer that integrates techniques such as semantic analysis via large language models (LLMs), behavioral analytics, retrieval-augmented verification, and cross-agent anomaly detection. Such agents can potentially oversee inter-agent communications, identify potential threats, enforce privacy and access controls, and maintain comprehensive audit records. Complementary to the idea of Sentinel Agents is the use of a Coordinator Agent. The Coordinator Agent supervises policy implementation, and manages agent participation. In addition, the Coordinator also ingests alerts from Sentinel Agents. Based on these alerts, it can adapt policies, isolate or quarantine misbehaving agents, and contain threats to maintain the integrity of the MAS ecosystem. This dual-layered security approach, combining the continuous monitoring of Sentinel Agents with the governance functions of Coordinator Agents, supports dynamic and adaptive defense mechanisms against a range of threats, including prompt injection, collusive agent behavior, hallucinations generated by LLMs, privacy breaches, and coordinated multi-agent attacks. In addition to the architectural design, we present a simulation study where 162 synthetic attacks of different families (prompt injection, hallucination, and data exfiltration) were injected into a multi-agent conversational environment. The Sentinel Agents successfully detected the attack attempts, confirming the practical feasibility of the proposed monitoring approach. The framework also offers enhanced system observability, supports regulatory compliance, and enables policy evolution over time.
Authors:Junjun Pan, Yu Zheng, Yue Tan, Yixin Liu
Title: A Survey of Generalization of Graph Anomaly Detection: From Transfer Learning to Foundation Models
Abstract:
Graph anomaly detection (GAD) has attracted increasing attention in recent years for identifying malicious samples in a wide range of graph-based applications, such as social media and e-commerce. However, most GAD methods assume identical training and testing distributions and are tailored to specific tasks, resulting in limited adaptability to real-world scenarios such as shifting data distributions and scarce training samples in new applications. To address the limitations, recent work has focused on improving the generalization capability of GAD models through transfer learning that leverages knowledge from related domains to enhance detection performance, or developing "one-for-all" GAD foundation models that generalize across multiple applications. Since a systematic understanding of generalization in GAD is still lacking, in this paper, we provide a comprehensive review of generalization in GAD. We first trace the evolution of generalization in GAD and formalize the problem settings, which further leads to our systematic taxonomy. Rooted in this fine-grained taxonomy, an up-to-date and comprehensive review is conducted for the existing generalized GAD methods. Finally, we identify current open challenges and suggest future directions to inspire future research in this emerging field.
Authors:Xuanhao Luo, Shivesh Madan Nath Jha, Akruti Sinha, Zhizhen Li, Yuchen Liu
Title: ALPHA: LLM-Enabled Active Learning for Human-Free Network Anomaly Detection
Abstract:
Network log data analysis plays a critical role in detecting security threats and operational anomalies. Traditional log analysis methods for anomaly detection and root cause analysis rely heavily on expert knowledge or fully supervised learning models, both of which require extensive labeled data and significant human effort. To address these challenges, we propose ALPHA, the first Active Learning Pipeline for Human-free log Analysis. ALPHA integrates semantic embedding, clustering-based representative sampling, and large language model (LLM)-assisted few-shot annotation to automate the anomaly detection process. The LLM annotated labels are propagated across clusters, enabling large-scale training of an anomaly detector with minimal supervision. To enhance the annotation accuracy, we propose a two-step few-shot refinement strategy that adaptively selects informative prompts based on the LLM's observed error patterns. Extensive experiments on real-world log datasets demonstrate that ALPHA achieves detection accuracy comparable to fully supervised methods while mitigating human efforts in the loop. ALPHA also supports interpretable analysis through LLM-driven root cause explanations in the post-detection stage. These capabilities make ALPHA a scalable and cost-efficient solution for truly automated log-based anomaly detection.
Authors:Julio Zanon Diaz, Georgios Siogkas, Peter Corcoran
Title: Dual-Mode Deep Anomaly Detection for Medical Manufacturing: Structural Similarity and Feature Distance
Abstract:
Automated visual inspection in medical device manufacturing faces unique challenges, including small and imbalanced datasets, high-resolution imagery, and strict regulatory requirements. To address these, we propose two attention-guided autoencoder architectures for deep anomaly detection. The first employs a structural similarity-based scoring approach that enables lightweight, real-time defect detection with unsupervised thresholding and can be further enhanced through limited supervised tuning. The second applies a feature distance-based strategy using Mahalanobis scoring on reduced latent features, designed to monitor distributional shifts and support supervisory oversight. Evaluations on a representative sterile packaging dataset confirm that both approaches outperform baselines under hardware-constrained, regulated conditions. Cross-domain testing on the MVTec-Zipper benchmark further demonstrates that the structural similarity-based method generalises effectively and achieves performance comparable to state-of-the-art methods, while the feature distance-based method is less transferable but provides complementary monitoring capabilities. These results highlight a dual-pathway inspection strategy: structural similarity for robust inline detection and feature distance for supervisory monitoring. By combining operational performance with interpretability and lifecycle monitoring, the proposed methods also align with emerging regulatory expectations for high-risk AI systems.
Authors:Bahareh Golchin, Banafsheh Rekabdar, Kunpeng Liu
Title: DRTA: Dynamic Reward Scaling for Reinforcement Learning in Time Series Anomaly Detection
Abstract:
Anomaly detection in time series data is important for applications in finance, healthcare, sensor networks, and industrial monitoring. Traditional methods usually struggle with limited labeled data, high false-positive rates, and difficulty generalizing to novel anomaly types. To overcome these challenges, we propose a reinforcement learning-based framework that integrates dynamic reward shaping, Variational Autoencoder (VAE), and active learning, called DRTA. Our method uses an adaptive reward mechanism that balances exploration and exploitation by dynamically scaling the effect of VAE-based reconstruction error and classification rewards. This approach enables the agent to detect anomalies effectively in low-label systems while maintaining high precision and recall. Our experimental results on the Yahoo A1 and Yahoo A2 benchmark datasets demonstrate that the proposed method consistently outperforms state-of-the-art unsupervised and semi-supervised approaches. These findings show that our framework is a scalable and efficient solution for real-world anomaly detection tasks.
Authors:Wei Herng Choong, Jixing Liu, Ching-Yu Kao, Philip Sperl
Title: GRASPED: Graph Anomaly Detection using Autoencoder with Spectral Encoder and Decoder (Full Version)
Abstract:
Graph machine learning has been widely explored in various domains, such as community detection, transaction analysis, and recommendation systems. In these applications, anomaly detection plays an important role. Recently, studies have shown that anomalies on graphs induce spectral shifts. Some supervised methods have improved the utilization of such spectral domain information. However, they remain limited by the scarcity of labeled data due to the nature of anomalies. On the other hand, existing unsupervised learning approaches predominantly rely on spatial information or only employ low-pass filters, thereby losing the capacity for multi-band analysis. In this paper, we propose Graph Autoencoder with Spectral Encoder and Spectral Decoder (GRASPED) for node anomaly detection. Our unsupervised learning model features an encoder based on Graph Wavelet Convolution, along with structural and attribute decoders. The Graph Wavelet Convolution-based encoder, combined with a Wiener Graph Deconvolution-based decoder, exhibits bandpass filter characteristics that capture global and local graph information at multiple scales. This design allows for a learning-based reconstruction of node attributes, effectively capturing anomaly information. Extensive experiments on several real-world graph anomaly detection datasets demonstrate that GRASPED outperforms current state-of-the-art models.
Authors:Jinsol Song, Jiamu Wang, Anh Tien Nguyen, Keunho Byeon, Sangjeong Ahn, Sung Hak Lee, Jin Tae Kwak
Title: Normal and Abnormal Pathology Knowledge-Augmented Vision-Language Model for Anomaly Detection in Pathology Images
Abstract:
Anomaly detection in computational pathology aims to identify rare and scarce anomalies where disease-related data are often limited or missing. Existing anomaly detection methods, primarily designed for industrial settings, face limitations in pathology due to computational constraints, diverse tissue structures, and lack of interpretability. To address these challenges, we propose Ano-NAViLa, a Normal and Abnormal pathology knowledge-augmented Vision-Language model for Anomaly detection in pathology images. Ano-NAViLa is built on a pre-trained vision-language model with a lightweight trainable MLP. By incorporating both normal and abnormal pathology knowledge, Ano-NAViLa enhances accuracy and robustness to variability in pathology images and provides interpretability through image-text associations. Evaluated on two lymph node datasets from different organs, Ano-NAViLa achieves the state-of-the-art performance in anomaly detection and localization, outperforming competing models.
Authors:Robin Trombetta, Carole Lartizien
Title: Learning local and global prototypes with optimal transport for unsupervised anomaly detection and localization
Abstract:
Unsupervised anomaly detection aims to detect defective parts of a sample by having access, during training, to a set of normal, i.e. defect-free, data. It has many applications in fields, such as industrial inspection or medical imaging, where acquiring labels is costly or when we want to avoid introducing biases in the type of anomalies that can be spotted. In this work, we propose a novel UAD method based on prototype learning and introduce a metric to compare a structured set of embeddings that balances a feature-based cost and a spatial-based cost. We leverage this metric to learn local and global prototypes with optimal transport from latent representations extracted with a pre-trained image encoder. We demonstrate that our approach can enforce a structural constraint when learning the prototypes, allowing to capture the underlying organization of the normal samples, thus improving the detection of incoherencies in images. Our model achieves performance that is on par with strong baselines on two reference benchmarks for anomaly detection on industrial images.
Authors:Simon Klüttermann, Emmanuel Müller
Title: Rare anomalies require large datasets: About proving the existence of anomalies
Abstract:
Detecting whether any anomalies exist within a dataset is crucial for effective anomaly detection, yet it remains surprisingly underexplored in anomaly detection literature. This paper presents a comprehensive study that addresses the fundamental question: When can we conclusively determine that anomalies are present? Through extensive experimentation involving over three million statistical tests across various anomaly detection tasks and algorithms, we identify a relationship between the dataset size, contamination rate, and an algorithm-dependent constant $ α_{\text{algo}} $. Our results demonstrate that, for an unlabeled dataset of size $ N $ and contamination rate $ ν$, the condition $ N \ge \frac{α_{\text{algo}}}{ν^2} $ represents a lower bound on the number of samples required to confirm anomaly existence. This threshold implies a limit to how rare anomalies can be before proving their existence becomes infeasible.
Authors:Vishakha Lall, Yisi Liu
Title: Enhancing Egocentric Object Detection in Static Environments using Graph-based Spatial Anomaly Detection and Correction
Abstract:
In many real-world applications involving static environments, the spatial layout of objects remains consistent across instances. However, state-of-the-art object detection models often fail to leverage this spatial prior, resulting in inconsistent predictions, missed detections, or misclassifications, particularly in cluttered or occluded scenes. In this work, we propose a graph-based post-processing pipeline that explicitly models the spatial relationships between objects to correct detection anomalies in egocentric frames. Using a graph neural network (GNN) trained on manually annotated data, our model identifies invalid object class labels and predicts corrected class labels based on their neighbourhood context. We evaluate our approach both as a standalone anomaly detection and correction framework and as a post-processing module for standard object detectors such as YOLOv7 and RT-DETR. Experiments demonstrate that incorporating this spatial reasoning significantly improves detection performance, with mAP@50 gains of up to 4%. This method highlights the potential of leveraging the environment's spatial structure to improve reliability in object detection systems.
Authors:Kaichuan Kong, Dongjie Liu, Xiaobo Jin, Zhiying Li, Guanggang Geng
Title: Log2Sig: Frequency-Aware Insider Threat Detection via Multivariate Behavioral Signal Decomposition
Abstract:
Insider threat detection presents a significant challenge due to the deceptive nature of malicious behaviors, which often resemble legitimate user operations. However, existing approaches typically model system logs as flat event sequences, thereby failing to capture the inherent frequency dynamics and multiscale disturbance patterns embedded in user behavior. To address these limitations, we propose Log2Sig, a robust anomaly detection framework that transforms user logs into multivariate behavioral frequency signals, introducing a novel representation of user behavior. Log2Sig employs Multivariate Variational Mode Decomposition (MVMD) to extract Intrinsic Mode Functions (IMFs), which reveal behavioral fluctuations across multiple temporal scales. Based on this, the model further performs joint modeling of behavioral sequences and frequency-decomposed signals: the daily behavior sequences are encoded using a Mamba-based temporal encoder to capture long-term dependencies, while the corresponding frequency components are linearly projected to match the encoder's output dimension. These dual-view representations are then fused to construct a comprehensive user behavior profile, which is fed into a multilayer perceptron for precise anomaly detection. Experimental results on the CERT r4.2 and r5.2 datasets demonstrate that Log2Sig significantly outperforms state-of-the-art baselines in both accuracy and F1 score.
Authors:Liangwei Li, Lin Liu, Juanxiu Liu, Jing Zhang, Ruqian Hao, Xiaohui Du
Title: How and Why: Taming Flow Matching for Unsupervised Anomaly Detection and Localization
Abstract:
We propose a new paradigm for unsupervised anomaly detection and localization using Flow Matching (FM), which fundamentally addresses the model expressivity limitations of conventional flow-based methods. To this end, we formalize the concept of time-reversed Flow Matching (rFM) as a vector field regression along a predefined probability path to transform unknown data distributions into standard Gaussian. We bring two core observations that reshape our understanding of FM. First, we rigorously prove that FM with linear interpolation probability paths is inherently non-invertible. Second, our analysis reveals that employing reversed Gaussian probability paths in high-dimensional spaces can lead to trivial vector fields. This issue arises due to the manifold-related constraints. Building on the second observation, we propose Worst Transport (WT) displacement interpolation to reconstruct a non-probabilistic evolution path. The proposed WT-Flow enhances dynamical control over sample trajectories, constructing ''degenerate potential wells'' for anomaly-free samples while allowing anomalous samples to escape. This novel unsupervised paradigm offers a theoretically grounded separation mechanism for anomalous samples. Notably, FM provides a computationally tractable framework that scales to complex data. We present the first successful application of FM for the unsupervised anomaly detection task, achieving state-of-the-art performance at a single scale on the MVTec dataset. The reproducible code for training will be released upon camera-ready submission.
Authors:Zujie Xie, Zixuan Chen, Jiheng Liang, Xiangyang Yu, Ziru Yu
Title: LUMIR: an LLM-Driven Unified Agent Framework for Multi-task Infrared Spectroscopy Reasoning
Abstract:
Infrared spectroscopy enables rapid, non destructive analysis of chemical and material properties, yet high dimensional signals and overlapping bands hinder conventional chemometric methods. Large language models (LLMs), with strong generalization and reasoning capabilities, offer new opportunities for automated spectral interpretation, but their potential in this domain remains largely untapped. This study introduces LUMIR (LLM-driven Unified agent framework for Multi-task Infrared spectroscopy Reasoning), an agent based framework designed to achieve accurate infrared spectral analysis under low data conditions. LUMIR integrates a structured literature knowledge base, automated preprocessing, feature extraction, and predictive modeling into a unified pipeline. By mining peer reviewed spectroscopy studies, it identifies validated preprocessing and feature derivation strategies, transforms spectra into low dimensional representations, and applies few-shot prompts for classification, regression, and anomaly detection. The framework was validated on diverse datasets, including the publicly available Milk near-infrared dataset, Chinese medicinal herbs, Citri Reticulatae Pericarpium(CRP) with different storage durations, an industrial wastewater COD dataset, and two additional public benchmarks, Tecator and Corn. Across these tasks, LUMIR achieved performance comparable to or surpassing established machine learning and deep learning models, particularly in resource limited settings. This work demonstrates that combining structured literature guidance with few-shot learning enables robust, scalable, and automated spectral interpretation. LUMIR establishes a new paradigm for applying LLMs to infrared spectroscopy, offering high accuracy with minimal labeled data and broad applicability across scientific and industrial domains.
Authors:Rakesh John Amala Arokia Nathan, Matthias Gessner, Nurullah Özkan, Marius Bock, Mohamed Youssef, Maximilian Mews, Björn Piltz, Ralf Berger, Oliver Bimber
Title: An aerial color image anomaly dataset for search missions in complex forested terrain
Abstract:
After a family murder in rural Germany, authorities failed to locate the suspect in a vast forest despite a massive search. To aid the search, a research aircraft captured high-resolution aerial imagery. Due to dense vegetation obscuring small clues, automated analysis was ineffective, prompting a crowd-search initiative. This effort produced a unique dataset of labeled, hard-to-detect anomalies under occluded, real-world conditions. It can serve as a benchmark for improving anomaly detection approaches in complex forest environments, supporting manhunts and rescue operations. Initial benchmark tests showed existing methods performed poorly, highlighting the need for context-aware approaches. The dataset is openly accessible for offline processing. An additional interactive web interface supports online viewing and dynamic growth by allowing users to annotate and submit new findings.
Authors:Mehdi Elahi, Mohamed R. Elshamy, Abdel-Hameed Badawy, Ahmad Patooghy
Title: iThermTroj: Exploiting Intermittent Thermal Trojans in Multi-Processor System-on-Chips
Abstract:
Thermal Trojan attacks present a pressing concern for the security and reliability of System-on-Chips (SoCs), especially in mobile applications. The situation becomes more complicated when such attacks are more evasive and operate sporadically to stay hidden from detection mechanisms. In this paper, we introduce Intermittent Thermal Trojans (iThermTroj) that exploit the chips' thermal information in a random time-triggered manner. According to our experiments, iThermTroj attack can easily bypass available threshold-based thermal Trojan detection solutions. We investigate SoC vulnerabilities to variations of iThermTroj through an in-depth analysis of Trojan activation and duration scenarios. We also propose a set of tiny Machine Learning classifiers for run-time anomaly detection to protect SoCs against such intermittent thermal Trojan attacks. Compared to existing methods, our approach improves the attack detection rate by 29.4\%, 17.2\%, and 14.3\% in scenarios where iThermTroj manipulates up to 80\%, 60\%, and 40\% of SoC's thermal data, respectively. Additionally, our method increases the full protection resolution to 0.8 degrees Celsius, meaning that any temperature manipulations exceeding $\pm 0.8$ degrees will be detected with 100\% accuracy.
Authors:Chanh Nguyen, Erik Elmroth, Monowar Bhuyan
Title: Silent Failures in Stateless Systems: Rethinking Anomaly Detection for Serverless Computing
Abstract:
Serverless computing has redefined cloud application deployment by abstracting infrastructure and enabling on-demand, event-driven execution, thereby enhancing developer agility and scalability. However, maintaining consistent application performance in serverless environments remains a significant challenge. The dynamic and transient nature of serverless functions makes it difficult to distinguish between benign and anomalous behavior, which in turn undermines the effectiveness of traditional anomaly detection methods. These conventional approaches, designed for stateful and long-running services, struggle in serverless settings where executions are short-lived, functions are isolated, and observability is limited. In this first comprehensive vision paper on anomaly detection for serverless systems, we systematically explore the unique challenges posed by this paradigm, including the absence of persistent state, inconsistent monitoring granularity, and the difficulty of correlating behaviors across distributed functions. We further examine a range of threats that manifest as anomalies, from classical Denial-of-Service (DoS) attacks to serverless-specific threats such as Denial-of-Wallet (DoW) and cold start amplification. Building on these observations, we articulate a research agenda for next-generation detection frameworks that address the need for context-aware, multi-source data fusion, real-time, lightweight, privacy-preserving, and edge-cloud adaptive capabilities. Through the identification of key research directions and design principles, we aim to lay the foundation for the next generation of anomaly detection in cloud-native, serverless ecosystems.
Authors:Luan Gonçalves Miranda, Pedro Ivo da Cruz, Murilo Bellezoni Loiola
Title: Determinação Automática de Limiar de Detecção de Ataques em Redes de Computadores Utilizando Autoencoders
Abstract:
Currently, digital security mechanisms like Anomaly Detection Systems using Autoencoders (AE) show great potential for bypassing problems intrinsic to the data, such as data imbalance. Because AE use a non-trivial and nonstandardized separation threshold to classify the extracted reconstruction error, the definition of this threshold directly impacts the performance of the detection process. Thus, this work proposes the automatic definition of this threshold using some machine learning algorithms. For this, three algorithms were evaluated: the K-Nearst Neighbors, the K-Means and the Support Vector Machine.
Authors:Simon Klüttermann, Emmanuel Müller
Title: Polyra Swarms: A Shape-Based Approach to Machine Learning
Abstract:
We propose Polyra Swarms, a novel machine-learning approach that approximates shapes instead of functions. Our method enables general-purpose learning with very low bias. In particular, we show that depending on the task, Polyra Swarms can be preferable compared to neural networks, especially for tasks like anomaly detection. We further introduce an automated abstraction mechanism that simplifies the complexity of a Polyra Swarm significantly, enhancing both their generalization and transparency. Since Polyra Swarms operate on fundamentally different principles than neural networks, they open up new research directions with distinct strengths and limitations.
Authors:Byeongchan Lee, John Won, Seunghyun Lee, Jinwoo Shin
Title: CLIP Meets Diffusion: A Synergistic Approach to Anomaly Detection
Abstract:
Anomaly detection is a complex problem due to the ambiguity in defining anomalies, the diversity of anomaly types (e.g., local and global defect), and the scarcity of training data. As such, it necessitates a comprehensive model capable of capturing both low-level and high-level features, even with limited data. To address this, we propose CLIPFUSION, a method that leverages both discriminative and generative foundation models. Specifically, the CLIP-based discriminative model excels at capturing global features, while the diffusion-based generative model effectively captures local details, creating a synergistic and complementary approach. Notably, we introduce a methodology for utilizing cross-attention maps and feature maps extracted from diffusion models specifically for anomaly detection. Experimental results on benchmark datasets (MVTec-AD, VisA) demonstrate that CLIPFUSION consistently outperforms baseline methods, achieving outstanding performance in both anomaly segmentation and classification. We believe that our method underscores the effectiveness of multi-modal and multi-model fusion in tackling the multifaceted challenges of anomaly detection, providing a scalable solution for real-world applications.
Authors:Miao Ye, Suxiao Wang, Jiaguang Han, Yong Wang, Xiaoli Wang, Jingxuan Wei, Peng Wen, Jing Cui
Title: A New Spatiotemporal Correlation Anomaly Detection Method that Integrates Contrastive Learning and Few-Shot Learning in Wireless Sensor Networks
Abstract:
Detecting anomalies in the data collected by WSNs can provide crucial evidence for assessing the reliability and stability of WSNs. Existing methods for WSN anomaly detection often face challenges such as the limited extraction of spatiotemporal correlation features, the absence of sample labels, few anomaly samples, and an imbalanced sample distribution. To address these issues, a spatiotemporal correlation detection model (MTAD-RD) considering both model architecture and a two-stage training strategy perspective is proposed. In terms of model structure design, the proposed MTAD-RD backbone network includes a retentive network (RetNet) enhanced by a cross-retention (CR) module, a multigranular feature fusion module, and a graph attention network module to extract internode correlation information. This proposed model can integrate the intermodal correlation features and spatial features of WSN neighbor nodes while extracting global information from time series data. Moreover, its serialized inference characteristic can remarkably reduce inference overhead. For model training, a two-stage training approach was designed. First, a contrastive learning proxy task was designed for time series data with graph structure information in WSNs, enabling the backbone network to learn transferable features from unlabeled data using unsupervised contrastive learning methods, thereby addressing the issue of missing sample labels in the dataset. Then, a caching-based sample sampler was designed to divide samples into few-shot and contrastive learning data. A specific joint loss function was developed to jointly train the dual-graph discriminator network to address the problem of sample imbalance effectively. In experiments carried out on real public datasets, the designed MTAD-RD anomaly detection method achieved an F1 score of 90.97%, outperforming existing supervised WSN anomaly detection methods.
Authors:Marcella Astrid, Abdelrahman Shabayek, Djamila Aouada
Title: Zero-Shot Anomaly Detection in Battery Thermal Images Using Visual Question Answering with Prior Knowledge
Abstract:
Batteries are essential for various applications, including electric vehicles and renewable energy storage, making safety and efficiency critical concerns. Anomaly detection in battery thermal images helps identify failures early, but traditional deep learning methods require extensive labeled data, which is difficult to obtain, especially for anomalies due to safety risks and high data collection costs. To overcome this, we explore zero-shot anomaly detection using Visual Question Answering (VQA) models, which leverage pretrained knowledge and textbased prompts to generalize across vision tasks. By incorporating prior knowledge of normal battery thermal behavior, we design prompts to detect anomalies without battery-specific training data. We evaluate three VQA models (ChatGPT-4o, LLaVa-13b, and BLIP-2) analyzing their robustness to prompt variations, repeated trials, and qualitative outputs. Despite the lack of finetuning on battery data, our approach demonstrates competitive performance compared to state-of-the-art models that are trained with the battery data. Our findings highlight the potential of VQA-based zero-shot learning for battery anomaly detection and suggest future directions for improving its effectiveness.
Authors:Cheng Ji, Huaiying Luo
Title: Cloud-Based AI Systems: Leveraging Large Language Models for Intelligent Fault Detection and Autonomous Self-Healing
Abstract:
With the rapid development of cloud computing systems and the increasing complexity of their infrastructure, intelligent mechanisms to detect and mitigate failures in real time are becoming increasingly important. Traditional methods of failure detection are often difficult to cope with the scale and dynamics of modern cloud environments. In this study, we propose a novel AI framework based on Massive Language Model (LLM) for intelligent fault detection and self-healing mechanisms in cloud systems. The model combines existing machine learning fault detection algorithms with LLM's natural language understanding capabilities to process and parse system logs, error reports, and real-time data streams through semantic context. The method adopts a multi-level architecture, combined with supervised learning for fault classification and unsupervised learning for anomaly detection, so that the system can predict potential failures before they occur and automatically trigger the self-healing mechanism. Experimental results show that the proposed model is significantly better than the traditional fault detection system in terms of fault detection accuracy, system downtime reduction and recovery speed.
Authors:Xing Hu, Xiangcheng Liu, Danfeng Hong, Qianqian Duan, Linghua Jiang, Haima Yang, Dawei Zhan
Title: Recent Advances in Diffusion Models for Hyperspectral Image Processing and Analysis: A Review
Abstract:
Hyperspectral image processing and analysis has important application value in remote sensing, agriculture and environmental monitoring, but its high dimensionality, data redundancy and noise interference etc. bring great challenges to the analysis. Traditional models have limitations in dealing with these complex data, and it is difficult to meet the increasing demand for analysis. In recent years, Diffusion models, as a class of emerging generative approaches, have demonstrated promising capabilities in hyperspectral image (HSI) processing tasks. By simulating the diffusion process of data in time, the Diffusion Model are capable of modeling high-dimensional spectral structures, generate high-quality samples, and achieve competitive performance in spectral-spatial denoising tasks and data enhancement. In this paper, we review the recent research advances in diffusion modeling for hyperspectral image processing and analysis, and discuss its applications in tasks such as high-dimensional data processing, noise removal, classification, and anomaly detection. The performance of diffusion-based models on image processing is compared and the challenges are summarized. It is shown that the diffusion model can significantly improve the accuracy and efficiency of hyperspectral image analysis, providing a new direction for future research.
Authors:Daria Zotova, Nicolas Pinon, Robin Trombetta, Romain Bouet, Julien Jung, Carole Lartizien
Title: GAN-based synthetic FDG PET images from T1 brain MRI can serve to improve performance of deep unsupervised anomaly detection models
Abstract:
Background and Objective. Research in the cross-modal medical image translation domain has been very productive over the past few years in tackling the scarce availability of large curated multimodality datasets with the promising performance of GAN-based architectures. However, only a few of these studies assessed task-based related performance of these synthetic data, especially for the training of deep models. Method. We design and compare different GAN-based frameworks for generating synthetic brain [18F]fluorodeoxyglucose (FDG) PET images from T1 weighted MRI data. We first perform standard qualitative and quantitative visual quality evaluation. Then, we explore further impact of using these fake PET data in the training of a deep unsupervised anomaly detection (UAD) model designed to detect subtle epilepsy lesions in T1 MRI and FDG PET images. We introduce novel diagnostic task-oriented quality metrics of the synthetic FDG PET data tailored to our unsupervised detection task, then use these fake data to train a use case UAD model combining a deep representation learning based on siamese autoencoders with a OC-SVM density support estimation model. This model is trained on normal subjects only and allows the detection of any variation from the pattern of the normal population. We compare the detection performance of models trained on 35 paired real MR T1 of normal subjects paired either on 35 true PET images or on 35 synthetic PET images generated from the best performing generative models. Performance analysis is conducted on 17 exams of epilepsy patients undergoing surgery. Results. The best performing GAN-based models allow generating realistic fake PET images of control subject with SSIM and PSNR values around 0.9 and 23.8, respectively and in distribution (ID) with regard to the true control dataset. The best UAD model trained on these synthetic normative PET data allows reaching 74% sensitivity. Conclusion. Our results confirm that GAN-based models are the best suited for MR T1 to FDG PET translation, outperforming transformer or diffusion models. We also demonstrate the diagnostic value of these synthetic data for the training of UAD models and evaluation on clinical exams of epilepsy patients. Our code and the normative image dataset are available.
Authors:Wenxin Zhang, Ding Xu, Guangzhen Yao, Xiaojian Lin, Renxiang Guan, Chengze Du, Renda Han, Xi Xuan, Cuicui Luo
Title: FreCT: Frequency-augmented Convolutional Transformer for Robust Time Series Anomaly Detection
Abstract:
Time series anomaly detection is critical for system monitoring and risk identification, across various domains, such as finance and healthcare. However, for most reconstruction-based approaches, detecting anomalies remains a challenge due to the complexity of sequential patterns in time series data. On the one hand, reconstruction-based techniques are susceptible to computational deviation stemming from anomalies, which can lead to impure representations of normal sequence patterns. On the other hand, they often focus on the time-domain dependencies of time series, while ignoring the alignment of frequency information beyond the time domain. To address these challenges, we propose a novel Frequency-augmented Convolutional Transformer (FreCT). FreCT utilizes patch operations to generate contrastive views and employs an improved Transformer architecture integrated with a convolution module to capture long-term dependencies while preserving local topology information. The introduced frequency analysis based on Fourier transformation could enhance the model's ability to capture crucial characteristics beyond the time domain. To protect the training quality from anomalies and improve the robustness, FreCT deploys stop-gradient Kullback-Leibler (KL) divergence and absolute error to optimize consistency information in both time and frequency domains. Extensive experiments on four public datasets demonstrate that FreCT outperforms existing methods in identifying anomalies.
Authors:Simon Klüttermann, Tim Katzke, Emmanuel Müller
Title: Unsupervised Surrogate Anomaly Detection
Abstract:
In this paper, we study unsupervised anomaly detection algorithms that learn a neural network representation, i.e. regular patterns of normal data, which anomalies are deviating from. Inspired by a similar concept in engineering, we refer to our methodology as surrogate anomaly detection. We formalize the concept of surrogate anomaly detection into a set of axioms required for optimal surrogate models and propose a new algorithm, named DEAN (Deep Ensemble ANomaly detection), designed to fulfill these criteria. We evaluate DEAN on 121 benchmark datasets, demonstrating its competitive performance against 19 existing methods, as well as the scalability and reliability of our method.
Authors:Xiangkai Ma, Xiaobin Hong, Wenzhong Li, Sanglu Lu
Title: Pets: General Pattern Assisted Architecture For Time Series Analysis
Abstract:
Time series analysis has found widespread applications in areas such as weather forecasting, anomaly detection, and healthcare. However, real-world sequential data often exhibit a superimposed state of various fluctuation patterns, including hourly, daily, and monthly frequencies. Traditional decomposition techniques struggle to effectively disentangle these multiple fluctuation patterns from the seasonal components, making time series analysis challenging. Surpassing the existing multi-period decoupling paradigms, this paper introduces a novel perspective based on energy distribution within the temporal-spectrum space. By adaptively quantifying observed sequences into continuous frequency band intervals, the proposed approach reconstructs fluctuation patterns across diverse periods without relying on domain-specific prior knowledge. Building upon this innovative strategy, we propose Pets, an enhanced architecture that is adaptable to arbitrary model structures. Pets integrates a Fluctuation Pattern Assisted (FPA) module and a Context-Guided Mixture of Predictors (MoP). The FPA module facilitates information fusion among diverse fluctuation patterns by capturing their dependencies and progressively modeling these patterns as latent representations at each layer. Meanwhile, the MoP module leverages these compound pattern representations to guide and regulate the reconstruction of distinct fluctuations hierarchically. Pets achieves state-of-the-art performance across various tasks, including forecasting, imputation, anomaly detection, and classification, while demonstrating strong generalization and robustness.
Authors:Tasmiah Haque, Md. Asif Bin Syed, Byungheon Jeong, Xue Bai, Sumit Mohan, Somdyuti Paul, Imtiaz Ahmed, Srinjoy Das
Title: Towards Efficient Real-Time Video Motion Transfer via Generative Time Series Modeling
Abstract:
We propose a deep learning framework designed to significantly optimize bandwidth for motion-transfer-enabled video applications, including video conferencing, virtual reality interactions, health monitoring systems, and vision-based real-time anomaly detection. To capture complex motion effectively, we utilize the First Order Motion Model (FOMM), which encodes dynamic objects by detecting keypoints and their associated local affine transformations. These keypoints are identified using a self-supervised keypoint detector and arranged into a time series corresponding to the successive frames. Forecasting is performed on these keypoints by integrating two advanced generative time series models into the motion transfer pipeline, namely the Variational Recurrent Neural Network (VRNN) and the Gated Recurrent Unit with Normalizing Flow (GRU-NF). The predicted keypoints are subsequently synthesized into realistic video frames using an optical flow estimator paired with a generator network, thereby facilitating accurate video forecasting and enabling efficient, low-frame-rate video transmission. We validate our results across three datasets for video animation and reconstruction using the following metrics: Mean Absolute Error, Joint Embedding Predictive Architecture Embedding Distance, Structural Similarity Index, and Average Pair-wise Displacement. Our results confirm that by utilizing the superior reconstruction property of the Variational Autoencoder, the VRNN integrated FOMM excels in applications involving multi-step ahead forecasts such as video conferencing. On the other hand, by leveraging the Normalizing Flow architecture for exact likelihood estimation, and enabling efficient latent space sampling, the GRU-NF based FOMM exhibits superior capabilities for producing diverse future samples while maintaining high visual quality for tasks like real-time video-based anomaly detection.
Authors:Viktor Beck, Max Landauer, Markus Wurzenberger, Florian Skopik, Andreas Rauber
Title: System Log Parsing with Large Language Models: A Review
Abstract:
Log data provides crucial insights for tasks like monitoring, root cause analysis, and anomaly detection. Due to the vast volume of logs, automated log parsing is essential to transform semi-structured log messages into structured representations. Recent advances in large language models (LLMs) have introduced the new research field of LLM-based log parsing. Despite promising results, there is no structured overview of the approaches in this relatively new research field with the earliest advances published in late 2023. This work systematically reviews 29 LLM-based log parsing methods. We benchmark seven of them on public datasets and critically assess their comparability and the reproducibility of their reported results. Our findings summarize the advances of this new research field, with insights on how to report results, which data sets, metrics and which terminology to use, and which inconsistencies to avoid, with code and results made publicly available for transparency.
Authors:Kishansingh Rajput, Sen Lin, Auralee Edelen, Willem Blokland, Malachi Schram
Title: Outlook Towards Deployable Continual Learning for Particle Accelerators
Abstract:
Particle Accelerators are high power complex machines. To ensure uninterrupted operation of these machines, thousands of pieces of equipment need to be synchronized, which requires addressing many challenges including design, optimization and control, anomaly detection and machine protection. With recent advancements, Machine Learning (ML) holds promise to assist in more advance prognostics, optimization, and control. While ML based solutions have been developed for several applications in particle accelerators, only few have reached deployment and even fewer to long term usage, due to particle accelerator data distribution drifts caused by changes in both measurable and non-measurable parameters. In this paper, we identify some of the key areas within particle accelerators where continual learning can allow maintenance of ML model performance with distribution drifts. Particularly, we first discuss existing applications of ML in particle accelerators, and their limitations due to distribution drift. Next, we review existing continual learning techniques and investigate their potential applications to address data distribution drifts in accelerators. By identifying the opportunities and challenges in applying continual learning, this paper seeks to open up the new field and inspire more research efforts towards deployable continual learning for particle accelerators.
Authors:Bahareh Golchin, Banafsheh Rekabdar
Title: Anomaly Detection in Time Series Data Using Reinforcement Learning, Variational Autoencoder, and Active Learning
Abstract:
A novel approach to detecting anomalies in time series data is presented in this paper. This approach is pivotal in domains such as data centers, sensor networks, and finance. Traditional methods often struggle with manual parameter tuning and cannot adapt to new anomaly types. Our method overcomes these limitations by integrating Deep Reinforcement Learning (DRL) with a Variational Autoencoder (VAE) and Active Learning. By incorporating a Long Short-Term Memory (LSTM) network, our approach models sequential data and its dependencies effectively, allowing for the detection of new anomaly classes with minimal labeled data. Our innovative DRL- VAE and Active Learning combination significantly improves existing methods, as shown by our evaluations on real-world datasets, enhancing anomaly detection techniques and advancing time series analysis.
Authors:Long Tan Le, Tung-Anh Nguyen, Han Shu, Suranga Seneviratne, Choong Seon Hong, Nguyen H. Tran
Title: Federated Koopman-Reservoir Learning for Large-Scale Multivariate Time-Series Anomaly Detection
Abstract:
The proliferation of edge devices has dramatically increased the generation of multivariate time-series (MVTS) data, essential for applications from healthcare to smart cities. Such data streams, however, are vulnerable to anomalies that signal crucial problems like system failures or security incidents. Traditional MVTS anomaly detection methods, encompassing statistical and centralized machine learning approaches, struggle with the heterogeneity, variability, and privacy concerns of large-scale, distributed environments. In response, we introduce FedKO, a novel unsupervised Federated Learning framework that leverages the linear predictive capabilities of Koopman operator theory along with the dynamic adaptability of Reservoir Computing. This enables effective spatiotemporal processing and privacy preservation for MVTS data. FedKO is formulated as a bi-level optimization problem, utilizing a specific federated algorithm to explore a shared Reservoir-Koopman model across diverse datasets. Such a model is then deployable on edge devices for efficient detection of anomalies in local MVTS streams. Experimental results across various datasets showcase FedKO's superior performance against state-of-the-art methods in MVTS anomaly detection. Moreover, FedKO reduces up to 8x communication size and 2x memory usage, making it highly suitable for large-scale systems.
Authors:William Marfo, Enrique A. Rico, Deepak K. Tosh, Shirley V. Moore
Title: Network Anomaly Detection in Distributed Edge Computing Infrastructure
Abstract:
As networks continue to grow in complexity and scale, detecting anomalies has become increasingly challenging, particularly in diverse and geographically dispersed environments. Traditional approaches often struggle with managing the computational burden associated with analyzing large-scale network traffic to identify anomalies. This paper introduces a distributed edge computing framework that integrates federated learning with Apache Spark and Kubernetes to address these challenges. We hypothesize that our approach, which enables collaborative model training across distributed nodes, significantly enhances the detection accuracy of network anomalies across different network types. By leveraging distributed computing and containerization technologies, our framework not only improves scalability and fault tolerance but also achieves superior detection performance compared to state-of-the-art methods. Extensive experiments on the UNSW-NB15 and ROAD datasets validate the effectiveness of our approach, demonstrating statistically significant improvements in detection accuracy and training efficiency over baseline models, as confirmed by Mann-Whitney U and Kolmogorov-Smirnov tests (p < 0.05).
Authors:Miao Ye, Zhibang Jiang, Xingsi Xue, Xingwang Li, Peng Wen, Yong Wang
Title: A Novel Spatiotemporal Correlation Anomaly Detection Method Based on Time-Frequency-Domain Feature Fusion and a Dynamic Graph Neural Network in Wireless Sensor Network
Abstract:
Attention-based transformers have played an important role in wireless sensor network (WSN) timing anomaly detection due to their ability to capture long-term dependencies. However, there are several issues that must be addressed, such as the fact that their ability to capture long-term dependencies is not completely reliable, their computational complexity levels are high, and the spatiotemporal features of WSN timing data are not sufficiently extracted for detecting the correlation anomalies of multinode WSN timing data. To address these limitations, this paper proposes a WSN anomaly detection method that integrates frequency-domain features with dynamic graph neural networks (GNN) under a designed self-encoder reconstruction framework. First, the discrete wavelet transform effectively decomposes trend and seasonal components of time series to solve the poor long-term reliability of transformers. Second, a frequency-domain attention mechanism is designed to make full use of the difference between the amplitude distributions of normal data and anomalous data in this domain. Finally, a multimodal fusion-based dynamic graph convolutional network (MFDGCN) is designed by combining an attention mechanism and a graph convolutional network (GCN) to adaptively extract spatial correlation features. A series of experiments conducted on public datasets and their results demonstrate that the anomaly detection method designed in this paper exhibits superior precision and recall than the existing methods do, with an F1 score of 93.5%, representing an improvement of 2.9% over that of the existing models.
Authors:Paul Boniol, Ashwin K. Krishna, Marine Bruel, Qinghua Liu, Mingyi Huang, Themis Palpanas, Ruey S. Tsay, Aaron Elmore, Michael J. Franklin, John Paparrizos
Title: VUS: Effective and Efficient Accuracy Measures for Time-Series Anomaly Detection
Abstract:
Anomaly detection (AD) is a fundamental task for time-series analytics with important implications for the downstream performance of many applications. In contrast to other domains where AD mainly focuses on point-based anomalies (i.e., outliers in standalone observations), AD for time series is also concerned with range-based anomalies (i.e., outliers spanning multiple observations). Nevertheless, it is common to use traditional point-based information retrieval measures, such as Precision, Recall, and F-score, to assess the quality of methods by thresholding the anomaly score to mark each point as an anomaly or not. However, mapping discrete labels into continuous data introduces unavoidable shortcomings, complicating the evaluation of range-based anomalies. Notably, the choice of evaluation measure may significantly bias the experimental outcome. Despite over six decades of attention, there has never been a large-scale systematic quantitative and qualitative analysis of time-series AD evaluation measures. This paper extensively evaluates quality measures for time-series AD to assess their robustness under noise, misalignments, and different anomaly cardinality ratios. Our results indicate that measures producing quality values independently of a threshold (i.e., AUC-ROC and AUC-PR) are more suitable for time-series AD. Motivated by this observation, we first extend the AUC-based measures to account for range-based anomalies. Then, we introduce a new family of parameter-free and threshold-independent measures, Volume Under the Surface (VUS), to evaluate methods while varying parameters. We also introduce two optimized implementations for VUS that reduce significantly the execution time of the initial implementation. Our findings demonstrate that our four measures are significantly more robust in assessing the quality of time-series AD methods.
Authors:Habib Irani, Vangelis Metsis
Title: Positional Encoding in Transformer-Based Time Series Models: A Survey
Abstract:
Recent advancements in transformer-based models have greatly improved time series analysis, providing robust solutions for tasks such as forecasting, anomaly detection, and classification. A crucial element of these models is positional encoding, which allows transformers to capture the intrinsic sequential nature of time series data. This survey systematically examines existing techniques for positional encoding in transformer-based time series models. We investigate a variety of methods, including fixed, learnable, relative, and hybrid approaches, and evaluate their effectiveness in different time series classification tasks. Our findings indicate that data characteristics like sequence length, signal complexity, and dimensionality significantly influence method effectiveness. Advanced positional encoding methods exhibit performance gains in terms of prediction accuracy, however, they come at the cost of increased computational complexity. Furthermore, we outline key challenges and suggest potential research directions to enhance positional encoding strategies. By delivering a comprehensive overview and quantitative benchmarking, this survey intends to assist researchers and practitioners in selecting and designing effective positional encoding methods for transformer-based time series models.
Authors:William Marfo, Deepak K. Tosh, Shirley V. Moore
Title: Efficient Client Selection in Federated Learning
Abstract:
Federated Learning (FL) enables decentralized machine learning while preserving data privacy. This paper proposes a novel client selection framework that integrates differential privacy and fault tolerance. The adaptive client selection adjusts the number of clients based on performance and system constraints, with noise added to protect privacy. Evaluated on the UNSW-NB15 and ROAD datasets for network anomaly detection, the method improves accuracy by 7% and reduces training time by 25% compared to baselines. Fault tolerance enhances robustness with minimal performance trade-offs.
Authors:William Marfo, Deepak K. Tosh, Shirley V. Moore
Title: Federated Learning for Efficient Condition Monitoring and Anomaly Detection in Industrial Cyber-Physical Systems
Abstract:
Detecting and localizing anomalies in cyber-physical systems (CPS) has become increasingly challenging as systems grow in complexity, particularly due to varying sensor reliability and node failures in distributed environments. While federated learning (FL) provides a foundation for distributed model training, existing approaches often lack mechanisms to address these CPS-specific challenges. This paper introduces an enhanced FL framework with three key innovations: adaptive model aggregation based on sensor reliability, dynamic node selection for resource optimization, and Weibull-based checkpointing for fault tolerance. The proposed framework ensures reliable condition monitoring while tackling the computational and reliability challenges of industrial CPS deployments. Experiments on the NASA Bearing and Hydraulic System datasets demonstrate superior performance compared to state-of-the-art FL methods, achieving 99.5% AUC-ROC in anomaly detection and maintaining accuracy even under node failures. Statistical validation using the Mann-Whitney U test confirms significant improvements, with a p-value less than 0.05, in both detection accuracy and computational efficiency across various operational scenarios.
Authors:William Marfo, Deepak K. Tosh, Shirley V. Moore
Title: Adaptive Client Selection in Federated Learning: A Network Anomaly Detection Use Case
Abstract:
Federated Learning (FL) has become a widely used approach for training machine learning models on decentralized data, addressing the significant privacy concerns associated with traditional centralized methods. However, the efficiency of FL relies on effective client selection and robust privacy preservation mechanisms. Ineffective client selection can result in suboptimal model performance, while inadequate privacy measures risk exposing sensitive data. This paper introduces a client selection framework for FL that incorporates differential privacy and fault tolerance. The proposed adaptive approach dynamically adjusts the number of selected clients based on model performance and system constraints, ensuring privacy through the addition of calibrated noise. The method is evaluated on a network anomaly detection use case using the UNSW-NB15 and ROAD datasets. Results demonstrate up to a 7% improvement in accuracy and a 25% reduction in training time compared to the FedL2P approach. Additionally, the study highlights trade-offs between privacy budgets and model performance, with higher privacy budgets leading to reduced noise and improved accuracy. While the fault tolerance mechanism introduces a slight performance decrease, it enhances robustness against client failures. Statistical validation using the Mann-Whitney U test confirms the significance of these improvements, with results achieving a p-value of less than 0.05.
Authors:Jiazhen Chen, Sichao Fu, Zheng Ma, Mingbin Feng, Tony S. Wirjanto, Qinmu Peng
Title: Semi-supervised Anomaly Detection with Extremely Limited Labels in Dynamic Graphs
Abstract:
Semi-supervised graph anomaly detection (GAD) has recently received increasing attention, which aims to distinguish anomalous patterns from graphs under the guidance of a moderate amount of labeled data and a large volume of unlabeled data. Although these proposed semi-supervised GAD methods have achieved great success, their superior performance will be seriously degraded when the provided labels are extremely limited due to some unpredictable factors. Besides, the existing methods primarily focus on anomaly detection in static graphs, and little effort was paid to consider the continuous evolution characteristic of graphs over time (dynamic graphs). To address these challenges, we propose a novel GAD framework (EL$^{2}$-DGAD) to tackle anomaly detection problem in dynamic graphs with extremely limited labels. Specifically, a transformer-based graph encoder model is designed to more effectively preserve evolving graph structures beyond the local neighborhood. Then, we incorporate an ego-context hypersphere classification loss to classify temporal interactions according to their structure and temporal neighborhoods while ensuring the normal samples are mapped compactly against anomalous data. Finally, the above loss is further augmented with an ego-context contrasting module which utilizes unlabeled data to enhance model generalization. Extensive experiments on four datasets and three label rates demonstrate the effectiveness of the proposed method in comparison to the existing GAD methods.
Authors:Zhong Li, Yuhang Wang, Matthijs van Leeuwen
Title: Towards Automated Self-Supervised Learning for Truly Unsupervised Graph Anomaly Detection
Abstract:
Self-supervised learning (SSL) is an emerging paradigm that exploits supervisory signals generated from the data itself, and many recent studies have leveraged SSL to conduct graph anomaly detection. However, we empirically found that three important factors can substantially impact detection performance across datasets: 1) the specific SSL strategy employed; 2) the tuning of the strategy's hyperparameters; and 3) the allocation of combination weights when using multiple strategies. Most SSL-based graph anomaly detection methods circumvent these issues by arbitrarily or selectively (i.e., guided by label information) choosing SSL strategies, hyperparameter settings, and combination weights. While an arbitrary choice may lead to subpar performance, using label information in an unsupervised setting is label information leakage and leads to severe overestimation of a method's performance. Leakage has been criticized as "one of the top ten data mining mistakes", yet many recent studies on SSL-based graph anomaly detection have been using label information to select hyperparameters. To mitigate this issue, we propose to use an internal evaluation strategy (with theoretical analysis) to select hyperparameters in SSL for unsupervised anomaly detection. We perform extensive experiments using 10 recent SSL-based graph anomaly detection algorithms on various benchmark datasets, demonstrating both the prior issues with hyperparameter selection and the effectiveness of our proposed strategy.
Authors:Xiaolei Wang, Xiaoyang Wang, Huihui Bai, Eng Gee Lim, Jimin Xiao
Title: CNC: Cross-modal Normality Constraint for Unsupervised Multi-class Anomaly Detection
Abstract:
Existing unsupervised distillation-based methods rely on the differences between encoded and decoded features to locate abnormal regions in test images. However, the decoder trained only on normal samples still reconstructs abnormal patch features well, degrading performance. This issue is particularly pronounced in unsupervised multi-class anomaly detection tasks. We attribute this behavior to over-generalization(OG) of decoder: the significantly increasing diversity of patch patterns in multi-class training enhances the model generalization on normal patches, but also inadvertently broadens its generalization to abnormal patches. To mitigate OG, we propose a novel approach that leverages class-agnostic learnable prompts to capture common textual normality across various visual patterns, and then apply them to guide the decoded features towards a normal textual representation, suppressing over-generalization of the decoder on abnormal patterns. To further improve performance, we also introduce a gated mixture-of-experts module to specialize in handling diverse patch patterns and reduce mutual interference between them in multi-class training. Our method achieves competitive performance on the MVTec AD and VisA datasets, demonstrating its effectiveness.
Authors:Paul Boniol, Qinghua Liu, Mingyi Huang, Themis Palpanas, John Paparrizos
Title: Dive into Time-Series Anomaly Detection: A Decade Review
Abstract:
Recent advances in data collection technology, accompanied by the ever-rising volume and velocity of streaming data, underscore the vital need for time series analytics. In this regard, time-series anomaly detection has been an important activity, entailing various applications in fields such as cyber security, financial markets, law enforcement, and health care. While traditional literature on anomaly detection is centered on statistical measures, the increasing number of machine learning algorithms in recent years call for a structured, general characterization of the research methods for time-series anomaly detection. This survey groups and summarizes anomaly detection existing solutions under a process-centric taxonomy in the time series context. In addition to giving an original categorization of anomaly detection methods, we also perform a meta-analysis of the literature and outline general trends in time-series anomaly detection research.
Authors:Ryien Hosseini, Filippo Simini, Venkatram Vishwanath, Henry Hoffmann
Title: A Deep Probabilistic Framework for Continuous Time Dynamic Graph Generation
Abstract:
Recent advancements in graph representation learning have shifted attention towards dynamic graphs, which exhibit evolving topologies and features over time. The increased use of such graphs creates a paramount need for generative models suitable for applications such as data augmentation, obfuscation, and anomaly detection. However, there are few generative techniques that handle continuously changing temporal graph data; existing work largely relies on augmenting static graphs with additional temporal information to model dynamic interactions between nodes. In this work, we propose a fundamentally different approach: We instead directly model interactions as a joint probability of an edge forming between two nodes at a given time. This allows us to autoregressively generate new synthetic dynamic graphs in a largely assumption free, scalable, and inductive manner. We formalize this approach as DG-Gen, a generative framework for continuous time dynamic graphs, and demonstrate its effectiveness over five datasets. Our experiments demonstrate that DG-Gen not only generates higher fidelity graphs compared to traditional methods but also significantly advances link prediction tasks.
Authors:Erin Carson, Xinye Chen, Cheng Kang
Title: Quantized symbolic time series approximation
Abstract:
Time series are ubiquitous in numerous science and engineering domains, e.g., signal processing, bioinformatics, and astronomy. Previous work has verified the efficacy of symbolic time series representation in a variety of engineering applications due to its storage efficiency and numerosity reduction. The most recent symbolic aggregate approximation technique, ABBA, has been shown to preserve essential shape information of time series and improve downstream applications, e.g., neural network inference regarding prediction and anomaly detection in time series. Motivated by the emergence of high-performance hardware which enables efficient computation for low bit-width representations, we present a new quantization-based ABBA symbolic approximation technique, QABBA, which exhibits improved storage efficiency while retaining the original speed and accuracy of symbolic reconstruction. We prove an upper bound for the error arising from quantization and discuss how the number of bits should be chosen to balance this with other errors. An application of QABBA with large language models (LLMs) for time series regression is also presented, and its utility is investigated. By representing the symbolic chain of patterns on time series, QABBA not only avoids the training of embedding from scratch, but also achieves a new state-of-the-art on Monash regression dataset. The symbolic approximation to the time series offers a more efficient way to fine-tune LLMs on the time series regression task which contains various application domains. We further present a set of extensive experiments performed across various well-established datasets to demonstrate the advantages of the QABBA method for symbolic approximation.
Authors:YeongHyeon Park, Myung Jin Kim, Hyeong Seok Kim
Title: Contrastive Language Prompting to Ease False Positives in Medical Anomaly Detection
Abstract:
A pre-trained visual-language model, contrastive language-image pre-training (CLIP), successfully accomplishes various downstream tasks with text prompts, such as finding images or localizing regions within the image. Despite CLIP's strong multi-modal data capabilities, it remains limited in specialized environments, such as medical applications. For this purpose, many CLIP variants-i.e., BioMedCLIP, and MedCLIP-SAMv2-have emerged, but false positives related to normal regions persist. Thus, we aim to present a simple yet important goal of reducing false positives in medical anomaly detection. We introduce a Contrastive LAnguage Prompting (CLAP) method that leverages both positive and negative text prompts. This straightforward approach identifies potential lesion regions by visual attention to the positive prompts in the given image. To reduce false positives, we attenuate attention on normal regions using negative prompts. Extensive experiments with the BMAD dataset, including six biomedical benchmarks, demonstrate that CLAP method enhances anomaly detection performance. Our future plans include developing an automated fine prompting method for more practical usage.
Authors:Hongying Liu, Hao Wang, Haoran Chu, Yibo Wu
Title: Towards Convexity in Anomaly Detection: A New Formulation of SSLM with Unique Optimal Solutions
Abstract:
An unsolved issue in widely used methods such as Support Vector Data Description (SVDD) and Small Sphere and Large Margin SVM (SSLM) for anomaly detection is their nonconvexity, which hampers the analysis of optimal solutions in a manner similar to SVMs and limits their applicability in large-scale scenarios. In this paper, we introduce a novel convex SSLM formulation which has been demonstrated to revert to a convex quadratic programming problem for hyperparameter values of interest. Leveraging the convexity of our method, we derive numerous results that are unattainable with traditional nonconvex approaches. We conduct a thorough analysis of how hyperparameters influence the optimal solution, pointing out scenarios where optimal solutions can be trivially found and identifying instances of ill-posedness. Most notably, we establish connections between our method and traditional approaches, providing a clear determination of when the optimal solution is unique -- a task unachievable with traditional nonconvex methods. We also derive the ν-property to elucidate the interactions between hyperparameters and the fractions of support vectors and margin errors in both positive and negative classes.
Authors:Jiazhen Chen, Sichao Fu, Zhibin Zhang, Zheng Ma, Mingbin Feng, Tony S. Wirjanto, Qinmu Peng
Title: Towards Cross-domain Few-shot Graph Anomaly Detection
Abstract:
Few-shot graph anomaly detection (GAD) has recently garnered increasing attention, which aims to discern anomalous patterns among abundant unlabeled test nodes under the guidance of a limited number of labeled training nodes. Existing few-shot GAD approaches typically adopt meta-training methods trained on richly labeled auxiliary networks to facilitate rapid adaptation to target networks that possess sparse labels. However, these proposed methods often assume that the auxiliary and target networks exist in the same data distributions-an assumption rarely holds in practical settings. This paper explores a more prevalent and complex scenario of cross-domain few-shot GAD, where the goal is to identify anomalies within sparsely labeled target graphs using auxiliary graphs from a related, yet distinct domain. The challenge here is nontrivial owing to inherent data distribution discrepancies between the source and target domains, compounded by the uncertainties of sparse labeling in the target domain. In this paper, we propose a simple and effective framework, termed CDFS-GAD, specifically designed to tackle the aforementioned challenges. CDFS-GAD first introduces a domain-adaptive graph contrastive learning module, which is aimed at enhancing cross-domain feature alignment. Then, a prompt tuning module is further designed to extract domain-specific features tailored to each domain. Moreover, a domain-adaptive hypersphere classification loss is proposed to enhance the discrimination between normal and anomalous instances under minimal supervision, utilizing domain-sensitive norms. Lastly, a self-training strategy is introduced to further refine the predicted scores, enhancing its reliability in few-shot settings. Extensive experiments on twelve real-world cross-domain data pairs demonstrate the effectiveness of the proposed CDFS-GAD framework in comparison to various existing GAD methods.
Authors:Minjae Ok, Simon Klüttermann, Emmanuel Müller
Title: Exploring the Impact of Outlier Variability on Anomaly Detection Evaluation Metrics
Abstract:
Anomaly detection is a dynamic field, in which the evaluation of models plays a critical role in understanding their effectiveness. The selection and interpretation of the evaluation metrics are pivotal, particularly in scenarios with varying amounts of anomalies. This study focuses on examining the behaviors of three widely used anomaly detection metrics under different conditions: F1 score, Receiver Operating Characteristic Area Under Curve (ROC AUC), and Precision-Recall Curve Area Under Curve (AUCPR). Our study critically analyzes the extent to which these metrics provide reliable and distinct insights into model performance, especially considering varying levels of outlier fractions and contamination thresholds in datasets. Through a comprehensive experimental setup involving widely recognized algorithms for anomaly detection, we present findings that challenge the conventional understanding of these metrics and reveal nuanced behaviors under varying conditions. We demonstrated that while the F1 score and AUCPR are sensitive to outlier fractions, the ROC AUC maintains consistency and is unaffected by such variability. Additionally, under conditions of a fixed outlier fraction in the test set, we observe an alignment between ROC AUC and AUCPR, indicating that the choice between these two metrics may be less critical in such scenarios. The results of our study contribute to a more refined understanding of metric selection and interpretation in anomaly detection, offering valuable insights for both researchers and practitioners in the field.
Authors:Liyang Wang, Yu Cheng, Hao Gong, Jiacheng Hu, Xirui Tang, Iris Li
Title: Research on Dynamic Data Flow Anomaly Detection based on Machine Learning
Abstract:
The sophistication and diversity of contemporary cyberattacks have rendered the use of proxies, gateways, firewalls, and encrypted tunnels as a standalone defensive strategy inadequate. Consequently, the proactive identification of data anomalies has emerged as a prominent area of research within the field of data security. The majority of extant studies concentrate on sample equilibrium data, with the consequence that the detection effect is not optimal in the context of unbalanced data. In this study, the unsupervised learning method is employed to identify anomalies in dynamic data flows. Initially, multi-dimensional features are extracted from real-time data, and a clustering algorithm is utilised to analyse the patterns of the data. This enables the potential outliers to be automatically identified. By clustering similar data, the model is able to detect data behaviour that deviates significantly from normal traffic without the need for labelled data. The results of the experiments demonstrate that the proposed method exhibits high accuracy in the detection of anomalies across a range of scenarios. Notably, it demonstrates robust and adaptable performance, particularly in the context of unbalanced data.
Authors:Jen Dusseljee, Sarah de Boer, Alessa Hering
Title: Kidney Cancer Detection Using 3D-Based Latent Diffusion Models
Abstract:
In this work, we present a novel latent diffusion-based pipeline for 3D kidney anomaly detection on contrast-enhanced abdominal CT. The method combines Denoising Diffusion Probabilistic Models (DDPMs), Denoising Diffusion Implicit Models (DDIMs), and Vector-Quantized Generative Adversarial Networks (VQ-GANs). Unlike prior slice-wise approaches, our method operates directly on an image volume and leverages weak supervision with only case-level pseudo-labels. We benchmark our approach against state-of-the-art supervised segmentation and detection models. This study demonstrates the feasibility and promise of 3D latent diffusion for weakly supervised anomaly detection. While the current results do not yet match supervised baselines, they reveal key directions for improving reconstruction fidelity and lesion localization. Our findings provide an important step toward annotation-efficient, generative modeling of complex abdominal anatomy.
Authors:Satoshi Hashimoto, Hitoshi Nishimura, Yanan Wang, Mori Kurokawa
Title: Pseudo Anomalies Are All You Need: Diffusion-Based Generation for Weakly-Supervised Video Anomaly Detection
Abstract:
Deploying video anomaly detection in practice is hampered by the scarcity and collection cost of real abnormal footage. We address this by training without any real abnormal videos while evaluating under the standard weakly supervised split, and we introduce PA-VAD, a generation-driven approach that learns a detector from synthesized pseudo-abnormal videos paired with real normal videos, using only a small set of real normal images to drive synthesis. For synthesis, we select class-relevant initial images with CLIP and refine textual prompts with a vision-language model to improve fidelity and scene consistency before invoking a video diffusion model. For training, we mitigate excessive spatiotemporal magnitude in synthesized anomalies by an domain-aligned regularized module that combines domain alignment and memory usage-aware updates. Extensive experiments show that our approach reaches 98.2% on ShanghaiTech and 82.5% on UCF-Crime, surpassing the strongest real-abnormal method on ShanghaiTech by +0.6% and outperforming the UVAD state-of-the-art on UCF-Crime by +1.9%. The results demonstrate that high-accuracy anomaly detection can be obtained without collecting real anomalies, providing a practical path toward scalable deployment.
Authors:Thomas Gräupl, Andreas Reisenbauer, Marcel Hecko, Anil Rasouli, Anita Graser, Melitta Dragaschnig, Axel Weissenfeld, Gilles Dejaegere, Mahmoud Sakr
Title: Federated Learning and Trajectory Compression for Enhanced AIS Coverage
Abstract:
This paper presents the VesselEdge system, which leverages federated learning and bandwidth-constrained trajectory compression to enhance maritime situational awareness by extending AIS coverage. VesselEdge transforms vessels into mobile sensors, enabling real-time anomaly detection and efficient data transmission over low-bandwidth connections. The system integrates the M3fed model for federated learning and the BWC-DR-A algorithm for trajectory compression, prioritizing anomalous data. Preliminary results demonstrate the effectiveness of VesselEdge in improving AIS coverage and situational awareness using historical data.
Authors:Juvenal Bassa, Arghya Chattopadhyay, Sudhir Malik, Mario Escabi Rivera
Title: MEDIC: a network for monitoring data quality in collider experiments
Abstract:
Data Quality Monitoring (DQM) is a crucial component of particle physics experiments and ensures that the recorded data is of the highest quality, and suitable for subsequent physics analysis. Due to the extreme environmental conditions, unprecedented data volumes, and the sheer scale and complexity of the detectors, DQM orchestration has become a very challenging task. Therefore, the use of Machine Learning (ML) to automate anomaly detection, improve efficiency, and reduce human error in the process of collecting high-quality data is unavoidable. Since DQM relies on real experimental data, it is inherently tied to the specific detector substructure and technology in operation. In this work, a simulation-driven approach to DQM is proposed, enabling the study and development of data-quality methodologies in a controlled environment. Using a modified version of Delphes -- a fast, multi-purpose detector simulation -- the preliminary realization of a framework is demonstrated which leverages ML to identify detector anomalies as well as localize the malfunctioning components responsible. We introduce MEDIC (Monitoring for Event Data Integrity and Consistency), a neural network designed to learn detector behavior and perform DQM tasks to look for potential faults. Although the present implementation adopts a simplified setup for computational ease, where large detector regions are deliberately deactivated to mimic faults, this work represents an initial step toward a comprehensive ML-based DQM framework. The encouraging results underline the potential of simulation-driven studies as a foundation for developing more advanced, data-driven DQM systems for future particle detectors.
Authors:Botong Zhao, Qijun Shi, Shujing Lyu, Yue Lu
Title: ProtoAnomalyNCD: Prototype Learning for Multi-class Novel Anomaly Discovery in Industrial Scenarios
Abstract:
Existing industrial anomaly detection methods mainly determine whether an anomaly is present. However, real-world applications also require discovering and classifying multiple anomaly types. Since industrial anomalies are semantically subtle and current methods do not sufficiently exploit image priors, direct clustering approaches often perform poorly. To address these challenges, we propose ProtoAnomalyNCD, a prototype-learning-based framework for discovering unseen anomaly classes of multiple types that can be integrated with various anomaly detection methods. First, to suppress background clutter, we leverage Grounded SAM with text prompts to localize object regions as priors for the anomaly classification network. Next, because anomalies usually appear as subtle and fine-grained patterns on the product, we introduce an Anomaly-Map-Guided Attention block. Within this block, we design a Region Guidance Factor that helps the attention module distinguish among background, object regions, and anomalous regions. By using both localized product regions and anomaly maps as priors, the module enhances anomalous features while suppressing background noise and preserving normal features for contrastive learning. Finally, under a unified prototype-learning framework, ProtoAnomalyNCD discovers and clusters unseen anomaly classes while simultaneously enabling multi-type anomaly classification. We further extend our method to detect unseen outliers, achieving task-level unification. Our method outperforms state-of-the-art approaches on the MVTec AD, MTD, and Real-IAD datasets.
Authors:Rathin Chandra Shit, Sharmila Subudhi
Title: Scalable Hierarchical AI-Blockchain Framework for Real-Time Anomaly Detection in Large-Scale Autonomous Vehicle Networks
Abstract:
The security of autonomous vehicle networks is facing major challenges, owing to the complexity of sensor integration, real-time performance demands, and distributed communication protocols that expose vast attack surfaces around both individual and network-wide safety. Existing security schemes are unable to provide sub-10 ms (milliseconds) anomaly detection and distributed coordination of large-scale networks of vehicles within an acceptable safety/privacy framework. This paper introduces a three-tier hybrid security architecture HAVEN (Hierarchical Autonomous Vehicle Enhanced Network), which decouples real-time local threat detection and distributed coordination operations. It incorporates a light ensemble anomaly detection model on the edge (first layer), Byzantine-fault-tolerant federated learning to aggregate threat intelligence at a regional scale (middle layer), and selected blockchain mechanisms (top layer) to ensure critical security coordination. Extensive experimentation is done on a real-world autonomous driving dataset. Large-scale simulations with the number of vehicles ranging between 100 and 1000 and different attack types, such as sensor spoofing, jamming, and adversarial model poisoning, are conducted to test the scalability and resiliency of HAVEN. Experimental findings show sub-10 ms detection latency with an accuracy of 94% and F1-score of 92% across multimodal sensor data, Byzantine fault tolerance validated with 20\% compromised nodes, and a reduced blockchain storage overhead, guaranteeing sufficient differential privacy. The proposed framework overcomes the important trade-off between real-time safety obligation and distributed security coordination with novel three-tiered processing. The scalable architecture of HAVEN is shown to provide great improvement in detection accuracy as well as network resilience over other methods.
Authors:Jiazhen Chen, Xiuqin Liang, Sichao Fu, Zheng Ma, Weihua Ou
Title: Towards Multiple Missing Values-resistant Unsupervised Graph Anomaly Detection
Abstract:
Unsupervised graph anomaly detection (GAD) has received increasing attention in recent years, which aims to identify data anomalous patterns utilizing only unlabeled node information from graph-structured data. However, prevailing unsupervised GAD methods typically presuppose complete node attributes and structure information, a condition hardly satisfied in real-world scenarios owing to privacy, collection errors or dynamic node arrivals. Existing standard imputation schemes risk "repairing" rare anomalous nodes so that they appear normal, thereby introducing imputation bias into the detection process. In addition, when both node attributes and edges are missing simultaneously, estimation errors in one view can contaminate the other, causing cross-view interference that further undermines the detection performance. To overcome these challenges, we propose M$^2$V-UGAD, a multiple missing values-resistant unsupervised GAD framework on incomplete graphs. Specifically, a dual-pathway encoder is first proposed to independently reconstruct missing node attributes and graph structure, thereby preventing errors in one view from propagating to the other. The two pathways are then fused and regularized in a joint latent space so that normals occupy a compact inner manifold while anomalies reside on an outer shell. Lastly, to mitigate imputation bias, we sample latent codes just outside the normal region and decode them into realistic node features and subgraphs, providing hard negative examples that sharpen the decision boundary. Experiments on seven public benchmarks demonstrate that M$^2$V-UGAD consistently outperforms existing unsupervised GAD methods across varying missing rates.
Authors:Maryam Zolnoori, Hossein Azadmaleki, Yasaman Haghbin, Ali Zolnour, Mohammad Javad Momeni Nezhad, Sina Rashidi, Mehdi Naserian, Elyas Esmaeili, Sepehr Karimi Arpanahi
Title: National Institute on Aging PREPARE Challenge: Early Detection of Cognitive Impairment Using Speech -- The SpeechCARE Solution
Abstract:
Alzheimer's disease and related dementias (ADRD) affect one in five adults over 60, yet more than half of individuals with cognitive decline remain undiagnosed. Speech-based assessments show promise for early detection, as phonetic motor planning deficits alter acoustic features (e.g., pitch, tone), while memory and language impairments lead to syntactic and semantic errors. However, conventional speech-processing pipelines with hand-crafted features or general-purpose audio classifiers often exhibit limited performance and generalizability. To address these limitations, we introduce SpeechCARE, a multimodal speech processing pipeline that leverages pretrained, multilingual acoustic and linguistic transformer models to capture subtle speech-related cues associated with cognitive impairment. Inspired by the Mixture of Experts (MoE) paradigm, SpeechCARE employs a dynamic fusion architecture that weights transformer-based acoustic, linguistic, and demographic inputs, allowing integration of additional modalities (e.g., social factors, imaging) and enhancing robustness across diverse tasks. Its robust preprocessing includes automatic transcription, large language model (LLM)-based anomaly detection, and task identification. A SHAP-based explainability module and LLM reasoning highlight each modality's contribution to decision-making. SpeechCARE achieved AUC = 0.88 and F1 = 0.72 for classifying cognitively healthy, MCI, and AD individuals, with AUC = 0.90 and F1 = 0.62 for MCI detection. Bias analysis showed minimal disparities, except for adults over 80. Mitigation techniques included oversampling and weighted loss. Future work includes deployment in real-world care settings (e.g., VNS Health, Columbia ADRC) and EHR-integrated explainability for underrepresented populations in New York City.
Authors:Changqing Gong, Huafeng Qin, Mounim A. El-Yacoubi
Title: Understanding Cross Task Generalization in Handwriting-Based Alzheimer's Screening via Vision Language Adaptation
Abstract:
Alzheimer's disease is a prevalent neurodegenerative disorder for which early detection is critical. Handwriting-often disrupted in prodromal AD-provides a non-invasive and cost-effective window into subtle motor and cognitive decline. Existing handwriting-based AD studies, mostly relying on online trajectories and hand-crafted features, have not systematically examined how task type influences diagnostic performance and cross-task generalization. Meanwhile, large-scale vision language models have demonstrated remarkable zero or few-shot anomaly detection in natural images and strong adaptability across medical modalities such as chest X-ray and brain MRI. However, handwriting-based disease detection remains largely unexplored within this paradigm. To close this gap, we introduce a lightweight Cross-Layer Fusion Adapter framework that repurposes CLIP for handwriting-based AD screening. CLFA implants multi-level fusion adapters within the visual encoder to progressively align representations toward handwriting-specific medical cues, enabling prompt-free and efficient zero-shot inference. Using this framework, we systematically investigate cross-task generalization-training on a specific handwriting task and evaluating on unseen ones-to reveal which task types and writing patterns most effectively discriminate AD. Extensive analyses further highlight characteristic stroke patterns and task-level factors that contribute to early AD identification, offering both diagnostic insights and a benchmark for handwriting-based cognitive assessment.
Authors:Rucha Deshpande, Tahsin Rahman, Miguel Lago, Adarsh Subbaswamy, Jana G. Delfino, Ghada Zamzmi, Elim Thompson, Aldo Badano, Seyed Kahaki
Title: Knowledge-based anomaly detection for identifying network-induced shape artifacts
Abstract:
Synthetic data provides a promising approach to address data scarcity for training machine learning models; however, adoption without proper quality assessments may introduce artifacts, distortions, and unrealistic features that compromise model performance and clinical utility. This work introduces a novel knowledge-based anomaly detection method for detecting network-induced shape artifacts in synthetic images. The introduced method utilizes a two-stage framework comprising (i) a novel feature extractor that constructs a specialized feature space by analyzing the per-image distribution of angle gradients along anatomical boundaries, and (ii) an isolation forest-based anomaly detector. We demonstrate the effectiveness of the method for identifying network-induced shape artifacts in two synthetic mammography datasets from models trained on CSAW-M and VinDr-Mammo patient datasets respectively. Quantitative evaluation shows that the method successfully concentrates artifacts in the most anomalous partition (1st percentile), with AUC values of 0.97 (CSAW-syn) and 0.91 (VMLO-syn). In addition, a reader study involving three imaging scientists confirmed that images identified by the method as containing network-induced shape artifacts were also flagged by human readers with mean agreement rates of 66% (CSAW-syn) and 68% (VMLO-syn) for the most anomalous partition, approximately 1.5-2 times higher than the least anomalous partition. Kendall-Tau correlations between algorithmic and human rankings were 0.45 and 0.43 for the two datasets, indicating reasonable agreement despite the challenging nature of subtle artifact detection. This method is a step forward in the responsible use of synthetic data, as it allows developers to evaluate synthetic images for known anatomic constraints and pinpoint and address specific issues to improve the overall quality of a synthetic dataset.
Authors:Andrei-Timotei Ardelean, Tim Weyrich
Title: Example-Based Feature Painting on Textures
Abstract:
In this work, we propose a system that covers the complete workflow for achieving controlled authoring and editing of textures that present distinctive local characteristics. These include various effects that change the surface appearance of materials, such as stains, tears, holes, abrasions, discoloration, and more. Such alterations are ubiquitous in nature, and including them in the synthesis process is crucial for generating realistic textures. We introduce a novel approach for creating textures with such blemishes, adopting a learning-based approach that leverages unlabeled examples. Our approach does not require manual annotations by the user; instead, it detects the appearance-altering features through unsupervised anomaly detection. The various textural features are then automatically clustered into semantically coherent groups, which are used to guide the conditional generation of images. Our pipeline as a whole goes from a small image collection to a versatile generative model that enables the user to interactively create and paint features on textures of arbitrary size. Notably, the algorithms we introduce for diffusion-based editing and infinite stationary texture generation are generic and should prove useful in other contexts as well. Project page: https://reality.tf.fau.de/pub/ardelean2025examplebased.html
Authors:Wajdi Hammami, Soumaya Cherkaoui, Jean-Frederic Laprade, Ola Ahmad, Shengrui Wang
Title: Quantum Gated Recurrent GAN with Gaussian Uncertainty for Network Anomaly Detection
Abstract:
Anomaly detection in time-series data is a critical challenge with significant implications for network security. Recent quantum machine learning approaches, such as quantum kernel methods and variational quantum circuits, have shown promise in capturing complex data distributions for anomaly detection but remain constrained by limited qubit counts. We introduce in this work a novel Quantum Gated Recurrent Unit (QGRU)-based Generative Adversarial Network (GAN) employing Successive Data Injection (SuDaI) and a multi-metric gating strategy for robust network anomaly detection. Our model uniquely utilizes a quantum-enhanced generator that outputs parameters (mean and log-variance) of a Gaussian distribution via reparameterization, combined with a Wasserstein critic to stabilize adversarial training. Anomalies are identified through a novel gating mechanism that initially flags potential anomalies based on Gaussian uncertainty estimates and subsequently verifies them using a composite of critic scores and reconstruction errors. Evaluated on benchmark datasets, our method achieves a high time-series aware F1 score (TaF1) of 89.43% demonstrating superior capability in detecting anomalies accurately and promptly as compared to existing classical and quantum models. Furthermore, the trained QGRU-WGAN was deployed on real IBM Quantum hardware, where it retained high anomaly detection performance, confirming its robustness and practical feasibility on current noisy intermediate-scale quantum (NISQ) devices.
Authors:Bharath Santhanam, Alex Mitrevski, Santosh Thoduka, Sebastian Houben, Teena Hassan
Title: Reliable Robotic Task Execution in the Face of Anomalies
Abstract:
Learned robot policies have consistently been shown to be versatile, but they typically have no built-in mechanism for handling the complexity of open environments, making them prone to execution failures; this implies that deploying policies without the ability to recognise and react to failures may lead to unreliable and unsafe robot behaviour. In this paper, we present a framework that couples a learned policy with a method to detect visual anomalies during policy deployment and to perform recovery behaviours when necessary, thereby aiming to prevent failures. Specifically, we train an anomaly detection model using data collected during nominal executions of a trained policy. This model is then integrated into the online policy execution process, so that deviations from the nominal execution can trigger a three-level sequential recovery process that consists of (i) pausing the execution temporarily, (ii) performing a local perturbation of the robot's state, and (iii) resetting the robot to a safe state by sampling from a learned execution success model. We verify our proposed method in two different scenarios: (i) a door handle reaching task with a Kinova Gen3 arm using a policy trained in simulation and transferred to the real robot, and (ii) an object placing task with a UFactory xArm 6 using a general-purpose policy model. Our results show that integrating policy execution with anomaly detection and recovery increases the execution success rate in environments with various anomalies, such as trajectory deviations and adversarial human interventions.
Authors:Andrei-Timotei Ardelean, Patrick Rückbeil, Tim Weyrich
Title: Quantized FCA: Efficient Zero-Shot Texture Anomaly Detection
Abstract:
Zero-shot anomaly localization is a rising field in computer vision research, with important progress in recent years. This work focuses on the problem of detecting and localizing anomalies in textures, where anomalies can be defined as the regions that deviate from the overall statistics, violating the stationarity assumption. The main limitation of existing methods is their high running time, making them impractical for deployment in real-world scenarios, such as assembly line monitoring. We propose a real-time method, named QFCA, which implements a quantized version of the feature correspondence analysis (FCA) algorithm. By carefully adapting the patch statistics comparison to work on histograms of quantized values, we obtain a 10x speedup with little to no loss in accuracy. Moreover, we introduce a feature preprocessing step based on principal component analysis, which enhances the contrast between normal and anomalous features, improving the detection precision on complex textures. Our method is thoroughly evaluated against prior art, comparing favorably with existing methods. Project page: https://reality.tf.fau.de/pub/ardelean2025quantized.html
Authors:Rekha R Nair, Tina Babu, Alavikunhu Panthakkan, Balamurugan Balusamy, Wathiq Mansoor
Title: Hybrid Autoencoder-Based Framework for Early Fault Detection in Wind Turbines
Abstract:
Wind turbine reliability is critical to the growing renewable energy sector, where early fault detection significantly reduces downtime and maintenance costs. This paper introduces a novel ensemble-based deep learning framework for unsupervised anomaly detection in wind turbines. The method integrates Variational Autoencoders (VAE), LSTM Autoencoders, and Transformer architectures, each capturing different temporal and contextual patterns from high-dimensional SCADA data. A unique feature engineering pipeline extracts temporal, statistical, and frequency-domain indicators, which are then processed by the deep models. Ensemble scoring combines model predictions, followed by adaptive thresholding to detect operational anomalies without requiring labeled fault data. Evaluated on the CARE dataset containing 89 years of real-world turbine data across three wind farms, the proposed method achieves an AUC-ROC of 0.947 and early fault detection up to 48 hours prior to failure. This approach offers significant societal value by enabling predictive maintenance, reducing turbine failures, and enhancing operational efficiency in large-scale wind energy deployments.
Authors:Yue Xing, Yingnan Deng, Heyao Liu, Ming Wang, Yun Zi, Xiaoxuan Sun
Title: Contrastive Learning-Based Dependency Modeling for Anomaly Detection in Cloud Services
Abstract:
This paper addresses the challenges of complex dependencies and diverse anomaly patterns in cloud service environments by proposing a dependency modeling and anomaly detection method that integrates contrastive learning. The method abstracts service interactions into a dependency graph, extracts temporal and structural features through embedding functions, and employs a graph convolution mechanism to aggregate neighborhood information for context-aware service representations. A contrastive learning framework is then introduced, constructing positive and negative sample pairs to enhance the separability of normal and abnormal patterns in the representation space. Furthermore, a temporal consistency constraint is designed to maintain representation stability across time steps and reduce the impact of short-term fluctuations and noise. The overall optimization combines contrastive loss and temporal consistency loss to ensure stable and reliable detection across multi-dimensional features. Experiments on public datasets systematically evaluate the method from hyperparameter, environmental, and data sensitivity perspectives. Results show that the proposed approach significantly outperforms existing methods on key metrics such as Precision, Recall, F1-Score, and AUC, while maintaining robustness under conditions of sparse labeling, monitoring noise, and traffic fluctuations. This study verifies the effectiveness of integrating dependency modeling with contrastive learning, provides a complete technical solution for cloud service anomaly detection, and demonstrates strong adaptability and stability in complex environments.
Authors:Frida Cantu, Salomon Ibarra, Arturo Gonzales, Jesus Barreda, Chenang Liu, Li Zhang
Title: An Unsupervised Time Series Anomaly Detection Approach for Efficient Online Process Monitoring of Additive Manufacturing
Abstract:
Online sensing plays an important role in advancing modern manufacturing. The real-time sensor signals, which can be stored as high-resolution time series data, contain rich information about the operation status. One of its popular usages is online process monitoring, which can be achieved by effective anomaly detection from the sensor signals. However, most existing approaches either heavily rely on labeled data for training supervised models, or are designed to detect only extreme outliers, thus are ineffective at identifying subtle semantic off-track anomalies to capture where new regimes or unexpected routines start. To address this challenge, we propose an matrix profile-based unsupervised anomaly detection algorithm that captures fabrication cycle similarity and performs semantic segmentation to precisely identify the onset of defect anomalies in additive manufacturing. The effectiveness of the proposed method is demonstrated by the experiments on real-world sensor data.
Authors:Alina Ciocarlan, Sylvie Le Hégarat-Mascle, Sidonie Lefebvre
Title: Anomaly-Aware YOLO: A Frugal yet Robust Approach to Infrared Small Target Detection
Abstract:
Infrared Small Target Detection (IRSTD) is a challenging task in defense applications, where complex backgrounds and tiny target sizes often result in numerous false alarms using conventional object detectors. To overcome this limitation, we propose Anomaly-Aware YOLO (AA-YOLO), which integrates a statistical anomaly detection test into its detection head. By treating small targets as unexpected patterns against the background, AA-YOLO effectively controls the false alarm rate. Our approach not only achieves competitive performance on several IRSTD benchmarks, but also demonstrates remarkable robustness in scenarios with limited training data, noise, and domain shifts. Furthermore, since only the detection head is modified, our design is highly generic and has been successfully applied across various YOLO backbones, including lightweight models. It also provides promising results when integrated into an instance segmentation YOLO. This versatility makes AA-YOLO an attractive solution for real-world deployments where resources are constrained. The code will be publicly released.
Authors:Pierre Lotte, André Péninou, Olivier Teste
Title: Anomaly detection by partitioning of multi-variate time series
Abstract:
In this article, we suggest a novel non-supervised partition based anomaly detection method for anomaly detection in multivariate time series called PARADISE. This methodology creates a partition of the variables of the time series while ensuring that the inter-variable relations remain untouched. This partitioning relies on the clustering of multiple correlation coefficients between variables to identify subsets of variables before executing anomaly detection algorithms locally for each of those subsets. Through multiple experimentations done on both synthetic and real datasets coming from the literature, we show the relevance of our approach with a significant improvement in anomaly detection performance.
Authors:Meng Wan, Benxi Tian, Jue Wang, Cui Hui, Ningming Nie, Tiantian Liu, Zongguo Wang, Cao Rongqiang, Peng Shi, Yangang Wang
Title: Lossless Compression: A New Benchmark for Time Series Model Evaluation
Abstract:
The evaluation of time series models has traditionally focused on four canonical tasks: forecasting, imputation, anomaly detection, and classification. While these tasks have driven significant progress, they primarily assess task-specific performance and do not rigorously measure whether a model captures the full generative distribution of the data. We introduce lossless compression as a new paradigm for evaluating time series models, grounded in Shannon's source coding theorem. This perspective establishes a direct equivalence between optimal compression length and the negative log-likelihood, providing a strict and unified information-theoretic criterion for modeling capacity. Then We define a standardized evaluation protocol and metrics. We further propose and open-source a comprehensive evaluation framework TSCom-Bench, which enables the rapid adaptation of time series models as backbones for lossless compression. Experiments across diverse datasets on state-of-the-art models, including TimeXer, iTransformer, and PatchTST, demonstrate that compression reveals distributional weaknesses overlooked by classic benchmarks. These findings position lossless compression as a principled task that complements and extends existing evaluation for time series modeling.
Authors:Weixian Waylon Li, Tiejun Ma
Title: Learn to Rank Risky Investors: A Case Study of Predicting Retail Traders' Behaviour and Profitability
Abstract:
Identifying risky traders with high profits in financial markets is crucial for market makers, such as trading exchanges, to ensure effective risk management through real-time decisions on regulation compliance and hedging. However, capturing the complex and dynamic behaviours of individual traders poses significant challenges. Traditional classification and anomaly detection methods often establish a fixed risk boundary, failing to account for this complexity and dynamism. To tackle this issue, we propose a profit-aware risk ranker (PA-RiskRanker) that reframes the problem of identifying risky traders as a ranking task using Learning-to-Rank (LETOR) algorithms. Our approach features a Profit-Aware binary cross entropy (PA-BCE) loss function and a transformer-based ranker enhanced with a self-cross-trader attention pipeline. These components effectively integrate profit and loss (P&L) considerations into the training process while capturing intra- and inter-trader relationships. Our research critically examines the limitations of existing deep learning-based LETOR algorithms in trading risk management, which often overlook the importance of P&L in financial scenarios. By prioritising P&L, our method improves risky trader identification, achieving an 8.4% increase in F1 score compared to state-of-the-art (SOTA) ranking models like Rankformer. Additionally, it demonstrates a 10%-17% increase in average profit compared to all benchmark models.
Authors:Jia Wang, Xiao Wang, Chi Zhang
Title: PLanTS: Periodicity-aware Latent-state Representation Learning for Multivariate Time Series
Abstract:
Multivariate time series (MTS) are ubiquitous in domains such as healthcare, climate science, and industrial monitoring, but their high dimensionality, limited labeled data, and non-stationary nature pose significant challenges for conventional machine learning methods. While recent self-supervised learning (SSL) approaches mitigate label scarcity by data augmentations or time point-based contrastive strategy, they neglect the intrinsic periodic structure of MTS and fail to capture the dynamic evolution of latent states. We propose PLanTS, a periodicity-aware self-supervised learning framework that explicitly models irregular latent states and their transitions. We first designed a period-aware multi-granularity patching mechanism and a generalized contrastive loss to preserve both instance-level and state-level similarities across multiple temporal resolutions. To further capture temporal dynamics, we design a next-transition prediction pretext task that encourages representations to encode predictive information about future state evolution. We evaluate PLanTS across a wide range of downstream tasks-including multi-class and multi-label classification, forecasting, trajectory tracking and anomaly detection. PLanTS consistently improves the representation quality over existing SSL methods and demonstrates superior runtime efficiency compared to DTW-based methods.
Authors:Babak Azkaei, Kishor Chandra Joshi, George Exarchakos
Title: Machine Learning-Driven Anomaly Detection for 5G O-RAN Performance Metrics
Abstract:
The ever-increasing reliance of critical services on network infrastructure coupled with the increased operational complexity of beyond-5G/6G networks necessitate the need for proactive and automated network fault management. The provision for open interfaces among different radio access network\,(RAN) elements and the integration of AI/ML into network architecture enabled by the Open RAN\,(O-RAN) specifications bring new possibilities for active network health monitoring and anomaly detection. In this paper we leverage these advantages and develop an anomaly detection framework that proactively detect the possible throughput drops for a UE and minimize the post-handover failures. We propose two actionable anomaly detection algorithms tailored for real-world deployment. The first algorithm identifies user equipment (UE) at risk of severe throughput degradation by analyzing key performance indicators (KPIs) such as resource block utilization and signal quality metrics, enabling proactive handover initiation. The second algorithm evaluates neighbor cell radio coverage quality, filtering out cells with anomalous signal strength or interference levels. This reduces candidate targets for handover by 41.27\% on average. Together, these methods mitigate post-handover failures and throughput drops while operating much faster than the near-real-time latency constraints. This paves the way for self-healing 6G networks.
Authors:Rajiv Kailasanathan, William R. Clements, Mohammad Reza Boskabadi, Shawn M. Gibford, Emmanouil Papadakis, Christopher J. Savoie, Seyed Soheil Mansouri
Title: Quantum enhanced ensemble GANs for anomaly detection in continuous biomanufacturing
Abstract:
The development of continuous biomanufacturing processes requires robust and early anomaly detection, since even minor deviations can compromise yield and stability, leading to disruptions in scheduling, reduced weekly production, and diminished economic performance. These processes are inherently complex and exhibit non-linear dynamics with intricate relationships between process variables, thus making advanced methods for anomaly detection essential for efficient operation. In this work, we present a novel framework for unsupervised anomaly detection in continuous biomanufacturing based on an ensemble of generative adversarial networks (GANs). We first establish a benchmark dataset simulating both normal and anomalous operation regimes in a continuous process for the production of a small molecule. We then demonstrate the effectiveness of our GAN-based framework in detecting anomalies caused by sudden feedstock variability. Finally, we evaluate the impact of using a hybrid quantum/classical GAN approach with both a simulated quantum circuit and a real photonic quantum processor on anomaly detection performance. We find that the hybrid approach yields improved anomaly detection rates. Our work shows the potential of hybrid quantum/classical approaches for solving real-world problems in complex continuous biomanufacturing processes.
Authors:Yuhui Tao, Yizhe Zhang, Qiang Chen
Title: A Closer Look at Edema Area Segmentation in SD-OCT Images Using Adversarial Framework
Abstract:
The development of artificial intelligence models for macular edema (ME) analy-sis always relies on expert-annotated pixel-level image datasets which are expen-sive to collect prospectively. While anomaly-detection-based weakly-supervised methods have shown promise in edema area (EA) segmentation task, their per-formance still lags behind fully-supervised approaches. In this paper, we leverage the strong correlation between EA and retinal layers in spectral-domain optical coherence tomography (SD-OCT) images, along with the update characteristics of weakly-supervised learning, to enhance an off-the-shelf adversarial framework for EA segmentation with a novel layer-structure-guided post-processing step and a test-time-adaptation (TTA) strategy. By incorporating additional retinal lay-er information, our framework reframes the dense EA prediction task as one of confirming intersection points between the EA contour and retinal layers, result-ing in predictions that better align with the shape prior of EA. Besides, the TTA framework further helps address discrepancies in the manifestations and presen-tations of EA between training and test sets. Extensive experiments on two pub-licly available datasets demonstrate that these two proposed ingredients can im-prove the accuracy and robustness of EA segmentation, bridging the gap between weakly-supervised and fully-supervised models.
Authors:Zhipeng Yuan, Kai Wang, Weize Quan, Dong-Ming Yan, Tieru Wu
Title: CLIP-Flow: A Universal Discriminator for AI-Generated Images Inspired by Anomaly Detection
Abstract:
With the rapid advancement of AI generative models, the visual quality of AI-generated images (AIIs) has become increasingly close to natural images, which inevitably raises security concerns. Most AII detectors often employ the conventional image classification pipeline with natural images and AIIs (generated by a generative model), which can result in limited detection performance for AIIs from unseen generative models. To solve this, we proposed a universal AI-generated image detector from the perspective of anomaly detection. Our discriminator does not need to access any AIIs and learn a generalizable representation with unsupervised learning. Specifically, we use the pre-trained CLIP encoder as the feature extractor and design a normalizing flow-like unsupervised model. Instead of AIIs, proxy images, e.g., obtained by applying a spectral modification operation on natural images, are used for training. Our models are trained by minimizing the likelihood of proxy images, optionally combined with maximizing the likelihood of natural images. Extensive experiments demonstrate the effectiveness of our method on AIIs produced by various image generators.
Authors:Yun Zi, Ming Gong, Zhihao Xue, Yujun Zou, Nia Qi, Yingnan Deng
Title: Graph Neural Network and Transformer Integration for Unsupervised System Anomaly Discovery
Abstract:
This study proposes an unsupervised anomaly detection method for distributed backend service systems, addressing practical challenges such as complex structural dependencies, diverse behavioral evolution, and the absence of labeled data. The method constructs a dynamic graph based on service invocation relationships and applies graph convolution to extract high-order structural representations from multi-hop topologies. A Transformer is used to model the temporal behavior of each node, capturing long-term dependencies and local fluctuations. During the feature fusion stage, a learnable joint embedding mechanism integrates structural and behavioral representations into a unified anomaly vector. A nonlinear mapping is then applied to compute anomaly scores, enabling an end-to-end detection process without supervision. Experiments on real-world cloud monitoring data include sensitivity analyses across different graph depths, sequence lengths, and data perturbations. Results show that the proposed method outperforms existing models on several key metrics, demonstrating stronger expressiveness and stability in capturing anomaly propagation paths and modeling dynamic behavior sequences, with high potential for practical deployment.
Authors:Ke Ma, Jun Long, Hongxiao Fei, Liujie Hua, Yiran Qian, Zhen Dai, Yueyi Luo
Title: ACD-CLIP: Decoupling Representation and Dynamic Fusion for Zero-Shot Anomaly Detection
Abstract:
Pre-trained Vision-Language Models (VLMs) struggle with Zero-Shot Anomaly Detection (ZSAD) due to a critical adaptation gap: they lack the local inductive biases required for dense prediction and employ inflexible feature fusion paradigms. We address these limitations through an Architectural Co-Design framework that jointly refines feature representation and cross-modal fusion. Our method proposes a parameter-efficient Convolutional Low-Rank Adaptation (Conv-LoRA) adapter to inject local inductive biases for fine-grained representation, and introduces a Dynamic Fusion Gateway (DFG) that leverages visual context to adaptively modulate text prompts, enabling a powerful bidirectional fusion. Extensive experiments on diverse industrial and medical benchmarks demonstrate superior accuracy and robustness, validating that this synergistic co-design is critical for robustly adapting foundation models to dense perception tasks.
Authors:Xurun Wang, Guangrui Liu, Xinjie Li, Haoyu He, Lin Yao, Weizhe Zhang
Title: Membership Inference Attack with Partial Features
Abstract:
Machine learning models have been shown to be susceptible to membership inference attack, which can be used to determine whether a given sample appears in the training data. Existing membership inference methods commonly assume that the adversary has full access to the features of the target sample. This assumption, however, does not hold in many real-world scenarios where only partial features information is available, thereby limiting the applicability of these methods. In this work, we study an inference scenario where the adversary observes only partial features of each sample and aims to infer whether this observed subset was present in the training set of the target model. We define this problem as Partial Feature Membership Inference (PFMI). To address this problem, we propose MRAD (Memory-guided Reconstruction and Anomaly Detection), a two-stage attack framework. In the first stage, MRAD optimizes the unknown feature values to minimize the loss of the sample. In the second stage, it measures the deviation between the reconstructed sample and the training distribution using anomaly detection. Empirical results demonstrate that MRAD is effective across a range of datasets, and maintains compatibility with various off-the-shelf anomaly detection techniques. For example, on STL-10, our attack achieves an AUC of around 0.6 even with 40% of the missing features.
Authors:Ugo Lomoio, Pierangelo Veltri, Pietro Hiram Guzzi
Title: Kolmogorov Arnold Network Autoencoder in Medicine
Abstract:
Deep learning neural networks architectures such Multi Layer Perceptrons (MLP) and Convolutional blocks still play a crucial role in nowadays research advancements. From a topological point of view, these architecture may be represented as graphs in which we learn the functions related to the nodes while fixed edges convey the information from the input to the output. A recent work introduced a new architecture called Kolmogorov Arnold Networks (KAN) that reports how putting learnable activation functions on the edges of the neural network leads to better performances in multiple scenarios. Multiple studies are focusing on optimizing the KAN architecture by adding important features such as dropout regularization, Autoencoders (AE), model benchmarking and last, but not least, the KAN Convolutional Network (KCN) that introduced matrix convolution with KANs learning. This study aims to benchmark multiple versions of vanilla AEs (such as Linear, Convolutional and Variational) against their Kolmogorov-Arnold counterparts that have same or less number of parameters. Using cardiological signals as model input, a total of five different classic AE tasks were studied: reconstruction, generation, denoising, inpainting and anomaly detection. The proposed experiments uses a medical dataset \textit{AbnormalHeartbeat} that contains audio signals obtained from the stethoscope.
Authors:Zhaolin Cai, Fan Li, Ziwei Zheng, Yanjun Qin
Title: HiProbe-VAD: Video Anomaly Detection via Hidden States Probing in Tuning-Free Multimodal LLMs
Abstract:
Video Anomaly Detection (VAD) aims to identify and locate deviations from normal patterns in video sequences. Traditional methods often struggle with substantial computational demands and a reliance on extensive labeled datasets, thereby restricting their practical applicability. To address these constraints, we propose HiProbe-VAD, a novel framework that leverages pre-trained Multimodal Large Language Models (MLLMs) for VAD without requiring fine-tuning. In this paper, we discover that the intermediate hidden states of MLLMs contain information-rich representations, exhibiting higher sensitivity and linear separability for anomalies compared to the output layer. To capitalize on this, we propose a Dynamic Layer Saliency Probing (DLSP) mechanism that intelligently identifies and extracts the most informative hidden states from the optimal intermediate layer during the MLLMs reasoning. Then a lightweight anomaly scorer and temporal localization module efficiently detects anomalies using these extracted hidden states and finally generate explanations. Experiments on the UCF-Crime and XD-Violence datasets demonstrate that HiProbe-VAD outperforms existing training-free and most traditional approaches. Furthermore, our framework exhibits remarkable cross-model generalization capabilities in different MLLMs without any tuning, unlocking the potential of pre-trained MLLMs for video anomaly detection and paving the way for more practical and scalable solutions.
Authors:Yilun Wang, Pengfei Chen, Haiyu Huang, Zilong He, Gou Tan, Chuanfu Zhang, Jingkai He, Zibin Zheng
Title: InferLog: Accelerating LLM Inference for Online Log Parsing via ICL-oriented Prefix Caching
Abstract:
Modern software systems generate massive volumes of runtime logs, necessitating efficient and accurate log parsing to enable critical downstream tasks such as anomaly detection and root cause analysis. Recently, large language models (LLMs) have achieved advanced accuracy on log parsing, but their deployment in production environments faces two major limitations: (1) the privacy risks associated with commercial LLMs, driving the adoption of local deployment, and (2) the stringent latency and throughput requirements imposed by high-volume log streams, which existing LLM-based parsers fail to meet. Although recent efforts have reduced the number of LLM queries, they overlook the high latency of the LLM invocations, where concurrent log parsing requests can cause serve performance degradation of LLM inference system. In this study, we present InferLog, the first LLM inference optimization method for online log parsing. Our key insight is that the inference efficiency emerges as the vital bottleneck in LLM-based online log parsing, rather than parsing accuracy. InferLog accelerates inference by designing (1) A Prefix-aware ICL Refinement policy to refine the examples and permutation of in-context learning to improve the prefix caching efficiency. (2) A rapid and task-specific configuration tuning pipeline based on meta-learning to find the optimal LLM scheduling-related configuration for dynamic log parsing workloads. The experimental results based on Loghub dataset and vLLM demonstrate that InferLog significantly outperforms existing inference optimization methods and markedly accelerates the state-of-the-art LLM-based log parser without compromising parsing accuracy.
Authors:Xiaosheng Zhao, Yang Huang, Guirong Xue, Xiao Kong, Jifeng Liu, Xiaoyu Tang, Timothy C. Beers, Yuan-Sen Ting, A-Li Luo
Title: SpecCLIP: Aligning and Translating Spectroscopic Measurements for Stars
Abstract:
In recent years, large language models (LLMs) have transformed natural language understanding through vast datasets and large-scale parameterization. Inspired by this success, we present SpecCLIP, a foundation model framework that extends LLM-inspired methodologies to stellar spectral analysis. Stellar spectra, akin to structured language, encode rich physical and chemical information about stars. By training foundation models on large-scale spectral datasets, our goal is to learn robust and informative embeddings that support diverse downstream applications. As a proof of concept, SpecCLIP involves pre-training on two spectral types--LAMOST low-resolution and Gaia XP--followed by contrastive alignment using the CLIP (Contrastive Language-Image Pre-training) framework, adapted to associate spectra from different instruments. This alignment is complemented by auxiliary decoders that preserve spectrum-specific information and enable translation (prediction) between spectral types, with the former achieved by maximizing mutual information between embeddings and input spectra. The result is a cross-spectrum framework enabling intrinsic calibration and flexible applications across instruments. We demonstrate that fine-tuning these models on moderate-sized labeled datasets improves adaptability to tasks such as stellar-parameter estimation and chemical-abundance determination. SpecCLIP also enhances the accuracy and precision of parameter estimates benchmarked against external survey data. Additionally, its similarity search and cross-spectrum prediction capabilities offer potential for anomaly detection. Our results suggest that contrastively trained foundation models enriched with spectrum-aware decoders can advance precision stellar spectroscopy.
Authors:Hanwen Zhang, Congqi Cao, Qinyi Lv, Lingtong Min, Yanning Zhang
Title: Autoregressive Denoising Score Matching is a Good Video Anomaly Detector
Abstract:
Video anomaly detection (VAD) is an important computer vision problem. Thanks to the mode coverage capabilities of generative models, the likelihood-based paradigm is catching growing interest, as it can model normal distribution and detect out-of-distribution anomalies. However, these likelihood-based methods are blind to the anomalies located in local modes near the learned distribution. To handle these ``unseen" anomalies, we dive into three gaps uniquely existing in VAD regarding scene, motion and appearance. Specifically, we first build a noise-conditioned score transformer for denoising score matching. Then, we introduce a scene-dependent and motion-aware score function by embedding the scene condition of input sequences into our model and assigning motion weights based on the difference between key frames of input sequences. Next, to solve the problem of blindness in principle, we integrate unaffected visual information via a novel autoregressive denoising score matching mechanism for inference. Through autoregressively injecting intensifying Gaussian noise into the denoised data and estimating the corresponding score function, we compare the denoised data with the original data to get a difference and aggregate it with the score function for an enhanced appearance perception and accumulate the abnormal context. With all three gaps considered, we can compute a more comprehensive anomaly indicator. Experiments on three popular VAD benchmarks demonstrate the state-of-the-art performance of our method.
Authors:Ugo Lomoio, Tommaso Mazza, Pierangelo Veltri, Pietro Hiram Guzzi
Title: E-ABIN: an Explainable module for Anomaly detection in BIological Networks
Abstract:
The increasing availability of large-scale omics data calls for robust analytical frameworks capable of handling complex gene expression datasets while offering interpretable results. Recent advances in artificial intelligence have enabled the identification of aberrant molecular patterns distinguishing disease states from healthy controls. Coupled with improvements in model interpretability, these tools now support the identification of genes potentially driving disease phenotypes. However, current approaches to gene anomaly detection often remain limited to single datasets and lack accessible graphical interfaces. Here, we introduce E-ABIN, a general-purpose, explainable framework for Anomaly detection in Biological Networks. E-ABIN combines classical machine learning and graph-based deep learning techniques within a unified, user-friendly platform, enabling the detection and interpretation of anomalies from gene expression or methylation-derived networks. By integrating algorithms such as Support Vector Machines, Random Forests, Graph Autoencoders (GAEs), and Graph Adversarial Attributed Networks (GAANs), E-ABIN ensures a high predictive accuracy while maintaining interpretability. We demonstrate the utility of E-ABIN through case studies of bladder cancer and coeliac disease, where it effectively uncovers biologically relevant anomalies and offers insights into disease mechanisms.
Authors:Shaoyu Dou, Kai Yang, Yang Jiao, Chengbo Qiu, Kui Ren
Title: Anomaly Detection in Event-triggered Traffic Time Series via Similarity Learning
Abstract:
Time series analysis has achieved great success in cyber security such as intrusion detection and device identification. Learning similarities among multiple time series is a crucial problem since it serves as the foundation for downstream analysis. Due to the complex temporal dynamics of the event-triggered time series, it often remains unclear which similarity metric is appropriate for security-related tasks, such as anomaly detection and clustering. The overarching goal of this paper is to develop an unsupervised learning framework that is capable of learning similarities among a set of event-triggered time series. From the machine learning vantage point, the proposed framework harnesses the power of both hierarchical multi-resolution sequential autoencoders and the Gaussian Mixture Model (GMM) to effectively learn the low-dimensional representations from the time series. Finally, the obtained similarity measure can be easily visualized for the explanation. The proposed framework aspires to offer a stepping stone that gives rise to a systematic approach to model and learn similarities among a multitude of event-triggered time series. Through extensive qualitative and quantitative experiments, it is revealed that the proposed method outperforms state-of-the-art methods considerably.
Authors:Stefan Roth, Aydin Sezgin
Title: Anomaly Detection for Sensing Security
Abstract:
Various approaches in the field of physical layer security involve anomaly detection, such as physical layer authentication, sensing attacks, and anti-tampering solutions. Depending on the context in which these approaches are applied, anomaly detection needs to be computationally lightweight, resilient to changes in temperature and environment, and robust against phase noise. We adapt moving average filters, autoregression filters and Kalman filters to provide predictions of feature vectors that fulfill the above criteria. Different hypothesis test designs are employed that allow omnidirectional and unidirectional outlier detection. In a case study, a sensing attack is investigated that employs the described algorithms with various channel features based on commodity WiFi devices. Thereby, various combinations of algorithms and channel features show effectiveness for motion detection by an attacker. Countermeasures only utilizing transmit power randomization are shown insufficient to mitigate such attacks if the attacker has access to channel state information (CSI) measurements, suggesting that mitigation solutions might require frequency-variant randomization.
Authors:Yihong Jin, Ze Yang, Juntian Liu, Xinhe Xu
Title: Anomaly Detection and Early Warning Mechanism for Intelligent Monitoring Systems in Multi-Cloud Environments Based on LLM
Abstract:
With the rapid development of multi-cloud environments, it is increasingly important to ensure the security and reliability of intelligent monitoring systems. In this paper, we propose an anomaly detection and early warning mechanism for intelligent monitoring system in multi-cloud environment based on Large-Scale Language Model (LLM). On the basis of the existing monitoring framework, the proposed model innovatively introduces a multi-level feature extraction method, which combines the natural language processing ability of LLM with traditional machine learning methods to enhance the accuracy of anomaly detection and improve the real-time response efficiency. By introducing the contextual understanding capabilities of LLMs, the model dynamically adapts to different cloud service providers and environments, so as to more effectively detect abnormal patterns and predict potential failures. Experimental results show that the proposed model is significantly better than the traditional anomaly detection system in terms of detection accuracy and latency, and significantly improves the resilience and active management ability of cloud infrastructure.
Authors:Pavle Vasiljevic, Milica Matic, Miroslav Popovic
Title: Federated Isolation Forest for Efficient Anomaly Detection on Edge IoT Systems
Abstract:
Recently, federated learning frameworks such as Python TestBed for Federated Learning Algorithms and MicroPython TestBed for Federated Learning Algorithms have emerged to tackle user privacy concerns and efficiency in embedded systems. Even more recently, an efficient federated anomaly detection algorithm, FLiForest, based on Isolation Forests has been developed, offering a low-resource, unsupervised method well-suited for edge deployment and continuous learning. In this paper, we present an application of Isolation Forest-based temperature anomaly detection, developed using the previously mentioned federated learning frameworks, aimed at small edge devices and IoT systems running MicroPython. The system has been experimentally evaluated, achieving over 96% accuracy in distinguishing normal from abnormal readings and above 78% precision in detecting anomalies across all tested configurations, while maintaining a memory usage below 160 KB during model training. These results highlight its suitability for resource-constrained environments and edge systems, while upholding federated learning principles of data privacy and collaborative learning.
Authors:Wenjin Qin, Hailin Wang, Hao Shu, Feng Zhang, Jianjun Wang, Xiangyong Cao, Xi-Le Zhao, Gemine Vivone
Title: Hyperspectral Anomaly Detection Fused Unified Nonconvex Tensor Ring Factors Regularization
Abstract:
In recent years, tensor decomposition-based approaches for hyperspectral anomaly detection (HAD) have gained significant attention in the field of remote sensing. However, existing methods often fail to fully leverage both the global correlations and local smoothness of the background components in hyperspectral images (HSIs), which exist in both the spectral and spatial domains. This limitation results in suboptimal detection performance. To mitigate this critical issue, we put forward a novel HAD method named HAD-EUNTRFR, which incorporates an enhanced unified nonconvex tensor ring (TR) factors regularization. In the HAD-EUNTRFR framework, the raw HSIs are first decomposed into background and anomaly components. The TR decomposition is then employed to capture the spatial-spectral correlations within the background component. Additionally, we introduce a unified and efficient nonconvex regularizer, induced by tensor singular value decomposition (TSVD), to simultaneously encode the low-rankness and sparsity of the 3-D gradient TR factors into a unique concise form. The above characterization scheme enables the interpretable gradient TR factors to inherit the low-rankness and smoothness of the original background. To further enhance anomaly detection, we design a generalized nonconvex regularization term to exploit the group sparsity of the anomaly component. To solve the resulting doubly nonconvex model, we develop a highly efficient optimization algorithm based on the alternating direction method of multipliers (ADMM) framework. Experimental results on several benchmark datasets demonstrate that our proposed method outperforms existing state-of-the-art (SOTA) approaches in terms of detection accuracy.
Authors:Wajdi Hammami, Soumaya Cherkaoui, Shengrui Wang
Title: Enhancing Network Anomaly Detection with Quantum GANs and Successive Data Injection for Multivariate Time Series
Abstract:
Quantum computing may offer new approaches for advancing machine learning, including in complex tasks such as anomaly detection in network traffic. In this paper, we introduce a quantum generative adversarial network (QGAN) architecture for multivariate time-series anomaly detection that leverages variational quantum circuits (VQCs) in combination with a time-window shifting technique, data re-uploading, and successive data injection (SuDaI). The method encodes multivariate time series data as rotation angles. By integrating both data re-uploading and SuDaI, the approach maps classical data into quantum states efficiently, helping to address hardware limitations such as the restricted number of available qubits. In addition, the approach employs an anomaly scoring technique that utilizes both the generator and the discriminator output to enhance the accuracy of anomaly detection. The QGAN was trained using the parameter shift rule and benchmarked against a classical GAN. Experimental results indicate that the quantum model achieves a accuracy high along with high recall and F1-scores in anomaly detection, and attains a lower MSE compared to the classical model. Notably, the QGAN accomplishes this performance with only 80 parameters, demonstrating competitive results with a compact architecture. Tests using a noisy simulator suggest that the approach remains effective under realistic noise-prone conditions.
Authors:Athanasios Tziouvaras, Blaz Bertalanic, George Floros, Kostas Kolomvatsos, Panagiotis Sarigiannidis, Carolina Fortuna
Title: A Representation Learning Approach to Feature Drift Detection in Wireless Networks
Abstract:
AI is foreseen to be a centerpiece in next generation wireless networks enabling enabling ubiquitous communication as well as new services. However, in real deployment, feature distribution changes may degrade the performance of AI models and lead to undesired behaviors. To counter for undetected model degradation, we propose ALERT; a method that can detect feature distribution changes and trigger model re-training that works well on two wireless network use cases: wireless fingerprinting and link anomaly detection. ALERT includes three components: representation learning, statistical testing and utility assessment. We rely on MLP for designing the representation learning component, on Kolmogorov-Smirnov and Population Stability Index tests for designing the statistical testing and a new function for utility assessment. We show the superiority of the proposed method against ten standard drift detection methods available in the literature on two wireless network use cases.
Authors:Rathin Chandra Shit, Sharmila Subudhi
Title: AI-Powered Anomaly Detection with Blockchain for Real-Time Security and Reliability in Autonomous Vehicles
Abstract:
Autonomous Vehicles (AV) proliferation brings important and pressing security and reliability issues that must be dealt with to guarantee public safety and help their widespread adoption. The contribution of the proposed research is towards achieving more secure, reliable, and trustworthy autonomous transportation system by providing more capabilities for anomaly detection, data provenance, and real-time response in safety critical AV deployments. In this research, we develop a new framework that combines the power of Artificial Intelligence (AI) for real-time anomaly detection with blockchain technology to detect and prevent any malicious activity including sensor failures in AVs. Through Long Short-Term Memory (LSTM) networks, our approach continually monitors associated multi-sensor data streams to detect anomalous patterns that may represent cyberattacks as well as hardware malfunctions. Further, this framework employs a decentralized platform for securely storing sensor data and anomaly alerts in a blockchain ledger for data incorruptibility and authenticity, while offering transparent forensic features. Moreover, immediate automated response mechanisms are deployed using smart contracts when anomalies are found. This makes the AV system more resilient to attacks from both cyberspace and hardware component failure. Besides, we identify potential challenges of scalability in handling high frequency sensor data, computational constraint in resource constrained environment, and of distributed data storage in terms of privacy.
Authors:Ze Yang, Yihong Jin, Juntian Liu, Xinhe Xu, Yihan Zhang, Shuyang Ji
Title: Research on Cloud Platform Network Traffic Monitoring and Anomaly Detection System based on Large Language Models
Abstract:
The rapidly evolving cloud platforms and the escalating complexity of network traffic demand proper network traffic monitoring and anomaly detection to ensure network security and performance. This paper introduces a large language model (LLM)-based network traffic monitoring and anomaly detection system. In addition to existing models such as autoencoders and decision trees, we harness the power of large language models for processing sequence data from network traffic, which allows us a better capture of underlying complex patterns, as well as slight fluctuations in the dataset. We show for a given detection task, the need for a hybrid model that incorporates the attention mechanism of the transformer architecture into a supervised learning framework in order to achieve better accuracy. A pre-trained large language model analyzes and predicts the probable network traffic, and an anomaly detection layer that considers temporality and context is added. Moreover, we present a novel transfer learning-based methodology to enhance the model's effectiveness to quickly adapt to unknown network structures and adversarial conditions without requiring extensive labeled datasets. Actual results show that the designed model outperforms traditional methods in detection accuracy and computational efficiency, effectively identify various network anomalies such as zero-day attacks and traffic congestion pattern, and significantly reduce the false positive rate.
Authors:Colton R. Crum, Adam Czajka
Title: Almost Right: Making First-layer Kernels Nearly Orthogonal Improves Model Generalization
Abstract:
An ongoing research challenge within several domains in computer vision is how to increase model generalization capabilities. Several attempts to improve model generalization performance are heavily inspired by human perceptual intelligence, which is remarkable in both its performance and efficiency to generalize to unknown samples. Many of these methods attempt to force portions of the network to be orthogonal, following some observation within neuroscience related to early vision processes. In this paper, we propose a loss component that regularizes the filtering kernels in the first convolutional layer of a network to make them nearly orthogonal. Deviating from previous works, we give the network flexibility in which pairs of kernels it makes orthogonal, allowing the network to navigate to a better solution space, imposing harsh penalties. Without architectural modifications, we report substantial gains in generalization performance using the proposed loss against previous works (including orthogonalization- and saliency-based regularization methods) across three different architectures (ResNet-50, DenseNet-121, ViT-b-16) and two difficult open-set recognition tasks: presentation attack detection in iris biometrics, and anomaly detection in chest X-ray images.
Authors:Yang Jiao, Xiaodong Wang, Kai Yang
Title: PR-Attack: Coordinated Prompt-RAG Attacks on Retrieval-Augmented Generation in Large Language Models via Bilevel Optimization
Abstract:
Large Language Models (LLMs) have demonstrated remarkable performance across a wide range of applications, e.g., medical question-answering, mathematical sciences, and code generation. However, they also exhibit inherent limitations, such as outdated knowledge and susceptibility to hallucinations. Retrieval-Augmented Generation (RAG) has emerged as a promising paradigm to address these issues, but it also introduces new vulnerabilities. Recent efforts have focused on the security of RAG-based LLMs, yet existing attack methods face three critical challenges: (1) their effectiveness declines sharply when only a limited number of poisoned texts can be injected into the knowledge database, (2) they lack sufficient stealth, as the attacks are often detectable by anomaly detection systems, which compromises their effectiveness, and (3) they rely on heuristic approaches to generate poisoned texts, lacking formal optimization frameworks and theoretic guarantees, which limits their effectiveness and applicability. To address these issues, we propose coordinated Prompt-RAG attack (PR-attack), a novel optimization-driven attack that introduces a small number of poisoned texts into the knowledge database while embedding a backdoor trigger within the prompt. When activated, the trigger causes the LLM to generate pre-designed responses to targeted queries, while maintaining normal behavior in other contexts. This ensures both high effectiveness and stealth. We formulate the attack generation process as a bilevel optimization problem leveraging a principled optimization framework to develop optimal poisoned texts and triggers. Extensive experiments across diverse LLMs and datasets demonstrate the effectiveness of PR-Attack, achieving a high attack success rate even with a limited number of poisoned texts and significantly improved stealth compared to existing methods.
Authors:Yoon Gyo Jung, Jaewoo Park, Jaeho Yoon, Kuan-Chuan Peng, Wonchul Kim, Andrew Beng Jin Teoh, Octavia Camps
Title: TailedCore: Few-Shot Sampling for Unsupervised Long-Tail Noisy Anomaly Detection
Abstract:
We aim to solve unsupervised anomaly detection in a practical challenging environment where the normal dataset is both contaminated with defective regions and its product class distribution is tailed but unknown. We observe that existing models suffer from tail-versus-noise trade-off where if a model is robust against pixel noise, then its performance deteriorates on tail class samples, and vice versa. To mitigate the issue, we handle the tail class and noise samples independently. To this end, we propose TailSampler, a novel class size predictor that estimates the class cardinality of samples based on a symmetric assumption on the class-wise distribution of embedding similarities. TailSampler can be utilized to sample the tail class samples exclusively, allowing to handle them separately. Based on these facets, we build a memory-based anomaly detection model TailedCore, whose memory both well captures tail class information and is noise-robust. We extensively validate the effectiveness of TailedCore on the unsupervised long-tail noisy anomaly detection setting, and show that TailedCore outperforms the state-of-the-art in most settings.
Authors:Mia Siemon, Ivan Nikolov, Thomas B. Moeslund, Kamal Nasrollahi
Title: Video Anomaly Detection with Contours -- A Study
Abstract:
In Pose-based Video Anomaly Detection prior art is rooted on the assumption that abnormal events can be mostly regarded as a result of uncommon human behavior. Opposed to utilizing skeleton representations of humans, however, we investigate the potential of learning recurrent motion patterns of normal human behavior using 2D contours. Keeping all advantages of pose-based methods, such as increased object anonymization, the shift from human skeletons to contours is hypothesized to leave the opportunity to cover more object categories open for future research. We propose formulating the problem as a regression and a classification task, and additionally explore two distinct data representation techniques for contours. To further reduce the computational complexity of Pose-based Video Anomaly Detection solutions, all methods in this study are based on shallow Neural Networks from the field of Deep Learning, and evaluated on the three most prominent benchmark datasets within Video Anomaly Detection and their human-related counterparts, totaling six datasets. Our results indicate that this novel perspective on Pose-based Video Anomaly Detection marks a promising direction for future research.
Authors:Yorick Estievenart, Sukanya Patra, Souhaib Ben Taieb
Title: Risk-Based Thresholding for Reliable Anomaly Detection in Concentrated Solar Power Plants
Abstract:
Efficient and reliable operation of Concentrated Solar Power (CSP) plants is essential for meeting the growing demand for sustainable energy. However, high-temperature solar receivers face severe operational risks, such as freezing, deformation, and corrosion, resulting in costly downtime and maintenance. To monitor CSP plants, cameras mounted on solar receivers record infrared images at irregular intervals ranging from one to five minutes throughout the day. Anomalous images can be detected by thresholding an anomaly score, where the threshold is chosen to optimize metrics such as the F1-score on a validation set. This work proposes a framework, using risk control, for generating more reliable decision thresholds with finite-sample coverage guarantees on any chosen risk function. Our framework also incorporates an abstention mechanism, allowing high-risk predictions to be deferred to domain experts. Second, we propose a density forecasting method to estimate the likelihood of an observed image given a sequence of previously observed images, using this likelihood as its anomaly score. Third, we analyze the deployment results of our framework across multiple training scenarios over several months for two CSP plants. This analysis provides valuable insights to our industry partner for optimizing maintenance operations. Finally, given the confidential nature of our dataset, we provide an extended simulated dataset, leveraging recent advancements in generative modeling to create diverse thermal images that simulate multiple CSP plants. Our code is publicly available.
Authors:Yihong Jin, Ze Yang, Xinhe Xu, Yihan Zhang, Shuyang Ji
Title: Adaptive Fault Tolerance Mechanisms of Large Language Models in Cloud Computing Environments
Abstract:
With the rapid evolution of Large Language Models (LLMs) and their large-scale experimentation in cloud-computing spaces, the challenge of guaranteeing their security and efficiency in a failure scenario has become a main issue. To ensure the reliability and availability of large-scale language models in cloud computing scenarios, such as frequent resource failures, network problems, and computational overheads, this study proposes a novel adaptive fault tolerance mechanism. It builds upon known fault-tolerant mechanisms, such as checkpointing, redundancy, and state transposition, introducing dynamic resource allocation and prediction of failure based on real-time performance metrics. The hybrid model integrates data driven deep learning-based anomaly detection technique underlining the contribution of cloud orchestration middleware for predictive prevention of system failures. Additionally, the model integrates adaptive checkpointing and recovery strategies that dynamically adapt according to load and system state to minimize the influence on the performance of the model and minimize downtime. The experimental results demonstrate that the designed model considerably enhances the fault tolerance in large-scale cloud surroundings, and decreases the system downtime by $\mathbf{30\%}$, and has a better modeling availability than the classical fault tolerance mechanism.
Authors:Binghui Wu, Dinil Mon Divakaran, Mohan Gurusamy
Title: UniNet: A Unified Multi-granular Traffic Modeling Framework for Network Security
Abstract:
As modern networks grow increasingly complex--driven by diverse devices, encrypted protocols, and evolving threats--network traffic analysis has become critically important. Existing machine learning models often rely only on a single representation of packets or flows, limiting their ability to capture the contextual relationships essential for robust analysis. Furthermore, task-specific architectures for supervised, semi-supervised, and unsupervised learning lead to inefficiencies in adapting to varying data formats and security tasks. To address these gaps, we propose UniNet, a unified framework that introduces a novel multi-granular traffic representation (T-Matrix), integrating session, flow, and packet-level features to provide comprehensive contextual information. Combined with T-Attent, a lightweight attention-based model, UniNet efficiently learns latent embeddings for diverse security tasks. Extensive evaluations across four key network security and privacy problems--anomaly detection, attack classification, IoT device identification, and encrypted website fingerprinting--demonstrate UniNet's significant performance gain over state-of-the-art methods, achieving higher accuracy, lower false positive rates, and improved scalability. By addressing the limitations of single-level models and unifying traffic analysis paradigms, UniNet sets a new benchmark for modern network security.
Authors:Yicong Dong, Rundong He, Guangyao Chen, Wentao Zhang, Zhongyi Han, Jieming Shi, Yilong Yin
Title: G-OSR: A Comprehensive Benchmark for Graph Open-Set Recognition
Abstract:
Graph Neural Networks (GNNs) have achieved significant success in machine learning, with wide applications in social networks, bioinformatics, knowledge graphs, and other fields. Most research assumes ideal closed-set environments. However, in real-world open-set environments, graph learning models face challenges in robustness and reliability due to unseen classes. This highlights the need for Graph Open-Set Recognition (GOSR) methods to address these issues and ensure effective GNN application in practical scenarios. Research in GOSR is in its early stages, with a lack of a comprehensive benchmark spanning diverse tasks and datasets to evaluate methods. Moreover, traditional methods, Graph Out-of-Distribution Detection (GOODD), GOSR, and Graph Anomaly Detection (GAD) have mostly evolved in isolation, with little exploration of their interconnections or potential applications to GOSR. To fill these gaps, we introduce \textbf{G-OSR}, a comprehensive benchmark for evaluating GOSR methods at both the node and graph levels, using datasets from multiple domains to ensure fair and standardized comparisons of effectiveness and efficiency across traditional, GOODD, GOSR, and GAD methods. The results offer critical insights into the generalizability and limitations of current GOSR methods and provide valuable resources for advancing research in this field through systematic analysis of diverse approaches.
Authors:Sam Pastoriza, Iman Yousfi, Christopher Redino, Marc Vucovich, Abdul Rahman, Sal Aguinaga, Dhruv Nandakumar
Title: Retrieval Augmented Anomaly Detection (RAAD): Nimble Model Adjustment Without Retraining
Abstract:
We propose a novel mechanism for real-time (human-in-the-loop) feedback focused on false positive reduction to enhance anomaly detection models. It was designed for the lightweight deployment of a behavioral network anomaly detection model. This methodology is easily integrable to similar domains that require a premium on throughput while maintaining high precision. In this paper, we introduce Retrieval Augmented Anomaly Detection, a novel method taking inspiration from Retrieval Augmented Generation. Human annotated examples are sent to a vector store, which can modify model outputs on the very next processed batch for model inference. To demonstrate the generalization of this technique, we benchmarked several different model architectures and multiple data modalities, including images, text, and graph-based data.
Authors:Vishal S. Ngairangbam, Błażej Rozwoda, Kazuki Sakurai, Michael Spannowsky
Title: Enhancing anomaly detection with topology-aware autoencoders
Abstract:
Anomaly detection in high-energy physics is essential for identifying new physics beyond the Standard Model. Autoencoders provide a signal-agnostic approach but are limited by the topology of their latent space. This work explores topology-aware autoencoders, embedding phase-space distributions onto compact manifolds that reflect energy-momentum conservation. We construct autoencoders with spherical ($S^n$), product ($S^2 \otimes S^2$), and projective ($\mathbb{RP}^2$) latent spaces and compare their anomaly detection performance against conventional Euclidean embeddings. Our results show that autoencoders with topological priors significantly improve anomaly separation by preserving the global structure of the data manifold and reducing spurious reconstruction errors. Applying our approach to simulated hadronic top-quark decays, we show that latent spaces with appropriate topological constraints enhance sensitivity and robustness in detecting anomalous events. This study establishes topology-aware autoencoders as a powerful tool for unsupervised searches for new physics in particle-collision data.
Authors:Runhua Xu, Shiqi Gao, Chao Li, James Joshi, Jianxin Li
Title: Dual Defense: Enhancing Privacy and Mitigating Poisoning Attacks in Federated Learning
Abstract:
Federated learning (FL) is inherently susceptible to privacy breaches and poisoning attacks. To tackle these challenges, researchers have separately devised secure aggregation mechanisms to protect data privacy and robust aggregation methods that withstand poisoning attacks. However, simultaneously addressing both concerns is challenging; secure aggregation facilitates poisoning attacks as most anomaly detection techniques require access to unencrypted local model updates, which are obscured by secure aggregation. Few recent efforts to simultaneously tackle both challenges offen depend on impractical assumption of non-colluding two-server setups that disrupt FL's topology, or three-party computation which introduces scalability issues, complicating deployment and application. To overcome this dilemma, this paper introduce a Dual Defense Federated learning (DDFed) framework. DDFed simultaneously boosts privacy protection and mitigates poisoning attacks, without introducing new participant roles or disrupting the existing FL topology. DDFed initially leverages cutting-edge fully homomorphic encryption (FHE) to securely aggregate model updates, without the impractical requirement for non-colluding two-server setups and ensures strong privacy protection. Additionally, we proposes a unique two-phase anomaly detection mechanism for encrypted model updates, featuring secure similarity computation and feedback-driven collaborative selection, with additional measures to prevent potential privacy breaches from Byzantine clients incorporated into the detection process. We conducted extensive experiments on various model poisoning attacks and FL scenarios, including both cross-device and cross-silo FL. Experiments on publicly available datasets demonstrate that DDFed successfully protects model privacy and effectively defends against model poisoning threats.
Authors:Chamalee Wickrama Arachchi, Iiro Kumpulainen, Nikolaj Tatti
Title: Dense Subgraph Discovery Meets Strong Triadic Closure
Abstract:
Finding dense subgraphs is a core problem with numerous graph mining applications such as community detection in social networks and anomaly detection. However, in many real-world networks connections are not equal. One way to label edges as either strong or weak is to use strong triadic closure~(STC). Here, if one node connects strongly with two other nodes, then those two nodes should be connected at least with a weak edge. STC-labelings are not unique and finding the maximum number of strong edges is NP-hard. In this paper, we apply STC to dense subgraph discovery. More formally, our score for a given subgraph is the ratio between the sum of the number of strong edges and weak edges, weighted by a user parameter $λ$, and the number of nodes of the subgraph. Our goal is to find a subgraph and an STC-labeling maximizing the score. We show that for $λ= 1$, our problem is equivalent to finding the densest subgraph, while for $λ= 0$, our problem is equivalent to finding the largest clique, making our problem NP-hard. We propose an exact algorithm based on integer linear programming and four practical polynomial-time heuristics. We present an extensive experimental study that shows that our algorithms can find the ground truth in synthetic datasets and run efficiently in real-world datasets.
Authors:Nimesh Jha, Shuxin Lin, Srideepika Jayaraman, Kyle Frohling, Christodoulos Constantinides, Dhaval Patel
Title: LLM Assisted Anomaly Detection Service for Site Reliability Engineers: Enhancing Cloud Infrastructure Resilience
Abstract:
This paper introduces a scalable Anomaly Detection Service with a generalizable API tailored for industrial time-series data, designed to assist Site Reliability Engineers (SREs) in managing cloud infrastructure. The service enables efficient anomaly detection in complex data streams, supporting proactive identification and resolution of issues. Furthermore, it presents an innovative approach to anomaly modeling in cloud infrastructure by utilizing Large Language Models (LLMs) to understand key components, their failure modes, and behaviors. A suite of algorithms for detecting anomalies is offered in univariate and multivariate time series data, including regression-based, mixture-model-based, and semi-supervised approaches. We provide insights into the usage patterns of the service, with over 500 users and 200,000 API calls in a year. The service has been successfully applied in various industrial settings, including IoT-based AI applications. We have also evaluated our system on public anomaly benchmarks to show its effectiveness. By leveraging it, SREs can proactively identify potential issues before they escalate, reducing downtime and improving response times to incidents, ultimately enhancing the overall customer experience. We plan to extend the system to include time series foundation models, enabling zero-shot anomaly detection capabilities.
Authors:Xiao Yang, Xuejiao Zhao, Zhiqi Shen
Title: A Generalizable Anomaly Detection Method in Dynamic Graphs
Abstract:
Anomaly detection aims to identify deviations from normal patterns within data. This task is particularly crucial in dynamic graphs, which are common in applications like social networks and cybersecurity, due to their evolving structures and complex relationships. Although recent deep learning-based methods have shown promising results in anomaly detection on dynamic graphs, they often lack of generalizability. In this study, we propose GeneralDyG, a method that samples temporal ego-graphs and sequentially extracts structural and temporal features to address the three key challenges in achieving generalizability: Data Diversity, Dynamic Feature Capture, and Computational Cost. Extensive experimental results demonstrate that our proposed GeneralDyG significantly outperforms state-of-the-art methods on four real-world datasets.
Authors:Omer Sen, Mehdi Akbari Gurabi, Milan Deruelle, Andreas Ulbig, Stefan Decker
Title: Encryption-Aware Anomaly Detection in Power Grid Communication Networks
Abstract:
The shift to smart grids has made electrical power systems more vulnerable to sophisticated cyber threats. To protect these systems, holistic security measures that encompass preventive, detective, and reactive components are required, even with encrypted data. However, traditional intrusion detection methods struggle with encrypted traffic, our research focuses on the low-level communication layers of encrypted power grid systems to identify irregular patterns using statistics and machine learning. Our results indicate that a harmonic security concept based on encrypted traffic and anomaly detection is promising for smart grid security; however, further research is necessary to improve detection accuracy.
Authors:Erkut Akdag, Egor Bondarev, Peter H. N. De With
Title: TeG: Temporal-Granularity Method for Anomaly Detection with Attention in Smart City Surveillance
Abstract:
Anomaly detection in video surveillance has recently gained interest from the research community. Temporal duration of anomalies vary within video streams, leading to complications in learning the temporal dynamics of specific events. This paper presents a temporal-granularity method for an anomaly detection model (TeG) in real-world surveillance, combining spatio-temporal features at different time-scales. The TeG model employs multi-head cross-attention blocks and multi-head self-attention blocks for this purpose. Additionally, we extend the UCF-Crime dataset with new anomaly types relevant to Smart City research project. The TeG model is deployed and validated in a city surveillance system, achieving successful real-time results in industrial settings.
Authors:Zhuohang Yu, Ling An, Yansong Li, Yu Wu, Zeyu Dong, Zhangdi Liu, Le Gao, Zhenyu Zhang, Chichun Zhou
Title: EAPCR: A Universal Feature Extractor for Scientific Data without Explicit Feature Relation Patterns
Abstract:
Conventional methods, including Decision Tree (DT)-based methods, have been effective in scientific tasks, such as non-image medical diagnostics, system anomaly detection, and inorganic catalysis efficiency prediction. However, most deep-learning techniques have struggled to surpass or even match this level of success as traditional machine-learning methods. The primary reason is that these applications involve multi-source, heterogeneous data where features lack explicit relationships. This contrasts with image data, where pixels exhibit spatial relationships; textual data, where words have sequential dependencies; and graph data, where nodes are connected through established associations. The absence of explicit Feature Relation Patterns (FRPs) presents a significant challenge for deep learning techniques in scientific applications that are not image, text, and graph-based. In this paper, we introduce EAPCR, a universal feature extractor designed for data without explicit FRPs. Tested across various scientific tasks, EAPCR consistently outperforms traditional methods and bridges the gap where deep learning models fall short. To further demonstrate its robustness, we synthesize a dataset without explicit FRPs. While Kolmogorov-Arnold Network (KAN) and feature extractors like Convolutional Neural Networks (CNNs), Graph Convolutional Networks (GCNs), and Transformers struggle, EAPCR excels, demonstrating its robustness and superior performance in scientific tasks without FRPs.
Authors:Tianzhixi Yin, Syed Ahsan Raza Naqvi, Sai Pushpak Nandanoori, Soumya Kundu
Title: Advancing Cyber-Attack Detection in Power Systems: A Comparative Study of Machine Learning and Graph Neural Network Approaches
Abstract:
This paper explores the detection and localization of cyber-attacks on time-series measurements data in power systems, focusing on comparing conventional machine learning (ML) like k-means, deep learning method like autoencoder, and graph neural network (GNN)-based techniques. We assess the detection accuracy of these approaches and their potential to pinpoint the locations of specific sensor measurements under attack. Given the demonstrated success of GNNs in other time-series anomaly detection applications, we aim to evaluate their performance within the context of power systems cyber-attacks on sensor measurements. Utilizing the IEEE 68-bus system, we simulated four types of false data attacks, including scaling attacks, additive attacks, and their combinations, to test the selected approaches. Our results indicate that GNN-based methods outperform k-means and autoencoder in detection. Additionally, GNNs show promise in accurately localizing attacks for simple scenarios, although they still face challenges in more complex cases, especially ones that involve combinations of scaling and additive attacks.
Authors:Chi Xu, Rongsheng Qian, Hao Fang, Xiaoqiang Ma, William I. Atlas, Jiangchuan Liu, Mark A. Spoljaric
Title: SALINA: Towards Sustainable Live Sonar Analytics in Wild Ecosystems
Abstract:
Sonar radar captures visual representations of underwater objects and structures using sound wave reflections, making it essential for exploration, mapping, and continuous surveillance in wild ecosystems. Real-time analysis of sonar data is crucial for time-sensitive applications, including environmental anomaly detection and in-season fishery management, where rapid decision-making is needed. However, the lack of both relevant datasets and pre-trained DNN models, coupled with resource limitations in wild environments, hinders the effective deployment and continuous operation of live sonar analytics. We present SALINA, a sustainable live sonar analytics system designed to address these challenges. SALINA enables real-time processing of acoustic sonar data with spatial and temporal adaptations, and features energy-efficient operation through a robust energy management module. Deployed for six months at two inland rivers in British Columbia, Canada, SALINA provided continuous 24/7 underwater monitoring, supporting fishery stewardship and wildlife restoration efforts. Through extensive real-world testing, SALINA demonstrated an up to 9.5% improvement in average precision and a 10.1% increase in tracking metrics. The energy management module successfully handled extreme weather, preventing outages and reducing contingency costs. These results offer valuable insights for long-term deployment of acoustic data systems in the wild.
Authors:Chandrakanth Gudavalli, Bowen Zhang, Connor Levenson, Kin Gwn Lore, B. S. Manjunath
Title: ReeFRAME: Reeb Graph based Trajectory Analysis Framework to Capture Top-Down and Bottom-Up Patterns of Life
Abstract:
In this paper, we present ReeFRAME, a scalable Reeb graph-based framework designed to analyze vast volumes of GPS-enabled human trajectory data generated at 1Hz frequency. ReeFRAME models Patterns-of-life (PoL) at both the population and individual levels, utilizing Multi-Agent Reeb Graphs (MARGs) for population-level patterns and Temporal Reeb Graphs (TERGs) for individual trajectories. The framework's linear algorithmic complexity relative to the number of time points ensures scalability for anomaly detection. We validate ReeFRAME on six large-scale anomaly detection datasets, simulating real-time patterns with up to 500,000 agents over two months.
Authors:Andy Zhou, Xiaojun Xu, Ramesh Raghunathan, Alok Lal, Xinze Guan, Bin Yu, Bo Li
Title: KnowGraph: Knowledge-Enabled Anomaly Detection via Logical Reasoning on Graph Data
Abstract:
Graph-based anomaly detection is pivotal in diverse security applications, such as fraud detection in transaction networks and intrusion detection for network traffic. Standard approaches, including Graph Neural Networks (GNNs), often struggle to generalize across shifting data distributions. Meanwhile, real-world domain knowledge is more stable and a common existing component of real-world detection strategies. To explicitly integrate such knowledge into data-driven models such as GCNs, we propose KnowGraph, which integrates domain knowledge with data-driven learning for enhanced graph-based anomaly detection. KnowGraph comprises two principal components: (1) a statistical learning component that utilizes a main model for the overarching detection task, augmented by multiple specialized knowledge models that predict domain-specific semantic entities; (2) a reasoning component that employs probabilistic graphical models to execute logical inferences based on model outputs, encoding domain knowledge through weighted first-order logic formulas. Extensive experiments on these large-scale real-world datasets show that KnowGraph consistently outperforms state-of-the-art baselines in both transductive and inductive settings, achieving substantial gains in average precision when generalizing to completely unseen test graphs. Further ablation studies demonstrate the effectiveness of the proposed reasoning component in improving detection performance, especially under extreme class imbalance. These results highlight the potential of integrating domain knowledge into data-driven models for high-stakes, graph-based security applications.
Authors:Yiling Zhang, Erkut Akdag, Egor Bondarev, Peter H. N. De With
Title: MTFL: Multi-Timescale Feature Learning for Weakly-Supervised Anomaly Detection in Surveillance Videos
Abstract:
Detection of anomaly events is relevant for public safety and requires a combination of fine-grained motion information and contextual events at variable time-scales. To this end, we propose a Multi-Timescale Feature Learning (MTFL) method to enhance the representation of anomaly features. Short, medium, and long temporal tubelets are employed to extract spatio-temporal video features using a Video Swin Transformer. Experimental results demonstrate that MTFL outperforms state-of-the-art methods on the UCF-Crime dataset, achieving an anomaly detection performance 89.78% AUC. Moreover, it performs complementary to SotA with 95.32% AUC on the ShanghaiTech and 84.57% AP on the XD-Violence dataset. Furthermore, we generate an extended dataset of the UCF-Crime for development and evaluation on a wider range of anomalies, namely Video Anomaly Detection Dataset (VADD), involving 2,591 videos in 18 classes with extensive coverage of realistic anomalies.
Authors:Alexis Vieloszynski, Soumaya Cherkaoui, Ola Ahmad, Jean-Frédéric Laprade, Oliver Nahman-Lévesque, Abdallah Aaraba, Shengrui Wang
Title: LatentQGAN: A Hybrid QGAN with Classical Convolutional Autoencoder
Abstract:
Quantum machine learning consists in taking advantage of quantum computations to generate classical data. A potential application of quantum machine learning is to harness the power of quantum computers for generating classical data, a process essential to a multitude of applications such as enriching training datasets, anomaly detection, and risk management in finance. Given the success of Generative Adversarial Networks in classical image generation, the development of its quantum versions has been actively conducted. However, existing implementations on quantum computers often face significant challenges, such as scalability and training convergence issues. To address these issues, we propose LatentQGAN, a novel quantum model that uses a hybrid quantum-classical GAN coupled with an autoencoder. Although it was initially designed for image generation, the LatentQGAN approach holds potential for broader application across various practical data generation tasks. Experimental outcomes on both classical simulators and noisy intermediate scale quantum computers have demonstrated significant performance enhancements over existing quantum methods, alongside a significant reduction in quantum resources overhead.
Authors:Amir Farzin Nikkhah, Dong Chen, Bradford Campbell, Somayeh Asadi, Arsalan Heydarian
Title: UAV-Based Infrastructure Inspections: A Literature Review and Proposed Framework for AEC+FM
Abstract:
Unmanned Aerial Vehicles (UAVs) are transforming infrastructure inspections in the Architecture, Engineering, Construction, and Facility Management (AEC+FM) domain. By synthesizing insights from over 150 studies, this review paper highlights UAV-based methodologies for data acquisition, photogrammetric modeling, defect detection, and decision-making support. Key innovations include path optimization, thermal integration, and advanced machine learning (ML) models such as YOLO and Faster R-CNN for anomaly detection. UAVs have demonstrated value in structural health monitoring (SHM), disaster response, urban infrastructure management, energy efficiency evaluations, and cultural heritage preservation. Despite these advancements, challenges in real-time processing, multimodal data fusion, and generalizability remain. A proposed workflow framework, informed by literature and a case study, integrates RGB imagery, LiDAR, and thermal sensing with transformer-based architectures to improve accuracy and reliability in detecting structural defects, thermal anomalies, and geometric inconsistencies. The proposed framework ensures precise and actionable insights by fusing multimodal data and dynamically adapting path planning for complex environments, presented as a comprehensive step-by-step guide to address these challenges effectively. This paper concludes with future research directions emphasizing lightweight AI models, adaptive flight planning, synthetic datasets, and richer modality fusion to streamline modern infrastructure inspections.
Authors:Hamid Gadirov, Martijn Westra, Steffen Frey
Title: TRACE: Reconstruction-Based Anomaly Detection in Ensemble and Time-Dependent Simulations
Abstract:
Detecting anomalies in high-dimensional, time-dependent simulation data is challenging due to complex spatial and temporal dynamics. We study reconstruction-based anomaly detection for ensemble data from parameterized Kármán vortex street simulations using convolutional autoencoders. We compare a 2D autoencoder operating on individual frames with a 3D autoencoder that processes short temporal stacks. The 2D model identifies localized spatial irregularities in single time steps, while the 3D model exploits spatio-temporal context to detect anomalous motion patterns and reduces redundant detections across time. We further evaluate volumetric time-dependent data and find that reconstruction errors are strongly influenced by the spatial distribution of mass, with highly concentrated regions yielding larger errors than dispersed configurations. Our results highlight the importance of temporal context for robust anomaly detection in dynamic simulations.
Authors:Yang Xu, Yixiao Ma, Kaifeng Zhang, Zuliang Yang, Kai Ming Ting
Title: IDK-S: Incremental Distributional Kernel for Streaming Anomaly Detection
Abstract:
Anomaly detection on data streams presents significant challenges, requiring methods to maintain high detection accuracy among evolving distributions while ensuring real-time efficiency. Here we introduce $\mathcal{IDK}$-$\mathcal{S}$, a novel $\mathbf{I}$ncremental $\mathbf{D}$istributional $\mathbf{K}$ernel for $\mathbf{S}$treaming anomaly detection that effectively addresses these challenges by creating a new dynamic representation in the kernel mean embedding framework. The superiority of $\mathcal{IDK}$-$\mathcal{S}$ is attributed to two key innovations. First, it inherits the strengths of the Isolation Distributional Kernel, an offline detector that has demonstrated significant performance advantages over foundational methods like Isolation Forest and Local Outlier Factor due to the use of a data-dependent kernel. Second, it adopts a lightweight incremental update mechanism that significantly reduces computational overhead compared to the naive baseline strategy of performing a full model retraining. This is achieved without compromising detection accuracy, a claim supported by its statistical equivalence to the full retrained model. Our extensive experiments on thirteen benchmarks demonstrate that $\mathcal{IDK}$-$\mathcal{S}$ achieves superior detection accuracy while operating substantially faster, in many cases by an order of magnitude, than existing state-of-the-art methods.
Authors:Niloy Saha, Noura Limam, Yang Xiao, Raouf Boutaba
Title: Rethinking Telemetry Design for Fine-Grained Anomaly Detection in 5G User Planes
Abstract:
Detecting QoS anomalies in 5G user planes requires fine-grained per-flow visibility, but existing telemetry approaches face a fundamental trade-off. Coarse per-class counters are lightweight but mask transient and per-flow anomalies, while per-packet telemetry postcards provide full visibility at prohibitive cost that grows linearly with line rate. Selective postcard schemes reduce overhead but miss anomalies that fall below configured thresholds or occur during brief intervals. We present Kestrel, a sketch-based telemetry system for 5G user planes that provides fine-grained visibility into key metric distributions such as latency tails and inter-arrival times at a fraction of the cost of per-packet postcards. Kestrel extends Count-Min Sketch with histogram-augmented buckets and per-queue partitioning, which compress per-packet measurements into compact summaries while preserving anomaly-relevant signals. We develop formal detectability guarantees that account for sketch collisions, yielding principled sizing rules and binning strategies that maximize anomaly separability. Our evaluations on a 5G testbed with Intel Tofino switches show that Kestrel achieves 10% better detection accuracy than existing selective postcard schemes while reducing export bandwidth by 10x.
Authors:Emilio Mastriani, Alessandro Costa, Federico Incardona, Kevin Munari, Sebastiano Spinello
Title: SERVIMON: AI-Driven Predictive Maintenance and Real-Time Monitoring for Astronomical Observatories
Abstract:
Objective: ServiMon is designed to offer a scalable and intelligent pipeline for data collection and auditing to monitor distributed astronomical systems such as the ASTRI Mini-Array. The system enhances quality control, predictive maintenance, and real-time anomaly detection for telescope operations. Methods: ServiMon integrates cloud-native technologies-including Prometheus, Grafana, Cassandra, Kafka, and InfluxDB-for telemetry collection and processing. It employs machine learning algorithms, notably Isolation Forest, to detect anomalies in Cassandra performance metrics. Key indicators such as read/write latency, throughput, and memory usage are continuously monitored, stored as time-series data, and preprocessed for feature engineering. Anomalies detected by the model are logged in InfluxDB v2 and accessed via Flux for real-time monitoring and visualization. Results: AI-based anomaly detection increases system resilience by identifying performance degradation at an early stage, minimizing downtime, and optimizing telescope operations. Additionally, ServiMon supports astrostatistical analysis by correlating telemetry with observational data, thus enhancing scientific data quality. AI-generated alerts also improve real-time monitoring, enabling proactive system management. Conclusion: ServiMon's scalable framework proves effective for predictive maintenance and real-time monitoring of astronomical infrastructures. By leveraging cloud and edge computing, it is adaptable to future large-scale experiments, optimizing both performance and cost. The combination of machine learning and big data analytics makes ServiMon a robust and flexible solution for modern and next-generation observational astronomy.
Authors:Emilio Mastriani, Alessandro Costa, Federico Incardona, Kevin Munari, Sebastiano Spinello
Title: Segmentation over Complexity: Evaluating Ensemble and Hybrid Approaches for Anomaly Detection in Industrial Time Series
Abstract:
In this study, we investigate the effectiveness of advanced feature engineering and hybrid model architectures for anomaly detection in a multivariate industrial time series, focusing on a steam turbine system. We evaluate the impact of change point-derived statistical features, clustering-based substructure representations, and hybrid learning strategies on detection performance. Despite their theoretical appeal, these complex approaches consistently underperformed compared to a simple Random Forest + XGBoost ensemble trained on segmented data. The ensemble achieved an AUC-ROC of 0.976, F1-score of 0.41, and 100% early detection within the defined time window. Our findings highlight that, in scenarios with highly imbalanced and temporally uncertain data, model simplicity combined with optimized segmentation can outperform more sophisticated architectures, offering greater robustness, interpretability, and operational utility.
Authors:Samuel Bright-Thonney, Christina Reissel, Gaia Grosso, Nathaniel Woodward, Katya Govorkova, Andrzej Novak, Sang Eon Park, Eric Moreno, Philip Harris
Title: AutoSciDACT: Automated Scientific Discovery through Contrastive Embedding and Hypothesis Testing
Abstract:
Novelty detection in large scientific datasets faces two key challenges: the noisy and high-dimensional nature of experimental data, and the necessity of making statistically robust statements about any observed outliers. While there is a wealth of literature on anomaly detection via dimensionality reduction, most methods do not produce outputs compatible with quantifiable claims of scientific discovery. In this work we directly address these challenges, presenting the first step towards a unified pipeline for novelty detection adapted for the rigorous statistical demands of science. We introduce AutoSciDACT (Automated Scientific Discovery with Anomalous Contrastive Testing), a general-purpose pipeline for detecting novelty in scientific data. AutoSciDACT begins by creating expressive low-dimensional data representations using a contrastive pre-training, leveraging the abundance of high-quality simulated data in many scientific domains alongside expertise that can guide principled data augmentation strategies. These compact embeddings then enable an extremely sensitive machine learning-based two-sample test using the New Physics Learning Machine (NPLM) framework, which identifies and statistically quantifies deviations in observed data relative to a reference distribution (null hypothesis). We perform experiments across a range of astronomical, physical, biological, image, and synthetic datasets, demonstrating strong sensitivity to small injections of anomalous data across all domains.
Authors:A. P. Kryukov, A. Yu. Razumov, A. P. Demichev, J. J. Dubenskaya, E. O. Gres, S. P. Polyakov, E. B. Postnikov, P. A. Volchugov, D. P. Zhurov
Title: Capability of using the normalizing flows for extraction rare gamma events in the TAIGA experiment
Abstract:
The objective of this work is to develop a method for detecting rare gamma quanta against the background of charged particles in the fluxes from sources in the Universe with the help of the deep learning and normalizing flows based method designed for anomaly detection. It is shown that the suggested method has a potential for the gamma detection. The method was tested on model data from the TAIGA-IACT experiment. The obtained quantitative performance indicators are still inferior to other approaches, and therefore possible ways to improve the implementation of the method are proposed.
Authors:Nathan Mankovich, Kai-Hendrik Cohrs, Homer Durand, Vasileios Sitokonstantinou, Tristan Williams, Gustau Camps-Valls
Title: Dimensionality Reduction for Remote Sensing Data Analysis: A Systematic Review of Methods and Applications
Abstract:
Earth observation involves collecting, analyzing, and processing an ever-growing mass of data. Automatically harvesting information is crucial for addressing significant societal, economic, and environmental challenges, ranging from environmental monitoring to urban planning and disaster management. However, the high dimensionality of these data poses challenges in terms of sparsity, inefficiency, and the curse of dimensionality, which limits the effectiveness of machine learning models. Dimensionality reduction (DR) techniques, specifically feature extraction, address these challenges by preserving essential data properties while reducing complexity and enhancing tasks such as data compression, cleaning, fusion, visualization, anomaly detection, and prediction. This review provides a handbook for leveraging DR across the RS data value chain and identifies opportunities for under-explored DR algorithms and their application in future research.
Authors:Behnam Rezaei Bezanjani, Seyyed Hamid Ghafouri, Reza Gholamrezaei
Title: Privacy-Preserving Healthcare Data in IoT: A Synergistic Approach with Deep Learning and Blockchain
Abstract:
The integration of Internet of Things (IoT) devices in healthcare has revolutionized patient care by enabling real-time monitoring, personalized treatments, and efficient data management. However, this technological advancement introduces significant security risks, particularly concerning the confidentiality, integrity, and availability of sensitive medical data. Traditional security measures are often insufficient to address the unique challenges posed by IoT environments, such as heterogeneity, resource constraints, and the need for real-time processing. To tackle these challenges, we propose a comprehensive three-phase security framework designed to enhance the security and reliability of IoT-enabled healthcare systems. In the first phase, the framework assesses the reliability of IoT devices using a reputation-based trust estimation mechanism, which combines device behavior analytics with off-chain data storage to ensure scalability. The second phase integrates blockchain technology with a lightweight proof-of-work mechanism, ensuring data immutability, secure communication, and resistance to unauthorized access. The third phase employs a lightweight Long Short-Term Memory (LSTM) model for anomaly detection and classification, enabling real-time identification of cyber threats. Simulation results demonstrate that the proposed framework outperforms existing methods, achieving a 2% increase in precision, accuracy, and recall, a 5% higher attack detection rate, and a 3% reduction in false alarm rate. These improvements highlight the framework's ability to address critical security concerns while maintaining scalability and real-time performance.
Authors:Fernando Salanova, Jesús Roche, Cristian Mahuela, Eduardo Montijano
Title: High-Level Multi-Robot Trajectory Planning And Spurious Behavior Detection
Abstract:
The reliable execution of high-level missions in multi-robot systems with heterogeneous agents, requires robust methods for detecting spurious behaviors. In this paper, we address the challenge of identifying spurious executions of plans specified as a Linear Temporal Logic (LTL) formula, as incorrect task sequences, violations of spatial constraints, timing inconsis- tencies, or deviations from intended mission semantics. To tackle this, we introduce a structured data generation framework based on the Nets-within-Nets (NWN) paradigm, which coordinates robot actions with LTL-derived global mission specifications. We further propose a Transformer-based anomaly detection pipeline that classifies robot trajectories as normal or anomalous. Experi- mental evaluations show that our method achieves high accuracy (91.3%) in identifying execution inefficiencies, and demonstrates robust detection capabilities for core mission violations (88.3%) and constraint-based adaptive anomalies (66.8%). An ablation experiment of the embedding and architecture was carried out, obtaining successful results where our novel proposition performs better than simpler representations.
Authors:Ahmed Aly, Essam Mansour, Amr Youssef
Title: OCR-APT: Reconstructing APT Stories from Audit Logs using Subgraph Anomaly Detection and LLMs
Abstract:
Advanced Persistent Threats (APTs) are stealthy cyberattacks that often evade detection in system-level audit logs. Provenance graphs model these logs as connected entities and events, revealing relationships that are missed by linear log representations. Existing systems apply anomaly detection to these graphs but often suffer from high false positive rates and coarse-grained alerts. Their reliance on node attributes like file paths or IPs leads to spurious correlations, reducing detection robustness and reliability. To fully understand an attack's progression and impact, security analysts need systems that can generate accurate, human-like narratives of the entire attack. To address these challenges, we introduce OCR-APT, a system for APT detection and reconstruction of human-like attack stories. OCR-APT uses Graph Neural Networks (GNNs) for subgraph anomaly detection, learning behavior patterns around nodes rather than fragile attributes such as file paths or IPs. This approach leads to a more robust anomaly detection. It then iterates over detected subgraphs using Large Language Models (LLMs) to reconstruct multi-stage attack stories. Each stage is validated before proceeding, reducing hallucinations and ensuring an interpretable final report. Our evaluations on the DARPA TC3, OpTC, and NODLINK datasets show that OCR-APT outperforms state-of-the-art systems in both detection accuracy and alert interpretability. Moreover, OCR-APT reconstructs human-like reports that comprehensively capture the attack story.
Authors:Furkan Mumcu, Michael J. Jones, Anoop Cherian, Yasin Yilmaz
Title: Leveraging Multimodal LLM Descriptions of Activity for Explainable Semi-Supervised Video Anomaly Detection
Abstract:
Existing semi-supervised video anomaly detection (VAD) methods often struggle with detecting complex anomalies involving object interactions and generally lack explainability. To overcome these limitations, we propose a novel VAD framework leveraging Multimodal Large Language Models (MLLMs). Unlike previous MLLM-based approaches that make direct anomaly judgments at the frame level, our method focuses on extracting and interpreting object activity and interactions over time. By querying an MLLM with visual inputs of object pairs at different moments, we generate textual descriptions of the activity and interactions from nominal videos. These textual descriptions serve as a high-level representation of the activity and interactions of objects in a video. They are used to detect anomalies during test time by comparing them to textual descriptions found in nominal training videos. Our approach inherently provides explainability and can be combined with many traditional VAD methods to further enhance their interpretability. Extensive experiments on benchmark datasets demonstrate that our method not only detects complex interaction-based anomalies effectively but also achieves state-of-the-art performance on datasets without interaction anomalies.
Authors:Hayato Nihei, Sou Nobukawa, Yusuke Sakemi, Kazuyuki Aihara
Title: Enhancing Time-Series Anomaly Detection by Integrating Spectral-Residual Bottom-Up Attention with Reservoir Computing
Abstract:
Reservoir computing (RC) establishes the basis for the processing of time-series data by exploiting the high-dimensional spatiotemporal response of a recurrent neural network to an input signal. In particular, RC trains only the output layer weights. This simplicity has drawn attention especially in Edge Artificial Intelligence (AI) applications. Edge AI enables time-series anomaly detection in real time, which is important because detection delays can lead to serious incidents. However, achieving adequate anomaly-detection performance with RC alone may require an unacceptably large reservoir on resource-constrained edge devices. Without enlarging the reservoir, attention mechanisms can improve accuracy, although they may require substantial computation and undermine the learning efficiency of RC. In this study, to improve the anomaly detection performance of RC without sacrificing learning efficiency, we propose a spectral residual RC (SR-RC) that integrates the spectral residual (SR) method - a learning-free, bottom-up attention mechanism - with RC. We demonstrated that SR-RC outperformed conventional RC and logistic-regression models based on values extracted by the SR method across benchmark tasks and real-world time-series datasets. Moreover, because the SR method, similarly to RC, is well suited for hardware implementation, SR-RC suggests a practical direction for deploying RC as Edge AI for time-series anomaly detection.
Authors:Geoffery Agorku, Sarah Hernandez, Hayley Hames, Cade Wagner
Title: Enhancing Maritime Domain Awareness on Inland Waterways: A YOLO-Based Fusion of Satellite and AIS for Vessel Characterization
Abstract:
Maritime Domain Awareness (MDA) for inland waterways remains challenged by cooperative system vulnerabilities. This paper presents a novel framework that fuses high-resolution satellite imagery with vessel trajectory data from the Automatic Identification System (AIS). This work addresses the limitations of AIS-based monitoring by leveraging non-cooperative satellite imagery and implementing a fusion approach that links visual detections with AIS data to identify dark vessels, validate cooperative traffic, and support advanced MDA. The You Only Look Once (YOLO) v11 object detection model is used to detect and characterize vessels and barges by vessel type, barge cover, operational status, barge count, and direction of travel. An annotated data set of 4,550 instances was developed from $5{,}973~\mathrm{mi}^2$ of Lower Mississippi River imagery. Evaluation on a held-out test set demonstrated vessel classification (tugboat, crane barge, bulk carrier, cargo ship, and hopper barge) with an F1 score of 95.8\%; barge cover (covered or uncovered) detection yielded an F1 score of 91.6\%; operational status (staged or in motion) classification reached an F1 score of 99.4\%. Directionality (upstream, downstream) yielded 93.8\% accuracy. The barge count estimation resulted in a mean absolute error (MAE) of 2.4 barges. Spatial transferability analysis across geographically disjoint river segments showed accuracy was maintained as high as 98\%. These results underscore the viability of integrating non-cooperative satellite sensing with AIS fusion. This approach enables near-real-time fleet inventories, supports anomaly detection, and generates high-quality data for inland waterway surveillance. Future work will expand annotated datasets, incorporate temporal tracking, and explore multi-modal deep learning to further enhance operational scalability.
Authors:Emilio Mastriani, Alessandro Costa, Federico Incardona, Kevin Munari, Sebastiano Spinello
Title: Improving Anomaly Detection in Industrial Time Series: The Role of Segmentation and Heterogeneous Ensemble
Abstract:
Concerning machine learning, segmentation models can identify state changes within time series, facilitating the detection of transitions between normal and anomalous conditions. Specific techniques such as Change Point Detection (CPD), particularly algorithms like ChangeFinder, have been successfully applied to segment time series and improve anomaly detection by reducing temporal uncertainty, especially in multivariate environments. In this work, we explored how the integration of segmentation techniques, combined with a heterogeneous ensemble, can enhance anomaly detection in an industrial production context. The results show that applying segmentation as a pre-processing step before selecting heterogeneous ensemble algorithms provided a significant advantage in our case study, improving the AUC-ROC metric from 0.8599 (achieved with a PCA and LSTM ensemble) to 0.9760 (achieved with Random Forest and XGBoost). This improvement is imputable to the ability of segmentation to reduce temporal ambiguity and facilitate the learning process of supervised algorithms. In our future work, we intend to assess the benefit of introducing weighted features derived from the study of change points, combined with segmentation and the use of heterogeneous ensembles, to further optimize model performance in early anomaly detection.
Authors:Sanghyu Yoon, Dongmin Kim, Suhee Yoon, Ye Seul Sim, Seungdong Yoa, Hye-Seung Cho, Soonyoung Lee, Hankook Lee, Woohyung Lim
Title: ReTabAD: A Benchmark for Restoring Semantic Context in Tabular Anomaly Detection
Abstract:
In tabular anomaly detection (AD), textual semantics often carry critical signals, as the definition of an anomaly is closely tied to domain-specific context. However, existing benchmarks provide only raw data points without semantic context, overlooking rich textual metadata such as feature descriptions and domain knowledge that experts rely on in practice. This limitation restricts research flexibility and prevents models from fully leveraging domain knowledge for detection. ReTabAD addresses this gap by restoring textual semantics to enable context-aware tabular AD research. We provide (1) 20 carefully curated tabular datasets enriched with structured textual metadata, together with implementations of state-of-the-art AD algorithms including classical, deep learning, and LLM-based approaches, and (2) a zero-shot LLM framework that leverages semantic context without task-specific training, establishing a strong baseline for future research. Furthermore, this work provides insights into the role and utility of textual metadata in AD through experiments and analysis. Results show that semantic context improves detection performance and enhances interpretability by supporting domain-aware reasoning. These findings establish ReTabAD as a benchmark for systematic exploration of context-aware AD.
Authors:Mohammad Mahdi Hemmatyar, Mahdi Jafari, Mohammad Amin Yousefi, Mohammad Reza Nemati, Mobin Azadani, Hamid Reza Rastad, Amirmohammad Akbari
Title: HyCoVAD: A Hybrid SSL-LLM Model for Complex Video Anomaly Detection
Abstract:
Video anomaly detection (VAD) is crucial for intelligent surveillance, but a significant challenge lies in identifying complex anomalies, which are events defined by intricate relationships and temporal dependencies among multiple entities rather than by isolated actions. While self-supervised learning (SSL) methods effectively model low-level spatiotemporal patterns, they often struggle to grasp the semantic meaning of these interactions. Conversely, large language models (LLMs) offer powerful contextual reasoning but are computationally expensive for frame-by-frame analysis and lack fine-grained spatial localization. We introduce HyCoVAD, Hybrid Complex Video Anomaly Detection, a hybrid SSL-LLM model that combines a multi-task SSL temporal analyzer with LLM validator. The SSL module is built upon an nnFormer backbone which is a transformer-based model for image segmentation. It is trained with multiple proxy tasks, learns from video frames to identify those suspected of anomaly. The selected frames are then forwarded to the LLM, which enriches the analysis with semantic context by applying structured, rule-based reasoning to validate the presence of anomalies. Experiments on the challenging ComplexVAD dataset show that HyCoVAD achieves a 72.5% frame-level AUC, outperforming existing baselines by 12.5% while reducing LLM computation. We release our interaction anomaly taxonomy, adaptive thresholding protocol, and code to facilitate future research in complex VAD scenarios.
Authors:Jonathan Kabala Mbuya, Dieter Pfoser, Antonios Anastasopoulos
Title: Graph Enhanced Trajectory Anomaly Detection
Abstract:
Trajectory anomaly detection is essential for identifying unusual and unexpected movement patterns in applications ranging from intelligent transportation systems to urban safety and fraud prevention. Existing methods only consider limited aspects of the trajectory nature and its movement space by treating trajectories as sequences of sampled locations, with sampling determined by positioning technology, e.g., GPS, or by high-level abstractions such as staypoints. Trajectories are analyzed in Euclidean space, neglecting the constraints and connectivity information of the underlying movement network, e.g., road or transit networks. The proposed Graph Enhanced Trajectory Anomaly Detection (GETAD) framework tightly integrates road network topology, segment semantics, and historical travel patterns to model trajectory data. GETAD uses a Graph Attention Network to learn road-aware embeddings that capture both physical attributes and transition behavior, and augments these with graph-based positional encodings that reflect the spatial layout of the road network. A Transformer-based decoder models sequential movement, while a multiobjective loss function combining autoregressive prediction and supervised link prediction ensures realistic and structurally coherent representations. To improve the robustness of anomaly detection, we introduce Confidence Weighted Negative Log Likelihood (CW NLL), an anomaly scoring function that emphasizes high-confidence deviations. Experiments on real-world and synthetic datasets demonstrate that GETAD achieves consistent improvements over existing methods, particularly in detecting subtle anomalies in road-constrained environments. These results highlight the benefits of incorporating graph structure and contextual semantics into trajectory modeling, enabling more precise and context-aware anomaly detection.
Authors:Haobo Yang, Shiyan Zhang, Zhuoyi Yang, Jilong Guo, Jun Yang, Xinyu Zhang
Title: Stabilizing Information Flow Entropy: Regularization for Safe and Interpretable Autonomous Driving Perception
Abstract:
Deep perception networks in autonomous driving traditionally rely on data-intensive training regimes and post-hoc anomaly detection, often disregarding fundamental information-theoretic constraints governing stable information processing. We reconceptualize deep neural encoders as hierarchical communication chains that incrementally compress raw sensory inputs into task-relevant latent features. Within this framework, we establish two theoretically justified design principles for robust perception: (D1) smooth variation of mutual information between consecutive layers, and (D2) monotonic decay of latent entropy with network depth. Our analysis shows that, under realistic architectural assumptions, particularly blocks comprising repeated layers of similar capacity, enforcing smooth information flow (D1) naturally encourages entropy decay (D2), thus ensuring stable compression. Guided by these insights, we propose Eloss, a novel entropy-based regularizer designed as a lightweight, plug-and-play training objective. Rather than marginal accuracy improvements, this approach represents a conceptual shift: it unifies information-theoretic stability with standard perception tasks, enabling explicit, principled detection of anomalous sensor inputs through entropy deviations. Experimental validation on large-scale 3D object detection benchmarks (KITTI and nuScenes) demonstrates that incorporating Eloss consistently achieves competitive or improved accuracy while dramatically enhancing sensitivity to anomalies, amplifying distribution-shift signals by up to two orders of magnitude. This stable information-compression perspective not only improves interpretability but also establishes a solid theoretical foundation for safer, more robust autonomous driving perception systems.
Authors:Mahsa Khazaei, Azim Ahmadzadeh, Alexei Pevtsov, Luca Bertello, Alexander Pevtsov
Title: H-Alpha Anomalyzer: An Explainable Anomaly Detector for Solar H-Alpha Observations
Abstract:
The plethora of space-borne and ground-based observatories has provided astrophysicists with an unprecedented volume of data, which can only be processed at scale using advanced computing algorithms. Consequently, ensuring the quality of data fed into machine learning (ML) models is critical. The H$α$ observations from the GONG network represent one such data stream, producing several observations per minute, 24/7, since 2010. In this study, we introduce a lightweight (non-ML) anomaly-detection algorithm, called H-Alpha Anomalyzer, designed to identify anomalous observations based on user-defined criteria. Unlike many black-box algorithms, our approach highlights exactly which regions triggered the anomaly flag and quantifies the corresponding anomaly likelihood. For our comparative analysis, we also created and released a dataset of 2,000 observations, equally divided between anomalous and non-anomalous cases. Our results demonstrate that the proposed model not only outperforms existing methods but also provides explainability, enabling qualitative evaluation by domain experts.
Authors:Mingkang Li, Xuexiong Luo, Yue Zhang, Yaoyang Li, Fu Lin
Title: GTHNA: Local-global Graph Transformer with Memory Reconstruction for Holistic Node Anomaly Evaluation
Abstract:
Anomaly detection in graph-structured data is an inherently challenging problem, as it requires the identification of rare nodes that deviate from the majority in both their structural and behavioral characteristics. Existing methods, such as those based on graph convolutional networks (GCNs), often suffer from over-smoothing, which causes the learned node representations to become indistinguishable. Furthermore, graph reconstruction-based approaches are vulnerable to anomalous node interference during the reconstruction process, leading to inaccurate anomaly detection. In this work, we propose a novel and holistic anomaly evaluation framework that integrates three key components: a local-global Transformer encoder, a memory-guided reconstruction mechanism, and a multi-scale representation matching strategy. These components work synergistically to enhance the model's ability to capture both local and global structural dependencies, suppress the influence of anomalous nodes, and assess anomalies from multiple levels of granularity. Anomaly scores are computed by combining reconstruction errors and memory matching signals, resulting in a more robust evaluation. Extensive experiments on seven benchmark datasets demonstrate that our method outperforms existing state-of-the-art approaches, offering a comprehensive and generalizable solution for anomaly detection across various graph domains.
Authors:Wael Mattar, Nir Sharon
Title: Multiscaling in Wasserstein Spaces
Abstract:
We present a novel multiscale framework for analyzing sequences of probability measures in Wasserstein spaces over Euclidean domains. Exploiting the intrinsic geometry of optimal transport, we construct a multiscale transform applicable to both absolutely continuous and discrete measures. Central to our approach is a refinement operator based on McCann's interpolants, which preserves the geodesic structure of measure flows and serves as an upsampling mechanism. Building on this, we introduce the optimality number, a scalar that quantifies deviations of a sequence from Wasserstein geodesicity across scales, enabling the detection of irregular dynamics and anomalies. We establish key theoretical guarantees, including stability of the transform and geometric decay of coefficients, ensuring robustness and interpretability of the multiscale representation. Finally, we demonstrate the versatility of our methodology through numerical experiments: denoising and anomaly detection in Gaussian flows, analysis of point cloud dynamics under vector fields, and the multiscale characterization of neural network learning trajectories.
Authors:Laura Boggia, Bogdan Malaescu
Title: Synthetic Data Generation with Lorenzetti for Time Series Anomaly Detection in High-Energy Physics Calorimeters
Abstract:
Anomaly detection in multivariate time series is crucial to ensure the quality of data coming from a physics experiment. Accurately identifying the moments when unexpected errors or defects occur is essential, yet challenging due to scarce labels, unknown anomaly types, and complex correlations across dimensions. To address the scarcity and unreliability of labelled data, we use the Lorenzetti Simulator to generate synthetic events with injected calorimeter anomalies. We then assess the sensitivity of several time series anomaly detection methods, including transformer-based and other deep learning models. The approach employed here is generic and applicable to different detector designs and defects.
Authors:Guanzhong Hu, Wenpan Li, Rujing Zha, Ping Guo
Title: Layer-Wise Anomaly Detection in Directed Energy Deposition using High-Fidelity Fringe Projection Profilometry
Abstract:
Directed energy deposition (DED), a metal additive manufacturing process, is highly susceptible to process-induced defects such as geometric deviations, lack of fusion, and poor surface finish. This work presents a build-height-synchronized fringe projection system for in-situ, layer-wise surface reconstruction of laser-DED components, achieving a reconstruction accuracy of ${\pm}$46 $μ$m. From the reconstructed 3D morphology, two complementary geometry-based point cloud metrics are introduced: local point density, which highlights poor surface finish, and normal-change rate, which identifies lack-of-fusion features. These methods enable automated, annotation-free identification of common deposition anomalies directly from reconstructed surfaces, without the need for manual labeling. By directly linking geometric deviation to defect formation, the approach enables precise anomaly localization and advances the feasibility of closed-loop process control. This work establishes fringe projection as a practical tool for micrometer-scale monitoring in DED, bridging the gap between process signatures and part geometry for certifiable additive manufacturing.
Authors:Adrian Catalin Lutu, Ioana Pintilie, Elena Burceanu, Andrei Manolache
Title: ChronoGraph: A Real-World Graph-Based Multivariate Time Series Dataset
Abstract:
We present ChronoGraph, a graph-structured multivariate time series forecasting dataset built from real-world production microservices. Each node is a service that emits a multivariate stream of system-level performance metrics, capturing CPU, memory, and network usage patterns, while directed edges encode dependencies between services. The primary task is forecasting future values of these signals at the service level. In addition, ChronoGraph provides expert-annotated incident windows as anomaly labels, enabling evaluation of anomaly detection methods and assessment of forecast robustness during operational disruptions. Compared to existing benchmarks from industrial control systems or traffic and air-quality domains, ChronoGraph uniquely combines (i) multivariate time series, (ii) an explicit, machine-readable dependency graph, and (iii) anomaly labels aligned with real incidents. We report baseline results spanning forecasting models, pretrained time-series foundation models, and standard anomaly detectors. ChronoGraph offers a realistic benchmark for studying structure-aware forecasting and incident-aware evaluation in microservice systems.
Authors:Sara Khan, Mehmed Yüksel, Frank Kirchner
Title: Robust Anomaly Detection through Multi-Modal Autoencoder Fusion for Small Vehicle Damage Detection
Abstract:
Wear and tear detection in fleet and shared vehicle systems is a critical challenge, particularly in rental and car-sharing services, where minor damage, such as dents, scratches, and underbody impacts, often goes unnoticed or is detected too late. Currently, manual inspection methods are the default approach but are labour intensive and prone to human error. In contrast, state-of-the-art image-based methods struggle with real-time performance and are less effective at detecting underbody damage due to limited visual access and poor spatial coverage. This work introduces a novel multi-modal architecture based on anomaly detection to address these issues. Sensors such as IMUs and microphones are integrated into a compact device mounted on the vehicle's windshield. This approach supports real-time damage detection while avoiding the need for highly resource-intensive sensors. We developed multiple variants of multi-modal autoencoder-based architectures and evaluated them against unimodal and state-of-the-art methods. Our ensemble pooling multi-modal model achieved the highest performance, with a Receiver Operating Characteristic-Area Under Curve (ROC-AUC) of 92%, demonstrating its effectiveness in real-world applications. This approach can also be extended to other applications, such as improving automotive safety - where it can integrate with airbag systems for efficient deployment - and helping autonomous vehicles by complementing other sensors in collision detection.
Authors:Alberto Miguel-Diez, Adrián Campazas-Vega, Ángel Manuel Guerrero-Higueras, Claudia Álvarez-Aparicio, Vicente Matellán-Olivera
Title: Anomaly detection in network flows using unsupervised online machine learning
Abstract:
Nowadays, the volume of network traffic continues to grow, along with the frequency and sophistication of attacks. This scenario highlights the need for solutions capable of continuously adapting, since network behavior is dynamic and changes over time. This work presents an anomaly detection model for network flows using unsupervised machine learning with online learning capabilities. This approach allows the system to dynamically learn the normal behavior of the network and detect deviations without requiring labeled data, which is particularly useful in real-world environments where traffic is constantly changing and labeled data is scarce. The model was implemented using the River library with a One-Class SVM and evaluated on the NF-UNSW-NB15 dataset and its extended version v2, which contain network flows labeled with different attack categories. The results show an accuracy above 98%, a false positive rate below 3.1%, and a recall of 100% in the most advanced version of the dataset. In addition, the low processing time per flow (<0.033 ms) demonstrates the feasibility of the approach for real-time applications.
Authors:Nishant Chinnasami, Rasha Karakchi
Title: Hybrid Cryptographic Monitoring System for Side-Channel Attack Detection on PYNQ SoCs
Abstract:
AES-128 encryption is theoretically secure but vulnerable in practical deployments due to timing and fault injection attacks on embedded systems. This work presents a lightweight dual-detection framework combining statistical thresholding and machine learning (ML) for real-time anomaly detection. By simulating anomalies via delays and ciphertext corruption, we collect timing and data features to evaluate two strategies: (1) a statistical threshold method based on execution time and (2) a Random Forest classifier trained on block-level anomalies. Implemented on CPU and FPGA (PYNQ-Z1), our results show that the ML approach outperforms static thresholds in accuracy, while maintaining real-time feasibility on embedded platforms. The framework operates without modifying AES internals or relying on hardware performance counters. This makes it especially suitable for low-power, resource-constrained systems where detection accuracy and computational efficiency must be balanced.
Authors:Joy Lai, Kelly Beaton, David Black, Bing Ye, Alex Mihailidis
Title: From Checking to Sensemaking: A Caregiver-in-the-Loop Framework for AI-Assisted Task Verification in Dementia Care
Abstract:
Informal caregivers play a central role in enabling people living with dementia (PLwD) to remain at home, yet they face persistent challenges verifying whether daily tasks have been completed. Existing digital reminder systems prompt actions but rarely confirm outcomes, leaving caregivers to double-check tasks manually. This study explores how generative artificial intelligence (AI) might support caregiver-led task verification without displacing human judgment. We combined qualitative interviews with ten caregivers and one PLwD with a speculative simulation probe using a generative large language model to generate follow-up questions and flag responses for verification. Using template analysis, we identified three interrelated patterns of reasoning: detecting anomalies, constructing trustworthy evidence, and calibrating trust and control. These insights informed the Caregiver-in-the-Loop Task Verification (CLTV) framework, which models verification as a collaborative cycle of anomaly detection, evidence triangulation, AI-assisted summarization, and accountability circulation centered on caregiver oversight. CLTV advances human-AI collaboration theory by situating interpretability, trust, and control within the relational and emotional realities of dementia care and by offering design principles for transparent, adjustable, and context-aware AI support. We contribute a care-centered extension of human-AI collaboration theory, demonstrating how interpretability and trust can be operationalized through caregiver oversight.
Authors:Yiran Li, Gongyao Guo, Jieming Shi, Sibo Wang, Qing Li
Title: Efficient Integration of Multi-View Attributed Graphs for Clustering and Embedding
Abstract:
A multi-view attributed graph (MVAG) G captures the diverse relationships and properties of real-world entities through multiple graph views and attribute views. Effectively utilizing all views in G is essential for MVAG clustering and embedding, which are important for applications like recommendation systems, anomaly detection, social network analysis, etc. Existing methods either achieve inferior result quality or incur significant computational costs to handle large-scale MVAGs. In this paper, we present a spectrum-guided Laplacian aggregation scheme with an effective objective formulation and two efficient algorithms SGLA and SGLA+, to cohesively integrate all views of G into an MVAG Laplacian matrix, which readily enables classic graph algorithms to handle G with superior performance in clustering and embedding tasks. We begin by conducting a theoretical analysis to design an integrated objective that consists of two components, the eigengap and connectivity objectives, aiming to link the spectral properties of the aggregated MVAG Laplacian with the underlying community and connectivity properties of G. A constrained optimization problem is then formulated for the integration, which is computationally expensive to solve. Thus, we first develop the SGLA algorithm, which already achieves excellent performance compared with existing methods. To further enhance efficiency, we design SGLA+ to reduce the number of costly objective evaluations via sampling and approximation to quickly find an approximate optimum. Extensive experiments compare our methods against 12 baselines for clustering and 8 baselines for embedding on 8 multi-view attributed graphs, validating the superior performance of SGLA and SGLA+ in terms of result quality and efficiency. Compared with the most effective baselines, our methods are significantly faster, often by up to orders of magnitude.
Authors:Xinkai Zou, Xuan Jiang, Ruikai Huang, Haoze He, Parv Kapoor, Jiahua Zhao
Title: CloudAnoAgent: Anomaly Detection for Cloud Sites via LLM Agent with Neuro-Symbolic Mechanism
Abstract:
Anomaly detection in cloud sites remains a critical yet challenging task. Existing approaches that rely solely on metric data often suffer from high false positive rates (FPR) due to data imbalance between normal and anomalous events, leading to significant operational overhead for system reliance engineers. Recent advances in large language models (LLMs) offer new opportunities for integrating metrics with log data, enabling more accurate and interpretable anomaly detection. In this paper, we propose CloudAnoAgent, the first neuro-symbolic LLM-based agent for anomaly detection in cloud environments. CloudAnoAgent jointly processes structured metrics and textual log data in a unified pipeline, leveraging symbolic verification to validate detection hypotheses and generate structured anomaly reports. To support systematic evaluation, we introduce CloudAnoBench, the first benchmark that provides LLM-generated paired metrics and log data with fine-grained anomaly behavior annotations, filling a critical gap in existing datasets. Experimental results demonstrate that CloudAnoAgent improves anomaly classification accuracy by 46.36% and 36.67% on average and reduces the FPR by 36.67% and 33.89% on average over traditional baselines and LLM-only baseline, with a boost on anomaly type detection accuracy by 12.8% compared to vanilla LLM prompting. These results demonstrate the strengths of our approach in improving detection accuracy, reducing false positives, and enhancing interpretability, thereby supporting practical deployment in enterprise cloud environments.
Authors:Julia Werner, Oliver Bause, Julius Oexle, Maxime Le Floch, Franz Brinkmann, Jochen Hampe, Oliver Bringmann
Title: Seeing More with Less: Video Capsule Endoscopy with Multi-Task Learning
Abstract:
Video capsule endoscopy has become increasingly important for investigating the small intestine within the gastrointestinal tract. However, a persistent challenge remains the short battery lifetime of such compact sensor edge devices. Integrating artificial intelligence can help overcome this limitation by enabling intelligent real-time decision-making, thereby reducing the energy consumption and prolonging the battery life. However, this remains challenging due to data sparsity and the limited resources of the device restricting the overall model size. In this work, we introduce a multi-task neural network that combines the functionalities of precise self-localization within the gastrointestinal tract with the ability to detect anomalies in the small intestine within a single model. Throughout the development process, we consistently restricted the total number of parameters to ensure the feasibility to deploy such model in a small capsule. We report the first multi-task results using the recently published Galar dataset, integrating established multi-task methods and Viterbi decoding for subsequent time-series analysis. This outperforms current single-task models and represents a significant advance in AI-based approaches in this field. Our model achieves an accuracy of 93.63% on the localization task and an accuracy of 87.48% on the anomaly detection task. The approach requires only 1 million parameters while surpassing the current baselines.
Authors:Chiao-An Yang, Kuan-Chuan Peng, Raymond A. Yeh
Title: Toward Long-Tailed Online Anomaly Detection through Class-Agnostic Concepts
Abstract:
Anomaly detection (AD) identifies the defect regions of a given image. Recent works have studied AD, focusing on learning AD without abnormal images, with long-tailed distributed training data, and using a unified model for all classes. In addition, online AD learning has also been explored. In this work, we expand in both directions to a realistic setting by considering the novel task of long-tailed online AD (LTOAD). We first identified that the offline state-of-the-art LTAD methods cannot be directly applied to the online setting. Specifically, LTAD is class-aware, requiring class labels that are not available in the online setting. To address this challenge, we propose a class-agnostic framework for LTAD and then adapt it to our online learning setting. Our method outperforms the SOTA baselines in most offline LTAD settings, including both the industrial manufacturing and the medical domain. In particular, we observe +4.63% image-AUROC on MVTec even compared to methods that have access to class labels and the number of classes. In the most challenging long-tailed online setting, we achieve +0.53% image-AUROC compared to baselines. Our LTOAD benchmark is released here: https://doi.org/10.5281/zenodo.16283852 .
Authors:Baofu Han, Bing Li, Yining Qi, Raja Jurdak, Kaibin Huang, Chau Yuen
Title: DP2Guard: A Lightweight and Byzantine-Robust Privacy-Preserving Federated Learning Scheme for Industrial IoT
Abstract:
Privacy-Preserving Federated Learning (PPFL) has emerged as a secure distributed Machine Learning (ML) paradigm that aggregates locally trained gradients without exposing raw data. To defend against model poisoning threats, several robustness-enhanced PPFL schemes have been proposed by integrating anomaly detection. Nevertheless, they still face two major challenges: (1) the reliance on heavyweight encryption techniques results in substantial communication and computation overhead; and (2) single-strategy defense mechanisms often fail to provide sufficient robustness against adaptive adversaries. To overcome these challenges, we propose DP2Guard, a lightweight PPFL framework that enhances both privacy and robustness. DP2Guard leverages a lightweight gradient masking mechanism to replace costly cryptographic operations while ensuring the privacy of local gradients. A hybrid defense strategy is proposed, which extracts gradient features using singular value decomposition and cosine similarity, and applies a clustering algorithm to effectively identify malicious gradients. Additionally, DP2Guard adopts a trust score-based adaptive aggregation scheme that adjusts client weights according to historical behavior, while blockchain records aggregated results and trust scores to ensure tamper-proof and auditable training. Extensive experiments conducted on two public datasets demonstrate that DP2Guard effectively defends against four advanced poisoning attacks while ensuring privacy with reduced communication and computation costs.
Authors:Paul McHard, Florent P. Audonnet, Oliver Summerell, Sebastian Andraos, Paul Henderson, Gerardo Aragon-Camarasa
Title: 3D-ADAM: A Dataset for 3D Anomaly Detection in Additive Manufacturing
Abstract:
Surface defects are a primary source of yield loss in manufacturing, yet existing anomaly detection methods often fail in real-world deployment due to limited and unrepresentative datasets. To overcome this, we introduce 3D-ADAM, a 3D Anomaly Detection in Additive Manufacturing dataset, that is the first large-scale, industry-relevant dataset for RGB+3D surface defect detection in additive manufacturing. 3D-ADAM comprises 14,120 high-resolution scans of 217 unique parts, captured with four industrial depth sensors, and includes 27,346 annotated defects across 12 categories along with 27,346 annotations of machine element features in 16 classes. 3D-ADAM is captured in a real industrial environment and as such reflects real production conditions, including variations in part placement, sensor positioning, lighting, and partial occlusion. Benchmarking state-of-the-art models demonstrates that 3D-ADAM presents substantial challenges beyond existing datasets. Validation through expert labelling surveys with industry partners further confirms its industrial relevance. By providing this benchmark, 3D-ADAM establishes a foundation for advancing robust 3D anomaly detection capable of meeting manufacturing demands.
Authors:Nishant Chinnasami, Rye Stahle-Smith, Rasha Karakchi
Title: ML-Enhanced AES Anomaly Detection for Real-Time Embedded Security
Abstract:
Advanced Encryption Standard (AES) is a widely adopted cryptographic algorithm, yet its practical implementations remain susceptible to side-channel and fault injection attacks. In this work, we propose a comprehensive framework that enhances AES-128 encryption security through controlled anomaly injection and real-time anomaly detection using both statistical and machine learning (ML) methods. We simulate timing and fault-based anomalies by injecting execution delays and ciphertext perturbations during encryption, generating labeled datasets for detection model training. Two complementary detection mechanisms are developed: a threshold-based timing anomaly detector and a supervised Random Forest classifier trained on combined timing and ciphertext features. We implement and evaluate the framework on both CPU and FPGA-based SoC hardware (PYNQ-Z1), measuring performance across varying block sizes, injection rates, and core counts. Our results show that ML-based detection significantly outperforms threshold-based methods in precision and recall while maintaining real-time performance on embedded hardware. Compared to existing AES anomaly detection methods, our solution offers a low-cost, real-time, and accurate detection approach deployable on lightweight FPGA platforms.
Authors:Hongyu Hè, Minhao Jin, Maria Apostolaki
Title: Learning Constraints Directly from Network Data
Abstract:
Network data conforms to a wide range of rules that arise from protocols, design principles, and deployment decisions (e.g., a packet's queuing delay must be less than its end-to-end delay). Formalizing such rules as logic constraints can (i) improve the quality of synthetic data, (ii) reduce the brittleness of machine learning (ML) models, and (iii) improve semantic understanding of network measurements. However, these benefits remain out of reach if rule extraction is manual or solely reliant on ML, as both approaches yield incomplete, unreliable, and/or inaccurate rules. This paper formulates rule extraction as a constraint modeling problem and introduces NetNomos that learns propositional logic constraints directly from raw network measurements. Constraint modeling in this domain is uniquely challenging due to the scale of the data, the inherent learning complexity and passive environment, and the lack of ground truth supervision. NetNomos addresses these challenges via a lattice-based search structured by constraint specificity and succinctness. Our approach reduces learning complexity from superquadratic to logarithmic and enables efficient traversal in combinatorial search space. Our evaluations on diverse network datasets show that NetNomos learns all benchmark rules, including those associated with as little as 0.01% of data points, in under three hours. In contrast, baseline methods discover less than 25% of the rules and require several days to run. Through three case studies, we show that: NetNomos (i) finds rule violations in the outputs of all seven synthetic traffic generators, hence can be used to assess and guide their generation process; (ii) detects semantic differences in traffic, hence can be used for anomaly detection; and (iii) automatically finds rules used for telemetry imputation, hence can support monitoring through inference.
Authors:Laura Boggia, Rafael Teixeira de Lima, Bogdan Malaescu
Title: Benchmarking Unsupervised Strategies for Anomaly Detection in Multivariate Time Series
Abstract:
Anomaly detection in multivariate time series is an important problem across various fields such as healthcare, financial services, manufacturing or physics detector monitoring. Accurately identifying when unexpected errors or faults occur is essential, yet challenging, due to the unknown nature of anomalies and the complex interdependencies between time series dimensions. In this paper, we investigate transformer-based approaches for time series anomaly detection, focusing on the recently proposed iTransformer architecture. Our contributions are fourfold: (i) we explore the application of the iTransformer to time series anomaly detection, and analyse the influence of key parameters such as window size, step size, and model dimensions on performance; (ii) we examine methods for extracting anomaly labels from multidimensional anomaly scores and discuss appropriate evaluation metrics for such labels; (iii) we study the impact of anomalous data present during training and assess the effectiveness of alternative loss functions in mitigating their influence; and (iv) we present a comprehensive comparison of several transformer-based models across a diverse set of datasets for time series anomaly detection.
Authors:Joshua Schraven, Alexander Windmann, Oliver Niggemann
Title: MAWIFlow Benchmark: Realistic Flow-Based Evaluation for Network Intrusion Detection
Abstract:
Benchmark datasets for network intrusion detection commonly rely on synthetically generated traffic, which fails to reflect the statistical variability and temporal drift encountered in operational environments. This paper introduces MAWIFlow, a flow-based benchmark derived from the MAWILAB v1.1 dataset, designed to enable realistic and reproducible evaluation of anomaly detection methods. A reproducible preprocessing pipeline is presented that transforms raw packet captures into flow representations conforming to the CICFlowMeter format, while preserving MAWILab's original anomaly labels. The resulting datasets comprise temporally distinct samples from January 2011, 2016, and 2021, drawn from trans-Pacific backbone traffic. To establish reference baselines, traditional machine learning methods, including Decision Trees, Random Forests, XGBoost, and Logistic Regression, are compared to a deep learning model based on a CNN-BiLSTM architecture. Empirical results demonstrate that tree-based classifiers perform well on temporally static data but experience significant performance degradation over time. In contrast, the CNN-BiLSTM model maintains better performance, thus showing improved generalization. These findings underscore the limitations of synthetic benchmarks and static models, and motivate the adoption of realistic datasets with explicit temporal structure. All datasets, pipeline code, and model implementations are made publicly available to foster transparency and reproducibility.
Authors:Emmanuel Gangler, Emille E. O. Ishida, Matwey V. Kornilov, Vladimir Korolev, Anastasia Lavrukhina, Konstantin Malanchev, Maria V. Pruzhinskaya, Etienne Russeil, Timofey Semenikhin, Sreevarsha Sreejith, Alina A. Volnova
Title: Signatures to help interpretability of anomalies
Abstract:
Machine learning is often viewed as a black box when it comes to understanding its output, be it a decision or a score. Automatic anomaly detection is no exception to this rule, and quite often the astronomer is left to independently analyze the data in order to understand why a given event is tagged as an anomaly. We introduce here idea of anomaly signature, whose aim is to help the interpretability of anomalies by highlighting which features contributed to the decision.
Authors:Ananya Joshi, Nolan Gormley, Richa Gadgil, Tina Townes, Roni Rosenfeld, Bryan Wilder
Title: An AI-Based Public Health Data Monitoring System
Abstract:
Public health experts need scalable approaches to monitor large volumes of health data (e.g., cases, hospitalizations, deaths) for outbreaks or data quality issues. Traditional alert-based monitoring systems struggle with modern public health data monitoring systems for several reasons, including that alerting thresholds need to be constantly reset and the data volumes may cause application lag. Instead, we propose a ranking-based monitoring paradigm that leverages new AI anomaly detection methods. Through a multi-year interdisciplinary collaboration, the resulting system has been deployed at a national organization to monitor up to 5,000,000 data points daily. A three-month longitudinal deployed evaluation revealed a significant improvement in monitoring objectives, with a 54x increase in reviewer speed efficiency compared to traditional alert-based methods. This work highlights the potential of human-centered AI to transform public health decision-making.
Authors:Bishwajit Prasad Gond, Durga Prasad Mohapatra
Title: System Calls for Malware Detection and Classification: Methodologies and Applications
Abstract:
As malware continues to become more complex and harder to detect, Malware Analysis needs to continue to evolve to stay one step ahead. One promising key area approach focuses on using system calls and API Calls, the core communication between user applications and the operating system and their kernels. These calls provide valuable insight into how software or programs behaves, making them an useful tool for spotting suspicious or harmful activity of programs and software. This chapter takes a deep down look at how system calls are used in malware detection and classification, covering techniques like static and dynamic analysis, as well as sandboxing. By combining these methods with advanced techniques like machine learning, statistical analysis, and anomaly detection, researchers can analyze system call patterns to tell the difference between normal and malicious behavior. The chapter also explores how these techniques are applied across different systems, including Windows, Linux, and Android, while also looking at the ways sophisticated malware tries to evade detection.
Authors:Chunyu Wei, Wenji Hu, Xingjia Hao, Yunhai Wang, Yueguo Chen, Bing Bai, Fei Wang
Title: Graph Evidential Learning for Anomaly Detection
Abstract:
Graph anomaly detection faces significant challenges due to the scarcity of reliable anomaly-labeled datasets, driving the development of unsupervised methods. Graph autoencoders (GAEs) have emerged as a dominant approach by reconstructing graph structures and node features while deriving anomaly scores from reconstruction errors. However, relying solely on reconstruction error for anomaly detection has limitations, as it increases the sensitivity to noise and overfitting. To address these issues, we propose Graph Evidential Learning (GEL), a probabilistic framework that redefines the reconstruction process through evidential learning. By modeling node features and graph topology using evidential distributions, GEL quantifies two types of uncertainty: graph uncertainty and reconstruction uncertainty, incorporating them into the anomaly scoring mechanism. Extensive experiments demonstrate that GEL achieves state-of-the-art performance while maintaining high robustness against noise and structural perturbations.
Authors:Yuting Li, Shaoyuan Huang, Tengwen Zhang, Cheng Zhang, Xiaofei Wang, Victor C. M. Leung
Title: Sentinel: Scheduling Live Streams with Proactive Anomaly Detection in Crowdsourced Cloud-Edge Platforms
Abstract:
With the rapid growth of live streaming services, Crowdsourced Cloud-edge service Platforms (CCPs) are playing an increasingly important role in meeting the increasing demand. Although stream scheduling plays a critical role in optimizing CCPs' revenue, most optimization strategies struggle to achieve practical results due to various anomalies in unstable CCPs. Additionally, the substantial scale of CCPs magnifies the difficulties of anomaly detection in time-sensitive scheduling. To tackle these challenges, this paper proposes Sentinel, a proactive anomaly detection-based scheduling framework. Sentinel models the scheduling process as a two-stage Pre-Post-Scheduling paradigm: in the pre-scheduling stage, Sentinel conducts anomaly detection and constructs a strategy pool; in the post-scheduling stage, upon request arrival, it triggers an appropriate scheduling based on a pre-generated strategy to implement the scheduling process. Extensive experiments on realistic datasets show that Sentinel significantly reduces anomaly frequency by 70%, improves revenue by 74%, and doubles the scheduling speed.
Authors:Vijay Ekambaram, Subodh Kumar, Arindam Jati, Sumanta Mukherjee, Tomoya Sakai, Pankaj Dayama, Wesley M. Gifford, Jayant Kalagnanam
Title: TSPulse: Dual Space Tiny Pre-Trained Models for Rapid Time-Series Analysis
Abstract:
The rise of time-series pre-trained models has advanced temporal representation learning, but current state-of-the-art models are often large-scale, requiring substantial compute. We introduce TSPulse, ultra-compact time-series pre-trained models with only 1M parameters, specialized to perform strongly across classification, anomaly detection, imputation, and retrieval tasks. TSPulse introduces innovations at both the architecture and task levels. At the architecture level, it employs a dual-space masked reconstruction, learning from both time and frequency domains to capture complementary signals. This is further enhanced by a dual-embedding disentanglement, generating both detailed embeddings for fine-grained analysis and high-level semantic embeddings for broader task understanding. Notably, TSPulse's semantic embeddings are robust to shifts in time, magnitude, and noise, which is important for robust retrieval. At the task level, TSPulse incorporates TSLens, a fine-tuning component enabling task-specific feature attention. It also introduces a multi-head triangulation technique that correlates deviations from multiple prediction heads, enhancing anomaly detection by fusing complementary model outputs. Additionally, a hybrid mask pretraining is proposed to improves zero-shot imputation by reducing pre-training bias. These architecture and task innovations collectively contribute to TSPulse's significant performance gains: 5-16% on the UEA classification benchmarks, +20% on the TSB-AD anomaly detection leaderboard, +50% in zero-shot imputation, and +25% in time-series retrieval. Remarkably, these results are achieved with just 1M parameters (10-100X smaller than existing SOTA models) and allow GPU-free inference, setting a new standard for efficient time-series pre-trained models. The models can be accessed from https://huggingface.co/ibm-granite/granite-timeseries-tspulse-r1
Authors:Natansh Mathur, Brian Coyle, Nishant Jain, Snehal Raj, Akshat Tandon, Jasper Simon Krauser, Rainer Stoessel
Title: Bayesian Quantum Orthogonal Neural Networks for Anomaly Detection
Abstract:
Identification of defects or anomalies in 3D objects is a crucial task to ensure correct functionality. In this work, we combine Bayesian learning with recent developments in quantum and quantum-inspired machine learning, specifically orthogonal neural networks, to tackle this anomaly detection problem for an industrially relevant use case. Bayesian learning enables uncertainty quantification of predictions, while orthogonality in weight matrices enables smooth training. We develop orthogonal (quantum) versions of 3D convolutional neural networks and show that these models can successfully detect anomalies in 3D objects. To test the feasibility of incorporating quantum computers into a quantum-enhanced anomaly detection pipeline, we perform hardware experiments with our models on IBM's 127-qubit Brisbane device, testing the effect of noise and limited measurement shots.
Authors:Guodong Shen, Yuqi Ouyang, Junru Lu, Yixuan Yang, Victor Sanchez
Title: Advancing Video Anomaly Detection: A Bi-Directional Hybrid Framework for Enhanced Single- and Multi-Task Approaches
Abstract:
Despite the prevailing transition from single-task to multi-task approaches in video anomaly detection, we observe that many adopt sub-optimal frameworks for individual proxy tasks. Motivated by this, we contend that optimizing single-task frameworks can advance both single- and multi-task approaches. Accordingly, we leverage middle-frame prediction as the primary proxy task, and introduce an effective hybrid framework designed to generate accurate predictions for normal frames and flawed predictions for abnormal frames. This hybrid framework is built upon a bi-directional structure that seamlessly integrates both vision transformers and ConvLSTMs. Specifically, we utilize this bi-directional structure to fully analyze the temporal dimension by predicting frames in both forward and backward directions, significantly boosting the detection stability. Given the transformer's capacity to model long-range contextual dependencies, we develop a convolutional temporal transformer that efficiently associates feature maps from all context frames to generate attention-based predictions for target frames. Furthermore, we devise a layer-interactive ConvLSTM bridge that facilitates the smooth flow of low-level features across layers and time-steps, thereby strengthening predictions with fine details. Anomalies are eventually identified by scrutinizing the discrepancies between target frames and their corresponding predictions. Several experiments conducted on public benchmarks affirm the efficacy of our hybrid framework, whether used as a standalone single-task approach or integrated as a branch in a multi-task approach. These experiments also underscore the advantages of merging vision transformers and ConvLSTMs for video anomaly detection.
Authors:José Suárez-Varela, Andra Lutu
Title: Uncovering Issues in the Radio Access Network by Looking at the Neighbors
Abstract:
Mobile network operators (MNOs) manage Radio Access Networks (RANs) with massive amounts of cells over multiple radio generations (2G-5G). To handle such complexity, operations teams rely on monitoring systems, including anomaly detection tools that identify unexpected behaviors. In this paper, we present c-ANEMON, a Contextual ANomaly dEtection MONitor for the RAN based on Graph Neural Networks (GNNs). Our solution captures spatio-temporal variations by analyzing the behavior of individual cells in relation to their local neighborhoods, enabling the detection of anomalies that are independent of external mobility factors. This, in turn, allows focusing on anomalies associated with network issues (e.g., misconfigurations, equipment failures). We evaluate c-ANEMON using real-world data from a large European metropolitan area (7,890 cells; 3 months). First, we show that the GNN model within our solution generalizes effectively to cells from previously unseen areas, suggesting the possibility of using a single model across extensive deployment regions. Then, we analyze the anomalies detected by c-ANEMON through manual inspection and define several categories of long-lasting anomalies (6+ hours). Notably, 45.95% of these anomalies fall into a category that is more likely to require intervention by operations teams.
Authors:Sergey Kuznetsov, Sanduni Pinnawala, Peter A. Wijeratne, Ivor J. A. Simpson
Title: Investigating the Role of Bilateral Symmetry for Inpainting Brain MRI
Abstract:
Inpainting has recently emerged as a valuable and interesting technology to employ in the analysis of medical imaging data, in particular brain MRI. A wide variety of methodologies for inpainting MRI have been proposed and demonstrated on tasks including anomaly detection. In this work we investigate the statistical relationship between inpainted brain structures and the amount of subject-specific conditioning information, i.e. the other areas of the image that are masked. In particular, we analyse the distribution of inpainting results when masking additional regions of the image, specifically the contra-lateral structure. This allows us to elucidate where in the brain the model is drawing information from, and in particular, what is the importance of hemispherical symmetry? Our experiments interrogate a diffusion inpainting model through analysing the inpainting of subcortical brain structures based on intensity and estimated area change. We demonstrate that some structures show a strong influence of symmetry in the conditioning of the inpainting process.
Authors:Julia Werner, Christoph Gerum, Jorg Nick, Maxime Le Floch, Franz Brinkmann, Jochen Hampe, Oliver Bringmann
Title: Enhanced Anomaly Detection for Capsule Endoscopy Using Ensemble Learning Strategies
Abstract:
Capsule endoscopy is a method to capture images of the gastrointestinal tract and screen for diseases which might remain hidden if investigated with standard endoscopes. Due to the limited size of a video capsule, embedding AI models directly into the capsule demands careful consideration of the model size and thus complicates anomaly detection in this field. Furthermore, the scarcity of available data in this domain poses an ongoing challenge to achieving effective anomaly detection. Thus, this work introduces an ensemble strategy to address this challenge in anomaly detection tasks in video capsule endoscopies, requiring only a small number of individual neural networks during both the training and inference phases. Ensemble learning combines the predictions of multiple independently trained neural networks. This has shown to be highly effective in enhancing both the accuracy and robustness of machine learning models. However, this comes at the cost of higher memory usage and increased computational effort, which quickly becomes prohibitive in many real-world applications. Instead of applying the same training algorithm to each individual network, we propose using various loss functions, drawn from the anomaly detection field, to train each network. The methods are validated on the two largest publicly available datasets for video capsule endoscopy images, the Galar and the Kvasir-Capsule dataset. We achieve an AUC score of 76.86% on the Kvasir-Capsule and an AUC score of 76.98% on the Galar dataset. Our approach outperforms current baselines with significantly fewer parameters across all models, which is a crucial step towards incorporating artificial intelligence into capsule endoscopies.
Authors:Narges Mehran, Nikolay Nikolov, Radu Prodan, Dumitru Roman, Dragi Kimovski, Frank Pallas, Peter Dorfinger
Title: ADApt: Edge Device Anomaly Detection and Microservice Replica Prediction
Abstract:
The increased usage of Internet of Things devices at the network edge and the proliferation of microservice-based applications create new orchestration challenges in Edge computing. These include detecting overutilized resources and scaling out overloaded microservices in response to surging requests. This work presents ADApt, an extension of the ADA-PIPE tool developed in the DataCloud project, by monitoring Edge devices, detecting the utilization-based anomalies of processor or memory, investigating the scalability in microservices, and adapting the application executions. To reduce the overutilization bottleneck, we first explore monitored devices executing microservices over various time slots, detecting overutilization-based processing events, and scoring them. Thereafter, based on the memory requirements, ADApt predicts the processing requirements of the microservices and estimates the number of replicas running on the overutilized devices. The prediction results show that the gradient boosting regression-based replica prediction reduces the MAE, MAPE, and RMSE compared to others. Moreover, ADApt can estimate the number of replicas close to the actual data and reduce the CPU utilization of the device by 14%-28%.
Authors:Shu-Wei Huang, Xingfang Wu, Heng Li
Title: LogLSHD: Fast Log Parsing with Locality-Sensitive Hashing and Dynamic Time Warping
Abstract:
Large-scale software systems generate vast volumes of system logs that are essential for monitoring, diagnosing, and performance optimization. However, the unstructured nature and ever-growing scale of these logs present significant challenges for manual analysis and automated downstream tasks such as anomaly detection. Log parsing addresses these challenges by converting raw logs into structured formats, enabling efficient log analysis. Despite its importance, existing log parsing methods suffer from limitations in efficiency and scalability, due to the large size of log data and their heterogeneous formats. To overcome these challenges, this study proposes a log parsing approach, LogLSHD, which leverages Locality-Sensitive Hashing (LSH) to group similar logs and integrates Dynamic Time Warping (DTW) to enhance the accuracy of template extraction. LogLSHD demonstrates exceptional efficiency in parsing time, significantly outperforming state-of-the-art methods. For example, compared to Drain, LogLSHD reduces the average parsing time by 73% while increasing the average parsing accuracy by 15% on the LogHub 2.0 benchmark.
Authors:Yinghe Zhang, Chi Liu, Shuai Zhou, Sheng Shen, Peng Gui
Title: Unleashing the Power of Pre-trained Encoders for Universal Adversarial Attack Detection
Abstract:
Adversarial attacks pose a critical security threat to real-world AI systems by injecting human-imperceptible perturbations into benign samples to induce misclassification in deep learning models. While existing detection methods, such as Bayesian uncertainty estimation and activation pattern analysis, have achieved progress through feature engineering, their reliance on handcrafted feature design and prior knowledge of attack patterns limits generalization capabilities and incurs high engineering costs. To address these limitations, this paper proposes a lightweight adversarial detection framework based on the large-scale pre-trained vision-language model CLIP. Departing from conventional adversarial feature characterization paradigms, we innovatively adopt an anomaly detection perspective. By jointly fine-tuning CLIP's dual visual-text encoders with trainable adapter networks and learnable prompts, we construct a compact representation space tailored for natural images. Notably, our detection architecture achieves substantial improvements in generalization capability across both known and unknown attack patterns compared to traditional methods, while significantly reducing training overhead. This study provides a novel technical pathway for establishing a parameter-efficient and attack-agnostic defense paradigm, markedly enhancing the robustness of vision systems against evolving adversarial threats.
Authors:Arthur Capozzi, Salvatore Vilella, Dario Moncalvo, Marco Fornasiero, Valeria Ricci, Silvia Ronchiadin, Giancarlo Ruffo
Title: FlowSeries: Anomaly Detection in Financial Transaction Flows
Abstract:
In recent years, the digitization and automation of anti-financial crime (AFC) investigative processes have faced significant challenges, particularly the need for interpretability of AI model results and the lack of labeled data for training. Network analysis has emerged as a valuable approach in this context. In this paper, we present WeirdFlows, a top-down search pipeline for detecting potentially fraudulent transactions and non-compliant agents. In a transaction network, fraud attempts are often based on complex transaction patterns that change over time to avoid detection. The WeirdFlows pipeline requires neither an a priori set of patterns nor a training set. In addition, by providing elements to explain the anomalies found, it facilitates and supports the work of an AFC analyst. We evaluate WeirdFlows on a dataset from Intesa Sanpaolo (ISP) bank, comprising 80 million cross-country transactions over 15 months, benchmarking our implementation of the algorithm. The results, corroborated by ISP AFC experts, highlight its effectiveness in identifying suspicious transactions and actors, particularly in the context of the economic sanctions imposed in the EU after February 2022. This demonstrates \textit{WeirdFlows}' capability to handle large datasets, detect complex transaction patterns, and provide the necessary interpretability for formal AFC investigations.
Authors:Jonas Ney, Norbert Wehn
Title: ECNN: A Low-complex, Adjustable CNN for Industrial Pump Monitoring Using Vibration Data
Abstract:
Industrial pumps are essential components in various sectors, such as manufacturing, energy production, and water treatment, where their failures can cause significant financial and safety risks. Anomaly detection can be used to reduce those risks and increase reliability. In this work, we propose a novel enhanced convolutional neural network (ECNN) to predict the failure of an industrial pump based on the vibration data captured by an acceleration sensor. The convolutional neural network (CNN) is designed with a focus on low complexity to enable its implementation on edge devices with limited computational resources. Therefore, a detailed design space exploration is performed to find a topology satisfying the trade-off between complexity and accuracy. Moreover, to allow for adaptation to unknown pumps, our algorithm features a pump-specific parameter that can be determined by a small set of normal data samples. Finally, we combine the ECNN with a threshold approach to further increase the performance and satisfy the application requirements. As a result, our combined approach significantly outperforms a traditional statistical approach and a classical CNN in terms of accuracy. To summarize, this work provides a novel, low-complex, CNN-based algorithm that is enhanced by classical methods to offer high accuracy for anomaly detection of industrial pumps.
Authors:Nguyen Do, Truc Nguyen, Malik Hassanaly, Raed Alharbi, Jung Taek Seo, My T. Thai
Title: Swift Hydra: Self-Reinforcing Generative Framework for Anomaly Detection with Multiple Mamba Models
Abstract:
Despite a plethora of anomaly detection models developed over the years, their ability to generalize to unseen anomalies remains an issue, particularly in critical systems. This paper aims to address this challenge by introducing Swift Hydra, a new framework for training an anomaly detection method based on generative AI and reinforcement learning (RL). Through featuring an RL policy that operates on the latent variables of a generative model, the framework synthesizes novel and diverse anomaly samples that are capable of bypassing a detection model. These generated synthetic samples are, in turn, used to augment the detection model, further improving its ability to handle challenging anomalies. Swift Hydra also incorporates Mamba models structured as a Mixture of Experts (MoE) to enable scalable adaptation of the number of Mamba experts based on data complexity, effectively capturing diverse feature distributions without increasing the model's inference time. Empirical evaluations on ADBench benchmark demonstrate that Swift Hydra outperforms other state-of-the-art anomaly detection models while maintaining a relatively short inference time. From these results, our research highlights a new and auspicious paradigm of integrating RL and generative AI for advancing anomaly detection.
Authors:Badhan Chandra Das, M. Hadi Amini, Yanzhao Wu
Title: Accurate and Efficient Two-Stage Gun Detection in Video
Abstract:
Object detection in videos plays a crucial role in advancing applications such as public safety and anomaly detection. Existing methods have explored different techniques, including CNN, deep learning, and Transformers, for object detection and video classification. However, detecting tiny objects, e.g., guns, in videos remains challenging due to their small scale and varying appearances in complex scenes. Moreover, existing video analysis models for classification or detection often perform poorly in real-world gun detection scenarios due to limited labeled video datasets for training. Thus, developing efficient methods for effectively capturing tiny object features and designing models capable of accurate gun detection in real-world videos is imperative. To address these challenges, we make three original contributions in this paper. First, we conduct an empirical study of several existing video classification and object detection methods to identify guns in videos. Our extensive analysis shows that these methods may not accurately detect guns in videos. Second, we propose a novel two-stage gun detection method. In stage 1, we train an image-augmented model to effectively classify ``Gun'' videos. To make the detection more precise and efficient, stage 2 employs an object detection model to locate the exact region of the gun within video frames for videos classified as ``Gun'' by stage 1. Third, our experimental results demonstrate that the proposed domain-specific method achieves significant performance improvements and enhances efficiency compared with existing techniques. We also discuss challenges and future research directions in gun detection tasks in computer vision.
Authors:Shlok Mehendale, Aditya Challa, Rahul Yedida, Sravan Danda, Santonu Sarkar, Snehanshu Saha
Title: A Radon-Nikodým Perspective on Anomaly Detection: Theory and Implications
Abstract:
Which principle underpins the design of an effective anomaly detection loss function? The answer lies in the concept of Radon-Nikodým theorem, a fundamental concept in measure theory. The key insight from this article is: Multiplying the vanilla loss function with the Radon-Nikodým derivative improves the performance across the board. We refer to this as RN-Loss. We prove this using the setting of PAC (Probably Approximately Correct) learnability. Depending on the context a Radon-Nikodým derivative takes different forms. In the simplest case of supervised anomaly detection, Radon-Nikodým derivative takes the form of a simple weighted loss. In the case of unsupervised anomaly detection (with distributional assumptions), Radon-Nikodým derivative takes the form of the popular cluster based local outlier factor. We evaluate our algorithm on 96 datasets, including univariate and multivariate data from diverse domains, including healthcare, cybersecurity, and finance. We show that RN-Derivative algorithms outperform state-of-the-art methods on 68% of Multivariate datasets (based on F1 scores) and also achieves peak F1-scores on 72% of time series (Univariate) datasets.
Authors:Yuqing Wang, Xiao Yang
Title: Machine Learning-Based Cloud Computing Compliance Process Automation
Abstract:
Cloud computing adoption across industries has revolutionized enterprise operations while introducing significant challenges in compliance management. Organizations must continuously meet evolving regulatory requirements such as GDPR and ISO 27001, yet traditional manual review processes have become increasingly inadequate for modern business scales. This paper presents a novel machine learning-based framework for automating cloud computing compliance processes, addressing critical challenges including resource-intensive manual reviews, extended compliance cycles, and delayed risk identification. Our proposed framework integrates multiple machine learning technologies, including BERT-based document processing (94.5% accuracy), One-Class SVM for anomaly detection (88.7% accuracy), and an improved CNN-LSTM architecture for sequential compliance data analysis (90.2% accuracy). Implementation results demonstrate significant improvements: reducing compliance process duration from 7 days to 1.5 days, improving accuracy from 78% to 93%, and decreasing manual effort by 73.3%. A real-world deployment at a major securities firm validated these results, processing 800,000 daily transactions with 94.2% accuracy in risk identification.
Authors:Ya Zhou, Yujie Yang, Jianhuang Gan, Xiangjie Li, Jing Yuan, Wei Zhao
Title: Multi-scale Masked Autoencoder for Electrocardiogram Anomaly Detection
Abstract:
Electrocardiogram (ECG) analysis is a fundamental tool for diagnosing cardiovascular conditions, yet anomaly detection in ECG signals remains challenging due to their inherent complexity and variability. We propose Multi-scale Masked Autoencoder for ECG anomaly detection (MMAE-ECG), a novel end-to-end framework that effectively captures both global and local dependencies in ECG data. Unlike state-of-the-art methods that rely on heartbeat segmentation or R-peak detection, MMAE-ECG eliminates the need for such pre-processing steps, enhancing its suitability for clinical deployment. MMAE-ECG partitions ECG signals into non-overlapping segments, with each segment assigned learnable positional embeddings. A novel multi-scale masking strategy and multi-scale attention mechanism, along with distinct positional embeddings, enable a lightweight Transformer encoder to effectively capture both local and global dependencies. The masked segments are then reconstructed using a single-layer Transformer block, with an aggregation strategy employed during inference to refine the outputs. Experimental results demonstrate that our method achieves performance comparable to state-of-the-art approaches while significantly reducing computational complexity-approximately 1/78 of the floating-point operations (FLOPs) required for inference. Ablation studies further validate the effectiveness of each component, highlighting the potential of multi-scale masked autoencoders for anomaly detection.
Authors:Namwoo Kim, Hyungryul Baik, Yoonjin Yoon
Title: TopoCL: Topological Contrastive Learning for Time Series
Abstract:
Universal time series representation learning is challenging but valuable in real-world applications such as classification, anomaly detection, and forecasting. Recently, contrastive learning (CL) has been actively explored to tackle time series representation. However, a key challenge is that the data augmentation process in CL can distort seasonal patterns or temporal dependencies, inevitably leading to a loss of semantic information. To address this challenge, we propose Topological Contrastive Learning for time series (TopoCL). TopoCL mitigates such information loss by incorporating persistent homology, which captures the topological characteristics of data that remain invariant under transformations. In this paper, we treat the temporal and topological properties of time series data as distinct modalities. Specifically, we compute persistent homology to construct topological features of time series data, representing them in persistence diagrams. We then design a neural network to encode these persistent diagrams. Our approach jointly optimizes CL within the time modality and time-topology correspondence, promoting a comprehensive understanding of both temporal semantics and topological properties of time series. We conduct extensive experiments on four downstream tasks-classification, anomaly detection, forecasting, and transfer learning. The results demonstrate that TopoCL achieves state-of-the-art performance.
Authors:Furkan Mumcu, Michael J. Jones, Yasin Yilmaz, Anoop Cherian
Title: ComplexVAD: Detecting Interaction Anomalies in Video
Abstract:
Existing video anomaly detection datasets are inadequate for representing complex anomalies that occur due to the interactions between objects. The absence of complex anomalies in previous video anomaly detection datasets affects research by shifting the focus onto simple anomalies. To address this problem, we introduce a new large-scale dataset: ComplexVAD. In addition, we propose a novel method to detect complex anomalies via modeling the interactions between objects using a scene graph with spatio-temporal attributes. With our proposed method and two other state-of-the-art video anomaly detection methods, we obtain baseline scores on ComplexVAD and demonstrate that our new method outperforms existing works.
Authors:Sajad Khatiri, Fatemeh Mohammadi Amin, Sebastiano Panichella, Paolo Tonella
Title: When Uncertainty Leads to Unsafety: Empirical Insights into the Role of Uncertainty in Unmanned Aerial Vehicle Safety
Abstract:
Despite the recent developments in obstacle avoidance and other safety features, autonomous Unmanned Aerial Vehicles (UAVs) continue to face safety challenges. No previous work investigated the relationship between the behavioral uncertainty of a UAV, characterized in this work by inconsistent or erratic control signal patterns, and the unsafety of its flight. By quantifying uncertainty, it is possible to develop a predictor for unsafety, which acts as a flight supervisor. We conducted a large-scale empirical investigation of safety violations using PX4-Autopilot, an open-source UAV software platform. Our dataset of over 5,000 simulated flights, created to challenge obstacle avoidance, allowed us to explore the relation between uncertain UAV decisions and safety violations: up to 89% of unsafe UAV states exhibit significant decision uncertainty, and up to 74% of uncertain decisions lead to unsafe states. Based on these findings, we implemented Superialist (Supervising Autonomous Aerial Vehicles), a runtime uncertainty detector based on autoencoders, the state-of-the-art technology for anomaly detection. Superialist achieved high performance in detecting uncertain behaviors with up to 96% precision and 93% recall. Despite the observed performance degradation when using the same approach for predicting unsafety (up to 74% precision and 87% recall), Superialist enabled early prediction of unsafe states up to 50 seconds in advance.
Authors:Wenhan Jiang, Tingting Chai, Hongri Liu, Kai Wang, Hongke Zhang
Title: TFLAG:Towards Practical APT Detection via Deviation-Aware Learning on Temporal Provenance Graph
Abstract:
Advanced Persistent Threat (APT) have grown increasingly complex and concealed, posing formidable challenges to existing Intrusion Detection Systems in identifying and mitigating these attacks. Recent studies have incorporated graph learning techniques to extract detailed information from provenance graphs, enabling the detection of attacks with greater granularity. Nevertheless, existing studies have largely overlooked the continuous yet subtle temporal variations in the structure of provenance graphs, which may correspond to surreptitious perturbation anomalies in ongoing APT attacks. Therefore, we introduce TFLAG, an advanced anomaly detection framework that for the first time integrates the structural dynamic extraction capabilities of temporal graph model with the anomaly delineation abilities of deviation networks to pinpoint covert attack activities in provenance graphs. This self-supervised integration framework leverages the graph model to extract neighbor interaction data under continuous temporal changes from historical benign behaviors within provenance graphs, while simultaneously utilizing deviation networks to accurately distinguish authentic attack activities from false positive deviations due to unexpected subtle perturbations. The experimental results indicate that, through a comprehensive design that utilizes both attribute and temporal information, it can accurately identify the time windows associated with APT attack behaviors without prior knowledge (e.g., labeled data samples), demonstrating superior accuracy compared to current state-of-the-art methods in differentiating between attack events and system false positive events.
Authors:Ayush Ghadiya, Purbayan Kar, Vishal Chudasama, Pankaj Wasnik
Title: Cross-Modal Fusion and Attention Mechanism for Weakly Supervised Video Anomaly Detection
Abstract:
Recently, weakly supervised video anomaly detection (WS-VAD) has emerged as a contemporary research direction to identify anomaly events like violence and nudity in videos using only video-level labels. However, this task has substantial challenges, including addressing imbalanced modality information and consistently distinguishing between normal and abnormal features. In this paper, we address these challenges and propose a multi-modal WS-VAD framework to accurately detect anomalies such as violence and nudity. Within the proposed framework, we introduce a new fusion mechanism known as the Cross-modal Fusion Adapter (CFA), which dynamically selects and enhances highly relevant audio-visual features in relation to the visual modality. Additionally, we introduce a Hyperbolic Lorentzian Graph Attention (HLGAtt) to effectively capture the hierarchical relationships between normal and abnormal representations, thereby enhancing feature separation accuracy. Through extensive experiments, we demonstrate that the proposed model achieves state-of-the-art results on benchmark datasets of violence and nudity detection.
Authors:Wen-Dong Jiang, Chih-Yung Chang, Hsiang-Chuan Chang, Ji-Yuan Chen, Diptendu Sinha Roy
Title: Injecting Explainability and Lightweight Design into Weakly Supervised Video Anomaly Detection Systems
Abstract:
Weakly Supervised Monitoring Anomaly Detection (WSMAD) utilizes weak supervision learning to identify anomalies, a critical task for smart city monitoring. However, existing multimodal approaches often fail to meet the real-time and interpretability requirements of edge devices due to their complexity. This paper presents TCVADS (Two-stage Cross-modal Video Anomaly Detection System), which leverages knowledge distillation and cross-modal contrastive learning to enable efficient, accurate, and interpretable anomaly detection on edge devices.TCVADS operates in two stages: coarse-grained rapid classification and fine-grained detailed analysis. In the first stage, TCVADS extracts features from video frames and inputs them into a time series analysis module, which acts as the teacher model. Insights are then transferred via knowledge distillation to a simplified convolutional network (student model) for binary classification. Upon detecting an anomaly, the second stage is triggered, employing a fine-grained multi-class classification model. This stage uses CLIP for cross-modal contrastive learning with text and images, enhancing interpretability and achieving refined classification through specially designed triplet textual relationships. Experimental results demonstrate that TCVADS significantly outperforms existing methods in model performance, detection efficiency, and interpretability, offering valuable contributions to smart city monitoring applications.
Authors:Zhangxun Li, Mengyang Zhao, Xuan Yang, Yang Liu, Jiamu Sheng, Xinhua Zeng, Tian Wang, Kewei Wu, Yu-Gang Jiang
Title: STNMamba: Mamba-based Spatial-Temporal Normality Learning for Video Anomaly Detection
Abstract:
Video anomaly detection (VAD) has been extensively researched due to its potential for intelligent video systems. However, most existing methods based on CNNs and transformers still suffer from substantial computational burdens and have room for improvement in learning spatial-temporal normality. Recently, Mamba has shown great potential for modeling long-range dependencies with linear complexity, providing an effective solution to the above dilemma. To this end, we propose a lightweight and effective Mamba-based network named STNMamba, which incorporates carefully designed Mamba modules to enhance the learning of spatial-temporal normality. Firstly, we develop a dual-encoder architecture, where the spatial encoder equipped with Multi-Scale Vision Space State Blocks (MS-VSSB) extracts multi-scale appearance features, and the temporal encoder employs Channel-Aware Vision Space State Blocks (CA-VSSB) to capture significant motion patterns. Secondly, a Spatial-Temporal Interaction Module (STIM) is introduced to integrate spatial and temporal information across multiple levels, enabling effective modeling of intrinsic spatial-temporal consistency. Within this module, the Spatial-Temporal Fusion Block (STFB) is proposed to fuse the spatial and temporal features into a unified feature space, and the memory bank is utilized to store spatial-temporal prototypes of normal patterns, restricting the model's ability to represent anomalies. Extensive experiments on three benchmark datasets demonstrate that our STNMamba achieves competitive performance with fewer parameters and lower computational costs than existing methods.
Authors:Xiaoyu Huang, Weidong Chen, Bo Hu, Zhendong Mao
Title: Graph Mixture of Experts and Memory-augmented Routers for Multivariate Time Series Anomaly Detection
Abstract:
Multivariate time series (MTS) anomaly detection is a critical task that involves identifying abnormal patterns or events in data that consist of multiple interrelated time series. In order to better model the complex interdependence between entities and the various inherent characteristics of each entity, the GNN based methods are widely adopted by existing methods. In each layer of GNN, node features aggregate information from their neighboring nodes to update their information. In doing so, from shallow layer to deep layer in GNN, original individual node features continue to be weakened and more structural information,i.e., from short-distance neighborhood to long-distance neighborhood, continues to be enhanced. However, research to date has largely ignored the understanding of how hierarchical graph information is represented and their characteristics that can benefit anomaly detection. Existing methods simply leverage the output from the last layer of GNN for anomaly estimation while neglecting the essential information contained in the intermediate GNN layers. To address such limitations, in this paper, we propose a Graph Mixture of Experts (Graph-MoE) network for multivariate time series anomaly detection, which incorporates the mixture of experts (MoE) module to adaptively represent and integrate hierarchical multi-layer graph information into entity representations. It is worth noting that our Graph-MoE can be integrated into any GNN-based MTS anomaly detection method in a plug-and-play manner. In addition, the memory-augmented routers are proposed in this paper to capture the correlation temporal information in terms of the global historical features of MTS to adaptively weigh the obtained entity representations to achieve successful anomaly estimation. Extensive experiments on five challenging datasets prove the superiority of our approach and each proposed module.
Authors:Maida Wang, Jinyang Jiang, Peter V. Coveney
Title: A Parameter-Efficient Quantum Anomaly Detection Method on a Superconducting Quantum Processor
Abstract:
Quantum machine learning has gained attention for its potential to address computational challenges. However, whether those algorithms can effectively solve practical problems and outperform their classical counterparts, especially on current quantum hardware, remains a critical question. In this work, we propose a novel quantum machine learning method, called Parameter-Efficient Quantum Anomaly Detection (PEQAD), for practical image anomaly detection, which aims to achieve both parameter efficiency and superior accuracy compared to classical models. Emulation results indicate that PEQAD demonstrates favourable recognition capabilities compared to classical baselines, achieving an average accuracy of over 90% on benchmarks with significantly fewer trainable parameters. Theoretical analysis confirms that PEQAD has a comparable expressivity to classical counterparts while requiring only a fraction of the parameters. Furthermore, we demonstrate the first implementation of a quantum anomaly detection method for general image datasets on a superconducting quantum processor. Specifically, we achieve an accuracy of over 80% with only 16 parameters on the device, providing initial evidence of PEQAD's practical viability in the noisy intermediate-scale quantum era and highlighting its significant reduction in parameter requirements.
Authors:Qiaolin Qin, Heng Li, Ettore Merlo, Maxime Lamothe
Title: Automated, Unsupervised, and Auto-parameterized Inference of Data Patterns and Anomaly Detection
Abstract:
With the advent of data-centric and machine learning (ML) systems, data quality is playing an increasingly critical role in ensuring the overall quality of software systems. Data preparation, an essential step towards high data quality, is known to be a highly effort-intensive process. Although prior studies have dealt with one of the most impacting issues, data pattern violations, these studies usually require data-specific configurations (i.e., parameterized) or use carefully curated data as learning examples (i.e., supervised), relying on domain knowledge and deep understanding of the data, or demanding significant manual effort. In this paper, we introduce RIOLU: Regex Inferencer auto-parameterized Learning with Uncleaned data. RIOLU is fully automated, automatically parameterized, and does not need labeled samples. RIOLU can generate precise patterns from datasets in various domains, with a high F1 score of 97.2%, exceeding the state-of-the-art baseline. In addition, according to our experiment on five datasets with anomalies, RIOLU can automatically estimate a data column's error rate, draw normal patterns, and predict anomalies from unlabeled data with higher performance (up to 800.4% improvement in terms of F1) than the state-of-the-art baseline, even outperforming ChatGPT in terms of both accuracy (12.3% higher F1) and efficiency (10% less inference time). A variant of RIOLU, with user guidance, can further boost its precision, with up to 37.4% improvement in terms of F1. Our evaluation in an industrial setting further demonstrates the practical benefits of RIOLU.
Authors:Weiming Xu, Peng Zhang
Title: Steam Turbine Anomaly Detection: An Unsupervised Learning Approach Using Enhanced Long Short-Term Memory Variational Autoencoder
Abstract:
As core thermal power generation equipment, steam turbines incur significant expenses and adverse effects on operation when facing interruptions like downtime, maintenance, and damage. Accurate anomaly detection is the prerequisite for ensuring the safe and stable operation of steam turbines. However, challenges in steam turbine anomaly detection, including inherent anomalies, lack of temporal information analysis, and high-dimensional data complexity, limit the effectiveness of existing methods. To address these challenges, we proposed an Enhanced Long Short-Term Memory Variational Autoencoder using Deep Advanced Features and Gaussian Mixture Model (ELSTMVAE-DAF-GMM) for precise unsupervised anomaly detection in unlabeled datasets. Specifically, LSTMVAE, integrating LSTM with VAE, was used to project high-dimensional time-series data to a low-dimensional phase space. The Deep Autoencoder-Local Outlier Factor (DAE-LOF) sample selection mechanism was used to eliminate inherent anomalies during training, further improving the model's precision and reliability. The novel deep advanced features (DAF) hybridize latent embeddings and reconstruction discrepancies from the LSTMVAE model and provide a more comprehensive data representation within a continuous and structured phase space, significantly enhancing anomaly detection by synergizing temporal dynamics with data pattern variations. These DAF were incorporated into GMM to ensure robust and effective unsupervised anomaly detection. We utilized real operating data from industry steam turbines and conducted both comparison and ablation experiments, demonstrating superior anomaly detection outcomes characterized by high accuracy and minimal false alarm rates compared with existing methods.
Authors:Luciano S. Martinez-Rau, Yuxuan Zhang, Bengt Oelmann, Sebastian Bader
Title: On-device Anomaly Detection in Conveyor Belt Operations
Abstract:
Conveyor belts are crucial in mining operations by enabling the continuous and efficient movement of bulk materials over long distances, which directly impacts productivity. While detecting anomalies in specific conveyor belt components has been widely studied, identifying the root causes of these failures, such as changing production conditions and operator errors, remains critical. Continuous monitoring of mining conveyor belt work cycles is still at an early stage and requires robust solutions. Recently, an anomaly detection method for duty cycle operations of a mining conveyor belt has been proposed. Based on its limited performance and unevaluated long-term proper operation, this study proposes two novel methods for classifying normal and abnormal duty cycles. The proposed approaches are pattern recognition systems that make use of threshold-based duty-cycle detection mechanisms, manually extracted features, pattern-matching, and supervised tiny machine learning models. The explored low-computational models include decision tree, random forest, extra trees, extreme gradient boosting, Gaussian naive Bayes, and multi-layer perceptron. A comprehensive evaluation of the former and proposed approaches is carried out on two datasets. Both proposed methods outperform the former method in anomaly detection, with the best-performing approach being dataset-dependent. The heuristic rule-based approach achieves the highest F1-score in the same dataset used for algorithm training, with 97.3% for normal cycles and 80.2% for abnormal cycles. The ML-based approach performs better on a dataset including the effects of machine aging, with an F1-score scoring 91.3% for normal cycles and 67.9% for abnormal cycles. Implemented on two low-power microcontrollers, the methods demonstrate efficient, real-time operation with energy consumption of 13.3 and 20.6 \textmu J during inference. These results ...
Authors:Mohammad Saiful Islam, Mohamed Sami Rakha, William Pourmajidi, Janakan Sivaloganathan, John Steinbacher, Andriy Miranskyy
Title: Anomaly Detection in Large-Scale Cloud Systems: An Industry Case and Dataset
Abstract:
As Large-Scale Cloud Systems (LCS) become increasingly complex, effective anomaly detection is critical for ensuring system reliability and performance. However, there is a shortage of large-scale, real-world datasets available for benchmarking anomaly detection methods. To address this gap, we introduce a new high-dimensional dataset from IBM Cloud, collected over 4.5 months from the IBM Cloud Console. This dataset comprises 39,365 rows and 117,448 columns of telemetry data. Additionally, we demonstrate the application of machine learning models for anomaly detection and discuss the key challenges faced in this process. This study and the accompanying dataset provide a resource for researchers and practitioners in cloud system monitoring. It facilitates more efficient testing of anomaly detection methods in real-world data, helping to advance the development of robust solutions to maintain the health and performance of large-scale cloud infrastructures.
Authors:Swetha Rani Kasimalla, Kuchan Park, Junho Hong, Young-Jin Kim, HyoJong Lee
Title: AI-Enhanced Inverter Fault and Anomaly Detection System for Distributed Energy Resources in Microgrids
Abstract:
The integration of Distributed Energy Resources (DERs) into power distribution systems has made microgrids foundational to grid modernization. These DERs, connected through power electronic inverters, create power electronics dominated grid architecture, introducing unique challenges for fault detection. While external line faults are widely studied, inverter faults remain a critical yet underexplored issue. This paper proposes various data mining techniques for the effective detection and localization of inverter faults-essential for preventing catastrophic grid failures. Furthermore, the difficulty of differentiating between system anomalies and internal inverter faults within Power Electronics-Driven Grids (PEDGs) is addressed. To enhance grid resilience, this work applies advanced artificial intelligence methods to distinguish anomalies from true internal faults, identifying the specific malfunctioning switch. The proposed FaultNet-ML methodology is validated on a 9-bus system dominated by inverters, illustrating its robustness in a PEDG environment.
Authors:Chaymae El Jabri, Marc Frappier, Pierre-Martin Tardif
Title: ASTD Patterns for Integrated Continuous Anomaly Detection In Data Logs
Abstract:
This paper investigates the use of the ASTD language for ensemble anomaly detection in data logs. It uses a sliding window technique for continuous learning in data streams, coupled with updating learning models upon the completion of each window to maintain accurate detection and align with current data trends. It proposes ASTD patterns for combining learning models, especially in the context of unsupervised learning, which is commonly used for data streams. To facilitate this, a new ASTD operator is proposed, the Quantified Flow, which enables the seamless combination of learning models while ensuring that the specification remains concise. Our contribution is a specification pattern, highlighting the capacity of ASTDs to abstract and modularize anomaly detection systems. The ASTD language provides a unique approach to develop data flow anomaly detection systems, grounded in the combination of processes through the graphical representation of the language operators. This simplifies the design task for developers, who can focus primarily on defining the functional operations that constitute the system.
Authors:Daniel Menges, Florian Stadtmann, Henrik Jordheim, Adil Rasheed
Title: Predictive Digital Twin for Condition Monitoring Using Thermal Imaging
Abstract:
This paper explores the development and practical application of a predictive digital twin specifically designed for condition monitoring, using advanced mathematical models and thermal imaging techniques. Our work presents a comprehensive approach to integrating Proper Orthogonal Decomposition (POD), Robust Principal Component Analysis (RPCA), and Dynamic Mode Decomposition (DMD) to establish a robust predictive digital twin framework. We employ these methods in a real-time experimental setup involving a heated plate monitored through thermal imaging. This system effectively demonstrates the digital twin's capabilities in real-time predictions, condition monitoring, and anomaly detection. Additionally, we introduce the use of a human-machine interface that includes virtual reality, enhancing user interaction and system understanding. The primary contributions of our research lie in the demonstration of these advanced techniques in a tangible setup, showcasing the potential of digital twins to transform industry practices by enabling more proactive and strategic asset management.
Authors:Wen-Dong Jiang, Chih-Yung Chang, Ssu-Chi Kuai, Diptendu Sinha Roy
Title: A Lightweight Dual-Branch System for Weakly-Supervised Video Anomaly Detection on Consumer Edge Devices
Abstract:
The growing demand for intelligent security in consumer electronics, such as smart home cameras and personal monitoring systems, is often hindered by the high computational cost and large model sizes of advanced AI. These limitations prevent the effective deployment of real-time Video Anomaly Detection (VAD) on resource-constrained edge devices. To bridge this gap, this paper introduces Rule-based Video Anomaly Detection (RuleVAD), a novel, lightweight system engineered for high-efficiency and low-complexity threat detection directly on consumer hardware. RuleVAD features an innovative decoupled dual-branch architecture to minimize computational load. An implicit branch uses visual features for rapid, coarse-grained binary classification, efficiently filtering out normal activity to avoid unnecessary processing. For potentially anomalous or complex events, a multimodal explicit branch takes over. This branch leverages YOLO-World to detect objects and applies data mining to generate interpretable, text-based association rules from the scene. By aligning these rules with visual data, RuleVAD achieves a more nuanced, fine-grained classification, significantly reducing the false alarms common in vision-only systems. Extensive experiments on the XD-Violence and UCF-Crime benchmark datasets show that RuleVAD achieves superior performance, surpassing existing state-of-the-art methods in both accuracy and speed. Crucially, the entire system is optimized for low-power operation and is fully deployable on an NVIDIA Jetson Nano board, demonstrating its practical feasibility for bringing advanced, real-time security monitoring to everyday consumer electronic devices.
Authors:Martin Rabel, Wiebke Günther, Jakob Runge, Andreas Gerhardus
Title: Causal Modeling in Multi-Context Systems: Distinguishing Multiple Context-Specific Causal Graphs which Account for Observational Support
Abstract:
Causal structure learning with data from multiple contexts carries both opportunities and challenges. Opportunities arise from considering shared and context-specific causal graphs enabling to generalize and transfer causal knowledge across contexts. However, a challenge that is currently understudied in the literature is the impact of differing observational support between contexts on the identifiability of causal graphs. Here we study in detail recently introduced [6] causal graph objects that capture both causal mechanisms and data support, allowing for the analysis of a larger class of context-specific changes, characterizing distribution shifts more precisely. We thereby extend results on the identifiability of context-specific causal structures and propose a framework to model context-specific independence (CSI) within structural causal models (SCMs) in a refined way that allows to explore scenarios where these graph objects differ. We demonstrate how this framework can help explaining phenomena like anomalies or extreme events, where causal mechanisms change or appear to change under different conditions. Our results contribute to the theoretical foundations for understanding causal relations in multi-context systems, with implications for generalization, transfer learning, and anomaly detection. Future work may extend this approach to more complex data types, such as time-series.
Authors:Alina A. Volnova, Patrick D. Aleo, Anastasia Lavrukhina, Etienne Russeil, Timofey Semenikhin, Emmanuel Gangler, Emille E. O. Ishida, Matwey V. Kornilov, Vladimir Korolev, Konstantin Malanchev, Maria V. Pruzhinskaya, Sreevarsha Sreejith
Title: Exploring the Universe with SNAD: Anomaly Detection in Astronomy
Abstract:
SNAD is an international project with a primary focus on detecting astronomical anomalies within large-scale surveys, using active learning and other machine learning algorithms. The work carried out by SNAD not only contributes to the discovery and classification of various astronomical phenomena but also enhances our understanding and implementation of machine learning techniques within the field of astrophysics. This paper provides a review of the SNAD project and summarizes the advancements and achievements made by the team over several years.
Authors:Mohamad Abdi, Gerardo Hermosillo Valadez, Halid Ziya Yerebakan
Title: Automatic Mapping of Anatomical Landmarks from Free-Text Using Large Language Models: Insights from Llama-2
Abstract:
Anatomical landmarks are vital in medical imaging for navigation and anomaly detection. Modern large language models (LLMs), like Llama-2, offer promise for automating the mapping of these landmarks in free-text radiology reports to corresponding positions in image data. Recent studies propose LLMs may develop coherent representations of generative processes. Motivated by these insights, we investigated whether LLMs accurately represent the spatial positions of anatomical landmarks. Through experiments with Llama-2 models, we found that they can linearly represent anatomical landmarks in space with considerable robustness to different prompts. These results underscore the potential of LLMs to enhance the efficiency and accuracy of medical imaging workflows.
Authors:Jonathan Mbuya, Dieter Pfoser, Antonios Anastasopoulos
Title: Trajectory Anomaly Detection with Language Models
Abstract:
This paper presents a novel approach for trajectory anomaly detection using an autoregressive causal-attention model, termed LM-TAD. This method leverages the similarities between language statements and trajectories, both of which consist of ordered elements requiring coherence through external rules and contextual variations. By treating trajectories as sequences of tokens, our model learns the probability distributions over trajectories, enabling the identification of anomalous locations with high precision. We incorporate user-specific tokens to account for individual behavior patterns, enhancing anomaly detection tailored to user context. Our experiments demonstrate the effectiveness of LM-TAD on both synthetic and real-world datasets. In particular, the model outperforms existing methods on the Pattern of Life (PoL) dataset by detecting user-contextual anomalies and achieves competitive results on the Porto taxi dataset, highlighting its adaptability and robustness. Additionally, we introduce the use of perplexity and surprisal rate metrics for detecting outliers and pinpointing specific anomalous locations within trajectories. The LM-TAD framework supports various trajectory representations, including GPS coordinates, staypoints, and activity types, proving its versatility in handling diverse trajectory data. Moreover, our approach is well-suited for online trajectory anomaly detection, significantly reducing computational latency by caching key-value states of the attention mechanism, thereby avoiding repeated computations.
Authors:Alejandro Mata Ali, Aitor Moreno Fdez. de Leceta, Jorge López Rubio
Title: Anomaly Detection from a Tensor Train Perspective
Abstract:
We present a series of algorithms in tensor networks for anomaly detection in datasets, by using data compression in a Tensor Train representation. These algorithms consist of preserving the structure of normal data in compression and deleting the structure of anomalous data. The algorithms can be applied to any tensor network representation. We test the effectiveness of the methods with digits and Olivetti faces datasets and a cybersecurity dataset to determine cyber-attacks.
Authors:Debarpan Bhattacharya, Sumanta Mukherjee, Chandramouli Kamanchi, Vijay Ekambaram, Arindam Jati, Pankaj Dayama
Title: Towards Unbiased Evaluation of Time-series Anomaly Detector
Abstract:
Time series anomaly detection (TSAD) is an evolving area of research motivated by its critical applications, such as detecting seismic activity, sensor failures in industrial plants, predicting crashes in the stock market, and so on. Across domains, anomalies occur significantly less frequently than normal data, making the F1-score the most commonly adopted metric for anomaly detection. However, in the case of time series, it is not straightforward to use standard F1-score because of the dissociation between `time points' and `time events'. To accommodate this, anomaly predictions are adjusted, called as point adjustment (PA), before the $F_1$-score evaluation. However, these adjustments are heuristics-based, and biased towards true positive detection, resulting in over-estimated detector performance. In this work, we propose an alternative adjustment protocol called ``Balanced point adjustment'' (BA). It addresses the limitations of existing point adjustment methods and provides guarantees of fairness backed by axiomatic definitions of TSAD evaluation.
Authors:Jiahao Lyu, Minghua Zhao, Xuewen Huang, Yifei Chen, Shuangli Du, Jing Hu, Cheng Shi, Zhiyong Lv
Title: Forward Consistency Learning with Gated Context Aggregation for Video Anomaly Detection
Abstract:
As a crucial element of public security, video anomaly detection (VAD) aims to measure deviations from normal patterns for various events in real-time surveillance systems. However, most existing VAD methods rely on large-scale models to pursue extreme accuracy, limiting their feasibility on resource-limited edge devices. Moreover, mainstream prediction-based VAD detects anomalies using only single-frame future prediction errors, overlooking the richer constraints from longer-term temporal forward information. In this paper, we introduce FoGA, a lightweight VAD model that performs Forward consistency learning with Gated context Aggregation, containing about 2M parameters and tailored for potential edge devices. Specifically, we propose a Unet-based method that performs feature extraction on consecutive frames to generate both immediate and forward predictions. Then, we introduce a gated context aggregation module into the skip connections to dynamically fuse encoder and decoder features at the same spatial scale. Finally, the model is jointly optimized with a novel forward consistency loss, and a hybrid anomaly measurement strategy is adopted to integrate errors from both immediate and forward frames for more accurate detection. Extensive experiments demonstrate the effectiveness of the proposed method, which substantially outperforms state-of-the-art competing methods, running up to 155 FPS. Hence, our FoGA achieves an excellent trade-off between performance and the efficiency metric.
Authors:Inpyo Song, Minjun Joo, Joonhyung Kwon, Eunji Jeon, Jangwon Lee
Title: Instance-Aligned Captions for Explainable Video Anomaly Detection
Abstract:
Explainable video anomaly detection (VAD) is crucial for safety-critical applications, yet even with recent progress, much of the research still lacks spatial grounding, making the explanations unverifiable. This limitation is especially pronounced in multi-entity interactions, where existing explainable VAD methods often produce incomplete or visually misaligned descriptions, reducing their trustworthiness. To address these challenges, we introduce instance-aligned captions that link each textual claim to specific object instances with appearance and motion attributes. Our framework captures who caused the anomaly, what each entity was doing, whom it affected, and where the explanationis grounded, enabling verifiable and actionable reasoning. We annotate eight widely used VAD benchmarks and extend the 360-degree egocentric dataset, VIEW360, with 868 additional videos, eight locations, and four new anomaly types, creating VIEW360+, a comprehensive testbed for explainable VAD. Experiments show that our instance-level spatially grounded captions reveal significant limitations in current LLM- and VLM-based methods while providing a robust benchmark for future research in trustworthy and interpretable anomaly detection.
Authors:Iñaki Erregue, Kamal Nasrollahi, Sergio Escalera
Title: PrismVAU: Prompt-Refined Inference System for Multimodal Video Anomaly Understanding
Abstract:
Video Anomaly Understanding (VAU) extends traditional Video Anomaly Detection (VAD) by not only localizing anomalies but also describing and reasoning about their context. Existing VAU approaches often rely on fine-tuned multimodal large language models (MLLMs) or external modules such as video captioners, which introduce costly annotations, complex training pipelines, and high inference overhead. In this work, we introduce PrismVAU, a lightweight yet effective system for real-time VAU that leverages a single off-the-shelf MLLM for anomaly scoring, explanation, and prompt optimization. PrismVAU operates in two complementary stages: (1) a coarse anomaly scoring module that computes frame-level anomaly scores via similarity to textual anchors, and (2) an MLLM-based refinement module that contextualizes anomalies through system and user prompts. Both textual anchors and prompts are optimized with a weakly supervised Automatic Prompt Engineering (APE) framework. Extensive experiments on standard VAD benchmarks demonstrate that PrismVAU delivers competitive detection performance and interpretable anomaly explanations -- without relying on instruction tuning, frame-level annotations, and external modules or dense processing -- making it an efficient and practical solution for real-world applications.
Authors:Leszek Gąsieniec, Tytus Grodzicki, Tomasz Jurdziński, Jakub Kowalski, Grzegorz Stachowiak
Title: Population Protocols Revisited: Parity and Beyond
Abstract:
For nearly two decades, population protocols have been extensively studied, yielding efficient solutions for central problems in distributed computing, including leader election, and majority computation, a predicate type in Presburger Arithmetic closely tied to population protocols. Surprisingly, no protocols have achieved both time- and space-efficiency for congruency predicates, such as parity computation, which are complementary in this arithmetic framework. This gap highlights a significant challenge in the field. To address this gap, we explore the parity problem, where agents are tasked with computing the parity of the given sub-population size. Then we extend the solution for parity to compute congruences modulo an arbitrary $m$. Previous research on efficient population protocols has focused on protocols that minimise both stabilisation time and state utilisation for specific problems. In contrast, this work slightly relaxes this expectation, permitting protocols to place less emphasis on full optimisation and more on universality, robustness, and probabilistic guarantees. This allows us to propose a novel computing paradigm that integrates population weights (or simply weights), a robust clocking mechanism, and efficient anomaly detection coupled with a switching mechanism (which ensures slow but always correct solutions). This paradigm facilitates universal design of efficient multistage stable population protocols. Specifically, the first efficient parity and congruence protocols introduced here use both $O(\log^3 n)$ states and achieve silent stabilisation in $O(\log^3 n)$ time. We conclude by discussing the impact of implicit conversion between unary and binary representations enabled by the weight system, with applications to other problems, including the computation and representation of (sub-)population sizes.
Authors:Junwen Miao, Penghui Du, Yi Liu, Yu Wang, Yan Wang
Title: AgentIAD: Tool-Augmented Single-Agent for Industrial Anomaly Detection
Abstract:
Industrial anomaly detection (IAD) is difficult due to the scarcity of normal reference samples and the subtle, localized nature of many defects. Single-pass vision-language models (VLMs) often overlook small abnormalities and lack explicit mechanisms to compare against canonical normal patterns. We propose AgentIAD, a tool-driven agentic framework that enables multi-stage visual inspection. The agent is equipped with a Perceptive Zoomer (PZ) for localized fine-grained analysis and a Comparative Retriever (CR) for querying normal exemplars when evidence is ambiguous. To teach these inspection behaviors, we construct structured perceptive and comparative trajectories from the MMAD dataset and train the model in two stages: supervised fine-tuning followed by reinforcement learning. A two-part reward design drives this process: a perception reward that supervises classification accuracy, spatial alignment, and type correctness, and a behavior reward that encourages efficient tool use. Together, these components enable the model to refine its judgment through step-wise observation, zooming, and verification. AgentIAD achieves a new state-of-the-art 97.62% classification accuracy on MMAD, surpassing prior MLLM-based approaches while producing transparent and interpretable inspection traces.
Authors:Renato Cordeiro Ferreira, Aditya Dhinavahi, Rowanne Trapmann, Willem-Jan van den Heuvel
Title: Reusability in MLOps: Leveraging Ports and Adapters to Build a Microservices Architecture for the Maritime Domain
Abstract:
ML-Enabled Systems (MLES) are inherently complex since they require multiple components to achieve their business goal. This experience report showcases the software architecture reusability techniques applied while building Ocean Guard, an MLES for anomaly detection in the maritime domain. In particular, it highlights the challenges and lessons learned to reuse the Ports and Adapters pattern to support building multiple microservices from a single codebase. This experience report hopes to inspire software engineers, machine learning engineers, and data scientists to apply the Hexagonal Architecture pattern to build their MLES.
Authors:Satoshi Hashimoto, Tatsuya Konishi, Tomoya Kaichi, Kazunori Matsumoto, Mori Kurokawa
Title: CADE: Continual Weakly-supervised Video Anomaly Detection with Ensembles
Abstract:
Video anomaly detection (VAD) has long been studied as a crucial problem in public security and crime prevention. In recent years, weakly-supervised VAD (WVAD) have attracted considerable attention due to their easy annotation process and promising research results. While existing WVAD methods tackle mainly on static datasets, the possibility that the domain of data can vary has been neglected. To adapt such domain-shift, the continual learning (CL) perspective is required because otherwise additional training only with new coming data could easily cause performance degradation for previous data, i.e., forgetting. Therefore, we propose a brand-new approach, called Continual Anomaly Detection with Ensembles (CADE) that is the first work combining CL and WVAD viewpoints. Specifically, CADE uses the Dual-Generator(DG) to address data imbalance and label uncertainty in WVAD. We also found that forgetting exacerbates the "incompleteness'' where the model becomes biased towards certain anomaly modes, leading to missed detections of various anomalies. To address this, we propose to ensemble Multi-Discriminator (MD) that capture missed anomalies in past scenes due to forgetting, using multiple models. Extensive experiments show that CADE significantly outperforms existing VAD methods on the common multi-scene VAD datasets, such as ShanghaiTech and Charlotte Anomaly datasets.
Authors:Lucas Thil, Jesse Read, Rim Kaddah, Guillaume Doquet
Title: I-GLIDE: Input Groups for Latent Health Indicators in Degradation Estimation
Abstract:
Accurate remaining useful life (RUL) prediction hinges on the quality of health indicators (HIs), yet existing methods often fail to disentangle complex degradation mechanisms in multi-sensor systems or quantify uncertainty in HI reliability. This paper introduces a novel framework for HI construction, advancing three key contributions. First, we adapt Reconstruction along Projected Pathways (RaPP) as a health indicator (HI) for RUL prediction for the first time, showing that it outperforms traditional reconstruction error metrics. Second, we show that augmenting RaPP-derived HIs with aleatoric and epistemic uncertainty quantification (UQ) via Monte Carlo dropout and probabilistic latent spaces- significantly improves RUL-prediction robustness. Third, and most critically, we propose indicator groups, a paradigm that isolates sensor subsets to model system-specific degradations, giving rise to our novel method, I-GLIDE which enables interpretable, mechanism-specific diagnostics. Evaluated on data sourced from aerospace and manufacturing systems, our approach achieves marked improvements in accuracy and generalizability compared to state-of-the-art HI methods while providing actionable insights into system failure pathways. This work bridges the gap between anomaly detection and prognostics, offering a principled framework for uncertainty-aware degradation modeling in complex systems.
Authors:Xintao Chen, Xiaohao Xu, Bozhong Zheng, Yun Liu, Yingna Wu
Title: Unsupervised Multi-View Visual Anomaly Detection via Progressive Homography-Guided Alignment
Abstract:
Unsupervised visual anomaly detection from multi-view images presents a significant challenge: distinguishing genuine defects from benign appearance variations caused by viewpoint changes. Existing methods, often designed for single-view inputs, treat multiple views as a disconnected set of images, leading to inconsistent feature representations and a high false-positive rate. To address this, we introduce ViewSense-AD (VSAD), a novel framework that learns viewpoint-invariant representations by explicitly modeling geometric consistency across views. At its core is our Multi-View Alignment Module (MVAM), which leverages homography to project and align corresponding feature regions between neighboring views. We integrate MVAM into a View-Align Latent Diffusion Model (VALDM), enabling progressive and multi-stage alignment during the denoising process. This allows the model to build a coherent and holistic understanding of the object's surface from coarse to fine scales. Furthermore, a lightweight Fusion Refiner Module (FRM) enhances the global consistency of the aligned features, suppressing noise and improving discriminative power. Anomaly detection is performed by comparing multi-level features from the diffusion model against a learned memory bank of normal prototypes. Extensive experiments on the challenging RealIAD and MANTA datasets demonstrate that VSAD sets a new state-of-the-art, significantly outperforming existing methods in pixel, view, and sample-level visual anomaly proving its robustness to large viewpoint shifts and complex textures.
Authors:Lifeng Shen, Liang Peng, Ruiwen Liu, Shuyin Xia, Yi Liu
Title: Finding Time Series Anomalies using Granular-ball Vector Data Description
Abstract:
Modeling normal behavior in dynamic, nonlinear time series data is challenging for effective anomaly detection. Traditional methods, such as nearest neighbor and clustering approaches, often depend on rigid assumptions, such as a predefined number of reliable neighbors or clusters, which frequently break down in complex temporal scenarios. To address these limitations, we introduce the Granular-ball One-Class Network (GBOC), a novel approach based on a data-adaptive representation called Granular-ball Vector Data Description (GVDD). GVDD partitions the latent space into compact, high-density regions represented by granular-balls, which are generated through a density-guided hierarchical splitting process and refined by removing noisy structures. Each granular-ball serves as a prototype for local normal behavior, naturally positioning itself between individual instances and clusters while preserving the local topological structure of the sample set. During training, GBOC improves the compactness of representations by aligning samples with their nearest granular-ball centers. During inference, anomaly scores are computed based on the distance to the nearest granular-ball. By focusing on dense, high-quality regions and significantly reducing the number of prototypes, GBOC delivers both robustness and efficiency in anomaly detection. Extensive experiments validate the effectiveness and superiority of the proposed method, highlighting its ability to handle the challenges of time series anomaly detection.
Authors:Thanh Cong Ho, Farah Kharrat, Abderrazek Abid, Fakhri Karray
Title: REMONI: An Autonomous System Integrating Wearables and Multimodal Large Language Models for Enhanced Remote Health Monitoring
Abstract:
With the widespread adoption of wearable devices in our daily lives, the demand and appeal for remote patient monitoring have significantly increased. Most research in this field has concentrated on collecting sensor data, visualizing it, and analyzing it to detect anomalies in specific diseases such as diabetes, heart disease and depression. However, this domain has a notable gap in the aspect of human-machine interaction. This paper proposes REMONI, an autonomous REmote health MONItoring system that integrates multimodal large language models (MLLMs), the Internet of Things (IoT), and wearable devices. The system automatically and continuously collects vital signs, accelerometer data from a special wearable (such as a smartwatch), and visual data in patient video clips collected from cameras. This data is processed by an anomaly detection module, which includes a fall detection model and algorithms to identify and alert caregivers of the patient's emergency conditions. A distinctive feature of our proposed system is the natural language processing component, developed with MLLMs capable of detecting and recognizing a patient's activity and emotion while responding to healthcare worker's inquiries. Additionally, prompt engineering is employed to integrate all patient information seamlessly. As a result, doctors and nurses can access real-time vital signs and the patient's current state and mood by interacting with an intelligent agent through a user-friendly web application. Our experiments demonstrate that our system is implementable and scalable for real-life scenarios, potentially reducing the workload of medical professionals and healthcare costs. A full-fledged prototype illustrating the functionalities of the system has been developed and being tested to demonstrate the robustness of its various capabilities.
Authors:Zan Li, Rui Fan
Title: Explainable Heterogeneous Anomaly Detection in Financial Networks via Adaptive Expert Routing
Abstract:
Financial anomalies exhibit heterogeneous mechanisms (price shocks, liquidity freezes, contagion cascades, regime shifts), but existing detectors treat all anomalies uniformly, producing scalar scores without revealing which mechanism is failing, where risks concentrate, or how to intervene. This opacity prevents targeted regulatory responses. Three unsolved challenges persist: (1) static graph structures cannot adapt when market correlations shift during regime changes; (2) uniform detection mechanisms miss type-specific signatures across multiple temporal scales while failing to integrate individual behaviors with network contagion; (3) black-box outputs provide no actionable guidance on anomaly mechanisms or their temporal evolution. We address these via adaptive graph learning with specialized expert networks that provide built-in interpretability. Our framework captures multi-scale temporal dependencies through BiLSTM with self-attention, fuses temporal and spatial information via cross-modal attention, learns dynamic graphs through neural multi-source interpolation, adaptively balances learned dynamics with structural priors via stress-modulated fusion, routes anomalies to four mechanism-specific experts, and produces dual-level interpretable attributions. Critically, interpretability is embedded architecturally rather than applied post-hoc. On 100 US equities (2017-2024), we achieve 92.3% detection of 13 major events with 3.8-day lead time, outperforming best baseline by 30.8pp. Silicon Valley Bank case study demonstrates anomaly evolution tracking: Price-Shock expert weight rose to 0.39 (33% above baseline 0.29) during closure, peaking at 0.48 (66% above baseline) one week later, revealing automatic temporal mechanism identification without labeled supervision.
Authors:Pieris Panagi, Savvas Karatsiolis, Kyriacos Mosphilis, Nicholas Hadjisavvas, Andreas Kamilaris, Nicolas Nicolaou, Efstathios Stavrakis, Vassilis Vassiliades
Title: Poultry Farm Intelligence: An Integrated Multi-Sensor AI Platform for Enhanced Welfare and Productivity
Abstract:
Poultry farming faces increasing pressure to meet productivity targets while ensuring animal welfare and environmental compliance. Yet many small and medium-sized farms lack affordable, integrated tools for continuous monitoring and decision-making, relying instead on manual, reactive inspections. This paper presents Poultry Farm Intelligence (PoultryFI) - a modular, cost-effective platform that integrates six AI-powered modules: Camera Placement Optimizer, Audio-Visual Monitoring, Analytics & Alerting, Real-Time Egg Counting, Production & Profitability Forecasting, and a Recommendation Module. Camera layouts are first optimized offline using evolutionary algorithms for full poultry house coverage with minimal hardware. The Audio-Visual Monitoring module extracts welfare indicators from synchronized video, audio, and feeding data. Analytics & Alerting produces daily summaries and real-time notifications, while Real-Time Egg Counting uses an edge vision model to automate production tracking. Forecasting models predict egg yield and feed consumption up to 10 days in advance, and the Recommendation Module integrates forecasts with weather data to guide environmental and operational adjustments. This is among the first systems to combine low-cost sensing, edge analytics, and prescriptive AI to continuously monitor flocks, predict production, and optimize performance. Field trials demonstrate 100% egg-count accuracy on Raspberry Pi 5, robust anomaly detection, and reliable short-term forecasting. PoultryFI bridges the gap between isolated pilot tools and scalable, farm-wide intelligence, empowering producers to proactively safeguard welfare and profitability.
Authors:Youwan Mahé, Elise Bannier, Stéphanie Leplaideur, Elisa Fromont, Francesca Galassi
Title: Unsupervised Deep Generative Models for Anomaly Detection in Neuroimaging: A Systematic Scoping Review
Abstract:
Unsupervised deep generative models are emerging as a promising alternative to supervised methods for detecting and segmenting anomalies in brain imaging. Unlike fully supervised approaches, which require large voxel-level annotated datasets and are limited to well-characterised pathologies, these models can be trained exclusively on healthy data and identify anomalies as deviations from learned normative brain structures. This PRISMA-guided scoping review synthesises recent work on unsupervised deep generative models for anomaly detection in neuroimaging, including autoencoders, variational autoencoders, generative adversarial networks, and denoising diffusion models. A total of 49 studies published between 2018 - 2025 were identified, covering applications to brain MRI and, less frequently, CT across diverse pathologies such as tumours, stroke, multiple sclerosis, and small vessel disease. Reported performance metrics are compared alongside architectural design choices. Across the included studies, generative models achieved encouraging performance for large focal lesions and demonstrated progress in addressing more subtle abnormalities. A key strength of generative models is their ability to produce interpretable pseudo-healthy (also referred to as counterfactual) reconstructions, which is particularly valuable when annotated data are scarce, as in rare or heterogeneous diseases. Looking ahead, these models offer a compelling direction for anomaly detection, enabling semi-supervised learning, supporting the discovery of novel imaging biomarkers, and facilitating within- and cross-disease deviation mapping in unified end-to-end frameworks. To realise clinical impact, future work should prioritise anatomy-aware modelling, development of foundation models, task-appropriate evaluation metrics, and rigorous clinical validation.
Authors:Rithwik Gupta, Daniel Muthukrishna, Jeroen Audenaert
Title: Simulation-Based Pretraining and Domain Adaptation for Astronomical Time Series with Minimal Labeled Data
Abstract:
Astronomical time-series analysis faces a critical limitation: the scarcity of labeled observational data. We present a pre-training approach that leverages simulations, significantly reducing the need for labeled examples from real observations. Our models, trained on simulated data from multiple astronomical surveys (ZTF and LSST), learn generalizable representations that transfer effectively to downstream tasks. Using classifier-based architectures enhanced with contrastive and adversarial objectives, we create domain-agnostic models that demonstrate substantial performance improvements over baseline methods in classification, redshift estimation, and anomaly detection when fine-tuned with minimal real data. Remarkably, our models exhibit effective zero-shot transfer capabilities, achieving comparable performance on future telescope (LSST) simulations when trained solely on existing telescope (ZTF) data. Furthermore, they generalize to very different astronomical phenomena (namely variable stars from NASA's \textit{Kepler} telescope) despite being trained on transient events, demonstrating cross-domain capabilities. Our approach provides a practical solution for building general models when labeled data is scarce, but domain knowledge can be encoded in simulations.
Authors:Qinghua Liu, Sam Heshmati, Zheda Mai, Zubin Abraham, John Paparrizos, Liu Ren
Title: MLLM4TS: Leveraging Vision and Multimodal Language Models for General Time-Series Analysis
Abstract:
Effective analysis of time series data presents significant challenges due to the complex temporal dependencies and cross-channel interactions in multivariate data. Inspired by the way human analysts visually inspect time series to uncover hidden patterns, we ask: can incorporating visual representations enhance automated time-series analysis? Recent advances in multimodal large language models have demonstrated impressive generalization and visual understanding capability, yet their application to time series remains constrained by the modality gap between continuous numerical data and discrete natural language. To bridge this gap, we introduce MLLM4TS, a novel framework that leverages multimodal large language models for general time-series analysis by integrating a dedicated vision branch. Each time-series channel is rendered as a horizontally stacked color-coded line plot in one composite image to capture spatial dependencies across channels, and a temporal-aware visual patch alignment strategy then aligns visual patches with their corresponding time segments. MLLM4TS fuses fine-grained temporal details from the numerical data with global contextual information derived from the visual representation, providing a unified foundation for multimodal time-series analysis. Extensive experiments on standard benchmarks demonstrate the effectiveness of MLLM4TS across both predictive tasks (e.g., classification) and generative tasks (e.g., anomaly detection and forecasting). These results underscore the potential of integrating visual modalities with pretrained language models to achieve robust and generalizable time-series analysis.
Authors:Rachita Mondal, Mert Indibi, Tapabrata Maiti, Selin Aviyente
Title: Robust Spatiotemporally Contiguous Anomaly Detection Using Tensor Decomposition
Abstract:
Anomaly detection in spatiotemporal data is a challenging problem encountered in a variety of applications, including video surveillance, medical imaging data, and urban traffic monitoring. Existing anomaly detection methods focus mainly on point anomalies and cannot deal with temporal and spatial dependencies that arise in spatio-temporal data. Tensor-based anomaly detection methods have been proposed to address this problem. Although existing methods can capture dependencies across different modes, they are primarily supervised and do not account for the specific structure of anomalies. Moreover, these methods focus mainly on extracting anomalous features without providing any statistical confidence. In this paper, we introduce an unsupervised tensor-based anomaly detection method that simultaneously considers the sparse and spatiotemporally smooth nature of anomalies. The anomaly detection problem is formulated as a regularized robust low-rank + sparse tensor decomposition where the total variation of the tensor with respect to the underlying spatial and temporal graphs quantifies the spatiotemporal smoothness of the anomalies. Once the anomalous features are extracted, we introduce a statistical anomaly scoring framework that accounts for local spatio-temporal dependencies. The proposed framework is evaluated on both synthetic and real data.
Authors:Saeid Sheikhi, Panos Kostakos, Lauri Loven
Title: Hybrid Reputation Aggregation: A Robust Defense Mechanism for Adversarial Federated Learning in 5G and Edge Network Environments
Abstract:
Federated Learning (FL) in 5G and edge network environments face severe security threats from adversarial clients. Malicious participants can perform label flipping, inject backdoor triggers, or launch Sybil attacks to corrupt the global model. This paper introduces Hybrid Reputation Aggregation (HRA), a novel robust aggregation mechanism designed to defend against diverse adversarial behaviors in FL without prior knowledge of the attack type. HRA combines geometric anomaly detection with momentum-based reputation tracking of clients. In each round, it detects outlier model updates via distance-based geometric analysis while continuously updating a trust score for each client based on historical behavior. This hybrid approach enables adaptive filtering of suspicious updates and long-term penalization of unreliable clients, countering attacks ranging from backdoor insertions to random noise Byzantine failures. We evaluate HRA on a large-scale proprietary 5G network dataset (3M+ records) and the widely used NF-CSE-CIC-IDS2018 benchmark under diverse adversarial attack scenarios. Experimental results reveal that HRA achieves robust global model accuracy of up to 98.66% on the 5G dataset and 96.60% on NF-CSE-CIC-IDS2018, outperforming state-of-the-art aggregators such as Krum, Trimmed Mean, and Bulyan by significant margins. Our ablation studies further demonstrate that the full hybrid system achieves 98.66% accuracy, while the anomaly-only and reputation-only variants drop to 84.77% and 78.52%, respectively, validating the synergistic value of our dual-mechanism approach. This demonstrates HRA's enhanced resilience and robustness in 5G/edge federated learning deployments, even under significant adversarial conditions.
Authors:Lars Heckler-Kram, Ashwin Vaidya, Jan-Hendrik Neudeck, Ulla Scheler, Dick Ameln, Samet Akcay, Paula Ramos
Title: From Benchmarks to Reality: Advancing Visual Anomaly Detection by the VAND 3.0 Challenge
Abstract:
Visual anomaly detection is a strongly application-driven field of research. Consequently, the connection between academia and industry is of paramount importance. In this regard, we present the VAND 3.0 Challenge to showcase current progress in anomaly detection across different practical settings whilst addressing critical issues in the field. The challenge hosted two tracks, fostering the development of anomaly detection methods robust against real-world distribution shifts (Category 1) and exploring the capabilities of Vision Language Models within the few-shot regime (Category 2), respectively. The participants' solutions reached significant improvements over previous baselines by combining or adapting existing approaches and fusing them with novel pipelines. While for both tracks the progress in large pre-trained vision (language) backbones played a pivotal role for the performance increase, scaling up anomaly detection methods more efficiently needs to be addressed by future research to meet real-time and computational constraints on-site.
Authors:Seoik Jung, Taekyung Song, Joshua Jordan Daniel, JinYoung Lee, SungJun Lee
Title: DUAL-VAD: Dual Benchmarks and Anomaly-Focused Sampling for Video Anomaly Detection
Abstract:
Video Anomaly Detection (VAD) is critical for surveillance and public safety. However, existing benchmarks are limited to either frame-level or video-level tasks, restricting a holistic view of model generalization. This work first introduces a softmax-based frame allocation strategy that prioritizes anomaly-dense segments while maintaining full-video coverage, enabling balanced sampling across temporal scales. Building on this process, we construct two complementary benchmarks. The image-based benchmark evaluates frame-level reasoning with representative frames, while the video-based benchmark extends to temporally localized segments and incorporates an abnormality scoring task. Experiments on UCF-Crime demonstrate improvements at both the frame and video levels, and ablation studies confirm clear advantages of anomaly-focused sampling over uniform and random baselines.
Authors:Zhangyue Shi, Zekai Wang, Yuxuan Li
Title: Unsupervised Identification and Replay-based Detection (UIRD) for New Category Anomaly Detection in ECG Signal
Abstract:
In clinical practice, automatic analysis of electrocardiogram (ECG) is widely applied to identify irregular heart rhythms and other electrical anomalies of the heart, enabling timely intervention and potentially improving clinical outcomes. However, due to the limited samples in certain types of ECG signals, the class imbalance issues pose a challenge for ECG-based detection. In addition, as the volume of patient data grows, long-term storage of all historical data becomes increasingly burdensome as training samples to recognize new patterns and classify existing ECG signals accurately. Therefore, to enhance the performance of anomaly detection while addressing storage limitations, we propose a pseudo-replay based semi-supervised continual learning framework, which consists of two components: unsupervised identification and replay-based detection. For unsupervised identification, an unsupervised generative adversarial network (GAN)-based framework is integrated to detect novel patterns. Besides, instead of directly storing all historical data, a pseudo replay-based learning strategy is proposed which utilizes a generator to learn the data distribution for each individual task. When a new task arises, the generator synthesizes pseudo data representative of previous learnt classes, enabling the model to detect both the existed patterns and the newly presented anomalies. The effectiveness of the proposed framework is validated in four public ECG datasets, which leverages supervised classification problems for anomaly detection. The experimental results show that the developed approach is very promising in identifying novel anomalies while maintaining good performance on detecting existing ECG signals.
Authors:Xiaotong Cheng, Setareh Maghsudi
Title: Anomaly Detection in Networked Bandits
Abstract:
The nodes' interconnections on a social network often reflect their dependencies and information-sharing behaviors. Nevertheless, abnormal nodes, which significantly deviate from most of the network concerning patterns or behaviors, can lead to grave consequences. Therefore, it is imperative to design efficient online learning algorithms that robustly learn users' preferences while simultaneously detecting anomalies. We introduce a novel bandit algorithm to address this problem. Through network knowledge, the method characterizes the users' preferences and residuals of feature information. By learning and analyzing these preferences and residuals, it develops a personalized recommendation strategy for each user and simultaneously detects anomalies. We rigorously prove an upper bound on the regret of the proposed algorithm and experimentally compare it with several state-of-the-art collaborative contextual bandit algorithms on both synthetic and real-world datasets.
Authors:Yinsong Wang, Quan Zeng, Xiao Liu, Yu Ding
Title: Mutual Information Surprise: Rethinking Unexpectedness in Autonomous Systems
Abstract:
Recent breakthroughs in autonomous experimentation have demonstrated remarkable physical capabilities, yet their cognitive control remains limited--often relying on static heuristics or classical optimization. A core limitation is the absence of a principled mechanism to detect and adapt to the unexpectedness. While traditional surprise measures--such as Shannon or Bayesian Surprise--offer momentary detection of deviation, they fail to capture whether a system is truly learning and adapting. In this work, we introduce Mutual Information Surprise (MIS), a new framework that redefines surprise not as anomaly detection, but as a signal of epistemic growth. MIS quantifies the impact of new observations on mutual information, enabling autonomous systems to reflect on their learning progression. We develop a statistical test sequence to detect meaningful shifts in estimated mutual information and propose a mutual information surprise reaction policy (MISRP) that dynamically governs system behavior through sampling adjustment and process forking. Empirical evaluations--on both synthetic domains and a dynamic pollution map estimation task--show that MISRP-governed strategies significantly outperform classical surprise-based approaches in stability, responsiveness, and predictive accuracy. By shifting surprise from reactive to reflective, MIS offers a path toward more self-aware and adaptive autonomous systems.
Authors:Yushi Lin, Peng Yang
Title: A Decoupled LOB Representation Framework for Multilevel Manipulation Detection with Supervised Contrastive Learning
Abstract:
Financial markets are critical to global economic stability, yet trade-based manipulation (TBM) often undermines their fairness. Spoofing, a particularly deceptive TBM strategy, exhibits multilevel anomaly patterns that have not been adequately modeled. These patterns are usually concealed within the rich, hierarchical information of the Limit Order Book (LOB), which is challenging to leverage due to high dimensionality and noise. To address this, we propose a representation learning framework combining a cascaded LOB representation pipeline with supervised contrastive learning. Extensive experiments demonstrate that our framework consistently improves detection performance across diverse models, with Transformer-based architectures achieving state-of-the-art results. In addition, we conduct systematic analyses and ablation studies to investigate multilevel anomalies and the contributions of key components, offering broader insights into representation learning and anomaly detection for complex sequential data. Our code will be released later at this URL.
Authors:Vira Pyrih, Adrian Rebmann, Han van der Aa
Title: LLMs that Understand Processes: Instruction-tuning for Semantics-Aware Process Mining
Abstract:
Process mining is increasingly using textual information associated with events to tackle tasks such as anomaly detection and process discovery. Such semantics-aware process mining focuses on what behavior should be possible in a process (i.e., expectations), thus providing an important complement to traditional, frequency-based techniques that focus on recorded behavior (i.e., reality). Large Language Models (LLMs) provide a powerful means for tackling semantics-aware tasks. However, the best performance is so far achieved through task-specific fine-tuning, which is computationally intensive and results in models that can only handle one specific task. To overcome this lack of generalization, we use this paper to investigate the potential of instruction-tuning for semantics-aware process mining. The idea of instruction-tuning here is to expose an LLM to prompt-answer pairs for different tasks, e.g., anomaly detection and next-activity prediction, making it more familiar with process mining, thus allowing it to also perform better at unseen tasks, such as process discovery. Our findings demonstrate a varied impact of instruction-tuning: while performance considerably improved on process discovery and prediction tasks, it varies across models on anomaly detection tasks, highlighting that the selection of tasks for instruction-tuning is critical to achieving desired outcomes.
Authors:Bernd Hofmann, Albert Scheck, Joerg Franke, Patrick Bruendl
Title: PB-IAD: Utilizing multimodal foundation models for semantic industrial anomaly detection in dynamic manufacturing environments
Abstract:
The detection of anomalies in manufacturing processes is crucial to ensure product quality and identify process deviations. Statistical and data-driven approaches remain the standard in industrial anomaly detection, yet their adaptability and usability are constrained by the dependence on extensive annotated datasets and limited flexibility under dynamic production conditions. Recent advances in the perception capabilities of foundation models provide promising opportunities for their adaptation to this downstream task. This paper presents PB-IAD (Prompt-based Industrial Anomaly Detection), a novel framework that leverages the multimodal and reasoning capabilities of foundation models for industrial anomaly detection. Specifically, PB-IAD addresses three key requirements of dynamic production environments: data sparsity, agile adaptability, and domain user centricity. In addition to the anomaly detection, the framework includes a prompt template that is specifically designed for iteratively implementing domain-specific process knowledge, as well as a pre-processing module that translates domain user inputs into effective system prompts. This user-centric design allows domain experts to customise the system flexibly without requiring data science expertise. The proposed framework is evaluated by utilizing GPT-4.1 across three distinct manufacturing scenarios, two data modalities, and an ablation study to systematically assess the contribution of semantic instructions. Furthermore, PB-IAD is benchmarked to state-of-the-art methods for anomaly detection such as PatchCore. The results demonstrate superior performance, particularly in data-sparse scenarios and low-shot settings, achieved solely through semantic instructions.
Authors:Cheng Liu, Daou Zhang, Tingxu Liu, Yuhan Wang, Jinyang Chen, Yuexuan Li, Xinying Xiao, Chenbo Xin, Ziru Wang, Weichao Wu
Title: MA-CBP: A Criminal Behavior Prediction Framework Based on Multi-Agent Asynchronous Collaboration
Abstract:
With the acceleration of urbanization, criminal behavior in public scenes poses an increasingly serious threat to social security. Traditional anomaly detection methods based on feature recognition struggle to capture high-level behavioral semantics from historical information, while generative approaches based on Large Language Models (LLMs) often fail to meet real-time requirements. To address these challenges, we propose MA-CBP, a criminal behavior prediction framework based on multi-agent asynchronous collaboration. This framework transforms real-time video streams into frame-level semantic descriptions, constructs causally consistent historical summaries, and fuses adjacent image frames to perform joint reasoning over long- and short-term contexts. The resulting behavioral decisions include key elements such as event subjects, locations, and causes, enabling early warning of potential criminal activity. In addition, we construct a high-quality criminal behavior dataset that provides multi-scale language supervision, including frame-level, summary-level, and event-level semantic annotations. Experimental results demonstrate that our method achieves superior performance on multiple datasets and offers a promising solution for risk warning in urban public safety scenarios.
Authors:Davide Gabrielli, Bardh Prenkaj, Paola Velardi, Stefano Faralli
Title: AI on the Pulse: Real-Time Health Anomaly Detection with Wearable and Ambient Intelligence
Abstract:
We introduce AI on the Pulse, a real-world-ready anomaly detection system that continuously monitors patients using a fusion of wearable sensors, ambient intelligence, and advanced AI models. Powered by UniTS, a state-of-the-art (SoTA) universal time-series model, our framework autonomously learns each patient's unique physiological and behavioral patterns, detecting subtle deviations that signal potential health risks. Unlike classification methods that require impractical, continuous labeling in real-world scenarios, our approach uses anomaly detection to provide real-time, personalized alerts for reactive home-care interventions. Our approach outperforms 12 SoTA anomaly detection methods, demonstrating robustness across both high-fidelity medical devices (ECG) and consumer wearables, with a ~ 22% improvement in F1 score. However, the true impact of AI on the Pulse lies in @HOME, where it has been successfully deployed for continuous, real-world patient monitoring. By operating with non-invasive, lightweight devices like smartwatches, our system proves that high-quality health monitoring is possible without clinical-grade equipment. Beyond detection, we enhance interpretability by integrating LLMs, translating anomaly scores into clinically meaningful insights for healthcare professionals.
Authors:Kiymet Kaya, Elif Ak, Sule Gunduz Oguducu
Title: WBHT: A Generative Attention Architecture for Detecting Black Hole Anomalies in Backbone Networks
Abstract:
We propose the Wasserstein Black Hole Transformer (WBHT) framework for detecting black hole (BH) anomalies in communication networks. These anomalies cause packet loss without failure notifications, disrupting connectivity and leading to financial losses. WBHT combines generative modeling, sequential learning, and attention mechanisms to improve BH anomaly detection. It integrates a Wasserstein generative adversarial network with attention mechanisms for stable training and accurate anomaly identification. The model uses long-short-term memory layers to capture long-term dependencies and convolutional layers for local temporal patterns. A latent space encoding mechanism helps distinguish abnormal network behavior. Tested on real-world network data, WBHT outperforms existing models, achieving significant improvements in F1 score (ranging from 1.65% to 58.76%). Its efficiency and ability to detect previously undetected anomalies make it a valuable tool for proactive network monitoring and security, especially in mission-critical networks.
Authors:Luca Bindini, Lorenzo Perini, Stefano Nistri, Jesse Davis, Paolo Frasconi
Title: Dealing with Uncertainty in Contextual Anomaly Detection
Abstract:
Contextual anomaly detection (CAD) aims to identify anomalies in a target (behavioral) variable conditioned on a set of contextual variables that influence the normalcy of the target variable but are not themselves indicators of anomaly. In many anomaly detection tasks, there exist contextual variables that influence the normalcy of the target variable but are not themselves indicators of anomaly. In this work, we propose a novel framework for CAD, normalcy score (NS), that explicitly models both the aleatoric and epistemic uncertainties. Built on heteroscedastic Gaussian process regression, our method regards the Z-score as a random variable, providing confidence intervals that reflect the reliability of the anomaly assessment. Through experiments on benchmark datasets and a real-world application in cardiology, we demonstrate that NS outperforms state-of-the-art CAD methods in both detection accuracy and interpretability. Moreover, confidence intervals enable an adaptive, uncertainty-driven decision-making process, which may be very important in domains such as healthcare.
Authors:Mohammad Firas Sada, John J. Graham, Mahidhar Tatineni, Dmitry Mishin, Thomas A. DeFanti, Frank Würthwein
Title: Real-Time In-Network Machine Learning on P4-Programmable FPGA SmartNICs with Fixed-Point Arithmetic and Taylor
Abstract:
As machine learning (ML) applications become integral to modern network operations, there is an increasing demand for network programmability that enables low-latency ML inference for tasks such as Quality of Service (QoS) prediction and anomaly detection in cybersecurity. ML models provide adaptability through dynamic weight adjustments, making Programming Protocol-independent Packet Processors (P4)-programmable FPGA SmartNICs an ideal platform for investigating In-Network Machine Learning (INML). These devices offer high-throughput, low-latency packet processing and can be dynamically reconfigured via the control plane, allowing for flexible integration of ML models directly at the network edge. This paper explores the application of the P4 programming paradigm to neural networks and regression models, where weights and biases are stored in control plane table lookups. This approach enables flexible programmability and efficient deployment of retrainable ML models at the network edge, independent of core infrastructure at the switch level.
Authors:Long Tian, Yufei Li, Yuyang Dai, Wenchao Chen, Xiyang Liu, Bo Chen
Title: FastRef:Fast Prototype Refinement for Few-Shot Industrial Anomaly Detection
Abstract:
Few-shot industrial anomaly detection (FS-IAD) presents a critical challenge for practical automated inspection systems operating in data-scarce environments. While existing approaches predominantly focus on deriving prototypes from limited normal samples, they typically neglect to systematically incorporate query image statistics to enhance prototype representativeness. To address this issue, we propose FastRef, a novel and efficient prototype refinement framework for FS-IAD. Our method operates through an iterative two-stage process: (1) characteristic transfer from query features to prototypes via an optimizable transformation matrix, and (2) anomaly suppression through prototype alignment. The characteristic transfer is achieved through linear reconstruction of query features from prototypes, while the anomaly suppression addresses a key observation in FS-IAD that unlike conventional IAD with abundant normal prototypes, the limited-sample setting makes anomaly reconstruction more probable. Therefore, we employ optimal transport (OT) for non-Gaussian sampled features to measure and minimize the gap between prototypes and their refined counterparts for anomaly suppression. For comprehensive evaluation, we integrate FastRef with three competitive prototype-based FS-IAD methods: PatchCore, FastRecon, WinCLIP, and AnomalyDINO. Extensive experiments across four benchmark datasets of MVTec, ViSA, MPDD and RealIAD demonstrate both the effectiveness and computational efficiency of our approach under 1/2/4-shots.
Authors:Deepak Kumar Panda, Weisi Guo
Title: Generative Adversarial Evasion and Out-of-Distribution Detection for UAV Cyber-Attacks
Abstract:
The growing integration of UAVs into civilian airspace underscores the need for resilient and intelligent intrusion detection systems (IDS), as traditional anomaly detection methods often fail to identify novel threats. A common approach treats unfamiliar attacks as out-of-distribution (OOD) samples; however, this leaves systems vulnerable when mitigation is inadequate. Moreover, conventional OOD detectors struggle to distinguish stealthy adversarial attacks from genuine OOD events. This paper introduces a conditional generative adversarial network (cGAN)-based framework for crafting stealthy adversarial attacks that evade IDS mechanisms. We first design a robust multi-class IDS classifier trained on benign UAV telemetry and known cyber-attacks, including Denial of Service (DoS), false data injection (FDI), man-in-the-middle (MiTM), and replay attacks. Using this classifier, our cGAN perturbs known attacks to generate adversarial samples that misclassify as benign while retaining statistical resemblance to OOD distributions. These adversarial samples are iteratively refined to achieve high stealth and success rates. To detect such perturbations, we implement a conditional variational autoencoder (CVAE), leveraging negative log-likelihood to separate adversarial inputs from authentic OOD samples. Comparative evaluation shows that CVAE-based regret scores significantly outperform traditional Mahalanobis distance-based detectors in identifying stealthy adversarial threats. Our findings emphasize the importance of advanced probabilistic modeling to strengthen IDS capabilities against adaptive, generative-model-based cyber intrusions.
Authors:Christoph Willibald, Daniel Sliwowski, Dongheui Lee
Title: Multimodal Anomaly Detection with a Mixture-of-Experts
Abstract:
With a growing number of robots being deployed across diverse applications, robust multimodal anomaly detection becomes increasingly important. In robotic manipulation, failures typically arise from (1) robot-driven anomalies due to an insufficient task model or hardware limitations, and (2) environment-driven anomalies caused by dynamic environmental changes or external interferences. Conventional anomaly detection methods focus either on the first by low-level statistical modeling of proprioceptive signals or the second by deep learning-based visual environment observation, each with different computational and training data requirements. To effectively capture anomalies from both sources, we propose a mixture-of-experts framework that integrates the complementary detection mechanisms with a visual-language model for environment monitoring and a Gaussian-mixture regression-based detector for tracking deviations in interaction forces and robot motions. We introduce a confidence-based fusion mechanism that dynamically selects the most reliable detector for each situation. We evaluate our approach on both household and industrial tasks using two robotic systems, demonstrating a 60% reduction in detection delay while improving frame-wise anomaly detection performance compared to individual detectors.
Authors:Alessandro Licciardi, Davide Leo, Davide Carbone
Title: Wavelet Scattering Transform and Fourier Representation for Offline Detection of Malicious Clients in Federated Learning
Abstract:
Federated Learning (FL) enables the training of machine learning models across decentralized clients while preserving data privacy. However, the presence of anomalous or corrupted clients - such as those with faulty sensors or non representative data distributions - can significantly degrade model performance. Detecting such clients without accessing raw data remains a key challenge. We propose WAFFLE (Wavelet and Fourier representations for Federated Learning) a detection algorithm that labels malicious clients {\it before training}, using locally computed compressed representations derived from either the Wavelet Scattering Transform (WST) or the Fourier Transform. Both approaches provide low-dimensional, task-agnostic embeddings suitable for unsupervised client separation. A lightweight detector, trained on a distillated public dataset, performs the labeling with minimal communication and computational overhead. While both transforms enable effective detection, WST offers theoretical advantages, such as non-invertibility and stability to local deformations, that make it particularly well-suited to federated scenarios. Experiments on benchmark datasets show that our method improves detection accuracy and downstream classification performance compared to existing FL anomaly detection algorithms, validating its effectiveness as a pre-training alternative to online detection strategies.
Authors:Renato Cordeiro Ferreira, Rowanne Trapmann, Willem-Jan van den Heuvel
Title: MLOps with Microservices: A Case Study on the Maritime Domain
Abstract:
This case study describes challenges and lessons learned on building Ocean Guard: a Machine Learning-Enabled System (MLES) for anomaly detection in the maritime domain. First, the paper presents the system's specification, and architecture. Ocean Guard was designed with a microservices' architecture to enable multiple teams to work on the project in parallel. Then, the paper discusses how the developers adapted contract-based design to MLOps for achieving that goal. As a MLES, Ocean Guard employs code, model, and data contracts to establish guidelines between its services. This case study hopes to inspire software engineers, machine learning engineers, and data scientists to leverage similar approaches for their systems.
Authors:Ema Puljak, Maurizio Pierini, Artur Garcia-Saez
Title: Tensor Network for Anomaly Detection in the Latent Space of Proton Collision Events at the LHC
Abstract:
The pursuit of discovering new phenomena at the Large Hadron Collider (LHC) demands constant innovation in algorithms and technologies. Tensor networks are mathematical models on the intersection of classical and quantum machine learning, which present a promising and efficient alternative for tackling these challenges. In this work, we propose a tensor network-based strategy for anomaly detection at the LHC and demonstrate its superior performance in identifying new phenomena compared to established quantum methods. Our model is a parametrized Matrix Product State with an isometric feature map, processing a latent representation of simulated LHC data generated by an autoencoder. Our results highlight the potential of tensor networks to enhance new-physics discovery.
Authors:Junhong Liu, Qinfei Long, Rong-Peng Liu, Wenjie Liu, Yunhe Hou
Title: Byzantine-Resilient Distributed P2P Energy Trading via Spatial-Temporal Anomaly Detection
Abstract:
Distributed peer-to-peer (P2P) energy trading mandates an escalating coupling between the physical power network and communication network, necessitating high-frequency sharing of real-time data among prosumers. However, this data-sharing scheme renders the system vulnerable to various malicious behaviors, as Byzantine agents can initiate cyberattacks by injecting sophisticated false data. To better investigate the impacts of malicious Byzantine faults, this paper develops a fully distributed P2P energy trading model by accounting for the high-fidelity physical network constraints. To further detect Byzantine faults and mitigate their impacts on distributed P2P energy trading problem, we propose an online spatial-temporal anomaly detection approach by leveraging the tensor learning method, which is informed by the domain knowledge to enable awesome detection performance. Moreover, to enhance its computational efficiency, we further develop closed-form solutions for the proposed detection approach. Subsequently, we derive theoretical conditions for guaranteeing optimality and convergence of the distributed P2P energy trading problem with anomaly detection mechanisms. Results from numerical simulations validate the effectiveness, optimality, and scalability of the proposed approach.
Authors:Zihao Liu, Xiaoyu Wu, Wenna Li, Linlin Yang
Title: Rethinking Metrics and Benchmarks of Video Anomaly Detection
Abstract:
Video Anomaly Detection (VAD), which aims to detect anomalies that deviate from expectation, has attracted increasing attention in recent years. Existing advancements in VAD primarily focus on model architectures and training strategies, while devoting insufficient attention to evaluation metrics and benchmarks. In this paper, we rethink VAD evaluation protocols through comprehensive experimental analyses, revealing three critical limitations in current practices: 1) existing metrics are significantly influenced by single annotation bias; 2) current metrics fail to reward early detection of anomalies; 3) available benchmarks lack the capability to evaluate scene overfitting. To address these limitations, we propose three novel evaluation methods: first, we establish averaged AUC/AP metrics over multi-round annotations to mitigate single annotation bias; second, we develop a Latency-aware Average Precision (LaAP) metric that rewards early and accurate anomaly detection; and finally, we introduce two hard normal benchmarks (UCF-HN, MSAD-HN) with videos specifically designed to evaluate scene overfitting. We report performance comparisons of ten state-of-the-art VAD approaches using our proposed evaluation methods, providing novel perspectives for future VAD model development.
Authors:Guoming Li, Jian Yang, Yifan Chen
Title: Partition-wise Graph Filtering: A Unified Perspective Through the Lens of Graph Coarsening
Abstract:
Filtering-based graph neural networks (GNNs) constitute a distinct class of GNNs that employ graph filters to handle graph-structured data, achieving notable success in various graph-related tasks. Conventional methods adopt a graph-wise filtering paradigm, imposing a uniform filter across all nodes, yet recent findings suggest that this rigid paradigm struggles with heterophilic graphs. To overcome this, recent works have introduced node-wise filtering, which assigns distinct filters to individual nodes, offering enhanced adaptability. However, a fundamental gap remains: a comprehensive framework unifying these two strategies is still absent, limiting theoretical insights into the filtering paradigms. Moreover, through the lens of Contextual Stochastic Block Model, we reveal that a synthesis of graph-wise and node-wise filtering provides a sufficient solution for classification on graphs exhibiting both homophily and heterophily, suggesting the risk of excessive parameterization and potential overfitting with node-wise filtering. To address the limitations, this paper introduces Coarsening-guided Partition-wise Filtering (CPF). CPF innovates by performing filtering on node partitions. The method begins with structure-aware partition-wise filtering, which filters node partitions obtained via graph coarsening algorithms, and then performs feature-aware partition-wise filtering, refining node embeddings via filtering on clusters produced by $k$-means clustering over features. In-depth analysis is conducted for each phase of CPF, showing its superiority over other paradigms. Finally, benchmark node classification experiments, along with a real-world graph anomaly detection application, validate CPF's efficacy and practical utility.
Authors:Zheng Che, Taoyu Li, Meng Shen, Hanbiao Du, Liehuang Zhu
Title: Correlating Account on Ethereum Mixing Service via Domain-Invariant feature learning
Abstract:
The untraceability of transactions facilitated by Ethereum mixing services like Tornado Cash poses significant challenges to blockchain security and financial regulation. Existing methods for correlating mixing accounts suffer from limited labeled data and vulnerability to noisy annotations, which restrict their practical applicability. In this paper, we propose StealthLink, a novel framework that addresses these limitations through cross-task domain-invariant feature learning. Our key innovation lies in transferring knowledge from the well-studied domain of blockchain anomaly detection to the data-scarce task of mixing transaction tracing. Specifically, we design a MixFusion module that constructs and encodes mixing subgraphs to capture local transactional patterns, while introducing a knowledge transfer mechanism that aligns discriminative features across domains through adversarial discrepancy minimization. This dual approach enables robust feature learning under label scarcity and distribution shifts. Extensive experiments on real-world mixing transaction datasets demonstrate that StealthLink achieves state-of-the-art performance, with 96.98\% F1-score in 10-shot learning scenarios. Notably, our framework shows superior generalization capability in imbalanced data conditions than conventional supervised methods. This work establishes the first systematic approach for cross-domain knowledge transfer in blockchain forensics, providing a practical solution for combating privacy-enhanced financial crimes in decentralized ecosystems.
Authors:Hamed Alimohammadi, Sotiris Chatzimiltis, Samara Mayhoub, Mohammad Shojafar, Seyed Ahmad Soleymani, Ayhan Akbas, Chuan Heng Foh
Title: KPI Poisoning: An Attack in Open RAN Near Real-Time Control Loop
Abstract:
Open Radio Access Network (Open RAN) is a new paradigm to provide fundamental features for supporting next-generation mobile networks. Disaggregation, virtualisation, closed-loop data-driven control, and open interfaces bring flexibility and interoperability to the network deployment. However, these features also create a new surface for security threats. In this paper, we introduce Key Performance Indicators (KPIs) poisoning attack in Near Real-Time control loops as a new form of threat that can have significant effects on the Open RAN functionality. This threat can arise from traffic spoofing on the E2 interface or compromised E2 nodes. The role of KPIs is explored in the use cases of Near Real-Time control loops. Then, the potential impacts of the attack are analysed. An ML-based approach is proposed to detect poisoned KPI values before using them in control loops. Emulations are conducted to generate KPI reports and inject anomalies into the values. A Long Short-Term Memory (LSTM) neural network model is used to detect anomalies. The results show that more amplified injected values are more accessible to detect, and using more report sequences leads to better performance in anomaly detection, with detection rates improving from 62% to 99%.
Authors:Yuezhou Zhang, Amos A. Folarin, Callum Stewart, Heet Sankesara, Yatharth Ranjan, Pauline Conde, Akash Roy Choudhury, Shaoxiong Sun, Zulqarnain Rashid, Richard J. B. Dobson
Title: An Explainable Anomaly Detection Framework for Monitoring Depression and Anxiety Using Consumer Wearable Devices
Abstract:
Continuous monitoring of behavior and physiology via wearable devices offers a novel, objective method for the early detection of worsening depression and anxiety. In this study, we present an explainable anomaly detection framework that identifies clinically meaningful increases in symptom severity using consumer-grade wearable data. Leveraging data from 2,023 participants with defined healthy baselines, our LSTM autoencoder model learned normal health patterns of sleep duration, step count, and resting heart rate. Anomalies were flagged when self-reported depression or anxiety scores increased by >=5 points (a threshold considered clinically significant). The model achieved an adjusted F1-score of 0.80 (precision = 0.73, recall = 0.88) in detecting 393 symptom-worsening episodes across 341 participants, with higher performance observed for episodes involving concurrent depression and anxiety escalation (F1 = 0.84) and for more pronounced symptom changes (>=10-point increases, F1 = 0.85). Model interpretability was supported by SHAP-based analysis, which identified resting heart rate as the most influential feature in 71.4 percentage of detected anomalies, followed by physical activity and sleep. Together, our findings highlight the potential of explainable anomaly detection to enable personalized, scalable, and proactive mental health monitoring in real-world settings.
Authors:Sassan Mokhtar, Arian Mousakhan, Silvio Galesso, Jawad Tayyub, Thomas Brox
Title: Detect, Classify, Act: Categorizing Industrial Anomalies with Multi-Modal Large Language Models
Abstract:
Recent advances in visual industrial anomaly detection have demonstrated exceptional performance in identifying and segmenting anomalous regions while maintaining fast inference speeds. However, anomaly classification-distinguishing different types of anomalies-remains largely unexplored despite its critical importance in real-world inspection tasks. To address this gap, we propose VELM, a novel LLM-based pipeline for anomaly classification. Given the critical importance of inference speed, we first apply an unsupervised anomaly detection method as a vision expert to assess the normality of an observation. If an anomaly is detected, the LLM then classifies its type. A key challenge in developing and evaluating anomaly classification models is the lack of precise annotations of anomaly classes in existing datasets. To address this limitation, we introduce MVTec-AC and VisA-AC, refined versions of the widely used MVTec-AD and VisA datasets, which include accurate anomaly class labels for rigorous evaluation. Our approach achieves a state-of-the-art anomaly classification accuracy of 80.4% on MVTec-AD, exceeding the prior baselines by 5%, and 84% on MVTec-AC, demonstrating the effectiveness of VELM in understanding and categorizing anomalies. We hope our methodology and benchmark inspire further research in anomaly classification, helping bridge the gap between detection and comprehensive anomaly characterization.
Authors:Mei Qiu, William Lorenz Reindl, Yaobin Chen, Stanley Chien, Shu Hu
Title: Lane-Wise Highway Anomaly Detection
Abstract:
This paper proposes a scalable and interpretable framework for lane-wise highway traffic anomaly detection, leveraging multi-modal time series data extracted from surveillance cameras. Unlike traditional sensor-dependent methods, our approach uses AI-powered vision models to extract lane-specific features, including vehicle count, occupancy, and truck percentage, without relying on costly hardware or complex road modeling. We introduce a novel dataset containing 73,139 lane-wise samples, annotated with four classes of expert-validated anomalies: three traffic-related anomalies (lane blockage and recovery, foreign object intrusion, and sustained congestion) and one sensor-related anomaly (camera angle shift). Our multi-branch detection system integrates deep learning, rule-based logic, and machine learning to improve robustness and precision. Extensive experiments demonstrate that our framework outperforms state-of-the-art methods in precision, recall, and F1-score, providing a cost-effective and scalable solution for real-world intelligent transportation systems.
Authors:Weijia Li, Guanglei Chu, Jiong Chen, Guo-Sen Xie, Caifeng Shan, Fang Zhao
Title: LAD-Reasoner: Tiny Multimodal Models are Good Reasoners for Logical Anomaly Detection
Abstract:
Recent advances in industrial anomaly detection have highlighted the need for deeper logical anomaly analysis, where unexpected relationships among objects, counts, and spatial configurations must be identified and explained. Existing approaches often rely on large-scale external reasoning modules or elaborate pipeline designs, hindering practical deployment and interpretability. To address these limitations, we introduce a new task, Reasoning Logical Anomaly Detection (RLAD), which extends traditional anomaly detection by incorporating logical reasoning. We propose a new framework, LAD-Reasoner, a customized tiny multimodal language model built on Qwen2.5-VL 3B. Our approach leverages a two-stage training paradigm that first employs Supervised Fine-Tuning (SFT) for fine-grained visual understanding, followed by Group Relative Policy Optimization (GRPO) to refine logical anomaly detection and enforce coherent, human-readable reasoning. Crucially, reward signals are derived from both the detection accuracy and the structural quality of the outputs, obviating the need for building chain of thought (CoT) reasoning data. Experiments on the MVTec LOCO AD dataset show that LAD-Reasoner, though significantly smaller, matches the performance of Qwen2.5-VL-72B in accuracy and F1 score, and further excels in producing concise and interpretable rationales. This unified design reduces reliance on large models and complex pipelines, while offering transparent and interpretable insights into logical anomaly detection. Code and data will be released.
Authors:Sinchee Chin, Fan Zhang, Xiaochen Yang, Jing-Hao Xue, Wenming Yang, Peng Jia, Guijin Wang, Luo Yingqun
Title: VISTA: Unsupervised 2D Temporal Dependency Representations for Time Series Anomaly Detection
Abstract:
Time Series Anomaly Detection (TSAD) is essential for uncovering rare and potentially harmful events in unlabeled time series data. Existing methods are highly dependent on clean, high-quality inputs, making them susceptible to noise and real-world imperfections. Additionally, intricate temporal relationships in time series data are often inadequately captured in traditional 1D representations, leading to suboptimal modeling of dependencies. We introduce VISTA, a training-free, unsupervised TSAD algorithm designed to overcome these challenges. VISTA features three core modules: 1) Time Series Decomposition using Seasonal and Trend Decomposition via Loess (STL) to decompose noisy time series into trend, seasonal, and residual components; 2) Temporal Self-Attention, which transforms 1D time series into 2D temporal correlation matrices for richer dependency modeling and anomaly detection; and 3) Multivariate Temporal Aggregation, which uses a pretrained feature extractor to integrate cross-variable information into a unified, memory-efficient representation. VISTA's training-free approach enables rapid deployment and easy hyperparameter tuning, making it suitable for industrial applications. It achieves state-of-the-art performance on five multivariate TSAD benchmarks.
Authors:Songran Bai, Xiaolong Zheng, Daniel Dajun Zeng
Title: CRC-SGAD: Conformal Risk Control for Supervised Graph Anomaly Detection
Abstract:
Graph Anomaly Detection (GAD) is critical in security-sensitive domains, yet faces reliability challenges: miscalibrated confidence estimation (underconfidence in normal nodes, overconfidence in anomalies), adversarial vulnerability of derived confidence score under structural perturbations, and limited efficacy of conventional calibration methods for sparse anomaly patterns. Thus we propose CRC-SGAD, a framework integrating statistical risk control into GAD via two innovations: (1) A Dual-Threshold Conformal Risk Control mechanism that provides theoretically guaranteed bounds for both False Negative Rate (FNR) and False Positive Rate (FPR) through providing prediction sets; (2) A Subgraph-aware Spectral Graph Neural Calibrator (SSGNC) that optimizes node representations through adaptive spectral filtering while reducing the size of prediction sets via hybrid loss optimization. Experiments on four datasets and five GAD models demonstrate statistically significant improvements in FNR and FPR control and prediction set size. CRC-SGAD establishes a paradigm for statistically rigorous anomaly detection in graph-structured security applications.
Authors:Zihao Liu, Xiaoyu Wu, Jianqin Wu, Xuxu Wang, Linlin Yang
Title: Language-guided Open-world Video Anomaly Detection
Abstract:
Video anomaly detection models aim to detect anomalies that deviate from what is expected. In open-world scenarios, the expected events may change as requirements change. For example, not wearing a mask is considered abnormal during a flu outbreak but normal otherwise. However, existing methods assume that the definition of anomalies is invariable, and thus are not applicable to the open world. To address this, we propose a novel open-world VAD paradigm with variable definitions, allowing guided detection through user-provided natural language at inference time. This paradigm necessitates establishing a robust mapping from video and textual definition to anomaly score. Therefore, we propose LaGoVAD (Language-guided Open-world VAD), a model that dynamically adapts anomaly definitions through two regularization strategies: diversifying the relative durations of anomalies via dynamic video synthesis, and enhancing feature robustness through contrastive learning with negative mining. Training such adaptable models requires diverse anomaly definitions, but existing datasets typically provide given labels without semantic descriptions. To bridge this gap, we collect PreVAD (Pre-training Video Anomaly Dataset), the largest and most diverse video anomaly dataset to date, featuring 35,279 annotated videos with multi-level category labels and descriptions that explicitly define anomalies. Zero-shot experiments on seven datasets demonstrate SOTA performance. Data and code will be released.
Authors:Huajie Liang, Di Wang, Yuchao Lu, Mengke Song, Lei Liu, Ling An, Ying Liang, Xingjie Ma, Zhenyu Zhang, Chichun Zhou
Title: Time-EAPCR-T: A Universal Deep Learning Approach for Anomaly Detection in Industrial Equipment
Abstract:
With the advancement of Industry 4.0, intelligent manufacturing extensively employs sensors for real-time multidimensional data collection, playing a crucial role in equipment monitoring, process optimisation, and efficiency enhancement. Industrial data exhibit characteristics such as multi-source heterogeneity, nonlinearity, strong coupling, and temporal interactions, while also being affected by noise interference. These complexities make it challenging for traditional anomaly detection methods to extract key features, impacting detection accuracy and stability. Traditional machine learning approaches often struggle with such complex data due to limitations in processing capacity and generalisation ability, making them inadequate for practical applications. While deep learning feature extraction modules have demonstrated remarkable performance in image and text processing, they remain ineffective when applied to multi-source heterogeneous industrial data lacking explicit correlations. Moreover, existing multi-source heterogeneous data processing techniques still rely on dimensionality reduction and feature selection, which can lead to information loss and difficulty in capturing high-order interactions. To address these challenges, this study applies the EAPCR and Time-EAPCR models proposed in previous research and introduces a new model, Time-EAPCR-T, where Transformer replaces the LSTM module in the time-series processing component of Time-EAPCR. This modification effectively addresses multi-source data heterogeneity, facilitates efficient multi-source feature fusion, and enhances the temporal feature extraction capabilities of multi-source industrial data.Experimental results demonstrate that the proposed method outperforms existing approaches across four industrial datasets, highlighting its broad application potential.
Authors:Lei Liu, Yuchao Lu, Ling An, Huajie Liang, Chichun Zhou, Zhenyu Zhang
Title: Time-EAPCR: A Deep Learning-Based Novel Approach for Anomaly Detection Applied to the Environmental Field
Abstract:
As human activities intensify, environmental systems such as aquatic ecosystems and water treatment systems face increasingly complex pressures, impacting ecological balance, public health, and sustainable development, making intelligent anomaly monitoring essential. However, traditional monitoring methods suffer from delayed responses, insufficient data processing capabilities, and weak generalisation, making them unsuitable for complex environmental monitoring needs.In recent years, machine learning has been widely applied to anomaly detection, but the multi-dimensional features and spatiotemporal dynamics of environmental ecological data, especially the long-term dependencies and strong variability in the time dimension, limit the effectiveness of traditional methods.Deep learning, with its ability to automatically learn features, captures complex nonlinear relationships, improving detection performance. However, its application in environmental monitoring is still in its early stages and requires further exploration.This paper introduces a new deep learning method, Time-EAPCR (Time-Embedding-Attention-Permutated CNN-Residual), and applies it to environmental science. The method uncovers feature correlations, captures temporal evolution patterns, and enables precise anomaly detection in environmental systems.We validated Time-EAPCR's high accuracy and robustness across four publicly available environmental datasets. Experimental results show that the method efficiently handles multi-source data, improves detection accuracy, and excels across various scenarios with strong adaptability and generalisation. Additionally, a real-world river monitoring dataset confirmed the feasibility of its deployment, providing reliable technical support for environmental monitoring.
Authors:Louise Piecuch, Jeremie Huet, Antoine Frouin, Antoine Nordez, Anne-Sophie Boureau, Diana Mateus
Title: Unsupervised Anomaly Detection on Implicit Shape representations for Sarcopenia Detection
Abstract:
Sarcopenia is an age-related progressive loss of muscle mass and strength that significantly impacts daily life. A commonly studied criterion for characterizing the muscle mass has been the combination of 3D imaging and manual segmentations. In this paper, we instead study the muscles' shape. We rely on an implicit neural representation (INR) to model normal muscle shapes. We then introduce an unsupervised anomaly detection method to identify sarcopenic muscles based on the reconstruction error of the implicit model. Relying on a conditional INR with an auto-decoding strategy, we also learn a latent representation of the muscles that clearly separates normal from abnormal muscles in an unsupervised fashion. Experimental results on a dataset of 103 segmented volumes indicate that our double anomaly detection strategy effectively discriminates sarcopenic and non-sarcopenic muscles.
Authors:Saba Sanami, Amir G. Aghdam
Title: Aero-engines Anomaly Detection using an Unsupervised Fisher Autoencoder
Abstract:
Reliable aero-engine anomaly detection is crucial for ensuring aircraft safety and operational efficiency. This research explores the application of the Fisher autoencoder as an unsupervised deep learning method for detecting anomalies in aero-engine multivariate sensor data, using a Gaussian mixture as the prior distribution of the latent space. The proposed method aims to minimize the Fisher divergence between the true and the modeled data distribution in order to train an autoencoder that can capture the normal patterns of aero-engine behavior. The Fisher divergence is robust to model uncertainty, meaning it can handle noisy or incomplete data. The Fisher autoencoder also has well-defined latent space regions, which makes it more generalizable and regularized for various types of aero-engines as well as facilitates diagnostic purposes. The proposed approach improves the accuracy of anomaly detection and reduces false alarms. Simulations using the CMAPSS dataset demonstrate the model's efficacy in achieving timely anomaly detection, even in the case of an unbalanced dataset.
Authors:Saba Sanami, Amir G. Aghdam
Title: Calibrated Unsupervised Anomaly Detection in Multivariate Time-series using Reinforcement Learning
Abstract:
This paper investigates unsupervised anomaly detection in multivariate time-series data using reinforcement learning (RL) in the latent space of an autoencoder. A significant challenge is the limited availability of anomalous data, often leading to misclassifying anomalies as normal events, thus raising false negatives. RL can help overcome this limitation by promoting exploration and balancing exploitation during training, effectively preventing overfitting. Wavelet analysis is also utilized to enhance anomaly detection, enabling time-series data decomposition into both time and frequency domains. This approach captures anomalies at multiple resolutions, with wavelet coefficients extracted to detect both sudden and subtle shifts in the data, thereby refining the anomaly detection process. We calibrate the decision boundary by generating synthetic anomalies and embedding a supervised framework within the model. This supervised element aids the unsupervised learning process by fine-tuning the decision boundary and increasing the model's capacity to distinguish between normal and anomalous patterns effectively.
Authors:Sota Mashiko, Yuji Kawamata, Tomoru Nakayama, Tetsuya Sakurai, Yukihiko Okada
Title: Anomaly Detection in Double-entry Bookkeeping Data by Federated Learning System with Non-model Sharing Approach
Abstract:
Anomaly detection is crucial in financial auditing, and effective detection requires large volumes of data from multiple organizations. However, journal entry data is highly sensitive, making it infeasible to share them directly across audit firms. To address this challenge, journal entry anomaly detection methods based on model share-type federated learning (FL) have been proposed. These methods require multiple rounds of communication with external servers to exchange model parameters, which necessitates connecting devices storing confidential data to external networks -- a practice not recommended for sensitive data such as journal entries. To overcome these limitations, a novel anomaly detection framework based on data collaboration (DC) analysis, a non-model share-type FL approach, is proposed. The method first transforms raw journal entry data into secure intermediate representations via dimensionality reduction and then constructs a collaboration representation used to train an anomaly detection autoencoder. Notably, the approach does not require raw data to be exposed or devices to be connected to external networks, and the entire process needs only a single round of communication. The proposed method was evaluated on both synthetic and real-world journal entry data collected from eight healthcare organizations. The experimental results demonstrated that the framework not only outperforms the baseline trained on individual data but also achieves higher detection performance than model-sharing FL methods such as FedAvg and FedProx, particularly under non-i.i.d. settings that simulate practical audit environments. This study addresses the critical need to integrate organizational knowledge while preserving data confidentiality, contributing to the development of practical intelligent auditing systems.
Authors:Yuanyuan Liang, Tianhao Zhang, Tingyu Xie
Title: STTS-EAD: Improving Spatio-Temporal Learning Based Time Series Prediction via
Abstract:
Handling anomalies is a critical preprocessing step in multivariate time series prediction. However, existing approaches that separate anomaly preprocessing from model training for multivariate time series prediction encounter significant limitations. Specifically, these methods fail to utilize auxiliary information crucial for identifying latent anomalies associated with spatiotemporal factors during the preprocessing stage. Instead, they rely solely on data distribution for anomaly detection, which can result in the incorrect processing of numerous samples that could otherwise contribute positively to model training. To address this, we propose STTS-EAD, an end-to-end method that seamlessly integrates anomaly detection into the training process of multivariate time series forecasting and aims to improve Spatio-Temporal learning based Time Series prediction via Embedded Anomaly Detection. Our proposed STTS-EAD leverages spatio-temporal information for forecasting and anomaly detection, with the two parts alternately executed and optimized for each other. To the best of our knowledge, STTS-EAD is the first to integrate anomaly detection and forecasting tasks in the training phase for improving the accuracy of multivariate time series forecasting. Extensive experiments on a public stock dataset and two real-world sales datasets from a renowned coffee chain enterprise show that our proposed method can effectively process detected anomalies in the training stage to improve forecasting performance in the inference stage and significantly outperform baselines.
Authors:Tianle Tao, Shizhao Peng, Tianyu Mei, Shoumo Li, Haogang Zhu
Title: EVA-S2PLoR: Decentralized Secure 2-party Logistic Regression with A Subtly Hadamard Product Protocol (Full Version)
Abstract:
The implementation of accurate nonlinear operators (e.g., sigmoid function) on heterogeneous datasets is a key challenge in privacy-preserving machine learning (PPML). Most existing frameworks approximate it through linear operations, which not only result in significant precision loss but also introduce substantial computational overhead. This paper proposes an efficient, verifiable, and accurate security 2-party logistic regression framework (EVA-S2PLoR), which achieves accurate nonlinear function computation through a subtly secure hadamard product protocol and its derived protocols. All protocols are based on a practical semi-honest security model, which is designed for decentralized privacy-preserving application scenarios that balance efficiency, precision, and security. High efficiency and precision are guaranteed by the asynchronous computation flow on floating point numbers and the few number of fixed communication rounds in the hadamard product protocol, where robust anomaly detection is promised by dimension transformation and Monte Carlo methods. EVA-S2PLoR outperforms many advanced frameworks in terms of precision, improving the performance of the sigmoid function by about 10 orders of magnitude compared to most frameworks. Moreover, EVA-S2PLoR delivers the best overall performance in secure logistic regression experiments with training time reduced by over 47.6% under WAN settings and a classification accuracy difference of only about 0.5% compared to the plaintext model.
Authors:Md Saif Hassan Onim, Travis S. Humble, Himanshu Thapliyal
Title: Quantum Hybrid Support Vector Machines for Stress Detection in Older Adults
Abstract:
Stress can increase the possibility of cognitive impairment and decrease the quality of life in older adults. Smart healthcare can deploy quantum machine learning to enable preventive and diagnostic support. This work introduces a unique technique to address stress detection as an anomaly detection problem that uses quantum hybrid support vector machines. With the help of a wearable smartwatch, we mapped baseline sensor reading as normal data and stressed sensor reading as anomaly data using cortisol concentration as the ground truth. We have used quantum computing techniques to explore the complex feature spaces with kernel-based preprocessing. We illustrate the usefulness of our method by doing experimental validation on 40 older adults with the help of the TSST protocol. Our findings highlight that using a limited number of features, quantum machine learning provides improved accuracy compared to classical methods. We also observed that the recall value using quantum machine learning is higher compared to the classical method. The higher recall value illustrates the potential of quantum machine learning in healthcare, as missing anomalies could result in delayed diagnostics or treatment.
Authors:Chaoqun Liu, Xuanpeng Li, Chen Gong, Guangyu Li
Title: Global Spatio-Temporal Fusion-based Traffic Prediction Algorithm with Anomaly Aware
Abstract:
Traffic prediction is an indispensable component of urban planning and traffic management. Achieving accurate traffic prediction hinges on the ability to capture the potential spatio-temporal relationships among road sensors. However, the majority of existing works focus on local short-term spatio-temporal correlations, failing to fully consider the interactions of different sensors in the long-term state. In addition, these works do not analyze the influences of anomalous factors, or have insufficient ability to extract personalized features of anomalous factors, which make them ineffectively capture their spatio-temporal influences on traffic prediction. To address the aforementioned issues, We propose a global spatio-temporal fusion-based traffic prediction algorithm that incorporates anomaly awareness. Initially, based on the designed anomaly detection network, we construct an efficient anomalous factors impacting module (AFIM), to evaluate the spatio-temporal impact of unexpected external events on traffic prediction. Furthermore, we propose a multi-scale spatio-temporal feature fusion module (MTSFFL) based on the transformer architecture, to obtain all possible both long and short term correlations among different sensors in a wide-area traffic environment for accurate prediction of traffic flow. Finally, experiments are implemented based on real-scenario public transportation datasets (PEMS04 and PEMS08) to demonstrate that our approach can achieve state-of-the-art performance.
Authors:Yuang Zhang, Liping Wang, Yihong Huang, Yuanxing Zheng, Fan Zhang, Xuemin Lin
Title: GradStop: Exploring Training Dynamics in Unsupervised Outlier Detection through Gradient
Abstract:
Unsupervised Outlier Detection (UOD) is a critical task in data mining and machine learning, aiming to identify instances that significantly deviate from the majority. Without any label, deep UOD methods struggle with the misalignment between the model's direct optimization goal and the final performance goal of Outlier Detection (OD) task. Through the perspective of training dynamics, this paper proposes an early stopping algorithm to optimize the training of deep UOD models, ensuring they perform optimally in OD rather than overfitting the entire contaminated dataset. Inspired by UOD mechanism and inlier priority phenomenon, where intuitively models fit inliers more quickly than outliers, we propose GradStop, a sampling-based label-free algorithm to estimate model's real-time performance during training. First, a sampling method generates two sets: one likely containing more outliers and the other more inliers, then a metric based on gradient cohesion is applied to probe into current training dynamics, which reflects model's performance on OD task. Experimental results on 4 deep UOD algorithms and 47 real-world datasets and theoretical proofs demonstrate the effectiveness of our proposed early stopping algorithm in enhancing the performance of deep UOD models. Auto Encoder (AE) enhanced by GradStop achieves better performance than itself, other SOTA UOD methods, and even ensemble AEs. Our method provides a robust and effective solution to the problem of performance degradation during training, enabling deep UOD models to achieve better potential in anomaly detection tasks.
Authors:Mingyuan Zhou, Xudong Jian, Ye Xia, Zhilu Lai
Title: Transferring self-supervised pre-trained models for SHM data anomaly detection with scarce labeled data
Abstract:
Structural health monitoring (SHM) has experienced significant advancements in recent decades, accumulating massive monitoring data. Data anomalies inevitably exist in monitoring data, posing significant challenges to their effective utilization. Recently, deep learning has emerged as an efficient and effective approach for anomaly detection in bridge SHM. Despite its progress, many deep learning models require large amounts of labeled data for training. The process of labeling data, however, is labor-intensive, time-consuming, and often impractical for large-scale SHM datasets. To address these challenges, this work explores the use of self-supervised learning (SSL), an emerging paradigm that combines unsupervised pre-training and supervised fine-tuning. The SSL-based framework aims to learn from only a very small quantity of labeled data by fine-tuning, while making the best use of the vast amount of unlabeled SHM data by pre-training. Mainstream SSL methods are compared and validated on the SHM data of two in-service bridges. Comparative analysis demonstrates that SSL techniques boost data anomaly detection performance, achieving increased F1 scores compared to conventional supervised training, especially given a very limited amount of labeled data. This work manifests the effectiveness and superiority of SSL techniques on large-scale SHM data, providing an efficient tool for preliminary anomaly detection with scarce label information.
Authors:Inpyo Song, Sanghyeon Lee, Minjun Joo, Jangwon Lee
Title: Anomaly Detection for People with Visual Impairments Using an Egocentric 360-Degree Camera
Abstract:
Recent advancements in computer vision have led to a renewed interest in developing assistive technologies for individuals with visual impairments. Although extensive research has been conducted in the field of computer vision-based assistive technologies, most of the focus has been on understanding contexts in images, rather than addressing their physical safety and security concerns. To address this challenge, we propose the first step towards detecting anomalous situations for visually impaired people by observing their entire surroundings using an egocentric 360-degree camera. We first introduce a novel egocentric 360-degree video dataset called VIEW360 (Visually Impaired Equipped with Wearable 360-degree camera), which contains abnormal activities that visually impaired individuals may encounter, such as shoulder surfing and pickpocketing. Furthermore, we propose a new architecture called the FDPN (Frame and Direction Prediction Network), which facilitates frame-level prediction of abnormal events and identifying of their directions. Finally, we evaluate our approach on our VIEW360 dataset and the publicly available UCF-Crime and Shanghaitech datasets, demonstrating state-of-the-art performance.
Authors:Anindya Sundar Das, Guansong Pang, Monowar Bhuyan
Title: Adaptive Deviation Learning for Visual Anomaly Detection with Data Contamination
Abstract:
Visual anomaly detection targets to detect images that notably differ from normal pattern, and it has found extensive application in identifying defective parts within the manufacturing industry. These anomaly detection paradigms predominantly focus on training detection models using only clean, unlabeled normal samples, assuming an absence of contamination; a condition often unmet in real-world scenarios. The performance of these methods significantly depends on the quality of the data and usually decreases when exposed to noise. We introduce a systematic adaptive method that employs deviation learning to compute anomaly scores end-to-end while addressing data contamination by assigning relative importance to the weights of individual instances. In this approach, the anomaly scores for normal instances are designed to approximate scalar scores obtained from the known prior distribution. Meanwhile, anomaly scores for anomaly examples are adjusted to exhibit statistically significant deviations from these reference scores. Our approach incorporates a constrained optimization problem within the deviation learning framework to update instance weights, resolving this problem for each mini-batch. Comprehensive experiments on the MVTec and VisA benchmark datasets indicate that our proposed method surpasses competing techniques and exhibits both stability and robustness in the presence of data contamination.
Authors:Haomin Wen, Shurui Cao, Zeeshan Rasheed, Khurram Hassan Shafique, Leman Akoglu
Title: Uncertainty-aware Human Mobility Modeling and Anomaly Detection
Abstract:
Given the temporal GPS coordinates from a large set of human agents, how can we model their mobility behavior toward effective anomaly (e.g. bad-actor or malicious behavior) detection without any labeled data? Human mobility and trajectory modeling have been extensively studied, showcasing varying abilities to manage complex inputs and balance performance-efficiency trade-offs. In this work, we formulate anomaly detection in complex human behavior by modeling raw GPS data as a sequence of stay-point events, each characterized by spatio-temporal features, along with trips (i.e. commute) between the stay-points. Our problem formulation allows us to leverage modern sequence models for unsupervised training and anomaly detection. Notably, we equip our proposed model USTAD (for Uncertainty-aware Spatio-Temporal Anomaly Detection) with aleatoric (i.e. data) uncertainty estimation to account for inherent stochasticity in certain individuals' behavior, as well as epistemic (i.e. model) uncertainty to handle data sparsity under a large variety of human behaviors. Together, aleatoric and epistemic uncertainties unlock a robust loss function as well as uncertainty-aware decision-making in anomaly scoring. Extensive experiments shows that USTAD improves anomaly detection AUCROC by 3\%-15\% over baselines in industry-scale data.
Authors:Jiahao Lyu, Minghua Zhao, Jing Hu, Xuewen Huang, Shuangli Du, Cheng Shi, Zhiyong Lv
Title: Appearance Blur-driven AutoEncoder and Motion-guided Memory Module for Video Anomaly Detection
Abstract:
Video anomaly detection (VAD) often learns the distribution of normal samples and detects the anomaly through measuring significant deviations, but the undesired generalization may reconstruct a few anomalies thus suppressing the deviations. Meanwhile, most VADs cannot cope with cross-dataset validation for new target domains, and few-shot methods must laboriously rely on model-tuning from the target domain to complete domain adaptation. To address these problems, we propose a novel VAD method with a motion-guided memory module to achieve cross-dataset validation with zero-shot. First, we add Gaussian blur to the raw appearance images, thereby constructing the global pseudo-anomaly, which serves as the input to the network. Then, we propose multi-scale residual channel attention to deblur the pseudo-anomaly in normal samples. Next, memory items are obtained by recording the motion features in the training phase, which are used to retrieve the motion features from the raw information in the testing phase. Lastly, our method can ignore the blurred real anomaly through attention and rely on motion memory items to increase the normality gap between normal and abnormal motion. Extensive experiments on three benchmark datasets demonstrate the effectiveness of the proposed method. Compared with cross-domain methods, our method achieves competitive performance without adaptation during testing.
Authors:Josephine Lamp, Mark Derdzinski, Christopher Hannemann, Sam Hatfield, Joost van der Linden
Title: MotifDisco: Motif Causal Discovery For Time Series Motifs
Abstract:
Many time series, particularly health data streams, can be best understood as a sequence of phenomenon or events, which we call \textit{motifs}. A time series motif is a short trace segment which may implicitly capture an underlying phenomenon within the time series. Specifically, we focus on glucose traces collected from continuous glucose monitors (CGMs), which inherently contain motifs representing underlying human behaviors such as eating and exercise. The ability to identify and quantify \textit{causal} relationships amongst motifs can provide a mechanism to better understand and represent these patterns, useful for improving deep learning and generative models and for advanced technology development (e.g., personalized coaching and artificial insulin delivery systems). However, no previous work has developed causal discovery methods for time series motifs. Therefore, in this paper we develop MotifDisco (\textbf{motif} \textbf{disco}very of causality), a novel causal discovery framework to learn causal relations amongst motifs from time series traces. We formalize a notion of \textit{Motif Causality (MC)}, inspired from Granger Causality and Transfer Entropy, and develop a Graph Neural Network-based framework that learns causality between motifs by solving an unsupervised link prediction problem. We integrate MC with three model use cases of forecasting, anomaly detection and clustering, to showcase the use of MC as a building block for downstream tasks. Finally, we evaluate our framework on different health data streams and find that Motif Causality provides a significant performance improvement in all use cases.
Authors:Alessio Mascolini, Sebastiano Gaiardelli, Francesco Ponzio, Nicola Dall'Ora, Enrico Macii, Sara Vinco, Santa Di Cataldo, Franco Fummi
Title: VARADE: a Variational-based AutoRegressive model for Anomaly Detection on the Edge
Abstract:
Detecting complex anomalies on massive amounts of data is a crucial task in Industry 4.0, best addressed by deep learning. However, available solutions are computationally demanding, requiring cloud architectures prone to latency and bandwidth issues. This work presents VARADE, a novel solution implementing a light autoregressive framework based on variational inference, which is best suited for real-time execution on the edge. The proposed approach was validated on a robotic arm, part of a pilot production line, and compared with several state-of-the-art algorithms, obtaining the best trade-off between anomaly detection accuracy, power consumption and inference frequency on two different edge platforms.
Authors:Jiarui Xie, Zhuo Yang, Chun-Chun Hu, Haw-Ching Yang, Yan Lu, Yaoyao Fiona Zhao
Title: Investigation on domain adaptation of additive manufacturing monitoring systems to enhance digital twin reusability
Abstract:
Powder bed fusion (PBF) is an emerging metal additive manufacturing (AM) technology that enables rapid fabrication of complex geometries. However, defects such as pores and balling may occur and lead to structural unconformities, thus compromising the mechanical performance of the part. This has become a critical challenge for quality assurance as the nature of some defects is stochastic during the process and invisible from the exterior. To address this issue, digital twin (DT) using machine learning (ML)-based modeling can be deployed for AM process monitoring and control. Melt pool is one of the most commonly observed physical phenomena for process monitoring, usually by high-speed cameras. Once labeled and preprocessed, the melt pool images are used to train ML-based models for DT applications such as process anomaly detection and print quality evaluation. Nonetheless, the reusability of DTs is restricted due to the wide variability of AM settings, including AM machines and monitoring instruments. The performance of the ML models trained using the dataset collected from one setting is usually compromised when applied to other settings. This paper proposes a knowledge transfer pipeline between different AM settings to enhance the reusability of AM DTs. The source and target datasets are collected from the National Institute of Standards and Technology and National Cheng Kung University with different cameras, materials, AM machines, and process parameters. The proposed pipeline consists of four steps: data preprocessing, data augmentation, domain alignment, and decision alignment. Compared with the model trained only using the source dataset, this pipeline increased the melt pool anomaly detection accuracy by 31% without any labeled training data from the target dataset.
Authors:Revital Marbel, Yanir Cohen, Ran Dubin, Amit Dvir, Chen Hajaj
Title: Cloudy with a Chance of Anomalies: Dynamic Graph Neural Network for Early Detection of Cloud Services' User Anomalies
Abstract:
Ensuring the security of cloud environments is imperative for sustaining organizational growth and operational efficiency. As the ubiquity of cloud services continues to rise, the inevitability of cyber threats underscores the importance of preemptive detection. This paper introduces a pioneering time-based embedding approach for Cloud Services Graph-based Anomaly Detection (CS-GAD), utilizing a Graph Neural Network (GNN) to discern anomalous user behavior during interactions with cloud services. Our method employs a dynamic tripartite graph representation to encapsulate the evolving interactions among cloud services, users, and their activities over time. Leveraging GNN models in each time frame, our approach generates a graph embedding wherein each user is assigned a score based on their historical activity, facilitating the identification of unusual behavior. Results demonstrate a notable reduction in false positive rates (2-9%) compared to prevailing methods, coupled with a commendable true positive rate (100%). The contributions of this work encompass early detection capabilities, a low false positive rate, an innovative tripartite graph representation incorporating action types, the introduction of a new cloud services dataset featuring various user attacks, and an open-source implementation for community collaboration in advancing cloud service security.
Authors:Maarten Meire, Quinten Van Baelen, Ted Ooijevaar, Peter Karsmakers
Title: Constraint Guided AutoEncoders for Joint Optimization of Condition Indicator Estimation and Anomaly Detection in Machine Condition Monitoring
Abstract:
The main goal of machine condition monitoring is, as the name implies, to monitor the condition of industrial applications. The objective of this monitoring can be mainly split into two problems. A diagnostic problem, where normal data should be distinguished from anomalous data, otherwise called Anomaly Detection (AD), or a prognostic problem, where the aim is to predict the evolution of a Condition Indicator (CI) that reflects the condition of an asset throughout its life time. When considering machine condition monitoring, it is expected that this CI shows a monotonic behavior, as the condition of a machine gradually degrades over time. This work proposes an extension to Constraint Guided AutoEncoders (CGAE), which is a robust AD method, that enables building a single model that can be used for both AD and CI estimation. For the purpose of improved CI estimation the extension incorporates a constraint that enforces the model to have monotonically increasing CI predictions over time. Experimental results indicate that the proposed algorithm performs similar, or slightly better, than CGAE, with regards to AD, while improving the monotonic behavior of the CI.
Authors:Hoang Khang Phan, Quang Vinh Dang, Noriyo Colley, Christina Garcia, Nhat Tan Le
Title: A Unified XAI-LLM Approach for EndotrachealSuctioning Activity Recognition
Abstract:
Endotracheal suctioning (ES) is an invasive yet essential clinical procedure that requires a high degree of skill to minimize patient risk - particularly in home care and educational settings, where consistent supervision may be limited. Despite its critical importance, automated recognition and feedback systems for ES training remain underexplored. To address this gap, this study proposes a unified, LLM-centered framework for video-based activity recognition benchmarked against conventional machine learning and deep learning approaches, and a pilot study on feedback generation. Within this framework, the Large Language Model (LLM) serves as the central reasoning module, performing both spatiotemporal activity recognition and explainable decision analysis from video data. Furthermore, the LLM is capable of verbalizing feedback in natural language, thereby translating complex technical insights into accessible, human-understandable guidance for trainees. Experimental results demonstrate that the proposed LLM-based approach outperforms baseline models, achieving an improvement of approximately 15-20\% in both accuracy and F1 score. Beyond recognition, the framework incorporates a pilot student-support module built upon anomaly detection and explainable AI (XAI) principles, which provides automated, interpretable feedback highlighting correct actions and suggesting targeted improvements. Collectively, these contributions establish a scalable, interpretable, and data-driven foundation for advancing nursing education, enhancing training efficiency, and ultimately improving patient safety.
Authors:Marcus Emmanuel Barnes, Taher A. Ghaleb, Safwat Hassan
Title: LogSieve: Task-Aware CI Log Reduction for Sustainable LLM-Based Analysis
Abstract:
Logs are essential for understanding Continuous Integration (CI) behavior, particularly for diagnosing build failures and performance regressions. Yet their growing volume and verbosity make both manual inspection and automated analysis increasingly costly, time-consuming, and environmentally costly. While prior work has explored log compression, anomaly detection, and LLM-based log analysis, most efforts target structured system logs rather than the unstructured, noisy, and verbose logs typical of CI workflows. We present LogSieve, a lightweight, RCA-aware and semantics-preserving log reduction technique that filters low-information lines while retaining content relevant to downstream reasoning. Evaluated on CI logs from 20 open-source Android projects using GitHub Actions, LogSieve achieves an average 42% reduction in lines and 40% reduction in tokens with minimal semantic loss. This pre-inference reduction lowers computational cost and can proportionally reduce energy use (and associated emissions) by decreasing the volume of data processed during LLM inference. Compared with structure-first baselines (LogZip and random-line removal), LogSieve preserves much higher semantic and categorical fidelity (Cosine = 0.93, GPTScore = 0.93, 80% exact-match accuracy). Embedding-based classifiers automate relevance detection with near-human accuracy (97%), enabling scalable and sustainable integration of semantics-aware filtering into CI workflows. LogSieve thus bridges log management and LLM reasoning, offering a practical path toward greener and more interpretable CI automation.
Authors:Padmaksha Roy, Lamine Mili, Almuatazbellah Boker
Title: A Multi-directional Meta-Learning Framework for Class-Generalizable Anomaly Detection
Abstract:
In this paper, we address the problem of class-generalizable anomaly detection, where the objective is to develop a unified model by focusing our learning on the available normal data and a small amount of anomaly data in order to detect the completely unseen anomalies, also referred to as the out-of-distribution (OOD) classes. Adding to this challenge is the fact that the anomaly data is rare and costly to label. To achieve this, we propose a multidirectional meta-learning algorithm -- at the inner level, the model aims to learn the manifold of the normal data (representation); at the outer level, the model is meta-tuned with a few anomaly samples to maximize the softmax confidence margin between the normal and anomaly samples (decision surface calibration), treating normals as in-distribution (ID) and anomalies as out-of-distribution (OOD). By iteratively repeating this process over multiple episodes of predominantly normal and a small number of anomaly samples, we realize a multidirectional meta-learning framework. This two-level optimization, enhanced by multidirectional training, enables stronger generalization to unseen anomaly classes.
Authors:Yuxuan Cai, Xinyi Lai, Peng Yuan, Weiting Liu, Huajian Li, Mingda Li, Xinghua Wang, Shengxie Zheng, Yanchao Hao, Yuyang Yin, Zheng Wei
Title: Yunque DeepResearch Technical Report
Abstract:
Deep research has emerged as a transformative capability for autonomous agents, empowering Large Language Models to navigate complex, open-ended tasks. However, realizing its full potential is hindered by critical limitations, including escalating contextual noise in long-horizon tasks, fragility leading to cascading errors, and a lack of modular extensibility. To address these challenges, we introduce Yunque DeepResearch, a hierarchical, modular, and robust framework. The architecture is characterized by three key components: (1) a centralized Multi-Agent Orchestration System that routes subtasks to an Atomic Capability Pool of tools and specialized sub-agents; (2) a Dynamic Context Management mechanism that structures completed sub-goals into semantic summaries to mitigate information overload; and (3) a proactive Supervisor Module that ensures resilience through active anomaly detection and context pruning. Yunque DeepResearch achieves state-of-the-art performance across a range of agentic deep research benchmarks, including GAIA, BrowseComp, BrowseComp-ZH, and Humanity's Last Exam. We open-source the framework, reproducible implementations, and application cases to empower the community.
Authors:Yi Di, Zhibin Zhao, Fujin Wang, Xue Liu, Jiafeng Tang, Jiaxin Ren, Zhi Zhai, Xuefeng Chen
Title: Empowering All-in-Loop Health Management of Spacecraft Power System in the Mega-Constellation Era via Human-AI Collaboration
Abstract:
It is foreseeable that the number of spacecraft will increase exponentially, ushering in an era dominated by satellite mega-constellations (SMC). This necessitates a focus on energy in space: spacecraft power systems (SPS), especially their health management (HM), given their role in power supply and high failure rates. Providing health management for dozens of SPS and for thousands of SPS represents two fundamentally different paradigms. Therefore, to adapt the health management in the SMC era, this work proposes a principle of aligning underlying capabilities (AUC principle) and develops SpaceHMchat, an open-source Human-AI collaboration (HAIC) framework for all-in-loop health management (AIL HM). SpaceHMchat serves across the entire loop of work condition recognition, anomaly detection, fault localization, and maintenance decision making, achieving goals such as conversational task completion, adaptive human-in-the-loop learning, personnel structure optimization, knowledge sharing, efficiency enhancement, as well as transparent reasoning and improved interpretability. Meanwhile, to validate this exploration, a hardware-realistic fault injection experimental platform is established, and its simulation model is built and open-sourced, both fully replicating the real SPS. The corresponding experimental results demonstrate that SpaceHMchat achieves excellent performance across 23 quantitative metrics, such as 100% conclusion accuracy in logical reasoning of work condition recognition, over 99% success rate in anomaly detection tool invocation, over 90% precision in fault localization, and knowledge base search time under 3 minutes in maintenance decision-making. Another contribution of this work is the release of the first-ever AIL HM dataset of SPS. This dataset contains four sub-datasets, involving 4 types of AIL HM sub-tasks, 17 types of faults, and over 700,000 timestamps.
Authors:Ho Fung Tsoi, Dylan Rankin
Title: jBOT: Semantic Jet Representation Clustering Emerges from Self-Distillation
Abstract:
Self-supervised learning is a powerful pre-training method for learning feature representations without labels, which often capture generic underlying semantics from the data and can later be fine-tuned for downstream tasks. In this work, we introduce jBOT, a pre-training method based on self-distillation for jet data from the CERN Large Hadron Collider, which combines local particle-level distillation with global jet-level distillation to learn jet representations that support downstream tasks such as anomaly detection and classification. We observe that pre-training on unlabeled jets leads to emergent semantic class clustering in the representation space. The clustering in the frozen embedding, when pre-trained on background jets only, enables anomaly detection via simple distance-based metrics, and the learned embedding can be fine-tuned for classification with improved performance compared to supervised models trained from scratch.
Authors:Isaiah J. King, Bernardo Trindade, Benjamin Bowman, H. Howie Huang
Title: CyberGFM: Graph Foundation Models for Lateral Movement Detection in Enterprise Networks
Abstract:
Representing networks as a graph and training a link prediction model using benign connections is an effective method of anomaly-based intrusion detection. Existing works using this technique have shown great success using temporal graph neural networks and skip-gram-based approaches on random walks. However, random walk-based approaches are unable to incorporate rich edge data, while the GNN-based approaches require large amounts of memory to train. In this work, we propose extending the original insight from random walk-based skip-grams--that random walks through a graph are analogous to sentences in a corpus--to the more modern transformer-based foundation models. Using language models that take advantage of GPU optimizations, we can quickly train a graph foundation model to predict missing tokens in random walks through a network of computers. The graph foundation model is then finetuned for link prediction and used as a network anomaly detector. This new approach allows us to combine the efficiency of random walk-based methods and the rich semantic representation of deep learning methods. This system, which we call CyberGFM, achieved state-of-the-art results on three widely used network anomaly detection datasets, delivering a up to 2$\times$ improvement in average precision. We found that CyberGFM outperforms all prior works in unsupervised link prediction for network anomaly detection, using the same number of parameters, and with equal or better efficiency than the previous best approaches.
Authors:Mohammad Shamim Ahsan, Haizhou Wang, Venkateswara Reddy Motakatla, Minghui Zhu, Peng Liu
Title: Differentiation Between Faults and Cyberattacks through Combined Analysis of Cyberspace Logs and Physical Measurements
Abstract:
In recent years, cyberattacks - along with physical faults - have become an increasing factor causing system failures, especially in DER (Distributed Energy Resources) systems. In addition, according to the literature, a number of faults have been reported to remain undetected. Consequently, unlike anomaly detection works that only identify abnormalities, differentiating undetected faults and cyberattacks is a challenging task. Although several works have studied this problem, they crucially fall short of achieving an accurate distinction due to the reliance on physical laws or physical measurements. To resolve this issue, the industry typically conducts an integrated analysis with physical measurements and cyberspace information. Nevertheless, this industry approach consumes a significant amount of time due to the manual efforts required in the analysis. In this work, we focus on addressing these crucial gaps by proposing a non-trivial approach of distinguishing undetected faults and cyberattacks in DER systems. Specifically, first, a special kind of dependency graph is constructed using a novel virtual physical variable-oriented taint analysis (PVOTA) algorithm. Then, the graph is simplified using an innovative node pruning technique, which is based on a set of context-dependent operations. Next, a set of patterns capturing domain-specific knowledge is derived to bridge the semantic gaps between the cyber and physical sides. Finally, these patterns are matched to the relevant events that occurred during failure incidents, and possible root causes are concluded based on the pattern matching results. In the end, the efficacy of our proposed automatic integrated analysis is evaluated through four case studies covering failure incidents caused by the FDI attack, undetected faults, and memory corruption attacks.
Authors:Lesley Wheat, Martin v. Mohrenschildt, Saeid Habibi
Title: Evaluating Anomaly Detectors for Simulated Highly Imbalanced Industrial Classification Problems
Abstract:
Machine learning offers potential solutions to current issues in industrial systems in areas such as quality control and predictive maintenance, but also faces unique barriers in industrial applications. An ongoing challenge is extreme class imbalance, primarily due to the limited availability of faulty data during training. This paper presents a comprehensive evaluation of anomaly detection algorithms using a problem-agnostic simulated dataset that reflects real-world engineering constraints. Using a synthetic dataset with a hyper-spherical based anomaly distribution in 2D and 10D, we benchmark 14 detectors across training datasets with anomaly rates between 0.05% and 20% and training sizes between 1 000 and 10 000 (with a testing dataset size of 40 000) to assess performance and generalization error. Our findings reveal that the best detector is highly dependant on the total number of faulty examples in the training dataset, with additional healthy examples offering insignificant benefits in most cases. With less than 20 faulty examples, unsupervised methods (kNN/LOF) dominate; but around 30-50 faulty examples, semi-supervised (XGBOD) and supervised (SVM/CatBoost) detectors, we see large performance increases. While semi-supervised methods do not show significant benefits with only two features, the improvements are evident at ten features. The study highlights the performance drop on generalization of anomaly detection methods on smaller datasets, and provides practical insights for deploying anomaly detection in industrial environments.
Authors:Sungho Kang, Hyunkyu Park, Yeonho Lee, Hanbyul Lee, Mijoo Jeong, YeongHyeon Park, Injae Lee, Juneho Yi
Title: Anomaly Detection by Effectively Leveraging Synthetic Images
Abstract:
Anomaly detection plays a vital role in industrial manufacturing. Due to the scarcity of real defect images, unsupervised approaches that rely solely on normal images have been extensively studied. Recently, diffusion-based generative models brought attention to training data synthesis as an alternative solution. In this work, we focus on a strategy to effectively leverage synthetic images to maximize the anomaly detection performance. Previous synthesis strategies are broadly categorized into two groups, presenting a clear trade-off. Rule-based synthesis, such as injecting noise or pasting patches, is cost-effective but often fails to produce realistic defect images. On the other hand, generative model-based synthesis can create high-quality defect images but requires substantial cost. To address this problem, we propose a novel framework that leverages a pre-trained text-guided image-to-image translation model and image retrieval model to efficiently generate synthetic defect images. Specifically, the image retrieval model assesses the similarity of the generated images to real normal images and filters out irrelevant outputs, thereby enhancing the quality and relevance of the generated defect images. To effectively leverage synthetic images, we also introduce a two stage training strategy. In this strategy, the model is first pre-trained on a large volume of images from rule-based synthesis and then fine-tuned on a smaller set of high-quality images. This method significantly reduces the cost for data collection while improving the anomaly detection performance. Experiments on the MVTec AD dataset demonstrate the effectiveness of our approach.
Authors:Tao Yang, Xiuying Wang, Hao Liu, Guanzhong Gong, Lian-Ming Wu, Yu-Ping Wang, Lisheng Wang
Title: Unsupervised Anomaly Detection in Brain MRI via Disentangled Anatomy Learning
Abstract:
Detection of various lesions in brain MRI is clinically critical, but challenging due to the diversity of lesions and variability in imaging conditions. Current unsupervised learning methods detect anomalies mainly through reconstructing abnormal images into pseudo-healthy images (PHIs) by normal samples learning and then analyzing differences between images. However, these unsupervised models face two significant limitations: restricted generalizability to multi-modality and multi-center MRIs due to their reliance on the specific imaging information in normal training data, and constrained performance due to abnormal residuals propagated from input images to reconstructed PHIs. To address these limitations, two novel modules are proposed, forming a new PHI reconstruction framework. Firstly, the disentangled representation module is proposed to improve generalizability by decoupling brain MRI into imaging information and essential imaging-invariant anatomical images, ensuring that the reconstruction focuses on the anatomy. Specifically, brain anatomical priors and a differentiable one-hot encoding operator are introduced to constrain the disentanglement results and enhance the disentanglement stability. Secondly, the edge-to-image restoration module is designed to reconstruct high-quality PHIs by restoring the anatomical representation from the high-frequency edge information of anatomical images, and then recoupling the disentangled imaging information. This module not only suppresses abnormal residuals in PHI by reducing abnormal pixels input through edge-only input, but also effectively reconstructs normal regions using the preserved structural details in the edges. Evaluated on nine public datasets (4,443 patients' MRIs from multiple centers), our method outperforms 17 SOTA methods, achieving absolute improvements of +18.32% in AP and +13.64% in DSC.
Authors:Anfeng Peng, Ajesh Koyatan Chathoth, Stephen Lee
Title: Log Anomaly Detection with Large Language Models via Knowledge-Enriched Fusion
Abstract:
System logs are a critical resource for monitoring and managing distributed systems, providing insights into failures and anomalous behavior. Traditional log analysis techniques, including template-based and sequence-driven approaches, often lose important semantic information or struggle with ambiguous log patterns. To address this, we present EnrichLog, a training-free, entry-based anomaly detection framework that enriches raw log entries with both corpus-specific and sample-specific knowledge. EnrichLog incorporates contextual information, including historical examples and reasoning derived from the corpus, to enable more accurate and interpretable anomaly detection. The framework leverages retrieval-augmented generation to integrate relevant contextual knowledge without requiring retraining. We evaluate EnrichLog on four large-scale system log benchmark datasets and compare it against five baseline methods. Our results show that EnrichLog consistently improves anomaly detection performance, effectively handles ambiguous log entries, and maintains efficient inference. Furthermore, incorporating both corpus- and sample-specific knowledge enhances model confidence and detection accuracy, making EnrichLog well-suited for practical deployments.
Authors:Ana Rita Paupério, Diogo Risca, Afonso Lourenço, Goreti Marreiros, Ricardo Martins
Title: Explainable Anomaly Detection for Industrial IoT Data Streams
Abstract:
Industrial maintenance is being transformed by the Internet of Things and edge computing, generating continuous data streams that demand real-time, adaptive decision-making under limited computational resources. While data stream mining (DSM) addresses this challenge, most methods assume fully supervised settings, yet in practice, ground-truth labels are often delayed or unavailable. This paper presents a collaborative DSM framework that integrates unsupervised anomaly detection with interactive, human-in-the-loop learning to support maintenance decisions. We employ an online Isolation Forest and enhance interpretability using incremental Partial Dependence Plots and a feature importance score, derived from deviations of Individual Conditional Expectation curves from a fading average, enabling users to dynamically reassess feature relevance and adjust anomaly thresholds. We describe the real-time implementation and provide initial results for fault detection in a Jacquard loom unit. Ongoing work targets continuous monitoring to predict and explain imminent bearing failures.
Authors:Tasmiah Haque, Srinjoy Das
Title: Inference-time Stochastic Refinement of GRU-Normalizing Flow for Real-time Video Motion Transfer
Abstract:
Real-time video motion transfer applications such as immersive gaming and vision-based anomaly detection require accurate yet diverse future predictions to support realistic synthesis and robust downstream decision making under uncertainty. To improve the diversity of such sequential forecasts we propose a novel inference-time refinement technique that combines Gated Recurrent Unit-Normalizing Flows (GRU-NF) with stochastic sampling methods. While GRU-NF can capture multimodal distributions through its integration of normalizing flows within a temporal forecasting framework, its deterministic transformation structure can limit expressivity. To address this, inspired by Stochastic Normalizing Flows (SNF), we introduce Markov Chain Monte Carlo (MCMC) steps during GRU-NF inference, enabling the model to explore a richer output space and better approximate the true data distribution without retraining. We validate our approach in a keypoint-based video motion transfer pipeline, where capturing temporally coherent and perceptually diverse future trajectories is essential for realistic samples and low bandwidth communication. Experiments show that our inference framework, Gated Recurrent Unit- Stochastic Normalizing Flows (GRU-SNF) outperforms GRU-NF in generating diverse outputs without sacrificing accuracy, even under longer prediction horizons. By injecting stochasticity during inference, our approach captures multimodal behavior more effectively. These results highlight the potential of integrating stochastic dynamics with flow-based sequence models for generative time series forecasting.
Authors:Zhongyuan Wu, Jingyuan Wang, Zexuan Cheng, Yilong Zhou, Weizhi Wang, Juhua Pu, Chao Li, Changqing Ma
Title: ICAD-LLM: One-for-All Anomaly Detection via In-Context Learning with Large Language Models
Abstract:
Anomaly detection (AD) is a fundamental task of critical importance across numerous domains. Current systems increasingly operate in rapidly evolving environments that generate diverse yet interconnected data modalities -- such as time series, system logs, and tabular records -- as exemplified by modern IT systems. Effective AD methods in such environments must therefore possess two critical capabilities: (1) the ability to handle heterogeneous data formats within a unified framework, allowing the model to process and detect multiple modalities in a consistent manner during anomalous events; (2) a strong generalization ability to quickly adapt to new scenarios without extensive retraining. However, most existing methods fall short of these requirements, as they typically focus on single modalities and lack the flexibility to generalize across domains. To address this gap, we introduce a novel paradigm: In-Context Anomaly Detection (ICAD), where anomalies are defined by their dissimilarity to a relevant reference set of normal samples. Under this paradigm, we propose ICAD-LLM, a unified AD framework leveraging Large Language Models' in-context learning abilities to process heterogeneous data within a single model. Extensive experiments demonstrate that ICAD-LLM achieves competitive performance with task-specific AD methods and exhibits strong generalization to previously unseen tasks, which substantially reduces deployment costs and enables rapid adaptation to new environments. To the best of our knowledge, ICAD-LLM is the first model capable of handling anomaly detection tasks across diverse domains and modalities.
Authors:Kaixiang Yang, Jiarong Liu, Yupeng Song, Shuanghua Yang, Yujue Zhou
Title: A Problem-Oriented Taxonomy of Evaluation Metrics for Time Series Anomaly Detection
Abstract:
Time series anomaly detection is widely used in IoT and cyber-physical systems, yet its evaluation remains challenging due to diverse application objectives and heterogeneous metric assumptions. This study introduces a problem-oriented framework that reinterprets existing metrics based on the specific evaluation challenges they are designed to address, rather than their mathematical forms or output structures. We categorize over twenty commonly used metrics into six dimensions: 1) basic accuracy-driven evaluation; 2) timeliness-aware reward mechanisms; 3) tolerance to labeling imprecision; 4) penalties reflecting human-audit cost; 5) robustness against random or inflated scores; and 6) parameter-free comparability for cross-dataset benchmarking. Comprehensive experiments are conducted to examine metric behavior under genuine, random, and oracle detection scenarios. By comparing their resulting score distributions, we quantify each metric's discriminative ability -- its capability to distinguish meaningful detections from random noise. The results show that while most event-level metrics exhibit strong separability, several widely used metrics (e.g., NAB, Point-Adjust) demonstrate limited resistance to random-score inflation. These findings reveal that metric suitability must be inherently task-dependent and aligned with the operational objectives of IoT applications. The proposed framework offers a unified analytical perspective for understanding existing metrics and provides practical guidance for selecting or developing more context-aware, robust, and fair evaluation methodologies for time series anomaly detection.
Authors:Joy Lai, Alex Mihailidis
Title: PersonaDrift: A Benchmark for Temporal Anomaly Detection in Language-Based Dementia Monitoring
Abstract:
People living with dementia (PLwD) often show gradual shifts in how they communicate, becoming less expressive, more repetitive, or drifting off-topic in subtle ways. While caregivers may notice these changes informally, most computational tools are not designed to track such behavioral drift over time. This paper introduces PersonaDrift, a synthetic benchmark designed to evaluate machine learning and statistical methods for detecting progressive changes in daily communication, focusing on user responses to a digital reminder system. PersonaDrift simulates 60-day interaction logs for synthetic users modeled after real PLwD, based on interviews with caregivers. These caregiver-informed personas vary in tone, modality, and communication habits, enabling realistic diversity in behavior. The benchmark focuses on two forms of longitudinal change that caregivers highlighted as particularly salient: flattened sentiment (reduced emotional tone and verbosity) and off-topic replies (semantic drift). These changes are injected progressively at different rates to emulate naturalistic cognitive trajectories, and the framework is designed to be extensible to additional behaviors in future use cases. To explore this novel application space, we evaluate several anomaly detection approaches, unsupervised statistical methods (CUSUM, EWMA, One-Class SVM), sequence models using contextual embeddings (GRU + BERT), and supervised classifiers in both generalized and personalized settings. Preliminary results show that flattened sentiment can often be detected with simple statistical models in users with low baseline variability, while detecting semantic drift requires temporal modeling and personalized baselines. Across both tasks, personalized classifiers consistently outperform generalized ones, highlighting the importance of individual behavioral context.
Authors:Zhengchunmin Dai, Jiaxiong Tang, Peng Sun, Honglong Chen, Liantao Wu
Title: Sigil: Server-Enforced Watermarking in U-Shaped Split Federated Learning via Gradient Injection
Abstract:
In decentralized machine learning paradigms such as Split Federated Learning (SFL) and its variant U-shaped SFL, the server's capabilities are severely restricted. Although this enhances client-side privacy, it also leaves the server highly vulnerable to model theft by malicious clients. Ensuring intellectual property protection for such capability-limited servers presents a dual challenge: watermarking schemes that depend on client cooperation are unreliable in adversarial settings, whereas traditional server-side watermarking schemes are technically infeasible because the server lacks access to critical elements such as model parameters or labels. To address this challenge, this paper proposes Sigil, a mandatory watermarking framework designed specifically for capability-limited servers. Sigil defines the watermark as a statistical constraint on the server-visible activation space and embeds the watermark into the client model via gradient injection, without requiring any knowledge of the data. Besides, we design an adaptive gradient clipping mechanism to ensure that our watermarking process remains both mandatory and stealthy, effectively countering existing gradient anomaly detection methods and a specifically designed adaptive subspace removal attack. Extensive experiments on multiple datasets and models demonstrate Sigil's fidelity, robustness, and stealthiness.
Authors:Zelin Zhu, Yancheng Huang, Kai Yang
Title: RoS-Guard: Robust and Scalable Online Change Detection with Delay-Optimal Guarantees
Abstract:
Online change detection (OCD) aims to rapidly identify change points in streaming data and is critical in applications such as power system monitoring, wireless network sensing, and financial anomaly detection. Existing OCD methods typically assume precise system knowledge, which is unrealistic due to estimation errors and environmental variations. Moreover, existing OCD methods often struggle with efficiency in large-scale systems. To overcome these challenges, we propose RoS-Guard, a robust and optimal OCD algorithm tailored for linear systems with uncertainty. Through a tight relaxation and reformulation of the OCD optimization problem, RoS-Guard employs neural unrolling to enable efficient parallel computation via GPU acceleration. The algorithm provides theoretical guarantees on performance, including expected false alarm rate and worst-case average detection delay. Extensive experiments validate the effectiveness of RoS-Guard and demonstrate significant computational speedup in large-scale system scenarios.
Authors:Mahek Desai, Apoorva Rumale, Marjan Asadinia
Title: SHIELD: Securing Healthcare IoT with Efficient Machine Learning Techniques for Anomaly Detection
Abstract:
The integration of IoT devices in healthcare introduces significant security and reliability challenges, increasing susceptibility to cyber threats and operational anomalies. This study proposes a machine learning-driven framework for (1) detecting malicious cyberattacks and (2) identifying faulty device anomalies, leveraging a dataset of 200,000 records. Eight machine learning models are evaluated across three learning approaches: supervised learning (XGBoost, K-Nearest Neighbors (K- NN)), semi-supervised learning (Generative Adversarial Networks (GAN), Variational Autoencoders (VAE)), and unsupervised learning (One-Class Support Vector Machine (SVM), Isolation Forest, Graph Neural Networks (GNN), and Long Short-Term Memory (LSTM) Autoencoders). The comprehensive evaluation was conducted across multiple metrics like F1-score, precision, recall, accuracy, ROC-AUC, computational efficiency. XGBoost achieved 99\% accuracy with minimal computational overhead (0.04s) for anomaly detection, while Isolation Forest balanced precision and recall effectively. LSTM Autoencoders underperformed with lower accuracy and higher latency. For attack detection, KNN achieved near-perfect precision, recall, and F1-score with the lowest computational cost (0.05s), followed by VAE at 97% accuracy. GAN showed the highest computational cost with lowest accuracy and ROC-AUC. These findings enhance IoT-enabled healthcare security through effective anomaly detection strategies. By improving early detection of cyber threats and device failures, this framework has the potential to prevent data breaches, minimize system downtime, and ensure the continuous and safe operation of medical devices, ultimately safeguarding patient health and trust in IoT-driven healthcare solutions.
Authors:Simone Mungari, Ettore Ritacco, Pietro Sabatino
Title: Combining Euclidean and Hyperbolic Representations for Node-level Anomaly Detection
Abstract:
Node-level anomaly detection (NAD) is challenging due to diverse structural patterns and feature distributions. As such, NAD is a critical task with several applications which range from fraud detection, cybersecurity, to recommendation systems. We introduce Janus, a framework that jointly leverages Euclidean and Hyperbolic Graph Neural Networks to capture complementary aspects of node representations. Each node is described by two views, composed by the original features and structural features derived from random walks and degrees, then embedded into Euclidean and Hyperbolic spaces. A multi Graph-Autoencoder framework, equipped with a contrastive learning objective as regularization term, aligns the embeddings across the Euclidean and Hyperbolic spaces, highlighting nodes whose views are difficult to reconcile and are thus likely anomalous. Experiments on four real-world datasets show that Janus consistently outperforms shallow and deep baselines, empirically demonstrating that combining multiple geometric representations provides a robust and effective approach for identifying subtle and complex anomalies in graphs.
Authors:Mohammad Karami, Mostafa Jalali, Fatemeh Ghassemi
Title: A Comprehensive Forecasting-Based Framework for Time Series Anomaly Detection: Benchmarking on the Numenta Anomaly Benchmark (NAB)
Abstract:
Time series anomaly detection is critical for modern digital infrastructures, yet existing methods lack systematic cross-domain evaluation. We present a comprehensive forecasting-based framework unifying classical methods (Holt-Winters, SARIMA) with deep learning architectures (LSTM, Informer) under a common residual-based detection interface. Our modular pipeline integrates preprocessing (normalization, STL decomposition), four forecasting models, four detection methods, and dual evaluation through forecasting metrics (MAE, RMSE, PCC) and detection metrics (Precision, Recall, F1, AUC). We conduct the first complete evaluation on the Numenta Anomaly Benchmark (58 datasets, 7 categories) with 232 model training runs and 464 detection evaluations achieving 100\% success rate. LSTM achieves best performance (F1: 0.688, ranking first or second on 81\% of datasets) with exceptional correlation on complex patterns (PCC: 0.999). Informer provides competitive accuracy (F1: 0.683) with 30\% faster training. Classical methods achieve perfect predictions on simple synthetic data with 60 lower cost but show 2-3 worse F1-scores on real-world datasets. Forecasting quality dominates detection performance: differences between detection methods (F1: 0.621-0.688) are smaller than between forecasting models (F1: 0.344-0.688). Our findings provide evidence-based guidance: use LSTM for complex patterns, Informer for efficiency-critical deployments, and classical methods for simple periodic data with resource constraints. The complete implementation and results establish baselines for future forecasting-based anomaly detection research.
Authors:Yitong Chen, Xinyao Xu, Ping Zhu, Xinyong Han, Fangbo Qin, Shan Yu
Title: Visual Anomaly Detection for Reliable Robotic Implantation of Flexible Microelectrode Array
Abstract:
Flexible microelectrode (FME) implantation into brain cortex is challenging due to the deformable fiber-like structure of FME probe and the interaction with critical bio-tissue. To ensure reliability and safety, the implantation process should be monitored carefully. This paper develops an image-based anomaly detection framework based on the microscopic cameras of the robotic FME implantation system. The unified framework is utilized at four checkpoints to check the micro-needle, FME probe, hooking result, and implantation point, respectively. Exploiting the existing object localization results, the aligned regions of interest (ROIs) are extracted from raw image and input to a pretrained vision transformer (ViT). Considering the task specifications, we propose a progressive granularity patch feature sampling method to address the sensitivity-tolerance trade-off issue at different locations. Moreover, we select a part of feature channels with higher signal-to-noise ratios from the raw general ViT features, to provide better descriptors for each specific scene. The effectiveness of the proposed methods is validated with the image datasets collected from our implantation system.
Authors:Liting Li, Yumeng Wang, Yueheng Sun
Title: Meta-Learning Based Few-Shot Graph-Level Anomaly Detection
Abstract:
Graph-level anomaly detection aims to identify anomalous graphs or subgraphs within graph datasets, playing a vital role in various fields such as fraud detection, review classification, and biochemistry. While Graph Neural Networks (GNNs) have made significant progress in this domain, existing methods rely heavily on large amounts of labeled data, which is often unavailable in real-world scenarios. Additionally, few-shot anomaly detection methods based on GNNs are prone to noise interference, resulting in poor embedding quality and reduced model robustness. To address these challenges, we propose a novel meta-learning-based graph-level anomaly detection framework (MA-GAD), incorporating a graph compression module that reduces the graph size, mitigating noise interference while retaining essential node information. We also leverage meta-learning to extract meta-anomaly information from similar networks, enabling the learning of an initialization model that can rapidly adapt to new tasks with limited samples. This improves the anomaly detection performance on target graphs, and a bias network is used to enhance the distinction between anomalous and normal nodes. Our experimental results, based on four real-world biochemical datasets, demonstrate that MA-GAD outperforms existing state-of-the-art methods in graph-level anomaly detection under few-shot conditions. Experiments on both graph anomaly and subgraph anomaly detection tasks validate the framework's effectiveness on real-world datasets.
Authors:Iago Xabier Vázquez, Javier Sedano, Muhammad Afzal, Ángel Miguel García-Vico
Title: Vacuum Spiker: A Spiking Neural Network-Based Model for Efficient Anomaly Detection in Time Series
Abstract:
Anomaly detection is a key task across domains such as industry, healthcare, and cybersecurity. Many real-world anomaly detection problems involve analyzing multiple features over time, making time series analysis a natural approach for such problems. While deep learning models have achieved strong performance in this field, their trend to exhibit high energy consumption limits their deployment in resource-constrained environments such as IoT devices, edge computing platforms, and wearables. To address this challenge, this paper introduces the \textit{Vacuum Spiker algorithm}, a novel Spiking Neural Network-based method for anomaly detection in time series. It incorporates a new detection criterion that relies on global changes in neural activity rather than reconstruction or prediction error. It is trained using Spike Time-Dependent Plasticity in a novel way, intended to induce changes in neural activity when anomalies occur. A new efficient encoding scheme is also proposed, which discretizes the input space into non-overlapping intervals, assigning each to a single neuron. This strategy encodes information with a single spike per time step, improving energy efficiency compared to conventional encoding methods. Experimental results on publicly available datasets show that the proposed algorithm achieves competitive performance while significantly reducing energy consumption, compared to a wide set of deep learning and machine learning baselines. Furthermore, its practical utility is validated in a real-world case study, where the model successfully identifies power curtailment events in a solar inverter. These results highlight its potential for sustainable and efficient anomaly detection.
Authors:Md Zahin Hossain George, Md Khorshed Alam, Md Tarek Hasan
Title: Machine learning for fraud detection in digital banking: a systematic literature review REVIEW
Abstract:
This systematic literature review examines the role of machine learning in fraud detection within digital banking, synthesizing evidence from 118 peer-reviewed studies and institutional reports. Following the PRISMA guidelines, the review applied a structured identification, screening, eligibility, and inclusion process to ensure methodological rigor and transparency. The findings reveal that supervised learning methods, such as decision trees, logistic regression, and support vector machines, remain the dominant paradigm due to their interpretability and established performance, while unsupervised anomaly detection approaches are increasingly adopted to address novel fraud patterns in highly imbalanced datasets. Deep learning architectures, particularly recurrent and convolutional neural networks, have emerged as transformative tools capable of modeling sequential transaction data and detecting complex fraud typologies, though challenges of interpretability and real-time deployment persist. Hybrid models that combine supervised, unsupervised, and deep learning strategies demonstrate superior adaptability and detection accuracy, highlighting their potential as convergent solutions.
Authors:Ricardo Misael Ayala Molina, Hyame Assem Alameddine, Makan Pourzandi, Chadi Assi
Title: PUL-Inter-slice Defender: An Anomaly Detection Solution for Distributed Slice Mobility Attacks
Abstract:
Network Slices (NSs) are virtual networks operating over a shared physical infrastructure, each designed to meet specific application requirements while maintaining consistent Quality of Service (QoS). In Fifth Generation (5G) networks, User Equipment (UE) can connect to and seamlessly switch between multiple NSs to access diverse services. However, this flexibility, known as Inter-Slice Switching (ISS), introduces a potential vulnerability that can be exploited to launch Distributed Slice Mobility (DSM) attacks, a form of Distributed Denial of Service (DDoS) attack. To secure 5G networks and their NSs against DSM attacks, we present in this work, PUL-Inter-Slice Defender; an anomaly detection solution that leverages Positive Unlabeled Learning (PUL) and incorporates a combination of Long Short-Term Memory Autoencoders and K-Means clustering. PUL-Inter-Slice Defender leverages the Third Generation Partnership Project (3GPP) key performance indicators and performance measurement counters as features for its machine learning models to detect DSM attack variants while maintaining robustness in the presence of contaminated training data. When evaluated on data collected from our 5G testbed based on the open-source free5GC and UERANSIM, a UE/ Radio Access Network (RAN) simulator; PUL-Inter-Slice Defender achieved F1-scores exceeding 98.50% on training datasets with 10% to 40% attack contamination, consistently outperforming its counterpart Inter-Slice Defender and other PUL based solutions combining One-Class Support Vector Machine (OCSVM) with Random Forest and XGBoost.
Authors:Buhe Li, Berkay Kaplan, Maksym Lazirko, Aleksandr Kogan
Title: Unsupervised Outlier Detection in Audit Analytics: A Case Study Using USA Spending Data
Abstract:
This study investigates the effectiveness of unsupervised outlier detection methods in audit analytics, utilizing USA spending data from the U.S. Department of Health and Human Services (DHHS) as a case example. We employ and compare multiple outlier detection algorithms, including Histogram-based Outlier Score (HBOS), Robust Principal Component Analysis (PCA), Minimum Covariance Determinant (MCD), and K-Nearest Neighbors (KNN) to identify anomalies in federal spending patterns. The research addresses the growing need for efficient and accurate anomaly detection in large-scale governmental datasets, where traditional auditing methods may fall short. Our methodology involves data preparation, algorithm implementation, and performance evaluation using precision, recall, and F1 scores. Results indicate that a hybrid approach, combining multiple detection strategies, enhances the robustness and accuracy of outlier identification in complex financial data. This study contributes to the field of audit analytics by providing insights into the comparative effectiveness of various outlier detection models and demonstrating the potential of unsupervised learning techniques in improving audit quality and efficiency. The findings have implications for auditors, policymakers, and researchers seeking to leverage advanced analytics in governmental financial oversight and risk management.
Authors:Samuel Yoon, Jongwon Kim, Juyoung Ha, Young Myoung Ko
Title: MOMEMTO: Patch-based Memory Gate Model in Time Series Foundation Model
Abstract:
Recently reconstruction-based deep models have been widely used for time series anomaly detection, but as their capacity and representation capability increase, these models tend to over-generalize, often reconstructing unseen anomalies accurately. Prior works have attempted to mitigate this by incorporating a memory architecture that stores prototypes of normal patterns. Nevertheless, these approaches suffer from high training costs and have yet to be effectively integrated with time series foundation models (TFMs). To address these challenges, we propose \textbf{MOMEMTO}, a TFM for anomaly detection, enhanced with a patch-based memory module to mitigate over-generalization. The memory module is designed to capture representative normal patterns from multiple domains and enables a single model to be jointly fine-tuned across multiple datasets through a multi-domain training strategy. MOMEMTO initializes memory items with latent representations from a pre-trained encoder, organizes them into patch-level units, and updates them via an attention mechanism. We evaluate our method using 23 univariate benchmark datasets. Experimental results demonstrate that MOMEMTO, as a single model, achieves higher scores on AUC and VUS metrics compared to baseline methods, and further enhances the performance of its backbone TFM, particularly in few-shot learning scenarios.
Authors:Bahar Kor, Bipin Gaikwad, Abani Patra, Eric L. Miller
Title: On Multi-entity, Multivariate Quickest Change Point Detection
Abstract:
We propose a framework for online Change Point Detection (CPD) from multi-entity, multivariate time series data, motivated by applications in crowd monitoring where traditional sensing methods (e.g., video surveillance) may be infeasible. Our approach addresses the challenge of detecting system-wide behavioral shifts in complex, dynamic environments where the number and behavior of individual entities may be uncertain or evolve. We introduce the concept of Individual Deviation from Normality (IDfN), computed via a reconstruction-error-based autoencoder trained on normal behavior. We aggregate these individual deviations using mean, variance, and Kernel Density Estimates (KDE) to yield a System-Wide Anomaly Score (SWAS). To detect persistent or abrupt changes, we apply statistical deviation metrics and the Cumulative Sum (CUSUM) technique to these scores. Our unsupervised approach eliminates the need for labeled data or feature extraction, enabling real-time operation on streaming input. Evaluations on both synthetic datasets and crowd simulations, explicitly designed for anomaly detection in group behaviors, demonstrate that our method accurately detects significant system-level changes, offering a scalable and privacy-preserving solution for monitoring complex multi-agent systems. In addition to this methodological contribution, we introduce new, challenging multi-entity multivariate time series datasets generated from crowd simulations in Unity and coupled nonlinear oscillators. To the best of our knowledge, there is currently no publicly available dataset of this type designed explicitly to evaluate CPD in complex collective and interactive systems, highlighting an essential gap that our work addresses.
Authors:Sanju Xaviar, Omid Ardakanian
Title: Budgeted Adversarial Attack against Graph-Based Anomaly Detection in Sensor Networks
Abstract:
Graph Neural Networks (GNNs) have emerged as powerful models for anomaly detection in sensor networks, particularly when analyzing multivariate time series. In this work, we introduce BETA, a novel grey-box evasion attack targeting such GNN-based detectors, where the attacker is constrained to perturb sensor readings from a limited set of nodes, excluding the target sensor, with the goal of either suppressing a true anomaly or triggering a false alarm at the target node. BETA identifies the sensors most influential to the target node's classification and injects carefully crafted adversarial perturbations into their features, all while maintaining stealth and respecting the attacker's budget. Experiments on three real-world sensor network datasets show that BETA reduces the detection accuracy of state-of-the-art GNN-based detectors by 30.62 to 39.16% on average, and significantly outperforms baseline attack strategies, while operating within realistic constraints.
Authors:Padmaksha Roy, Almuatazbellah Boker, Lamine Mili
Title: Beyond Marginals: Learning Joint Spatio-Temporal Patterns for Multivariate Anomaly Detection
Abstract:
In this paper, we aim to improve multivariate anomaly detection (AD) by modeling the \textit{time-varying non-linear spatio-temporal correlations} found in multivariate time series data . In multivariate time series data, an anomaly may be indicated by the simultaneous deviation of interrelated time series from their expected collective behavior, even when no individual time series exhibits a clearly abnormal pattern on its own. In many existing approaches, time series variables are assumed to be (conditionally) independent, which oversimplifies real-world interactions. Our approach addresses this by modeling joint dependencies in the latent space and decoupling the modeling of \textit{marginal distributions, temporal dynamics, and inter-variable dependencies}. We use a transformer encoder to capture temporal patterns, and to model spatial (inter-variable) dependencies, we fit a multi-variate likelihood and a copula. The temporal and the spatial components are trained jointly in a latent space using a self-supervised contrastive learning objective to learn meaningful feature representations to separate normal and anomaly samples.
Authors:Ocheme Anthony Ekle, William Eberle
Title: Adaptive-GraphSketch: Real-Time Edge Anomaly Detection via Multi-Layer Tensor Sketching and Temporal Decay
Abstract:
Anomaly detection in dynamic graphs is essential for identifying malicious activities, fraud, and unexpected behaviors in real-world systems such as cybersecurity and power grids. However, existing approaches struggle with scalability, probabilistic interpretability, and adaptability to evolving traffic patterns. In this paper, we propose ADAPTIVE-GRAPHSKETCH, a lightweight and scalable framework for real-time anomaly detection in streaming edge data. Our method integrates temporal multi-tensor sketching with Count-Min Sketch using Conservative Update (CMS-CU) to compactly track edge frequency patterns with bounded memory, while mitigating hash collision issues. We incorporate Bayesian inference for probabilistic anomaly scoring and apply Exponentially Weighted Moving Average (EWMA) for adaptive thresholding tuned to burst intensity. Extensive experiments on four real-world intrusion detection datasets demonstrate that ADAPTIVE-GRAPHSKETCH outperforms state-of-the-art baselines such as ANOEDGE-G/L, MIDAS-R, and F-FADE, achieving up to 6.5% AUC gain on CIC-IDS2018 and up to 15.6% on CIC-DDoS2019, while processing 20 million edges in under 3.4 seconds using only 10 hash functions. Our results show that ADAPTIVE-GRAPHSKETCH is practical and effective for fast, accurate anomaly detection in large-scale streaming graphs. Keywords: Anomaly Detection, Streaming, Real-time, Dynamic Graphs, Edge Streams, Tensor Sketching
Authors:Gang Li, Tianjiao Chen, Mingle Zhou, Min Li, Delong Han, Jin Wan
Title: MCL-AD: Multimodal Collaboration Learning for Zero-Shot 3D Anomaly Detection
Abstract:
Zero-shot 3D (ZS-3D) anomaly detection aims to identify defects in 3D objects without relying on labeled training data, making it especially valuable in scenarios constrained by data scarcity, privacy, or high annotation cost. However, most existing methods focus exclusively on point clouds, neglecting the rich semantic cues available from complementary modalities such as RGB images and texts priors. This paper introduces MCL-AD, a novel framework that leverages multimodal collaboration learning across point clouds, RGB images, and texts semantics to achieve superior zero-shot 3D anomaly detection. Specifically, we propose a Multimodal Prompt Learning Mechanism (MPLM) that enhances the intra-modal representation capability and inter-modal collaborative learning by introducing an object-agnostic decoupled text prompt and a multimodal contrastive loss. In addition, a collaborative modulation mechanism (CMM) is proposed to fully leverage the complementary representations of point clouds and RGB images by jointly modulating the RGB image-guided and point cloud-guided branches. Extensive experiments demonstrate that the proposed MCL-AD framework achieves state-of-the-art performance in ZS-3D anomaly detection.
Authors:Spencer King, Zhilu Zhang, Ruofan Yu, Baris Coskun, Wei Ding, Qian Cui
Title: Deep Context-Conditioned Anomaly Detection for Tabular Data
Abstract:
Anomaly detection is critical in domains such as cybersecurity and finance, especially when working with large-scale tabular data. Yet, unsupervised anomaly detection -- where no labeled anomalies are available -- remains a significant challenge. Although various deep learning methods have been proposed to model a dataset's joint distribution, real-world tabular data often contain heterogeneous contexts (e.g., different users), making globally rare events normal under certain contexts. Consequently, relying on a single global distribution can overlook these contextual nuances, degrading detection performance. In this paper, we present a context-conditional anomaly detection framework tailored for tabular datasets. Our approach automatically identifies context features and models the conditional data distribution using a simple deep autoencoder. Extensive experiments on multiple tabular benchmark datasets demonstrate that our method outperforms state-of-the-art approaches, underscoring the importance of context in accurately distinguishing anomalous from normal instances.
Authors:Oluwadamilola Sotomi, Devika Kodi, Kiruthiga Chandra Shekar, Aliasghar Arab
Title: Embodied Hazard Mitigation using Vision-Language Models for Autonomous Mobile Robots
Abstract:
Autonomous robots operating in dynamic environments should identify and report anomalies. Embodying proactive mitigation improves safety and operational continuity. This paper presents a multimodal anomaly detection and mitigation system that integrates vision-language models and large language models to identify and report hazardous situations and conflicts in real-time. The proposed system enables robots to perceive, interpret, report, and if possible respond to urban and environmental anomalies through proactive detection mechanisms and automated mitigation actions. A key contribution in this paper is the integration of Hazardous and Conflict states into the robot's decision-making framework, where each anomaly type can trigger specific mitigation strategies. User studies (n = 30) demonstrated the effectiveness of the system in anomaly detection with 91.2% prediction accuracy and relatively low latency response times using edge-ai architecture.
Authors:Jiaju Miao, Wei Zhu
Title: Ensemble of Precision-Recall Curve (PRC) Classification Trees with Autoencoders
Abstract:
Anomaly detection underpins critical applications from network security and intrusion detection to fraud prevention, where recognizing aberrant patterns rapidly is indispensable. Progress in this area is routinely impeded by two obstacles: extreme class imbalance and the curse of dimensionality. To combat the former, we previously introduced Precision-Recall Curve (PRC) classification trees and their ensemble extension, the PRC Random Forest (PRC-RF). Building on that foundation, we now propose a hybrid framework that integrates PRC-RF with autoencoders, unsupervised machine learning methods that learn compact latent representations, to confront both challenges simultaneously. Extensive experiments across diverse benchmark datasets demonstrate that the resulting Autoencoder-PRC-RF model achieves superior accuracy, scalability, and interpretability relative to prior methods, affirming its potential for high-stakes anomaly-detection tasks.
Authors:Darius A. Faroughy, Manfred Opper, Cesar Ojeda
Title: Multimodal Generative Flows for LHC Jets
Abstract:
Generative modeling of high-energy collisions at the Large Hadron Collider (LHC) offers a data-driven route to simulations, anomaly detection, among other applications. A central challenge lies in the hybrid nature of particle-cloud data: each particle carries continuous kinematic features and discrete quantum numbers such as charge and flavor. We introduce a transformer-based multimodal flow that extends flow-matching with a continuous-time Markov jump bridge to jointly model LHC jets with both modalities. Trained on CMS Open Data, our model can generate high fidelity jets with realistic kinematics, jet substructure and flavor composition.
Authors:David Kurtenbach, Megan Manly, Zach Metzinger
Title: Applying Deep Learning to Anomaly Detection of Russian Satellite Activity for Indications Prior to Military Activity
Abstract:
We apply deep learning techniques for anomaly detection to analyze activity of Russian-owned resident space objects (RSO) prior to the Ukraine invasion and assess the results for any findings that can be used as indications and warnings (I&W) of aggressive military behavior for future conflicts. Through analysis of anomalous activity, an understanding of possible tactics and procedures can be established to assess the existence of statistically significant changes in Russian RSO pattern of life/pattern of behavior (PoL/PoB) using publicly available two-line element (TLE) data. This research looks at statistical and deep learning approaches to assess anomalous activity. The deep learning methods assessed are isolation forest (IF), traditional autoencoder (AE), variational autoencoder (VAE), Kolmogorov Arnold Network (KAN), and a novel anchor-loss based autoencoder (Anchor AE). Each model is used to establish a baseline of on-orbit activity based on a five-year data sample. The primary investigation period focuses on the six months leading up to the invasion date of February 24, 2022. Additional analysis looks at RSO activity during an active combat period by sampling TLE data after the invasion date. The deep learning autoencoder models identify anomalies based on reconstruction errors that surpass a threshold sigma. To capture the nuance and unique characteristics of each RSO an individual model was trained for each observed space object. The research made an effort to prioritize explainability and interpretability of the model results thus each observation was assessed for anomalous behavior of the individual six orbital elements versus analyzing the input data as a single monolithic observation. The results demonstrate not only statistically significant anomalies of Russian RSO activity but also details anomalous findings to the individual orbital element.
Authors:Ashok Devireddy, Shunping Huang
Title: CALM: A Framework for Continuous, Adaptive, and LLM-Mediated Anomaly Detection in Time-Series Streams
Abstract:
The detection of anomalies in non-stationary time-series streams is a critical but challenging task across numerous industrial and scientific domains. Traditional models, trained offline, suffer significant performance degradation when faced with concept drift, where the underlying statistical properties of the data change over time. This paper introduces CALM (Continuous, Adaptive, and LLM-Mediated), a novel, end-to-end framework for real-time anomaly detection designed to address this challenge. CALM is built on the Apache Beam distributed processing framework and leverages the TimesFm foundation model for forecasting-based anomaly detection. The framework's novelty lies in two core contributions. First, it implements a closed-loop, continuous fine-tuning mechanism that allows the anomaly detection model to adapt to evolving data patterns in near real-time. Second, it introduces an LLM-as-a-Judge component, a Large Language Model that provides semantic, context-aware judgments on detected anomalies to curate a high-quality training dataset, deciding whether an anomaly represents transient noise or a meaningful pattern shift. We evaluate CALM on the comprehensive TSB-UAD benchmark. Our results demonstrate that the continuously fine-tuned model improves the ROC AUC score in most datasets compared to the static, pre-trained base model, validating the efficacy of our adaptive, LLM-guided approach to maintaining high-performance anomaly detection in dynamic streaming environments.
Authors:Evan J. Chou, Lisa S. Locke, Harvey M. Soldan
Title: Automating the Deep Space Network Data Systems; A Case Study in Adaptive Anomaly Detection through Agentic AI
Abstract:
The Deep Space Network (DSN) is NASA's largest network of antenna facilities that generate a large volume of multivariate time-series data. These facilities contain DSN antennas and transmitters that undergo degradation over long periods of time, which may cause costly disruptions to the data flow and threaten the earth-connection of dozens of spacecraft that rely on the Deep Space Network for their lifeline. The purpose of this study was to experiment with different methods that would be able to assist JPL engineers with directly pinpointing anomalies and equipment degradation through collected data, and continue conducting maintenance and operations of the DSN for future space missions around our universe. As such, we have researched various machine learning techniques that can fully reconstruct data through predictive analysis, and determine anomalous data entries within real-time datasets through statistical computations and thresholds. On top of the fully trained and tested machine learning models, we have also integrated the use of a reinforcement learning subsystem that classifies identified anomalies based on severity level and a Large Language Model that labels an explanation for each anomalous data entry, all of which can be improved and fine-tuned over time through human feedback/input. Specifically, for the DSN transmitters, we have also implemented a full data pipeline system that connects the data extraction, parsing, and processing workflow all together as there was no coherent program or script for performing these tasks before. Using this data pipeline system, we were able to then also connect the models trained from DSN antenna data, completing the data workflow for DSN anomaly detection. This was all wrapped around and further connected by an agentic AI system, where complex reasoning was utilized to determine the classifications and predictions of anomalous data.
Authors:Muhammad Ali Nadeem, Bishwo Prakash Pokharel, Naresh Kshetri, Achyut Shankar, Gokarna Sharma
Title: $AutoGuardX$: A Comprehensive Cybersecurity Framework for Connected Vehicles
Abstract:
The rapid integration of Internet of Things (IoT) and interconnected systems in modern vehicles not only introduced a new era of convenience, automation, and connected vehicles but also elevated their exposure to sophisticated cyber threats. This is especially evident in US and Canada, where cyber-enabled auto theft has surged in recent years, revealing the limitations of existing security measures for connected vehicles. In response, this paper proposes $AutoGuardX$, a comprehensive cybersecurity framework designed specifically for connected vehicles. $AutoGuardX$ combines key elements from existing recognized standards for vehicle security, such as ISO/SAE 21434 and ISO 26262, with advanced technologies, including machine learning-based anomaly detection, IoT security protocols, and encrypted communication channels. The framework addresses major attack vectors like relay attacks, controller area network (CAN) bus intrusions, and vulnerabilities introduced by emerging technologies such as 5G and quantum computing. $AutoGuardX$ is extensively evaluated through security simulations across a mix of Sedans and SUVs from four major vehicle brands manufactured between 2019 and 2023. The results demonstrate the framework's adaptability, scalability, and practical effectiveness against existing and emerging threats.
Authors:Xinyue Liu, Jianyuan Wang, Biao Leng, Shuo Zhang
Title: Fence off Anomaly Interference: Cross-Domain Distillation for Fully Unsupervised Anomaly Detection
Abstract:
Fully Unsupervised Anomaly Detection (FUAD) is a practical extension of Unsupervised Anomaly Detection (UAD), aiming to detect anomalies without any labels even when the training set may contain anomalous samples. To achieve FUAD, we pioneer the introduction of Knowledge Distillation (KD) paradigm based on teacher-student framework into the FUAD setting. However, due to the presence of anomalies in the training data, traditional KD methods risk enabling the student to learn the teacher's representation of anomalies under FUAD setting, thereby resulting in poor anomaly detection performance. To address this issue, we propose a novel Cross-Domain Distillation (CDD) framework based on the widely studied reverse distillation (RD) paradigm. Specifically, we design a Domain-Specific Training, which divides the training set into multiple domains with lower anomaly ratios and train a domain-specific student for each. Cross-Domain Knowledge Aggregation is then performed, where pseudo-normal features generated by domain-specific students collaboratively guide a global student to learn generalized normal representations across all samples. Experimental results on noisy versions of the MVTec AD and VisA datasets demonstrate that our method achieves significant performance improvements over the baseline, validating its effectiveness under FUAD setting.
Authors:Siyue Xie, Da Sun Handason Tam, Wing Cheong Lau
Title: CRoC: Context Refactoring Contrast for Graph Anomaly Detection with Limited Supervision
Abstract:
Graph Neural Networks (GNNs) are widely used as the engine for various graph-related tasks, with their effectiveness in analyzing graph-structured data. However, training robust GNNs often demands abundant labeled data, which is a critical bottleneck in real-world applications. This limitation severely impedes progress in Graph Anomaly Detection (GAD), where anomalies are inherently rare, costly to label, and may actively camouflage their patterns to evade detection. To address these problems, we propose Context Refactoring Contrast (CRoC), a simple yet effective framework that trains GNNs for GAD by jointly leveraging limited labeled and abundant unlabeled data. Different from previous works, CRoC exploits the class imbalance inherent in GAD to refactor the context of each node, which builds augmented graphs by recomposing the attributes of nodes while preserving their interaction patterns. Furthermore, CRoC encodes heterogeneous relations separately and integrates them into the message-passing process, enhancing the model's capacity to capture complex interaction semantics. These operations preserve node semantics while encouraging robustness to adversarial camouflage, enabling GNNs to uncover intricate anomalous cases. In the training stage, CRoC is further integrated with the contrastive learning paradigm. This allows GNNs to effectively harness unlabeled data during joint training, producing richer, more discriminative node embeddings. CRoC is evaluated on seven real-world GAD datasets with varying scales. Extensive experiments demonstrate that CRoC achieves up to 14% AUC improvement over baseline GNNs and outperforms state-of-the-art GAD methods under limited-label settings.
Authors:Zuo Zuo, Jiahao Dong, Yanyun Qu, Zongze Wu
Title: Training-Free Anomaly Generation via Dual-Attention Enhancement in Diffusion Model
Abstract:
Industrial anomaly detection (AD) plays a significant role in manufacturing where a long-standing challenge is data scarcity. A growing body of works have emerged to address insufficient anomaly data via anomaly generation. However, these anomaly generation methods suffer from lack of fidelity or need to be trained with extra data. To this end, we propose a training-free anomaly generation framework dubbed AAG, which is based on Stable Diffusion (SD)'s strong generation ability for effective anomaly image generation. Given a normal image, mask and a simple text prompt, AAG can generate realistic and natural anomalies in the specific regions and simultaneously keep contents in other regions unchanged. In particular, we propose Cross-Attention Enhancement (CAE) to re-engineer the cross-attention mechanism within Stable Diffusion based on the given mask. CAE increases the similarity between visual tokens in specific regions and text embeddings, which guides these generated visual tokens in accordance with the text description. Besides, generated anomalies need to be more natural and plausible with object in given image. We propose Self-Attention Enhancement (SAE) which improves similarity between each normal visual token and anomaly visual tokens. SAE ensures that generated anomalies are coherent with original pattern. Extensive experiments on MVTec AD and VisA datasets demonstrate effectiveness of AAG in anomaly generation and its utility. Furthermore, anomaly images generated by AAG can bolster performance of various downstream anomaly inspection tasks.
Authors:Hyobin Park, Jinwook Jung, Minseok Seo, Hyunsoo Choi, Deukjae Cho, Sekil Park, Dong-Geol Choi
Title: AIS-LLM: A Unified Framework for Maritime Trajectory Prediction, Anomaly Detection, and Collision Risk Assessment with Explainable Forecasting
Abstract:
With the increase in maritime traffic and the mandatory implementation of the Automatic Identification System (AIS), the importance and diversity of maritime traffic analysis tasks based on AIS data, such as vessel trajectory prediction, anomaly detection, and collision risk assessment, is rapidly growing. However, existing approaches tend to address these tasks individually, making it difficult to holistically consider complex maritime situations. To address this limitation, we propose a novel framework, AIS-LLM, which integrates time-series AIS data with a large language model (LLM). AIS-LLM consists of a Time-Series Encoder for processing AIS sequences, an LLM-based Prompt Encoder, a Cross-Modality Alignment Module for semantic alignment between time-series data and textual prompts, and an LLM-based Multi-Task Decoder. This architecture enables the simultaneous execution of three key tasks: trajectory prediction, anomaly detection, and risk assessment of vessel collisions within a single end-to-end system. Experimental results demonstrate that AIS-LLM outperforms existing methods across individual tasks, validating its effectiveness. Furthermore, by integratively analyzing task outputs to generate situation summaries and briefings, AIS-LLM presents the potential for more intelligent and efficient maritime traffic management.
Authors:Chaoqun Cui, Caiyan Jia
Title: Towards Real-World Rumor Detection: Anomaly Detection Framework with Graph Supervised Contrastive Learning
Abstract:
Current rumor detection methods based on propagation structure learning predominately treat rumor detection as a class-balanced classification task on limited labeled data. However, real-world social media data exhibits an imbalanced distribution with a minority of rumors among massive regular posts. To address the data scarcity and imbalance issues, we construct two large-scale conversation datasets from Weibo and Twitter and analyze the domain distributions. We find obvious differences between rumor and non-rumor distributions, with non-rumors mostly in entertainment domains while rumors concentrate in news, indicating the conformity of rumor detection to an anomaly detection paradigm. Correspondingly, we propose the Anomaly Detection framework with Graph Supervised Contrastive Learning (AD-GSCL). It heuristically treats unlabeled data as non-rumors and adapts graph contrastive learning for rumor detection. Extensive experiments demonstrate AD-GSCL's superiority under class-balanced, imbalanced, and few-shot conditions. Our findings provide valuable insights for real-world rumor detection featuring imbalanced data distributions.
Authors:Zhanye Luo, Yuefeng Han, Xiufan Yu
Title: Factor Augmented Supervised Learning with Text Embeddings
Abstract:
Large language models (LLMs) generate text embeddings from text data, producing vector representations that capture the semantic meaning and contextual relationships of words. However, the high dimensionality of these embeddings often impedes efficiency and drives up computational cost in downstream tasks. To address this, we propose AutoEncoder-Augmented Learning with Text (AEALT), a supervised, factor-augmented framework that incorporates dimension reduction directly into pre-trained LLM workflows. First, we extract embeddings from text documents; next, we pass them through a supervised augmented autoencoder to learn low-dimensional, task-relevant latent factors. By modeling the nonlinear structure of complex embeddings, AEALT outperforms conventional deep-learning approaches that rely on raw embeddings. We validate its broad applicability with extensive experiments on classification, anomaly detection, and prediction tasks using multiple real-world public datasets. Numerical results demonstrate that AEALT yields substantial gains over both vanilla embeddings and several standard dimension reduction methods.
Authors:Mouïn Ben Ammar, Arturo Mendoza, Nacim Belkhir, Antoine Manzanera, Gianni Franchi
Title: Foundation Models and Transformers for Anomaly Detection: A Survey
Abstract:
In line with the development of deep learning, this survey examines the transformative role of Transformers and foundation models in advancing visual anomaly detection (VAD). We explore how these architectures, with their global receptive fields and adaptability, address challenges such as long-range dependency modeling, contextual modeling and data scarcity. The survey categorizes VAD methods into reconstruction-based, feature-based and zero/few-shot approaches, highlighting the paradigm shift brought about by foundation models. By integrating attention mechanisms and leveraging large-scale pre-training, Transformers and foundation models enable more robust, interpretable, and scalable anomaly detection solutions. This work provides a comprehensive review of state-of-the-art techniques, their strengths, limitations, and emerging trends in leveraging these architectures for VAD.
Authors:Yannis Bendi-Ouis, Xavier Hinaut
Title: Echo State Transformer: Attention Over Finite Memories
Abstract:
While Large Language Models and their underlying Transformer architecture are remarkably efficient, they do not reflect how our brain processes and learns a diversity of cognitive tasks such as language and working memory. Furthermore, sequential data processing with Transformers encounters a fundamental barrier: quadratic complexity growth with sequence length. Motivated by these limitations, our ambition is to create more efficient models that are less reliant on intensive computations. We introduce Echo State Transformers (EST), a hybrid architecture that elegantly resolves this challenge while demonstrating exceptional performance in classification and detection tasks. EST integrates the Transformer attention mechanisms with principles from Reservoir Computing to create a fixed-size window distributed memory system. Drawing inspiration from Echo State Networks, the most prominent instance of the Reservoir Computing paradigm, our approach leverages reservoirs (random recurrent networks) as a lightweight and efficient memory. Our architecture integrates a new module called ''Working Memory'' based on several reservoirs working in parallel. These reservoirs work as independent working memory units with distinct internal dynamics. A novelty here is that the classical reservoir hyperparameters, controlling the dynamics, are now trained. Thus, the EST dynamically adapts the reservoir memory/non-linearity trade-off. Thanks to these working memory units, EST achieves constant computational complexity at each processing step, effectively breaking the quadratic scaling problem of standard Transformers. We evaluate ESTs on a recent challenging timeseries benchmark: the Time Series Library, which comprises 69 tasks across five categories. Results show that ESTs ranks first overall in two of five categories, outperforming strong state-of-the-art baselines on classification and anomaly detection tasks, while remaining competitive on short-term forecasting. These results position ESTs as a compelling alternative for time-series classification and anomaly detection, and a practical complement to transformer-style models in applications that prioritize robust representations and sensitive event detection.
Authors:Yujun Zhang, Runlong Li, Xiaoxiang Liang, Xinhao Yang, Tian Su, Bo Liu, Yan Zhou
Title: MamNet: A Novel Hybrid Model for Time-Series Forecasting and Frequency Pattern Analysis in Network Traffic
Abstract:
The abnormal fluctuations in network traffic may indicate potential security threats or system failures. Therefore, efficient network traffic prediction and anomaly detection methods are crucial for network security and traffic management. This paper proposes a novel network traffic prediction and anomaly detection model, MamNet, which integrates time-domain modeling and frequency-domain feature extraction. The model first captures the long-term dependencies of network traffic through the Mamba module (time-domain modeling), and then identifies periodic fluctuations in the traffic using Fourier Transform (frequency-domain feature extraction). In the feature fusion layer, multi-scale information is integrated to enhance the model's ability to detect network traffic anomalies. Experiments conducted on the UNSW-NB15 and CAIDA datasets demonstrate that MamNet outperforms several recent mainstream models in terms of accuracy, recall, and F1-Score. Specifically, it achieves an improvement of approximately 2% to 4% in detection performance for complex traffic patterns and long-term trend detection. The results indicate that MamNet effectively captures anomalies in network traffic across different time scales and is suitable for anomaly detection tasks in network security and traffic management. Future work could further optimize the model structure by incorporating external network event information, thereby improving the model's adaptability and stability in complex network environments.
Authors:Tyler Cultice, Md. Saif Hassan Onim, Annarita Giani, Himanshu Thapliyal
Title: Quantum-Hybrid Support Vector Machines for Anomaly Detection in Industrial Control Systems
Abstract:
Sensitive data captured by Industrial Control Systems (ICS) play a large role in the safety and integrity of many critical infrastructures. Detection of anomalous or malicious data, or Anomaly Detection (AD), with machine learning is one of many vital components of cyberphysical security. Quantum kernel-based machine learning methods have shown promise in identifying complex anomalous behavior by leveraging the highly expressive and efficient feature spaces of quantum computing. This study focuses on the parameterization of Quantum Hybrid Support Vector Machines (QSVMs) using three popular datasets from Cyber-Physical Systems (CPS). The results demonstrate that QSVMs outperform traditional classical kernel methods, achieving 13.3% higher F1 scores. Additionally, this research investigates noise using simulations based on real IBMQ hardware, revealing a maximum error of only 0.98% in the QSVM kernels. This error results in an average reduction of 1.57% in classification metrics. Furthermore, the study found that QSVMs show a 91.023% improvement in kernel-target alignment compared to classical methods, indicating a potential "quantum advantage" in anomaly detection for critical infrastructures. This effort suggests that QSVMs can provide a substantial advantage in anomaly detection for ICS, ultimately enhancing the security and integrity of critical infrastructures.
Authors:Henrik Sebastian Steude, Alexander Diedrich, Ingo Pill, Lukas Moddemann, Daniel Vranješ, Oliver Niggemann
Title: Data Driven Diagnosis for Large Cyber-Physical-Systems with Minimal Prior Information
Abstract:
Diagnostic processes for complex cyber-physical systems often require extensive prior knowledge in the form of detailed system models or comprehensive training data. However, obtaining such information poses a significant challenge. To address this issue, we present a new diagnostic approach that operates with minimal prior knowledge, requiring only a basic understanding of subsystem relationships and data from nominal operations. Our method combines a neural network-based symptom generator, which employs subsystem-level anomaly detection, with a new graph diagnosis algorithm that leverages minimal causal relationship information between subsystems-information that is typically available in practice. Our experiments with fully controllable simulated datasets show that our method includes the true causal component in its diagnosis set for 82 p.c. of all cases while effectively reducing the search space in 73 p.c. of the scenarios. Additional tests on the real-world Secure Water Treatment dataset showcase the approach's potential for practical scenarios. Our results thus highlight our approach's potential for practical applications with large and complex cyber-physical systems where limited prior knowledge is available.
Authors:Shuai Yuan, Shuang Chen, Tianwu Lin, Jincheng Yuan, Geng Tian, Yang Xu, Jie Wang, Peng Gong
Title: Dynamic mapping from static labels: remote sensing dynamic sample generation with temporal-spectral embedding
Abstract:
Accurate remote sensing geographic mapping requires timely and representative samples. However, rapid land surface changes often render static samples obsolete within months, making manual sample updates labor-intensive and unsustainable. To address this challenge, we propose TasGen, a two-stage Temporal spectral-aware Automatic Sample Generation method for generating dynamic training samples from single-date static labels without human intervention. Land surface dynamics often manifest as anomalies in temporal-spectral sequences. %These anomalies are multivariate yet unified: temporal, spectral, or joint anomalies stem from different mechanisms and cannot be naively coupled, as this may obscure the nature of changes. Yet, any land surface state corresponds to a coherent temporal-spectral signature, which would be lost if the two dimensions are modeled separately. To effectively capture these dynamics, TasGen first disentangles temporal and spectral features to isolate their individual contributions, and then couples them to model their synergistic interactions. In the first stage, we introduce a hierarchical temporal-spectral variational autoencoder (HTS-VAE) with a dual-dimension embedding to learn low-dimensional latent patterns of normal samples by first disentangling and then jointly embedding temporal and spectral information. This temporal-spectral embedding enables robust anomaly detection by identifying deviations from learned joint patterns. In the second stage, a classifier trained on stable samples relabels change points across time to generate dynamic samples. To not only detect but also explain surface dynamics, we further propose an anomaly interpretation method based on Gibbs sampling, which attributes changes to specific spectral-temporal dimensions.
Authors:Xu He, Di Wu, Yan Zhai, Kun Sun
Title: SentinelAgent: Graph-based Anomaly Detection in Multi-Agent Systems
Abstract:
The rise of large language model (LLM)-based multi-agent systems (MAS) introduces new security and reliability challenges. While these systems show great promise in decomposing and coordinating complex tasks, they also face multi-faceted risks across prompt manipulation, unsafe tool usage, and emergent agent miscoordination. Existing guardrail mechanisms offer only partial protection, primarily at the input-output level, and fall short in addressing systemic or multi-point failures in MAS. In this work, we present a system-level anomaly detection framework tailored for MAS, integrating structural modeling with runtime behavioral oversight. Our approach consists of two components. First, we propose a graph-based framework that models agent interactions as dynamic execution graphs, enabling semantic anomaly detection at node, edge, and path levels. Second, we introduce a pluggable SentinelAgent, an LLM-powered oversight agent that observes, analyzes, and intervenes in MAS execution based on security policies and contextual reasoning. By bridging abstract detection logic with actionable enforcement, our method detects not only single-point faults and prompt injections but also multi-agent collusion and latent exploit paths. We validate our framework through two case studies, including an email assistant and Microsoft's Magentic-One system, demonstrating its ability to detect covert risks and provide explainable root-cause attribution. Our work lays the foundation for more trustworthy, monitorable, and secure agent-based AI ecosystems.
Authors:Kai Yang, Hui Ma, Shaoyu Dou
Title: Fog Intelligence for Network Anomaly Detection
Abstract:
Anomalies are common in network system monitoring. When manifested as network threats to be mitigated, service outages to be prevented, and security risks to be ameliorated, detecting such anomalous network behaviors becomes of great importance. However, the growing scale and complexity of the mobile communication networks, as well as the ever-increasing amount and dimensionality of the network surveillance data, make it extremely difficult to monitor a mobile network and discover abnormal network behaviors. Recent advances in machine learning allow for obtaining near-optimal solutions to complicated decision-making problems with many sources of uncertainty that cannot be accurately characterized by traditional mathematical models. However, most machine learning algorithms are centralized, which renders them inapplicable to a large-scale distributed wireless networks with tens of millions of mobile devices. In this article, we present fog intelligence, a distributed machine learning architecture that enables intelligent wireless network management. It preserves the advantage of both edge processing and centralized cloud computing. In addition, the proposed architecture is scalable, privacy-preserving, and well suited for intelligent management of a distributed wireless network.
Authors:Hans Hohenfeld, Marius Beuerle, Elie Mounzer
Title: Explaining Anomalies with Tensor Networks
Abstract:
Tensor networks, a class of variational quantum many-body wave functions have attracted considerable research interest across many disciplines, including classical machine learning. Recently, Aizpurua et al. demonstrated explainable anomaly detection with matrix product states on a discrete-valued cyber-security task, using quantum-inspired methods to gain insight into the learned model and detected anomalies. Here, we extend this framework to real-valued data domains. We furthermore introduce tree tensor networks for the task of explainable anomaly detection. We demonstrate these methods with three benchmark problems, show adequate predictive performance compared to several baseline models and both tensor network architectures' ability to explain anomalous samples. We thereby extend the application of tensor networks to a broader class of potential problems and open a pathway for future extensions to more complex tensor network architectures.
Authors:Yujing Zhou, Marc L. Jacquet, Robel Dawit, Skyler Fabre, Dev Sarawat, Faheem Khan, Madison Newell, Yongxin Liu, Dahai Liu, Hongyun Chen, Jian Wang, Huihui Wang
Title: Explainable Machine Learning for Cyberattack Identification from Traffic Flows
Abstract:
The increasing automation of traffic management systems has made them prime targets for cyberattacks, disrupting urban mobility and public safety. Traditional network-layer defenses are often inaccessible to transportation agencies, necessitating a machine learning-based approach that relies solely on traffic flow data. In this study, we simulate cyberattacks in a semi-realistic environment, using a virtualized traffic network to analyze disruption patterns. We develop a deep learning-based anomaly detection system, demonstrating that Longest Stop Duration and Total Jam Distance are key indicators of compromised signals. To enhance interpretability, we apply Explainable AI (XAI) techniques, identifying critical decision factors and diagnosing misclassification errors. Our analysis reveals two primary challenges: transitional data inconsistencies, where mislabeled recovery-phase traffic misleads the model, and model limitations, where stealth attacks in low-traffic conditions evade detection. This work enhances AI-driven traffic security, improving both detection accuracy and trustworthiness in smart transportation systems.
Authors:Qiuyan Xiang, Shuang Wu, Dongze Wu, Yuxin Liu, Zhenkai Qin
Title: Research on CNN-BiLSTM Network Traffic Anomaly Detection Model Based on MindSpore
Abstract:
With the widespread adoption of the Internet of Things (IoT) and Industrial IoT (IIoT) technologies, network architectures have become increasingly complex, and the volume of traffic has grown substantially. This evolution poses significant challenges to traditional security mechanisms, particularly in detecting high-frequency, diverse, and highly covert network attacks. To address these challenges, this study proposes a novel network traffic anomaly detection model that integrates a Convolutional Neural Network (CNN) with a Bidirectional Long Short-Term Memory (BiLSTM) network, implemented on the MindSpore framework. Comprehensive experiments were conducted using the NF-BoT-IoT dataset. The results demonstrate that the proposed model achieves 99% across accuracy, precision, recall, and F1-score, indicating its strong performance and robustness in network intrusion detection tasks.
Authors:Petar Labura, Tomislav Antic, Tomislav Capuder
Title: Time and Frequency Domain-based Anomaly Detection in Smart Meter Data for Distribution Network Studies
Abstract:
The widespread integration of new technologies in low-voltage distribution networks on the consumer side creates the need for distribution system operators to perform advanced real-time calculations to estimate network conditions. In recent years, data-driven models based on machine learning and big data analysis have emerged for calculation purposes, leveraging the information available in large datasets obtained from smart meters and other advanced measurement infrastructure. However, existing data-driven algorithms do not take into account the quality of data collected from smart meters. They lack built-in anomaly detection mechanisms and fail to differentiate anomalies based on whether the value or context of anomalous data instances deviates from the norm. This paper focuses on methods for detecting and mitigating the impact of anomalies on the consumption of active and reactive power datasets. It proposes an anomaly detection framework based on the Isolation Forest machine learning algorithm and Fast Fourier Transform filtering that works in both the time and frequency domain and is unaffected by point anomalies or contextual anomalies of the power consumption data. The importance of integrating anomaly detection methods is demonstrated in the analysis important for distribution networks with a high share of smart meters.
Authors:Qiuyan Xiang, Shuang Wu, Dongze Wu, Yuxin Liu, Zhenkai Qin
Title: MindFlow: A Network Traffic Anomaly Detection Model Based on MindSpore
Abstract:
With the wide application of IoT and industrial IoT technologies, the network structure is becoming more and more complex, and the traffic scale is growing rapidly, which makes the traditional security protection mechanism face serious challenges in dealing with high-frequency, diversified, and stealthy cyber-attacks. To address this problem, this study proposes MindFlow, a multi-dimensional dynamic traffic prediction and anomaly detection system combining convolutional neural network (CNN) and bi-directional long and short-term memory network (BiLSTM) architectures based on the MindSpore framework, and conducts systematic experiments on the NF-BoT-IoT dataset. The experimental results show that the proposed model achieves 99% in key metrics such as accuracy, precision, recall and F1 score, effectively verifying its accuracy and robustness in network intrusion detection.
Authors:Hossein Ahmadi, Sajjad Emdadi Mahdimahalleh, Arman Farahat, Banafsheh Saffari
Title: Unsupervised Time-Series Signal Analysis with Autoencoders and Vision Transformers: A Review of Architectures and Applications
Abstract:
The rapid growth of unlabeled time-series data in domains such as wireless communications, radar, biomedical engineering, and the Internet of Things (IoT) has driven advancements in unsupervised learning. This review synthesizes recent progress in applying autoencoders and vision transformers for unsupervised signal analysis, focusing on their architectures, applications, and emerging trends. We explore how these models enable feature extraction, anomaly detection, and classification across diverse signal types, including electrocardiograms, radar waveforms, and IoT sensor data. The review highlights the strengths of hybrid architectures and self-supervised learning, while identifying challenges in interpretability, scalability, and domain generalization. By bridging methodological innovations and practical applications, this work offers a roadmap for developing robust, adaptive models for signal intelligence.
Authors:Davide Moretti, Elia Onofri, Emiliano Cristiani
Title: Detection of Anomalous Vehicular Traffic and Sensor Failures Using Data Clustering Techniques
Abstract:
The increasing availability of traffic data from sensor networks has created new opportunities for understanding vehicular dynamics and identifying anomalies. In this study, we employ clustering techniques to analyse traffic flow data with the dual objective of uncovering meaningful traffic patterns and detecting anomalies, including sensor failures and irregular congestion events. We explore multiple clustering approaches, i.e partitioning and hierarchical methods, combined with various time-series representations and similarity measures. Our methodology is applied to real-world data from highway sensors, enabling us to assess the impact of different clustering frameworks on traffic pattern recognition. We also introduce a clustering-driven anomaly detection methodology that identifies deviations from expected traffic behaviour based on distance-based anomaly scores. Results indicate that hierarchical clustering with symbolic representations provides robust segmentation of traffic patterns, while partitioning methods such as k-means and fuzzy c-means yield meaningful results when paired with Dynamic Time Warping. The proposed anomaly detection strategy successfully identifies sensor malfunctions and abnormal traffic conditions with minimal false positives, demonstrating its practical utility for real-time monitoring. Real-world vehicular traffic data are provided by Autostrade Alto Adriatico S.p.A.
Authors:Sanjay Chakraborty, Fredrik Heintz
Title: Enhancing Time Series Forecasting with Fuzzy Attention-Integrated Transformers
Abstract:
This paper introduces FANTF (Fuzzy Attention Network-Based Transformers), a novel approach that integrates fuzzy logic with existing transformer architectures to advance time series forecasting, classification, and anomaly detection tasks. FANTF leverages a proposed fuzzy attention mechanism incorporating fuzzy membership functions to handle uncertainty and imprecision in noisy and ambiguous time series data. The FANTF approach enhances its ability to capture complex temporal dependencies and multivariate relationships by embedding fuzzy logic principles into the self-attention module of the existing transformer's architecture. The framework combines fuzzy-enhanced attention with a set of benchmark existing transformer-based architectures to provide efficient predictions, classification and anomaly detection. Specifically, FANTF generates learnable fuzziness attention scores that highlight the relative importance of temporal features and data points, offering insights into its decision-making process. Experimental evaluatios on some real-world datasets reveal that FANTF significantly enhances the performance of forecasting, classification, and anomaly detection tasks over traditional transformer-based models.
Authors:Sanjay Chakraborty, Fredrik Heintz
Title: Integrating Quantum-Classical Attention in Patch Transformers for Enhanced Time Series Forecasting
Abstract:
QCAAPatchTF is a quantum attention network integrated with an advanced patch-based transformer, designed for multivariate time series forecasting, classification, and anomaly detection. Leveraging quantum superpositions, entanglement, and variational quantum eigensolver principles, the model introduces a quantum-classical hybrid self-attention mechanism to capture multivariate correlations across time points. For multivariate long-term time series, the quantum self-attention mechanism can reduce computational complexity while maintaining temporal relationships. It then applies the quantum-classical hybrid self-attention mechanism alongside a feed-forward network in the encoder stage of the advanced patch-based transformer. While the feed-forward network learns nonlinear representations for each variable frame, the quantum self-attention mechanism processes individual series to enhance multivariate relationships. The advanced patch-based transformer computes the optimized patch length by dividing the sequence length into a fixed number of patches instead of using an arbitrary set of values. The stride is then set to half of the patch length to ensure efficient overlapping representations while maintaining temporal continuity. QCAAPatchTF achieves state-of-the-art performance in both long-term and short-term forecasting, classification, and anomaly detection tasks, demonstrating state-of-the-art accuracy and efficiency on complex real-world datasets.
Authors:Chenyi Huang, Xinrong Li, Xianchao Xiu
Title: Federated Structured Sparse PCA for Anomaly Detection in IoT Networks
Abstract:
Although federated learning has gained prominence as a privacy-preserving framework tailored for distributed Internet of Things (IoT) environments, current federated principal component analysis (PCA) methods lack integration of sparsity, a critical feature for robust anomaly detection. To address this limitation, we propose a novel federated structured sparse PCA (FedSSP) approach for anomaly detection in IoT networks. The proposed model uniquely integrates double sparsity regularization: (1) row-wise sparsity governed by $\ell_{2,p}$-norm with $p\in[0,1)$ to eliminate redundant feature dimensions, and (2) element-wise sparsity via $\ell_{q}$-norm with $q\in[0,1)$ to suppress noise-sensitive components. To efficiently solve this non-convex optimization problem in a distributed setting, we devise a proximal alternating minimization (PAM) algorithm with rigorous theoretical proofs establishing its convergence guarantees. Experiments on real datasets validate that incorporating structured sparsity enhances both model interpretability and detection accuracy.
Authors:Alberto Padoan, Jeremy Coulson
Title: Distances between finite-horizon linear behaviors
Abstract:
The paper introduces a class of distances for linear behaviors over finite time horizons. These distances allow for comparisons between finite-horizon linear behaviors represented by matrices of possibly different dimensions. They remain invariant under coordinate changes, rotations, and permutations, ensuring independence from input-output partitions. Moreover, they naturally encode complexity-misfit trade-offs for Linear Time-Invariant (LTI) behaviors, providing a principled solution to a longstanding puzzle in behavioral systems theory. The resulting framework characterizes modeling as a minimum distance problem, identifying the Most Powerful Unfalsified Model (MPUM) as optimal among all systems unfalsified by a given dataset. Finally, we illustrate the value of these metrics in a time series anomaly detection task, where their finer resolution yields superior performance over existing distances.
Authors:Lars Heckler-Kram, Jan-Hendrik Neudeck, Ulla Scheler, Rebecca König, Carsten Steger
Title: The MVTec AD 2 Dataset: Advanced Scenarios for Unsupervised Anomaly Detection
Abstract:
In recent years, performance on existing anomaly detection benchmarks like MVTec AD and VisA has started to saturate in terms of segmentation AU-PRO, with state-of-the-art models often competing in the range of less than one percentage point. This lack of discriminatory power prevents a meaningful comparison of models and thus hinders progress of the field, especially when considering the inherent stochastic nature of machine learning results. We present MVTec AD 2, a collection of eight anomaly detection scenarios with more than 8000 high-resolution images. It comprises challenging and highly relevant industrial inspection use cases that have not been considered in previous datasets, including transparent and overlapping objects, dark-field and back light illumination, objects with high variance in the normal data, and extremely small defects. We provide comprehensive evaluations of state-of-the-art methods and show that their performance remains below 60% average AU-PRO. Additionally, our dataset provides test scenarios with lighting condition changes to assess the robustness of methods under real-world distribution shifts. We host a publicly accessible evaluation server that holds the pixel-precise ground truth of the test set (https://benchmark.mvtec.com/). All image data is available at https://www.mvtec.com/company/research/datasets/mvtec-ad-2.
Authors:Yejin Kwon, Daeun Moon, Youngje Oh, Hyunsoo Yoon
Title: LogicQA: Logical Anomaly Detection with Vision Language Model Generated Questions
Abstract:
Anomaly Detection (AD) focuses on detecting samples that differ from the standard pattern, making it a vital tool in process control. Logical anomalies may appear visually normal yet violate predefined constraints on object presence, arrangement, or quantity, depending on reasoning and explainability. We introduce LogicQA, a framework that enhances AD by providing industrial operators with explanations for logical anomalies. LogicQA compiles automatically generated questions into a checklist and collects responses to identify violations of logical constraints. LogicQA is training-free, annotation-free, and operates in a few-shot setting. We achieve state-of-the-art (SOTA) Logical AD performance on public benchmarks, MVTec LOCO AD, with an AUROC of 87.6 percent and an F1-max of 87.0 percent along with the explanations of anomalies. Also, our approach has shown outstanding performance on semiconductor SEM corporate data, further validating its effectiveness in industrial applications.
Authors:Miguel López-Pérez, Marco Miani, Valery Naranjo, Søren Hauberg, Aasa Feragen
Title: Bayesian generative models can flag performance loss, bias, and out-of-distribution image content
Abstract:
Generative models are popular for medical imaging tasks such as anomaly detection, feature extraction, data visualization, or image generation. Since they are parameterized by deep learning models, they are often sensitive to distribution shifts and unreliable when applied to out-of-distribution data, creating a risk of, e.g. underrepresentation bias. This behavior can be flagged using uncertainty quantification methods for generative models, but their availability remains limited. We propose SLUG: A new UQ method for VAEs that combines recent advances in Laplace approximations with stochastic trace estimators to scale gracefully with image dimensionality. We show that our UQ score -- unlike the VAE's encoder variances -- correlates strongly with reconstruction error and racial underrepresentation bias for dermatological images. We also show how pixel-wise uncertainty can detect out-of-distribution image content such as ink, rulers, and patches, which is known to induce learning shortcuts in predictive models.
Authors:Saugat Pandey, Alvitta Ottley
Title: Benchmarking Visual Language Models on Standardized Visualization Literacy Tests
Abstract:
The increasing integration of Visual Language Models (VLMs) into visualization systems demands a comprehensive understanding of their visual interpretation capabilities and constraints. While existing research has examined individual models, systematic comparisons of VLMs' visualization literacy remain unexplored. We bridge this gap through a rigorous, first-of-its-kind evaluation of four leading VLMs (GPT-4, Claude, Gemini, and Llama) using standardized assessments: the Visualization Literacy Assessment Test (VLAT) and Critical Thinking Assessment for Literacy in Visualizations (CALVI). Our methodology uniquely combines randomized trials with structured prompting techniques to control for order effects and response variability - a critical consideration overlooked in many VLM evaluations. Our analysis reveals that while specific models demonstrate competence in basic chart interpretation (Claude achieving 67.9% accuracy on VLAT), all models exhibit substantial difficulties in identifying misleading visualization elements (maximum 30.0\% accuracy on CALVI). We uncover distinct performance patterns: strong capabilities in interpreting conventional charts like line charts (76-96% accuracy) and detecting hierarchical structures (80-100% accuracy), but consistent difficulties with data-dense visualizations involving multiple encodings (bubble charts: 18.6-61.4%) and anomaly detection (25-30% accuracy). Significantly, we observe distinct uncertainty management behavior across models, with Gemini displaying heightened caution (22.5% question omission) compared to others (7-8%). These findings provide crucial insights for the visualization community by establishing reliable VLM evaluation benchmarks, identifying areas where current models fall short, and highlighting the need for targeted improvements in VLM architectures for visualization tasks.
Authors:Zhuoyi Yang, Ian G. Harris
Title: LogLLaMA: Transformer-based log anomaly detection with LLaMA
Abstract:
Log anomaly detection refers to the task that distinguishes the anomalous log messages from normal log messages. Transformer-based large language models (LLMs) are becoming popular for log anomaly detection because of their superb ability to understand complex and long language patterns. In this paper, we propose LogLLaMA, a novel framework that leverages LLaMA2. LogLLaMA is first finetuned on normal log messages from three large-scale datasets to learn their patterns. After finetuning, the model is capable of generating successive log messages given previous log messages. Our generative model is further trained to identify anomalous log messages using reinforcement learning (RL). The experimental results show that LogLLaMA outperforms the state-of-the-art approaches for anomaly detection on BGL, Thunderbird, and HDFS datasets.
Authors:Jingyi Yuan, Chenqiang Gao, Pengyu Jie, Xuan Xia, Shangri Huang, Wanquan Liu
Title: AFR-CLIP: Enhancing Zero-Shot Industrial Anomaly Detection with Stateless-to-Stateful Anomaly Feature Rectification
Abstract:
Recently, zero-shot anomaly detection (ZSAD) has emerged as a pivotal paradigm for industrial inspection and medical diagnostics, detecting defects in novel objects without requiring any target-dataset samples during training. Existing CLIP-based ZSAD methods generate anomaly maps by measuring the cosine similarity between visual and textual features. However, CLIP's alignment with object categories instead of their anomalous states limits its effectiveness for anomaly detection. To address this limitation, we propose AFR-CLIP, a CLIP-based anomaly feature rectification framework. AFR-CLIP first performs image-guided textual rectification, embedding the implicit defect information from the image into a stateless prompt that describes the object category without indicating any anomalous state. The enriched textual embeddings are then compared with two pre-defined stateful (normal or abnormal) embeddings, and their text-on-text similarity yields the anomaly map that highlights defective regions. To further enhance perception to multi-scale features and complex anomalies, we introduce self prompting (SP) and multi-patch feature aggregation (MPFA) modules. Extensive experiments are conducted on eleven anomaly detection benchmarks across industrial and medical domains, demonstrating AFR-CLIP's superiority in ZSAD.
Authors:Milan Papež, Martin Rektoris, Václav Šmídl, Tomáš Pevný
Title: Probabilistic Graph Circuits: Deep Generative Models for Tractable Probabilistic Inference over Graphs
Abstract:
Deep generative models (DGMs) have recently demonstrated remarkable success in capturing complex probability distributions over graphs. Although their excellent performance is attributed to powerful and scalable deep neural networks, it is, at the same time, exactly the presence of these highly non-linear transformations that makes DGMs intractable. Indeed, despite representing probability distributions, intractable DGMs deny probabilistic foundations by their inability to answer even the most basic inference queries without approximations or design choices specific to a very narrow range of queries. To address this limitation, we propose probabilistic graph circuits (PGCs), a framework of tractable DGMs that provide exact and efficient probabilistic inference over (arbitrary parts of) graphs. Nonetheless, achieving both exactness and efficiency is challenging in the permutation-invariant setting of graphs. We design PGCs that are inherently invariant and satisfy these two requirements, yet at the cost of low expressive power. Therefore, we investigate two alternative strategies to achieve the invariance: the first sacrifices the efficiency, and the second sacrifices the exactness. We demonstrate that ignoring the permutation invariance can have severe consequences in anomaly detection, and that the latter approach is competitive with, and sometimes better than, existing intractable DGMs in the context of molecular graph generation.
Authors:Halima I. Kure, Pradipta Sarkar, Ahmed B. Ndanusa, Augustine O. Nwajana
Title: Detecting and Preventing Data Poisoning Attacks on AI Models
Abstract:
This paper investigates the critical issue of data poisoning attacks on AI models, a growing concern in the ever-evolving landscape of artificial intelligence and cybersecurity. As advanced technology systems become increasingly prevalent across various sectors, the need for robust defence mechanisms against adversarial attacks becomes paramount. The study aims to develop and evaluate novel techniques for detecting and preventing data poisoning attacks, focusing on both theoretical frameworks and practical applications. Through a comprehensive literature review, experimental validation using the CIFAR-10 and Insurance Claims datasets, and the development of innovative algorithms, this paper seeks to enhance the resilience of AI models against malicious data manipulation. The study explores various methods, including anomaly detection, robust optimization strategies, and ensemble learning, to identify and mitigate the effects of poisoned data during model training. Experimental results indicate that data poisoning significantly degrades model performance, reducing classification accuracy by up to 27% in image recognition tasks (CIFAR-10) and 22% in fraud detection models (Insurance Claims dataset). The proposed defence mechanisms, including statistical anomaly detection and adversarial training, successfully mitigated poisoning effects, improving model robustness and restoring accuracy levels by an average of 15-20%. The findings further demonstrate that ensemble learning techniques provide an additional layer of resilience, reducing false positives and false negatives caused by adversarial data injections.
Authors:Alberto Miguel-Diez, Adrián Campazas-Vega, Claudia Álvarez-Aparicio, Gonzalo Esteban-Costales, Ángel Manuel Guerrero-Higueras
Title: A systematic literature review of unsupervised learning algorithms for anomalous traffic detection based on flows
Abstract:
The constant increase of devices connected to the Internet, and therefore of cyber-attacks, makes it necessary to analyze network traffic in order to recognize malicious activity. Traditional packet-based analysis methods are insufficient because in large networks the amount of traffic is so high that it is unfeasible to review all communications. For this reason, flows is a suitable approach for this situation, which in future 5G networks will have to be used, as the number of packets will increase dramatically. If this is also combined with unsupervised learning models, it can detect new threats for which it has not been trained. This paper presents a systematic review of the literature on unsupervised learning algorithms for detecting anomalies in network flows, following the PRISMA guideline. A total of 63 scientific articles have been reviewed, analyzing 13 of them in depth. The results obtained show that autoencoder is the most used option, followed by SVM, ALAD, or SOM. On the other hand, all the datasets used for anomaly detection have been collected, including some specialised in IoT or with real data collected from honeypots.
Authors:Isaac Corley, Conor Wallace, Sourav Agrawal, Burton Putrah, Jonathan Lwowski
Title: Aerial Infrared Health Monitoring of Solar Photovoltaic Farms at Scale
Abstract:
Solar photovoltaic (PV) farms represent a major source of global renewable energy generation, yet their true operational efficiency often remains unknown at scale. In this paper, we present a comprehensive, data-driven framework for large-scale airborne infrared inspection of North American solar installations. Leveraging high-resolution thermal imagery, we construct and curate a geographically diverse dataset encompassing thousands of PV sites, enabling machine learning-based detection and localization of defects that are not detectable in the visible spectrum. Our pipeline integrates advanced image processing, georeferencing, and airborne thermal infrared anomaly detection to provide rigorous estimates of performance losses. We highlight practical considerations in aerial data collection, annotation methodologies, and model deployment across a wide range of environmental and operational conditions. Our work delivers new insights into the reliability of large-scale solar assets and serves as a foundation for ongoing research on performance trends, predictive maintenance, and scalable analytics in the renewable energy sector.
Authors:Junhyun Park, Chanyu Moon, Donghwan Lee, Kyungsu Kim, Minho Hwang
Title: OFF-CLIP: Improving Normal Detection Confidence in Radiology CLIP with Simple Off-Diagonal Term Auto-Adjustment
Abstract:
Contrastive Language-Image Pre-Training (CLIP) has enabled zero-shot classification in radiology, reducing reliance on manual annotations. However, conventional contrastive learning struggles with normal case detection due to its strict intra-sample alignment, which disrupts normal sample clustering and leads to high false positives (FPs) and false negatives (FNs). To address these issues, we propose OFF-CLIP, a contrastive learning refinement that improves normal detection by introducing an off-diagonal term loss to enhance normal sample clustering and applying sentence-level text filtering to mitigate FNs by removing misaligned normal statements from abnormal reports. OFF-CLIP can be applied to radiology CLIP models without requiring any architectural modifications. Experimental results show that OFF-CLIP significantly improves normal classification, achieving a 0.61 Area under the curve (AUC) increase on VinDr-CXR over CARZero, the state-of-the-art zero-shot classification baseline, while maintaining or improving abnormal classification performance. Additionally, OFF-CLIP enhances zero-shot grounding by improving pointing game accuracy, confirming better anomaly localization. These results demonstrate OFF-CLIP's effectiveness as a robust and efficient enhancement for medical vision-language models.
Authors:Junxiao Ma, Jingjing Wang, Jiamin Luo, Peiying Yu, Guodong Zhou
Title: Sherlock: Towards Multi-scene Video Abnormal Event Extraction and Localization via a Global-local Spatial-sensitive LLM
Abstract:
Prior studies on Video Anomaly Detection (VAD) mainly focus on detecting whether each video frame is abnormal or not in the video, which largely ignore the structured video semantic information (i.e., what, when, and where does the abnormal event happen). With this in mind, we propose a new chat-paradigm \textbf{M}ulti-scene Video Abnormal Event Extraction and Localization (M-VAE) task, aiming to extract the abnormal event quadruples (i.e., subject, event type, object, scene) and localize such event. Further, this paper believes that this new task faces two key challenges, i.e., global-local spatial modeling and global-local spatial balancing. To this end, this paper proposes a Global-local Spatial-sensitive Large Language Model (LLM) named Sherlock, i.e., acting like Sherlock Holmes to track down the criminal events, for this M-VAE task. Specifically, this model designs a Global-local Spatial-enhanced MoE (GSM) module and a Spatial Imbalance Regulator (SIR) to address the two challenges respectively. Extensive experiments on our M-VAE instruction dataset show the significant advantages of Sherlock over several advanced Video-LLMs. This justifies the importance of global-local spatial information for the M-VAE task and the effectiveness of Sherlock in capturing such information.
Authors:You Zhou, Jiangshan Zhao, Deyu Zeng, Zuo Zuo, Weixiang Liu, Zongze Wu
Title: Multimodal Task Representation Memory Bank vs. Catastrophic Forgetting in Anomaly Detection
Abstract:
Unsupervised Continuous Anomaly Detection (UCAD) faces significant challenges in multi-task representation learning, with existing methods suffering from incomplete representation and catastrophic forgetting. Unlike supervised models, unsupervised scenarios lack prior information, making it difficult to effectively distinguish redundant and complementary multimodal features. To address this, we propose the Multimodal Task Representation Memory Bank (MTRMB) method through two key technical innovations: A Key-Prompt-Multimodal Knowledge (KPMK) mechanism that uses concise key prompts to guide cross-modal feature interaction between BERT and ViT. Refined Structure-based Contrastive Learning (RSCL) leveraging Grounding DINO and SAM to generate precise segmentation masks, pulling features of the same structural region closer while pushing different structural regions apart. Experiments on MVtec AD and VisA datasets demonstrate MTRMB's superiority, achieving an average detection accuracy of 0.921 at the lowest forgetting rate, significantly outperforming state-of-the-art methods. We plan to open source on GitHub.
Authors:Willian T. Lunardi, Abdulrahman Banabila, Dania Herzalla, Martin Andreoni
Title: Contrastive Representation Modeling for Anomaly Detection
Abstract:
Distance-based anomaly detection methods rely on compact in-distribution (ID) embeddings that are well separated from anomalies. However, conventional contrastive learning strategies often struggle to achieve this balance, either promoting excessive variance among inliers or failing to preserve the diversity of outliers. We begin by analyzing the challenges of representation learning for anomaly detection and identify three essential properties for the pretext task: (1) compact clustering of inliers, (2) strong separation between inliers and anomalies, and (3) preservation of diversity among synthetic outliers. Building on this, we propose a structured contrastive objective that redefines positive and negative relationships during training, promoting these properties without requiring explicit anomaly labels. We extend this framework with a patch-based learning and evaluation strategy specifically designed to improve the detection of localized anomalies in industrial settings. Our approach demonstrates significantly faster convergence and improved performance compared to standard contrastive methods. It matches or surpasses anomaly detection methods on both semantic and industrial benchmarks, including methods that rely on discriminative training or explicit anomaly labels.
Authors:He Cheng, Depeng Xu, Shuhan Yuan
Title: BadSAD: Clean-Label Backdoor Attacks against Deep Semi-Supervised Anomaly Detection
Abstract:
Image anomaly detection (IAD) is essential in applications such as industrial inspection, medical imaging, and security. Despite the progress achieved with deep learning models like Deep Semi-Supervised Anomaly Detection (DeepSAD), these models remain susceptible to backdoor attacks, presenting significant security challenges. In this paper, we introduce BadSAD, a novel backdoor attack framework specifically designed to target DeepSAD models. Our approach involves two key phases: trigger injection, where subtle triggers are embedded into normal images, and latent space manipulation, which positions and clusters the poisoned images near normal images to make the triggers appear benign. Extensive experiments on benchmark datasets validate the effectiveness of our attack strategy, highlighting the severe risks that backdoor attacks pose to deep learning-based anomaly detection systems.
Authors:Xinyue Liu, Jianyuan Wang, Biao Leng, Shuo Zhang
Title: Unlocking the Potential of Reverse Distillation for Anomaly Detection
Abstract:
Knowledge Distillation (KD) is a promising approach for unsupervised Anomaly Detection (AD). However, the student network's over-generalization often diminishes the crucial representation differences between teacher and student in anomalous regions, leading to detection failures. To addresses this problem, the widely accepted Reverse Distillation (RD) paradigm designs the asymmetry teacher and student, using an encoder as teacher and a decoder as student. Yet, the design of RD does not ensure that the teacher encoder effectively distinguishes between normal and abnormal features or that the student decoder generates anomaly-free features. Additionally, the absence of skip connections results in a loss of fine details during feature reconstruction. To address these issues, we propose RD with Expert, which introduces a novel Expert-Teacher-Student network for simultaneous distillation of both the teacher encoder and student decoder. The added expert network enhances the student's ability to generate normal features and optimizes the teacher's differentiation between normal and abnormal features, reducing missed detections. Additionally, Guided Information Injection is designed to filter and transfer features from teacher to student, improving detail reconstruction and minimizing false positives. Experiments on several benchmarks prove that our method outperforms existing unsupervised AD methods under RD paradigm, fully unlocking RD's potential.
Authors:Clinton Cao, Agathe Blaise, Annibale Panichella, Sicco Verwer
Title: State Frequency Estimation for Anomaly Detection
Abstract:
Many works have studied the efficacy of state machines for detecting anomalies within NetFlows. These works typically learn a model from unlabeled data and compute anomaly scores for arbitrary traces based on their likelihood of occurrence or how well they fit within the model. However, these methods do not dynamically adapt their scores based on the traces seen at test time. This becomes a problem when an adversary produces seemingly common traces in their attack, causing the model to miss the detection by assigning low anomaly scores. We propose SEQUENT, a new unsupervised approach that uses the state visit frequency of a state machine to adapt its scoring dynamically for anomaly detection. SEQUENT subsequently uses the scores to generate root causes for anomalies. These allow the grouping of alarms and simplify the analysis of anomalies. We evaluate SEQUENT's effectiveness in detecting network anomalies on three publicly available NetFlow datasets and compare its performance against various existing unsupervised anomaly detection methods. Our evaluation shows promising results for using the state visit frequency of a state machine to detect network anomalies.
Authors:Xiaoxue Ma, Yishu Li, Jacky Keung, Xiao Yu, Huiqi Zou, Zhen Yang, Federica Sarro, Earl T. Barr
Title: Practitioners' Expectations on Log Anomaly Detection
Abstract:
Log anomaly detection has become a common practice for software engineers to analyze software system behavior. Despite significant research efforts in log anomaly detection over the past decade, it remains unclear what are practitioners' expectations on log anomaly detection and whether current research meets their needs. To fill this gap, we conduct an empirical study, surveying 312 practitioners from 36 countries about their expectations on log anomaly detection. In particular, we investigate various factors influencing practitioners' willingness to adopt log anomaly detection tools. We then perform a literature review on log anomaly detection, focusing on publications in premier venues from 2014 to 2024, to compare practitioners' needs with the current state of research. Based on this comparison, we highlight the directions for researchers to focus on to develop log anomaly detection techniques that better meet practitioners' expectations.
Authors:Przemysław Stokłosa, Janusz A. Starzyk, Paweł Raif, Adrian Horzyk, Marcin Kowalik
Title: Associative Knowledge Graphs for Efficient Sequence Storage and Retrieval
Abstract:
The paper addresses challenges in storing and retrieving sequences in contexts like anomaly detection, behavior prediction, and genetic information analysis. Associative Knowledge Graphs (AKGs) offer a promising approach by leveraging sparse graph structures to encode sequences. The objective was to develop a method for sequence storage and retrieval using AKGs that maintain high memory capacity and context-based retrieval accuracy while introducing algorithms for efficient element ordering. The study utilized Sequential Structural Associative Knowledge Graphs (SSAKGs). These graphs encode sequences as transitive tournaments with nodes representing objects and edges defining the order. Four ordering algorithms were developed and tested: Simple Sort, Node Ordering, Enhanced Node Ordering, and Weighted Edges Node Ordering. The evaluation was conducted on synthetic datasets consisting of random sequences of varying lengths and distributions, and real-world datasets, including sentence-based sequences from the NLTK library and miRNA sequences mapped symbolically with a window-based approach. Metrics such as precision, sensitivity, and specificity were employed to assess performance. SSAKGs exhibited quadratic growth in memory capacity relative to graph size. This study introduces a novel structural approach for sequence storage and retrieval. Key advantages include no training requirements, flexible context-based reconstruction, and high efficiency in sparse memory graphs. With broad applications in computational neuroscience and bioinformatics, the approach offers scalable solutions for sequence-based memory tasks.
Authors:Sepehr Nourmohammadi, Arda Sarp Yenicesu, Shervin Rahimzadeh Arashloo, Ozgur S. Oguz
Title: Locally Adaptive One-Class Classifier Fusion with Dynamic $\ell$p-Norm Constraints for Robust Anomaly Detection
Abstract:
This paper presents a novel approach to one-class classifier fusion through locally adaptive learning with dynamic $\ell$p-norm constraints. We introduce a framework that dynamically adjusts fusion weights based on local data characteristics, addressing fundamental challenges in ensemble-based anomaly detection. Our method incorporates an interior-point optimization technique that significantly improves computational efficiency compared to traditional Frank-Wolfe approaches, achieving up to 19-fold speed improvements in complex scenarios. The framework is extensively evaluated on standard UCI benchmark datasets and specialized temporal sequence datasets, demonstrating superior performance across diverse anomaly types. Statistical validation through Skillings-Mack tests confirms our method's significant advantages over existing approaches, with consistent top rankings in both pure and non-pure learning scenarios. The framework's ability to adapt to local data patterns while maintaining computational efficiency makes it particularly valuable for real-time applications where rapid and accurate anomaly detection is crucial.
Authors:Qiang Wu, Gechang Yao, Zhixi Feng, Shuyuan Yang
Title: Peri-midFormer: Periodic Pyramid Transformer for Time Series Analysis
Abstract:
Time series analysis finds wide applications in fields such as weather forecasting, anomaly detection, and behavior recognition. Previous methods attempted to model temporal variations directly using 1D time series. However, this has been quite challenging due to the discrete nature of data points in time series and the complexity of periodic variation. In terms of periodicity, taking weather and traffic data as an example, there are multi-periodic variations such as yearly, monthly, weekly, and daily, etc. In order to break through the limitations of the previous methods, we decouple the implied complex periodic variations into inclusion and overlap relationships among different level periodic components based on the observation of the multi-periodicity therein and its inclusion relationships. This explicitly represents the naturally occurring pyramid-like properties in time series, where the top level is the original time series and lower levels consist of periodic components with gradually shorter periods, which we call the periodic pyramid. To further extract complex temporal variations, we introduce self-attention mechanism into the periodic pyramid, capturing complex periodic relationships by computing attention between periodic components based on their inclusion, overlap, and adjacency relationships. Our proposed Peri-midFormer demonstrates outstanding performance in five mainstream time series analysis tasks, including short- and long-term forecasting, imputation, classification, and anomaly detection.
Authors:Ioannis Pitsiorlas, George Arvanitakis, Marios Kountouris
Title: Trustworthy Intrusion Detection: Confidence Estimation Using Latent Space
Abstract:
This work introduces a novel method for enhancing confidence in anomaly detection in Intrusion Detection Systems (IDS) through the use of a Variational Autoencoder (VAE) architecture. By developing a confidence metric derived from latent space representations, we aim to improve the reliability of IDS predictions against cyberattacks. Applied to the NSL-KDD dataset, our approach focuses on binary classification tasks to effectively distinguish between normal and malicious network activities. The methodology demonstrates a significant enhancement in anomaly detection, evidenced by a notable correlation of 0.45 between the reconstruction error and the proposed metric. Our findings highlight the potential of employing VAEs for more accurate and trustworthy anomaly detection in network security.
Authors:Andra Băltoiu, Denis C. Ilie-Ablachim, Bogdan Dumitrescu
Title: Atom dimension adaptation for infinite set dictionary learning
Abstract:
Recent work on dictionary learning with set-atoms has shown benefits in anomaly detection. Instead of viewing an atom as a single vector, these methods allow building sparse representations with atoms taken from a set around a central vector; the set can be a cone or may have a probability distribution associated to it. We propose a method for adaptively adjusting the size of set-atoms in Gaussian and cone dictionary learning. The purpose of the algorithm is to match the atom sizes with their contribution in representing the signals. The proposed algorithm not only decreases the representation error, but also improves anomaly detection, for a class of anomalies called `dependency'. We obtain better detection performance than state-of-the-art methods.
Authors:Xinheng Xie, Kureha Yamaguchi, Margaux Leblanc, Simon Malzard, Varun Chhabra, Victoria Nockles, Yue Wu
Title: 2DSig-Detect: a semi-supervised framework for anomaly detection on image data using 2D-signatures
Abstract:
The rapid advancement of machine learning technologies raises questions about the security of machine learning models, with respect to both training-time (poisoning) and test-time (evasion, impersonation, and inversion) attacks. Models performing image-related tasks, e.g. detection, and classification, are vulnerable to adversarial attacks that can degrade their performance and produce undesirable outcomes. This paper introduces a novel technique for anomaly detection in images called 2DSig-Detect, which uses a 2D-signature-embedded semi-supervised framework rooted in rough path theory. We demonstrate our method in adversarial settings for training-time and test-time attacks, and benchmark our framework against other state of the art methods. Using 2DSig-Detect for anomaly detection, we show both superior performance and a reduction in the computation time to detect the presence of adversarial perturbations in images.
Authors:Tyler Cultice, Md. Saif Hassan Onim, Annarita Giani, Himanshu Thapliyal
Title: Anomaly Detection for Real-World Cyber-Physical Security using Quantum Hybrid Support Vector Machines
Abstract:
Cyber-physical control systems are critical infrastructures designed around highly responsive feedback loops that are measured and manipulated by hundreds of sensors and controllers. Anomalous data, such as from cyber-attacks, greatly risk the safety of the infrastructure and human operators. With recent advances in the quantum computing paradigm, the application of quantum in anomaly detection can greatly improve identification of cyber-attacks in physical sensor data. In this paper, we explore the use of strong pre-processing methods and a quantum-hybrid Support Vector Machine (SVM) that takes advantage of fidelity in parameterized quantum circuits to efficiently and effectively flatten extremely high dimensional data. Our results show an F-1 Score of 0.86 and accuracy of 87% on the HAI CPS dataset using an 8-qubit, 16-feature quantum kernel, performing equally to existing work and 14% better than its classical counterpart.
Authors:Chenglizhao Chen, Xinyu Liu, Mengke Song, Luming Li, Xu Yu, Shanchen Pang
Title: Unveiling Context-Related Anomalies: Knowledge Graph Empowered Decoupling of Scene and Action for Human-Related Video Anomaly Detection
Abstract:
Detecting anomalies in human-related videos is crucial for surveillance applications. Current methods primarily include appearance-based and action-based techniques. Appearance-based methods rely on low-level visual features such as color, texture, and shape. They learn a large number of pixel patterns and features related to known scenes during training, making them effective in detecting anomalies within these familiar contexts. However, when encountering new or significantly changed scenes, i.e., unknown scenes, they often fail because existing SOTA methods do not effectively capture the relationship between actions and their surrounding scenes, resulting in low generalization. In contrast, action-based methods focus on detecting anomalies in human actions but are usually less informative because they tend to overlook the relationship between actions and their scenes, leading to incorrect detection. For instance, the normal event of running on the beach and the abnormal event of running on the street might both be considered normal due to the lack of scene information. In short, current methods struggle to integrate low-level visual and high-level action features, leading to poor anomaly detection in varied and complex scenes. To address this challenge, we propose a novel decoupling-based architecture for human-related video anomaly detection (DecoAD). DecoAD significantly improves the integration of visual and action features through the decoupling and interweaving of scenes and actions, thereby enabling a more intuitive and accurate understanding of complex behaviors and scenes. DecoAD supports fully supervised, weakly supervised, and unsupervised settings.
Authors:Yunjoo Lee, Jaechang Kim, Jungseul Ok
Title: Activity-Guided Industrial Anomalous Sound Detection against Interferences
Abstract:
We address a practical scenario of anomaly detection for industrial sound data, where the sound of a target machine is corrupted by background noise and interference from neighboring machines. Overcoming this challenge is difficult since the interference is often virtually indistinguishable from the target machine without additional information. To address the issue, we propose SSAD, a framework of source separation (SS) followed by anomaly detection (AD), which leverages machine activity information, often readily available in practical settings. SSAD consists of two components: (i) activity-informed SS, enabling effective source separation even given interference with similar timbre, and (ii) two-step masking, robustifying anomaly detection by emphasizing anomalies aligned with the machine activity. Our experiments demonstrate that SSAD achieves comparable accuracy to a baseline with full access to clean signals, while SSAD is provided only a corrupted signal and activity information. In addition, thanks to the activity-informed SS and AD with the two-step masking, SSAD outperforms standard approaches, particularly in cases with interference. It highlights the practical efficacy of SSAD in addressing the complexities of anomaly detection in industrial sound data.
Authors:Björn R. Severitt, Yannick Sauer, Nora Castner, Siegfried Wahl
Title: A Real-Time Error Prevention System for Gaze-Based Interaction in Virtual Reality Based on Anomaly Detection
Abstract:
Gaze-based interaction enables intuitive, hands-free control in immersive environments, but remains susceptible to unintended inputs. We present a real-time error prevention system (EPS) that uses a temporal convolutional network autoencoder (TCNAE) to detect anomalies in gaze dynamics during selection tasks. In a visual search task in VR, 41 participants used three gaze-based methods - dwell time, gaze and head direction alignment, and nod - with and without EPS. The system reduced erroneous selections by up to 95% for dwell time and gaze and head, and was positively received by most users. Performance varied for nodding and between individuals, suggesting the need for adaptive systems. Objective metrics and subjective evaluations show that anomaly-based error prevention can improve gaze interfaces without disrupting interaction. These findings demonstrate the potential of anomaly-based error prevention for gaze interfaces and suggest applications in VR, AR, and assistive technologies.
Authors:Bui Ngoc Thanh Binh, Pham Hoai Luan, Le Vu Trung Duong, Vu Tuan Hai, Yasuhiko Nakashima
Title: A Protocol-Aware P4 Pipeline for MQTT Security and Anomaly Mitigation in Edge IoT Systems
Abstract:
MQTT is the dominant lightweight publish--subscribe protocol for IoT deployments, yet edge security remains inadequate. Cloud-based intrusion detection systems add latency that is unsuitable for real-time control, while CPU-bound firewalls and generic SDN controllers lack MQTT awareness to enforce session validation, topic-based authorization, and behavioral anomaly detection. We propose a P4-based data-plane enforcement scheme for protocol-aware MQTT security and anomaly detection at the network edge. The design combines parser-safe MQTT header extraction with session-order validation, byte-level topic-prefix authorization with per-client rate limiting and soft-cap enforcement, and lightweight anomaly detection based on KeepAlive and Remaining Length screening with clone-to-CPU diagnostics. The scheme leverages stateful primitives in BMv2 (registers, meters, direct counters) to enable runtime policy adaptation with minimal per-packet latency. Experiments on a Mininet/BMv2 testbed demonstrate high policy enforcement accuracy (99.8%, within 95% CI), strong anomaly detection sensitivity (98\% true-positive rate), and high delivery >99.9% for 100--5~kpps; 99.8% at 10~kpps; 99.6\% at 16~kpps) with sub-millisecond per-packet latency. These results show that protocol-aware MQTT filtering can be efficiently realized in the programmable data plane, providing a practical foundation for edge IoT security. Future work will validate the design on production P4 hardware and integrate machine learning--based threshold adaptation.
Authors:Ji Hyuk Jung, Ji Won Yoon
Title: Neutralization of IMU-Based GPS Spoofing Detection using external IMU sensor and feedback methodology
Abstract:
Autonomous Vehicles (AVs) refer to systems capable of perceiving their states and moving without human intervention. Among the factors required for autonomous decision-making in mobility, positional awareness of the vehicle itself is the most critical. Accordingly, extensive research has been conducted on defense mechanisms against GPS spoofing attacks, which threaten AVs by disrupting position recognition. Among these, detection methods based on internal IMU sensors are regarded as some of the most effective. In this paper, we propose a spoofing attack system designed to neutralize IMU sensor-based detection. First, we present an attack modeling approach for bypassing such detection. Then, based on EKF sensor fusion, we experimentally analyze both the impact of GPS spoofing values on the internal target system and how our proposed methodology reduces anomaly detection within the target system. To this end, this paper proposes an attack model that performs GPS spoofing by stealing internal dynamic state information using an external IMU sensor, and the experimental results demonstrate that attack values can be injected without being detected.
Authors:Ji Song, Xing Wang, Jianguo Wu, Xiaowei Yue
Title: High Dimensional Data Decomposition for Anomaly Detection of Textured Images
Abstract:
In the realm of diverse high-dimensional data, images play a significant role across various processes of manufacturing systems where efficient image anomaly detection has emerged as a core technology of utmost importance. However, when applied to textured defect images, conventional anomaly detection methods have limitations including non-negligible misidentification, low robustness, and excessive reliance on large-scale and structured datasets. This paper proposes a texture basis integrated smooth decomposition (TBSD) approach, which is targeted at efficient anomaly detection in textured images with smooth backgrounds and sparse anomalies. Mathematical formulation of quasi-periodicity and its theoretical properties are investigated for image texture estimation. TBSD method consists of two principal processes: the first process learns the texture basis functions to effectively extract quasi-periodic texture patterns; the subsequent anomaly detection process utilizes that texture basis as prior knowledge to prevent texture misidentification and capture potential anomalies with high accuracy.The proposed method surpasses benchmarks with less misidentification, smaller training dataset requirement, and superior anomaly detection performance on both simulation and real-world datasets.
Authors:Pedro Domingos, João Pereira, Vasco Lopes, João Neves, David Semedo
Title: Chain-of-Anomaly Thoughts with Large Vision-Language Models
Abstract:
Automated video surveillance with Large Vision-Language Models is limited by their inherent bias towards normality, often failing to detect crimes. While Chain-of-Thought reasoning strategies show significant potential for improving performance in language tasks, the lack of inductive anomaly biases in their reasoning further steers the models towards normal interpretations. To address this, we propose Chain-of-Anomaly-Thoughts (CoAT), a multi-agent reasoning framework that introduces inductive criminal bias in the reasoning process through a final, anomaly-focused classification layer. Our method significantly improves Anomaly Detection, boosting F1-score by 11.8 p.p. on challenging low-resolution footage and Anomaly Classification by 3.78 p.p. in high-resolution videos.
Authors:Abdelmadjid Benmachiche, Khadija Rais, Hamda Slimi
Title: Real-Time Machine Learning for Embedded Anomaly Detection
Abstract:
The spread of a resource-constrained Internet of Things (IoT) environment and embedded devices has put pressure on the real-time detection of anomalies occurring at the edge. This survey presents an overview of machine-learning methods aimed specifically at on-device anomaly detection with extremely strict constraints for latency, memory, and power consumption. Lightweight algorithms such as Isolation Forest, One-Class SVM, recurrent architectures, and statistical techniques are compared here according to the realities of embedded implementation. Our survey brings out significant trade-offs of accuracy and computational efficiency of detection, as well as how hardware constraints end up fundamentally redefining algorithm choice. The survey is completed with a set of practical recommendations on the choice of the algorithm depending on the equipment profiles and new trends in TinyML, which can help close the gap between detection capabilities and embedded reality. The paper serves as a strategic roadmap for engineers deploying anomaly detection in edge environments that are constrained by bandwidth and may be safety-critical.
Authors:Jack Y. Araz, Michael Spannowsky
Title: Another Fit Bites the Dust: Conformal Prediction as a Calibration Standard for Machine Learning in High-Energy Physics
Abstract:
Machine-learning techniques are essential in modern collider research, yet their probabilistic outputs often lack calibrated uncertainty estimates and finite-sample guarantees, limiting their direct use in statistical inference and decision-making. Conformal prediction (CP) provides a simple, distribution-free framework for calibrating arbitrary predictive models without retraining, yielding rigorous uncertainty quantification with finite-sample coverage guarantees under minimal exchangeability assumptions, without reliance on asymptotics, limit theorems, or Gaussian approximations. In this work, we investigate CP as a unifying calibration layer for machine-learning applications in high-energy physics. Using publicly available collider datasets and a diverse set of models, we show that a single conformal formalism can be applied across regression, binary and multi-class classification, anomaly detection, and generative modelling, converting raw model outputs into statistically valid prediction sets, typicality regions, and p-values with controlled false-positive rates. While conformal prediction does not improve raw model performance, it enforces honest uncertainty quantification and transparent error control. We argue that conformal calibration should be adopted as a standard component of machine-learning pipelines in collider physics, enabling reliable interpretation, robust comparisons, and principled statistical decisions in experimental and phenomenological analyses.
Authors:Oleg Melnikov, Yurii Dorofieiev, Yurii Shakhnovskiy, Huy Truong, Victoria Degeler
Title: A Multivariate Statistical Framework for Detection, Classification and Pre-localization of Anomalies in Water Distribution Networks
Abstract:
This paper presents a unified framework, for the detection, classification, and preliminary localization of anomalies in water distribution networks using multivariate statistical analysis. The approach, termed SICAMS (Statistical Identification and Classification of Anomalies in Mahalanobis Space), processes heterogeneous pressure and flow sensor data through a whitening transformation to eliminate spatial correlations among measurements. Based on the transformed data, the Hotelling's $T^2$ statistic is constructed, enabling the formulation of anomaly detection as a statistical hypothesis test of network conformity to normal operating conditions. It is shown that Hotelling's $T^2$ statistic can serve as an integral indicator of the overall "health" of the system, exhibiting correlation with total leakage volume, and thereby enabling approximate estimation of water losses via a regression model. A heuristic algorithm is developed to analyze the $T^2$ time series and classify detected anomalies into abrupt leaks, incipient leaks, and sensor malfunctions. Furthermore, a coarse leak localization method is proposed, which ranks sensors according to their statistical contribution and employs Laplacian interpolation to approximate the affected region within the network. Application of the proposed framework to the BattLeDIM L-Town benchmark dataset demonstrates high sensitivity and reliability in leak detection, maintaining robust performance even under multiple leaks. These capabilities make the method applicable to real-world operational environments without the need for a calibrated hydraulic model.
Authors:Yuxin Jiang, Yunkang Can, Weiming Shen
Title: A Masked Reverse Knowledge Distillation Method Incorporating Global and Local Information for Image Anomaly Detection
Abstract:
Knowledge distillation is an effective image anomaly detection and localization scheme. However, a major drawback of this scheme is its tendency to overly generalize, primarily due to the similarities between input and supervisory signals. In order to address this issue, this paper introduces a novel technique called masked reverse knowledge distillation (MRKD). By employing image-level masking (ILM) and feature-level masking (FLM), MRKD transforms the task of image reconstruction into image restoration. Specifically, ILM helps to capture global information by differentiating input signals from supervisory signals. On the other hand, FLM incorporates synthetic feature-level anomalies to ensure that the learned representations contain sufficient local information. With these two strategies, MRKD is endowed with stronger image context capture capacity and is less likely to be overgeneralized. Experiments on the widely-used MVTec anomaly detection dataset demonstrate that MRKD achieves impressive performance: image-level 98.9% AU-ROC, pixel-level 98.4% AU-ROC, and 95.3% AU-PRO. In addition, extensive ablation experiments have validated the superiority of MRKD in mitigating the overgeneralization problem.
Authors:Haoyu Ren, Kay Koehle, Kirill Dorofeev, Darko Anicic
Title: On-Device Continual Learning for Unsupervised Visual Anomaly Detection in Dynamic Manufacturing
Abstract:
In modern manufacturing, Visual Anomaly Detection (VAD) is essential for automated inspection and consistent product quality. Yet, increasingly dynamic and flexible production environments introduce key challenges: First, frequent product changes in small-batch and on-demand manufacturing require rapid model updates. Second, legacy edge hardware lacks the resources to train and run large AI models. Finally, both anomalous and normal training data are often scarce, particularly for newly introduced product variations. We investigate on-device continual learning for unsupervised VAD with localization, extending the PatchCore to incorporate online learning for real-world industrial scenarios. The proposed method leverages a lightweight feature extractor and an incremental coreset update mechanism based on k-center selection, enabling rapid, memory-efficient adaptation from limited data while eliminating costly cloud retraining. Evaluations on an industrial use case are conducted using a testbed designed to emulate flexible production with frequent variant changes in a controlled environment. Our method achieves a 12% AUROC improvement over the baseline, an 80% reduction in memory usage, and faster training compared to batch retraining. These results confirm that our method delivers accurate, resource-efficient, and adaptive VAD suitable for dynamic and smart manufacturing.
Authors:Fang Li, Fei Zuo, Gopal Gupta
Title: Logic-Driven Cybersecurity: A Novel Framework for System Log Anomaly Detection using Answer Set Programming
Abstract:
This study explores the application of Answer Set Programming (ASP) for detecting anomalies in system logs, addressing the challenges posed by evolving cyber threats. We propose a novel framework that leverages ASP's declarative nature and logical reasoning capabilities to encode complex security rules as logical predicates. Our ASP-based system was applied to a real-world Linux system log dataset, demonstrating its effectiveness in identifying various anomalies such as potential brute-force attacks, privilege escalations, frequent network connections from specific IPs, and various system-level issues. Key findings highlight ASP's strengths in handling structured log data, rule flexibility, and event correlation. The approach shows promise in providing explainable alerts from real-world data. This research contributes to computer forensics by demonstrating a logic-based paradigm for log analysis on a practical dataset, opening avenues for more nuanced and adaptive cyber intelligence systems.
Authors:Kenan Begovic, Abdulaziz Al-Ali, Qutaibah Malluhi
Title: Exploiting ftrace's function_graph Tracer Features for Machine Learning: A Case Study on Encryption Detection
Abstract:
This paper proposes using the Linux kernel ftrace framework, particularly the function graph tracer, to generate informative system level data for machine learning (ML) applications. Experiments on a real world encryption detection task demonstrate the efficacy of the proposed features across several learning algorithms. The learner faces the problem of detecting encryption activities across a large dataset of files, using function call traces and graph based features. Empirical results highlight an outstanding accuracy of 99.28 on the task at hand, underscoring the efficacy of features derived from the function graph tracer. The results were further validated in an additional experiment targeting a multilabel classification problem, in which running programs were identified from trace data. This work provides comprehensive methodologies for preprocessing raw trace data and extracting graph based features, offering significant advancements in applying ML to system behavior analysis, program identification, and anomaly detection. By bridging the gap between system tracing and ML, this paper paves the way for innovative solutions in performance monitoring and security analytics.
Authors:Davut Emre Tasar, Ceren Ocal Tasar
Title: TARA Test-by-Adaptive-Ranks for Quantum Anomaly Detection with Conformal Prediction Guarantees
Abstract:
Quantum key distribution (QKD) security fundamentally relies on the ability to distinguish genuine quantum correlations from classical eavesdropper simulations, yet existing certification methods lack rigorous statistical guarantees under finite-sample conditions and adversarial scenarios. We introduce TARA (Test by Adaptive Ranks), a novel framework combining conformal prediction with sequential martingale testing for quantum anomaly detection that provides distribution-free validity guarantees. TARA offers two complementary approaches. TARA k, based on Kolmogorov Smirnov calibration against local hidden variable (LHV) null distributions, achieving ROC AUC = 0.96 for quantum-classical discrimination. And TARA-m, employing betting martingales for streaming detection with anytime valid type I error control that enables real time monitoring of quantum channels. We establish theoretical guarantees proving that under (context conditional) exchangeability, conformal p-values remain uniformly distributed even for strongly contextual quantum data, confirming that quantum contextuality does not break conformal prediction validity a result with implications beyond quantum certification to any application of distribution-free methods to nonclassical data. Extensive validation on both IBM Torino (superconducting, CHSH = 2.725) and IonQ Forte Enterprise (trapped ion, CHSH = 2.716) quantum processors demonstrates cross-platform robustness, achieving 36% security margins above the classical CHSH bound of 2. Critically, our framework reveals a methodological concern affecting quantum certification more broadly: same-distribution calibration can inflate detection performance by up to 44 percentage points compared to proper cross-distribution calibration, suggesting that prior quantum certification studies using standard train test splits may have systematically overestimated adversarial robustness.
Authors:Congjing Zhang, Feng Lin, Xinyi Zhao, Pei Guo, Wei Li, Lin Chen, Chaoyue Zhao, Shuai Huang
Title: ALARM: Automated MLLM-Based Anomaly Detection in Complex-EnviRonment Monitoring with Uncertainty Quantification
Abstract:
The advance of Large Language Models (LLMs) has greatly stimulated research interest in developing multi-modal LLM (MLLM)-based visual anomaly detection (VAD) algorithms that can be deployed in complex environments. The challenge is that in these complex environments, the anomalies are sometimes highly contextual and also ambiguous, and thereby, uncertainty quantification (UQ) is a crucial capacity for an MLLM-based VAD system to succeed. In this paper, we introduce our UQ-supported MLLM-based VAD framework called ALARM. ALARM integrates UQ with quality-assurance techniques like reasoning chain, self-reflection, and MLLM ensemble for robust and accurate performance and is designed based on a rigorous probabilistic inference pipeline and computational process. Extensive empirical evaluations are conducted using the real-world smart-home benchmark data and wound image classification data, which shows ALARM's superior performance and its generic applicability across different domains for reliable decision-making.
Authors:Divya Pathak, Harshit Kumar, Anuska Roy, Felix George, Mudit Verma, Pratibha Moogi
Title: Detecting Silent Failures in Multi-Agentic AI Trajectories
Abstract:
Multi-Agentic AI systems, powered by large language models (LLMs), are inherently non-deterministic and prone to silent failures such as drift, cycles, and missing details in outputs, which are difficult to detect. We introduce the task of anomaly detection in agentic trajectories to identify these failures and present a dataset curation pipeline that captures user behavior, agent non-determinism, and LLM variation. Using this pipeline, we curate and label two benchmark datasets comprising \textbf{4,275 and 894} trajectories from Multi-Agentic AI systems. Benchmarking anomaly detection methods on these datasets, we show that supervised (XGBoost) and semi-supervised (SVDD) approaches perform comparably, achieving accuracies up to 98% and 96%, respectively. This work provides the first systematic study of anomaly detection in Multi-Agentic AI systems, offering datasets, benchmarks, and insights to guide future research.
Authors:Qingyuan Zhang, Ning Lyu, Le Liu, Yuxi Wang, Ziyu Cheng, Cancan Hua
Title: Graph Neural AI with Temporal Dynamics for Comprehensive Anomaly Detection in Microservices
Abstract:
This study addresses the problem of anomaly detection and root cause tracing in microservice architectures and proposes a unified framework that combines graph neural networks with temporal modeling. The microservice call chain is abstracted as a directed graph, where multidimensional features of nodes and edges are used to construct a service topology representation, and graph convolution is applied to aggregate features across nodes and model dependencies, capturing complex structural relationships among services. On this basis, gated recurrent units are introduced to model the temporal evolution of call chains, and multi-layer stacking and concatenation operations are used to jointly obtain structural and temporal representations, improving the ability to identify anomaly patterns. Furthermore, anomaly scoring functions at both the node and path levels are defined to achieve unified modeling from local anomaly detection to global call chain tracing, which enables the identification of abnormal service nodes and the reconstruction of potential anomaly propagation paths. Sensitivity experiments are then designed from multiple dimensions, including hyperparameters, environmental disturbances, and data distribution, to evaluate the framework, and results show that it outperforms baseline methods in key metrics such as AUC, ACC, Recall, and F1-Score, maintaining high accuracy and stability under dynamic topologies and complex environments. This research not only provides a new technical path for anomaly detection in microservices but also lays a methodological foundation for intelligent operations in distributed systems.
Authors:Jessica Plassmann, Nicolas Schuler, Georg von Freymann, Michael Schuth
Title: Unsupervised Learning for Industrial Defect Detection: A Case Study on Shearographic Data
Abstract:
Shearography is a non-destructive testing method for detecting subsurface defects, offering high sensitivity and full-field inspection capabilities. However, its industrial adoption remains limited due to the need for expert interpretation. To reduce reliance on labeled data and manual evaluation, this study explores unsupervised learning methods for automated anomaly detection in shearographic images. Three architectures are evaluated: a fully connected autoencoder, a convolutional autoencoder, and a student-teacher feature matching model. All models are trained solely on defect-free data. A controlled dataset was developed using a custom specimen with reproducible defect patterns, enabling systematic acquisition of shearographic measurements under both ideal and realistic deformation conditions. Two training subsets were defined: one containing only undistorted, defect-free samples, and one additionally including globally deformed, yet defect-free, data. The latter simulates practical inspection conditions by incorporating deformation-induced fringe patterns that may obscure localized anomalies. The models are evaluated in terms of binary classification and, for the student-teacher model, spatial defect localization. Results show that the student-teacher approach achieves superior classification robustness and enables precise localization. Compared to the autoencoder-based models, it demonstrates improved separability of feature representations, as visualized through t-SNE embeddings. Additionally, a YOLOv8 model trained on labeled defect data serves as a reference to benchmark localization quality. This study underscores the potential of unsupervised deep learning for scalable, label-efficient shearographic inspection in industrial environments.
Authors:Jihao Gu, Kun Li, He Wang, Kaan Akşit
Title: Text-guided Fine-Grained Video Anomaly Detection
Abstract:
Video Anomaly Detection (VAD) aims to identify anomalous events within video segments. In scenarios such as surveillance or industrial process monitoring, anomaly detection is of critical importance. While existing approaches are semi-automated, requiring human assessment for anomaly detection, traditional VADs offer limited output as either normal or anomalous. We propose Text-guided Fine-Grained Video Anomaly Detection (T-VAD), a framework built upon Large Vision-Language Model (LVLM). T-VAD introduces an Anomaly Heatmap Decoder (AHD) that performs pixel-wise visual-textual feature alignment to generate fine-grained anomaly heatmaps. Furthermore, we design a Region-aware Anomaly Encoder (RAE) that transforms the heatmaps into learnable textual embeddings, guiding the LVLM to accurately identify and localize anomalous events in videos. This significantly enhances both the granularity and interactivity of anomaly detection. The proposed method achieving SOTA performance by demonstrating 94.8% Area Under the Curve (AUC, specifically micro-AUC) and 67.8%/76.7% accuracy in anomaly heatmaps (RBDC/TBDC) on the UBnormal dataset, and subjectively verified more preferable textual description on the ShanghaiTech-based dataset (BLEU-4: 62.67 for targets, 88.84 for trajectories; Yes/No accuracy: 97.67%), and on the UBnormal dataset (BLEU-4: 50.32 for targets, 78.10 for trajectories; Yes/No accuracy: 89.73%).
Authors:Mustafa Fuad Rifet Ibrahim, Maurice Meijer, Alexander Schlaefer, Peer Stelldinger
Title: Enhancing ECG Classification Robustness with Lightweight Unsupervised Anomaly Detection Filters
Abstract:
Continuous electrocardiogram (ECG) monitoring via wearables offers significant potential for early cardiovascular disease (CVD) detection. However, deploying deep learning models for automated analysis in resource-constrained environments faces reliability challenges due to inevitable Out-of-Distribution (OOD) data. OOD inputs, such as unseen pathologies or noisecorrupted signals, often cause erroneous, high-confidence predictions by standard classifiers, compromising patient safety. Existing OOD detection methods either neglect computational constraints or address noise and unseen classes separately. This paper explores Unsupervised Anomaly Detection (UAD) as an independent, upstream filtering mechanism to improve robustness. We benchmark six UAD approaches, including Deep SVDD, reconstruction-based models, Masked Anomaly Detection, normalizing flows, and diffusion models, optimized via Neural Architecture Search (NAS) under strict resource constraints (at most 512k parameters). Evaluation on PTB-XL and BUT QDB datasets assessed detection of OOD CVD classes and signals unsuitable for analysis due to noise. Results show Deep SVDD consistently achieves the best trade-off between detection and efficiency. In a realistic deployment simulation, integrating the optimized Deep SVDD filter with a diagnostic classifier improved accuracy by up to 21 percentage points over a classifier-only baseline. This study demonstrates that optimized UAD filters can safeguard automated ECG analysis, enabling safer, more reliable continuous cardiovascular monitoring on wearables.
Authors:Apu Chakraborty, Anshul Kumar, Gagan Raj Gupta
Title: Flex-GAD : Flexible Graph Anomaly Detection
Abstract:
Detecting anomalous nodes in attributed networks, where each node is associated with both structural connections and descriptive attributes, is essential for identifying fraud, misinformation, and suspicious behavior in domains such as social networks, academic citation graphs, and e-commerce platforms. We propose Flex-GAD, a novel unsupervised framework for graph anomaly detection at the node level. Flex-GAD integrates two encoders to capture complementary aspects of graph data. The framework incorporates a novel community-based GCN encoder to model intra-community and inter-community information into node embeddings, thereby ensuring structural consistency, along with a standard attribute encoder. These diverse representations are fused using a self-attention-based representation fusion module, which enables adaptive weighting and effective integration of the encoded information. This fusion mechanism allows automatic emphasis of the most relevant node representation across different encoders. We evaluate Flex-GAD on seven real-world attributed graphs with varying sizes, node degrees, and attribute homogeneity. Flex-GAD achieves an average AUC improvement of 7.98% over the previously best-performing method, GAD-NR, demonstrating its effectiveness and flexibility across diverse graph structures. Moreover, it significantly reduces training time, running 102x faster per epoch than Anomaly DAE and 3x faster per epoch than GAD-NR on average across seven benchmark datasets.
Authors:Subin Lin, Chuanbo Hua
Title: Physics-Informed Large Language Models for HVAC Anomaly Detection with Autonomous Rule Generation
Abstract:
Heating, Ventilation, and Air-Conditioning (HVAC) systems account for a substantial share of global building energy use, making reliable anomaly detection essential for improving efficiency and reducing emissions. Classical rule-based approaches offer explainability but lack adaptability, while deep learning methods provide predictive power at the cost of transparency, efficiency, and physical plausibility. Recent attempts to use Large Language Models (LLMs) for anomaly detection improve interpretability but largely ignore the physical principles that govern HVAC operations. We present PILLM, a Physics-Informed LLM framework that operates within an evolutionary loop to automatically generate, evaluate, and refine anomaly detection rules. Our approach introduces physics-informed reflection and crossover operators that embed thermodynamic and control-theoretic constraints, enabling rules that are both adaptive and physically grounded. Experiments on the public Building Fault Detection dataset show that PILLM achieves state-of-the-art performance while producing diagnostic rules that are interpretable and actionable, advancing trustworthy and deployable AI for smart building systems.
Authors:Xixing Xue, Dong Shen, Steven X. Ding, Dong Zhao
Title: Dual Detection Framework for Faults and Integrity Attacks in Cyber-Physical Control Systems
Abstract:
Anomaly detection plays a vital role in the security and safety of cyber-physical control systems, and accurately distinguishing between different anomaly types is crucial for system recovery and mitigation. This study proposes a dual detection framework for anomaly detection and discrimination. By leveraging the dynamic characteristics of control loops and the stealthiness features of integrity attacks, the closed-loop stealthiness condition is first derived, and two dedicated detectors are designed and deployed on the controller side and the plant side, respectively, enabling joint plant fault and cyber attack detection. Moreover, by jointly analyzing the residual response of the two detectors corresponding to different anomalies, it is proved that the proposed method can distinguish between faults and integrity attacks due to the detectors' individual residual spaces. According to the detector's residual space, the fault and attack detection performance is further improved by a two-stage optimization scheme. Simulation results validate the effectiveness of the proposed approach.
Authors:Daniel Adu Worae, Spyridon Mastorakis
Title: An LLM-Powered AI Agent Framework for Holistic IoT Traffic Interpretation
Abstract:
Internet of Things (IoT) networks generate diverse and high-volume traffic that reflects both normal activity and potential threats. Deriving meaningful insight from such telemetry requires cross-layer interpretation of behaviors, protocols, and context rather than isolated detection. This work presents an LLM-powered AI agent framework that converts raw packet captures into structured and semantically enriched representations for interactive analysis. The framework integrates feature extraction, transformer-based anomaly detection, packet and flow summarization, threat intelligence enrichment, and retrieval-augmented question answering. An AI agent guided by a large language model performs reasoning over the indexed traffic artifacts, assembling evidence to produce accurate and human-readable interpretations. Experimental evaluation on multiple IoT captures and six open models shows that hybrid retrieval, which combines lexical and semantic search with reranking, substantially improves BLEU, ROUGE, METEOR, and BERTScore results compared with dense-only retrieval. System profiling further indicates low CPU, GPU, and memory overhead, demonstrating that the framework achieves holistic and efficient interpretation of IoT network traffic.
Authors:Nisith Dissanayake, Uthayasanker Thayasivam
Title: Attack-Specialized Deep Learning with Ensemble Fusion for Network Anomaly Detection
Abstract:
The growing scale and sophistication of cyberattacks pose critical challenges to network security, particularly in detecting diverse intrusion types within imbalanced datasets. Traditional intrusion detection systems (IDS) often struggle to maintain high accuracy across both frequent and rare attacks, leading to increased false negatives for minority classes. To address this, we propose a hybrid anomaly detection framework that integrates specialized deep learning models with an ensemble meta-classifier. Each model is trained to detect a specific attack category, enabling tailored learning of class-specific patterns, while their collective outputs are fused by a Random Forest meta-classifier to improve overall decision reliability. The framework is evaluated on the NSL-KDD benchmark, demonstrating superior performance in handling class imbalance compared to conventional monolithic models. Results show significant improvements in precision, recall, and F1-score across all attack categories, including rare classes such as User to Root (U2R). The proposed system achieves near-perfect detection rates with minimal false alarms, highlighting its robustness and generalizability. This work advances the design of intrusion detection systems by combining specialization with ensemble learning, providing an effective and scalable solution for safeguarding modern networks.
Authors:Konstantin Avrachenkov, Andrei Bobu, Nelly Litvak, Riccardo Michielan
Title: Planted clique recovery in random geometric graphs
Abstract:
We investigate the problem of identifying planted cliques in random geometric graphs, focusing on two distinct algorithmic approaches: the first based on vertex degrees (VD) and the other on common neighbors (CN). We analyze the performance of these methods under varying regimes of key parameters, namely the average degree of the graph and the size of the planted clique. We demonstrate that exact recovery is achieved with high probability as the graph size increases, in a specific set of parameters. Notably, our results reveal that the CN-algorithm significantly outperforms the VD-algorithm. In particular, in the connectivity regime, tiny planted cliques (even edges) are correctly identified by the CN-algorithm, yielding a significant impact on anomaly detection. Finally, our results are confirmed by a series of numerical experiments, showing that the devised algorithms are effective in practice.
Authors:Wonah Kim, Jeonghyeon Park, Dongsan Jun, Jungkyu Han, Sejin Chun
Title: Causal Disentanglement Learning for Accurate Anomaly Detection in Multivariate Time Series
Abstract:
Disentangling complex causal relationships is important for accurate detection of anomalies. In multivariate time series analysis, dynamic interactions among data variables over time complicate the interpretation of causal relationships. Traditional approaches assume statistical independence between variables in unsupervised settings, whereas recent methods capture feature correlations through graph representation learning. However, their representations fail to explicitly infer the causal relationships over different time periods. To solve the problem, we propose Causally Disentangled Representation Learning for Anomaly Detection (CDRL4AD) to detect anomalies and identify their causal relationships in multivariate time series. First, we design the causal process as model input, the temporal heterogeneous graph, and causal relationships. Second, our representation identifies causal relationships over different time periods and disentangles latent variables to infer the corresponding causal factors. Third, our experiments on real-world datasets demonstrate that CDRL4AD outperforms state-of-the-art methods in terms of accuracy and root cause analysis. Fourth, our model analysis validates hyperparameter sensitivity and the time complexity of CDRL4AD. Last, we conduct a case study to show how our approach assists human experts in diagnosing the root causes of anomalies.
Authors:Hanchang Cheng, Weimin Mu, Fan Liu, Weilin Zhu, Can Ma
Title: LPCVAE: A Conditional VAE with Long-Term Dependency and Probabilistic Time-Frequency Fusion for Time Series Anomaly Detection
Abstract:
Time series anomaly detection(TSAD) is a critical task in signal processing field, ensuring the reliability of complex systems. Reconstruction-based methods dominate in TSAD. Among these methods, VAE-based methods have achieved promising results. Existing VAE-based methods suffer from the limitation of single-window feature and insufficient leveraging of long-term time and frequency information. We propose a Conditional Variational AutoEncoder with Long-term dependency and Probabilistic time-frequency fusion, named LPCVAE. LPCVAE introduces LSTM to capture long-term dependencies beyond windows. It further incorporates a Product-of-Experts (PoE) mechanism for adaptive and distribution-level probabilistic fusion. This design effectively mitigates time-frequency information loss. Extensive experiments on four public datasets demonstrate it outperforms state-of-the-art methods. The results confirm that integrating long-term time and frequency representations with adaptive fusion yields a robust and efficient solution for TSAD.
Authors:Tai Le-Gia, Ahn Jaehyun
Title: On the Problem of Consistent Anomalies in Zero-Shot Industrial Anomaly Detection
Abstract:
Zero-shot image anomaly classification (AC) and segmentation (AS) are vital for industrial quality control, detecting defects without prior training data. Existing representation-based methods compare patch features with nearest neighbors in unlabeled test images but struggle with consistent anomalies -- similar defects recurring across multiple images -- resulting in poor AC/AS performance. We introduce Consistent-Anomaly Detection Graph (CoDeGraph), a novel algorithm that identifies and filters consistent anomalies from similarity computations. Our key insight is that normal patches in industrial images show stable, gradually increasing similarity to other test images, while consistent-anomaly patches exhibit abrupt similarity spikes after exhausting a limited set of similar matches, a phenomenon we term ``neighbor-burnout.'' CoDeGraph constructs an image-level graph, with images as nodes and edges connecting those with shared consistent-anomaly patterns, using community detection to filter these anomalies. We provide a theoretical foundation using Extreme Value Theory to explain the effectiveness of our approach. Experiments on MVTec AD with the ViT-L-14-336 backbone achieve 98.3% AUROC for AC and AS performance of 66.8% (+4.2%) F1 and 68.1% (+5.4%) AP over state-of-the-art zero-shot methods. Using the DINOv2 backbone further improves segmentation, yielding 69.1% (+6.5%) F1 and 71.9% (+9.2%) AP, demonstrating robustness across architectures.
Authors:Sehar Zehra, Hassan Jamil Syed, Ummay Faseeha
Title: FedMon: Federated eBPF Monitoring for Distributed Anomaly Detection in Multi-Cluster Cloud Environments
Abstract:
Kubernetes multi-cluster deployments demand scalable and privacy-preserving anomaly detection. Existing eBPF-based monitors provide low-overhead system and network visibility but are limited to single clusters, while centralized approaches incur bandwidth, privacy, and heterogeneity challenges. We propose FedMon, a federated eBPF framework that unifies kernel-level telemetry with federated learning (FL) for cross-cluster anomaly detection. Lightweight eBPF agents capture syscalls and network events, extract local statistical and sequence features, and share only model updates with a global server. A hybrid detection engine combining Variational Autoencoders (VAEs) with Isolation Forests enables both temporal pattern modeling and outlier detection. Deployed across three Kubernetes clusters, FedMon achieves 94% precision, 91% recall, and an F1-score of 0.92, while cutting bandwidth usage by 60% relative to centralized baselines. Results demonstrate that FedMon enhances accuracy, scalability, and privacy, providing an effective defense for large-scale, multi-tenant cloud-native environments.
Authors:Marc Garreta Basora, Mehmet Oguz Mulayim
Title: An Attention-Augmented VAE-BiLSTM Framework for Anomaly Detection in 12-Lead ECG Signals
Abstract:
Anomaly detection in 12-lead electrocardiograms (ECGs) is critical for identifying deviations associated with cardiovascular disease. This work presents a comparative analysis of three autoencoder-based architectures: convolutional autoencoder (CAE), variational autoencoder with bidirectional long short-term memory (VAE-BiLSTM), and VAE-BiLSTM with multi-head attention (VAE-BiLSTM-MHA), for unsupervised anomaly detection in ECGs. To the best of our knowledge, this study reports the first application of a VAE-BiLSTM-MHA architecture to ECG anomaly detection. All models are trained on normal ECG samples to reconstruct non-anomalous cardiac morphology and detect deviations indicative of disease. Using a unified preprocessing and evaluation pipeline on the public China Physiological Signal Challenge (CPSC) dataset, the attention-augmented VAE achieves the best performance, with an AUPRC of 0.81 and a recall of 0.85 on the held-out test set, outperforming the other architectures. To support clinical triage, this model is further integrated into an interactive dashboard that visualizes anomaly localization. In addition, a performance comparison with baseline models from the literature is provided.
Authors:Sebastian Höfer, Dorian Henning, Artemij Amiranashvili, Douglas Morrison, Mariliza Tzes, Ingmar Posner, Marc Matvienko, Alessandro Rennola, Anton Milan
Title: Kaputt: A Large-Scale Dataset for Visual Defect Detection
Abstract:
We present a novel large-scale dataset for defect detection in a logistics setting. Recent work on industrial anomaly detection has primarily focused on manufacturing scenarios with highly controlled poses and a limited number of object categories. Existing benchmarks like MVTec-AD [6] and VisA [33] have reached saturation, with state-of-the-art methods achieving up to 99.9% AUROC scores. In contrast to manufacturing, anomaly detection in retail logistics faces new challenges, particularly in the diversity and variability of object pose and appearance. Leading anomaly detection methods fall short when applied to this new setting. To bridge this gap, we introduce a new benchmark that overcomes the current limitations of existing datasets. With over 230,000 images (and more than 29,000 defective instances), it is 40 times larger than MVTec-AD and contains more than 48,000 distinct objects. To validate the difficulty of the problem, we conduct an extensive evaluation of multiple state-of-the-art anomaly detection methods, demonstrating that they do not surpass 56.96% AUROC on our dataset. Further qualitative analysis confirms that existing methods struggle to leverage normal samples under heavy pose and appearance variation. With our large-scale dataset, we set a new benchmark and encourage future research towards solving this challenging problem in retail logistics anomaly detection. The dataset is available for download under https://www.kaputt-dataset.com.
Authors:Kotaro J. Nishimura, Yuichi Sakumura, Kazushi Ikeda
Title: Adaptive kernel-density approach for imbalanced binary classification
Abstract:
Class imbalance is a common challenge in real-world binary classification tasks, often leading to predictions biased toward the majority class and reduced recognition of the minority class. This issue is particularly critical in domains such as medical diagnosis and anomaly detection, where correct classification of minority classes is essential. Conventional methods often fail to deliver satisfactory performance when the imbalance ratio is extremely severe. To address this challenge, we propose a novel approach called Kernel-density-Oriented Threshold Adjustment with Regional Optimization (KOTARO), which extends the framework of kernel density estimation (KDE) by adaptively adjusting decision boundaries according to local sample density. In KOTARO, the bandwidth of Gaussian basis functions is dynamically tuned based on the estimated density around each sample, thereby enhancing the classifier's ability to capture minority regions. We validated the effectiveness of KOTARO through experiments on both synthetic and real-world imbalanced datasets. The results demonstrated that KOTARO outperformed conventional methods, particularly under conditions of severe imbalance, highlighting its potential as a promising solution for a wide range of imbalanced classification problems
Authors:Yadav Mahesh Lorik, Kaushik Sarveswaran, Nagaraj Sundaramahalingam, Aravindakumar Venugopalan
Title: THEMIS: Unlocking Pretrained Knowledge with Foundation Model Embeddings for Anomaly Detection in Time Series
Abstract:
Time series anomaly detection forms a very crucial area in several domains but poses substantial challenges. Due to time series data possessing seasonality, trends, noise, and evolving patterns (concept drift), it becomes very difficult to set a general notion of what constitutes normal behavior. Anomalies themselves could be varied, ranging from a single outlier to contextual or collective anomalies, and are normally very rare; hence, the dataset is largely imbalanced. Additional layers of complexities arise due to the problems of increased dimensionality of modern time series, real-time detection criteria, setting up appropriate detection thresholds, and arriving at results that are interpretable. To embrace these multifaceted challenges, very strong, flexible, and interpretable approaches are required. This paper presents THEMIS, a new framework for time series anomaly detection that exploits pretrained knowledge from foundation models. THEMIS extracts embeddings from the encoder of the Chronos time series foundation model and applies outlier detection techniques like Local Outlier Factor and Spectral Decomposition on the self-similarity matrix, to spot anomalies in the data. Our experiments show that this modular method achieves SOTA results on the MSL dataset and performs quite competitively on the SMAP and SWAT$^*$ datasets. Notably, THEMIS exceeds models trained specifically for anomaly detection, presenting hyperparameter robustness and interpretability by default. This paper advocates for pretrained representations from foundation models for performing efficient and adaptable anomaly detection for time series data.
Authors:Anupam Panwar, Himadri Pal, Jiali Chen, Kyle Cho, Riddick Jiang, Miao Zhao, Rajiv Krishnamurthy
Title: Reasoning-based Anomaly Detection Framework: A Real-time, Scalable, and Automated Approach to Anomaly Detection Across Domains
Abstract:
Detecting anomalies in large, distributed systems presents several challenges. The first challenge arises from the sheer volume of data that needs to be processed. Flagging anomalies in a high-throughput environment calls for a careful consideration of both algorithm and system design. The second challenge comes from the heterogeneity of time-series datasets that leverage such a system in production. In practice, anomaly detection systems are rarely deployed for a single use case. Typically, there are several metrics to monitor, often across several domains (e.g. engineering, business and operations). A one-size-fits-all approach rarely works, so these systems need to be fine-tuned for every application - this is often done manually. The third challenge comes from the fact that determining the root-cause of anomalies in such settings is akin to finding a needle in a haystack. Identifying (in real time) a time-series dataset that is associated causally with the anomalous time-series data is a very difficult problem. In this paper, we describe a unified framework that addresses these challenges. Reasoning based Anomaly Detection Framework (RADF) is designed to perform real time anomaly detection on very large datasets. This framework employs a novel technique (mSelect) that automates the process of algorithm selection and hyper-parameter tuning for each use case. Finally, it incorporates a post-detection capability that allows for faster triaging and root-cause determination. Our extensive experiments demonstrate that RADF, powered by mSelect, surpasses state-of-the-art anomaly detection models in AUC performance for 5 out of 9 public benchmarking datasets. RADF achieved an AUC of over 0.85 for 7 out of 9 datasets, a distinction unmatched by any other state-of-the-art model.
Authors:Bharat Sharma, Jitendra Kumar
Title: Variational Autoencoders-based Detection of Extremes in Plant Productivity in an Earth System Model
Abstract:
Climate anomalies significantly impact terrestrial carbon cycle dynamics, necessitating robust methods for detecting and analyzing anomalous behavior in plant productivity. This study presents a novel application of variational autoencoders (VAE) for identifying extreme events in gross primary productivity (GPP) from Community Earth System Model version 2 simulations across four AR6 regions in the Continental United States. We compare VAE-based anomaly detection with traditional singular spectral analysis (SSA) methods across three time periods: 1850-80, 1950-80, and 2050-80 under the SSP585 scenario. The VAE architecture employs three dense layers and a latent space with an input sequence length of 12 months, trained on a normalized GPP time series to reconstruct the GPP and identifying anomalies based on reconstruction errors. Extreme events are defined using 5th percentile thresholds applied to both VAE and SSA anomalies. Results demonstrate strong regional agreement between VAE and SSA methods in spatial patterns of extreme event frequencies, despite VAE producing higher threshold values (179-756 GgC for VAE vs. 100-784 GgC for SSA across regions and periods). Both methods reveal increasing magnitudes and frequencies of negative carbon cycle extremes toward 2050-80, particularly in Western and Central North America. The VAE approach shows comparable performance to established SSA techniques, while offering computational advantages and enhanced capability for capturing non-linear temporal dependencies in carbon cycle variability. Unlike SSA, the VAE method does not require one to define the periodicity of the signals in the data; it discovers them from the data.
Authors:Carlos Albuquerque, Filipe F. Correia
Title: Tracing and Metrics Design Patterns for Monitoring Cloud-native Applications
Abstract:
Observability helps ensure the reliability and maintainability of cloud-native applications. As software architectures become increasingly distributed and subject to change, it becomes a greater challenge to diagnose system issues effectively, often having to deal with fragmented observability and more difficult root cause analysis. This paper builds upon our previous work and introduces three design patterns that address key challenges in monitoring cloud-native applications. Distributed Tracing improves visibility into request flows across services, aiding in latency analysis and root cause detection, Application Metrics provides a structured approach to instrumenting applications with meaningful performance indicators, enabling real-time monitoring and anomaly detection, and Infrastructure Metrics focuses on monitoring the environment in which the system is operated, helping teams assess resource utilization, scalability, and operational health. These patterns are derived from industry practices and observability frameworks and aim to offer guidance for software practitioners.
Authors:Abhishek Joshi, Jahnavi Krishna Koda, Abhishek Phadke
Title: Sequence-Preserving Dual-FoV Defense for Traffic Sign and Light Recognition in Autonomous Vehicles
Abstract:
Traffic light and sign recognition are key for Autonomous Vehicles (AVs) because perception mistakes directly influence navigation and safety. In addition to digital adversarial attacks, models are vulnerable to existing perturbations (glare, rain, dirt, or graffiti), which could lead to dangerous misclassifications. The current work lacks consideration of temporal continuity, multistatic field-of-view (FoV) sensing, and robustness to both digital and natural degradation. This study proposes a dual FoV, sequence-preserving robustness framework for traffic lights and signs in the USA based on a multi-source dataset built on aiMotive, Udacity, Waymo, and self-recorded videos from the region of Texas. Mid and long-term sequences of RGB images are temporally aligned for four operational design domains (ODDs): highway, night, rainy, and urban. Over a series of experiments on a real-life application of anomaly detection, this study outlines a unified three-layer defense stack framework that incorporates feature squeezing, defensive distillation, and entropy-based anomaly detection, as well as sequence-wise temporal voting for further enhancement. The evaluation measures included accuracy, attack success rate (ASR), risk-weighted misclassification severity, and confidence stability. Physical transferability was confirmed using probes for recapture. The results showed that the Unified Defense Stack achieved 79.8mAP and reduced the ASR to 18.2%, which is superior to YOLOv8, YOLOv9, and BEVFormer, while reducing the high-risk misclassification to 32%.
Authors:Abu Hasnat Mohammad Rubaiyat, Jordan Vincent, Colin Olson
Title: Improved Hyperspectral Anomaly Detection via Unsupervised Subspace Modeling in the Signed Cumulative Distribution Transform Domain
Abstract:
Hyperspectral anomaly detection (HAD), a crucial approach for many civilian and military applications, seeks to identify pixels with spectral signatures that are anomalous relative to a preponderance of background signatures. Significant effort has been made to improve HAD techniques, but challenges arise due to complex real-world environments and, by definition, limited prior knowledge of potential signatures of interest. This paper introduces a novel HAD method by proposing a transport-based mathematical model to describe the pixels comprising a given hyperspectral image. In this approach, hyperspectral pixels are viewed as observations of a template pattern undergoing unknown deformations that enables their representation in the signed cumulative distribution transform (SCDT) domain. An unsupervised subspace modeling technique is then used to construct a model of abundant background signals in this domain, whereupon anomalous signals are detected as deviations from the learned model. Comprehensive evaluations across five distinct datasets illustrate the superiority of our approach compared to state-of-the-art methods.
Authors:Hangil Park, Yongmin Seo, Tae-Kyun Kim
Title: Generalist Multi-Class Anomaly Detection via Distillation to Two Heterogeneous Student Networks
Abstract:
Anomaly detection (AD) plays an important role in various real-world applications. Recent advancements in AD, however, are often biased towards industrial inspection, struggle to generalize to broader tasks like semantic anomaly detection and vice versa. Although recent methods have attempted to address general anomaly detection, their performance remains sensitive to dataset-specific settings and single-class tasks. In this paper, we propose a novel dual-model ensemble approach based on knowledge distillation (KD) to bridge this gap. Our framework consists of a teacher and two student models: an Encoder-Decoder model, specialized in detecting patch-level minor defects for industrial AD and an Encoder-Encoder model, optimized for semantic AD. Both models leverage a shared pre-trained encoder (DINOv2) to extract high-quality feature representations. The dual models are jointly learned using the Noisy-OR objective, and the final anomaly score is obtained using the joint probability via local and semantic anomaly scores derived from the respective models. We evaluate our method on eight public benchmarks under both single-class and multi-class settings: MVTec-AD, MVTec-LOCO, VisA and Real-IAD for industrial inspection and CIFAR-10/100, FMNIST and View for semantic anomaly detection. The proposed method achieved state-of-the-art accuracies in both domains, in multi-class as well as single-class settings, demonstrating generalization across multiple domains of anomaly detection. Our model achieved an image-level AUROC of 99.7% on MVTec-AD and 97.8% on CIFAR-10, which is significantly better than the prior general AD models in multi-class settings and even higher than the best specialist models on individual benchmarks.
Authors:Oluwakemi T. Olayinka, Sumeet Jeswani, Divine Iloh
Title: Adaptive Cybersecurity Architecture for Digital Product Ecosystems Using Agentic AI
Abstract:
Traditional static cybersecurity models often struggle with scalability, real-time detection, and contextual responsiveness in the current digital product ecosystems which include cloud services, application programming interfaces (APIs), mobile platforms, and edge devices. This study introduces autonomous goal driven agents capable of dynamic learning and context-aware decision making as part of an adaptive cybersecurity architecture driven by agentic artificial intelligence (AI). To facilitate autonomous threat mitigation, proactive policy enforcement, and real-time anomaly detection, this framework integrates agentic AI across the key ecosystem layers. Behavioral baselining, decentralized risk scoring, and federated threat intelligence sharing are important features. The capacity of the system to identify zero-day attacks and dynamically modify access policies was demonstrated through native cloud simulations. The evaluation results show increased adaptability, decreased response latency, and improved detection accuracy. The architecture provides an intelligent and scalable blueprint for safeguarding complex digital infrastructure and is compatible with zero-trust models, thereby supporting the adherence to international cybersecurity regulations.
Authors:Bilal Dalgic, Betul Sen, Muge Erel-Ozcevik
Title: A Novel Short-Term Anomaly Prediction for IIoT with Software Defined Twin Network
Abstract:
Secure monitoring and dynamic control in an IIoT environment are major requirements for current development goals. We believe that dynamic, secure monitoring of the IIoT environment can be achieved through integration with the Software-Defined Network (SDN) and Digital Twin (DT) paradigms. The current literature lacks implementation details for SDN-based DT and time-aware intelligent model training for short-term anomaly detection against IIoT threats. Therefore, we have proposed a novel framework for short-term anomaly detection that uses an SDN-based DT. Using a comprehensive dataset, time-aware labeling of features, and a comprehensive evaluation of various machine learning models, we propose a novel SD-TWIN-based anomaly detection algorithm. According to the performance of a new real-time SD-TWIN deployment, the GPU- accelerated LightGBM model is particularly effective, achieving a balance of high recall and strong classification performance.
Authors:Bishal K C, Amr Hilal, Pawan Thapa
Title: Anomaly Detection in Electric Vehicle Charging Stations Using Federated Learning
Abstract:
Federated Learning (FL) is a decentralized training framework widely used in IoT ecosystems that preserves privacy by keeping raw data local, making it ideal for IoT-enabled cyber-physical systems with sensing and communication like Smart Grids (SGs), Connected and Automated Vehicles (CAV), and Electric Vehicle Charging Stations (EVCS). With the rapid expansion of electric vehicle infrastructure, securing these IoT-based charging stations against cyber threats has become critical. Centralized Intrusion Detection Systems (IDS) raise privacy concerns due to sensitive network and user data, making FL a promising alternative. However, current FL-based IDS evaluations overlook practical challenges such as system heterogeneity and non-IID data. To address these challenges, we conducted experiments to evaluate the performance of federated learning for anomaly detection in EV charging stations under system and data heterogeneity. We used FedAvg and FedAvgM, widely studied optimization approaches, to analyze their effectiveness in anomaly detection. Under IID settings, FedAvg achieves superior performance to centralized models using the same neural network. However, performance degrades with non-IID data and system heterogeneity. FedAvgM consistently outperforms FedAvg in heterogeneous settings, showing better convergence and higher anomaly detection accuracy. Our results demonstrate that FL can handle heterogeneity in IoT-based EVCS without significant performance loss, with FedAvgM as a promising solution for robust, privacy-preserving EVCS security.
Authors:Xiuqi Ge, Zhibo Yao, Yaosong Du
Title: Medical priority fusion: achieving dual optimization of sensitivity and interpretability in nipt anomaly detection
Abstract:
Clinical machine learning faces a critical dilemma in high-stakes medical applications: algorithms achieving optimal diagnostic performance typically sacrifice the interpretability essential for physician decision-making, while interpretable methods compromise sensitivity in complex scenarios. This paradox becomes particularly acute in non-invasive prenatal testing (NIPT), where missed chromosomal abnormalities carry profound clinical consequences yet regulatory frameworks mandate explainable AI systems. We introduce Medical Priority Fusion (MPF), a constrained multi-objective optimization framework that resolves this fundamental trade-off by systematically integrating Naive Bayes probabilistic reasoning with Decision Tree rule-based logic through mathematically-principled weighted fusion under explicit medical constraints. Rigorous validation on 1,687 real-world NIPT samples characterized by extreme class imbalance (43.4:1 normal-to-abnormal ratio) employed stratified 5-fold cross-validation with comprehensive ablation studies and statistical hypothesis testing using McNemar's paired comparisons. MPF achieved simultaneous optimization of dual objectives: 89.3% sensitivity (95% CI: 83.9-94.7%) with 80% interpretability score, significantly outperforming individual algorithms (McNemar's test, p < 0.001). The optimal fusion configuration achieved Grade A clinical deployment criteria with large effect size (d = 1.24), establishing the first clinically-deployable solution that maintains both diagnostic accuracy and decision transparency essential for prenatal care. This work demonstrates that medical-constrained algorithm fusion can resolve the interpretability-performance trade-off, providing a mathematical framework for developing high-stakes medical decision support systems that meet both clinical efficacy and explainability requirements.
Authors:Jia Li, Shiyu Long, Ye Yuan
Title: Periodic Graph-Enhanced Multivariate Time Series Anomaly Detector
Abstract:
Multivariate time series (MTS) anomaly detection commonly encounters in various domains like finance, healthcare, and industrial monitoring. However, existing MTS anomaly detection methods are mostly defined on the static graph structure, which fails to perform an accurate representation of complex spatio-temporal correlations in MTS. To address this issue, this study proposes a Periodic Graph-Enhanced Multivariate Time Series Anomaly Detector (PGMA) with the following two-fold ideas: a) designing a periodic time-slot allocation strategy based Fast Fourier Transform (FFT), which enables the graph structure to reflect dynamic changes in MTS; b) utilizing graph neural network and temporal extension convolution to accurate extract the complex spatio-temporal correlations from the reconstructed periodic graphs. Experiments on four real datasets from real applications demonstrate that the proposed PGMA outperforms state-of-the-art models in MTS anomaly detection.
Authors:Aarushi Mahajan, Wayne Burleson
Title: Watermarking and Anomaly Detection in Machine Learning Models for LORA RF Fingerprinting
Abstract:
Radio frequency fingerprint identification (RFFI) distinguishes wireless devices by the small variations in their analog circuits, avoiding heavy cryptographic authentication. While deep learning on spectrograms improves accuracy, models remain vulnerable to copying, tampering, and evasion. We present a stronger RFFI system combining watermarking for ownership proof and anomaly detection for spotting suspicious inputs. Using a ResNet-34 on log-Mel spectrograms, we embed three watermarks: a simple trigger, an adversarially trained trigger robust to noise and filtering, and a hidden gradient/weight signature. A convolutional Variational Autoencoders (VAE) with Kullback-Leibler (KL) warm-up and free-bits flags off-distribution queries. On the LoRa dataset, our system achieves 94.6% accuracy, 98% watermark success, and 0.94 AUROC, offering verifiable, tamper-resistant authentication.
Authors:Deepti Kunte, Bram Cornelis, Claudio Colangeli, Karl Janssens, Brecht Van Baelen, Konstantinos Gryllias
Title: A Domain Knowledge Informed Approach for Anomaly Detection of Electric Vehicle Interior Sounds
Abstract:
The detection of anomalies in automotive cabin sounds is critical for ensuring vehicle quality and maintaining passenger comfort. In many real-world settings, this task is more appropriately framed as an unsupervised learning problem rather than the supervised case due to the scarcity or complete absence of labeled faulty data. In such an unsupervised setting, the model is trained exclusively on healthy samples and detects anomalies as deviations from normal behavior. However, in the absence of labeled faulty samples for validation and the limited reliability of commonly used metrics, such as validation reconstruction error, effective model selection remains a significant challenge. To overcome these limitations, a domain-knowledge-informed approach for model selection is proposed, in which proxy-anomalies engineered through structured perturbations of healthy spectrograms are used in the validation set to support model selection. The proposed methodology is evaluated on a high-fidelity electric vehicle dataset comprising healthy and faulty cabin sounds across five representative fault types viz., Imbalance, Modulation, Whine, Wind, and Pulse Width Modulation. This dataset, generated using advanced sound synthesis techniques, and validated via expert jury assessments, has been made publicly available to facilitate further research. Experimental evaluations on the five fault cases demonstrate the selection of optimal models using proxy-anomalies, significantly outperform conventional model selection strategies.
Authors:Chan Sik Han, Keon Myung Lee
Title: Leveraging Intermediate Representations of Time Series Foundation Models for Anomaly Detection
Abstract:
Detecting anomalies in time series data is essential for the reliable operation of many real-world systems. Recently, time series foundation models (TSFMs) have emerged as a powerful tool for anomaly detection. However, existing methods typically rely on the final layer's representations of TSFMs, computing the anomaly score as a reconstruction or forecasting error via a task-specific head. Instead, we propose TimeRep, a novel anomaly detection approach that leverages the intermediate layer's representations of TSFMs, computing the anomaly score as the distance between these representations. Given a pre-trained TSFM, TimeRep selects the intermediate layer and patch-token position that yield the most informative representation. TimeRep forms a reference collection of intermediate representations from the training data and applies a core-set strategy to reduce its size while maintaining distributional coverage. During inference, TimeRep computes the anomaly score for incoming data by measuring the distance between its intermediate representations and those of the collection. To address concept drift, TimeRep integrates an adaptation mechanism that, at inference time, augments the collection exclusively with non-redundant intermediate representations from incoming data. We conducted extensive experiments on the UCR Anomaly Archive, which contains 250 univariate time series. TimeRep consistently outperforms a broad spectrum of state-of-the-art baselines, including non-DL, DL, and foundation model-based methods.
Authors:Wei Li, Zheze Yang
Title: Cross-Modal Deep Metric Learning for Time Series Anomaly Detection
Abstract:
To effectively address the issues of low sensitivity and high time consumption in time series anomaly detection, we propose an anomaly detection method based on cross-modal deep metric learning. A cross-modal deep metric learning feature clustering model is constructed, composed of an input layer, a triplet selection layer, and a loss function computation layer. The squared Euclidean distances between cluster centers are calculated, and a stochastic gradient descent strategy is employed to optimize the model and classify different time series features. The inner product of principal component direction vectors is used as a metric for anomaly measurement. The von Mises-Fisher (vMF) distribution is applied to describe the directional characteristics of time series data, and historical data is used to train and obtain evaluation parameters. By comparing the principal component direction vector of actual time series data with the threshold, anomaly detection is performed. Experimental results demonstrate that the proposed method accurately classifies time series data with different attributes, exhibits high sensitivity to anomalies, and achieves high detection accuracy, fast detection speed, and strong robustness.
Authors:Seyed Kourosh Mahjour, Seyed Saman Mahjour
Title: Intelligent Reservoir Decision Support: An Integrated Framework Combining Large Language Models, Advanced Prompt Engineering, and Multimodal Data Fusion for Real-Time Petroleum Operations
Abstract:
The petroleum industry faces unprecedented challenges in reservoir management, requiring rapid integration of complex multimodal datasets for real-time decision support. This study presents a novel integrated framework combining state-of-the-art large language models (GPT-4o, Claude 4 Sonnet, Gemini 2.5 Pro) with advanced prompt engineering techniques and multimodal data fusion for comprehensive reservoir analysis. The framework implements domain-specific retrieval-augmented generation (RAG) with over 50,000 petroleum engineering documents, chain-of-thought reasoning, and few-shot learning for rapid field adaptation. Multimodal integration processes seismic interpretations, well logs, and production data through specialized AI models with vision transformers. Field validation across 15 diverse reservoir environments demonstrates exceptional performance: 94.2% reservoir characterization accuracy, 87.6% production forecasting precision, and 91.4% well placement optimization success rate. The system achieves sub-second response times while maintaining 96.2% safety reliability with no high-risk incidents during evaluation. Economic analysis reveals 62-78% cost reductions (mean 72%) relative to traditional methods with 8-month payback period. Few-shot learning reduces field adaptation time by 72%, while automated prompt optimization achieves 89% improvement in reasoning quality. The framework processed real-time data streams with 96.2% anomaly detection accuracy and reduced environmental incidents by 45%. We provide detailed experimental protocols, baseline comparisons, ablation studies, and statistical significance testing to ensure reproducibility. This research demonstrates practical integration of cutting-edge AI technologies with petroleum domain expertise for enhanced operational efficiency, safety, and economic performance.
Authors:Ali Nawaz, Amir Ahmad, Shehroz S. Khan
Title: Beyond Rebalancing: Benchmarking Binary Classifiers Under Class Imbalance Without Rebalancing Techniques
Abstract:
Class imbalance poses a significant challenge to supervised classification, particularly in critical domains like medical diagnostics and anomaly detection where minority class instances are rare. While numerous studies have explored rebalancing techniques to address this issue, less attention has been given to evaluating the performance of binary classifiers under imbalance when no such techniques are applied. Therefore, the goal of this study is to assess the performance of binary classifiers "as-is", without performing any explicit rebalancing. Specifically, we systematically evaluate the robustness of a diverse set of binary classifiers across both real-world and synthetic datasets, under progressively reduced minority class sizes, using one-shot and few-shot scenarios as baselines. Our approach also explores varying data complexities through synthetic decision boundary generation to simulate real-world conditions. In addition to standard classifiers, we include experiments using undersampling, oversampling strategies, and one-class classification (OCC) methods to examine their behavior under severe imbalance. The results confirm that classification becomes more difficult as data complexity increases and the minority class size decreases. While traditional classifiers deteriorate under extreme imbalance, advanced models like TabPFN and boosting-based ensembles retain relatively higher performance and better generalization compared to traditional classifiers. Visual interpretability and evaluation metrics further validate these findings. Our work offers valuable guidance on model selection for imbalanced learning, providing insights into classifier robustness without dependence on explicit rebalancing techniques.
Authors:Petros Loukas, David Bassir, Savvas Chatzichristofis, Angelos Amanatiadis
Title: Evaluation of Large Language Models for Anomaly Detection in Autonomous Vehicles
Abstract:
The rapid evolution of large language models (LLMs) has pushed their boundaries to many applications in various domains. Recently, the research community has started to evaluate their potential adoption in autonomous vehicles and especially as complementary modules in the perception and planning software stacks. However, their evaluation is limited in synthetic datasets or manually driving datasets without the ground truth knowledge and more precisely, how the current perception and planning algorithms would perform in the cases under evaluation. For this reason, this work evaluates LLMs on real-world edge cases where current autonomous vehicles have been proven to fail. The proposed architecture consists of an open vocabulary object detector coupled with prompt engineering and large language model contextual reasoning. We evaluate several state-of-the-art models against real edge cases and provide qualitative comparison results along with a discussion on the findings for the potential application of LLMs as anomaly detectors in autonomous vehicles.
Authors:Alma M. Liezenga, Stefan Wijnja, Puck de Haan, Niels W. T. Brink, Jip J. van Stijn, Yori Kamphuis, Klamer Schutte
Title: AutoDetect: Designing an Autoencoder-based Detection Method for Poisoning Attacks on Object Detection Applications in the Military Domain
Abstract:
Poisoning attacks pose an increasing threat to the security and robustness of Artificial Intelligence systems in the military domain. The widespread use of open-source datasets and pretrained models exacerbates this risk. Despite the severity of this threat, there is limited research on the application and detection of poisoning attacks on object detection systems. This is especially problematic in the military domain, where attacks can have grave consequences. In this work, we both investigate the effect of poisoning attacks on military object detectors in practice, and the best approach to detect these attacks. To support this research, we create a small, custom dataset featuring military vehicles: MilCivVeh. We explore the vulnerability of military object detectors for poisoning attacks by implementing a modified version of the BadDet attack: a patch-based poisoning attack. We then assess its impact, finding that while a positive attack success rate is achievable, it requires a substantial portion of the data to be poisoned -- raising questions about its practical applicability. To address the detection challenge, we test both specialized poisoning detection methods and anomaly detection methods from the visual industrial inspection domain. Since our research shows that both classes of methods are lacking, we introduce our own patch detection method: AutoDetect, a simple, fast, and lightweight autoencoder-based method. Our method shows promising results in separating clean from poisoned samples using the reconstruction error of image slices, outperforming existing methods, while being less time- and memory-intensive. We urge that the availability of large, representative datasets in the military domain is a prerequisite to further evaluate risks of poisoning attacks and opportunities patch detection.
Authors:Prasasthy Balasubramanian, Dumindu Kankanamge, Ekaterina Gilman, Mourad Oussalah
Title: AnomalyExplainer Explainable AI for LLM-based anomaly detection using BERTViz and Captum
Abstract:
Conversational AI and Large Language Models (LLMs) have become powerful tools across domains, including cybersecurity, where they help detect threats early and improve response times. However, challenges such as false positives and complex model management still limit trust. Although Explainable AI (XAI) aims to make AI decisions more transparent, many security analysts remain uncertain about its usefulness. This study presents a framework that detects anomalies and provides high-quality explanations through visual tools BERTViz and Captum, combined with natural language reports based on attention outputs. This reduces manual effort and speeds up remediation. Our comparative analysis showed that RoBERTa offers high accuracy (99.6 %) and strong anomaly detection, outperforming Falcon-7B and DeBERTa, as well as exhibiting better flexibility than large-scale Mistral-7B on the HDFS dataset from LogHub. User feedback confirms the chatbot's ease of use and improved understanding of anomalies, demonstrating the ability of the developed framework to strengthen cybersecurity workflows.
Authors:Xuanming Cao, Chengyu Tao, Yifeng Cheng, Juan Du
Title: IAENet: An Importance-Aware Ensemble Model for 3D Point Cloud-Based Anomaly Detection
Abstract:
Surface anomaly detection is pivotal for ensuring product quality in industrial manufacturing. While 2D image-based methods have achieved remarkable success, 3D point cloud-based detection remains underexplored despite its richer geometric cues. We argue that the key bottleneck is the absence of powerful pretrained foundation backbones in 3D comparable to those in 2D. To bridge this gap, we propose Importance-Aware Ensemble Network (IAENet), an ensemble framework that synergizes 2D pretrained expert with 3D expert models. However, naively fusing predictions from disparate sources is non-trivial: existing strategies can be affected by a poorly performing modality and thus degrade overall accuracy. To address this challenge, We introduce an novel Importance-Aware Fusion (IAF) module that dynamically assesses the contribution of each source and reweights their anomaly scores. Furthermore, we devise critical loss functions that explicitly guide the optimization of IAF, enabling it to combine the collective knowledge of the source experts but also preserve their unique strengths, thereby enhancing the overall performance of anomaly detection. Extensive experiments on MVTec 3D-AD demonstrate that our IAENet achieves a new state-of-the-art with a markedly lower false positive rate, underscoring its practical value for industrial deployment.
Authors:Yipeng Zhang, Chen Wang, Yuzhe Zhang, Jacky Jiang
Title: Text to Query Plans for Question Answering on Large Tables
Abstract:
Efficient querying and analysis of large tabular datasets remain significant challenges, especially for users without expertise in programming languages like SQL. Text-to-SQL approaches have shown promising performance on benchmark data; however, they inherit SQL's drawbacks, including inefficiency with large datasets and limited support for complex data analyses beyond basic querying. We propose a novel framework that transforms natural language queries into query plans. Our solution is implemented outside traditional databases, allowing us to support classical SQL commands while avoiding SQL's inherent limitations. Additionally, we enable complex analytical functions, such as principal component analysis and anomaly detection, providing greater flexibility and extensibility than traditional SQL capabilities. We leverage LLMs to iteratively interpret queries and construct operation sequences, addressing computational complexity by incrementally building solutions. By executing operations directly on the data, we overcome context length limitations without requiring the entire dataset to be processed by the model. We validate our framework through experiments on both standard databases and large scientific tables, demonstrating its effectiveness in handling extensive datasets and performing sophisticated data analyses.
Authors:Ipsita Praharaj, Yukta Butala, Badrikanath Praharaj, Yash Butala
Title: REVEAL -- Reasoning and Evaluation of Visual Evidence through Aligned Language
Abstract:
The rapid advancement of generative models has intensified the challenge of detecting and interpreting visual forgeries, necessitating robust frameworks for image forgery detection while providing reasoning as well as localization. While existing works approach this problem using supervised training for specific manipulation or anomaly detection in the embedding space, generalization across domains remains a challenge. We frame this problem of forgery detection as a prompt-driven visual reasoning task, leveraging the semantic alignment capabilities of large vision-language models. We propose a framework, `REVEAL` (Reasoning and Evaluation of Visual Evidence through Aligned Language), that incorporates generalized guidelines. We propose two tangential approaches - (1) Holistic Scene-level Evaluation that relies on the physics, semantics, perspective, and realism of the image as a whole and (2) Region-wise anomaly detection that splits the image into multiple regions and analyzes each of them. We conduct experiments over datasets from different domains (Photoshop, DeepFake and AIGC editing). We compare the Vision Language Models against competitive baselines and analyze the reasoning provided by them.
Authors:Lorenzo Tomaz, Judd Rosenblatt, Thomas Berry Jones, Diogo Schwerz de Lucena
Title: Momentum Point-Perplexity Mechanics in Large Language Models
Abstract:
We take a physics-based approach to studying how the internal hidden states of large language models change from token to token during inference. Across 20 open-source transformer models (135M-3B parameters), we find that a quantity combining the rate of change in hidden states and the model's next-token certainty, analogous to energy in physics, remains nearly constant. Random-weight models conserve this "energy" more tightly than pre-trained ones, while training shifts models into a faster, more decisive regime with greater variability. Using this "log-Lagrangian" view, we derive a control method called Jacobian steering, which perturbs hidden states in the minimal way needed to favor a target token. This approach maintained near-constant energy in two tested models and produced continuations rated higher in semantic quality than the models' natural outputs. Viewing transformers through this mechanics lens offers a principled basis for interpretability, anomaly detection, and low-risk steering. This could help make powerful models more predictable and aligned with human intent.
Authors:Dario Pasquini, Evgenios M. Kornaropoulos, Giuseppe Ateniese, Omer Akgul, Athanasios Theocharis, Petros Efstathopoulos
Title: When AIOps Become "AI Oops": Subverting LLM-driven IT Operations via Telemetry Manipulation
Abstract:
AI for IT Operations (AIOps) is transforming how organizations manage complex software systems by automating anomaly detection, incident diagnosis, and remediation. Modern AIOps solutions increasingly rely on autonomous LLM-based agents to interpret telemetry data and take corrective actions with minimal human intervention, promising faster response times and operational cost savings. In this work, we perform the first security analysis of AIOps solutions, showing that, once again, AI-driven automation comes with a profound security cost. We demonstrate that adversaries can manipulate system telemetry to mislead AIOps agents into taking actions that compromise the integrity of the infrastructure they manage. We introduce techniques to reliably inject telemetry data using error-inducing requests that influence agent behavior through a form of adversarial reward-hacking; plausible but incorrect system error interpretations that steer the agent's decision-making. Our attack methodology, AIOpsDoom, is fully automated--combining reconnaissance, fuzzing, and LLM-driven adversarial input generation--and operates without any prior knowledge of the target system. To counter this threat, we propose AIOpsShield, a defense mechanism that sanitizes telemetry data by exploiting its structured nature and the minimal role of user-generated content. Our experiments show that AIOpsShield reliably blocks telemetry-based attacks without affecting normal agent performance. Ultimately, this work exposes AIOps as an emerging attack vector for system compromise and underscores the urgent need for security-aware AIOps design.
Authors:Robert Frenken, Sidra Ghayour Bhatti, Hanqin Zhang, Qadeer Ahmed
Title: Multi-Stage Knowledge-Distilled VGAE and GAT for Robust Controller-Area-Network Intrusion Detection
Abstract:
The Controller Area Network (CAN) protocol is a standard for in-vehicle communication but remains susceptible to cyber-attacks due to its lack of built-in security. This paper presents a multi-stage intrusion detection framework leveraging unsupervised anomaly detection and supervised graph learning tailored for automotive CAN traffic. Our architecture combines a Variational Graph Autoencoder (VGAE) for structural anomaly detection with a Knowledge-Distilled Graph Attention Network (KD-GAT) for robust attack classification. CAN bus activity is encoded as graph sequences to model temporal and relational dependencies. The pipeline applies VGAE-based selective undersampling to address class imbalance, followed by GAT classification with optional score-level fusion. The compact student GAT achieves 96% parameter reduction compared to the teacher model while maintaining strong predictive performance. Experiments on six public CAN intrusion datasets--Car-Hacking, Car-Survival, and can-train-and-test--demonstrate competitive accuracy and efficiency, with average improvements of 16.2% in F1-score over existing methods, particularly excelling on highly imbalanced datasets with up to 55% F1-score improvements.
Authors:Aymane Abdali, Bartosz Boguslawski, Lucas Drumetz, Vincent Gripon
Title: Anomalous Samples for Few-Shot Anomaly Detection
Abstract:
Several anomaly detection and classification methods rely on large amounts of non-anomalous or "normal" samples under the assump- tion that anomalous data is typically harder to acquire. This hypothesis becomes questionable in Few-Shot settings, where as little as one anno- tated sample can make a significant difference. In this paper, we tackle the question of utilizing anomalous samples in training a model for bi- nary anomaly classification. We propose a methodology that incorporates anomalous samples in a multi-score anomaly detection score leveraging recent Zero-Shot and memory-based techniques. We compare the utility of anomalous samples to that of regular samples and study the benefits and limitations of each. In addition, we propose an augmentation-based validation technique to optimize the aggregation of the different anomaly scores and demonstrate its effectiveness on popular industrial anomaly detection datasets.
Authors:S M Mostaq Hossain, Amani Altarawneh, Maanak Gupta
Title: Bridging Cloud Convenience and Protocol Transparency: A Hybrid Architecture for Ethereum Node Operations on Amazon Managed Blockchain
Abstract:
As blockchain technologies are increasingly adopted in enterprise and research domains, the need for secure, scalable, and performance-transparent node infrastructure has become critical. While self-hosted Ethereum nodes offer operational control, they often lack elasticity and require complex maintenance. This paper presents a hybrid, service-oriented architecture for deploying and monitoring Ethereum full nodes using Amazon Managed Blockchain (AMB), integrated with EC2-based observability, IAM-enforced security policies, and reproducible automation via the AWS Cloud Development Kit. Our architecture supports end-to-end observability through custom EC2 scripts leveraging Web3.py and JSON-RPC, collecting over 1,000 real-time data points-including gas utilization, transaction inclusion latency, and mempool dynamics. These metrics are visualized and monitored through AWS CloudWatch, enabling service-level performance tracking and anomaly detection. This cloud-native framework restores low-level observability lost in managed environments while maintaining the operational simplicity of managed services. By bridging the simplicity of AMB with the transparency required for protocol research and enterprise monitoring, this work delivers one of the first reproducible, performance-instrumented Ethereum deployments on AMB. The proposed hybrid architecture enables secure, observable, and reproducible Ethereum node operations in cloud environments, suitable for both research and production use.
Authors:Dongyang Guo, Yasmeen Abdrabou, Enkeleda Thaqi, Enkelejda Kasneci
Title: Multimodal Behavioral Patterns Analysis with Eye-Tracking and LLM-Based Reasoning
Abstract:
Eye-tracking data reveals valuable insights into users' cognitive states but is difficult to analyze due to its structured, non-linguistic nature. While large language models (LLMs) excel at reasoning over text, they struggle with temporal and numerical data. This paper presents a multimodal human-AI collaborative framework designed to enhance cognitive pattern extraction from eye-tracking signals. The framework includes: (1) a multi-stage pipeline using horizontal and vertical segmentation alongside LLM reasoning to uncover latent gaze patterns; (2) an Expert-Model Co-Scoring Module that integrates expert judgment with LLM output to generate trust scores for behavioral interpretations; and (3) a hybrid anomaly detection module combining LSTM-based temporal modeling with LLM-driven semantic analysis. Our results across several LLMs and prompt strategies show improvements in consistency, interpretability, and performance, with up to 50% accuracy in difficulty prediction tasks. This approach offers a scalable, interpretable solution for cognitive modeling and has broad potential in adaptive learning, human-computer interaction, and educational analytics.
Authors:Hugues Roy, Reuben Dorent, Ninon Burgos
Title: Unsupervised anomaly detection using Bayesian flow networks: application to brain FDG PET in the context of Alzheimer's disease
Abstract:
Unsupervised anomaly detection (UAD) plays a crucial role in neuroimaging for identifying deviations from healthy subject data and thus facilitating the diagnosis of neurological disorders. In this work, we focus on Bayesian flow networks (BFNs), a novel class of generative models, which have not yet been applied to medical imaging or anomaly detection. BFNs combine the strength of diffusion frameworks and Bayesian inference. We introduce AnoBFN, an extension of BFNs for UAD, designed to: i) perform conditional image generation under high levels of spatially correlated noise, and ii) preserve subject specificity by incorporating a recursive feedback from the input image throughout the generative process. We evaluate AnoBFN on the challenging task of Alzheimer's disease-related anomaly detection in FDG PET images. Our approach outperforms other state-of-the-art methods based on VAEs (beta-VAE), GANs (f-AnoGAN), and diffusion models (AnoDDPM), demonstrating its effectiveness at detecting anomalies while reducing false positive rates.
Authors:Chandler Jones, Mark Bandstra, Stefan Faaland, Yue Shi Lai, Nico Abgrall, Scott Suchyta, Reynold Cooper
Title: Real-time, Adaptive Radiological Anomaly Detection and Isotope Identification Using Non-negative Matrix Factorization
Abstract:
Spectroscopic anomaly detection and isotope identification algorithms are integral components in nuclear nonproliferation applications such as search operations. The task is especially challenging in the case of mobile detector systems due to the fact that the observed gamma-ray background changes more than for a static detector system, and a pretrained background model can easily find itself out of domain. The result is that algorithms may exceed their intended false alarm rate, or sacrifice detection sensitivity in order to maintain the desired false alarm rate. Non-negative matrix factorization (NMF) has been shown to be a powerful tool for spectral anomaly detection and identification, but, like many similar algorithms that rely on data-driven background models, in its conventional implementation it is unable to update in real time to account for environmental changes that affect the background spectroscopic signature. We have developed a novel NMF-based algorithm that periodically updates its background model to accommodate changing environmental conditions. The Adaptive NMF algorithm involves fewer assumptions about its environment, making it more generalizable than existing NMF-based methods while maintaining or exceeding detection performance on simulated and real-world datasets.
Authors:Maria V. Pruzhinskaya, Anastasia D. Lavrukhina, Timofey A. Semenikhi, Alina A. Volnova, Sreevarsha Sreejith, Vadim V. Krushinsky, Emmanuel Gangler, Emille E. O. Ishida, Matwey V. Kornilov, Konstantin L. Malanchev
Title: What ZTF Saw Where Rubin Looked: Anomaly Hunting in DR23
Abstract:
We present results from the SNAD VIII Workshop, during which we conducted the first systematic anomaly search in the ZTF fields also observed by LSSTComCam during Rubin Scientific Pipeline commissioning. Using the PineForest active anomaly detection algorithm, we analysed four selected fields (two galactic and two extragalactic) and visually inspected 400 candidates. As a result, we discovered six previously uncatalogued variable stars, including RS~CVn, BY Draconis, ellipsoidal, and solar-type variables, and refined classifications and periods for six known objects. These results demonstrate the effectiveness of the SNAD anomaly detection pipeline and provide a preview of the discovery potential in the upcoming LSST data.
Authors:Can Hakan Dağıdır, Mia Hubert, Peter J. Rousseeuw
Title: Kernel Outlier Detection
Abstract:
A new anomaly detection method called kernel outlier detection (KOD) is proposed. It is designed to address challenges of outlier detection in high-dimensional settings. The aim is to overcome limitations of existing methods, such as dependence on distributional assumptions or on hyperparameters that are hard to tune. KOD starts with a kernel transformation, followed by a projection pursuit approach. Its novelties include a new ensemble of directions to search over, and a new way to combine results of different direction types. This provides a flexible and lightweight approach for outlier detection. Our empirical evaluations illustrate the effectiveness of KOD on three small datasets with challenging structures, and on four large benchmark datasets.
Authors:Levli Citron, Kobi Cohen, Qing Zhao
Title: Searching for a Hidden Markov Anomaly over Multiple Processes
Abstract:
We address the problem of detecting an anomalous process among a large number of processes. At each time t, normal processes are in state zero (normal state), while the abnormal process may be in either state zero (normal state) or state one (abnormal state), with the states being hidden. The transition between states for the abnormal process is governed by a Markov chain over time. At each time step, observations can be drawn from a selected subset of processes. Each probed process generates an observation depending on its hidden state, either a typical distribution under state zero or an abnormal distribution under state one. The objective is to design a sequential search strategy that minimizes the expected detection time, subject to an error probability constraint. In contrast to prior works that assume i.i.d. observations, we address a new setting where anomalies evolve according to a hidden Markov model. To this end, we propose a novel algorithm, dubbed Anomaly Detection under Hidden Markov model (ADHM), which dynamically adapts the probing strategy based on accumulated statistical evidence and predictive belief updates over hidden states. ADHM effectively leverages temporal correlations to focus sensing resources on the most informative processes. The algorithm is supported by an asymptotic theoretical foundation, grounded in an oracle analysis that characterizes the fundamental limits of detection under the assumption of a known distribution of the hidden states. In addition, the algorithm demonstrates strong empirical performance, consistently outperforming existing methods in extensive simulations.
Authors:Fei Zuo, Junghwan Rhee, Yung Ryn Choe, Chenglong Fu, Xianshan Qu
Title: Few-Shot Learning-Based Cyber Incident Detection with Augmented Context Intelligence
Abstract:
In recent years, the adoption of cloud services has been expanding at an unprecedented rate. As more and more organizations migrate or deploy their businesses to the cloud, a multitude of related cybersecurity incidents such as data breaches are on the rise. Many inherent attributes of cloud environments, for example, data sharing, remote access, dynamicity and scalability, pose significant challenges for the protection of cloud security. Even worse, cyber threats are becoming increasingly sophisticated and covert. Attack methods, such as Advanced Persistent Threats (APTs), are continually developed to bypass traditional security measures. Among the emerging technologies for robust threat detection, system provenance analysis is being considered as a promising mechanism, thus attracting widespread attention in the field of incident response. This paper proposes a new few-shot learning-based attack detection with improved data context intelligence. We collect operating system behavior data of cloud systems during realistic attacks and leverage an innovative semiotics extraction method to describe system events. Inspired by the advances in semantic analysis, which is a fruitful area focused on understanding natural languages in computational linguistics, we further convert the anomaly detection problem into a similarity comparison problem. Comprehensive experiments show that the proposed approach is able to generalize over unseen attacks and make accurate predictions, even if the incident detection models are trained with very limited samples.
Authors:Steven C. Hespeler, Pablo Moriano, Mingyan Li, Samuel C. Hollifield
Title: Temporal cross-validation impacts multivariate time series subsequence anomaly detection evaluation
Abstract:
Evaluating anomaly detection in multivariate time series (MTS) requires careful consideration of temporal dependencies, particularly when detecting subsequence anomalies common in fault detection scenarios. While time series cross-validation (TSCV) techniques aim to preserve temporal ordering during model evaluation, their impact on classifier performance remains underexplored. This study systematically investigates the effect of TSCV strategy on the precision-recall characteristics of classifiers trained to detect fault-like anomalies in MTS datasets. We compare walk-forward (WF) and sliding window (SW) methods across a range of validation partition configurations and classifier types, including shallow learners and deep learning (DL) classifiers. Results show that SW consistently yields higher median AUC-PR scores and reduced fold-to-fold performance variance, particularly for deep architectures sensitive to localized temporal continuity. Furthermore, we find that classifier generalization is sensitive to the number and structure of temporal partitions, with overlapping windows preserving fault signatures more effectively at lower fold counts. A classifier-level stratified analysis reveals that certain algorithms, such as random forests (RF), maintain stable performance across validation schemes, whereas others exhibit marked sensitivity. This study demonstrates that TSCV design in benchmarking anomaly detection models on streaming time series and provide guidance for selecting evaluation strategies in temporally structured learning environments.
Authors:Ryan Barker, Fatemeh Afghah
Title: Securing Open RAN: A Survey of Cryptographic Challenges and Emerging Solutions for 5G
Abstract:
The advent of Open Radio Access Networks (O-RAN) introduces modularity and flexibility into 5G deployments but also surfaces novel security challenges across disaggregated interfaces. This literature review synthesizes recent research across thirteen academic and industry sources, examining vulnerabilities such as cipher bidding-down attacks, partial encryption exposure on control/user planes, and performance trade-offs in securing O-RAN interfaces like E2 and O1. The paper surveys key cryptographic tools -- SNOW-V, AES-256, and ZUC-256 -- evaluating their throughput, side-channel resilience, and adaptability to heterogeneous slices (eMBB, URLLC, mMTC). Emphasis is placed on emerging testbeds and AI-driven controllers that facilitate dynamic orchestration, anomaly detection, and secure configuration. We conclude by outlining future research directions, including hardware offloading, cross-layer cipher adaptation, and alignment with 3GPP TS 33.501 and O-RAN Alliance security mandates, all of which point toward the need for integrated, zero-trust architectures in 6G.
Authors:Florian Frantzen, Michael T. Schaub
Title: HLSAD: Hodge Laplacian-based Simplicial Anomaly Detection
Abstract:
In this paper, we propose HLSAD, a novel method for detecting anomalies in time-evolving simplicial complexes. While traditional graph anomaly detection techniques have been extensively studied, they often fail to capture changes in higher-order interactions that are crucial for identifying complex structural anomalies. These higher-order interactions can arise either directly from the underlying data itself or through graph lifting techniques. Our approach leverages the spectral properties of Hodge Laplacians of simplicial complexes to effectively model multi-way interactions among data points. By incorporating higher-dimensional simplicial structures into our method, our method enhances both detection accuracy and computational efficiency. Through comprehensive experiments on both synthetic and real-world datasets, we demonstrate that our approach outperforms existing graph methods in detecting both events and change points.
Authors:Tian Tian, Chunyan Miao, Hangwei Qian
Title: FreRA: A Frequency-Refined Augmentation for Contrastive Learning on Time Series Classification
Abstract:
Contrastive learning has emerged as a competent approach for unsupervised representation learning. However, the design of an optimal augmentation strategy, although crucial for contrastive learning, is less explored for time series classification tasks. Existing predefined time-domain augmentation methods are primarily adopted from vision and are not specific to time series data. Consequently, this cross-modality incompatibility may distort the semantically relevant information of time series by introducing mismatched patterns into the data. To address this limitation, we present a novel perspective from the frequency domain and identify three advantages for downstream classification: global, independent, and compact. To fully utilize the three properties, we propose the lightweight yet effective Frequency Refined Augmentation (FreRA) tailored for time series contrastive learning on classification tasks, which can be seamlessly integrated with contrastive learning frameworks in a plug-and-play manner. Specifically, FreRA automatically separates critical and unimportant frequency components. Accordingly, we propose semantic-aware Identity Modification and semantic-agnostic Self-adaptive Modification to protect semantically relevant information in the critical frequency components and infuse variance into the unimportant ones respectively. Theoretically, we prove that FreRA generates semantic-preserving views. Empirically, we conduct extensive experiments on two benchmark datasets, including UCR and UEA archives, as well as five large-scale datasets on diverse applications. FreRA consistently outperforms ten leading baselines on time series classification, anomaly detection, and transfer learning tasks, demonstrating superior capabilities in contrastive representation learning and generalization in transfer learning scenarios across diverse datasets.
Authors:Fabio Centofanti, Mia Hubert, Peter J. Rousseeuw
Title: Cellwise and Casewise Robust Covariance in High Dimensions
Abstract:
The sample covariance matrix is a cornerstone of multivariate statistics, but it is highly sensitive to outliers. These can be casewise outliers, such as cases belonging to a different population, or cellwise outliers, which are deviating cells (entries) of the data matrix. Recently some robust covariance estimators have been developed that can handle both types of outliers, but their computation is only feasible up to at most 20 dimensions. To remedy this we propose the cellRCov method, a robust covariance estimator that simultaneously handles casewise outliers, cellwise outliers, and missing data. It relies on a decomposition of the covariance on principal and orthogonal subspaces, leveraging recent work on robust PCA. It also employs a ridge-type regularization to stabilize the estimated covariance matrix. We establish some theoretical properties of cellRCov, including its casewise and cellwise influence functions as well as consistency and asymptotic normality. A simulation study demonstrates the superior performance of cellRCov in contaminated and missing data scenarios. Furthermore, its practical utility is illustrated in a real-world application to anomaly detection. We also construct and illustrate the cellRCCA method for robust and regularized canonical correlation analysis.
Authors:Steven Ndung'u, Trienko Grobler, Stefan J. Wijnholds, George Azzopardi
Title: Anomaly detection in radio galaxy data with trainable COSFIRE filters
Abstract:
Detecting anomalies in radio astronomy is challenging due to the vast amounts of data and the rarity of labeled anomalous examples. Addressing this challenge requires efficient methods capable of identifying unusual radio galaxy morphologies without relying on extensive supervision. This work introduces an innovative approach to anomaly detection based on morphological characteristics of the radio sources using trainable COSFIRE (Combination of Shifted Filter Responses) filters as an efficient alternative to complex deep learning methods. The framework integrates COSFIRE descriptors with an unsupervised Local Outlier Factor (LOF) algorithm to identify unusual radio galaxy morphologies. Evaluations on a radio galaxy benchmark data set demonstrate strong performance, with the COSFIRE-based approach achieving a geometric mean (G-Mean) score of 79%, surpassing the 77% achieved by a computationally intensive deep learning autoencoder. By characterizing normal patterns and detecting deviations, this semi-supervised methodology overcomes the need for anomalous examples in the training set, a major limitation of traditional supervised methods. This approach shows promise for next-generation radio telescopes, where fast processing and the ability to discover unknown phenomena are crucial.
Authors:Anas Ali, Mubashar Husain, Peter Hans
Title: Privacy-Aware Cyberterrorism Network Analysis using Graph Neural Networks and Federated Learning
Abstract:
Cyberterrorism poses a formidable threat to digital infrastructures, with increasing reliance on encrypted, decentralized platforms that obscure threat actor activity. To address the challenge of analyzing such adversarial networks while preserving the privacy of distributed intelligence data, we propose a Privacy-Aware Federated Graph Neural Network (PA-FGNN) framework. PA-FGNN integrates graph attention networks, differential privacy, and homomorphic encryption into a robust federated learning pipeline tailored for cyberterrorism network analysis. Each client trains locally on sensitive graph data and exchanges encrypted, noise-perturbed model updates with a central aggregator, which performs secure aggregation and broadcasts global updates. We implement anomaly detection for flagging high-risk nodes and incorporate defenses against gradient poisoning. Experimental evaluations on simulated dark web and cyber-intelligence graphs demonstrate that PA-FGNN achieves over 91\% classification accuracy, maintains resilience under 20\% adversarial client behavior, and incurs less than 18\% communication overhead. Our results highlight that privacy-preserving GNNs can support large-scale cyber threat detection without compromising on utility, privacy, or robustness.
Authors:Hyogun Lee, Haksub Kim, Ig-Jae Kim, Yonghun Choi
Title: Flashback: Memory-Driven Zero-shot, Real-time Video Anomaly Detection
Abstract:
Video Anomaly Detection (VAD) automatically identifies anomalous events from video, mitigating the need for human operators in large-scale surveillance deployments. However, two fundamental obstacles hinder real-world adoption: domain dependency and real-time constraints -- requiring near-instantaneous processing of incoming video. To this end, we propose Flashback, a zero-shot and real-time video anomaly detection paradigm. Inspired by the human cognitive mechanism of instantly judging anomalies and reasoning in current scenes based on past experience, Flashback operates in two stages: Recall and Respond. In the offline recall stage, an off-the-shelf LLM builds a pseudo-scene memory of both normal and anomalous captions without any reliance on real anomaly data. In the online respond stage, incoming video segments are embedded and matched against this memory via similarity search. By eliminating all LLM calls at inference time, Flashback delivers real-time VAD even on a consumer-grade GPU. On two large datasets from real-world surveillance scenarios, UCF-Crime and XD-Violence, we achieve 87.3 AUC (+7.0 pp) and 75.1 AP (+13.1 pp), respectively, outperforming prior zero-shot VAD methods by large margins.
Authors:Julien Pallage, Antoine Lesage-Landry
Title: Sliced-Wasserstein Distance-based Data Selection
Abstract:
We propose a new unsupervised anomaly detection method based on the sliced-Wasserstein distance for training data selection in machine learning approaches. Our filtering technique is interesting for decision-making pipelines deploying machine learning models in critical sectors, e.g., power systems, as it offers a conservative data selection and an optimal transport interpretation. To ensure the scalability of our method, we provide two efficient approximations. The first approximation processes reduced-cardinality representations of the datasets concurrently. The second makes use of a computationally light Euclidian distance approximation. Additionally, we open the first dataset showcasing localized critical peak rebate demand response in a northern climate. We present the filtering patterns of our method on synthetic datasets and numerically benchmark our method for training data selection. Finally, we employ our method as part of a first forecasting benchmark for our open-source dataset.
Authors:Jongha Lee, Taehyung Kwon, Heechan Moon, Kijung Shin
Title: Simple yet Effective Node Property Prediction on Edge Streams under Distribution Shifts
Abstract:
The problem of predicting node properties (e.g., node classes) in graphs has received significant attention due to its broad range of applications. Graphs from real-world datasets often evolve over time, with newly emerging edges and dynamically changing node properties, posing a significant challenge for this problem. In response, temporal graph neural networks (TGNNs) have been developed to predict dynamic node properties from a stream of emerging edges. However, our analysis reveals that most TGNN-based methods are (a) far less effective without proper node features and, due to their complex model architectures, (b) vulnerable to distribution shifts. In this paper, we propose SPLASH, a simple yet powerful method for predicting node properties on edge streams under distribution shifts. Our key contributions are as follows: (1) we propose feature augmentation methods and an automatic feature selection method for edge streams, which improve the effectiveness of TGNNs, (2) we propose a lightweight MLP-based TGNN architecture that is highly efficient and robust under distribution shifts, and (3) we conduct extensive experiments to evaluate the accuracy, efficiency, generalization, and qualitative performance of the proposed method and its competitors on dynamic node classification, dynamic anomaly detection, and node affinity prediction tasks across seven real-world datasets.
Authors:Fei Zuo, Junghwan Rhee, Yung Ryn Choe
Title: Knowledge Transfer from LLMs to Provenance Analysis: A Semantic-Augmented Method for APT Detection
Abstract:
Advanced Persistent Threats (APTs) have caused significant losses across a wide range of sectors, including the theft of sensitive data and harm to system integrity. As attack techniques grow increasingly sophisticated and stealthy, the arms race between cyber defenders and attackers continues to intensify. The revolutionary impact of Large Language Models (LLMs) has opened up numerous opportunities in various fields, including cybersecurity. An intriguing question arises: can the extensive knowledge embedded in LLMs be harnessed for provenance analysis and play a positive role in identifying previously unknown malicious events? To seek a deeper understanding of this issue, we propose a new strategy for taking advantage of LLMs in provenance-based threat detection. In our design, the state-of-the-art LLM offers additional details in provenance data interpretation, leveraging their knowledge of system calls, software identity, and high-level understanding of application execution context. The advanced contextualized embedding capability is further utilized to capture the rich semantics of event descriptions. We comprehensively examine the quality of the resulting embeddings, and it turns out that they offer promising avenues. Subsequently, machine learning models built upon these embeddings demonstrated outstanding performance on real-world data. In our evaluation, supervised threat detection achieves a precision of 99.0%, and semi-supervised anomaly detection attains a precision of 96.9%.
Authors:Mohamed Bilel Besbes, Diego Elias Costa, Suhaib Mujahid, Gregory Mierzwinski, Marco Castelluccio
Title: A Dataset of Performance Measurements and Alerts from Mozilla (Data Artifact)
Abstract:
Performance regressions in software systems can lead to significant financial losses and degraded user satisfaction, making their early detection and mitigation critical. Despite the importance of practices that capture performance regressions early, there is a lack of publicly available datasets that comprehensively capture real-world performance measurements, expert-validated alerts, and associated metadata such as bugs and testing conditions. To address this gap, we introduce a unique dataset to support various research studies in performance engineering, anomaly detection, and machine learning. This dataset was collected from Mozilla Firefox's performance testing infrastructure and comprises 5,655 performance time series, 17,989 performance alerts, and detailed annotations of resulting bugs collected from May 2023 to May 2024. By publishing this dataset, we provide researchers with an invaluable resource for studying performance trends, developing novel change point detection methods, and advancing performance regression analysis across diverse platforms and testing environments. The dataset is available at https://doi.org/10.5281/zenodo.14642238
Authors:Shule Hao, Junpeng Bao, Chuncheng Lu
Title: A Time Series Multitask Framework Integrating a Large Language Model, Pre-Trained Time Series Model, and Knowledge Graph
Abstract:
Time series analysis is crucial in fields like finance, transportation, and industry. However, traditional models often focus solely on temporal features, limiting their ability to capture underlying information. This paper proposes a novel time series multitask framework, called LTM, which integrates temporal features with textual descriptions to enhance analytical and predictive capabilities. LTM combines pre-trained time series model, large language model (LLM), and knowledge graph to tackle time series tasks, including forecasting, imputation, and anomaly detection. LTM achieves improved performance with a few trainable parameters. It is very efficient and practical. LTM encodes time series data into patches and enriches user-provided prompts using knowledge graphs to generate enhanced prompts. A novel feature fusion method embeds prompts into each patch encoding, which is processed by a frozen LLM, followed by a feature enhancement module and a time decoder module. During fine-tuning stage, cosine similarity between prompts and temporal patches is integrated into the loss function to boost performance. Experiments on benchmark datasets show that LTM significantly outperforms existing methods. It provides a robust and versatile solution for time series tasks.
Authors:Paul J. Krassnig, Dieter P. Gruber
Title: ISP-AD: A Large-Scale Real-World Dataset for Advancing Industrial Anomaly Detection with Synthetic and Real Defects
Abstract:
Automatic visual inspection using machine learning plays a key role in achieving zero-defect policies in industry. Research on anomaly detection is constrained by the availability of datasets that capture complex defect appearances and imperfect imaging conditions, which are typical of production processes. Recent benchmarks indicate that most publicly available datasets are biased towards optimal imaging conditions, leading to an overestimation of their applicability in real-world industrial scenarios. To address this gap, we introduce the Industrial Screen Printing Anomaly Detection Dataset (ISP-AD). It presents challenging small and weakly contrasted surface defects embedded within structured patterns exhibiting high permitted design variability. To the best of our knowledge, it is the largest publicly available industrial dataset to date, including both synthetic and real defects collected directly from the factory floor. Beyond benchmarking recent unsupervised anomaly detection methods, experiments on a mixed supervised training strategy, incorporating both synthesized and real defects, were conducted. Experiments show that even a small amount of injected, weakly labeled real defects improves generalization. Furthermore, starting from training on purely synthetic defects, emerging real defective samples can be efficiently integrated into subsequent scalable training. Overall, our findings indicate that model-free synthetic defects can provide a cold-start baseline, whereas a small number of injected real defects refine the decision boundary for previously unseen defect characteristics. The presented unsupervised and supervised dataset splits are designed to emphasize research on unsupervised, self-supervised, and supervised approaches, enhancing their applicability to industrial settings.
Authors:Wenrui Cheng, Tiantian Zhu, Shunan Jing, Jian-Ping Mei, Mingjun Ma, Jiaobo Jin, Zhengqiu Weng
Title: OMNISEC: LLM-Driven Provenance-based Intrusion Detection via Retrieval-Augmented Behavior Prompting
Abstract:
Recently, Provenance-based Intrusion Detection Systems (PIDSes) have been widely used for endpoint threat analysis. These studies can be broadly categorized into rule-based detection systems and learning-based detection systems. Among these, due to the evolution of attack techniques, rules cannot dynamically model all the characteristics of attackers. As a result, such systems often face false negatives. Learning-based detection systems are further divided into supervised learning and anomaly detection. The scarcity of attack samples hinders the usability and effectiveness of supervised learning-based detection systems in practical applications. Anomaly-based detection systems face a massive false positive problem because they cannot distinguish between changes in normal behavior and real attack behavior. The alert results of detection systems are closely related to the manual labor costs of subsequent security analysts. To reduce manual analysis time, we propose OMNISEC, which applies large language models (LLMs) to anomaly-based intrusion detection systems via retrieval-augmented behavior prompting. OMNISEC can identify abnormal nodes and corresponding abnormal events by constructing suspicious nodes and rare paths. By combining two external knowledge bases, OMNISEC uses Retrieval Augmented Generation (RAG) to enable the LLM to determine whether abnormal behavior is a real attack. Finally, OMNISEC can reconstruct the attack graph and restore the complete attack behavior chain of the attacker's intrusion. Experimental results show that OMNISEC outperforms state-of-the-art methods on public benchmark datasets.
Authors:Silin Chen, Kangjian Di, Yichu Xu, Han-Jia Ye, Wenhan Luo, Ningmu Zou
Title: FedDyMem: Efficient Federated Learning with Dynamic Memory and Memory-Reduce for Unsupervised Image Anomaly Detection
Abstract:
Unsupervised image anomaly detection (UAD) has become a critical process in industrial and medical applications, but it faces growing challenges due to increasing concerns over data privacy. The limited class diversity inherent to one-class classification tasks, combined with distribution biases caused by variations in products across and within clients, poses significant challenges for preserving data privacy with federated UAD. Thus, this article proposes an efficient federated learning method with dynamic memory and memory-reduce for unsupervised image anomaly detection, called FedDyMem. Considering all client data belongs to a single class (i.e., normal sample) in UAD and the distribution of intra-class features demonstrates significant skewness, FedDyMem facilitates knowledge sharing between the client and server through the client's dynamic memory bank instead of model parameters. In the local clients, a memory generator and a metric loss are employed to improve the consistency of the feature distribution for normal samples, leveraging the local model to update the memory bank dynamically. For efficient communication, a memory-reduce method based on weighted averages is proposed to significantly decrease the scale of memory banks. On the server, global memory is constructed and distributed to individual clients through k-means aggregation. Experiments conducted on six industrial and medical datasets, comprising a mixture of six products or health screening types derived from eleven public datasets, demonstrate the effectiveness of FedDyMem.
Authors:Michael Somma, Thomas Gallien, Branka Stojanovic
Title: Anomaly Detection in Complex Dynamical Systems: A Systematic Framework Using Embedding Theory and Physics-Inspired Consistency
Abstract:
Anomaly detection in complex dynamical systems is essential for ensuring reliability, safety, and efficiency in industrial and cyber-physical infrastructures. Predictive maintenance helps prevent costly failures, while cybersecurity monitoring has become critical as digitized systems face growing threats. Many of these systems exhibit oscillatory behaviors and bounded motion, requiring anomaly detection methods that capture structured temporal dependencies while adhering to physical consistency principles. In this work, we propose a system-theoretic approach to anomaly detection, grounded in classical embedding theory and physics-inspired consistency principles. We build upon the Fractal Whitney Embedding Prevalence Theorem that extends traditional embedding techniques to complex system dynamics. Additionally, we introduce state-derivative pairs as an embedding strategy to capture system evolution. To enforce temporal coherence, we develop a Temporal Differential Consistency Autoencoder (TDC-AE), incorporating a TDC-Loss that aligns the approximated derivatives of latent variables with their dynamic representations. We evaluate our method on two subsets (FD001, FD003) of the C-MAPSS dataset, a benchmark for turbofan engine degradation. TDC-AE machtes LSTMs and outperforms Transformers while achieving a nearly 100x reduction in MAC operations, making it particularly suited for lightweight edge computing. Our findings support the hypothesis that anomalies disrupt stable system dynamics, providing a robust signal for anomaly detection.
Authors:Zekang Weng, Jinjin Shi, Jinwei Wang, Zeming Han
Title: HDM: Hybrid Diffusion Model for Unified Image Anomaly Detection
Abstract:
Image anomaly detection plays a vital role in applications such as industrial quality inspection and medical imaging, where it directly contributes to improving product quality and system reliability. However, existing methods often struggle with complex and diverse anomaly patterns. In particular, the separation between generation and discrimination tasks limits the effective coordination between anomaly sample generation and anomaly region detection. To address these challenges, we propose a novel hybrid diffusion model (HDM) that integrates generation and discrimination into a unified framework. The model consists of three key modules: the Diffusion Anomaly Generation Module (DAGM), the Diffusion Discriminative Module (DDM), and the Probability Optimization Module (POM). DAGM generates realistic and diverse anomaly samples, improving their representativeness. DDM then applies a reverse diffusion process to capture the differences between generated and normal samples, enabling precise anomaly region detection and localization based on probability distributions. POM refines the probability distributions during both the generation and discrimination phases, ensuring high-quality samples are used for training. Extensive experiments on multiple industrial image datasets demonstrate that our method outperforms state-of-the-art approaches, significantly improving both image-level and pixel-level anomaly detection performance, as measured by AUROC.
Authors:Uri Itai, Asael Bar Ilan, Teddy Lazebnik
Title: Tighten The Lasso: A Convex Hull Volume-based Anomaly Detection Method
Abstract:
Detecting out-of-distribution (OOD) data is a critical task for maintaining model reliability and robustness. In this study, we propose a novel anomaly detection algorithm that leverages the convex hull (CH) property of a dataset by exploiting the observation that OOD samples marginally increase the CH's volume compared to in-distribution samples. Thus, we establish a decision boundary between OOD and in-distribution data by iteratively computing the CH's volume as samples are removed, stopping when such removal does not significantly alter the CH's volume. The proposed algorithm is evaluated against seven widely used anomaly detection methods across ten datasets, demonstrating performance comparable to state-of-the-art (SOTA) techniques. Furthermore, we introduce a computationally efficient criterion for identifying datasets where the proposed method outperforms existing SOTA approaches.
Authors:Delaram Pirhayati, Arlei Silva
Title: Graph Anomaly Detection via Adaptive Test-time Representation Learning across Out-of-Distribution Domains
Abstract:
Graph Anomaly Detection (GAD) has demonstrated great effectiveness in identifying unusual patterns within graph-structured data. However, while labeled anomalies are often scarce in emerging applications, existing supervised GAD approaches are either ineffective or not applicable when moved across graph domains due to distribution shifts and heterogeneous feature spaces. To address these challenges, we present AdaGraph-T3, a novel test-time training framework for cross-domain GAD. AdaGraph-T3 combines supervised and self-supervised learning during training while adapting to a new domain during test time using only self-supervised learning by leveraging a homophily-based affinity score that captures domain-invariant properties of anomalies. Our framework introduces four key innovations to cross-domain GAD: an effective self-supervision scheme, an attention-based mechanism that dynamically learns edge importance weights during message passing, domain-specific encoders for handling heterogeneous features, and class-aware regularization to address imbalance. Experiments across multiple cross-domain settings demonstrate that AdaGraph-T3 significantly outperforms existing approaches, achieving average improvements of over 6.6% in AUROC and 7.9% in AUPRC compared to the best competing model.
Authors:Yasunari Suzuki, Takanori Sugiyama, Tomochika Arai, Wang Liao, Koji Inoue, Teruo Tanimoto
Title: Q3DE: A fault-tolerant quantum computer architecture for multi-bit burst errors by cosmic rays
Abstract:
Demonstrating small error rates by integrating quantum error correction (QEC) into an architecture of quantum computing is the next milestone towards scalable fault-tolerant quantum computing (FTQC). Encoding logical qubits with superconducting qubits and surface codes is considered a promising candidate for FTQC architectures. In this paper, we propose an FTQC architecture, which we call Q3DE, that enhances the tolerance to multi-bit burst errors (MBBEs) by cosmic rays with moderate changes and overhead. There are three core components in Q3DE: in-situ anomaly DEtection, dynamic code DEformation, and optimized error DEcoding. In this architecture, MBBEs are detected only from syndrome values for error correction. The effect of MBBEs is immediately mitigated by dynamically increasing the encoding level of logical qubits and re-estimating probable recovery operation with the rollback of the decoding process. We investigate the performance and overhead of the Q3DE architecture with quantum-error simulators and demonstrate that Q3DE effectively reduces the period of MBBEs by 1000 times and halves the size of their region. Therefore, Q3DE significantly relaxes the requirement of qubit density and qubit chip size to realize FTQC. Our scheme is versatile for mitigating MBBEs, i.e., temporal variations of error properties, on a wide range of physical devices and FTQC architectures since it relies only on the standard features of topological stabilizer codes.
Authors:John Paparrizos, Haojun Li, Fan Yang, Kaize Wu, Jens E. d'Hondt, Odysseas Papapetrou
Title: A Survey on Time-Series Distance Measures
Abstract:
Distance measures have been recognized as one of the fundamental building blocks in time-series analysis tasks, e.g., querying, indexing, classification, clustering, anomaly detection, and similarity search. The vast proliferation of time-series data across a wide range of fields has increased the relevance of evaluating the effectiveness and efficiency of these distance measures. To provide a comprehensive view of this field, this work considers over 100 state-of-the-art distance measures, classified into 7 categories: lock-step measures, sliding measures, elastic measures, kernel measures, feature-based measures, model-based measures, and embedding measures. Beyond providing comprehensive mathematical frameworks, this work also delves into the distinctions and applications across these categories for both univariate and multivariate cases. By providing comprehensive collections and insights, this study paves the way for the future development of innovative time-series distance measures.
Authors:Daniel Adu Worae, Athar Sheikh, Spyridon Mastorakis
Title: A Unified Framework for Context-Aware IoT Management and State-of-the-Art IoT Traffic Anomaly Detection
Abstract:
The rapid expansion of Internet of Things (IoT) ecosystems has introduced growing complexities in device management and network security. To address these challenges, we present a unified framework that combines context-driven large language models (LLMs) for IoT administrative tasks with a fine-tuned anomaly detection module for network traffic analysis. The framework streamlines administrative processes such as device management, troubleshooting, and security enforcement by harnessing contextual knowledge from IoT manuals and operational data. The anomaly detection model achieves state-of-the-art performance in identifying irregularities and threats within IoT traffic, leveraging fine-tuning to deliver exceptional accuracy. Evaluations demonstrate that incorporating relevant contextual information significantly enhances the precision and reliability of LLM-based responses for diverse IoT administrative tasks. Additionally, resource usage metrics such as execution time, memory consumption, and response efficiency demonstrate the framework's scalability and suitability for real-world IoT deployments.
Authors:Yuqing Wang, Mika V. Mäntylä, Jesse Nyyssölä, Ke Ping, Liqiang Wang
Title: Cross-System Software Log-based Anomaly Detection Using Meta-Learning
Abstract:
Modern software systems produce vast amounts of logs, serving as an essential resource for anomaly detection. Artificial Intelligence for IT Operations (AIOps) tools have been developed to automate the process of log-based anomaly detection for software systems. Three practical challenges are widely recognized in this field: high data labeling costs, evolving logs in dynamic systems, and adaptability across different systems. In this paper, we propose CroSysLog, an AIOps tool for log-event level anomaly detection, specifically designed in response to these challenges. Following prior approaches, CroSysLog uses a neural representation approach to gain a nuanced understanding of logs and generate representations for individual log events accordingly. CroSysLog can be trained on source systems with sufficient labeled logs from open datasets to achieve robustness, and then efficiently adapt to target systems with a few labeled log events for effective anomaly detection. We evaluate CroSysLog using open datasets of four large-scale distributed supercomputing systems: BGL, Thunderbird, Liberty, and Spirit. We used random log splits, maintaining the chronological order of consecutive log events, from these systems to train and evaluate CroSysLog. These splits were widely distributed across a one/two-year span of each system's log collection duration, thereby capturing the evolving nature of the logs in each system. Our results show that, after training CroSysLog on Liberty and BGL as source systems, CroSysLog can efficiently adapt to target systems Thunderbird and Spirit using a few labeled log events from each target system, effectively performing anomaly detection for these target systems. The results demonstrate that CroSysLog is a practical, scalable, and adaptable tool for log-event level anomaly detection in operational and maintenance contexts of software systems.
Authors:Gözde Özcan, Chengzhi Shi, Stratis Ioannidis
Title: Learning Set Functions with Implicit Differentiation
Abstract:
Ou et al. (2022) introduce the problem of learning set functions from data generated by a so-called optimal subset oracle. Their approach approximates the underlying utility function with an energy-based model, whose parameters are estimated via mean-field variational inference. Ou et al. (2022) show this reduces to fixed point iterations; however, as the number of iterations increases, automatic differentiation quickly becomes computationally prohibitive due to the size of the Jacobians that are stacked during backpropagation. We address this challenge with implicit differentiation and examine the convergence conditions for the fixed-point iterations. We empirically demonstrate the efficiency of our method on synthetic and real-world subset selection applications including product recommendation, set anomaly detection and compound selection tasks.
Authors:Aryan Bhosale, Samrat Mukherjee, Biplab Banerjee, Fabio Cuzzolin
Title: Anomaly detection using Diffusion-based methods
Abstract:
This paper explores the utility of diffusion-based models for anomaly detection, focusing on their efficacy in identifying deviations in both compact and high-resolution datasets. Diffusion-based architectures, including Denoising Diffusion Probabilistic Models (DDPMs) and Diffusion Transformers (DiTs), are evaluated for their performance using reconstruction objectives. By leveraging the strengths of these models, this study benchmarks their performance against traditional anomaly detection methods such as Isolation Forests, One-Class SVMs, and COPOD. The results demonstrate the superior adaptability, scalability, and robustness of diffusion-based methods in handling complex real-world anomaly detection tasks. Key findings highlight the role of reconstruction error in enhancing detection accuracy and underscore the scalability of these models to high-dimensional datasets. Future directions include optimizing encoder-decoder architectures and exploring multi-modal datasets to further advance diffusion-based anomaly detection.
Authors:Kun Qian, Tianyu Sun, Wenhong Wang
Title: Exploring Large Vision-Language Models for Robust and Efficient Industrial Anomaly Detection
Abstract:
Industrial anomaly detection (IAD) plays a crucial role in the maintenance and quality control of manufacturing processes. In this paper, we propose a novel approach, Vision-Language Anomaly Detection via Contrastive Cross-Modal Training (CLAD), which leverages large vision-language models (LVLMs) to improve both anomaly detection and localization in industrial settings. CLAD aligns visual and textual features into a shared embedding space using contrastive learning, ensuring that normal instances are grouped together while anomalies are pushed apart. Through extensive experiments on two benchmark industrial datasets, MVTec-AD and VisA, we demonstrate that CLAD outperforms state-of-the-art methods in both image-level anomaly detection and pixel-level anomaly localization. Additionally, we provide ablation studies and human evaluation to validate the importance of key components in our method. Our approach not only achieves superior performance but also enhances interpretability by accurately localizing anomalies, making it a promising solution for real-world industrial applications.
Authors:Jack Belham, Aryan Bhosale, Samrat Mukherjee, Biplab Banerjee, Fabio Cuzzolin
Title: Deep evolving semi-supervised anomaly detection
Abstract:
The aim of this paper is to formalise the task of continual semi-supervised anomaly detection (CSAD), with the aim of highlighting the importance of such a problem formulation which assumes as close to real-world conditions as possible. After an overview of the relevant definitions of continual semi-supervised learning, its components, anomaly detection extension, and the training protocols; the paper introduces a baseline model of a variational autoencoder (VAE) to work with semi-supervised data along with a continual learning method of deep generative replay with outlier rejection. The results show that such a use of extreme value theory (EVT) applied to anomaly detection can provide promising results even in comparison to an upper baseline of joint training. The results explore the effects of how much labelled and unlabelled data is present, of which class, and where it is located in the data stream. Outlier rejection shows promising initial results where it often surpasses a baseline method of Elastic Weight Consolidation (EWC). A baseline for CSAD is put forward along with the specific dataset setups used for reproducability and testability for other practitioners. Future research directions include other CSAD settings and further research into efficient continual hyperparameter tuning.
Authors:Pablo Moriano, Steven C. Hespeler, Mingyan Li, Maria Mahbub
Title: Adaptive Anomaly Detection for Identifying Attacks in Cyber-Physical Systems: A Systematic Literature Review
Abstract:
Modern cyberattacks in cyber-physical systems (CPS) rapidly evolve and cannot be deterred effectively with most current methods which focused on characterizing past threats. Adaptive anomaly detection (AAD) is among the most promising techniques to detect evolving cyberattacks focused on fast data processing and model adaptation. AAD has been researched in the literature extensively; however, to the best of our knowledge, our work is the first systematic literature review (SLR) on the current research within this field. We present a comprehensive SLR, gathering 397 relevant papers and systematically analyzing 65 of them (47 research and 18 survey papers) on AAD in CPS studies from 2013 to 2023 (November). We introduce a novel taxonomy considering attack types, CPS application, learning paradigm, data management, and algorithms. Our analysis indicates, among other findings, that reviewed works focused on a single aspect of adaptation (either data processing or model adaptation) but rarely in both at the same time. We aim to help researchers to advance the state of the art and help practitioners to become familiar with recent progress in this field. We identify the limitations of the state of the art and provide recommendations for future research directions.
Authors:Azmine Toushik Wasi, MD Shafikul Islam, Adipto Raihan Akib, Mahathir Mohammad Bappy
Title: Graph Neural Networks in Supply Chain Analytics and Optimization: Concepts, Perspectives, Dataset and Benchmarks
Abstract:
Graph Neural Networks (GNNs) have recently gained traction in transportation, bioinformatics, language and image processing, but research on their application to supply chain management remains limited. Supply chains are inherently graph-like, making them ideal for GNN methodologies, which can optimize and solve complex problems. The barriers include a lack of proper conceptual foundations, familiarity with graph applications in SCM, and real-world benchmark datasets for GNN-based supply chain research. To address this, we discuss and connect supply chains with graph structures for effective GNN application, providing detailed formulations, examples, mathematical definitions, and task guidelines. Additionally, we present a multi-perspective real-world benchmark dataset from a leading FMCG company in Bangladesh, focusing on supply chain planning. We discuss various supply chain tasks using GNNs and benchmark several state-of-the-art models on homogeneous and heterogeneous graphs across six supply chain analytics tasks. Our analysis shows that GNN-based models consistently outperform statistical Machine Learning and other Deep Learning models by around 10-30% in regression, 10-30% in classification and detection tasks, and 15-40% in anomaly detection tasks on designated metrics. With this work, we lay the groundwork for solving supply chain problems using GNNs, supported by conceptual discussions, methodological insights, and a comprehensive dataset.
Authors:Daehwan Kim, Hyungmin Kim, Daun Jeong, Sungho Suh, Hansang Cho
Title: SPACE: SPAtial-aware Consistency rEgularization for anomaly detection in Industrial applications
Abstract:
In this paper, we propose SPACE, a novel anomaly detection methodology that integrates a Feature Encoder (FE) into the structure of the Student-Teacher method. The proposed method has two key elements: Spatial Consistency regularization Loss (SCL) and Feature converter Module (FM). SCL prevents overfitting in student models by avoiding excessive imitation of the teacher model. Simultaneously, it facilitates the expansion of normal data features by steering clear of abnormal areas generated through data augmentation. This dual functionality ensures a robust boundary between normal and abnormal data. The FM prevents the learning of ambiguous information from the FE. This protects the learned features and enables more effective detection of structural and logical anomalies. Through these elements, SPACE is available to minimize the influence of the FE while integrating various data augmentations.In this study, we evaluated the proposed method on the MVTec LOCO, MVTec AD, and VisA datasets. Experimental results, through qualitative evaluation, demonstrate the superiority of detection and efficiency of each module compared to state-of-the-art methods.
Authors:Minha Kim, Kishor Kumar Bhaumik, Amin Ahsan Ali, Simon S. Woo
Title: MIXAD: Memory-Induced Explainable Time Series Anomaly Detection
Abstract:
For modern industrial applications, accurately detecting and diagnosing anomalies in multivariate time series data is essential. Despite such need, most state-of-the-art methods often prioritize detection performance over model interpretability. Addressing this gap, we introduce MIXAD (Memory-Induced Explainable Time Series Anomaly Detection), a model designed for interpretable anomaly detection. MIXAD leverages a memory network alongside spatiotemporal processing units to understand the intricate dynamics and topological structures inherent in sensor relationships. We also introduce a novel anomaly scoring method that detects significant shifts in memory activation patterns during anomalies. Our approach not only ensures decent detection performance but also outperforms state-of-the-art baselines by 34.30% and 34.51% in interpretability metrics.
Authors:Julien Pallage, Bertrand Scherrer, Salma Naccache, Christophe Bélanger, Antoine Lesage-Landry
Title: Sliced-Wasserstein-based Anomaly Detection and Open Dataset for Localized Critical Peak Rebates
Abstract:
In this work, we present a new unsupervised anomaly (outlier) detection (AD) method using the sliced-Wasserstein metric. This filtering technique is conceptually interesting for MLOps pipelines deploying machine learning models in critical sectors, e.g., energy, as it offers a conservative data selection. Additionally, we open the first dataset showcasing localized critical peak rebate demand response in a northern climate. We demonstrate the capabilities of our method on synthetic datasets as well as standard AD datasets and use it in the making of a first benchmark for our open-source localized critical peak rebate dataset.
Authors:René Manassé Galekwa, Jean Marie Tshimula, Etienne Gael Tajeuna, Kyamakya Kyandoghere
Title: A Systematic Review of Machine Learning in Sports Betting: Techniques, Challenges, and Future Directions
Abstract:
The sports betting industry has experienced rapid growth, driven largely by technological advancements and the proliferation of online platforms. Machine learning (ML) has played a pivotal role in the transformation of this sector by enabling more accurate predictions, dynamic odds-setting, and enhanced risk management for both bookmakers and bettors. This systematic review explores various ML techniques, including support vector machines, random forests, and neural networks, as applied in different sports such as soccer, basketball, tennis, and cricket. These models utilize historical data, in-game statistics, and real-time information to optimize betting strategies and identify value bets, ultimately improving profitability. For bookmakers, ML facilitates dynamic odds adjustment and effective risk management, while bettors leverage data-driven insights to exploit market inefficiencies. This review also underscores the role of ML in fraud detection, where anomaly detection models are used to identify suspicious betting patterns. Despite these advancements, challenges such as data quality, real-time decision-making, and the inherent unpredictability of sports outcomes remain. Ethical concerns related to transparency and fairness are also of significant importance. Future research should focus on developing adaptive models that integrate multimodal data and manage risk in a manner akin to financial portfolios. This review provides a comprehensive examination of the current applications of ML in sports betting, and highlights both the potential and the limitations of these technologies.
Authors:Ruyi Zhang, Hongzuo Xu, Songlei Jian, Yusong Tan, Haifang Zhou, Rulin Xu
Title: Angel or Devil: Discriminating Hard Samples and Anomaly Contaminations for Unsupervised Time Series Anomaly Detection
Abstract:
Training in unsupervised time series anomaly detection is constantly plagued by the discrimination between harmful `anomaly contaminations' and beneficial `hard normal samples'. These two samples exhibit analogous loss behavior that conventional loss-based methodologies struggle to differentiate. To tackle this problem, we propose a novel approach that supplements traditional loss behavior with `parameter behavior', enabling a more granular characterization of anomalous patterns. Parameter behavior is formalized by measuring the parametric response to minute perturbations in input samples. Leveraging the complementary nature of parameter and loss behaviors, we further propose a dual Parameter-Loss Data Augmentation method (termed PLDA), implemented within the reinforcement learning paradigm. During the training phase of anomaly detection, PLDA dynamically augments the training data through an iterative process that simultaneously mitigates anomaly contaminations while amplifying informative hard normal samples. PLDA demonstrates remarkable versatility, which can serve as an additional component that seamlessly integrated with existing anomaly detectors to enhance their detection performance. Extensive experiments on ten datasets show that PLDA significantly improves the performance of four distinct detectors by up to 8\%, outperforming three state-of-the-art data augmentation methods.
Authors:Ranit Das, David Shih
Title: SIGMA: Single Interpolated Generative Model for Anomalies
Abstract:
A key step in any resonant anomaly detection search is accurate modeling of the background distribution in each signal region. Data-driven methods like CATHODE accomplish this by training separate generative models on the complement of each signal region, and interpolating them into their corresponding signal regions. Having to re-train the generative model on essentially the entire dataset for each signal region is a major computational cost in a typical sliding window search with many signal regions. Here, we present SIGMA, a new, fully data-driven, computationally-efficient method for estimating background distributions. The idea is to train a single generative model on all of the data and interpolate its parameters in sideband regions in order to obtain a model for the background in the signal region. The SIGMA method significantly reduces the computational cost compared to previous approaches, while retaining a similar high quality of background modeling and sensitivity to anomalous signals.
Authors:Jacob Rodríguez-Rivero, David López-García, Fermín Segovia, Javier Ramírez, Juan Manuel Górriz, Raúl Serrano, David Pérez, Iván Maza, Aníbal Ollero, Pol Paradell SolÃ, Albert Gili Selga, José Luis Domínguez-García, A. Romero, A. Berro, Rocío Domínguez, Inmaculada Prieto
Title: RESISTO Project: Safeguarding the Power Grid from Meteorological Phenomena
Abstract:
The RESISTO project, a pioneer innovation initiative in Europe, endeavors to enhance the resilience of electrical networks against extreme weather events and associated risks. Emphasizing intelligence and flexibility within distribution networks, RESISTO aims to address climatic and physical incidents comprehensively, fostering resilience across planning, response, recovery, and adaptation phases. Leveraging advanced technologies including AI, IoT sensors, and aerial robots, RESISTO integrates prediction, detection, and mitigation strategies to optimize network operation. This article summarizes the main technical aspects of the proposed solutions to meet the aforementioned objectives, including the development of a climate risk detection platform, an IoT-based monitoring and anomaly detection network, and a fleet of intelligent aerial robots. Each contributing to the project's overarching objectives of enhancing network resilience and operational efficiency.
Authors:Nikhil Bangad, Vivekananda Jayaram, Manjunatha Sughaturu Krishnappa, Amey Ram Banarse, Darshan Mohan Bidkar, Akshay Nagpal, Vidyasagar Parlapalli
Title: A Theoretical Framework for AI-driven data quality monitoring in high-volume data environments
Abstract:
This paper presents a theoretical framework for an AI-driven data quality monitoring system designed to address the challenges of maintaining data quality in high-volume environments. We examine the limitations of traditional methods in managing the scale, velocity, and variety of big data and propose a conceptual approach leveraging advanced machine learning techniques. Our framework outlines a system architecture that incorporates anomaly detection, classification, and predictive analytics for real-time, scalable data quality management. Key components include an intelligent data ingestion layer, adaptive preprocessing mechanisms, context-aware feature extraction, and AI-based quality assessment modules. A continuous learning paradigm is central to our framework, ensuring adaptability to evolving data patterns and quality requirements. We also address implications for scalability, privacy, and integration within existing data ecosystems. While practical results are not provided, it lays a robust theoretical foundation for future research and implementations, advancing data quality management and encouraging the exploration of AI-driven solutions in dynamic environments.
Authors:Josef Koumar, Karel Hynek, Tomáš Čejka, Pavel Šiška
Title: CESNET-TimeSeries24: Time Series Dataset for Network Traffic Anomaly Detection and Forecasting
Abstract:
Anomaly detection in network traffic is crucial for maintaining the security of computer networks and identifying malicious activities. One of the primary approaches to anomaly detection are methods based on forecasting. Nevertheless, extensive real-world network datasets for forecasting and anomaly detection techniques are missing, potentially causing performance overestimation of anomaly detection algorithms. This manuscript addresses this gap by introducing a dataset comprising time series data of network entities' behavior, collected from the CESNET3 network. The dataset was created from 40 weeks of network traffic of 275 thousand active IP addresses. The ISP origin of the presented data ensures a high level of variability among network entities, which forms a unique and authentic challenge for forecasting and anomaly detection models. It provides valuable insights into the practical deployment of forecast-based anomaly detection approaches.
Authors:Liangyu Zhong, Joachim Sicking, Fabian Hüger, Hanno Gottschalk
Title: VL4AD: Vision-Language Models Improve Pixel-wise Anomaly Detection
Abstract:
Semantic segmentation networks have achieved significant success under the assumption of independent and identically distributed data. However, these networks often struggle to detect anomalies from unknown semantic classes due to the limited set of visual concepts they are typically trained on. To address this issue, anomaly segmentation often involves fine-tuning on outlier samples, necessitating additional efforts for data collection, labeling, and model retraining. Seeking to avoid this cumbersome work, we take a different approach and propose to incorporate Vision-Language (VL) encoders into existing anomaly detectors to leverage the semantically broad VL pre-training for improved outlier awareness. Additionally, we propose a new scoring function that enables data- and training-free outlier supervision via textual prompts. The resulting VL4AD model, which includes max-logit prompt ensembling and a class-merging strategy, achieves competitive performance on widely used benchmark datasets, thereby demonstrating the potential of vision-language models for pixel-wise anomaly detection.
Authors:Marcus Rüb, Philipp Tuchel, Axel Sikora, Daniel Mueller-Gritschneder
Title: A Continual and Incremental Learning Approach for TinyML On-device Training Using Dataset Distillation and Model Size Adaption
Abstract:
A new algorithm for incremental learning in the context of Tiny Machine learning (TinyML) is presented, which is optimized for low-performance and energy efficient embedded devices. TinyML is an emerging field that deploys machine learning models on resource-constrained devices such as microcontrollers, enabling intelligent applications like voice recognition, anomaly detection, predictive maintenance, and sensor data processing in environments where traditional machine learning models are not feasible. The algorithm solve the challenge of catastrophic forgetting through the use of knowledge distillation to create a small, distilled dataset. The novelty of the method is that the size of the model can be adjusted dynamically, so that the complexity of the model can be adapted to the requirements of the task. This offers a solution for incremental learning in resource-constrained environments, where both model size and computational efficiency are critical factors. Results show that the proposed algorithm offers a promising approach for TinyML incremental learning on embedded devices. The algorithm was tested on five datasets including: CIFAR10, MNIST, CORE50, HAR, Speech Commands. The findings indicated that, despite using only 43% of Floating Point Operations (FLOPs) compared to a larger fixed model, the algorithm experienced a negligible accuracy loss of just 1%. In addition, the presented method is memory efficient. While state-of-the-art incremental learning is usually very memory intensive, the method requires only 1% of the original data set.
Authors:Tianwu Lei, Bohan Wang, Silin Chen, Shurong Cao, Ningmu Zou
Title: Texture-AD: An Anomaly Detection Dataset and Benchmark for Real Algorithm Development
Abstract:
Anomaly detection is a crucial process in industrial manufacturing and has made significant advancements recently. However, there is a large variance between the data used in the development and the data collected by the production environment. Therefore, we present the Texture-AD benchmark based on representative texture-based anomaly detection to evaluate the effectiveness of unsupervised anomaly detection algorithms in real-world applications. This dataset includes images of 15 different cloth, 14 semiconductor wafers and 10 metal plates acquired under different optical schemes. In addition, it includes more than 10 different types of defects produced during real manufacturing processes, such as scratches, wrinkles, color variations and point defects, which are often more difficult to detect than existing datasets. All anomalous areas are provided with pixel-level annotations to facilitate comprehensive evaluation using anomaly detection models. Specifically, to adapt to diverse products in automated pipelines, we present a new evaluation method and results of baseline algorithms. The experimental results show that Texture-AD is a difficult challenge for state-of-the-art algorithms. To our knowledge, Texture-AD is the first dataset to be devoted to evaluating industrial defect detection algorithms in the real world. The dataset is available at https://XXX.
Authors:Peng Ye, Chengyu Tao, Juan Du
Title: A Novel Representation of Periodic Pattern and Its Application to Untrained Anomaly Detection
Abstract:
There are a variety of industrial products that possess periodic textures or surfaces, such as carbon fiber textiles and display panels. Traditional image-based quality inspection methods for these products require identifying the periodic patterns from normal images (without anomaly and noise) and subsequently detecting anomaly pixels with inconsistent appearances. However, it remains challenging to accurately extract the periodic pattern from a single image in the presence of unknown anomalies and measurement noise. To deal with this challenge, this paper proposes a novel self-representation of the periodic image defined on a set of continuous parameters. In this way, periodic pattern learning can be embedded into a joint optimization framework, which is named periodic-sparse decomposition, with simultaneously modeling the sparse anomalies and Gaussian noise. Finally, for the real-world industrial images that may not strictly satisfy the periodic assumption, we propose a novel pixel-level anomaly scoring strategy to enhance the performance of anomaly detection. Both simulated and real-world case studies demonstrate the effectiveness of the proposed methodology for periodic pattern learning and anomaly detection.
Authors:Jack Y. Araz, Michael Spannowsky
Title: The role of data embedding in quantum autoencoders for improved anomaly detection
Abstract:
The performance of Quantum Autoencoders (QAEs) in anomaly detection tasks is critically dependent on the choice of data embedding and ansatz design. This study explores the effects of three data embedding techniques, data re-uploading, parallel embedding, and alternate embedding, on the representability and effectiveness of QAEs in detecting anomalies. Our findings reveal that even with relatively simple variational circuits, enhanced data embedding strategies can substantially improve anomaly detection accuracy and the representability of underlying data across different datasets. Starting with toy examples featuring low-dimensional data, we visually demonstrate the effect of different embedding techniques on the representability of the model. We then extend our analysis to complex, higher-dimensional datasets, highlighting the significant impact of embedding methods on QAE performance.
Authors:Abdelrahim Ahmad, Peizheng Li, Robert Piechocki, Rui Inacio
Title: Anomaly Detection in Offshore Open Radio Access Network Using Long Short-Term Memory Models on a Novel Artificial Intelligence-Driven Cloud-Native Data Platform
Abstract:
The Radio Access Network (RAN) is a critical component of modern telecommunications infrastructure, currently evolving towards disaggregated and open architectures. These advancements are pivotal for integrating intelligent, data-driven applications aimed at enhancing network reliability and operational autonomy through the introduction of cognitive capabilities, as exemplified by the emerging Open Radio Access Network (O-RAN) standards. Despite its potential, the nascent nature of O-RAN technology presents challenges, primarily due to the absence of mature operational standards. This complicates the management of data and intelligent applications, particularly when integrating with traditional network management and operational support systems. Divergent vendor-specific design approaches further hinder migration and limit solution reusability. These challenges are compounded by a skills gap in telecommunications business-oriented engineering, which remains a key barrier to effective O-RAN deployment and intelligent application development. To address these challenges, Boldyn Networks developed a novel cloud-native data analytics platform, specifically designed to support scalable AI integration within O-RAN deployments. This platform underwent rigorous testing in real-world scenarios, and applied advanced Artificial Intelligence (AI) techniques to improve operational efficiency and customer experience. Implementation involved adopting Development Operations (DevOps) practices, leveraging data lakehouse architectures tailored for AI applications, and employing sophisticated data engineering strategies. The platform successfully addresses connectivity challenges inherent in real-world offshore windfarm deployments using Long Short-Term Memory (LSTM) models for anomaly detection in network connectivity.
Authors:Kamal Berahmand, Saman Forouzandeh, Mehrnoush Mohammadi, Parham Moradi, Mahdi Jalili
Title: AC2L-GAD: Active Counterfactual Contrastive Learning for Graph Anomaly Detection
Abstract:
Graph anomaly detection aims to identify abnormal patterns in networks, but faces significant challenges from label scarcity and extreme class imbalance. While graph contrastive learning offers a promising unsupervised solution, existing methods suffer from two critical limitations: random augmentations break semantic consistency in positive pairs, while naive negative sampling produces trivial, uninformative contrasts. We propose AC2L-GAD, an Active Counterfactual Contrastive Learning framework that addresses both limitations through principled counterfactual reasoning. By combining information-theoretic active selection with counterfactual generation, our approach identifies structurally complex nodes and generates anomaly-preserving positive augmentations alongside normal negative counterparts that provide hard contrasts, while restricting expensive counterfactual generation to a strategically selected subset. This design reduces computational overhead by approximately 65% compared to full-graph counterfactual generation while maintaining detection quality. Experiments on nine benchmark datasets, including real-world financial transaction graphs from GADBench, show that AC2L-GAD achieves competitive or superior performance compared to state-of-the-art baselines, with notable gains in datasets where anomalies exhibit complex attribute-structure interactions.
Authors:Vinoth Punniyamoorthy, Nitin Saksena, Srivenkateswara Reddy Sankiti, Nachiappan Chockalingam, Aswathnarayan Muthukrishnan Kirubakaran, Shiva Kumar Reddy Carimireddy, Durgaraman Maruthavanan
Title: Cognitive Platform Engineering for Autonomous Cloud Operations
Abstract:
Modern DevOps practices have accelerated software delivery through automation, CI/CD pipelines, and observability tooling,but these approaches struggle to keep pace with the scale and dynamism of cloud-native systems. As telemetry volume grows and configuration drift increases, traditional, rule-driven automation often results in reactive operations, delayed remediation, and dependency on manual expertise. This paper introduces Cognitive Platform Engineering, a next-generation paradigm that integrates sensing, reasoning, and autonomous action directly into the platform lifecycle. This paper propose a four-plane reference architecture that unifies data collection, intelligent inference, policy-driven orchestration, and human experience layers within a continuous feedback loop. A prototype implementation built with Kubernetes, Terraform, Open Policy Agent, and ML-based anomaly detection demonstrates improvements in mean time to resolution, resource efficiency, and compliance. The results show that embedding intelligence into platform operations enables resilient, self-adjusting, and intent-aligned cloud environments. The paper concludes with research opportunities in reinforcement learning, explainable governance, and sustainable self-managing cloud ecosystems.
Authors:Chunze Yang, Wenjie Zhao, Yue Tang, Junbo Lu, Jiusong Ge, Qidong Liu, Zeyu Gao, Chen Li
Title: HAAF: Hierarchical Adaptation and Alignment of Foundation Models for Few-Shot Pathology Anomaly Detection
Abstract:
Precision pathology relies on detecting fine-grained morphological abnormalities within specific Regions of Interest (ROIs), as these local, texture-rich cues - rather than global slide contexts - drive expert diagnostic reasoning. While Vision-Language (V-L) models promise data efficiency by leveraging semantic priors, adapting them faces a critical Granularity Mismatch, where generic representations fail to resolve such subtle defects. Current adaptation methods often treat modalities as independent streams, failing to ground semantic prompts in ROI-specific visual contexts. To bridge this gap, we propose the Hierarchical Adaptation and Alignment Framework (HAAF). At its core is a novel Cross-Level Scaled Alignment (CLSA) mechanism that enforces a sequential calibration order: visual features first inject context into text prompts to generate content-adaptive descriptors, which then spatially guide the visual encoder to spotlight anomalies. Additionally, a dual-branch inference strategy integrates semantic scores with geometric prototypes to ensure stability in few-shot settings. Experiments on four benchmarks show HAAF significantly outperforms state-of-the-art methods and effectively scales with domain-specific backbones (e.g., CONCH) in low-resource scenarios.
Authors:P. Sánchez, K. Reyes, B. Radu, E. Fernández
Title: Assesing the Viability of Unsupervised Learning with Autoencoders for Predictive Maintenance in Helicopter Engines
Abstract:
Unplanned engine failures in helicopters can lead to severe operational disruptions, safety hazards, and costly repairs. To mitigate these risks, this study compares two predictive maintenance strategies for helicopter engines: a supervised classification pipeline and an unsupervised anomaly detection approach based on autoencoders (AEs). The supervised method relies on labelled examples of both normal and faulty behaviour, while the unsupervised approach learns a model of normal operation using only healthy engine data, flagging deviations as potential faults. Both methods are evaluated on a real-world dataset comprising labelled snapshots of helicopter engine telemetry. While supervised models demonstrate strong performance when annotated failures are available, the AE achieves effective detection without requiring fault labels, making it particularly well suited for settings where failure data are scarce or incomplete. The comparison highlights the practical trade-offs between accuracy, data availability, and deployment feasibility, and underscores the potential of unsupervised learning as a viable solution for early fault detection in aerospace applications.
Authors:Jiujiu Chen, Weijun Zeng, Shaofeng Hu, Sihong Xie, Hui Xiong
Title: GFM4GA: Graph Foundation Model for Group Anomaly Detection
Abstract:
Group anomaly detection is crucial in many network applications, but faces challenges due to diverse anomaly patterns. Motivated by the success of large language models (LLMs) in natural language processing, graph foundation models (GFMs) is proposed to handle few-shot learning task with fewer labeling efforts. GFMs have been successfully applied to detection of individual anomalies but cannot be generalized to group anomalies, as group anomaly patterns must be detected as a whole and individuals in an abnormal group can look rather normal. Therefore, we propose GFM4GA, a novel graph foundation model for group anomaly detection. The pipeline is pretrained via dual-level contrastive learning based on feature-based estimation and group extraction, to capture potential group anomaly structure and feature inconsistencies. In the downstream tasks, the pipeline is finetuned in parameter-constrained and group-anomaly-proportion weighted few-shot settings, and its adaptive ability to unseen group anomalies expanded via group contexts determined by labeled anomaly neighbors. Experiments show that GFM4GA surpasses group anomaly detectors and GFMs for individual anomalies, achieving average improvements of 2.85% in AUROC and 2.55% in AUPRC.
Authors:Chotanansub Sophaken, Thanadej Rattanakornphan, Piyanon Charoenpoonpanich, Thanapol Phungtua-eng, Chainarong Amornbunchornvej
Title: LGTD: Local-Global Trend Decomposition for Season-Length-Free Time Series Analysis
Abstract:
Time series decomposition into trend, seasonal structure, and residual components is a core primitive for downstream analytics such as anomaly detection, change-point detection, and forecasting. However, most existing seasonal-trend decomposition methods rely on user-specified or estimated season lengths and implicitly assume stable periodic structure. These assumptions limit robustness and deployability in large, heterogeneous collections where recurring patterns may drift, appear intermittently, or exist at multiple time scales. We propose LGTD (Local-Global Trend Decomposition), a season-length-free decomposition framework that represents a time series as the sum of a smooth global trend, adaptive local trends whose recurrence induces implicit (emergent) seasonal structure, and a residual component. Rather than explicitly modeling seasonality through a fixed or estimated period, LGTD treats seasonal structure as an emergent property arising from repeated local trend regimes. Concretely, LGTD first estimates a global trend capturing long-term evolution, then applies AutoTrend, an adaptive error-driven local linear trend inference module, to segment the detrended signal into short-lived piecewise-linear regimes. Residuals are obtained after removing both global and local trends. By eliminating manual season-length specification, LGTD supports automated, low-touch deployment across time series with irregular, drifting, or weakly periodic structure. We analyze computational complexity and show that LGTD scales linearly with series length under mild conditions. Experiments on synthetic benchmarks demonstrate robust and balanced decomposition performance across fixed, transitive, and variable season-length settings, especially where period-based methods degrade.
Authors:Di Su, Kai Ming Ting, Jie Zhang, Xiaorui Zhang, Xinpeng Li
Title: A New Framework for Explainable Rare Cell Identification in Single-Cell Transcriptomics Data
Abstract:
The detection of rare cell types in single-cell transcriptomics data is crucial for elucidating disease pathogenesis and tissue development dynamics. However, a critical gap that persists in current methods is their inability to provide an explanation based on genes for each cell they have detected as rare. We identify three primary sources of this deficiency. First, the anomaly detectors often function as "black boxes", designed to detect anomalies but unable to explain why a cell is anomalous. Second, the standard analytical framework hinders interpretability by relying on dimensionality reduction techniques, such as Principal Component Analysis (PCA), which transform meaningful gene expression data into abstract, uninterpretable features. Finally, existing explanation algorithms cannot be readily applied to this domain, as single-cell data is characterized by high dimensionality, noise, and substantial sparsity. To overcome these limitations, we introduce a framework for explainable anomaly detection in single-cell transcriptomics data which not only identifies individual anomalies, but also provides a visual explanation based on genes that makes an instance anomalous. This framework has two key ingredients that are not existed in current methods applied in this domain. First, it eliminates the PCA step which is deemed to be an essential component in previous studies. Second, it employs the state-of-art anomaly detector and explainer as the efficient and effective means to find each rare cell and the relevant gene subspace in order to provide explanations for each rare cell as well as the typical normal cell associated with the rare cell's closest normal cells.
Authors:Achraf Hsain, Yahya Zaki, Othman Abaakil, Hibat-allah Bekkar, Yousra Chtouki
Title: Tiny Machine Learning for Real-Time Aquaculture Monitoring: A Case Study in Morocco
Abstract:
Aquaculture, the farming of aquatic organisms, is a rapidly growing industry facing challenges such as water quality fluctuations, disease outbreaks, and inefficient feed management. Traditional monitoring methods often rely on manual labor and are time consuming, leading to potential delays in addressing issues. This paper proposes the integration of low-power edge devices using Tiny Machine Learning (TinyML) into aquaculture systems to enable real-time automated monitoring and control, such as collecting data and triggering alarms, and reducing labor requirements. The system provides real-time data on the required parameters such as pH levels, temperature, dissolved oxygen, and ammonia levels to control water quality, nutrient levels, and environmental conditions enabling better maintenance, efficient resource utilization, and optimal management of the enclosed aquaculture space. The system enables alerts in case of anomaly detection. The data collected by the sensors over time can serve for important decision-making regarding optimizing water treatment processes, feed distribution, feed pattern analysis and improve feed efficiency, reducing operational costs. This research explores the feasibility of developing TinyML-based solutions for aquaculture monitoring, considering factors such as sensor selection, algorithm design, hardware constraints, and ethical considerations. By demonstrating the potential benefits of TinyML in aquaculture, our aim is to contribute to the development of more sustainable and efficient farming practices.
Authors:Naiqi Zhang, Chuancheng Shi, Jingtong Dou, Wenhua Wu, Fei Shen, Jianhua Cao
Title: HarmoniAD: Harmonizing Local Structures and Global Semantics for Anomaly Detection
Abstract:
Anomaly detection is crucial in industrial product quality inspection. Failing to detect tiny defects often leads to serious consequences. Existing methods face a structure-semantics trade-off: structure-oriented models (such as frequency-based filters) are noise-sensitive, while semantics-oriented models (such as CLIP-based encoders) often miss fine details. To address this, we propose HarmoniAD, a frequency-guided dual-branch framework. Features are first extracted by the CLIP image encoder, then transformed into the frequency domain, and finally decoupled into high- and low-frequency paths for complementary modeling of structure and semantics. The high-frequency branch is equipped with a fine-grained structural attention module (FSAM) to enhance textures and edges for detecting small anomalies, while the low-frequency branch uses a global structural context module (GSCM) to capture long-range dependencies and preserve semantic consistency. Together, these branches balance fine detail and global semantics. HarmoniAD further adopts a multi-class joint training strategy, and experiments on MVTec-AD, VisA, and BTAD show state-of-the-art performance with both sensitivity and robustness.
Authors:Bertrand Rouet-Leduc, Claudia Hulbert
Title: Anomaly detection in satellite imagery through temporal inpainting
Abstract:
Detecting surface changes from satellite imagery is critical for rapid disaster response and environmental monitoring, yet remains challenging due to the complex interplay between atmospheric noise, seasonal variations, and sensor artifacts. Here we show that deep learning can leverage the temporal redundancy of satellite time series to detect anomalies at unprecedented sensitivity, by learning to predict what the surface should look like in the absence of change. We train an inpainting model built upon the SATLAS foundation model to reconstruct the last frame of a Sentinel-2 time series from preceding acquisitions, using globally distributed training data spanning diverse climate zones and land cover types. When applied to regions affected by sudden surface changes, the discrepancy between prediction and observation reveals anomalies that traditional change detection methods miss. We validate our approach on earthquake-triggered surface ruptures from the 2023 Turkey-Syria earthquake sequence, demonstrating detection of a rift feature in Tepehan with higher sensitivity and specificity than temporal median or Reed-Xiaoli anomaly detectors. Our method reaches detection thresholds approximately three times lower than baseline approaches, providing a path towards automated, global-scale monitoring of surface changes from freely available multi-spectral satellite data.
Authors:Nachiappan Chockalingam, Akshay Deshpande, Lokesh Butra, Ram Sekhar Bodala, Nitin Saksena, Adithya Parthasarathy, Balakrishna Pothineni, Akash Kumar Agarwal
Title: Scalable Cloud-Native Architectures for Intelligent PMU Data Processing
Abstract:
Phasor Measurement Units (PMUs) generate high-frequency, time-synchronized data essential for real-time power grid monitoring, yet the growing scale of PMU deployments creates significant challenges in latency, scalability, and reliability. Conventional centralized processing architectures are increasingly unable to handle the volume and velocity of PMU data, particularly in modern grids with dynamic operating conditions. This paper presents a scalable cloud-native architecture for intelligent PMU data processing that integrates artificial intelligence with edge and cloud computing. The proposed framework employs distributed stream processing, containerized microservices, and elastic resource orchestration to enable low-latency ingestion, real-time anomaly detection, and advanced analytics. Machine learning models for time-series analysis are incorporated to enhance grid observability and predictive capabilities. Analytical models are developed to evaluate system latency, throughput, and reliability, showing that the architecture can achieve sub-second response times while scaling to large PMU deployments. Security and privacy mechanisms are embedded to support deployment in critical infrastructure environments. The proposed approach provides a robust and flexible foundation for next-generation smart grid analytics.
Authors:Ning Lyu, Junjie Jiang, Lu Chang, Chihui Shao, Feng Chen, Chong Zhang
Title: Improving Pattern Recognition of Scheduling Anomalies through Structure-Aware and Semantically-Enhanced Graphs
Abstract:
This paper proposes a structure-aware driven scheduling graph modeling method to improve the accuracy and representation capability of anomaly identification in scheduling behaviors of complex systems. The method first designs a structure-guided scheduling graph construction mechanism that integrates task execution stages, resource node states, and scheduling path information to build dynamically evolving scheduling behavior graphs, enhancing the model's ability to capture global scheduling relationships. On this basis, a multi-scale graph semantic aggregation module is introduced to achieve semantic consistency modeling of scheduling features through local adjacency semantic integration and global topology alignment, thereby strengthening the model's capability to capture abnormal features in complex scenarios such as multi-task concurrency, resource competition, and stage transitions. Experiments are conducted on a real scheduling dataset with multiple scheduling disturbance paths set to simulate different types of anomalies, including structural shifts, resource changes, and task delays. The proposed model demonstrates significant performance advantages across multiple metrics, showing a sensitive response to structural disturbances and semantic shifts. Further visualization analysis reveals that, under the combined effect of structure guidance and semantic aggregation, the scheduling behavior graph exhibits stronger anomaly separability and pattern representation, validating the effectiveness and adaptability of the method in scheduling anomaly detection tasks.
Authors:El Kindi Rezig, Mir Mahathir Mohammad, Nicolas Baret, Ricardo Mayerhofer, Andrew McNutt, Paul Rosen
Title: Towards Scalable Visual Data Wrangling via Direct Manipulation
Abstract:
Data wrangling - the process of cleaning, transforming, and preparing data for analysis - is a well-known bottleneck in data science workflows. Existing tools either rely on manual scripting, which is error-prone and hard to debug, or automate cleaning through opaque black-box pipelines that offer limited control. We present Buckaroo, a scalable visual data wrangling system that restructures data preparation as a direct manipulation task over visualizations. Buckaroo enables users to explore and repair data anomalies - such as missing values, outliers, and type mismatches - by interacting directly with coordinated data visualizations. The system extensibly supports user-defined error detectors and wranglers, tracks provenance for undo/redo, and generates reproducible scripts for downstream tasks. Buckaroo maintains efficient indexing data structures and differential storage to localize anomaly detection and minimize recomputation. To demonstrate the applicability of our model, Buckaroo is integrated with the \textit{Hopara} pan-and-zoom engine, which enables multi-layered navigation over large datasets without sacrificing interactivity. Through empirical evaluation and an expert review, we show that Buckaroo makes visual data wrangling scalable - bridging the gap between visual inspection and programmable repairs.
Authors:Mohammad Zolfaghari, Hedieh Sajedi
Title: Unsupervised Anomaly Detection with an Enhanced Teacher for Student-Teacher Feature Pyramid Matching
Abstract:
Anomaly detection or outlier is one of the challenging subjects in unsupervised learning . This paper is introduced a student-teacher framework for anomaly detection that its teacher network is enhanced for achieving high-performance metrics . For this purpose , we first pre-train the ResNet-18 network on the ImageNet and then fine-tune it on the MVTech-AD dataset . Experiment results on the image-level and pixel-level demonstrate that this idea has achieved better metrics than the previous methods . Our model , Enhanced Teacher for Student-Teacher Feature Pyramid (ET-STPM), achieved 0.971 mean accuracy on the image-level and 0.977 mean accuracy on the pixel-level for anomaly detection.
Authors:Anita Graser, Axel Weißenfeld, Clemens Heistracher, Melitta Dragaschnig, Peter Widhalm
Title: Federated Learning for Anomaly Detection in Maritime Movement Data
Abstract:
This paper introduces M3fed, a novel solution for federated learning of movement anomaly detection models. This innovation has the potential to improve data privacy and reduce communication costs in machine learning for movement anomaly detection. We present the novel federated learning (FL) strategies employed to train M3fed, perform an example experiment with maritime AIS data, and evaluate the results with respect to communication costs and FL model quality by comparing classic centralized M3 and the new federated M3fed.
Authors:Giles Winchester, George Parisis, Luc Berthouze
Title: FC-ADL: Efficient Microservice Anomaly Detection and Localisation Through Functional Connectivity
Abstract:
Microservices have transformed software architecture through the creation of modular and independent services. However, they introduce operational complexities in service integration and system management that makes swift and accurate anomaly detection and localisation challenging. Despite the complex, dynamic, and interconnected nature of microservice architectures, prior works that investigate metrics for anomaly detection rarely include explicit information about time-varying interdependencies. And whilst prior works on fault localisation typically do incorporate information about dependencies between microservices, they scale poorly to real world large-scale deployments due to their reliance on computationally expensive causal inference. To address these challenges we propose FC-ADL, an end-to-end scalable approach for detecting and localising anomalous changes from microservice metrics based on the neuroscientific concept of functional connectivity. We show that by efficiently characterising time-varying changes in dependencies between microservice metrics we can both detect anomalies and provide root cause candidates without incurring the significant overheads of causal and multivariate approaches. We demonstrate that our approach can achieve top detection and localisation performance across a wide degree of different fault scenarios when compared to state-of-the-art approaches. Furthermore, we illustrate the scalability of our approach by applying it to Alibaba's extremely large real-world microservice deployment.
Authors:Runzhi Deng, Yundi Hu, Xinshuang Zhang, Zhao Wang, Xixi Liu, Wang-Zhou Dai, Caifeng Shan, Fang Zhao
Title: ABounD: Adversarial Boundary-Driven Few-Shot Learning for Multi-Class Anomaly Detection
Abstract:
Few-shot multi-class industrial anomaly detection remains a challenging task. Vision-language models need to be both category-adaptive and sharply discriminative, yet data scarcity often blurs the boundary between normal and abnormal states. This ambiguity leads to missed subtle defects and the rejection of atypical normal samples. We propose ABounD, an Adversarial Boundary-Driven few-shot learning for multi-class anomaly detection, which is a unified learning framework that integrates semantic concept learning with decision boundary shaping. The Dynamic Concept Fusion (DCF) module produces class-adaptive prompts by fusing generalizable priors with class-specific cues, conditioned on image features. Meanwhile, Adversarial Boundary Forging (ABF) sculpts a more precise decision margin by generating boundary-level fence features via PGD-style perturbations. Training is conducted in a single stage under a Concept-Boundary Loss, where ABF provides the main supervisory signal and semantic-spatial regularizers stabilize the optimization. This synergy yields a decision boundary that closely follows normal data while preserving flexibility and robust semantic alignment. Experiments on MVTec-AD and VisA datasets demonstrate state-of-the-art performance in the task of few-shot multi-class anomaly detection.
Authors:Xiancheng Wang, Lin Wang, Rui Wang, Zhibo Zhang, Minghang Zhao
Title: Fourier-KAN-Mamba: A Novel State-Space Equation Approach for Time-Series Anomaly Detection
Abstract:
Time-series anomaly detection plays a critical role in numerous real-world applications, including industrial monitoring and fault diagnosis. Recently, Mamba-based state-space models have shown remarkable efficiency in long-sequence modeling. However, directly applying Mamba to anomaly detection tasks still faces challenges in capturing complex temporal patterns and nonlinear dynamics. In this paper, we propose Fourier-KAN-Mamba, a novel hybrid architecture that integrates Fourier layer, Kolmogorov-Arnold Networks (KAN), and Mamba selective state-space model. The Fourier layer extracts multi-scale frequency features, KAN enhances nonlinear representation capability, and a temporal gating control mechanism further improves the model's ability to distinguish normal and anomalous patterns. Extensive experiments on MSL, SMAP, and SWaT datasets demonstrate that our method significantly outperforms existing state-of-the-art approaches. Keywords: time-series anomaly detection, state-space model, Mamba, Fourier transform, Kolmogorov-Arnold Network
Authors:Yuqiang Lin, Sam Lockyer, Florian Stanek, Markus Zarbock, Adrian Evans, Wenbin Li, Nic Zhang
Title: SAE-MCVT: A Real-Time and Scalable Multi-Camera Vehicle Tracking Framework Powered by Edge Computing
Abstract:
In modern Intelligent Transportation Systems (ITS), cameras are a key component due to their ability to provide valuable information for multiple stakeholders. A central task is Multi-Camera Vehicle Tracking (MCVT), which generates vehicle trajectories and enables applications such as anomaly detection, traffic density estimation, and suspect vehicle tracking. However, most existing studies on MCVT emphasize accuracy while overlooking real-time performance and scalability. These two aspects are essential for real-world deployment and become increasingly challenging in city-scale applications as the number of cameras grows. To address this issue, we propose SAE-MCVT, the first scalable real-time MCVT framework. The system includes several edge devices that interact with one central workstation separately. On the edge side, live RTSP video streams are serialized and processed through modules including object detection, object tracking, geo-mapping, and feature extraction. Only lightweight metadata -- vehicle locations and deep appearance features -- are transmitted to the central workstation. On the central side, cross-camera association is calculated under the constraint of spatial-temporal relations between adjacent cameras, which are learned through a self-supervised camera link model. Experiments on the RoundaboutHD dataset show that SAE-MCVT maintains real-time operation on 2K 15 FPS video streams and achieves an IDF1 score of 61.2. To the best of our knowledge, this is the first scalable real-time MCVT framework suitable for city-scale deployment.
Authors:Junhee Lee, ChaeBeen Bang, MyoungChul Kim, MyeongAh Cho
Title: RefineVAD: Semantic-Guided Feature Recalibration for Weakly Supervised Video Anomaly Detection
Abstract:
Weakly-Supervised Video Anomaly Detection aims to identify anomalous events using only video-level labels, balancing annotation efficiency with practical applicability. However, existing methods often oversimplify the anomaly space by treating all abnormal events as a single category, overlooking the diverse semantic and temporal characteristics intrinsic to real-world anomalies. Inspired by how humans perceive anomalies, by jointly interpreting temporal motion patterns and semantic structures underlying different anomaly types, we propose RefineVAD, a novel framework that mimics this dual-process reasoning. Our framework integrates two core modules. The first, Motion-aware Temporal Attention and Recalibration (MoTAR), estimates motion salience and dynamically adjusts temporal focus via shift-based attention and global Transformer-based modeling. The second, Category-Oriented Refinement (CORE), injects soft anomaly category priors into the representation space by aligning segment-level features with learnable category prototypes through cross-attention. By jointly leveraging temporal dynamics and semantic structure, explicitly models both "how" motion evolves and "what" semantic category it resembles. Extensive experiments on WVAD benchmark validate the effectiveness of RefineVAD and highlight the importance of integrating semantic context to guide feature refinement toward anomaly-relevant patterns.
Authors:Pratik Jawahar, Caterina Doglioni, Maurizio Pierini
Title: Knowledge is Overrated: A zero-knowledge machine learning and cryptographic hashing-based framework for verifiable, low latency inference at the LHC
Abstract:
Low latency event-selection (trigger) algorithms are essential components of Large Hadron Collider (LHC) operation. Modern machine learning (ML) models have shown great offline performance as classifiers and could improve trigger performance, thereby improving downstream physics analyses. However, inference on such large models does not satisfy the $40\text{MHz}$ online latency constraint at the LHC. In this work, we propose \texttt{PHAZE}, a novel framework built on cryptographic techniques like hashing and zero-knowledge machine learning (zkML) to achieve low latency inference, via a certifiable, early-exit mechanism from an arbitrarily large baseline model. We lay the foundations for such a framework to achieve nanosecond-order latency and discuss its inherent advantages, such as built-in anomaly detection, within the scope of LHC triggers, as well as its potential to enable a dynamic low-level trigger in the future.
Authors:Alex George, Lyudmila Mihaylova, Sean Anderson
Title: Explainable Deep Convolutional Multi-Type Anomaly Detection
Abstract:
Most explainable anomaly detection methods often identify anomalies but lack the capability to differentiate the type of anomaly. Furthermore, they often require the costly training and maintenance of separate models for each object category. The lack of specificity is a significant research gap, as identifying the type of anomaly (e.g., "Crack" vs. "Scratch") is crucial for accurate diagnosis that facilitates cost-saving operational decisions across diverse application domains. While some recent large-scale Vision-Language Models (VLMs) have begun to address this, they are computationally intensive and memory-heavy, restricting their use in real-time or embedded systems. We propose MultiTypeFCDD, a simple and lightweight convolutional framework designed as a practical alternative for explainable multi-type anomaly detection. MultiTypeFCDD uses only image-level labels to learn and produce multi-channel heatmaps, where each channel is trained to correspond to a specific anomaly type. The model functions as a single, unified framework capable of differentiating anomaly types across multiple object categories, eliminating the need to train and manage separate models for each object category. We evaluated our proposed method on the Real-IAD dataset and it delivers results competitive with state-of-the-art complex models at significantly reduced parametric load and inference times. This makes it a highly practical and viable solution for real-world applications where computational resources are tightly constrained.
Authors:Jinbo Li, Hesam Izakian, Witold Pedrycz, Iqbal Jamal
Title: Clustering-based Anomaly Detection in Multivariate Time Series Data
Abstract:
Multivariate time series data come as a collection of time series describing different aspects of a certain temporal phenomenon. Anomaly detection in this type of data constitutes a challenging problem yet with numerous applications in science and engineering because anomaly scores come from the simultaneous consideration of the temporal and variable relationships. In this paper, we propose a clustering-based approach to detect anomalies concerning the amplitude and the shape of multivariate time series. First, we use a sliding window to generate a set of multivariate subsequences and thereafter apply an extended fuzzy clustering to reveal a structure present within the generated multivariate subsequences. Finally, a reconstruction criterion is employed to reconstruct the multivariate subsequences with the optimal cluster centers and the partition matrix. We construct a confidence index to quantify a level of anomaly detected in the series and apply Particle Swarm Optimization as an optimization vehicle for the problem of anomaly detection. Experimental studies completed on several synthetic and six real-world datasets suggest that the proposed methods can detect the anomalies in multivariate time series. With the help of available clusters revealed by the extended fuzzy clustering, the proposed framework can detect anomalies in the multivariate time series and is suitable for identifying anomalous amplitude and shape patterns in various application domains such as health care, weather data analysis, finance, and disease outbreak detection.
Authors:Jinbo Li, Witold Pedrycz, Iqbal Jamal
Title: Multivariate Time series Anomaly Detection:A Framework of Hidden Markov Models
Abstract:
In this study, we develop an approach to multivariate time series anomaly detection focused on the transformation of multivariate time series to univariate time series. Several transformation techniques involving Fuzzy C-Means (FCM) clustering and fuzzy integral are studied. In the sequel, a Hidden Markov Model (HMM), one of the commonly encountered statistical methods, is engaged here to detect anomalies in multivariate time series. We construct HMM-based anomaly detectors and in this context compare several transformation methods. A suite of experimental studies along with some comparative analysis is reported.
Authors:Himanshu Pal, Venkata Sai Pranav Bachina, Ankit Gangwal, Charu Sharma
Title: LoReTTA: A Low Resource Framework To Poison Continuous Time Dynamic Graphs
Abstract:
Temporal Graph Neural Networks (TGNNs) are increasingly used in high-stakes domains, such as financial forecasting, recommendation systems, and fraud detection. However, their susceptibility to poisoning attacks poses a critical security risk. We introduce LoReTTA (Low Resource Two-phase Temporal Attack), a novel adversarial framework on Continuous-Time Dynamic Graphs, which degrades TGNN performance by an average of 29.47% across 4 widely benchmark datasets and 4 State-of-the-Art (SotA) models. LoReTTA operates through a two-stage approach: (1) sparsify the graph by removing high-impact edges using any of the 16 tested temporal importance metrics, (2) strategically replace removed edges with adversarial negatives via LoReTTA's novel degree-preserving negative sampling algorithm. Our plug-and-play design eliminates the need for expensive surrogate models while adhering to realistic unnoticeability constraints. LoReTTA degrades performance by upto 42.0% on MOOC, 31.5% on Wikipedia, 28.8% on UCI, and 15.6% on Enron. LoReTTA outperforms 11 attack baselines, remains undetectable to 4 leading anomaly detection systems, and is robust to 4 SotA adversarial defense training methods, establishing its effectiveness, unnoticeability, and robustness.
Authors:Rahul Mishra, Sudhanshu Kumar Jha, Omar Faruq Osama, Bishnu Bhusal, Sneha Sudhakaran, Naresh Kshetri
Title: An Efficient Anomaly Detection Framework for Wireless Sensor Networks Using Markov Process
Abstract:
Wireless Sensor Networks forms the backbone of modern cyber physical systems used in various applications such as environmental monitoring, healthcare monitoring, industrial automation, and smart infrastructure. Ensuring the reliability of data collected through these networks is essential as these data may contain anomalies due to many reasons such as sensor faults, environmental disturbances, or malicious intrusions. In this paper a lightweight and interpretable anomaly detection framework based on a first order Markov chain model has been proposed. The method discretizes continuous sensor readings into finite states and models the temporal dynamics of sensor transitions through a transition probability matrix. Anomalies are detected when observed transitions occur with probabilities below a computed threshold, allowing for real time detection without labeled data or intensive computation. The proposed framework was validated using the Intel Berkeley Research Lab dataset, as a case study on indoor environmental monitoring demonstrates its capability to identify thermal spikes, voltage related faults, and irregular temperature fluctuations with high precision. Comparative analysis with Z score, Hidden Markov Model, and Auto encoder based methods shows that the proposed Markov based framework achieves a balanced trade-off between accuracy, F1 score is 0.86, interoperability, and computational efficiency. The systems scalability and low resource footprint highlight its suitability for large-scale and real time anomaly detection in WSN deployments.
Authors:James Josep Perry, Pablo Garcia-Conde Ortiz, George Konstantinou, Cornelie Vergouwen, Edlyn Santha Kumaran, Morteza Moradi
Title: Semi-supervised and unsupervised learning for health indicator extraction from guided waves in aerospace composite structures
Abstract:
Health indicators (HIs) are central to diagnosing and prognosing the condition of aerospace composite structures, enabling efficient maintenance and operational safety. However, extracting reliable HIs remains challenging due to variability in material properties, stochastic damage evolution, and diverse damage modes. Manufacturing defects (e.g., disbonds) and in-service incidents (e.g., bird strikes) further complicate this process. This study presents a comprehensive data-driven framework that learns HIs via two learning approaches integrated with multi-domain signal processing. Because ground-truth HIs are unavailable, a semi-supervised and an unsupervised approach are proposed: (i) a diversity deep semi-supervised anomaly detection (Diversity-DeepSAD) approach augmented with continuous auxiliary labels used as hypothetical damage proxies, which overcomes the limitation of prior binary labels that only distinguish healthy and failed states while neglecting intermediate degradation, and (ii) a degradation-trend-constrained variational autoencoder (DTC-VAE), in which the monotonicity criterion is embedded via an explicit trend constraint. Guided waves with multiple excitation frequencies are used to monitor single-stiffener composite structures under fatigue loading. Time, frequency, and time-frequency representations are explored, and per-frequency HIs are fused via unsupervised ensemble learning to mitigate frequency dependence and reduce variance. Using fast Fourier transform features, the augmented Diversity-DeepSAD model achieved 81.6% performance, while DTC-VAE delivered the most consistent HIs with 92.3% performance, outperforming existing baselines.
Authors:Christopher J. Hazard, Michael Resnick, Jacob Beel, Jack Xia, Cade Mack, Dominic Glennie, Matthew Fulp, David Maze, Andrew Bassett, Martin Koistinen
Title: A Theory of the Mechanics of Information: Generalization Through Measurement of Uncertainty (Learning is Measuring)
Abstract:
Traditional machine learning relies on explicit models and domain assumptions, limiting flexibility and interpretability. We introduce a model-free framework using surprisal (information theoretic uncertainty) to directly analyze and perform inferences from raw data, eliminating distribution modeling, reducing bias, and enabling efficient updates including direct edits and deletion of training data. By quantifying relevance through uncertainty, the approach enables generalizable inference across tasks including generative inference, causal discovery, anomaly detection, and time series forecasting. It emphasizes traceability, interpretability, and data-driven decision making, offering a unified, human-understandable framework for machine learning, and achieves at or near state-of-the-art performance across most common machine learning tasks. The mathematical foundations create a ``physics'' of information, which enable these techniques to apply effectively to a wide variety of complex data types, including missing data. Empirical results indicate that this may be a viable alternative path to neural networks with regard to scalable machine learning and artificial intelligence that can maintain human understandability of the underlying mechanics.
Authors:Devon A. Kelly, Christiana Chamon
Title: Adapting Noise-Driven PUF and AI for Secure WBG ICS: A Proof-of-Concept Study
Abstract:
Wide-bandgap (WBG) technologies offer unprecedented improvements in power system efficiency, size, and performance, but also introduce unique sensor corruption and cybersecurity risks in industrial control systems (ICS), particularly due to high-frequency noise and sophisticated cyber-physical threats. This proof-of-concept (PoC) study demonstrates the adaptation of a noise-driven physically unclonable function (PUF) and machine learning (ML)-assisted anomaly detection framework to the demanding environment of WBG-based ICS sensor pathways. By extracting entropy from unavoidable WBG switching noise (up to 100 kHz) as a PUF source, and simultaneously using this noise as a real-time threat indicator, the proposed system unites hardware-level authentication and anomaly detection. Our approach integrates hybrid machine learning (ML) models with adaptive Bayesian filtering, providing robust and low-latency detection capabilities resilient to both natural electromagnetic interference (EMI) and active adversarial manipulation. Through detailed simulations of WBG modules under benign and attack scenarios--including EMI injection, signal tampering, and node impersonation--we achieve 95% detection accuracy and sub-millisecond processing latency. These results demonstrate the feasibility of physics-driven, dual-use noise exploitation as a scalable ICS defense primitive. Our findings lay the groundwork for next-generation security strategies that leverage inherent device characteristics, bridging hardware and artificial intelligence (AI) for enhanced protection of critical ICS infrastructure.
Authors:Mohammad Ali Etemadi Naeen, Hoda Mohammadzade, Saeed Bagheri Shouraki
Title: Human-Centric Anomaly Detection in Surveillance Videos Using YOLO-World and Spatio-Temporal Deep Learning
Abstract:
Anomaly detection in surveillance videos remains a challenging task due to the diversity of abnormal events, class imbalance, and scene-dependent visual clutter. To address these issues, we propose a robust deep learning framework that integrates human-centric preprocessing with spatio-temporal modeling for multi-class anomaly classification. Our pipeline begins by applying YOLO-World - an open-vocabulary vision-language detector - to identify human instances in raw video clips, followed by ByteTrack for consistent identity-aware tracking. Background regions outside detected bounding boxes are suppressed via Gaussian blurring, effectively reducing scene-specific distractions and focusing the model on behaviorally relevant foreground content. The refined frames are then processed by an ImageNet-pretrained InceptionV3 network for spatial feature extraction, and temporal dynamics are captured using a bidirectional LSTM (BiLSTM) for sequence-level classification. Evaluated on a five-class subset of the UCF-Crime dataset (Normal, Burglary, Fighting, Arson, Explosion), our method achieves a mean test accuracy of 92.41% across three independent trials, with per-class F1-scores consistently exceeding 0.85. Comprehensive evaluation metrics - including confusion matrices, ROC curves, and macro/weighted averages - demonstrate strong generalization and resilience to class imbalance. The results confirm that foreground-focused preprocessing significantly enhances anomaly discrimination in real-world surveillance scenarios.
Authors:Kellen Parker van Dam, Abishek Stephen
Title: Automated Quality Control for Language Documentation: Detecting Phonotactic Inconsistencies in a Kokborok Wordlist
Abstract:
Lexical data collection in language documentation often contains transcription errors and undocumented borrowings that can mislead linguistic analysis. We present unsupervised anomaly detection methods to identify phonotactic inconsistencies in wordlists, applying them to a multilingual dataset of Kokborok varieties with Bangla. Using character-level and syllable-level phonotactic features, our algorithms identify potential transcription errors and borrowings. While precision and recall remain modest due to the subtle nature of these anomalies, syllable-aware features significantly outperform character-level baselines. The high-recall approach provides fieldworkers with a systematic method to flag entries requiring verification, supporting data quality improvement in low-resourced language documentation.
Authors:Dongchan Cho, Jiho Han, Keumyeong Kang, Minsang Kim, Honggyu Ryu, Namsoon Jung
Title: Structured Temporal Causality for Interpretable Multivariate Time Series Anomaly Detection
Abstract:
Real-world multivariate time series anomalies are rare and often unlabeled. Additionally, prevailing methods rely on increasingly complex architectures tuned to benchmarks, detecting only fragments of anomalous segments and overstating performance. In this paper, we introduce OracleAD, a simple and interpretable unsupervised framework for multivariate time series anomaly detection. OracleAD encodes each variable's past sequence into a single causal embedding to jointly predict the present time point and reconstruct the input window, effectively modeling temporal dynamics. These embeddings then undergo a self-attention mechanism to project them into a shared latent space and capture spatial relationships. These relationships are not static, since they are modeled by a property that emerges from each variable's temporal dynamics. The projected embeddings are aligned to a Stable Latent Structure (SLS) representing normal-state relationships. Anomalies are identified using a dual scoring mechanism based on prediction error and deviation from the SLS, enabling fine-grained anomaly diagnosis at each time point and across individual variables. Since any noticeable SLS deviation originates from embeddings that violate the learned temporal causality of normal data, OracleAD directly pinpoints the root-cause variables at the embedding level. OracleAD achieves state-of-the-art results across multiple real-world datasets and evaluation protocols, while remaining interpretable through SLS.
Authors:Akib Mohammed Khan, Bartosz Krawczyk
Title: Towards Adversarial Robustness and Uncertainty Quantification in DINOv2-based Few-Shot Anomaly Detection
Abstract:
Foundation models such as DINOv2 have shown strong performance in few-shot anomaly detection, yet two key questions remain unexamined: (i) how susceptible are these detectors to adversarial perturbations; and (ii) how well do their anomaly scores reflect calibrated uncertainty? Building on AnomalyDINO, a training-free deep nearest-neighbor detector over DINOv2 features, we present one of the first systematic studies of adversarial attacks and uncertainty estimation in this setting. To enable white-box gradient attacks while preserving test-time behavior, we attach a lightweight linear head to frozen DINOv2 features only for crafting perturbations. Using this heuristic, we evaluate the impact of FGSM across the MVTec-AD and VisA datasets and observe consistent drops in F1, AUROC, AP, and G-mean, indicating that imperceptible perturbations can flip nearest-neighbor relations in feature space to induce confident misclassification. Complementing robustness, we probe reliability and find that raw anomaly scores are poorly calibrated, revealing a gap between confidence and correctness that limits safety-critical use. As a simple, strong baseline toward trustworthiness, we apply post-hoc Platt scaling to the anomaly scores for uncertainty estimation. The resulting calibrated posteriors yield significantly higher predictive entropy on adversarially perturbed inputs than on clean ones, enabling a practical flagging mechanism for attack detection while reducing calibration error (ECE). Our findings surface concrete vulnerabilities in DINOv2-based few-shot anomaly detectors and establish an evaluation protocol and baseline for robust, uncertainty-aware anomaly detection. We argue that adversarial robustness and principled uncertainty quantification are not optional add-ons but essential capabilities if anomaly detection systems are to be trustworthy and ready for real-world deployment.
Authors:Amirhossein Mozafari, Kourosh Hashemi, Erfan Shafagh, Soroush Motamedi, Azar Taheri Tayebi, Mohammad A. Tayebi
Title: CleverCatch: A Knowledge-Guided Weak Supervision Model for Fraud Detection
Abstract:
Healthcare fraud detection remains a critical challenge due to limited availability of labeled data, constantly evolving fraud tactics, and the high dimensionality of medical records. Traditional supervised methods are challenged by extreme label scarcity, while purely unsupervised approaches often fail to capture clinically meaningful anomalies. In this work, we introduce CleverCatch, a knowledge-guided weak supervision model designed to detect fraudulent prescription behaviors with improved accuracy and interpretability. Our approach integrates structured domain expertise into a neural architecture that aligns rules and data samples within a shared embedding space. By training encoders jointly on synthetic data representing both compliance and violation, CleverCatch learns soft rule embeddings that generalize to complex, real-world datasets. This hybrid design enables data-driven learning to be enhanced by domain-informed constraints, bridging the gap between expert heuristics and machine learning. Experiments on the large-scale real-world dataset demonstrate that CleverCatch outperforms four state-of-the-art anomaly detection baselines, yielding average improvements of 1.3\% in AUC and 3.4\% in recall. Our ablation study further highlights the complementary role of expert rules, confirming the adaptability of the framework. The results suggest that embedding expert rules into the learning process not only improves detection accuracy but also increases transparency, offering an interpretable approach for high-stakes domains such as healthcare fraud detection.
Authors:V. S. Usatyuk, D. A. Sapozhnikov, S. I. Egorov
Title: Synthetic Image Detection via Spectral Gaps of QC-RBIM Nishimori Bethe-Hessian Operators
Abstract:
The rapid advance of deep generative models such as GANs and diffusion networks now produces images that are virtually indistinguishable from genuine photographs, undermining media forensics and biometric security. Supervised detectors quickly lose effectiveness on unseen generators or after adversarial post-processing, while existing unsupervised methods that rely on low-level statistical cues remain fragile. We introduce a physics-inspired, model-agnostic detector that treats synthetic-image identification as a community-detection problem on a sparse weighted graph. Image features are first extracted with pretrained CNNs and reduced to 32 dimensions, each feature vector becomes a node of a Multi-Edge Type QC-LDPC graph. Pairwise similarities are transformed into edge couplings calibrated at the Nishimori temperature, producing a Random Bond Ising Model (RBIM) whose Bethe-Hessian spectrum exhibits a characteristic gap when genuine community structure (real images) is present. Synthetic images violate the Nishimori symmetry and therefore lack such gaps. We validate the approach on binary tasks cat versus dog and male versus female using real photos from Flickr-Faces-HQ and CelebA and synthetic counterparts generated by GANs and diffusion models. Without any labeled synthetic data or retraining of the feature extractor, the detector achieves over 94% accuracy. Spectral analysis shows multiple well separated gaps for real image sets and a collapsed spectrum for generated ones. Our contributions are threefold: a novel LDPC graph construction that embeds deep image features, an analytical link between Nishimori temperature RBIM and the Bethe-Hessian spectrum providing a Bayes optimal detection criterion; and a practical, unsupervised synthetic image detector robust to new generative architectures. Future work will extend the framework to video streams and multi-class anomaly detection.
Authors:Ryan Faulkner, Luke Haub, Simon Ratcliffe, Tat-Jun Chin
Title: Finding Outliers in a Haystack: Anomaly Detection for Large Pointcloud Scenes
Abstract:
LiDAR scanning in outdoor scenes acquires accurate distance measurements over wide areas, producing large-scale point clouds. Application examples for this data include robotics, automotive vehicles, and land surveillance. During such applications, outlier objects from outside the training data will inevitably appear. Our research contributes a novel approach to open-set segmentation, leveraging the learnings of object defect-detection research. We also draw on the Mamba architecture's strong performance in utilising long-range dependencies and scalability to large data. Combining both, we create a reconstruction based approach for the task of outdoor scene open-set segmentation. We show that our approach improves performance not only when applied to our our own open-set segmentation method, but also when applied to existing methods. Furthermore we contribute a Mamba based architecture which is competitive with existing voxel-convolution based methods on challenging, large-scale pointclouds.
Authors:Pi-Wei Chen, Jerry Chun-Wei Lin, Wei-Han Chen, Jia Ji, Zih-Ching Chen, Feng-Hao Yeh, Chao-Chun Chen
Title: Beyond Human-prompting: Adaptive Prompt Tuning with Semantic Alignment for Anomaly Detection
Abstract:
Pre-trained Vision-Language Models (VLMs) have recently shown promise in detecting anomalies. However, previous approaches are fundamentally limited by their reliance on human-designed prompts and the lack of accessible anomaly samples, leading to significant gaps in context-specific anomaly understanding. In this paper, we propose \textbf{A}daptive \textbf{P}rompt \textbf{T}uning with semantic alignment for anomaly detection (APT), a groundbreaking prior knowledge-free, few-shot framework and overcomes the limitations of traditional prompt-based approaches. APT uses self-generated anomaly samples with noise perturbations to train learnable prompts that capture context-dependent anomalies in different scenarios. To prevent overfitting to synthetic noise, we propose a Self-Optimizing Meta-prompt Guiding Scheme (SMGS) that iteratively aligns the prompts with general anomaly semantics while incorporating diverse synthetic anomaly. Our system not only advances pixel-wise anomaly detection, but also achieves state-of-the-art performance on multiple benchmark datasets without requiring prior knowledge for prompt crafting, establishing a robust and versatile solution for real-world anomaly detection.
Authors:Julia Boone, Fatemeh Afghah
Title: Securing Swarms: Cross-Domain Adaptation for ROS2-based CPS Anomaly Detection
Abstract:
Cyber-physical systems (CPS) are being increasingly utilized for critical applications. CPS combines sensing and computing elements, often having multi-layer designs with networking, computational, and physical interfaces, which provide them with enhanced capabilities for a variety of application scenarios. However, the combination of physical and computational elements also makes CPS more vulnerable to attacks compared to network-only systems, and the resulting impacts of CPS attacks can be substantial. Intelligent intrusion detection systems (IDS) are an effective mechanism by which CPS can be secured, but the majority of current solutions often train and validate on network traffic-only datasets, ignoring the distinct attacks that may occur on other system layers. In order to address this, we develop an adaptable CPS anomaly detection model that can detect attacks within CPS without the need for previously labeled data. To achieve this, we utilize domain adaptation techniques that allow us to transfer known attack knowledge from a network traffic-only environment to a CPS environment. We validate our approach using a state-of-the-art CPS intrusion dataset that combines network, operating system (OS), and Robot Operating System (ROS) data. Through this dataset, we are able to demonstrate the effectiveness of our model across network traffic-only and CPS environments with distinct attack types and its ability to outperform other anomaly detection methods.
Authors:Nooshin Bahador, Milad Lankarany
Title: Semi-Supervised Anomaly Detection Pipeline for SOZ Localization Using Ictal-Related Chirp
Abstract:
This study presents a quantitative framework for evaluating the spatial concordance between clinically defined seizure onset zones (SOZs) and statistically anomalous channels identified through time-frequency analysis of chirp events. The proposed pipeline employs a two-step methodology: (1) Unsupervised Outlier Detection, where Local Outlier Factor (LOF) analysis with adaptive neighborhood selection identifies anomalous channels based on spectro-temporal features of chirp (Onset frequency, offset frequency, and temporal duration); and (2) Spatial Correlation Analysis, which computes both exact co-occurrence metrics and weighted index similarity, incorporating hemispheric congruence and electrode proximity. Key findings demonstrate that the LOF-based approach (N neighbors=20, contamination=0.2) effectively detects outliers, with index matching (weighted by channel proximity) outperforming exact matching in SOZ localization. Performance metrics (precision, recall, F1) were highest for seizure-free patients (Index Precision mean: 0.903) and those with successful surgical outcomes (Index Precision mean: 0.865), whereas failure cases exhibited lower concordance (Index Precision mean: 0.460). The key takeaway is that chirp-based outlier detection, combined with weighted spatial metrics, provides a complementary method for SOZ localization, particularly in patients with successful surgical outcomes.
Authors:Dehn Xu, Tim Katzke, Emmanuel Müller
Title: From Pixels to Graphs: Deep Graph-Level Anomaly Detection on Dermoscopic Images
Abstract:
Graph Neural Networks (GNNs) have emerged as a powerful approach for graph-based machine learning tasks. Previous work applied GNNs to image-derived graph representations for various downstream tasks such as classification or anomaly detection. These transformations include segmenting images, extracting features from segments, mapping them to nodes, and connecting them. However, to the best of our knowledge, no study has rigorously compared the effectiveness of the numerous potential image-to-graph transformation approaches for GNN-based graph-level anomaly detection (GLAD). In this study, we systematically evaluate the efficacy of multiple segmentation schemes, edge construction strategies, and node feature sets based on color, texture, and shape descriptors to produce suitable image-derived graph representations to perform graph-level anomaly detection. We conduct extensive experiments on dermoscopic images using state-of-the-art GLAD models, examining performance and efficiency in purely unsupervised, weakly supervised, and fully supervised regimes. Our findings reveal, for example, that color descriptors contribute the best standalone performance, while incorporating shape and texture features consistently enhances detection efficacy. In particular, our best unsupervised configuration using OCGTL achieves a competitive AUC-ROC score of up to 0.805 without relying on pretrained backbones like comparable image-based approaches. With the inclusion of sparse labels, the performance increases substantially to 0.872 and with full supervision to 0.914 AUC-ROC.
Authors:Pallavi Zambare, Venkata Nikhil Thanikella, Ying Liu
Title: Securing Agentic AI: Threat Modeling and Risk Analysis for Network Monitoring Agentic AI System
Abstract:
When combining Large Language Models (LLMs) with autonomous agents, used in network monitoring and decision-making systems, this will create serious security issues. In this research, the MAESTRO framework consisting of the seven layers threat modeling architecture in the system was used to expose, evaluate, and eliminate vulnerabilities of agentic AI. The prototype agent system was constructed and implemented, using Python, LangChain, and telemetry in WebSockets, and deployed with inference, memory, parameter tuning, and anomaly detection modules. Two practical threat cases were confirmed as follows: (i) resource denial of service by traffic replay denial-of-service, and (ii) memory poisoning by tampering with the historical log file maintained by the agent. These situations resulted in measurable levels of performance degradation, i.e. telemetry updates were delayed, and computational loads were increased, as a result of poor system adaptations. It was suggested to use a multilayered defense-in-depth approach with memory isolation, validation of planners and anomaly response systems in real-time. These findings verify that MAESTRO is viable in operational threat mapping, prospective risk scoring, and the basis of the resilient system design. The authors bring attention to the importance of the enforcement of memory integrity, paying attention to the adaptation logic monitoring, and cross-layer communication protection that guarantee the agentic AI reliability in adversarial settings.
Authors:Jakub Binda, Valentina Paneta, Vasileios Eleftheriadis, Hongkyou Chung, Panagiotis Papadimitroulas, Neo Christopher Chung
Title: Safeguarding Generative AI Applications in Preclinical Imaging through Hybrid Anomaly Detection
Abstract:
Generative AI holds great potentials to automate and enhance data synthesis in nuclear medicine. However, the high-stakes nature of biomedical imaging necessitates robust mechanisms to detect and manage unexpected or erroneous model behavior. We introduce development and implementation of a hybrid anomaly detection framework to safeguard GenAI models in BIOEMTECH's eyes(TM) systems. Two applications are demonstrated: Pose2Xray, which generates synthetic X-rays from photographic mouse images, and DosimetrEYE, which estimates 3D radiation dose maps from 2D SPECT/CT scans. In both cases, our outlier detection (OD) enhances reliability, reduces manual oversight, and supports real-time quality control. This approach strengthens the industrial viability of GenAI in preclinical settings by increasing robustness, scalability, and regulatory compliance.
Authors:Tran Tuan Kiet, Nguyen Thang Loi, Vo Nguyen Le Duy
Title: Statistical Inference for Autoencoder-based Anomaly Detection after Representation Learning-based Domain Adaptation
Abstract:
Anomaly detection (AD) plays a vital role across a wide range of domains, but its performance might deteriorate when applied to target domains with limited data. Domain Adaptation (DA) offers a solution by transferring knowledge from a related source domain with abundant data. However, this adaptation process can introduce additional uncertainty, making it difficult to draw statistically valid conclusions from AD results. In this paper, we propose STAND-DA -- a novel framework for statistically rigorous Autoencoder-based AD after Representation Learning-based DA. Built on the Selective Inference (SI) framework, STAND-DA computes valid $p$-values for detected anomalies and rigorously controls the false positive rate below a pre-specified level $α$ (e.g., 0.05). To address the computational challenges of applying SI to deep learning models, we develop the GPU-accelerated SI implementation, significantly enhancing both scalability and runtime performance. This advancement makes SI practically feasible for modern, large-scale deep architectures. Extensive experiments on synthetic and real-world datasets validate the theoretical results and computational efficiency of the proposed STAND-DA method.
Authors:Chitranshu Harbola, Anupam Purwar
Title: Prescriptive Agents based on RAG for Automated Maintenance (PARAM)
Abstract:
Industrial machinery maintenance requires timely intervention to prevent catastrophic failures and optimize operational efficiency. This paper presents an integrated Large Language Model (LLM)-based intelligent system for prescriptive maintenance that extends beyond traditional anomaly detection to provide actionable maintenance recommendations. Building upon our prior LAMP framework for numerical data analysis, we develop a comprehensive solution that combines bearing vibration frequency analysis with multi agentic generation for intelligent maintenance planning. Our approach serializes bearing vibration data (BPFO, BPFI, BSF, FTF frequencies) into natural language for LLM processing, enabling few-shot anomaly detection with high accuracy. The system classifies fault types (inner race, outer race, ball/roller, cage faults) and assesses severity levels. A multi-agentic component processes maintenance manuals using vector embeddings and semantic search, while also conducting web searches to retrieve comprehensive procedural knowledge and access up-to-date maintenance practices for more accurate and in-depth recommendations. The Gemini model then generates structured maintenance recommendations includes immediate actions, inspection checklists, corrective measures, parts requirements, and timeline specifications. Experimental validation in bearing vibration datasets demonstrates effective anomaly detection and contextually relevant maintenance guidance. The system successfully bridges the gap between condition monitoring and actionable maintenance planning, providing industrial practitioners with intelligent decision support. This work advances the application of LLMs in industrial maintenance, offering a scalable framework for prescriptive maintenance across machinery components and industrial sectors.
Authors:Jaehyuk Heo, Pilsung Kang
Title: Multi-class Image Anomaly Detection for Practical Applications: Requirements and Robust Solutions
Abstract:
Recent advances in image anomaly detection have extended unsupervised learning-based models from single-class settings to multi-class frameworks, aiming to improve efficiency in training time and model storage. When a single model is trained to handle multiple classes, it often underperforms compared to class-specific models in terms of per-class detection accuracy. Accordingly, previous studies have primarily focused on narrowing this performance gap. However, the way class information is used, or not used, remains a relatively understudied factor that could influence how detection thresholds are defined in multi-class image anomaly detection. These thresholds, whether class-specific or class-agnostic, significantly affect detection outcomes. In this study, we identify and formalize the requirements that a multi-class image anomaly detection model must satisfy under different conditions, depending on whether class labels are available during training and evaluation. We then re-examine existing methods under these criteria. To meet these challenges, we propose Hierarchical Coreset (HierCore), a novel framework designed to satisfy all defined requirements. HierCore operates effectively even without class labels, leveraging a hierarchical memory bank to estimate class-wise decision criteria for anomaly detection. We empirically validate the applicability and robustness of existing methods and HierCore under four distinct scenarios, determined by the presence or absence of class labels in the training and evaluation phases. The experimental results demonstrate that HierCore consistently meets all requirements and maintains strong, stable performance across all settings, highlighting its practical potential for real-world multi-class anomaly detection tasks.
Authors:Zihan Wang, Samira Ebrahimi Kahou, Narges Armanfard
Title: Zero-Shot Anomaly Detection with Dual-Branch Prompt Selection
Abstract:
Zero-shot anomaly detection (ZSAD) enables identifying and localizing defects in unseen categories by relying solely on generalizable features rather than requiring any labeled examples of anomalies. However, existing ZSAD methods, whether using fixed or learned prompts, struggle under domain shifts because their training data are derived from limited training domains and fail to generalize to new distributions. In this paper, we introduce PILOT, a framework designed to overcome these challenges through two key innovations: (1) a novel dual-branch prompt learning mechanism that dynamically integrates a pool of learnable prompts with structured semantic attributes, enabling the model to adaptively weight the most relevant anomaly cues for each input image; and (2) a label-free test-time adaptation strategy that updates the learnable prompt parameters using high-confidence pseudo-labels from unlabeled test data. Extensive experiments on 13 industrial and medical benchmarks demonstrate that PILOT achieves state-of-the-art performance in both anomaly detection and localization under domain shift.
Authors:Alex George, Will Shepherd, Simon Tait, Lyudmila Mihaylova, Sean R. Anderson
Title: Explainable Deep Anomaly Detection with Sequential Hypothesis Testing for Robotic Sewer Inspection
Abstract:
Sewer pipe faults, such as leaks and blockages, can lead to severe consequences including groundwater contamination, property damage, and service disruption. Traditional inspection methods rely heavily on the manual review of CCTV footage collected by mobile robots, which is inefficient and susceptible to human error. To automate this process, we propose a novel system incorporating explainable deep learning anomaly detection combined with sequential probability ratio testing (SPRT). The anomaly detector processes single image frames, providing interpretable spatial localisation of anomalies, whilst the SPRT introduces temporal evidence aggregation, enhancing robustness against noise over sequences of image frames. Experimental results demonstrate improved anomaly detection performance, highlighting the benefits of the combined spatiotemporal analysis system for reliable and robust sewer inspection.
Authors:Shibo Gao, Peipei Yang, Yangyang Liu, Yi Chen, Han Zhu, Xuyao Zhang, Linlin Huang
Title: VAGU & GtS: LLM-Based Benchmark and Framework for Joint Video Anomaly Grounding and Understanding
Abstract:
Video Anomaly Detection (VAD) aims to identify anomalous events in videos and accurately determine their time intervals. Current VAD methods mainly fall into two categories: traditional DNN-based approaches that focus on temporal localization, and LLM-based approaches that emphasize semantic understanding. Both anomaly understanding and grounding are essential for comprehensive video anomaly detection and can complement each other. However, no existing model or dataset supports both tasks simultaneously. To address this, we introduce VAGU (Video Anomaly Grounding and Understanding), the first benchmark to integrate both tasks. Each VAGU instance includes annotations for anomaly category, semantic explanation, precise temporal grounding and Video QA. We also provide multiple-choice Video QA for objective evaluation. Based on this dataset, we propose Glance then Scrutinize (GtS), a training-free framework guided by textual prompts. The framework first enables coarse localization of high-probability anomalous regions, followed by detailed anomaly interpretation and temporal boundary refinement. Additionally, we propose the JeAUG metric, which jointly evaluates semantic interpretability and temporal precision, overcoming the limitations of traditional metrics. Extensive experiments verify the effectiveness of our benchmark, framework, and evaluation metric.
Authors:Ali RajabiNekoo, Laleh Rasoul, Amirfarhad Farhadi, Azadeh Zamanifar
Title: SILS: Strategic Influence on Liquidity Stability and Whale Detection in Concentrated-Liquidity DEXs
Abstract:
Traditional methods for identifying impactful liquidity providers (LPs) in Concentrated Liquidity Market Makers (CLMMs) rely on broad measures, such as nominal capital size or surface-level activity, which often lead to inaccurate risk analysis. The SILS framework offers a significantly more detailed approach, characterizing LPs not just as capital holders but as dynamic systemic agents whose actions directly impact market stability. This represents a fundamental paradigm shift from the static, volume-based analysis to a dynamic, impact-focused understanding. This advanced approach uses on-chain event logs and smart contract execution traces to compute Exponential Time-Weighted Liquidity (ETWL) profiles and apply unsupervised anomaly detection. Most importantly, it defines an LP's functional importance through the Liquidity Stability Impact Score (LSIS), a counterfactual metric that measures the potential degradation of the market if the LP withdraws. This combined approach provides a more detailed and realistic characterization of an LP's impact, moving beyond the binary and often misleading classifications used by existing methods. This impact-focused and comprehensive approach enables SILS to accurately identify high-impact LPs-including those missed by traditional methods and supports essential applications like a protective oracle layer and actionable trader signals, thereby significantly enhancing DeFi ecosystem. The framework provides unprecedented transparency into the underlying liquidity structure and associated risks, effectively reducing the common false positives and uncovering critical false negatives found in traditional models. Therefore, SILS provides an effective mechanism for proactive risk management, transforming how DeFi protocols safeguard their ecosystems against asymmetric liquidity behavior.
Authors:Juan Altmayer Pizzorno, Emery D. Berger
Title: RightTyper: Effective and Efficient Type Annotation for Python
Abstract:
Python type annotations bring the benefits of static type checking to the language. However, manually writing annotations can be time-consuming and tedious. The result is that most real-world Python code remains largely untyped. Past approaches to annotating types in Python code fall short in a number of ways. Static approaches struggle with dynamic features and infer overly broad types. AI-based methods are inherently unsound and can miss rare or user-defined types. Dynamic methods can impose extreme runtime overheads, degrading performance by up to 270x, abort execution as they exhaust resources, and even infer incorrect types that lead to runtime errors. Crucially, all prior work assumes implicitly that the code to be annotated is already correct. This assumption is generally unwarranted, especially for large codebases that have been untyped. This paper presents RightTyper, a novel approach for Python that overcomes these disadvantages. RightTyper not only generates precise type annotations based on actual program behavior, improving recall in type checking relative to prior approaches. It also turns type checking into anomaly detection, allowing the type checker to identify corner cases that the programmer can audit for unintended behavior. RightTyper is also fast and space-efficient, imposing just 30% performance overhead on average. RightTyper achieves these characteristics by a principled yet pervasive use of sampling--guided by self-profiling--along with statistical filtering and careful resolution and aggregation of type information.
Authors:Philipp Röchner, Simon Klüttermann, Franz Rothlauf, Daniel Schlör
Title: We Need to Rethink Benchmarking in Anomaly Detection
Abstract:
Despite the continuous proposal of new anomaly detection algorithms and extensive benchmarking efforts, progress seems to stagnate, with only minor performance differences between established baselines and new algorithms. In this position paper, we argue that this stagnation is due to limitations in how we evaluate anomaly detection algorithms. Current benchmarking does not, for example, sufficiently reflect the diversity of anomalies in applications ranging from predictive maintenance to scientific discovery. Consequently, we need to rethink benchmarking in anomaly detection. In our opinion, anomaly detection should be studied using scenarios that capture the relevant characteristics of different applications. We identify three key areas for improvement: First, we need to identify anomaly detection scenarios based on a common taxonomy. Second, anomaly detection pipelines should be analyzed end-to-end and by component. Third, evaluating anomaly detection algorithms should be meaningful regarding the scenario's objectives.
Authors:Xin Yang, Chen Fang, Yunlai Liao, Jian Yang, Konstantinos Gryllias, Dimitrios Chronopoulos
Title: Deep Generative Models in Condition and Structural Health Monitoring: Opportunities, Limitations and Future Outlook
Abstract:
Condition and structural health monitoring (CM/SHM) is a pivotal component of predictive maintenance (PdM) strategies across diverse industrial sectors, including mechanical rotating machinery, airplane composite wings, offshore wind turbines, and civil engineering structures. Conventional deep learning models, while effective in fault diagnosis and anomaly detection through supervised feature extraction and rule-based data augmentation, often struggle with operational variability, imbalanced or scarce fault datasets, and multimodal sensory data from complex systems. Deep generative models (DGMs) in this regard, including autoregressive models, variational autoencoders, generative adversarial networks, diffusion-based models, and emerging large language models, offer transformative capabilities by synthesizing high-fidelity data samples, reconstructing latent system states, and modeling complex multimodal data streams. This review systematically examines state-of-the-art DGM applications in CM/SHM systems, emphasizing their role in addressing key challenges: data imbalance and imputation, domain adaptation and generalization, multimodal data fusion, and downstream fault diagnosis and anomaly detection tasks, with rigorous comparison among signal processing, conventional machine learning or deep learning models, and DGMs. We also analyze current limitations of DGMs, including challenges of explainable and trustworthy models, computational inefficiencies for edge deployment, and the need for parameter-efficient fine-tuning strategies. Future research directions can focus on zero-shot and few-shot learning, robust multimodal generalization, hybrid architectures integrating DGMs with physics knowledge, and reinforcement learning with DGMs to enhance robustness and accuracy in industrial scenarios.
Authors:Chandrashekar Muniyappa, Sirisha Velampalli
Title: Context-Based Fake News Detection using Graph Based Approach: ACOVID-19 Use-case
Abstract:
In todayś digital world, fake news is spreading with immense speed. Its a significant concern to address. In this work, we addressed that challenge using novel graph based approach. We took dataset from Kaggle that contains real and fake news articles. To test our approach we incorporated recent covid-19 related news articles that contains both genuine and fake news that are relevant to this problem. This further enhances the dataset as well instead of relying completely on the original dataset. We propose a contextual graph-based approach to detect fake news articles. We need to convert news articles into appropriate schema, so we leverage Natural Language Processing (NLP) techniques to transform news articles into contextual graph structures. We then apply the Minimum Description Length (MDL)-based Graph-Based Anomaly Detection (GBAD) algorithm for graph mining. Graph-based methods are particularly effective for handling rich contextual data, as they enable the discovery of complex patterns that traditional query-based or statistical techniques might overlook. Our proposed approach identifies normative patterns within the dataset and subsequently uncovers anomalous patterns that deviate from these established norms.
Authors:Xiang Li, Yifan Lin, Yuanzhe Zhang
Title: A Privacy-Preserving Framework for Advertising Personalization Incorporating Federated Learning and Differential Privacy
Abstract:
To mitigate privacy leakage and performance issues in personalized advertising, this paper proposes a framework that integrates federated learning and differential privacy. The system combines distributed feature extraction, dynamic privacy budget allocation, and robust model aggregation to balance model accuracy, communication overhead, and privacy protection. Multi-party secure computing and anomaly detection mechanisms further enhance system resilience against malicious attacks. Experimental results demonstrate that the framework achieves dual optimization of recommendation accuracy and system efficiency while ensuring privacy, providing both a practical solution and a theoretical foundation for applying privacy protection technologies in advertisement recommendation.
Authors:HyeYoung Lee, Muhammad Nadeem, Pavel Tsoi
Title: Spectral Feature Extraction for Robust Network Intrusion Detection Using MFCCs
Abstract:
The rapid expansion of Internet of Things (IoT) networks has led to a surge in security vulnerabilities, emphasizing the critical need for robust anomaly detection and classification techniques. In this work, we propose a novel approach for identifying anomalies in IoT network traffic by leveraging the Mel-frequency cepstral coefficients (MFCC) and ResNet-18, a deep learning model known for its effectiveness in feature extraction and image-based tasks. Learnable MFCCs enable adaptive spectral feature representation, capturing the temporal patterns inherent in network traffic more effectively than traditional fixed MFCCs. We demonstrate that transforming raw signals into MFCCs maps the data into a higher-dimensional space, enhancing class separability and enabling more effective multiclass classification. Our approach combines the strengths of MFCCs with the robust feature extraction capabilities of ResNet-18, offering a powerful framework for anomaly detection. The proposed model is evaluated on three widely used IoT intrusion detection datasets: CICIoT2023, NSL-KDD, and IoTID20. The experimental results highlight the potential of integrating adaptive signal processing techniques with deep learning architectures to achieve robust and scalable anomaly detection in heterogeneous IoT network landscapes.
Authors:Arturo Castellanos, Pavlo Mozharovskyi
Title: Data Depth as a Risk
Abstract:
Data depths are score functions that quantify in an unsupervised fashion how central is a point inside a distribution, with numerous applications such as anomaly detection, multivariate or functional data analysis, arising across various fields. The halfspace depth was the first depth to aim at generalising the notion of quantile beyond the univariate case. Among the existing variety of depth definitions, it remains one of the most used notions of data depth. Taking a different angle from the quantile point of view, we show that the halfspace depth can also be regarded as the minimum loss of a set of classifiers for a specific labelling of the points. By changing the loss or the set of classifiers considered, this new angle naturally leads to a family of "loss depths", extending to well-studied classifiers such as, e.g., SVM or logistic regression, among others. This framework directly inherits computational efficiency of existing machine learning algorithms as well as their fast statistical convergence rates, and opens the data depth realm to the high-dimensional setting. Furthermore, the new loss depths highlight a connection between the dataset and the right amount of complexity or simplicity of the classifiers. The simplicity of classifiers as well as the interpretation as a risk makes our new kind of data depth easy to explain, yet efficient for anomaly detection, as is shown by experiments.
Authors:Samirah Bakker, Yao Ma, Seyed Sahand Mohammadi Ziabari
Title: Exploring a Hybrid Deep Learning Approach for Anomaly Detection in Mental Healthcare Provider Billing: Addressing Label Scarcity through Semi-Supervised Anomaly Detection
Abstract:
The complexity of mental healthcare billing enables anomalies, including fraud. While machine learning methods have been applied to anomaly detection, they often struggle with class imbalance, label scarcity, and complex sequential patterns. This study explores a hybrid deep learning approach combining Long Short-Term Memory (LSTM) networks and Transformers, with pseudo-labeling via Isolation Forests (iForest) and Autoencoders (AE). Prior work has not evaluated such hybrid models trained on pseudo-labeled data in the context of healthcare billing. The approach is evaluated on two real-world billing datasets related to mental healthcare. The iForest LSTM baseline achieves the highest recall (0.963) on declaration-level data. On the operation-level data, the hybrid iForest-based model achieves the highest recall (0.744), though at the cost of lower precision. These findings highlight the potential of combining pseudo-labeling with hybrid deep learning in complex, imbalanced anomaly detection settings.
Authors:Chunjing Xiao, Jiahui Lu, Xovee Xu, Fan Zhou, Tianshu Xie, Wei Lu, Lifeng Xu
Title: Reconciling Attribute and Structural Anomalies for Improved Graph Anomaly Detection
Abstract:
Graph anomaly detection is critical in domains such as healthcare and economics, where identifying deviations can prevent substantial losses. Existing unsupervised approaches strive to learn a single model capable of detecting both attribute and structural anomalies. However, they confront the tug-of-war problem between two distinct types of anomalies, resulting in suboptimal performance. This work presents TripleAD, a mutual distillation-based triple-channel graph anomaly detection framework. It includes three estimation modules to identify the attribute, structural, and mixed anomalies while mitigating the interference between different types of anomalies. In the first channel, we design a multiscale attribute estimation module to capture extensive node interactions and ameliorate the over-smoothing issue. To better identify structural anomalies, we introduce a link-enhanced structure estimation module in the second channel that facilitates information flow to topologically isolated nodes. The third channel is powered by an attribute-mixed curvature, a new indicator that encapsulates both attribute and structural information for discriminating mixed anomalies. Moreover, a mutual distillation strategy is introduced to encourage communication and collaboration between the three channels. Extensive experiments demonstrate the effectiveness of the proposed TripleAD model against strong baselines.
Authors:Shiyi Wang, Wenbo Li, Yiteng Chen, Qingyao Wu, Huiping Zhuang
Title: FrankenBot: Brain-Morphic Modular Orchestration for Robotic Manipulation with Vision-Language Models
Abstract:
Developing a general robot manipulation system capable of performing a wide range of tasks in complex, dynamic, and unstructured real-world environments has long been a challenging task. It is widely recognized that achieving human-like efficiency and robustness manipulation requires the robotic brain to integrate a comprehensive set of functions, such as task planning, policy generation, anomaly monitoring and handling, and long-term memory, achieving high-efficiency operation across all functions. Vision-Language Models (VLMs), pretrained on massive multimodal data, have acquired rich world knowledge, exhibiting exceptional scene understanding and multimodal reasoning capabilities. However, existing methods typically focus on realizing only a single function or a subset of functions within the robotic brain, without integrating them into a unified cognitive architecture. Inspired by a divide-and-conquer strategy and the architecture of the human brain, we propose FrankenBot, a VLM-driven, brain-morphic robotic manipulation framework that achieves both comprehensive functionality and high operational efficiency. Our framework includes a suite of components, decoupling a part of key functions from frequent VLM calls, striking an optimal balance between functional completeness and system efficiency. Specifically, we map task planning, policy generation, memory management, and low-level interfacing to the cortex, cerebellum, temporal lobe-hippocampus complex, and brainstem, respectively, and design efficient coordination mechanisms for the modules. We conducted comprehensive experiments in both simulation and real-world robotic environments, demonstrating that our method offers significant advantages in anomaly detection and handling, long-term memory, operational efficiency, and stability -- all without requiring any fine-tuning or retraining.
Authors:Kai Yang, Shaoyu Dou, Pan Luo, Xin Wang, H. Vincent Poor
Title: Robust Group Anomaly Detection for Quasi-Periodic Network Time Series
Abstract:
Many real-world multivariate time series are collected from a network of physical objects embedded with software, electronics, and sensors. The quasi-periodic signals generated by these objects often follow a similar repetitive and periodic pattern, but have variations in the period, and come in different lengths caused by timing (synchronization) errors. Given a multitude of such quasi-periodic time series, can we build machine learning models to identify those time series that behave differently from the majority of the observations? In addition, can the models help human experts to understand how the decision was made? We propose a sequence to Gaussian Mixture Model (seq2GMM) framework. The overarching goal of this framework is to identify unusual and interesting time series within a network time series database. We further develop a surrogate-based optimization algorithm that can efficiently train the seq2GMM model. Seq2GMM exhibits strong empirical performance on a plurality of public benchmark datasets, outperforming state-of-the-art anomaly detection techniques by a significant margin. We also theoretically analyze the convergence property of the proposed training algorithm and provide numerical results to substantiate our theoretical claims.
Authors:Manal Rahal, Bestoun S. Ahmed, Roger Renstrom, Robert Stener, Albrecht Wurtz
Title: Data-Driven Heat Pump Management: Combining Machine Learning with Anomaly Detection for Residential Hot Water Systems
Abstract:
Heat pumps (HPs) have emerged as a cost-effective and clean technology for sustainable energy systems, but their efficiency in producing hot water remains restricted by conventional threshold-based control methods. Although machine learning (ML) has been successfully implemented for various HP applications, optimization of household hot water demand forecasting remains understudied. This paper addresses this problem by introducing a novel approach that combines predictive ML with anomaly detection to create adaptive hot water production strategies based on household-specific consumption patterns. Our key contributions include: (1) a composite approach combining ML and isolation forest (iForest) to forecast household demand for hot water and steer responsive HP operations; (2) multi-step feature selection with advanced time-series analysis to capture complex usage patterns; (3) application and tuning of three ML models: Light Gradient Boosting Machine (LightGBM), Long Short-Term Memory (LSTM), and Bi-directional LSTM with the self-attention mechanism on data from different types of real HP installations; and (4) experimental validation on six real household installations. Our experiments show that the best-performing model LightGBM achieves superior performance, with RMSE improvements of up to 9.37\% compared to LSTM variants with $R^2$ values between 0.748-0.983. For anomaly detection, our iForest implementation achieved an F1-score of 0.87 with a false alarm rate of only 5.2\%, demonstrating strong generalization capabilities across different household types and consumption patterns, making it suitable for real-world HP deployments.
Authors:Zelin He, Sarah Alnegheimish, Matthew Reimherr
Title: Harnessing Vision-Language Models for Time Series Anomaly Detection
Abstract:
Time-series anomaly detection (TSAD) has played a vital role in a variety of fields, including healthcare, finance, and industrial monitoring. Prior methods, which mainly focus on training domain-specific models on numerical data, lack the visual-temporal reasoning capacity that human experts have to identify contextual anomalies. To fill this gap, we explore a solution based on vision language models (VLMs). Recent studies have shown the ability of VLMs for visual reasoning tasks, yet their direct application to time series has fallen short on both accuracy and efficiency. To harness the power of VLMs for TSAD, we propose a two-stage solution, with (1) ViT4TS, a vision-screening stage built on a relatively lightweight pretrained vision encoder, which leverages 2-D time-series representations to accurately localize candidate anomalies; (2) VLM4TS, a VLM-based stage that integrates global temporal context and VLM reasoning capacity to refine the detection upon the candidates provided by ViT4TS. We show that without any time-series training, VLM4TS outperforms time-series pretrained and from-scratch baselines in most cases, yielding a 24.6 percent improvement in F1-max score over the best baseline. Moreover, VLM4TS also consistently outperforms existing language-model-based TSAD methods and is on average 36 times more efficient in token usage.
Authors:Ayan Roy, Jeetkumar Patel, Rik Chakraborti, Shudip Datta
Title: TrustConnect: An In-Vehicle Anomaly Detection Framework through Topology-Based Trust Rating
Abstract:
Modern vehicles are equipped with numerous in-vehicle components that interact with the external environment through remote communications and services, such as Bluetooth and vehicle-to-infrastructure communication. These components form a network, exchanging information to ensure the proper functioning of the vehicle. However, the presence of false or fabricated information can disrupt the vehicle's performance. Given that these components are interconnected, erroneous data can propagate throughout the network, potentially affecting other components and leading to catastrophic consequences. To address this issue, we propose TrustConnect, a framework designed to assess the trustworthiness of a vehicle's in-vehicle network by evaluating the trust levels of individual components under various network configurations. The proposed framework leverages the interdependency of all the vehicle's components, along with the correlation of their values and their vulnerability to remote injection based on the outside exposure of each component, to determine the reliability of the in-vehicle network. The effectiveness of the proposed framework has been validated through programming simulations conducted across various scenarios using a random distribution of an in-vehicle network graph generated with the Networkx package in Python.
Authors:Kiyoon Jeong, Jaehyuk Heo, Junyeong Son, Pilsung Kang
Title: Domain Adaptation of Attention Heads for Zero-shot Anomaly Detection
Abstract:
Zero-shot anomaly detection (ZSAD) in images is an approach that can detect anomalies without access to normal samples, which can be beneficial in various realistic scenarios where model training is not possible. However, existing ZSAD research has shown limitations by either not considering domain adaptation of general-purpose backbone models to anomaly detection domains or by implementing only partial adaptation to some model components. In this paper, we propose HeadCLIP to overcome these limitations by effectively adapting both text and image encoders to the domain. HeadCLIP generalizes the concepts of normality and abnormality through learnable prompts in the text encoder, and introduces learnable head weights to the image encoder to dynamically adjust the features held by each attention head according to domain characteristics. Additionally, we maximize the effect of domain adaptation by introducing a joint anomaly score that utilizes domain-adapted pixel-level information for image-level anomaly detection. Experimental results using multiple real datasets in both industrial and medical domains show that HeadCLIP outperforms existing ZSAD techniques at both pixel and image levels. In the industrial domain, improvements of up to 4.9%p in pixel-level mean anomaly detection score (mAD) and up to 3.0%p in image-level mAD were achieved, with similar improvements (3.2%p, 3.1%p) in the medical domain.
Authors:Ross Greer, Alisha Ukani, Katherine Izhikevich, Earlence Fernandes, Stefan Savage, Alex C. Snoeren
Title: Words as Geometric Features: Estimating Homography using Optical Character Recognition as Compressed Image Representation
Abstract:
Document alignment and registration play a crucial role in numerous real-world applications, such as automated form processing, anomaly detection, and workflow automation. Traditional methods for document alignment rely on image-based features like keypoints, edges, and textures to estimate geometric transformations, such as homographies. However, these approaches often require access to the original document images, which may not always be available due to privacy, storage, or transmission constraints. This paper introduces a novel approach that leverages Optical Character Recognition (OCR) outputs as features for homography estimation. By utilizing the spatial positions and textual content of OCR-detected words, our method enables document alignment without relying on pixel-level image data. This technique is particularly valuable in scenarios where only OCR outputs are accessible. Furthermore, the method is robust to OCR noise, incorporating RANSAC to handle outliers and inaccuracies in the OCR data. On a set of test documents, we demonstrate that our OCR-based approach even performs more accurately than traditional image-based methods, offering a more efficient and scalable solution for document registration tasks. The proposed method facilitates applications in document processing, all while reducing reliance on high-dimensional image data.
Authors:Jose Fuentes, Ines Ortega-Fernandez, Nora M. Villanueva, Marta Sestelo
Title: Cybersecurity threat detection based on a UEBA framework using Deep Autoencoders
Abstract:
User and Entity Behaviour Analytics (UEBA) is a broad branch of data analytics that attempts to build a normal behavioural profile in order to detect anomalous events. Among the techniques used to detect anomalies, Deep Autoencoders constitute one of the most promising deep learning models on UEBA tasks, allowing explainable detection of security incidents that could lead to the leak of personal data, hijacking of systems, or access to sensitive business information. In this study, we introduce the first implementation of an explainable UEBA-based anomaly detection framework that leverages Deep Autoencoders in combination with Doc2Vec to process both numerical and textual features. Additionally, based on the theoretical foundations of neural networks, we offer a novel proof demonstrating the equivalence of two widely used definitions for fully-connected neural networks. The experimental results demonstrate the proposed framework capability to detect real and synthetic anomalies effectively generated from real attack data, showing that the models provide not only correct identification of anomalies but also explainable results that enable the reconstruction of the possible origin of the anomaly. Our findings suggest that the proposed UEBA framework can be seamlessly integrated into enterprise environments, complementing existing security systems for explainable threat detection.
Authors:Feng Xiao, Xiaoying Tang, Jicong Fan
Title: Fairness-aware Anomaly Detection via Fair Projection
Abstract:
Unsupervised anomaly detection is a critical task in many high-social-impact applications such as finance, healthcare, social media, and cybersecurity, where demographics involving age, gender, race, disease, etc, are used frequently. In these scenarios, possible bias from anomaly detection systems can lead to unfair treatment for different groups and even exacerbate social bias. In this work, first, we thoroughly analyze the feasibility and necessary assumptions for ensuring group fairness in unsupervised anomaly detection. Second, we propose a novel fairness-aware anomaly detection method FairAD. From the normal training data, FairAD learns a projection to map data of different demographic groups to a common target distribution that is simple and compact, and hence provides a reliable base to estimate the density of the data. The density can be directly used to identify anomalies while the common target distribution ensures fairness between different groups. Furthermore, we propose a threshold-free fairness metric that provides a global view for model's fairness, eliminating dependence on manual threshold selection. Experiments on real-world benchmarks demonstrate that our method achieves an improved trade-off between detection accuracy and fairness under both balanced and skewed data across different groups.
Authors:Ines Ortega-Fernandez, Marta Sestelo
Title: neuralGAM: An R Package for Fitting Generalized Additive Neural Networks
Abstract:
Nowadays, Neural Networks are considered one of the most effective methods for various tasks such as anomaly detection, computer-aided disease detection, or natural language processing. However, these networks suffer from the ``black-box'' problem which makes it difficult to understand how they make decisions. In order to solve this issue, an R package called neuralGAM is introduced. This package implements a Neural Network topology based on Generalized Additive Models, allowing to fit an independent Neural Network to estimate the contribution of each feature to the output variable, yielding a highly accurate and interpretable Deep Learning model. The neuralGAM package provides a flexible framework for training Generalized Additive Neural Networks, which does not impose any restrictions on the Neural Network architecture. We illustrate the use of the neuralGAM package in both synthetic and real data examples.
Authors:Lu Dai, Wenxuan Zhu, Xuehui Quan, Renzi Meng, Sheng Chai, Yichen Wang
Title: Deep Probabilistic Modeling of User Behavior for Anomaly Detection via Mixture Density Networks
Abstract:
To improve the identification of potential anomaly patterns in complex user behavior, this paper proposes an anomaly detection method based on a deep mixture density network. The method constructs a Gaussian mixture model parameterized by a neural network, enabling conditional probability modeling of user behavior. It effectively captures the multimodal distribution characteristics commonly present in behavioral data. Unlike traditional classifiers that rely on fixed thresholds or a single decision boundary, this approach defines an anomaly scoring function based on probability density using negative log-likelihood. This significantly enhances the model's ability to detect rare and unstructured behaviors. Experiments are conducted on the real-world network user dataset UNSW-NB15. A series of performance comparisons and stability validation experiments are designed. These cover multiple evaluation aspects, including Accuracy, F1- score, AUC, and loss fluctuation. The results show that the proposed method outperforms several advanced neural network architectures in both performance and training stability. This study provides a more expressive and discriminative solution for user behavior modeling and anomaly detection. It strongly promotes the application of deep probabilistic modeling techniques in the fields of network security and intelligent risk control.
Authors:Christoph Willibald, Dongheui Lee
Title: Hierarchical Task Decomposition for Execution Monitoring and Error Recovery: Understanding the Rationale Behind Task Demonstrations
Abstract:
Multi-step manipulation tasks where robots interact with their environment and must apply process forces based on the perceived situation remain challenging to learn and prone to execution errors. Accurately simulating these tasks is also difficult. Hence, it is crucial for robust task performance to learn how to coordinate end-effector pose and applied force, monitor execution, and react to deviations. To address these challenges, we propose a learning approach that directly infers both low- and high-level task representations from user demonstrations on the real system. We developed an unsupervised task segmentation algorithm that combines intention recognition and feature clustering to infer the skills of a task. We leverage the inferred characteristic features of each skill in a novel unsupervised anomaly detection approach to identify deviations from the intended task execution. Together, these components form a comprehensive framework capable of incrementally learning task decisions and new behaviors as new situations arise. Compared to state-of-the-art learning techniques, our approach significantly reduces the required amount of training data and computational complexity while efficiently learning complex in-contact behaviors and recovery strategies. Our proposed task segmentation and anomaly detection approaches outperform state-of-the-art methods on force-based tasks evaluated on two different robotic systems.
Authors:Haoyu Bai, Jie Wang, Gaomin Li, Xuan Li, Xiaohu Zhang, Xia Yang
Title: CXR-AD: Component X-ray Image Dataset for Industrial Anomaly Detection
Abstract:
Internal defect detection constitutes a critical process in ensuring component quality, for which anomaly detection serves as an effective solution. However, existing anomaly detection datasets predominantly focus on surface defects in visible-light images, lacking publicly available X-ray datasets targeting internal defects in components. To address this gap, we construct the first publicly accessible component X-ray anomaly detection (CXR-AD) dataset, comprising real-world X-ray images. The dataset covers five industrial component categories, including 653 normal samples and 561 defect samples with precise pixel-level mask annotations. We systematically analyze the dataset characteristics and identify three major technical challenges: (1) strong coupling between complex internal structures and defect regions, (2) inherent low contrast and high noise interference in X-ray imaging, and (3) significant variations in defect scales and morphologies. To evaluate dataset complexity, we benchmark three state-of-the-art anomaly detection frameworks (feature-based, reconstruction-based, and zero-shot learning methods). Experimental results demonstrate a 29.78% average performance degradation on CXR-AD compared to MVTec AD, highlighting the limitations of current algorithms in handling internal defect detection tasks. To the best of our knowledge, CXR-AD represents the first publicly available X-ray dataset for component anomaly detection, providing a real-world industrial benchmark to advance algorithm development and enhance precision in internal defect inspection technologies.
Authors:M. Saeid HaghighiFard, Sinem Coleri
Title: Secure Cluster-Based Hierarchical Federated Learning in Vehicular Networks
Abstract:
Hierarchical Federated Learning (HFL) has recently emerged as a promising solution for intelligent decision-making in vehicular networks, helping to address challenges such as limited communication resources, high vehicle mobility, and data heterogeneity. However, HFL remains vulnerable to adversarial and unreliable vehicles, whose misleading updates can significantly compromise the integrity and convergence of the global model. To address these challenges, we propose a novel defense framework that integrates dynamic vehicle selection with robust anomaly detection within a cluster-based HFL architecture, specifically designed to counter Gaussian noise and gradient ascent attacks. The framework performs a comprehensive reliability assessment for each vehicle by evaluating historical accuracy, contribution frequency, and anomaly records. Anomaly detection combines Z-score and cosine similarity analyses on model updates to identify both statistical outliers and directional deviations in model updates. To further refine detection, an adaptive thresholding mechanism is incorporated into the cosine similarity metric, dynamically adjusting the threshold based on the historical accuracy of each vehicle to enforce stricter standards for consistently high-performing vehicles. In addition, a weighted gradient averaging mechanism is implemented, which assigns higher weights to gradient updates from more trustworthy vehicles. To defend against coordinated attacks, a cross-cluster consistency check is applied to identify collaborative attacks in which multiple compromised clusters coordinate misleading updates. Together, these mechanisms form a multi-level defense strategy to filter out malicious contributions effectively. Simulation results show that the proposed algorithm significantly reduces convergence time compared to benchmark methods across both 1-hop and 3-hop topologies.
Authors:Nguyen Thi Minh Phu, Duong Tan Loc, Vo Nguyen Le Duy
Title: Statistical Inference for Clustering-based Anomaly Detection
Abstract:
Unsupervised anomaly detection (AD) is a fundamental problem in machine learning and statistics. A popular approach to unsupervised AD is clustering-based detection. However, this method lacks the ability to guarantee the reliability of the detected anomalies. In this paper, we propose SI-CLAD (Statistical Inference for CLustering-based Anomaly Detection), a novel statistical framework for testing the clustering-based AD results. The key strength of SI-CLAD lies in its ability to rigorously control the probability of falsely identifying anomalies, maintaining it below a pre-specified significance level $α$ (e.g., $α= 0.05$). By analyzing the selection mechanism inherent in clustering-based AD and leveraging the Selective Inference (SI) framework, we prove that false detection control is attainable. Moreover, we introduce a strategy to boost the true detection rate, enhancing the overall performance of SI-CLAD. Extensive experiments on synthetic and real-world datasets provide strong empirical support for our theoretical findings, showcasing the superior performance of the proposed method.
Authors:Ian Groves, Andrew Campbell, James Fernandes, Diego Ramírez Rodríguez, Paul Murray, Massimiliano Vasile, Victoria Nockles
Title: A Self-Supervised Framework for Space Object Behaviour Characterisation
Abstract:
Foundation Models, pre-trained on large unlabelled datasets before task-specific fine-tuning, are increasingly being applied to specialised domains. Recent examples include ClimaX for climate and Clay for satellite Earth observation, but a Foundation Model for Space Object Behavioural Analysis has not yet been developed. As orbital populations grow, automated methods for characterising space object behaviour are crucial for space safety. We present a Space Safety and Sustainability Foundation Model focusing on space object behavioural analysis using light curves (LCs). We implemented a Perceiver-Variational Autoencoder (VAE) architecture, pre-trained with self-supervised reconstruction and masked reconstruction on 227,000 LCs from the MMT-9 observatory. The VAE enables anomaly detection, motion prediction, and LC generation. We fine-tuned the model for anomaly detection & motion prediction using two independent LC simulators (CASSANDRA and GRIAL respectively), using CAD models of boxwing, Sentinel-3, SMOS, and Starlink platforms. Our pre-trained model achieved a reconstruction error of 0.01%, identifying potentially anomalous light curves through reconstruction difficulty. After fine-tuning, the model scored 88% and 82% accuracy, with 0.90 and 0.95 ROC AUC scores respectively in both anomaly detection and motion mode prediction (sun-pointing, spin, etc.). Analysis of high-confidence anomaly predictions on real data revealed distinct patterns including characteristic object profiles and satellite glinting. Here, we demonstrate how self-supervised learning can simultaneously enable anomaly detection, motion prediction, and synthetic data generation from rich representations learned in pre-training. Our work therefore supports space safety and sustainability through automated monitoring and simulation capabilities.
Authors:Yujia Lou, Jie Liu, Yuan Sheng, Jiawei Wang, Yiwei Zhang, Yaokun Ren
Title: Addressing Class Imbalance with Probabilistic Graphical Models and Variational Inference
Abstract:
This study proposes a method for imbalanced data classification based on deep probabilistic graphical models (DPGMs) to solve the problem that traditional methods have insufficient learning ability for minority class samples. To address the classification bias caused by class imbalance, we introduce variational inference optimization probability modeling, which enables the model to adaptively adjust the representation ability of minority classes and combines the class-aware weight adjustment strategy to enhance the classifier's sensitivity to minority classes. In addition, we combine the adversarial learning mechanism to generate minority class samples in the latent space so that the model can better characterize the category boundary in the high-dimensional feature space. The experiment is evaluated on the Kaggle "Credit Card Fraud Detection" dataset and compared with a variety of advanced imbalanced classification methods (such as GAN-based sampling, BRF, XGBoost-Cost Sensitive, SAAD, HAN). The results show that the method in this study has achieved the best performance in AUC, Precision, Recall and F1-score indicators, effectively improving the recognition rate of minority classes and reducing the false alarm rate. This method can be widely used in imbalanced classification tasks such as financial fraud detection, medical diagnosis, and anomaly detection, providing a new solution for related research.
Authors:Mathis Kruse, Bodo Rosenhahn
Title: Multi-Flow: Multi-View-Enriched Normalizing Flows for Industrial Anomaly Detection
Abstract:
With more well-performing anomaly detection methods proposed, many of the single-view tasks have been solved to a relatively good degree. However, real-world production scenarios often involve complex industrial products, whose properties may not be fully captured by one single image. While normalizing flow based approaches already work well in single-camera scenarios, they currently do not make use of the priors in multi-view data. We aim to bridge this gap by using these flow-based models as a strong foundation and propose Multi-Flow, a novel multi-view anomaly detection method. Multi-Flow makes use of a novel multi-view architecture, whose exact likelihood estimation is enhanced by fusing information across different views. For this, we propose a new cross-view message-passing scheme, letting information flow between neighboring views. We empirically validate it on the real-world multi-view data set Real-IAD and reach a new state-of-the-art, surpassing current baselines in both image-wise and sample-wise anomaly detection tasks.
Authors:Qiuliuyang Bao, Jiawei Wang, Hao Gong, Yiwei Zhang, Xiaojun Guo, Hanrui Feng
Title: A Deep Learning Approach to Anomaly Detection in High-Frequency Trading Data
Abstract:
This paper proposes an algorithm based on a staged sliding window Transformer architecture to detect abnormal behaviors in the microstructure of the foreign exchange market, focusing on high-frequency EUR/USD trading data. The method captures multi-scale temporal features through a staged sliding window, extracts global and local dependencies by combining the self-attention mechanism and weighted attention mechanism of the Transformer, and uses a classifier to identify abnormal events. Experimental results on a real high-frequency dataset containing order book depth, spread, and trading volume show that the proposed method significantly outperforms traditional machine learning (such as decision trees and random forests) and deep learning methods (such as MLP, CNN, RNN, LSTM) in terms of accuracy (0.93), F1-Score (0.91), and AUC-ROC (0.95). Ablation experiments verify the contribution of each component, and the visualization of order book depth and anomaly detection further reveals the effectiveness of the model under complex market dynamics. Despite the false positive problem, the model still provides important support for market supervision. In the future, noise processing can be optimized and extended to other markets to improve generalization and real-time performance.
Authors:Tommaso Di Noto, Sofyan Jankowski, Francesco Puccinelli, Guillaume Marie, Sebastien Tourbier, Yasser Aleman-Gomez, Oscar Esteban, Ricardo Corredor-Jerez, Guillaume Saliou, Patric Hagmann, Meritxell Bach Cuadra, Jonas Richiardi
Title: Assessing workflow impact and clinical utility of AI-assisted brain aneurysm detection: a multi-reader study
Abstract:
Despite the plethora of AI-based algorithms developed for anomaly detection in radiology, subsequent integration into clinical setting is rarely evaluated. In this work, we assess the applicability and utility of an AI-based model for brain aneurysm detection comparing the performance of two readers with different levels of experience (2 and 13 years). We aim to answer the following questions: 1) Do the readers improve their performance when assisted by the AI algorithm? 2) How much does the AI algorithm impact routine clinical workflow? We reuse and enlarge our open-access, Time-Of-Flight Magnetic Resonance Angiography dataset (N=460). We use 360 subjects for training/validating our algorithm and 100 as unseen test set for the reading session. Even though our model reaches state-of-the-art results on the test set (sensitivity=74%, false positive rate=1.6), we show that neither the junior nor the senior reader significantly increase their sensitivity (p=0.59, p=1, respectively). In addition, we find that reading time for both readers is significantly higher in the "AI-assisted" setting than in the "Unassisted" (+15 seconds, on average; p=3x10^(-4) junior, p=3x10^(-5) senior). The confidence reported by the readers is unchanged across the two settings, indicating that the AI assistance does not influence the certainty of the diagnosis. Our findings highlight the importance of clinical validation of AI algorithms in a clinical setting involving radiologists. This study should serve as a reminder to the community to always examine the real-word effectiveness and workflow impact of proposed algorithms.
Authors:Yuze Li, Wei Zhu
Title: TRACE: Time SeRies PArameter EffiCient FinE-tuning
Abstract:
We propose an efficient fine-tuning method for time series foundation models, termed TRACE: Time Series Parameter Efficient Fine-tuning. While pretrained time series foundation models are gaining popularity, they face the following challenges: (1) Unlike natural language tasks, time series data vary in frequency, channel numbers, historical/prediction lengths. For long-term forecasting tasks in particular, tailored fine-tuning can significantly enhance performance.(2) Existing parameter-efficient tuning methods like LoRA remain applicable but require adaptation to temporal characteristics. To address these challenges, our TRACE framework introduces two key innovations: (1) Gated DSIC (Gated Dynamic Simulation Importance Calculation), an unbiased LoRA module importance selection mechanism that ensures conditional parameter consistency before and after masking. Experiments demonstrate that Gated DSIC outperforms common fine-tuning. (2) Reconstructed prediction heads for long-term forecasting tasks, which achieve comparable or superior performance to linear probing heads while drastically reducing parameter counts. Extensive experiments on long-/short-term forecasting, anomaly detection and natural language tasks across diverse datasets, coupled with ablation studies, validate the effectiveness of our method.
Authors:Yue Sun, Rick S. Blum, Parv Venkitasubramaniam
Title: Unifying Explainable Anomaly Detection and Root Cause Analysis in Dynamical Systems
Abstract:
Dynamical systems, prevalent in various scientific and engineering domains, are susceptible to anomalies that can significantly impact their performance and reliability. This paper addresses the critical challenges of anomaly detection, root cause localization, and anomaly type classification in dynamical systems governed by ordinary differential equations (ODEs). We define two categories of anomalies: cyber anomalies, which propagate through interconnected variables, and measurement anomalies, which remain localized to individual variables. To address these challenges, we propose the Interpretable Causality Ordinary Differential Equation (ICODE) Networks, a model-intrinsic explainable learning framework. ICODE leverages Neural ODEs for anomaly detection while employing causality inference through an explanation channel to perform root cause analysis (RCA), elucidating why specific time periods are flagged as anomalous. ICODE is designed to simultaneously perform anomaly detection, RCA, and anomaly type classification within a single, interpretable framework. Our approach is grounded in the hypothesis that anomalies alter the underlying ODEs of the system, manifesting as changes in causal relationships between variables. We provide a theoretical analysis of how perturbations in learned model parameters can be utilized to identify anomalies and their root causes in time series data. Comprehensive experimental evaluations demonstrate the efficacy of ICODE across various dynamical systems, showcasing its ability to accurately detect anomalies, classify their types, and pinpoint their origins.
Authors:Tolulope Ale, Nicole-Jeanne Schlegel, Vandana P. Janeja
Title: Advancing climate model interpretability: Feature attribution for Arctic melt anomalies
Abstract:
The focus of our work is improving the interpretability of anomalies in climate models and advancing our understanding of Arctic melt dynamics. The Arctic and Antarctic ice sheets are experiencing rapid surface melting and increased freshwater runoff, contributing significantly to global sea level rise. Understanding the mechanisms driving snowmelt in these regions is crucial. ERA5, a widely used reanalysis dataset in polar climate studies, offers extensive climate variables and global data assimilation. However, its snowmelt model employs an energy imbalance approach that may oversimplify the complexity of surface melt. In contrast, the Glacier Energy and Mass Balance (GEMB) model incorporates additional physical processes, such as snow accumulation, firn densification, and meltwater percolation/refreezing, providing a more detailed representation of surface melt dynamics. In this research, we focus on analyzing surface snowmelt dynamics of the Greenland Ice Sheet using feature attribution for anomalous melt events in ERA5 and GEMB models. We present a novel unsupervised attribution method leveraging counterfactual explanation method to analyze detected anomalies in ERA5 and GEMB. Our anomaly detection results are validated using MEaSUREs ground-truth data, and the attributions are evaluated against established feature ranking methods, including XGBoost, Shapley values, and Random Forest. Our attribution framework identifies the physics behind each model and the climate features driving melt anomalies. These findings demonstrate the utility of our attribution method in enhancing the interpretability of anomalies in climate models and advancing our understanding of Arctic melt dynamics.
Authors:Mohammad Derakhshan, Paolo Ceravolo, Fatemeh Mohammadi
Title: Leveraging GPT-4o Efficiency for Detecting Rework Anomaly in Business Processes
Abstract:
This paper investigates the effectiveness of GPT-4o-2024-08-06, one of the Large Language Models (LLM) from OpenAI, in detecting business process anomalies, with a focus on rework anomalies. In our study, we developed a GPT-4o-based tool capable of transforming event logs into a structured format and identifying reworked activities within business event logs. The analysis was performed on a synthetic dataset designed to contain rework anomalies but free of loops. To evaluate the anomaly detection capabilities of GPT 4o-2024-08-06, we used three prompting techniques: zero-shot, one-shot, and few-shot. These techniques were tested on different anomaly distributions, namely normal, uniform, and exponential, to identify the most effective approach for each case. The results demonstrate the strong performance of GPT-4o-2024-08-06. On our dataset, the model achieved 96.14% accuracy with one-shot prompting for the normal distribution, 97.94% accuracy with few-shot prompting for the uniform distribution, and 74.21% accuracy with few-shot prompting for the exponential distribution. These results highlight the model's potential as a reliable tool for detecting rework anomalies in event logs and how anomaly distribution and prompting strategy influence the model's performance.
Authors:Hongwei Wen, Annika Betken, Tao Huang
Title: Median of Forests for Robust Density Estimation
Abstract:
Robust density estimation refers to the consistent estimation of the density function even when the data is contaminated by outliers. We find that existing forest density estimation at a certain point is inherently resistant to the outliers outside the cells containing the point, which we call \textit{non-local outliers}, but not resistant to the rest \textit{local outliers}. To achieve robustness against all outliers, we propose an ensemble learning algorithm called \textit{medians of forests for robust density estimation} (\textit{MFRDE}), which adopts a pointwise median operation on forest density estimators fitted on subsampled datasets. Compared to existing robust kernel-based methods, MFRDE enables us to choose larger subsampling sizes, sacrificing less accuracy for density estimation while achieving robustness. On the theoretical side, we introduce the local outlier exponent to quantify the number of local outliers. Under this exponent, we show that even if the number of outliers reaches a certain polynomial order in the sample size, MFRDE is able to achieve almost the same convergence rate as the same algorithm on uncontaminated data, whereas robust kernel-based methods fail. On the practical side, real data experiments show that MFRDE outperforms existing robust kernel-based methods. Moreover, we apply MFRDE to anomaly detection to showcase a further application.
Authors:Aafan Ahmad Toor, Jia-Chun Lin, Ernst Gunnar Gran
Title: Exploring the impact of Optimised Hyperparameters on Bi-LSTM-based Contextual Anomaly Detector
Abstract:
The exponential growth in the usage of Internet of Things in daily life has caused immense increase in the generation of time series data. Smart homes is one such domain where bulk of data is being generated and anomaly detection is one of the many challenges addressed by researchers in recent years. Contextual anomaly is a kind of anomaly that may show deviation from the normal pattern like point or sequence anomalies, but it also requires prior knowledge about the data domain and the actions that caused the deviation. Recent studies based on Recurrent Neural Networks (RNN) have demonstrated strong performance in anomaly detection. This study explores the impact of automatically tuned hyperparamteres on Unsupervised Online Contextual Anomaly Detection (UoCAD) approach by proposing UoCAD with Optimised Hyperparamnters (UoCAD-OH). UoCAD-OH conducts hyperparameter optimisation on Bi-LSTM model in an offline phase and uses the fine-tuned hyperparameters to detect anomalies during the online phase. The experiments involve evaluating the proposed framework on two smart home air quality datasets containing contextual anomalies. The evaluation metrics used are Precision, Recall, and F1 score.
Authors:Xiaoxuan Sun, Yue Yao, Xiaoye Wang, Pochun Li, Xuan Li
Title: AI-Driven Health Monitoring of Distributed Computing Architecture: Insights from XGBoost and SHAP
Abstract:
With the rapid development of artificial intelligence technology, its application in the optimization of complex computer systems is becoming more and more extensive. Edge computing is an efficient distributed computing architecture, and the health status of its nodes directly affects the performance and reliability of the entire system. In view of the lack of accuracy and interpretability of traditional methods in node health status judgment, this paper proposes a health status judgment method based on XGBoost and combines the SHAP method to analyze the interpretability of the model. Through experiments, it is verified that XGBoost has superior performance in processing complex features and nonlinear data of edge computing nodes, especially in capturing the impact of key features (such as response time and power consumption) on node status. SHAP value analysis further reveals the global and local importance of features, so that the model not only has high precision discrimination ability but also can provide intuitive explanations, providing data support for system optimization. Research shows that the combination of AI technology and computer system optimization can not only realize the intelligent monitoring of the health status of edge computing nodes but also provide a scientific basis for dynamic optimization scheduling, resource management and anomaly detection. In the future, with the in-depth development of AI technology, model dynamics, cross-node collaborative optimization and multimodal data fusion will become the focus of research, providing important support for the intelligent evolution of edge computing systems.
Authors:Roel Bouman, Tom Heskes
Title: Autoencoders for Anomaly Detection are Unreliable
Abstract:
Autoencoders are frequently used for anomaly detection, both in the unsupervised and semi-supervised settings. They rely on the assumption that when trained using the reconstruction loss, they will be able to reconstruct normal data more accurately than anomalous data. Some recent works have posited that this assumption may not always hold, but little has been done to study the validity of the assumption in theory. In this work we show that this assumption indeed does not hold, and illustrate that anomalies, lying far away from normal data, can be perfectly reconstructed in practice. We revisit the theory of failure of linear autoencoders for anomaly detection by showing how they can perfectly reconstruct out of bounds, or extrapolate undesirably, and note how this can be dangerous in safety critical applications. We connect this to non-linear autoencoders through experiments on both tabular data and real-world image data, the two primary application areas of autoencoders for anomaly detection.
Authors:Runzhou Mao, Juraj Fulir, Christoph Garth, Petra Gospodnetić
Title: Sequential PatchCore: Anomaly Detection for Surface Inspection using Synthetic Impurities
Abstract:
The appearance of surface impurities (e.g., water stains, fingerprints, stickers) is an often-mentioned issue that causes degradation of automated visual inspection systems. At the same time, synthetic data generation techniques for visual surface inspection have focused primarily on generating perfect examples and defects, disregarding impurities. This study highlights the importance of considering impurities when generating synthetic data. We introduce a procedural method to include photorealistic water stains in synthetic data. The synthetic datasets are generated to correspond to real datasets and are further used to train an anomaly detection model and investigate the influence of water stains. The high-resolution images used for surface inspection lead to memory bottlenecks during anomaly detection training. To address this, we introduce Sequential PatchCore - a method to build coresets sequentially and make training on large images using consumer-grade hardware tractable. This allows us to perform transfer learning using coresets pre-trained on different dataset versions. Our results show the benefits of using synthetic data for pre-training an explicit coreset anomaly model and the extended performance benefits of finetuning the coreset using real data. We observed how the impurities and labelling ambiguity lower the model performance and have additionally reported the defect-wise recall to provide an industrially relevant perspective on model performance.
Authors:Aparna Joshi, Kojo Adugyamfi, Jennifer Merickel, Pujitha Gunaratne, Anuj Sharma
Title: Driver Age and Its Effect on Key Driving Metrics: Insights from Dynamic Vehicle Data
Abstract:
By 2030, the senior population aged 65 and older is expected to increase by over 50%, significantly raising the number of older drivers on the road. Drivers over 70 face higher crash death rates compared to those in their forties and fifties, underscoring the importance of developing more effective safety interventions for this demographic. Although the impact of aging on driving behavior has been studied, there is limited research on how these behaviors translate into real-world driving scenarios. This study addresses this need by leveraging Naturalistic Driving Data (NDD) to analyze driving performance measures - specifically, speed limit adherence on interstates and deceleration at stop intersections, both of which may be influenced by age-related declines. Using NDD, we developed Cumulative Distribution Functions (CDFs) to establish benchmarks for key driving behaviors among senior and young drivers. Our analysis, which included anomaly detection, benchmark comparisons, and accuracy evaluations, revealed significant differences in driving patterns primarily related to speed limit adherence at 75mph. While our approach shows promising potential for enhancing Advanced Driver Assistance Systems (ADAS) by providing tailored interventions based on age-specific adherence to speed limit driving patterns, we recognize the need for additional data to refine and validate metrics for other driving behaviors. By establishing precise benchmarks for various driving performance metrics, ADAS can effectively identify anomalies, such as abrupt deceleration, which may indicate impaired driving or other safety concerns. This study lays a strong foundation for future research aimed at improving safety interventions through detailed driving behavior analysis.
Authors:Timothe Presles, Cyrille Enderli, Gilles Burel, El Houssain Baghious
Title: Quantum Computing for Partition Function Estimation of a Markov Random Field in a Radar Anomaly Detection Problem
Abstract:
In probability theory, the partition function is a factor used to reduce any probability function to a density function with total probability of one. Among other statistical models used to represent joint distribution, Markov random fields (MRF) can be used to efficiently represent statistical dependencies between variables. As the number of terms in the partition function scales exponentially with the number of variables, the potential of each configuration cannot be computed exactly in a reasonable time for large instances. In this paper, we aim to take advantage of the exponential scalability of quantum computing to speed up the estimation of the partition function of a MRF representing the dependencies between operating variables of an airborne radar. For that purpose, we implement a quantum algorithm for partition function estimation in the one clean qubit model. After proposing suitable formulations, we discuss the performances and scalability of our approach in comparison to the theoretical performances of the algorithm.
Authors:Ionut Marian Motoi, Valerio Belli, Alberto Carpineto, Daniele Nardi, Thomas Alessandro Ciarfuglia
Title: Synthetic Data Generation for Anomaly Detection on Table Grapes
Abstract:
Early detection of illnesses and pest infestations in fruit cultivation is critical for maintaining yield quality and plant health. Computer vision and robotics are increasingly employed for the automatic detection of such issues, particularly using data-driven solutions. However, the rarity of these problems makes acquiring and processing the necessary data to train such algorithms a significant obstacle. One solution to this scarcity is the generation of synthetic high-quality anomalous samples. While numerous methods exist for this task, most require highly trained individuals for setup. This work addresses the challenge of generating synthetic anomalies in an automatic fashion that requires only an initial collection of normal and anomalous samples from the user - a task that is straightforward for farmers. We demonstrate the approach in the context of table grape cultivation. Specifically, based on the observation that normal berries present relatively smooth surfaces, while defects result in more complex textures, we introduce a Dual-Canny Edge Detection (DCED) filter. This filter emphasizes the additional texture indicative of diseases, pest infestations, or other defects. Using segmentation masks provided by the Segment Anything Model, we then select and seamlessly blend anomalous berries onto normal ones. We show that the proposed dataset augmentation technique improves the accuracy of an anomaly classifier for table grapes and that the approach can be generalized to other fruit types.
Authors:Qingqing Fang, Qinliang Su, Wenxi Lv, Wenchao Xu, Jianxing Yu
Title: Boosting Fine-Grained Visual Anomaly Detection with Coarse-Knowledge-Aware Adversarial Learning
Abstract:
Many unsupervised visual anomaly detection methods train an auto-encoder to reconstruct normal samples and then leverage the reconstruction error map to detect and localize the anomalies. However, due to the powerful modeling and generalization ability of neural networks, some anomalies can also be well reconstructed, resulting in unsatisfactory detection and localization accuracy. In this paper, a small coarsely-labeled anomaly dataset is first collected. Then, a coarse-knowledge-aware adversarial learning method is developed to align the distribution of reconstructed features with that of normal features. The alignment can effectively suppress the auto-encoder's reconstruction ability on anomalies and thus improve the detection accuracy. Considering that anomalies often only occupy very small areas in anomalous images, a patch-level adversarial learning strategy is further developed. Although no patch-level anomalous information is available, we rigorously prove that by simply viewing any patch features from anomalous images as anomalies, the proposed knowledge-aware method can also align the distribution of reconstructed patch features with the normal ones. Experimental results on four medical datasets and two industrial datasets demonstrate the effectiveness of our method in improving the detection and localization performance.
Authors:Kushal Ramkumar, Wanling Cai, John McCarthy, Gavin Doherty, Bashar Nuseibeh, Liliana Pasquale
Title: Diagnosing Unknown Attacks in Smart Homes Using Abductive Reasoning
Abstract:
Security attacks are rising, as evidenced by the number of reported vulnerabilities. Among them, unknown attacks, including new variants of existing attacks, technical blind spots or previously undiscovered attacks, challenge enduring security. This is due to the limited number of techniques that diagnose these attacks and enable the selection of adequate security controls. In this paper, we propose an automated technique that detects and diagnoses unknown attacks by identifying the class of attack and the violated security requirements, enabling the selection of adequate security controls. Our technique combines anomaly detection to detect unknown attacks with abductive reasoning to diagnose them. We first model the behaviour of the smart home and its requirements as a logic program in Answer Set Programming (ASP). We then apply Z-Score thresholding to the anomaly scores of an Isolation Forest trained using unlabeled data to simulate unknown attack scenarios. Finally, we encode the network anomaly in the logic program and perform abduction by refutation to identify the class of attack and the security requirements that this anomaly may violate. We demonstrate our technique using a smart home scenario, where we detect and diagnose anomalies in network traffic. We evaluate the precision, recall and F1-score of the anomaly detector and the diagnosis technique against 18 attacks from the ground truth labels provided by two datasets, CICIoT2023 and IoT-23. Our experiments show that the anomaly detector effectively identifies anomalies when the network traces are strong indicators of an attack. When provided with sufficient contextual data, the diagnosis logic effectively identifies true anomalies, and reduces the number of false positives reported by anomaly detectors. Finally, we discuss how our technique can support the selection of adequate security controls.
Authors:Yining Pang, Chenghan Li
Title: Enhancing Cybersecurity in IoT Networks: A Deep Learning Approach to Anomaly Detection
Abstract:
With the proliferation of the Internet and smart devices, IoT technology has seen significant advancements and has become an integral component of smart homes, urban security, smart logistics, and other sectors. IoT facilitates real-time monitoring of critical production indicators, enabling businesses to detect potential quality issues, anticipate equipment malfunctions, and refine processes, thereby minimizing losses and reducing costs. Furthermore, IoT enhances real-time asset tracking, optimizing asset utilization and management. However, the expansion of IoT has also led to a rise in cybercrimes, with devices increasingly serving as vectors for malicious attacks. As the number of IoT devices grows, there is an urgent need for robust network security measures to counter these escalating threats. This paper introduces a deep learning model incorporating LSTM and attention mechanisms, a pivotal strategy in combating cybercrime in IoT networks. Our experiments, conducted on datasets including IoT-23, BoT-IoT, IoT network intrusion, MQTT, and MQTTset, demonstrate that our proposed method outperforms existing baselines.
Authors:Alex Kantchelian, Casper Neo, Ryan Stevens, Hyungwon Kim, Zhaohao Fu, Sadegh Momeni, Birkett Huber, Elie Bursztein, Yanis Pavlidis, Senaka Buthpitiya, Martin Cochran, Massimiliano Poletto
Title: Facade: High-Precision Insider Threat Detection Using Deep Contextual Anomaly Detection
Abstract:
We present Facade (Fast and Accurate Contextual Anomaly DEtection): a high-precision deep-learning-based anomaly detection system deployed at Google (a large technology company) as the last line of defense against insider threats since 2018. Facade is an innovative unsupervised action-context system that detects suspicious actions by considering the context surrounding each action, including relevant facts about the user and other entities involved. It is built around a new multi-modal model that is trained on corporate document access, SQL query, and HTTP/RPC request logs. To overcome the scarcity of incident data, Facade harnesses a novel contrastive learning strategy that relies solely on benign data. Its use of history and implicit social network featurization efficiently handles the frequent out-of-distribution events that occur in a rapidly changing corporate environment, and sustains Facade's high precision performance for a full year after training. Beyond the core model, Facade contributes an innovative clustering approach based on user and action embeddings to improve detection robustness and achieve high precision, multi-scale detection. Functionally what sets Facade apart from existing anomaly detection systems is its high precision. It detects insider attackers with an extremely low false positive rate, lower than 0.01%. For single rogue actions, such as the illegitimate access to a sensitive document, the false positive rate is as low as 0.0003%. To the best of our knowledge, Facade is the only published insider risk anomaly detection system that helps secure such a large corporate environment.
Authors:Abdulrahman Al-Fakih, A. Koeshidayatullah, Tapan Mukerji, SanLinn I. Kaka
Title: Enhanced anomaly detection in well log data through the application of ensemble GANs
Abstract:
Although generative adversarial networks (GANs) have shown significant success in modeling data distributions for image datasets, their application to structured or tabular data, such as well logs, remains relatively underexplored. This study extends the ensemble GANs (EGANs) framework to capture the distribution of well log data and detect anomalies that fall outside of these distributions. The proposed approach compares the performance of traditional methods, such as Gaussian mixture models (GMMs), with EGANs in detecting anomalies outside the expected data distributions. For the gamma ray (GR) dataset, EGANs achieved a precision of 0.62 and F1 score of 0.76, outperforming GMM's precision of 0.38 and F1 score of 0.54. Similarly, for travel time (DT), EGANs achieved a precision of 0.70 and F1 score of 0.79, surpassing GMM 0.56 and 0.71. In the neutron porosity (NPHI) dataset, EGANs recorded a precision of 0.53 and F1 score of 0.68, outshining GMM 0.47 and 0.61. For the bulk density (RHOB) dataset, EGANs achieved a precision of 0.52 and an F1 score of 0.67, slightly outperforming GMM, which yielded a precision of 0.50 and an F1 score of 0.65. This work's novelty lies in applying EGANs for well log data analysis, showcasing their ability to learn data patterns and identify anomalies that deviate from them. This approach offers more reliable anomaly detection compared to traditional methods like GMM. The findings highlight the potential of EGANs in enhancing anomaly detection for well log data, delivering significant implications for optimizing drilling strategies and reservoir management through more accurate, data-driven insights into subsurface characterization.
Authors:Christopher Holder, Anthony Bagnall
Title: Rock the KASBA: Blazingly Fast and Accurate Time Series Clustering
Abstract:
Time series data has become increasingly prevalent across numerous domains, driving a growing demand for time series machine learning techniques. Among these, time series clustering (TSCL) stands out as one of the most popular machine learning tasks. TSCL serves as a powerful exploratory analysis tool and is also employed as a preprocessing step or subroutine for various tasks, including anomaly detection, segmentation, and classification. The most popular TSCL algorithms are either fast (in terms of run time) but perform poorly on benchmark problems, or perform well on benchmarks but scale poorly. We present a new TSCL algorithm, the $k$-means (K) accelerated (A) Stochastic subgradient (S) Barycentre (B) Average (A) (KASBA) clustering algorithm. KASBA is a $k$-means clustering algorithm that uses the Move-Split-Merge (MSM) elastic distance at all stages of clustering, applies a randomised stochastic subgradient gradient descent to find barycentre centroids, links each stage of clustering to accelerate convergence and exploits the metric property of MSM distance to avoid a large proportion of distance calculations. It is a versatile and scalable clusterer designed for real-world TSCL applications. It allows practitioners to balance run time and clustering performance. We demonstrate through extensive experimentation that KASBA produces significantly better clustering than the faster state of the art clusterers and is offers orders of magnitude improvement in run time over the most performant $k$-means alternatives.
Authors:Ben Jacobson-Bell, Steve Croft, Carmen Choza, Alex Andersson, Daniel Bautista, Vishal Gajjar, Matthew Lebofsky, David H. E. MacMahon, Caleb Painter, Andrew P. V. Siemion
Title: Anomaly Detection and Radio-frequency Interference Classification with Unsupervised Learning in Narrowband Radio Technosignature Searches
Abstract:
The search for radio technosignatures is an anomaly detection problem: Candidate signals represent needles of interest in the proverbial haystack of radio-frequency interference (RFI). Current search frameworks find an enormity of false-positive signals, especially in large surveys, requiring manual follow-up to a sometimes prohibitive degree. Unsupervised learning provides an algorithmic way to winnow the most anomalous signals from the chaff, as well as group together RFI signals that bear morphological similarities. We present GLOBULAR (Grouping Low-frequency Observations By Unsupervised Learning After Reduction) clustering, a signal processing method that uses HDBSCAN to reduce the false-positive rate and isolate outlier signals for further analysis. When combined with a standard narrowband signal detection and spatial filtering pipeline, such as turboSETI, GLOBULAR clustering offers significant improvements in the false-positive rate over the standard pipeline alone, suggesting dramatic potential for the amelioration of manual follow-up requirements for future large surveys. By removing RFI signals in regions of high spectral occupancy, GLOBULAR clustering may also enable the detection of signals missed by the standard pipeline. We benchmark our method against the Choza et al. turboSETI-only search of 97 nearby galaxies at the L band, demonstrating a false-positive hit reduction rate of 93.1% and a false-positive event reduction rate of 99.3%.
Authors:Anton Sergeev, Victor Minchenkov, Aleksei Soldatov, Vasiliy Kakurin, Yaroslav Mazikov
Title: Outliers resistant image classification by anomaly detection
Abstract:
Various technologies, including computer vision models, are employed for the automatic monitoring of manual assembly processes in production. These models detect and classify events such as the presence of components in an assembly area or the connection of components. A major challenge with detection and classification algorithms is their susceptibility to variations in environmental conditions and unpredictable behavior when processing objects that are not included in the training dataset. As it is impractical to add all possible subjects in the training sample, an alternative solution is necessary. This study proposes a model that simultaneously performs classification and anomaly detection, employing metric learning to generate vector representations of images in a multidimensional space, followed by classification using cross-entropy. For experimentation, a dataset of over 327,000 images was prepared. Experiments were conducted with various computer vision model architectures, and the outcomes of each approach were compared.
Authors:Siwei Li, Jiayan Fang, Yichun Wua, Wei Wang, Chengxin Li, Jiangwen Chen
Title: A Fuzzy Reinforcement LSTM-based Long-term Prediction Model for Fault Conditions in Nuclear Power Plants
Abstract:
Early fault detection and timely maintenance scheduling can significantly mitigate operational risks in NPPs and enhance the reliability of operator decision-making. Therefore, it is necessary to develop an efficient Prognostics and Health Management (PHM) multi-step prediction model for predicting of system health status and prompt execution of maintenance operations. In this study, we propose a novel predictive model that integrates reinforcement learning with Long Short-Term Memory (LSTM) neural networks and the Expert Fuzzy Evaluation Method. The model is validated using parameter data for 20 different breach sizes in the Main Steam Line Break (MSLB) accident condition of the CPR1000 pressurized water reactor simulation model and it demonstrates a remarkable capability in accurately forecasting NPP parameter changes up to 128 steps ahead (with a time interval of 10 seconds per step, i.e., 1280 seconds), thereby satisfying the temporal advance requirement for fault prognostics in NPPs. Furthermore, this method provides an effective reference solution for PHM applications such as anomaly detection and remaining useful life prediction.
Authors:Pablo Gómez, Roland D. Vavrek, Guillermo Buenadicha, John Hoar, Sandor Kruk, Jan Reerink
Title: Machine learning-driven Anomaly Detection and Forecasting for Euclid Space Telescope Operations
Abstract:
State-of-the-art space science missions increasingly rely on automation due to spacecraft complexity and the costs of human oversight. The high volume of data, including scientific and telemetry data, makes manual inspection challenging. Machine learning offers significant potential to meet these demands. The Euclid space telescope, in its survey phase since February 2024, exemplifies this shift. Euclid's success depends on accurate monitoring and interpretation of housekeeping telemetry and science-derived data. Thousands of telemetry parameters, monitored as time series, may or may not impact the quality of scientific data. These parameters have complex interdependencies, often due to physical relationships (e.g., proximity of temperature sensors). Optimising science operations requires careful anomaly detection and identification of hidden parameter states. Moreover, understanding the interactions between known anomalies and physical quantities is crucial yet complex, as related parameters may display anomalies with varied timing and intensity. We address these challenges by analysing temperature anomalies in Euclid's telemetry from February to August 2024, focusing on eleven temperature parameters and 35 covariates. We use a predictive XGBoost model to forecast temperatures based on historical values, detecting anomalies as deviations from predictions. A second XGBoost model predicts anomalies from covariates, capturing their relationships to temperature anomalies. We identify the top three anomalies per parameter and analyse their interactions with covariates using SHAP (Shapley Additive Explanations), enabling rapid, automated analysis of complex parameter relationships. Our method demonstrates how machine learning can enhance telemetry monitoring, offering scalable solutions for other missions with similar data challenges.
Authors:Dipanwita Thakur, Antonella Guzzo, Giancarlo Fortino
Title: Anomalous Client Detection in Federated Learning
Abstract:
Federated learning (FL), with the growing IoT and edge computing, is seen as a promising solution for applications that are latency- and privacy-aware. However, due to the widespread dispersion of data across many clients, it is challenging to monitor client anomalies caused by malfunctioning devices or unexpected events. The majority of FL solutions now in use concentrate on the classification problem, ignoring situations in which anomaly detection may also necessitate privacy preservation and effectiveness. The system in federated learning is unable to manage the potentially flawed behavior of its clients completely. These behaviors include sharing arbitrary parameter values and causing a delay in convergence since clients are chosen at random without knowing the malfunctioning behavior of the client. Client selection is crucial in terms of the efficiency of the federated learning framework. The challenges such as client drift and handling slow clients with low computational capability are well-studied in FL. However, the detection of anomalous clients either for security or for overall performance in the FL frameworks is hardly studied in the literature. In this paper, we propose an anomaly client detection algorithm to overcome malicious client attacks and client drift in FL frameworks. Instead of random client selection, our proposed method utilizes anomaly client detection to remove clients from the FL framework, thereby enhancing the security and efficiency of the overall system. This proposed method improves the global model convergence in almost 50\% fewer communication rounds compared with widely used random client selection using the MNIST dataset.
Authors:Mattia G. Spina, Floriano De Rango, Edoardo Scalzo, Francesca Guerriero, Antonio Iera
Title: Distributing Intelligence in 6G Programmable Data Planes for Effective In-Network Intrusion Prevention
Abstract:
The problem of attacks on new generation network infrastructures is becoming increasingly relevant, given the widening of the attack surface of these networks resulting from the greater number of devices that will access them in the future (sensors, actuators, vehicles, household appliances, etc.). Approaches to the design of intrusion detection systems must evolve and go beyond the traditional concept of perimeter control to build on new paradigms that exploit the typical characteristics of future 5G and 6G networks, such as in-network computing and intelligent programmable data planes. The aim of this research is to propose a disruptive paradigm in which devices in a typical data plane of a future programmable network have anomaly detection capabilities and cooperate in a fully distributed fashion to act as an ML-enabled Intrusion Prevention System ``embedded" into the network. The reported proof-of-concept experiments demonstrate that the proposed paradigm allows working effectively and with a good level of precision while occupying overall less CPU and RAM resources of the devices involved.
Authors:Warren L. Davis, Max Carlson, Irina Tezaur, Diana Bull, Kara Peterson, Laura Swiler
Title: Spatio-temporal Multivariate Cluster Evolution Analysis for Detecting and Tracking Climate Impacts
Abstract:
Recent years have seen a growing concern about climate change and its impacts. While Earth System Models (ESMs) can be invaluable tools for studying the impacts of climate change, the complex coupling processes encoded in ESMs and the large amounts of data produced by these models, together with the high internal variability of the Earth system, can obscure important source-to-impact relationships. This paper presents a novel and efficient unsupervised data-driven approach for detecting statistically-significant impacts and tracing spatio-temporal source-impact pathways in the climate through a unique combination of ideas from anomaly detection, clustering and Natural Language Processing (NLP). Using as an exemplar the 1991 eruption of Mount Pinatubo in the Philippines, we demonstrate that the proposed approach is capable of detecting known post-eruption impacts/events. We additionally describe a methodology for extracting meaningful sequences of post-eruption impacts/events by using NLP to efficiently mine frequent multivariate cluster evolutions, which can be used to confirm or discover the chain of physical processes between a climate source and its impact(s).
Authors:Noemi Bührer, Saúl Alonso-Monsalve, Matthew Franks, Till Dieminger, Davide Sgalaberna
Title: AI-based particle track identification in scintillating fibres read out with imaging sensors
Abstract:
This paper presents the development and application of an AI-based method for particle track identification using scintillating fibres read out with imaging sensors. We propose a variational autoencoder (VAE) to efficiently filter and identify frames containing signal from the substantial data generated by SPAD array sensors. Our VAE model, trained on purely background frames, demonstrated a high capability to distinguish frames containing particle tracks from background noise. The performance of the VAE-based anomaly detection was validated with experimental data, demonstrating the method's ability to efficiently identify relevant events with rapid processing time, suggesting a solid prospect for deployment as a fast inference tool on hardware for real-time anomaly detection. This work highlights the potential of combining advanced sensor technology with machine learning techniques to enhance particle detection and tracking.
Authors:Sevvandi Kandanaarachchi, Conrad Sanderson, Rob J. Hyndman
Title: Extreme Value Modelling of Feature Residuals for Anomaly Detection in Dynamic Graphs
Abstract:
Detecting anomalies in a temporal sequence of graphs can be applied is areas such as the detection of accidents in transport networks and cyber attacks in computer networks. Existing methods for detecting abnormal graphs can suffer from multiple limitations, such as high false positive rates as well as difficulties with handling variable-sized graphs and non-trivial temporal dynamics. To address this, we propose a technique where temporal dependencies are explicitly modelled via time series analysis of a large set of pertinent graph features, followed by using residuals to remove the dependencies. Extreme Value Theory is then used to robustly model and classify any remaining extremes, aiming to produce low false positives rates. Comparative evaluations on a multitude of graph instances show that the proposed approach obtains considerably better accuracy than TensorSplat and Laplacian Anomaly Detection.
Authors:Selina Leveugle, Chang Won Lee, Svetlana Stolpner, Chris Langley, Paul Grouchy, Steven Waslander, Jonathan Kelly
Title: A Photorealistic Dataset and Vision-Based Algorithm for Anomaly Detection During Proximity Operations in Lunar Orbit
Abstract:
NASA's forthcoming Lunar Gateway space station, which will be uncrewed most of the time, will need to operate with an unprecedented level of autonomy. One key challenge is enabling the Canadarm3, the Gateway's external robotic system, to detect hazards in its environment using its onboard inspection cameras. This task is complicated by the extreme and variable lighting conditions in space. In this paper, we introduce the visual anomaly detection and localization task for the space domain and establish a benchmark based on a synthetic dataset called ALLO (Anomaly Localization in Lunar Orbit). We show that state-of-the-art visual anomaly detection methods often fail in the space domain, motivating the need for new approaches. To address this, we propose MRAD (Model Reference Anomaly Detection), a statistical algorithm that leverages the known pose of the Canadarm3 and a CAD model of the Gateway to generate reference images of the expected scene appearance. Anomalies are then identified as deviations from this model-generated reference. On the ALLO dataset, MRAD surpasses state-of-the-art anomaly detection algorithms, achieving an AP score of 62.1% at the pixel level and an AUROC score of 74.9% at the image level. Given the low tolerance for risk in space operations and the lack of domain-specific data, we emphasize the need for novel, robust, and accurate anomaly detection methods to handle the challenging visual conditions found in lunar orbit and beyond.
Authors:Maximilian Toller, Hussain Hussain, Roman Kern, Bernhard C. Geiger
Title: Constraining Anomaly Detection with Anomaly-Free Regions
Abstract:
We propose the novel concept of anomaly-free regions (AFR) to improve anomaly detection. An AFR is a region in the data space for which it is known that there are no anomalies inside it, e.g., via domain knowledge. This region can contain any number of normal data points and can be anywhere in the data space. AFRs have the key advantage that they constrain the estimation of the distribution of non-anomalies: The estimated probability mass inside the AFR must be consistent with the number of normal data points inside the AFR. Based on this insight, we provide a solid theoretical foundation and a reference implementation of anomaly detection using AFRs. Our empirical results confirm that anomaly detection constrained via AFRs improves upon unconstrained anomaly detection. Specifically, we show that, when equipped with an estimated AFR, an efficient algorithm based on random guessing becomes a strong baseline that several widely-used methods struggle to overcome. On a dataset with a ground-truth AFR available, the current state of the art is outperformed.
Authors:Lance Kennedy, Andreas Züfle
Title: Kinematic Detection of Anomalies in Human Trajectory Data
Abstract:
Historically, much of the research in understanding, modeling, and mining human trajectory data has focused on where an individual stays. Thus, the focus of existing research has been on where a user goes. On the other hand, the study of how a user moves between locations has great potential for new research opportunities. Kinematic features describe how an individual moves between locations and can be used for tasks such as identification of individuals or anomaly detection. Unfortunately, data availability and quality challenges make kinematic trajectory mining difficult. In this paper, we leverage the Geolife dataset of human trajectories to investigate the viability of using kinematic features to identify individuals and detect anomalies. We show that humans have an individual "kinematic profile" which can be used as a strong signal to identify individual humans. We experimentally show that, for the two use-cases of individual identification and anomaly detection, simple kinematic features fed to standard classification and anomaly detection algorithms significantly improve results.
Authors:Yueyang Liu, Lance Kennedy, Hossein Amiri, Andreas Züfle
Title: Neural Collaborative Filtering to Detect Anomalies in Human Semantic Trajectories
Abstract:
Human trajectory anomaly detection has become increasingly important across a wide range of applications, including security surveillance and public health. However, existing trajectory anomaly detection methods are primarily focused on vehicle-level traffic, while human-level trajectory anomaly detection remains under-explored. Since human trajectory data is often very sparse, machine learning methods have become the preferred approach for identifying complex patterns. However, concerns regarding potential biases and the robustness of these models have intensified the demand for more transparent and explainable alternatives. In response to these challenges, our research focuses on developing a lightweight anomaly detection model specifically designed to detect anomalies in human trajectories. We propose a Neural Collaborative Filtering approach to model and predict normal mobility. Our method is designed to model users' daily patterns of life without requiring prior knowledge, thereby enhancing performance in scenarios where data is sparse or incomplete, such as in cold start situations. Our algorithm consists of two main modules. The first is the collaborative filtering module, which applies collaborative filtering to model normal mobility of individual humans to places of interest. The second is the neural module, responsible for interpreting the complex spatio-temporal relationships inherent in human trajectory data. To validate our approach, we conducted extensive experiments using simulated and real-world datasets comparing to numerous state-of-the-art trajectory anomaly detection approaches.
Authors:Razin Farhan Hussain, Mohsen Amini Salehi
Title: A Multi-Level Approach for Class Imbalance Problem in Federated Learning for Remote Industry 4.0 Applications
Abstract:
Deep neural network (DNN) models are effective solutions for industry 4.0 applications (\eg oil spill detection, fire detection, anomaly detection). However, training a DNN network model needs a considerable amount of data collected from various sources and transferred to the central cloud server that can be expensive and sensitive to privacy. For instance, in the remote offshore oil field where network connectivity is vulnerable, a federated fog environment can be a potential computing platform. Hence it is feasible to perform computation within the federation. On the contrary, performing a DNN model training using fog systems poses a security issue that the federated learning (FL) technique can resolve. In this case, the new challenge is the class imbalance problem that can be inherited in local data sets and can degrade the performance of the global model. Therefore, FL training needs to be performed considering the class imbalance problem locally. In addition, an efficient technique to select the relevant worker model needs to be adopted at the global level to increase the robustness of the global model. Accordingly, we utilize one of the suitable loss functions addressing the class imbalance in workers at the local level. In addition, we employ a dynamic threshold mechanism with user-defined worker's weight to efficiently select workers for aggregation that improve the global model's robustness. Finally, we perform an extensive empirical evaluation to explore the benefits of our solution and find up to 3-5% performance improvement than baseline federated learning methods.
Authors:Eirini Cholopoulou, Dimitris K. Iakovidis
Title: MeLIAD: Interpretable Few-Shot Anomaly Detection with Metric Learning and Entropy-based Scoring
Abstract:
Anomaly detection (AD) plays a pivotal role in multimedia applications for detecting defective products and automating quality inspection. Deep learning (DL) models typically require large-scale annotated data, which are often highly imbalanced since anomalies are usually scarce. The black box nature of these models prohibits them from being trusted by users. To address these challenges, we propose MeLIAD, a novel methodology for interpretable anomaly detection, which unlike the previous methods is based on metric learning and achieves interpretability by design without relying on any prior distribution assumptions of true anomalies. MeLIAD requires only a few samples of anomalies for training, without employing any augmentation techniques, and is inherently interpretable, providing visualizations that offer insights into why an image is identified as anomalous. This is achieved by introducing a novel trainable entropy-based scoring component for the identification and localization of anomalous instances, and a novel loss function that jointly optimizes the anomaly scoring component with a metric learning objective. Experiments on five public benchmark datasets, including quantitative and qualitative evaluation of interpretability, demonstrate that MeLIAD achieves improved anomaly detection and localization performance compared to state-of-the-art methods.
Authors:Jordi Malé, Juan Fortea, Mateus Rozalem Aranha, Yann Heuzé, Neus Martínez-Abadías, Xavier Sevillano
Title: Towards the Discovery of Down Syndrome Brain Biomarkers Using Generative Models
Abstract:
Brain imaging has allowed neuroscientists to analyze brain morphology in genetic and neurodevelopmental disorders, such as Down syndrome, pinpointing regions of interest to unravel the neuroanatomical underpinnings of cognitive impairment and memory deficits. However, the connections between brain anatomy, cognitive performance and comorbidities like Alzheimer's disease are still poorly understood in the Down syndrome population. The latest advances in artificial intelligence constitute an opportunity for developing automatic tools to analyze large volumes of brain magnetic resonance imaging scans, overcoming the bottleneck of manual analysis. In this study, we propose the use of generative models for detecting brain alterations in people with Down syndrome affected by various degrees of neurodegeneration caused by Alzheimer's disease. To that end, we evaluate state-of-the-art brain anomaly detection models based on Variational Autoencoders and Diffusion Models, leveraging a proprietary dataset of brain magnetic resonance imaging scans. Following a comprehensive evaluation process, our study includes several key analyses. First, we conducted a qualitative evaluation by expert neuroradiologists. Second, we performed both quantitative and qualitative reconstruction fidelity studies for the generative models. Third, we carried out an ablation study to examine how the incorporation of histogram post-processing can enhance model performance. Finally, we executed a quantitative volumetric analysis of subcortical structures. Our findings indicate that some models effectively detect the primary alterations characterizing Down syndrome's brain anatomy, including a smaller cerebellum, enlarged ventricles, and cerebral cortex reduction, as well as the parietal lobe alterations caused by Alzheimer's disease.
Authors:Lukas Schynol, Marius Pesavento
Title: Adaptive Anomaly Detection in Network Flows with Low-Rank Tensor Decompositions and Deep Unrolling
Abstract:
Anomaly detection (AD) is increasingly recognized as a key component for ensuring the resilience of future communication systems. While deep learning has shown state-of-the-art AD performance, its application in critical systems is hindered by concerns regarding training data efficiency, domain adaptation and interpretability. This work considers AD in network flows using incomplete measurements, leveraging a robust tensor decomposition approach and deep unrolling techniques to address these challenges. We first propose a novel block-successive convex approximation algorithm based on a regularized model-fitting objective where the normal flows are modeled as low-rank tensors and anomalies as sparse. An augmentation of the objective is introduced to decrease the computational cost. We apply deep unrolling to derive a novel deep network architecture based on our proposed algorithm, treating the regularization parameters as learnable weights. Inspired by Bayesian approaches, we extend the model architecture to perform online adaptation to per-flow and per-time-step statistics, improving AD performance while maintaining a low parameter count and preserving the problem's permutation equivariances. To optimize the deep network weights for detection performance, we employ a homotopy optimization approach based on an efficient approximation of the area under the receiver operating characteristic curve. Extensive experiments on synthetic and real-world data demonstrate that our proposed deep network architecture exhibits a high training data efficiency, outperforms reference methods, and adapts seamlessly to varying network topologies.
Authors:Kangjun Lee, Minha Kim, Youngho Jun, Simon S. Woo
Title: GDFlow: Anomaly Detection with NCDE-based Normalizing Flow for Advanced Driver Assistance System
Abstract:
For electric vehicles, the Adaptive Cruise Control (ACC) in Advanced Driver Assistance Systems (ADAS) is designed to assist braking based on driving conditions, road inclines, predefined deceleration strengths, and user braking patterns. However, the driving data collected during the development of ADAS are generally limited and lack diversity. This deficiency leads to late or aggressive braking for different users. Crucially, it is necessary to effectively identify anomalies, such as unexpected or inconsistent braking patterns in ADAS, especially given the challenge of working with unlabelled, limited, and noisy datasets from real-world electric vehicles. In order to tackle the aforementioned challenges in ADAS, we propose Graph Neural Controlled Differential Equation Normalizing Flow (GDFlow), a model that leverages Normalizing Flow (NF) with Neural Controlled Differential Equations (NCDE) to learn the distribution of normal driving patterns continuously. Compared to the traditional clustering or anomaly detection algorithms, our approach effectively captures the spatio-temporal information from different sensor data and more accurately models continuous changes in driving patterns. Additionally, we introduce a quantile-based maximum likelihood objective to improve the likelihood estimate of the normal data near the boundary of the distribution, enhancing the model's ability to distinguish between normal and anomalous patterns. We validate GDFlow using real-world electric vehicle driving data that we collected from Hyundai IONIQ5 and GV80EV, achieving state-of-the-art performance compared to six baselines across four dataset configurations of different vehicle types and drivers. Furthermore, our model outperforms the latest anomaly detection methods across four time series benchmark datasets. Our approach demonstrates superior efficiency in inference time compared to existing methods.
Authors:Khouloud Abdelli, Matteo Lonardi, Jurgen Gripp, Samuel Olsson, Fabien Boitier, Patricia Layec
Title: Unsupervised Anomaly Detection and Localization with Generative Adversarial Networks
Abstract:
We propose a novel unsupervised anomaly detection approach using generative adversarial networks and SOP-derived spectrograms. Demonstrating remarkable efficacy, our method achieves over 97% accuracy on SOP datasets from both submarine and terrestrial fiber links, all achieved without the need for labelled data.
Authors:Filip Graliński, Ryszard Staruch, Krzysztof Jurkiewicz
Title: Oddballness: universal anomaly detection with language models
Abstract:
We present a new method to detect anomalies in texts (in general: in sequences of any data), using language models, in a totally unsupervised manner. The method considers probabilities (likelihoods) generated by a language model, but instead of focusing on low-likelihood tokens, it considers a new metric introduced in this paper: oddballness. Oddballness measures how ``strange'' a given token is according to the language model. We demonstrate in grammatical error detection tasks (a specific case of text anomaly detection) that oddballness is better than just considering low-likelihood events, if a totally unsupervised setup is assumed.
Authors:Sounak Bhowmik, Himanshu Thapliyal
Title: Quantum Machine Learning for Anomaly Detection in Consumer Electronics
Abstract:
Anomaly detection is a crucial task in cyber security. Technological advancement brings new cyber-physical threats like network intrusion, financial fraud, identity theft, and property invasion. In the rapidly changing world, with frequently emerging new types of anomalies, classical machine learning models are insufficient to prevent all the threats. Quantum Machine Learning (QML) is emerging as a powerful computational tool that can detect anomalies more efficiently. In this work, we have introduced QML and its applications for anomaly detection in consumer electronics. We have shown a generic framework for applying QML algorithms in anomaly detection tasks. We have also briefly discussed popular supervised, unsupervised, and reinforcement learning-based QML algorithms and included five case studies of recent works to show their applications in anomaly detection in the consumer electronics field.
Authors:F. D. Amaro, R. Antonietti, E. Baracchini, L. Benussi, C. Capoccia, M. Caponero, L. G. M. de Carvalho, G. Cavoto, I. A. Costa, A. Croce, M. D'Astolfo, G. D'Imperio, G. Dho, E. Di Marco, J. M. F. dos Santos, D. Fiorina, F. Iacoangeli, Z. Islam, E. Kemp, H. P. Lima, G. Maccarrone, R. D. P. Mano, D. J. G. Marques, G. Mazzitelli, P. Meloni, A. Messina, C. M. B. Monteiro, R. A. Nobrega, G. M. Oppedisano, I. F. Pains, E. Paoletti, F. Petrucci, S. Piacentini, D. Pierluigi, D. Pinci, F. Renga, A. Russo, G. Saviano, P. A. O. C. Silva, N. J. Spooner, R. Tesauro, S. Tomassini, D. Tozzi
Title: Trigger Optimization and Event Classification for Dark Matter Searches in the CYGNO Experiment Using Machine Learning
Abstract:
The CYGNO experiment employs an optical-readout Time Projection Chamber (TPC) to search for rare low-energy interactions using finely resolved scintillation images. While the optical readout provides rich topological information, it produces large, sparse megapixel images that challenge real-time triggering, data reduction, and background discrimination. We summarize two complementary machine-learning approaches developed within CYGNO. First, we present a fast and fully unsupervised strategy for online data reduction based on reconstruction-based anomaly detection. A convolutional autoencoder trained exclusively on pedestal images (i.e. frames acquired with GEM amplification disabled) learns the detector noise morphology and highlights particle-induced structures through localized reconstruction residuals, from which compact Regions of Interest (ROIs) are extracted. On real prototype data, the selected configuration retains (93.0 +/- 0.2)% of reconstructed signal intensity while discarding (97.8 +/- 0.1)% of the image area, with ~25 ms per-frame inference time on a consumer GPU. Second, we report a weakly supervised application of the Classification Without Labels (CWoLa) framework to data acquired with an Americium--Beryllium neutron source. Using only mixed AmBe and standard datasets (no event-level labels), a convolutional classifier learns to identify nuclear-recoil-like topologies. The achieved performance approaches the theoretical limit imposed by the mixture composition and isolates a high-score population with compact, approximately circular morphologies consistent with nuclear recoils.
Authors:Qing Lyu, Zhe Fu, Alexandre Bayen
Title: Unsupervised Anomaly Detection in Multi-Agent Trajectory Prediction via Transformer-Based Models
Abstract:
Identifying safety-critical scenarios is essential for autonomous driving, but the rarity of such events makes supervised labeling impractical. Traditional rule-based metrics like Time-to-Collision are too simplistic to capture complex interaction risks, and existing methods lack a systematic way to verify whether statistical anomalies truly reflect physical danger. To address this gap, we propose an unsupervised anomaly detection framework based on a multi-agent Transformer that models normal driving and measures deviations through prediction residuals. A dual evaluation scheme has been proposed to assess both detection stability and physical alignment: Stability is measured using standard ranking metrics in which Kendall Rank Correlation Coefficient captures rank agreement and Jaccard index captures the consistency of the top-K selected items; Physical alignment is assessed through correlations with established Surrogate Safety Measures (SSM). Experiments on the NGSIM dataset demonstrate our framework's effectiveness: We show that the maximum residual aggregator achieves the highest physical alignment while maintaining stability. Furthermore, our framework identifies 388 unique anomalies missed by Time-to-Collision and statistical baselines, capturing subtle multi-agent risks like reactive braking under lateral drift. The detected anomalies are further clustered into four interpretable risk types, offering actionable insights for simulation and testing.
Authors:Soham Sarkar, Tanmay Sen, Sayantan Banerjee
Title: BayPrAnoMeta: Bayesian Proto-MAML for Few-Shot Industrial Image Anomaly Detection
Abstract:
Industrial image anomaly detection is a challenging problem owing to extreme class imbalance and the scarcity of labeled defective samples, particularly in few-shot settings. We propose BayPrAnoMeta, a Bayesian generalization of Proto-MAML for few-shot industrial image anomaly detection. Unlike existing Proto-MAML approaches that rely on deterministic class prototypes and distance-based adaptation, BayPrAnoMeta replaces prototypes with task-specific probabilistic normality models and performs inner-loop adaptation via a Bayesian posterior predictive likelihood. We model normal support embeddings with a Normal-Inverse-Wishart (NIW) prior, producing a Student-$t$ predictive distribution that enables uncertainty-aware, heavy-tailed anomaly scoring and is essential for robustness in extreme few-shot settings. We further extend BayPrAnoMeta to a federated meta-learning framework with supervised contrastive regularization for heterogeneous industrial clients and prove convergence to stationary points of the resulting nonconvex objective. Experiments on the MVTec AD benchmark demonstrate consistent and significant AUROC improvements over MAML, Proto-MAML, and PatchCore-based methods in few-shot anomaly detection settings.
Authors:Abdullah Khanfor, Raby Hamadi, Noureddine Lasla, Hakim Ghazzai
Title: AI-driven Intrusion Detection for UAV in Smart Urban Ecosystems: A Comprehensive Survey
Abstract:
UAVs have the potential to revolutionize urban management and provide valuable services to citizens. They can be deployed across diverse applications, including traffic monitoring, disaster response, environmental monitoring, and numerous other domains. However, this integration introduces novel security challenges that must be addressed to ensure safe and trustworthy urban operations. This paper provides a structured, evidence-based synthesis of UAV applications in smart cities and their associated security challenges as reported in the literature over the last decade, with particular emphasis on developments from 2019 to 2025. We categorize these challenges into two primary classes: 1) cyber-attacks targeting the communication infrastructure of UAVs and 2) unwanted or unauthorized physical intrusions by UAVs themselves. We examine the potential of Artificial Intelligence (AI) techniques in developing intrusion detection mechanisms to mitigate these security threats. We analyze how AI-based methods, such as machine/deep learning for anomaly detection and computer vision for object recognition, can play a pivotal role in enhancing UAV security through unified detection systems that address both cyber and physical threats. Furthermore, we consolidate publicly available UAV datasets across network traffic and vision modalities suitable for Intrusion Detection Systems (IDS) development and evaluation. The paper concludes by identifying ten key research directions, including scalability, robustness, explainability, data scarcity, automation, hybrid detection, large language models, multimodal approaches, federated learning, and privacy preservation. Finally, we discuss the practical challenges of implementing UAV IDS solutions in real-world smart city environments.
Authors:Sneha Sudhakaran, Naresh Kshetri
Title: AI Agents vs. Human Investigators: Balancing Automation, Security, and Expertise in Cyber Forensic Analysis
Abstract:
In an era where cyber threats are rapidly evolving, the reliability of cyber forensic analysis has become increasingly critical for effective digital investigations and cybersecurity responses. AI agents are being adopted across digital forensic practices due to their ability to automate processes such as anomaly detection, evidence classification, and behavioral pattern recognition, significantly enhancing scalability and reducing investigation timelines. However, the characteristics that make AI indispensable also introduce notable risks. AI systems, often trained on biased or incomplete datasets, can produce misleading results, including false positives and false negatives, thereby jeopardizing the integrity of forensic investigations. This study presents a meticulous comparative analysis of the effectiveness of the most used AI agent, ChatGPT, and human forensic investigators in the realm of cyber forensic analysis. Our research reveals critical limitations within AI-driven approaches, demonstrating scenarios in which sophisticated or novel cyber threats remain undetected due to the rigid pattern-based nature of AI systems. Conversely, our analysis highlights the crucial role that human forensic investigators play in mitigating these risks. Through adaptive decision-making, ethical reasoning, and contextual understanding, human investigators effectively identify subtle anomalies and threats that may evade automated detection systems. To reinforce our findings, we conducted comprehensive reliability testing of forensic techniques using multiple cyber threat scenarios. These tests confirmed that while AI agents significantly improve the efficiency of routine analyses, human oversight remains crucial in ensuring accuracy and comprehensiveness of the results.
Authors:Enrique Feito-Casares, Ismael Gómez-Talal, José-Luis Rojo-Álvarez
Title: Descriptor: Multi-Regional Cloud Honeypot Dataset (MURHCAD)
Abstract:
This data article introduces a comprehensive, high-resolution honeynet dataset designed to support standalone analyses of global cyberattack behaviors. Collected over a continuous 72-hour window (June 9 to 11, 2025) on Microsoft Azure, the dataset comprises 132,425 individual attack events captured by three honeypots (Cowrie, Dionaea, and SentryPeer) deployed across four geographically dispersed virtual machines. Each event record includes enriched metadata (UTC timestamps, source/destination IPs, autonomous system and organizational mappings, geolocation coordinates, targeted ports, and honeypot identifiers alongside derived temporal features and standardized protocol classifications). We provide actionable guidance for researchers seeking to leverage this dataset in anomaly detection, protocol-misuse studies, threat intelligence, and defensive policy design. Descriptive statistics highlight significant skew: 2,438 unique source IPs span 95 countries, yet the top 1% of IPs account for 1% of all events, and three protocols dominate: Session Initiation Protocol (SIP), Telnet, Server Message Block (SMB). Temporal analysis uncovers pronounced rush-hour peaks at 07:00 and 23:00 UTC, interspersed with maintenance-induced gaps that reveal operational blind spots. Geospatial mapping further underscores platform-specific biases: SentryPeer captures concentrated SIP floods in North America and Southeast Asia, Cowrie logs Telnet/SSH scans predominantly from Western Europe and the U.S., and Dionaea records SMB exploits around European nodes. By combining fine-grained temporal resolution with rich, contextual geolocation and protocol metadata, this standalone dataset aims to empower reproducible, cloud-scale investigations into evolving cyber threats. Accompanying analysis code and data access details are provided.
Authors:Gaurav Sarraf, Vibhor Pal
Title: Autonomous Threat Detection and Response in Cloud Security: A Comprehensive Survey of AI-Driven Strategies
Abstract:
Cloud computing has changed online communities in three dimensions, which are scalability, adaptability and reduced overhead. But there are serious security concerns which are brought about by its distributed and multi-tenant characteristics. The old methods of detecting and reacting to threats which are mostly reliant on fixed signatures, predefined rules and human operators are becoming less and less effective even in the advanced stages of cyberattacks of cloud infrastructures. The recent trend in the field of addressing these limitations is the creation of technologies of artificial intelligence (AI). The strategies allow independent protection, anomaly detection, and real-time analysis with references to using deep learning, machine learning, and reinforcement learning. Through imbuing AI with a constantly-learning feature, it enables the intrusion detection system to be more accurate and generate a lesser number of false positives and it also enables the possibility of adaptive and predictive security. The fusion of large-scale language models with efficient orchestration platforms contributes to reacting to the arising threats with a quicker and more precise response. This allows automatic control over incidences, self-healing network, and defense mechanisms on a policy basis. Considering the current detection and response methods, this discussion assesses their strengths and weaknesses and outlines key issues such as data privacy, adversarial machine learning and integration complexity in the context of AI-based cloud security. These results suggest the future application of AI to support autonomous, scalable and active cloud security operations.
Authors:Jungi Lee, Jungkwon Kim, Chi Zhang, Sangmin Kim, Kwangsun Yoo, Seok-Joo Byun
Title: Mitigating Long-Tailed Anomaly Score Distributions with Importance-Weighted Loss
Abstract:
Anomaly detection is crucial in industrial applications for identifying rare and unseen patterns to ensure system reliability. Traditional models, trained on a single class of normal data, struggle with real-world distributions where normal data exhibit diverse patterns, leading to class imbalance and long-tailed anomaly score distributions (LTD). This imbalance skews model training and degrades detection performance, especially for minority instances. To address this issue, we propose a novel importance-weighted loss designed specifically for anomaly detection. Compared to the previous method for LTD in classification, our method does not require prior knowledge of normal data classes. Instead, we introduce a weighted loss function that incorporates importance sampling to align the distribution of anomaly scores with a target Gaussian, ensuring a balanced representation of normal data. Extensive experiments on three benchmark image datasets and three real-world hyperspectral imaging datasets demonstrate the robustness of our approach in mitigating LTD-induced bias. Our method improves anomaly detection performance by 0.043, highlighting its effectiveness in real-world applications.
Authors:Wei Hu, Zewei Yu, Jianqiu Xu
Title: Multivariate Time-series Anomaly Detection via Dynamic Model Pool & Ensembling
Abstract:
Multivariate time-series (MTS) anomaly detection is critical in domains such as service monitor, IoT, and network security. While multi-model methods based on selection or ensembling outperform single-model ones, they still face limitations: (i) selection methods rely on a single chosen model and are sensitive to the strategy; (ii) ensembling methods often combine all models or are restricted to univariate data; and (iii) most methods depend on fixed data dimensionality, limiting scalability. To address these, we propose DMPEAD, a Dynamic Model Pool and Ensembling framework for MTS Anomaly Detection. The framework first (i) constructs a diverse model pool via parameter transfer and diversity metric, then (ii) updates it with a meta-model and similarity-based strategy for adaptive pool expansion, subset selection, and pool merging, finally (iii) ensembles top-ranked models through proxy metric ranking and top-k aggregation in the selected subset, outputting the final anomaly detection result. Extensive experiments on 8 real-world datasets show that our model outperforms all baselines, demonstrating superior adaptability and scalability.
Authors:Zewei Yu, Jianqiu Xu, Caimin Li
Title: A Graph-based Framework for Online Time Series Anomaly Detection Using Model Ensemble
Abstract:
With the increasing volume of streaming data in industrial systems, online anomaly detection has become a critical task. The diverse and rapidly evolving data patterns pose significant challenges for online anomaly detection. Many existing anomaly detection methods are designed for offline settings or have difficulty in handling heterogeneous streaming data effectively. This paper proposes GDME, an unsupervised graph-based framework for online time series anomaly detection using model ensemble. GDME maintains a dynamic model pool that is continuously updated by pruning underperforming models and introducing new ones. It utilizes a dynamic graph structure to represent relationships among models and employs community detection on the graph to select an appropriate subset for ensemble. The graph structure is also used to detect concept drift by monitoring structural changes, allowing the framework to adapt to evolving streaming data. Experiments on seven heterogeneous time series demonstrate that GDME outperforms existing online anomaly detection methods, achieving improvements of up to 24%. In addition, its ensemble strategy provides superior detection performance compared with both individual models and average ensembles, with competitive computational efficiency.
Authors:Ata Akbari Asanjan, Milad Memarzadeh, Bryan Matthews, Nikunj Oza
Title: Improving Variational Autoencoder using Random Fourier Transformation: An Aviation Safety Anomaly Detection Case-Study
Abstract:
In this study, we focus on the training process and inference improvements of deep neural networks (DNNs), specifically Autoencoders (AEs) and Variational Autoencoders (VAEs), using Random Fourier Transformation (RFT). We further explore the role of RFT in model training behavior using Frequency Principle (F-Principle) analysis and show that models with RFT turn to learn low frequency and high frequency at the same time, whereas conventional DNNs start from low frequency and gradually learn (if successful) high-frequency features. We focus on reconstruction-based anomaly detection using autoencoder and variational autoencoder and investigate the RFT's role. We also introduced a trainable variant of RFT that uses the existing computation graph to train the expansion of RFT instead of it being random. We showcase our findings with two low-dimensional synthetic datasets for data representation, and an aviation safety dataset, called Dashlink, for high-dimensional reconstruction-based anomaly detection. The results indicate the superiority of models with Fourier transformation compared to the conventional counterpart and remain inconclusive regarding the benefits of using trainable Fourier transformation in contrast to the Random variant.
Authors:John Carter, Spiros Mancoridis, Pavlos Protopapas, Brian Mitchell, Benji Lilley
Title: Improving Router Security using BERT
Abstract:
Previous work on home router security has shown that using system calls to train a transformer-based language model built on a BERT-style encoder using contrastive learning is effective in detecting several types of malware, but the performance remains limited at low false positive rates. In this work, we demonstrate that using a high-fidelity eBPF-based system call sensor, together with contrastive augmented learning (which introduces controlled mutations of negative samples), improves detection performance at a low false positive rate. In addition, we introduce a network packet abstraction language that enables the creation of a pipeline similar to network packet data, and we show that network behavior provides complementary detection signals-yielding improved performance for network-focused malware at low false positive rates. Lastly, we implement these methods in an online router anomaly detection framework to validate the approach in an Internet of Things (IoT) deployment environment.
Authors:Miseon Park, Kijung Yoon
Title: A Comparative Study of Adaptation Strategies for Time Series Foundation Models in Anomaly Detection
Abstract:
Time series anomaly detection is essential for the reliable operation of complex systems, but most existing methods require extensive task-specific training. We explore whether time series foundation models (TSFMs), pretrained on large heterogeneous data, can serve as universal backbones for anomaly detection. Through systematic experiments across multiple benchmarks, we compare zero-shot inference, full model adaptation, and parameter-efficient fine-tuning (PEFT) strategies. Our results demonstrate that TSFMs outperform task-specific baselines, achieving notable gains in AUC-PR and VUS-PR, particularly under severe class imbalance. Moreover, PEFT methods such as LoRA, OFT, and HRA not only reduce computational cost but also match or surpass full fine-tuning in most cases, indicating that TSFMs can be efficiently adapted for anomaly detection, even when pretrained for forecasting. These findings position TSFMs as promising general-purpose models for scalable and efficient time series anomaly detection.
Authors:F. D. Amaro, R. Antonietti, E. Baracchini, L. Benussi, C. Capoccia, M. Caponero, L. G. M. de Carvalho, G. Cavoto, I. A. Costa, A. Croce, M. D'Astolfo, G. D'Imperio, G. Dho, E. Di Marco, J. M. F. dos Santos, D. Fiorina, F. Iacoangeli, Z. Islam, E. Kemp, H. P. Lima, G. Maccarrone, R. D. P. Mano, D. J. G. Marques, G. Mazzitelli, P. Meloni, A. Messina, V. Monno, C. M. B. Monteiro, R. A. Nobrega, G. M. Oppedisano, I. F. Pains, E. Paoletti, F. Petrucci, S. Piacentini, D. Pierluigi, D. Pinci, F. Renga, A. Russo, G. Saviano, P. A. O. C. Silva, N. J. Spooner, R. Tesauro, S. Tomassini, D. Tozzi
Title: Fast reconstruction-based ROI triggering via anomaly detection in the CYGNO optical TPC
Abstract:
Optical-readout Time Projection Chambers (TPCs) produce megapixel-scale images whose fine-grained topological information is essential for rare-event searches, but whose size challenges real-time data selection. We present an unsupervised, reconstruction-based anomaly-detection strategy for fast Region-of-Interest (ROI) extraction that operates directly on minimally processed camera frames. A convolutional autoencoder trained exclusively on pedestal images learns the detector noise morphology without labels, simulation, or fine-grained calibration. Applied to standard data-taking frames, localized reconstruction residuals identify particle-induced structures, from which compact ROIs are extracted via thresholding and spatial clustering. Using real data from the CYGNO optical TPC prototype, we compare two pedestal-trained autoencoder configurations that differ only in their training objective, enabling a controlled study of its impact. The best configuration retains (93.0 +/- 0.2)% of reconstructed signal intensity while discarding (97.8 +/- 0.1)% of the image area, with an inference time of approximately 25 ms per frame on a consumer GPU. The results demonstrate that careful design of the training objective is critical for effective reconstruction-based anomaly detection and that pedestal-trained autoencoders provide a transparent and detector-agnostic baseline for online data reduction in optical TPCs.
Authors:Jeehong Kim, Youngseok Hwang, Minchan Kim, Sungho Bae, Hyunwoo Park
Title: Spatio-Temporal Graphs Beyond Grids: Benchmark for Maritime Anomaly Detection
Abstract:
Spatio-temporal graph neural networks (ST-GNNs) have achieved notable success in structured domains such as road traffic and public transportation, where spatial entities can be naturally represented as fixed nodes. In contrast, many real-world systems including maritime traffic lack such fixed anchors, making the construction of spatio-temporal graphs a fundamental challenge. Anomaly detection in these non-grid environments is particularly difficult due to the absence of canonical reference points, the sparsity and irregularity of trajectories, and the fact that anomalies may manifest at multiple granularities. In this work, we introduce a novel benchmark dataset for anomaly detection in the maritime domain, extending the Open Maritime Traffic Analysis Dataset (OMTAD) into a benchmark tailored for graph-based anomaly detection. Our dataset enables systematic evaluation across three different granularities: node-level, edge-level, and graph-level anomalies. We plan to employ two specialized LLM-based agents: \emph{Trajectory Synthesizer} and \emph{Anomaly Injector} to construct richer interaction contexts and generate semantically meaningful anomalies. We expect this benchmark to promote reproducibility and to foster methodological advances in anomaly detection for non-grid spatio-temporal systems.
Authors:Souhail Abdelmouaiz Sadat, Mohamed Yacine Touahria Miliani, Khadidja Hab El Hames, Hamida Seba, Mohammed Haddad
Title: Hyperbolic Graph Embeddings: a Survey and an Evaluation on Anomaly Detection
Abstract:
This survey reviews hyperbolic graph embedding models, and evaluate them on anomaly detection, highlighting their advantages over Euclidean methods in capturing complex structures. Evaluating models like \textit{HGCAE}, \textit{\(\mathcal{P}\)-VAE}, and \textit{HGCN} demonstrates high performance, with \textit{\(\mathcal{P}\)-VAE} achieving an F1-score of 94\% on the \textit{Elliptic} dataset and \textit{HGCAE} scoring 80\% on \textit{Cora}. In contrast, Euclidean methods like \textit{DOMINANT} and \textit{GraphSage} struggle with complex data. The study emphasizes the potential of hyperbolic spaces for improving anomaly detection, and provides an open-source library to foster further research in this field.
Authors:Jiayang Yang, Chunhui Zhao, Martin Guay, Zhixing Cao
Title: TimeSeries2Report prompting enables adaptive large language model management of lithium-ion batteries
Abstract:
Large language models (LLMs) offer promising capabilities for interpreting multivariate time-series data, yet their application to real-world battery energy storage system (BESS) operation and maintenance remains largely unexplored. Here, we present TimeSeries2Report (TS2R), a prompting framework that converts raw lithium-ion battery operational time-series into structured, semantically enriched reports, enabling LLMs to reason, predict, and make decisions in BESS management scenarios. TS2R encodes short-term temporal dynamics into natural language through a combination of segmentation, semantic abstraction, and rule-based interpretation, effectively bridging low-level sensor signals with high-level contextual insights. We benchmark TS2R across both lab-scale and real-world datasets, evaluating report quality and downstream task performance in anomaly detection, state-of-charge prediction, and charging/discharging management. Compared with vision-, embedding-, and text-based prompting baselines, report-based prompting via TS2R consistently improves LLM performance in terms of across accuracy, robustness, and explainability metrics. Notably, TS2R-integrated LLMs achieve expert-level decision quality and predictive consistency without retraining or architecture modification, establishing a practical path for adaptive, LLM-driven battery intelligence.
Authors:Yichen Liu, Hongyu Wu, Bo Liu
Title: A Rule-Aware Prompt Framework for Structured Numeric Reasoning in Cyber-Physical Systems
Abstract:
Many cyber-physical systems (CPS) rely on high-dimensional numeric telemetry and explicit operating rules to maintain safe and efficient operation. Recent large language models (LLMs) are increasingly considered as decision-support components in such systems, yet most deployments focus on textual inputs and do not directly address rule-grounded reasoning over numeric measurements. This paper proposes a rule-aware prompt framework that systematically encodes CPS domain context, numeric normalization, and decision rules into a modular prompt architecture for LLMs. The framework decomposes prompts into five reusable modules, including role specification, CPS domain context, numeric normalization, rule-aware reasoning, and output schema, and exposes an interface for plugging in diverse rule sets. A key design element is separating rule specification from the representation of normalized numeric deviations, which enables concise prompts that remain aligned with domain rules. We analyze how different normalization strategies and prompt configurations influence rule adherence, interpretability, and token efficiency. The framework is model-agnostic and applicable across CPS domains. To illustrate its behavior, we instantiate it on numeric anomaly assessment in an IEEE 118-bus electric power transmission network and evaluate several prompting and adaptation regimes. The results show that rule-aware, z-score-based value blocks and a hybrid LLM-detector architecture can substantially improve consistency with CPS rules and anomaly detection performance while reducing token usage, providing a reusable bridge between numeric telemetry and general-purpose LLMs.
Authors:Joe Suk, Samory Kpotufe
Title: An Efficient Variant of One-Class SVM with Lifelong Online Learning Guarantees
Abstract:
We study outlier (a.k.a., anomaly) detection for single-pass non-stationary streaming data. In the well-studied offline or batch outlier detection problem, traditional methods such as kernel One-Class SVM (OCSVM) are both computationally heavy and prone to large false-negative (Type II) errors under non-stationarity. To remedy this, we introduce SONAR, an efficient SGD-based OCSVM solver with strongly convex regularization. We show novel theoretical guarantees on the Type I/II errors of SONAR, superior to those known for OCSVM, and further prove that SONAR ensures favorable lifelong learning guarantees under benign distribution shifts. In the more challenging problem of adversarial non-stationary data, we show that SONAR can be used within an ensemble method and equipped with changepoint detection to achieve adaptive guarantees, ensuring small Type I/II errors on each phase of data. We validate our theoretical findings on synthetic and real-world datasets.
Authors:Zifan Zhou, Xuan Wang, Yang Yan, Lkhanaajav Mijiddorj, Yu Ding, Tyler Beringer, Parisa Masnadi Khiabani, Wolfgang G. Jentner, Xiao-Ming Hu, Chenghao Wang, Bryan M. Carroll, Ming Xue, David Ebert, Bin Li, Binbin Weng
Title: AIMNET: An IoT-Empowered Digital Twin for Continuous Gas Emission Monitoring and Early Hazard Detection
Abstract:
A Digital Twin (DT) framework to enhance carbon-based gas plume monitoring is critical for supporting timely and effective mitigation responses to environmental hazards such as industrial gas leaks, or wildfire outbreaks carrying large carbon emissions. We present AIMNET, a one-of-a-kind DT framework that integrates a built-in-house Internet of Things (IoT)-based continuous sensing network with a physics-based multi-scale weather-gas transport model, that enables high-resolution and real-time simulation and detection of carbon gas emissions. AIMNET features a three-layer system architecture: (i) physical world: custom-built devices for continuous monitoring; (ii) bidirectional information feedback links: intelligent data transmission and reverse control; and (iii) digital twin world: AI-driven analytics for prediction, anomaly detection, and dynamic weather-gas coupled molecule transport modeling. Designed for scalable, energy-efficient deployment in remote environments, AIMNET architecture is realized through a small-scale distributed sensing network over an oil and gas production basin. To demonstrate the high-resolution, fast-responding concept, an equivalent mobile-based emission monitoring network was deployed around a wastewater treatment plant that constantly emits methane plumes. Our preliminary results through which, have successfully captured the methane emission events whose dynamics have been further resolved by the tiered model simulations. This work supports our position that AIMNET provides a promising DT framework for reliable, real-time monitoring and predictive risk assessment. In the end, we also discuss key implementation challenges and outline future directions for advancing such a new DT framework for translation deployment.
Authors:Oghenetejiri Okporokpo, Funminiyi Olajide, Nemitari Ajienka, Xiaoqi Ma
Title: A Novel Trust-Based DDoS Cyberattack Detection Model for Smart Business Environments
Abstract:
As the frequency and complexity of Distributed Denial-of-Service (DDoS) attacks continue to increase, the level of threats posed to Smart Internet of Things (SIoT) business environments have also increased. These environments generally have several interconnected SIoT systems and devices that are integral to daily operations, usually depending on cloud infrastructure and real-time data analytics, which require continuous availability and secure data exchange. Conventional detection mechanisms, while useful in static or traditional network environments, often are inadequate in responding to the needs of these dynamic and diverse SIoT networks. In this paper, we introduce a novel trust-based DDoS detection model tailored to meet the unique requirements of smart business environments. The proposed model incorporates a trust evaluation engine that continuously monitors node behaviour, calculating trust scores based on packet delivery ratio, response time, and anomaly detection. These trust metrics are then aggregated by a central trust-based repository that uses inherent trust values to identify traffic patterns indicative of DDoS attacks. By integrating both trust scores and central trust-based outputs, the trust calculation is enhanced, ensuring that threats are accurately identified and addressed in real-time. The model demonstrated a significant improvement in detection accuracy, and a low false-positive rate with enhanced scalability and adaptability under TCP SYN, Ping Flood, and UDP Flood attacks. The results show that a trust-based approach provides an effective, lightweight alternative for securing resource-constrained business IoT environments.
Authors:Lynn Kandakji, William Woof, Nikolas Pontikos
Title: Hierarchical Attention for Sparse Volumetric Anomaly Detection in Subclinical Keratoconus
Abstract:
The detection of weak, spatially distributed anomalies in volumetric medical imaging remains a major challenge. The subtle, non-adjacent nature of early disease signals is often lost due to suboptimal architectural inductive biases: 2D/3D CNNs impose strong locality, while ViTs diffuse unconstrained global attention. This conflict leaves the optimal inductive structure for robust, sparse volumetric pattern recognition unresolved. This study presents a controlled comparison of sixteen modern deep learning architectures spanning 2D/3D convolutional, hybrid, and volumetric transformer families for subclinical keratoconus (SKC) detection from 3D anterior segment OCT volumes. We demonstrate that hierarchical attention models offer a superior and more parameter-efficient inductive bias, surpassing the performance of both 2D and 3D CNNs and ViTs. Our results show 21-23% higher sensitivity and specificity in the sparse anomaly (subclinical) regime. Mechanistic analyses reveal that this advantage stems from precise spatial scale alignment: hierarchical windowing produces effective receptive fields matched to the intermediate, multi-slice extent of subclinical abnormalities. This avoids excessive CNN locality and diffuse global attention. Attention-distance measurements confirm a key insight into architectural adaptation: the required spatial integration length shifts significantly based on the signal strength, with subclinical cases necessitating longer integration compared to both healthy and manifest disease states. Representational similarity and auxiliary age/sex prediction tasks further support the generalizability of these inductive principles. The findings provide design guidance for future volumetric anomaly detection systems, establishing hierarchical attention as a principled and effective approach for early pathological change analysis in 3D medical imaging.
Authors:Rafflesia Khan, Declan Joyce, Mansura Habiba
Title: AGENTSAFE: A Unified Framework for Ethical Assurance and Governance in Agentic AI
Abstract:
The rapid deployment of large language model (LLM)-based agents introduces a new class of risks, driven by their capacity for autonomous planning, multi-step tool integration, and emergent interactions. It raises some risk factors for existing governance approaches as they remain fragmented: Existing frameworks are either static taxonomies driven; however, they lack an integrated end-to-end pipeline from risk identification to operational assurance, especially for an agentic platform. We propose AGENTSAFE, a practical governance framework for LLM-based agentic systems. The framework operationalises the AI Risk Repository into design, runtime, and audit controls, offering a governance framework for risk identification and assurance. The proposed framework, AGENTSAFE, profiles agentic loops (plan -> act -> observe -> reflect) and toolchains, and maps risks onto structured taxonomies extended with agent-specific vulnerabilities. It introduces safeguards that constrain risky behaviours, escalates high-impact actions to human oversight, and evaluates systems through pre-deployment scenario banks spanning security, privacy, fairness, and systemic safety. During deployment, AGENTSAFE ensures continuous governance through semantic telemetry, dynamic authorization, anomaly detection, and interruptibility mechanisms. Provenance and accountability are reinforced through cryptographic tracing and organizational controls, enabling measurable, auditable assurance across the lifecycle of agentic AI systems. The key contributions of this paper are: (1) a unified governance framework that translates risk taxonomies into actionable design, runtime, and audit controls; (2) an Agent Safety Evaluation methodology that provides measurable pre-deployment assurance; and (3) a set of runtime governance and accountability mechanisms that institutionalise trust in agentic AI ecosystems.
Authors:Alexander Frotscher, Christian F. Baumgartner, Thomas Wolfers
Title: Deep Unsupervised Anomaly Detection in Brain Imaging: Large-Scale Benchmarking and Bias Analysis
Abstract:
Deep unsupervised anomaly detection in brain magnetic resonance imaging offers a promising route to identify pathological deviations without requiring lesion-specific annotations. Yet, fragmented evaluations, heterogeneous datasets, and inconsistent metrics have hindered progress toward clinical translation. Here, we present a large-scale, multi-center benchmark of deep unsupervised anomaly detection for brain imaging. The training cohort comprised 2,976 T1 and 2,972 T2-weighted scans from healthy individuals across six scanners, with ages ranging from 6 to 89 years. Validation used 92 scans to tune hyperparameters and estimate unbiased thresholds. Testing encompassed 2,221 T1w and 1,262 T2w scans spanning healthy datasets and diverse clinical cohorts. Across all algorithms, the Dice-based segmentation performance varied between 0.03 and 0.65, indicating substantial variability. To assess robustness, we systematically evaluated the impact of different scanners, lesion types and sizes, as well as demographics (age, sex). Reconstruction-based methods, particularly diffusion-inspired approaches, achieved the strongest lesion segmentation performance, while feature-based methods showed greater robustness under distributional shifts. However, systematic biases, such as scanner-related effects, were observed for the majority of algorithms, including that small and low-contrast lesions were missed more often, and that false positives varied with age and sex. Increasing healthy training data yields only modest gains, underscoring that current unsupervised anomaly detection frameworks are limited algorithmically rather than by data availability. Our benchmark establishes a transparent foundation for future research and highlights priorities for clinical translation, including image native pretraining, principled deviation measures, fairness-aware modeling, and robust domain adaptation.
Authors:Ali Nafisi, Sina Asghari, Mohammad Saeed Arvenaghi, Hossein Shakibania
Title: Winning Solutions for the Rayan AI Contest: Compositional Retrieval, Zero-Shot Anomaly Detection, and Backdoor Detection
Abstract:
This report presents solutions to three machine learning challenges: compositional image retrieval, zero-shot anomaly detection, and backdoored model detection. In compositional image retrieval, we developed a system that processes visual and textual inputs to retrieve relevant images, achieving 95.38\% accuracy and ranking first with a clear margin over the second team. For zero-shot anomaly detection, we designed a model that identifies and localizes anomalies in images without prior exposure to abnormal examples, securing 1st place with 73.14\% accuracy. In the backdoored model detection task, we proposed a method to detect hidden backdoor triggers in neural networks, reaching an accuracy of 78\%, which placed our approach in second place. These results demonstrate the effectiveness of our methods in addressing key challenges related to retrieval, anomaly detection, and model security, with implications for real-world applications in industries such as healthcare, manufacturing, and cybersecurity. Code for all solutions is available online.
Authors:Md. Sad Abdullah Sami, Mushfiquzzaman Abid
Title: Unsupervised Anomaly Detection for Smart IoT Devices: Performance and Resource Comparison
Abstract:
The rapid expansion of Internet of Things (IoT) deployments across diverse sectors has significantly enhanced operational efficiency, yet concurrently elevated cybersecurity vulnerabilities due to increased exposure to cyber threats. Given the limitations of traditional signature-based Anomaly Detection Systems (ADS) in identifying emerging and zero-day threats, this study investigates the effectiveness of two unsupervised anomaly detection techniques, Isolation Forest (IF) and One-Class Support Vector Machine (OC-SVM), using the TON_IoT thermostat dataset. A comprehensive evaluation was performed based on standard metrics (accuracy, precision, recall, and F1-score) alongside critical resource utilization metrics such as inference time, model size, and peak RAM usage. Experimental results revealed that IF consistently outperformed OC-SVM, achieving higher detection accuracy, superior precision, and recall, along with a significantly better F1-score. Furthermore, Isolation Forest demonstrated a markedly superior computational footprint, making it more suitable for deployment on resource-constrained IoT edge devices. These findings underscore Isolation Forest's robustness in high-dimensional and imbalanced IoT environments and highlight its practical viability for real-time anomaly detection.
Authors:Jungi Lee, Jungkwon Kim, Chi Zhang, Kwangsun Yoo, Seok-Joo Byun
Title: Anomaly Detection with Adaptive and Aggressive Rejection for Contaminated Training Data
Abstract:
Handling contaminated data poses a critical challenge in anomaly detection, as traditional models assume training on purely normal data. Conventional methods mitigate contamination by relying on fixed contamination ratios, but discrepancies between assumed and actual ratios can severely degrade performance, especially in noisy environments where normal and abnormal data distributions overlap. To address these limitations, we propose Adaptive and Aggressive Rejection (AAR), a novel method that dynamically excludes anomalies using a modified z-score and Gaussian mixture model-based thresholds. AAR effectively balances the trade-off between preserving normal data and excluding anomalies by integrating hard and soft rejection strategies. Extensive experiments on two image datasets and thirty tabular datasets demonstrate that AAR outperforms the state-of-the-art method by 0.041 AUROC. By providing a scalable and reliable solution, AAR enhances robustness against contaminated datasets, paving the way for broader real-world applications in domains such as security and healthcare.
Authors:Yichen Liu, Hongyu Wu, Bo Liu
Title: Evaluation of Large Language Models for Numeric Anomaly Detection in Power Systems
Abstract:
Large language models (LLMs) have gained increasing attention in power grids for their general-purpose capabilities. Meanwhile, anomaly detection (AD) remains critical for grid resilience, requiring accurate and interpretable decisions based on multivariate telemetry. Yet the performance of LLMs on large-scale numeric data for AD remains largely unexplored. This paper presents a comprehensive evaluation of LLMs for numeric AD in power systems. We use GPT-OSS-20B as a representative model and evaluate it on the IEEE 14-bus system. A standardized prompt framework is applied across zero-shot, few-shot, in-context learning, low rank adaptation (LoRA), fine-tuning, and a hybrid LLM-traditional approach. We adopt a rule-aware design based on the three-sigma criterion, and report detection performance and rationale quality. This study lays the groundwork for further investigation into the limitations and capabilities of LLM-based AD and its integration with classical detectors in cyber-physical power grid applications.
Authors:Jan Benedikt Ruhland, Thorsten Papenbrock, Jan-Peter Sowa, Ali Canbay, Nicole Eter, Bernd Freisleben, Dominik Heider
Title: Functional Localization Enforced Deep Anomaly Detection Using Fundus Images
Abstract:
Reliable detection of retinal diseases from fundus images is challenged by the variability in imaging quality, subtle early-stage manifestations, and domain shift across datasets. In this study, we systematically evaluated a Vision Transformer (ViT) classifier under multiple augmentation and enhancement strategies across several heterogeneous public datasets, as well as the AEyeDB dataset, a high-quality fundus dataset created in-house and made available for the research community. The ViT demonstrated consistently strong performance, with accuracies ranging from 0.789 to 0.843 across datasets and diseases. Diabetic retinopathy and age-related macular degeneration were detected reliably, whereas glaucoma remained the most frequently misclassified disease. Geometric and color augmentations provided the most stable improvements, while histogram equalization benefited datasets dominated by structural subtlety. Laplacian enhancement reduced performance across different settings. On the Papila dataset, the ViT with geometric augmentation achieved an AUC of 0.91, outperforming previously reported convolutional ensemble baselines (AUC of 0.87), underscoring the advantages of transformer architectures and multi-dataset training. To complement the classifier, we developed a GANomaly-based anomaly detector, achieving an AUC of 0.76 while providing inherent reconstruction-based explainability and robust generalization to unseen data. Probabilistic calibration using GUESS enabled threshold-independent decision support for future clinical implementation.
Authors:Oluleke Babayomi, Dong-Seong Kim
Title: Federated Anomaly Detection and Mitigation for EV Charging Forecasting Under Cyberattacks
Abstract:
Electric Vehicle (EV) charging infrastructure faces escalating cybersecurity threats that can severely compromise operational efficiency and grid stability. Existing forecasting techniques are limited by the lack of combined robust anomaly mitigation solutions and data privacy preservation. Therefore, this paper addresses these challenges by proposing a novel anomaly-resilient federated learning framework that simultaneously preserves data privacy, detects cyber-attacks, and maintains trustworthy demand prediction accuracy under adversarial conditions. The proposed framework integrates three key innovations: LSTM autoencoder-based distributed anomaly detection deployed at each federated client, interpolation-based anomalous data mitigation to preserve temporal continuity, and federated Long Short-Term Memory (LSTM) networks that enable collaborative learning without centralized data aggregation. The framework is validated on real-world EV charging infrastructure datasets combined with real-world DDoS attack datasets, providing robust validation of the proposed approach under realistic threat scenarios. Experimental results demonstrate that the federated approach achieves superior performance compared to centralized models, with 15.2% improvement in R2 accuracy while maintaining data locality. The integrated cyber-attack detection and mitigation system produces trustworthy datasets that enhance prediction reliability, recovering 47.9% of attack-induced performance degradation while maintaining exceptional precision (91.3%) and minimal false positive rates (1.21%). The proposed architecture enables enhanced EV infrastructure planning, privacy-preserving collaborative forecasting, cybersecurity resilience, and rapid recovery from malicious threats across distributed charging networks.
Authors:Tomas Javurek, Michal Gregor, Sebastian Kula, Marian Simko
Title: DelTriC: A Novel Clustering Method with Accurate Outlier
Abstract:
The paper introduces DelTriC (Delaunay Triangulation Clustering), a clustering algorithm which integrates PCA/UMAP-based projection, Delaunay triangulation, and a novel back-projection mechanism to form clusters in the original high-dimensional space. DelTriC decouples neighborhood construction from decision-making by first triangulating in a low-dimensional proxy to index local adjacency, and then back-projecting to the original space to perform robust edge pruning, merging, and anomaly detection. DelTriC can outperform traditional methods such as k-means, DBSCAN, and HDBSCAN in many scenarios; it is both scalable and accurate, and it also significantly improves outlier detection.
Authors:Badrinath Ramakrishnan, Akshaya Balaji
Title: Securing AI Agents Against Prompt Injection Attacks
Abstract:
Retrieval-augmented generation (RAG) systems have become widely used for enhancing large language model capabilities, but they introduce significant security vulnerabilities through prompt injection attacks. We present a comprehensive benchmark for evaluating prompt injection risks in RAG-enabled AI agents and propose a multi-layered defense framework. Our benchmark includes 847 adversarial test cases across five attack categories: direct injection, context manipulation, instruction override, data exfiltration, and cross-context contamination. We evaluate three defense mechanisms: content filtering with embedding-based anomaly detection, hierarchical system prompt guardrails, and multi-stage response verification, across seven state-of-the-art language models. Our combined framework reduces successful attack rates from 73.2% to 8.7% while maintaining 94.3% of baseline task performance. We release our benchmark dataset and defense implementation to support future research in AI agent security.
Authors:Kunyu Zhang, Mingxuan Wang, Xiangjie Shi, Haoxing Xu, Chao Zhang
Title: EVA-Net: Interpretable Anomaly Detection for Brain Health via Learning Continuous Aging Prototypes from One-Class EEG Cohorts
Abstract:
The brain age is a key indicator of brain health. While electroencephalography (EEG) is a practical tool for this task, existing models struggle with the common challenge of imperfect medical data, such as learning a ``normal'' baseline from weakly supervised, healthy-only cohorts. This is a critical anomaly detection task for identifying disease, but standard models are often black boxes lacking an interpretable structure. We propose EVA-Net, a novel framework that recasts brain age as an interpretable anomaly detection problem. EVA-Net uses an efficient, sparsified-attention Transformer to model long EEG sequences. To handle noise and variability in imperfect data, it employs a Variational Information Bottleneck to learn a robust, compressed representation. For interpretability, this representation is aligned to a continuous prototype network that explicitly learns the normative healthy aging manifold. Trained on 1297 healthy subjects, EVA-Net achieves state-of-the-art accuracy. We validated its anomaly detection capabilities on an unseen cohort of 27 MCI and AD patients. This pathological group showed significantly higher brain-age gaps and a novel Prototype Alignment Error, confirming their deviation from the healthy manifold. EVA-Net provides an interpretable framework for healthcare intelligence using imperfect medical data.
Authors:Ziling Fan, Ruijia Liang, Yiwen Hu
Title: A FEDformer-Based Hybrid Framework for Anomaly Detection and Risk Forecasting in Financial Time Series
Abstract:
Financial markets are inherently volatile and prone to sudden disruptions such as market crashes, flash collapses, and liquidity crises. Accurate anomaly detection and early risk forecasting in financial time series are therefore crucial for preventing systemic instability and supporting informed investment decisions. Traditional deep learning models, such as LSTM and GRU, often fail to capture long-term dependencies and complex periodic patterns in highly nonstationary financial data. To address this limitation, this study proposes a FEDformer-Based Hybrid Framework for Anomaly Detection and Risk Forecasting in Financial Time Series, which integrates the Frequency Enhanced Decomposed Transformer (FEDformer) with a residual-based anomaly detector and a risk forecasting head. The FEDformer module models temporal dynamics in both time and frequency domains, decomposing signals into trend and seasonal components for improved interpretability. The residual-based detector identifies abnormal fluctuations by analyzing prediction errors, while the risk head predicts potential financial distress using learned latent embeddings. Experiments conducted on the S&P 500, NASDAQ Composite, and Brent Crude Oil datasets (2000-2024) demonstrate the superiority of the proposed model over benchmark methods, achieving a 15.7 percent reduction in RMSE and an 11.5 percent improvement in F1-score for anomaly detection. These results confirm the effectiveness of the model in capturing financial volatility, enabling reliable early-warning systems for market crash prediction and risk management.
Authors:Ahmed Sameh, Sahar Selim
Title: Adaptive Dual-Layer Web Application Firewall (ADL-WAF) Leveraging Machine Learning for Enhanced Anomaly and Threat Detection
Abstract:
Web Application Firewalls are crucial for protecting web applications against a wide range of cyber threats. Traditional Web Application Firewalls often struggle to effectively distinguish between malicious and legitimate traffic, leading to limited efficacy in threat detection. To overcome these limitations, this paper proposes an Adaptive Dual-Layer WAF employing a two-layered Machine Learning model designed to enhance the accuracy of anomaly and threat detection. The first layer employs a Decision Tree (DT) algorithm to detect anomalies by identifying traffic deviations from established normal patterns. The second layer employs Support Vector Machine to classify these anomalies as either threat anomalies or benign anomalies. Our Adaptive Dual Layer WAF incorporates comprehensive data pre-processing and feature engineering techniques and has been thoroughly evaluated using five large benchmark datasets. Evaluation using these datasets shows that ADL WAF achieves a detection accuracy of 99.88% and a precision of 100%, significantly enhancing anomaly detection and reducing false positives. These findings suggest that integrating machine learning techniques into WAFs can substantially improve web application security by providing more accurate and efficient threat detection.
Authors:Yi Wang, Ruoyi Fang, Anzhuo Xie, Hanrui Feng, Jianlin Lai
Title: Dynamic Anomaly Identification in Accounting Transactions via Multi-Head Self-Attention Networks
Abstract:
This study addresses the problem of dynamic anomaly detection in accounting transactions and proposes a real-time detection method based on a Transformer to tackle the challenges of hidden abnormal behaviors and high timeliness requirements in complex trading environments. The approach first models accounting transaction data by representing multi-dimensional records as time-series matrices and uses embedding layers and positional encoding to achieve low-dimensional mapping of inputs. A sequence modeling structure with multi-head self-attention is then constructed to capture global dependencies and aggregate features from multiple perspectives, thereby enhancing the ability to detect abnormal patterns. The network further integrates feed-forward layers and regularization strategies to achieve deep feature representation and accurate anomaly probability estimation. To validate the effectiveness of the method, extensive experiments were conducted on a public dataset, including comparative analysis, hyperparameter sensitivity tests, environmental sensitivity tests, and data sensitivity tests. Results show that the proposed method outperforms baseline models in AUC, F1-Score, Precision, and Recall, and maintains stable performance under different environmental conditions and data perturbations. These findings confirm the applicability and advantages of the Transformer-based framework for dynamic anomaly detection in accounting transactions and provide methodological support for intelligent financial risk control and auditing.
Authors:Abhijeet Kumar, Chetan Agarwal, Pronoy B. Neogi, Mayank Goswami
Title: Psychological stress during Examination and its estimation by handwriting in answer script
Abstract:
This research explores the fusion of graphology and artificial intelligence to quantify psychological stress levels in students by analyzing their handwritten examination scripts. By leveraging Optical Character Recognition and transformer based sentiment analysis models, we present a data driven approach that transcends traditional grading systems, offering deeper insights into cognitive and emotional states during examinations. The system integrates high resolution image processing, TrOCR, and sentiment entropy fusion using RoBERTa based models to generate a numerical Stress Index. Our method achieves robustness through a five model voting mechanism and unsupervised anomaly detection, making it an innovative framework in academic forensics.
Authors:Federico Maddanu, Tommaso Proietti, Riccardo Crupi
Title: Anomaly Detection in High-Dimensional Bank Account Balances via Robust Methods
Abstract:
Detecting point anomalies in bank account balances is essential for financial institutions, as it enables the identification of potential fraud, operational issues, or other irregularities. Robust statistics is useful for flagging outliers and for providing estimates of the data distribution parameters that are not affected by contaminated observations. However, such a strategy is often less efficient and computationally expensive under high dimensional setting. In this paper, we propose and evaluate empirically several robust approaches that may be computationally efficient in medium and high dimensional datasets, with high breakdown points and low computational time. Our application deals with around 2.6 million daily records of anonymous users' bank account balances.
Authors:Florian Ebmeier, Nicole Ludwig, Jannik Thuemmel, Georg Martius, Volker H. Franz
Title: Fault Detection in Solar Thermal Systems using Probabilistic Reconstructions
Abstract:
Solar thermal systems (STS) present a promising avenue for low-carbon heat generation, with a well-running system providing heat at minimal cost and carbon emissions. However, STS can exhibit faults due to improper installation, maintenance, or operation, often resulting in a substantial reduction in efficiency or even damage to the system. As monitoring at the individual level is economically prohibitive for small-scale systems, automated monitoring and fault detection should be used to address such issues. Recent advances in data-driven anomaly detection, particularly in time series analysis, offer a cost-effective solution by leveraging existing sensors to identify abnormal system states. Here, we propose a probabilistic reconstruction-based framework for anomaly detection. We evaluate our method on the publicly available PaSTS dataset of operational domestic STS, which features real-world complexities and diverse fault types. Our experiments show that reconstruction-based methods can detect faults in domestic STS both qualitatively and quantitatively, while generalizing to previously unseen systems. We also demonstrate that our model outperforms both simple and more complex deep learning baselines. Additionally, we show that heteroscedastic uncertainty estimation is essential to fault detection performance. Finally, we discuss the engineering overhead required to unlock these improvements and make a case for simple deep learning models.
Authors:Wenlong Shang, Peng Chang
Title: COGNOS: Universal Enhancement for Time Series Anomaly Detection via Constrained Gaussian-Noise Optimization and Smoothing
Abstract:
Reconstruction-based methods are a dominant paradigm in time series anomaly detection (TSAD), however, their near-universal reliance on Mean Squared Error (MSE) loss results in statistically flawed reconstruction residuals. This fundamental weakness leads to noisy, unstable anomaly scores with a poor signal-to-noise ratio, hindering reliable detection. To address this, we propose Constrained Gaussian-Noise Optimization and Smoothing (COGNOS), a universal, model-agnostic enhancement framework that tackles this issue at its source. COGNOS introduces a novel Gaussian-White Noise Regularization strategy during training, which directly constrains the model's output residuals to conform to a Gaussian white noise distribution. This engineered statistical property creates the ideal precondition for our second contribution: a Kalman Smoothing Post-processor that provably operates as a statistically optimal estimator to denoise the raw anomaly scores. The synergy between these two components allows COGNOS to robustly separate the true anomaly signal from random fluctuations. Extensive experiments demonstrate that COGNOS is highly effective, delivering an average F-score uplift of 57.9% when applied to 12 diverse backbone models across multiple real-world benchmark datasets. Our work reveals that directly regularizing output statistics is a powerful and generalizable strategy for significantly improving anomaly detection systems.
Authors:Zhibo Dong, Yong Huang, Shubao Sun, Wentao Cui, Zhihua Wang
Title: BLADE: Behavior-Level Anomaly Detection Using Network Traffic in Web Services
Abstract:
With their widespread popularity, web services have become the main targets of various cyberattacks. Existing traffic anomaly detection approaches focus on flow-level attacks, yet fail to recognize behavior-level attacks, which appear benign in individual flows but reveal malicious purpose using multiple network flows. To transcend this limitation, we propose a novel unsupervised traffic anomaly detection system, BLADE, capable of detecting not only flow-level but also behavior-level attacks in web services. Our key observation is that application-layer operations of web services exhibit distinctive communication patterns at the network layer from a multi-flow perspective. BLADE first exploits a flow autoencoder to learn a latent feature representation and calculates its reconstruction losses per flow. Then, the latent representation is assigned a pseudo operation label using an unsupervised clustering method. Next, an anomaly score is computed based on the reconstruction losses. Finally, the triplets of timestamps, pseudo labels, and anomaly scores from multiple flows are aggregated and fed into a one-class classifier to characterize the behavior patterns of legitimate web operations, enabling the detection of flow-level and behavior-level anomalies. BLADE is extensively evaluated on both the custom dataset and the CIC-IDS2017 dataset. The experimental results demonstrate BLADE's superior performance, achieving high F1 scores of 0.9732 and 0.9801, respectively, on the two datasets, and outperforming traditional single-flow anomaly detection baselines.
Authors:Asal Meskin, Alireza Mirrokni, Ali Najar, Ali Behrouz
Title: Hydra: Dual Exponentiated Memory for Multivariate Time Series Analysis
Abstract:
In recent years, effectively modeling multivariate time series has gained significant popularity, mainly due to its wide range of applications, ranging from healthcare to financial markets and energy management. Transformers, MLPs, and linear models as the de facto backbones of modern time series models have shown promising results in single-variant and/or short-term forecasting. These models, however: (1) are permutation equivariant and so lack temporal inductive bias, being less expressive to capture the temporal dynamics; (2) are naturally designed for univariate setup, missing the inter-dependencies of temporal and variate dimensions; and/or (3) are inefficient for Long-term time series modeling. To overcome training and inference efficiency as well as the lack of temporal inductive bias, recently, linear Recurrent Neural Networks (RNNs) have gained attention as an alternative to Transformer-based models. These models, however, are inherently limited to a single sequence, missing inter-variate dependencies, and can propagate errors due to their additive nature. In this paper, we present Hydra, a by-design two-headed meta in-context memory module that learns how to memorize patterns at test time by prioritizing time series patterns that are more informative about the data. Hydra uses a 2-dimensional recurrence across both time and variate at each step, which is more powerful than mixing methods. Although the 2-dimensional nature of the model makes its training recurrent and non-parallelizable, we present a new 2D-chunk-wise training algorithm that approximates the actual recurrence with $\times 10$ efficiency improvement, while maintaining the effectiveness. Our experimental results on a diverse set of tasks and datasets, including time series forecasting, classification, and anomaly detection show the superior performance of Hydra compared to state-of-the-art baselines.
Authors:Huiyao Dong, Igor Kotenko
Title: Towards Ultra-Low Latency: Binarized Neural Network Architectures for In-Vehicle Network Intrusion Detection
Abstract:
The Control Area Network (CAN) protocol is essential for in-vehicle communication, facilitating high-speed data exchange among Electronic Control Units (ECUs). However, its inherent design lacks robust security features, rendering vehicles susceptible to cyberattacks. While recent research has investigated machine learning and deep learning techniques to enhance network security, their practical applicability remains uncertain. This paper presents a lightweight intrusion detection technique based on Binarized Neural Networks (BNNs), which utilizes payload data, message IDs, and CAN message frequencies for effective intrusion detection. Additionally, we develop hybrid binary encoding techniques to integrate non-binary features, such as message IDs and frequencies. The proposed method, namely the BNN framework specifically optimized for in-vehicle intrusion detection combined with hybrid binary quantization techniques for non-payload attributes, demonstrates efficacy in both anomaly detection and multi-class network traffic classification. The system is well-suited for deployment on micro-controllers and Gateway ECUs, aligning with the real-time requirements of CAN bus safety applications.
Authors:Xin Chen, Saili Uday Gadgil, Kangning Gao, Yi Hu, Cong Nie
Title: Deep Learning Approach to Anomaly Detection in Enterprise ETL Processes with Autoencoders
Abstract:
An anomaly detection method based on deep autoencoders is proposed to address anomalies that often occur in enterprise-level ETL data streams. The study first analyzes multiple types of anomalies in ETL processes, including delays, missing values, duplicate loading, and sudden abnormal changes, and applies data standardization and feature modeling to ensure stable and usable inputs. In the method design, the encoder-decoder structure compresses high-dimensional inputs into latent representations and reconstructs them, while reconstruction error is used to measure anomaly levels. Regularization constraints are introduced in the latent space to enhance feature sparsity and distribution learning, thereby improving robustness in complex data streams. Systematic analyses under different hyperparameter settings, environmental changes, and data characteristics show that the proposed method achieves superior performance in AUC, ACC, Precision, and Recall. The results demonstrate that the deep autoencoder-based detection mechanism can effectively capture latent distribution patterns in enterprise-level ETL data streams and accurately identify diverse anomalies, providing reliable support for enterprise data processing and intelligent analysis.
Authors:Kowshik Balasubramanian, Andre Williams, Ismail Butun
Title: Feature Importance Guided Random Forest Learning with Simulated Annealing Based Hyperparameter Tuning
Abstract:
This paper introduces a novel framework for enhancing Random Forest classifiers by integrating probabilistic feature sampling and hyperparameter tuning via Simulated Annealing. The proposed framework exhibits substantial advancements in predictive accuracy and generalization, adeptly tackling the multifaceted challenges of robust classification across diverse domains, including credit risk evaluation, anomaly detection in IoT ecosystems, early-stage medical diagnostics, and high-dimensional biological data analysis. To overcome the limitations of conventional Random Forests, we present an approach that places stronger emphasis on capturing the most relevant signals from data while enabling adaptive hyperparameter configuration. The model is guided towards features that contribute more meaningfully to classification and optimizing this with dynamic parameter tuning. The results demonstrate consistent accuracy improvements and meaningful insights into feature relevance, showcasing the efficacy of combining importance aware sampling and metaheuristic optimization.
Authors:Vaibhav Kurrey, Sivakalyan Pujari, Gagan Raj Gupta
Title: Process Integrated Computer Vision for Real-Time Failure Prediction in Steel Rolling Mill
Abstract:
We present a long-term deployment study of a machine vision-based anomaly detection system for failure prediction in a steel rolling mill. The system integrates industrial cameras to monitor equipment operation, alignment, and hot bar motion in real time along the process line. Live video streams are processed on a centralized video server using deep learning models, enabling early prediction of equipment failures and process interruptions, thereby reducing unplanned breakdown costs. Server-based inference minimizes the computational load on industrial process control systems (PLCs), supporting scalable deployment across production lines with minimal additional resources. By jointly analyzing sensor data from data acquisition systems and visual inputs, the system identifies the location and probable root causes of failures, providing actionable insights for proactive maintenance. This integrated approach enhances operational reliability, productivity, and profitability in industrial manufacturing environments.
Authors:Laura Jiang, Reza Ryan, Qian Li, Nasim Ferdosian
Title: A Survey of Heterogeneous Graph Neural Networks for Cybersecurity Anomaly Detection
Abstract:
Anomaly detection is a critical task in cybersecurity, where identifying insider threats, access violations, and coordinated attacks is essential for ensuring system resilience. Graph-based approaches have become increasingly important for modeling entity interactions, yet most rely on homogeneous and static structures, which limits their ability to capture the heterogeneity and temporal evolution of real-world environments. Heterogeneous Graph Neural Networks (HGNNs) have emerged as a promising paradigm for anomaly detection by incorporating type-aware transformations and relation-sensitive aggregation, enabling more expressive modeling of complex cyber data. However, current research on HGNN-based anomaly detection remains fragmented, with diverse modeling strategies, limited comparative evaluation, and an absence of standardized benchmarks. To address this gap, we provide a comprehensive survey of HGNN-based anomaly detection methods in cybersecurity. We introduce a taxonomy that classifies approaches by anomaly type and graph dynamics, analyze representative models, and map them to key cybersecurity applications. We also review commonly used benchmark datasets and evaluation metrics, highlighting their strengths and limitations. Finally, we identify key open challenges related to modeling, data, and deployment, and outline promising directions for future research. This survey aims to establish a structured foundation for advancing HGNN-based anomaly detection toward scalable, interpretable, and practically deployable solutions.
Authors:Xi Cheng, Weijie Shen, Haoming Chen, Chaoyi Shen, Jean Ortega, Jiashang Liu, Steve Thomas, Honglin Zheng, Haoyun Wu, Yuxiang Li, Casey Lichtendahl, Jenny Ortiz, Gang Liu, Haiyang Qi, Omid Fatemieh, Chris Fry, Jing Jing Long
Title: ARIMA_PLUS: Large-scale, Accurate, Automatic and Interpretable In-Database Time Series Forecasting and Anomaly Detection in Google BigQuery
Abstract:
Time series forecasting and anomaly detection are common tasks for practitioners in industries such as retail, manufacturing, advertising and energy. Two unique challenges stand out: (1) efficiently and accurately forecasting time series or detecting anomalies in large volumes automatically; and (2) ensuring interpretability of results to effectively incorporate business insights. We present ARIMA_PLUS, a novel framework to overcome these two challenges by a unique combination of (a) accurate and interpretable time series models and (b) scalable and fully managed system infrastructure. The model has a sequential and modular structure to handle different components of the time series, including holiday effects, seasonality, trend, and anomalies, which enables high interpretability of the results. Novel enhancements are made to each module, and a unified framework is established to address both forecasting and anomaly detection tasks simultaneously. In terms of accuracy, its comprehensive benchmark on the 42 public datasets in the Monash forecasting repository shows superior performance over not only well-established statistical alternatives (such as ETS, ARIMA, TBATS, Prophet) but also newer neural network models (such as DeepAR, N-BEATS, PatchTST, TimeMixer). In terms of infrastructure, it is directly built into the query engine of BigQuery in Google Cloud. It uses a simple SQL interface and automates tedious technicalities such as data cleaning and model selection. It automatically scales with managed cloud computational and storage resources, making it possible to forecast 100 million time series using only 1.5 hours with a throughput of more than 18000 time series per second. In terms of interpretability, we present several case studies to demonstrate time series insights it generates and customizability it offers.
Authors:Peng Cai, Reza Ryan, Nickson M. Karie
Title: LLMLogAnalyzer: A Clustering-Based Log Analysis Chatbot using Large Language Models
Abstract:
System logs are a cornerstone of cybersecurity, supporting proactive breach prevention and post-incident investigations. However, analyzing vast amounts of diverse log data remains significantly challenging, as high costs, lack of in-house expertise, and time constraints make even basic analysis difficult for many organizations. This study introduces LLMLogAnalyzer, a clustering-based log analysis chatbot that leverages Large Language Models (LLMs) and Machine Learning (ML) algorithms to simplify and streamline log analysis processes. This innovative approach addresses key LLM limitations, including context window constraints and poor structured text handling capabilities, enabling more effective summarization, pattern extraction, and anomaly detection tasks. LLMLogAnalyzer is evaluated across four distinct domain logs and various tasks. Results demonstrate significant performance improvements over state-of-the-art LLM-based chatbots, including ChatGPT, ChatPDF, and NotebookLM, with consistent gains ranging from 39% to 68% across different tasks. The system also exhibits strong robustness, achieving a 93% reduction in interquartile range (IQR) when using ROUGE-1 scores, indicating significantly lower result variability. The framework's effectiveness stems from its modular architecture comprising a router, log recognizer, log parser, and search tools. This design enhances LLM capabilities for structured text analysis while improving accuracy and robustness, making it a valuable resource for both cybersecurity experts and non-technical users.
Authors:Mohammad Hossein Jafari Naeimi, Ali Norouzi, Athena Abdi
Title: GRAD: Real-Time Gated Recurrent Anomaly Detection in Autonomous Vehicle Sensors Using Reinforced EMA and Multi-Stage Sliding Window Techniques
Abstract:
This paper introduces GRAD, a real-time anomaly detection method for autonomous vehicle sensors that integrates statistical analysis and deep learning to ensure the reliability of sensor data. The proposed approach combines the Reinforced Exponential Moving Average (REMA), which adapts smoothing factors and thresholding for outlier detection, with the Multi-Stage Sliding Window (MS-SW) technique for capturing both short- and long-term patterns. These features are processed using a lightweight Gated Recurrent Unit (GRU) model, which detects and classifies anomalies based on bias types, while a recovery module restores damaged sensor data to ensure continuous system operation. GRAD has a lightweight architecture consisting of two layers of GRU with a limited number of neurons that make it appropriate for real-time applications while maintaining high detection accuracy. The GRAD framework achieved remarkable performance in anomaly detection and classification. The model demonstrated an overall F1-score of 97.6% for abnormal data and 99.4% for normal data, signifying its high accuracy in distinguishing between normal and anomalous sensor data. Regarding the anomaly classification, GRAD successfully categorized different anomaly types with high precision, enabling the recovery module to accurately restore damaged sensor data. Relative to analogous studies, GRAD surpasses current models by attaining a balance between elevated detection accuracy and diminished computational expense. These results demonstrate GRAD's potential as a reliable and efficient solution for real-time anomaly detection in autonomous vehicle systems, guaranteeing safe vehicle operation with minimal computational overhead.
Authors:Mingze Gong, Juan Du, Jianbang You
Title: Diffuse to Detect: A Generalizable Framework for Anomaly Detection with Diffusion Models Applications to UAVs and Beyond
Abstract:
Anomaly detection in complex, high-dimensional data, such as UAV sensor readings, is essential for operational safety but challenging for existing methods due to their limited sensitivity, scalability, and inability to capture intricate dependencies. We propose the Diffuse to Detect (DTD) framework, a novel approach that innovatively adapts diffusion models for anomaly detection, diverging from their conventional use in generative tasks with high inference time. By comparison, DTD employs a single-step diffusion process to predict noise patterns, enabling rapid and precise identification of anomalies without reconstruction errors. This approach is grounded in robust theoretical foundations that link noise prediction to the data distribution's score function, ensuring reliable deviation detection. By integrating Graph Neural Networks to model sensor relationships as dynamic graphs, DTD effectively captures spatial (inter-sensor) and temporal anomalies. Its two-branch architecture, with parametric neural network-based energy scoring for scalability and nonparametric statistical methods for interpretability, provides flexible trade-offs between computational efficiency and transparency. Extensive evaluations on UAV sensor data, multivariate time series, and images demonstrate DTD's superior performance over existing methods, underscoring its generality across diverse data modalities. This versatility, combined with its adaptability, positions DTD as a transformative solution for safety-critical applications, including industrial monitoring and beyond.
Authors:Rohan Senthil, Swee Liang Wong
Title: Quantum Autoencoders for Anomaly Detection in Cybersecurity
Abstract:
Anomaly detection in cybersecurity is a challenging task, where normal events far outnumber anomalous ones with new anomalies occurring frequently. Classical autoencoders have been used for anomaly detection, but struggles in data-limited settings which quantum counterparts can potentially overcome. In this work, we apply Quantum Autoencoders (QAEs) for anomaly detection in cybersecurity, specifically on the BPF-extended tracking honeypot (BETH) dataset. QAEs are evaluated across multiple encoding techniques, ansatz types, repetitions, and feature selection strategies. Our results demonstrate that an 8-feature QAE using Dense-Angle encoding with a RealAmplitude ansatz can outperform Classical Autoencoders (CAEs), even when trained on substantially fewer samples. The effects of quantum encoding and feature selection for developing quantum models are demonstrated and discussed. In a data-limited setting, the best performing QAE model has a F1 score of 0.87, better than that of CAE (0.77). These findings suggest that QAEs may offer practical advantages for anomaly detection in data-limited scenarios.
Authors:Curtis Lee Shull, Merrick Green
Title: Machine Learning-Based Localization Accuracy of RFID Sensor Networks via RSSI Decision Trees and CAD Modeling for Defense Applications
Abstract:
Radio Frequency Identification (RFID) tracking may be a viable solution for defense assets that must be stored in accordance with security guidelines. However, poor sensor specificity (vulnerabilities include long range detection, spoofing, and counterfeiting) can lead to erroneous detection and operational security events. We present a supervised learning simulation with realistic Received Signal Strength Indicator (RSSI) data and Decision Tree classification in a Computer Assisted Design (CAD)-modeled floor plan that encapsulates some of the challenges encountered in defense storage. In this work, we focused on classifying 12 lab zones (LabZoneA-L) to perform location inference. The raw dataset had approximately 980,000 reads. Class frequencies were imbalanced, and class weights were calculated to account for class imbalance in this multi-class setting. The model, trained on stratified subsamples to 5,000 balanced observations, yielded an overall accuracy of 34.2% and F1-scores greater than 0.40 for multiple zones (Zones F, G, H, etc.). However, rare classes (most notably LabZoneC) were often misclassified, even with the use of class weights. An adjacency-aware confusion matrix was calculated to allow better interpretation of physically adjacent zones. These results suggest that RSSI-based decision trees can be applied in realistic simulations to enable zone-level anomaly detection or misplacement monitoring for defense supply logistics. Reliable classification performance in low-coverage and low-signal zones could be improved with better antenna placement or additional sensors and sensor fusion with other modalities.
Authors:Behnam Seyedi, Octavian Postolache
Title: Securing IoT Communications via Anomaly Traffic Detection: Synergy of Genetic Algorithm and Ensemble Method
Abstract:
The rapid growth of the Internet of Things (IoT) has transformed industries by enabling seamless data exchange among connected devices. However, IoT networks remain vulnerable to security threats such as denial of service (DoS) attacks, anomalous traffic, and data manipulation due to decentralized architectures and limited resources. To address these issues, this paper proposes an advanced anomaly detection framework with three main phases. First, data preprocessing is performed using the Median KS Test to remove noise, handle missing values, and balance datasets for cleaner input. Second, a feature selection phase employs a Genetic Algorithm combined with eagle inspired search strategies to identify the most relevant features, reduce dimensionality, and improve efficiency without sacrificing accuracy. Finally, an ensemble classifier integrates Decision Tree, Random Forest, and XGBoost algorithms to achieve accurate and reliable anomaly detection. The proposed model demonstrates high adaptability and scalability across diverse IoT environments. Experimental results show that it outperforms existing methods by achieving 98 percent accuracy, 95 percent detection rate, and reductions in false positive (10 percent) and false negative (5 percent) rates. These results confirm the framework effectiveness and robustness in improving IoT network security against evolving cyber threats.
Authors:Fatima AlGhamdi, Omar Alharbi, Abdullah Aldwyish, Raied Aljadaany, Muhammad Kamran J Khan, Huda Alamri
Title: VelocityNet: Real-Time Crowd Anomaly Detection via Person-Specific Velocity Analysis
Abstract:
Detecting anomalies in crowded scenes is challenging due to severe inter-person occlusions and highly dynamic, context-dependent motion patterns. Existing approaches often struggle to adapt to varying crowd densities and lack interpretable anomaly indicators. To address these limitations, we introduce VelocityNet, a dual-pipeline framework that combines head detection and dense optical flow to extract person-specific velocities. Hierarchical clustering categorizes these velocities into semantic motion classes (halt, slow, normal, and fast), and a percentile-based anomaly scoring system measures deviations from learned normal patterns. Experiments demonstrate the effectiveness of our framework in real-time detection of diverse anomalous motion patterns within densely crowded environments.
Authors:Ali Eslami, Mohammad Pirani
Title: Resource-Aware Stealthy Attacks in Vehicle Platoons
Abstract:
Connected and Autonomous Vehicles (CAVs) are transforming modern transportation by enabling cooperative applications such as vehicle platooning, where multiple vehicles travel in close formation to improve efficiency and safety. However, the heavy reliance on inter-vehicle communication makes platoons highly susceptible to attacks, where even subtle manipulations can escalate into severe physical consequences. While existing research has largely focused on defending against attacks, far less attention has been given to stealthy adversaries that aim to covertly manipulate platoon behavior. This paper introduces a new perspective on the attack design problem by demonstrating how attackers can guide platoons toward their own desired trajectories while remaining undetected. We outline conditions under which such attacks are feasible, analyze their dependence on communication topologies and control protocols, and investigate the resources required by the attacker. By characterizing the resources needed to launch stealthy attacks, we address system vulnerabilities and informing the design of resilient countermeasures. Our findings reveal critical weaknesses in current platoon architectures and anomaly detection mechanisms and provide methods to develop more secure and trustworthy CAV systems.
Authors:Yunyan Zheng, Zhichao Zhang, Wei Yao
Title: A Novel Unified Extended Matrix for Graph Signal Processing: Theory and Application
Abstract:
Graph signal processing has become an essential tool for analyzing data structured on irregular domains. While conventional graph shift operators (GSOs) are effective for certain tasks, they inherently lack flexibility in modeling dependencies between non-adjacent nodes, limiting their ability to represent complex graph structures. To address this limitation, this paper proposes the unified extended matrix (UEM) framework, which integrates the extended-adjacency matrix and the unified graph representation matrix through parametric design, so as to be able to flexibly adapt to different graph structures and reveal more graph signal information. Theoretical analysis of the UEM is conducted, demonstrating positive semi-definiteness and eigenvalue monotonicity under specific conditions. Then, we propose graph Fourier transform based on UEM (UEM-GFT), which can adaptively tune spectral properties to enhance signal processing performance. Experimental results on synthetic and real-world datasets demonstrate that the UEM-GFT outperforms existing GSO-based methods in anomaly detection tasks, achieving superior performance across varying network topologies.
Authors:Lian Lian, Yilin Li, Song Han, Renzi Meng, Sibo Wang, Ming Wang
Title: Artificial Intelligence-Based Multiscale Temporal Modeling for Anomaly Detection in Cloud Services
Abstract:
This study proposes an anomaly detection method based on the Transformer architecture with integrated multiscale feature perception, aiming to address the limitations of temporal modeling and scale-aware feature representation in cloud service environments. The method first employs an improved Transformer module to perform temporal modeling on high-dimensional monitoring data, using a self-attention mechanism to capture long-range dependencies and contextual semantics. Then, a multiscale feature construction path is introduced to extract temporal features at different granularities through downsampling and parallel encoding. An attention-weighted fusion module is designed to dynamically adjust the contribution of each scale to the final decision, enhancing the model's robustness in anomaly pattern modeling. In the input modeling stage, standardized multidimensional time series are constructed, covering core signals such as CPU utilization, memory usage, and task scheduling states, while positional encoding is used to strengthen the model's temporal awareness. A systematic experimental setup is designed to evaluate performance, including comparative experiments and hyperparameter sensitivity analysis, focusing on the impact of optimizers, learning rates, anomaly ratios, and noise levels. Experimental results show that the proposed method outperforms mainstream baseline models in key metrics, including precision, recall, AUC, and F1-score, and maintains strong stability and detection performance under various perturbation conditions, demonstrating its superior capability in complex cloud environments.
Authors:Pierre Miasnikof, Alexander Y. Shetopaloff
Title: A statistical test for network similarity
Abstract:
In this article, we revisit and expand our prior work on graph similarity. As with our earlier work, we focus on a view of similarity which does not require node correspondence between graphs under comparison. Our work is suited to the temporal study of networks, change-point and anomaly detection and simple comparisons of static graphs. It provides a similarity metric for the study of (weakly) connected graphs. Our work proposes a metric designed to compare networks and assess the (dis)similarity between them. For example, given three different graphs with possibly different numbers of nodes, $G_1$, $G_2$ and $G_3$, we aim to answer two questions: a) "How different is $G_1 $ from $G_2$?" and b) "Is graph $G_3$ more similar to $G_1$ or to $G_2$?". We illustrate the value of our test and its accuracy through several new experiments, using synthetic and real-world graphs.
Authors:Anyuan Sang, Lu Zhou, Li Yang, Junbo Jia, Huipeng Yang, Pengbin Feng, Jianfeng Ma
Title: MirGuard: Towards a Robust Provenance-based Intrusion Detection System Against Graph Manipulation Attacks
Abstract:
Learning-based Provenance-based Intrusion Detection Systems (PIDSes) have become essential tools for anomaly detection in host systems due to their ability to capture rich contextual and structural information, as well as their potential to detect unknown attacks. However, recent studies have shown that these systems are vulnerable to graph manipulation attacks, where attackers manipulate the graph structure to evade detection. While some previous approaches have discussed this type of attack, none have fully addressed it with a robust detection solution, limiting the practical applicability of PIDSes. To address this challenge, we propose MirGuard, a robust anomaly detection framework that combines logic-aware multi-view augmentation with contrastive representation learning. Rather than applying arbitrary structural perturbations, MirGuard introduces Logic-Aware Noise Injection (LNI) to generate semantically valid graph views, ensuring that all augmentations preserve the underlying causal semantics of the provenance data. These views are then used in a Logic-Preserving Contrastive Learning framework, which encourages the model to learn representations that are invariant to benign transformations but sensitive to adversarial inconsistencies. Comprehensive evaluations on multiple provenance datasets demonstrate that MirGuard significantly outperforms state-of-the-art detectors in robustness against various graph manipulation attacks without sacrificing detection performance and efficiency. Our work represents the first targeted study to enhance PIDS against such adversarial threats, providing a robust and effective solution to modern cybersecurity challenges.
Authors:Jesus Omaña Iglesias, Carlos Segura Perales, Stefan Geißler, Diego Perino, Andra Lutu
Title: Anomaly Detection for IoT Global Connectivity
Abstract:
Internet of Things (IoT) application providers rely on Mobile Network Operators (MNOs) and roaming infrastructures to deliver their services globally. In this complex ecosystem, where the end-to-end communication path traverses multiple entities, it has become increasingly challenging to guarantee communication availability and reliability. Further, most platform operators use a reactive approach to communication issues, responding to user complaints only after incidents have become severe, compromising service quality. This paper presents our experience in the design and deployment of ANCHOR -- an unsupervised anomaly detection solution for the IoT connectivity service of a large global roaming platform. ANCHOR assists engineers by filtering vast amounts of data to identify potential problematic clients (i.e., those with connectivity issues affecting several of their IoT devices), enabling proactive issue resolution before the service is critically impacted. We first describe the IoT service, infrastructure, and network visibility of the IoT connectivity provider we operate. Second, we describe the main challenges and operational requirements for designing an unsupervised anomaly detection solution on this platform. Following these guidelines, we propose different statistical rules, and machine- and deep-learning models for IoT verticals anomaly detection based on passive signaling traffic. We describe the steps we followed working with the operational teams on the design and evaluation of our solution on the operational platform, and report an evaluation on operational IoT customers.
Authors:Kai Zhang, Zekai Zhang, Xihe Sun, Jingmeng Nie, Qinghui Chen, Han Hao, Jianyuan Guo, Jinglin Zhang
Title: ADSeeker: A Knowledge-Infused Framework for Anomaly Detection and Reasoning
Abstract:
Automatic vision inspection holds significant importance in industry inspection. While multimodal large language models (MLLMs) exhibit strong language understanding capabilities and hold promise for this task, their performance remains significantly inferior to that of human experts. In this context, we identify two key challenges: (i) insufficient integration of anomaly detection (AD) knowledge during pre-training, and (ii) the lack of technically precise and conte-aware language generation for anomaly reasoning. To address these issues, we propose ADSeeker, an anomaly task assistant designed to enhance inspection performance through knowledge-grounded reasoning. ADSeeker leverages a curated visual document knowledge base, SEEK-MVTec&VisA (SEEK-M&V), which we construct to address the limitations of existing resources that rely solely on unstructured text. SEEK-M&V includes semantic-rich descriptions and image-document pairs, enabling more comprehensive anomaly understanding. To effectively retrieve and utilize this knowledge, we introduce the Query Image-Knowledge Retrieval-Augmented Generation (Q2K RAG) framework. To further enhance the performance in zero-shot anomaly detection (ZSAD), ADSeeker leverages the Hierarchical Sparse Prompt mechanism and type-level features to efficiently extract anomaly patterns. Furthermore, to tackle the challenge of limited in industry anomaly detection (IAD) data, we introduce the largest-scale AD dataset, Multi-type Anomaly (MulA), encompassing 72 multi-scale defect types across 26 Categories. Extensive experiments show that our plug-and-play framework, ADSeeker, achieves state-of-the-art zero-shot performance on several benchmark datasets.
Authors:Boyuan Zheng, Victor W. Chu, Zhidong Li, Evan Webster, Ashley Rootsey
Title: The Complexity of Extreme Climate Events on the New Zealand's Kiwifruit Industry
Abstract:
Climate change has intensified the frequency and severity of extreme weather events, presenting unprecedented challenges to the agricultural industry worldwide. In this investigation, we focus on kiwifruit farming in New Zealand. We propose to examine the impacts of climate-induced extreme events, specifically frost, drought, extreme rainfall, and heatwave, on kiwifruit harvest yields. These four events were selected due to their significant impacts on crop productivity and their prevalence as recorded by climate monitoring institutions in the country. We employed Isolation Forest, an unsupervised anomaly detection method, to analyse climate history and recorded extreme events, alongside with kiwifruit yields. Our analysis reveals considerable variability in how different types of extreme event affect kiwifruit yields underscoring notable discrepancies between climatic extremes and individual farm's yield outcomes. Additionally, our study highlights critical limitations of current anomaly detection approaches, particularly in accurately identifying events such as frost. These findings emphasise the need for integrating supplementary features like farm management strategies with climate adaptation practices. Our further investigation will employ ensemble methods that consolidate nearby farms' yield data and regional climate station features to reduce variance, thereby enhancing the accuracy and reliability of extreme event detection and the formulation of response strategies.
Authors:Biswajit Chandra Das, M Saif Sartaz, Syed Ali Reza, Arat Hossain, Md Nasiruddin, Kanchon Kumar Bishnu, Kazi Sharmin Sultana, Sadia Sharmeen Shatyi, MD Azam Khan, Joynal Abed
Title: AI-Driven Cybersecurity Threat Detection: Building Resilient Defense Systems Using Predictive Analytics
Abstract:
This study examines how Artificial Intelligence can aid in identifying and mitigating cyber threats in the U.S. across four key areas: intrusion detection, malware classification, phishing detection, and insider threat analysis. Each of these problems has its quirks, meaning there needs to be different approaches to each, so we matched the models to the shape of the problem. For intrusion detection, catching things like unauthorized access, we tested unsupervised anomaly detection methods. Isolation forests and deep autoencoders both gave us useful signals by picking up odd patterns in network traffic. When it came to malware detection, we leaned on ensemble models like Random Forest and XGBoost, trained on features pulled from files and traffic logs. Phishing was more straightforward. We fed standard classifiers (logistic regression, Random Forest, XGBoost) a mix of email and web-based features. These models handled the task surprisingly well. Phishing turned out to be the easiest problem to crack, at least with the data we had. There was a different story. We utilized an LSTM autoencoder to identify behavioral anomalies in user activity logs. It caught every suspicious behavior but flagged a lot of harmless ones too. That kind of model makes sense when the cost of missing a threat is high and you are willing to sift through some noise. What we saw across the board is that performance was not about stacking the most complex model. What mattered was how well the models structure matched the way the data behaved. When signals were strong and obvious, simple models worked fine. But for messier, more subtle threats, we needed something more adaptive, sequence models and anomaly detectors, though they brought their trade offs. The takeaway here is clear in cybersecurity, context drives the solution.
Authors:Zeduo Zhang, Yalda Mohsenzadeh
Title: Semi-Supervised Anomaly Detection in Brain MRI Using a Domain-Agnostic Deep Reinforcement Learning Approach
Abstract:
To develop a domain-agnostic, semi-supervised anomaly detection framework that integrates deep reinforcement learning (DRL) to address challenges such as large-scale data, overfitting, and class imbalance, focusing on brain MRI volumes. This retrospective study used publicly available brain MRI datasets collected between 2005 and 2021. The IXI dataset provided 581 T1-weighted and 578 T2-weighted MRI volumes (from healthy subjects) for training, while the BraTS 2021 dataset provided 251 volumes for validation and 1000 for testing (unhealthy subjects with Glioblastomas). Preprocessing included normalization, skull-stripping, and co-registering to a uniform voxel size. Experiments were conducted on both T1- and T2-weighted modalities. Additional experiments and ablation analyses were also carried out on the industrial datasets. The proposed method integrates DRL with feature representations to handle label scarcity, large-scale data and overfitting. Statistical analysis was based on several detection and segmentation metrics including AUROC and Dice score. The proposed method achieved an AUROC of 88.7% (pixel-level) and 96.7% (image-level) on brain MRI datasets, outperforming State-of-The-Art (SOTA) methods. On industrial surface datasets, the model also showed competitive performance (AUROC = 99.8% pixel-level, 99.3% image-level) on MVTec AD dataset, indicating strong cross-domain generalization. Studies on anomaly sample size showed a monotonic increase in AUROC as more anomalies were seen, without evidence of overfitting or additional computational cost. The domain-agnostic semi-supervised approach using DRL shows significant promise for MRI anomaly detection, achieving strong performance on both medical and industrial datasets. Its robustness, generalizability and efficiency highlight its potential for real-world clinical applications.
Authors:Aitor Sánchez-Ferrera, Usue Mori, Borja Calvo, Jose A. Lozano
Title: NeuCoReClass AD: Redefining Self-Supervised Time Series Anomaly Detection
Abstract:
Time series anomaly detection plays a critical role in a wide range of real-world applications. Among unsupervised approaches, self-supervised learning has gained traction for modeling normal behavior without the need of labeled data. However, many existing methods rely on a single proxy task, limiting their ability to capture meaningful patterns in normal data. Moreover, they often depend on handcrafted transformations tailored specific domains, hindering their generalization accross diverse problems. To address these limitations, we introduce NeuCoReClass AD, a self-supervised multi-task time series anomaly detection framework that combines contrastive, reconstruction, and classification proxy tasks. Our method employs neural transformation learning to generate augmented views that are informative, diverse, and coherent, without requiring domain-specific knowledge. We evaluate NeuCoReClass AD across a wide range of benchmarks, demonstrating that it consistently outperforms both classical baselines and most deep-learning alternatives. Furthermore, it enables the characterization of distinct anomaly profiles in a fully unsupervised manner.
Authors:Jonas Peche, Aliaksei Tsishurou, Alexander Zap, Guenter Wallner
Title: A Multimodal Architecture for Endpoint Position Prediction in Team-based Multiplayer Games
Abstract:
Understanding and predicting player movement in multiplayer games is crucial for achieving use cases such as player-mimicking bot navigation, preemptive bot control, strategy recommendation, and real-time player behavior analytics. However, the complex environments allow for a high degree of navigational freedom, and the interactions and team-play between players require models that make effective use of the available heterogeneous input data. This paper presents a multimodal architecture for predicting future player locations on a dynamic time horizon, using a U-Net-based approach for calculating endpoint location probability heatmaps, conditioned using a multimodal feature encoder. The application of a multi-head attention mechanism for different groups of features allows for communication between agents. In doing so, the architecture makes efficient use of the multimodal game state including image inputs, numerical and categorical features, as well as dynamic game data. Consequently, the presented technique lays the foundation for various downstream tasks that rely on future player positions such as the creation of player-predictive bot behavior or player anomaly detection.
Authors:An D. Le, Hung Nguyen, Sungbal Seo, You-Suk Bae, Truong Q. Nguyen
Title: Stop-band Energy Constraint for Orthogonal Tunable Wavelet Units in Convolutional Neural Networks for Computer Vision problems
Abstract:
This work introduces a stop-band energy constraint for filters in orthogonal tunable wavelet units with a lattice structure, aimed at improving image classification and anomaly detection in CNNs, especially on texture-rich datasets. Integrated into ResNet-18, the method enhances convolution, pooling, and downsampling operations, yielding accuracy gains of 2.48% on CIFAR-10 and 13.56% on the Describable Textures dataset. Similar improvements are observed in ResNet-34. On the MVTec hazelnut anomaly detection task, the proposed method achieves competitive results in both segmentation and detection, outperforming existing approaches.
Authors:Sara Abdulaziz, Egor Bondarev
Title: Unmasking Performance Gaps: A Comparative Study of Human Anonymization and Its Effects on Video Anomaly Detection
Abstract:
Advancements in deep learning have improved anomaly detection in surveillance videos, yet they raise urgent privacy concerns due to the collection of sensitive human data. In this paper, we present a comprehensive analysis of anomaly detection performance under four human anonymization techniques, including blurring, masking, encryption, and avatar replacement, applied to the UCF-Crime dataset. We evaluate four anomaly detection methods, MGFN, UR-DMU, BN-WVAD, and PEL4VAD, on the anonymized UCF-Crime to reveal how each method responds to different obfuscation techniques. Experimental results demonstrate that anomaly detection remains viable under anonymized data and is dependent on the algorithmic design and the learning strategy. For instance, under certain anonymization patterns, such as encryption and masking, some models inadvertently achieve higher AUC performance compared to raw data, due to the strong responsiveness of their algorithmic components to these noise patterns. These results highlight the algorithm-specific sensitivities to anonymization and emphasize the trade-off between preserving privacy and maintaining detection utility. Furthermore, we compare these conventional anonymization techniques with the emerging privacy-by-design solutions, highlighting an often overlooked trade-off between robust privacy protection and utility flexibility. Through comprehensive experiments and analyses, this study provides a compelling benchmark and insights into balancing human privacy with the demands of anomaly detection.
Authors:Joydeep Chandra, Prabal Manhas
Title: Efficient and Scalable Self-Healing Databases Using Meta-Learning and Dependency-Driven Recovery
Abstract:
This study explored the development of a novel self-healing framework for databases using meta-learning and reinforcement learning techniques. The primary objective was to address the challenges of real-time adaptability and minimal retraining in dynamic workload environments. The proposed approach integrated Model-Agnostic Meta-Learning (MAML) with reinforcement learning to enable anomaly detection and corrective actions that adapted swiftly to evolving database conditions. Multi-objective optimization was employed to balance performance, resource utilization, and cost efficiency during the healing process. Graph Neural Networks (GNNs) were incorporated to model interdependencies within database components, ensuring holistic recovery strategies. Data efficiency was enhanced through synthetic task augmentation and self-supervised learning, enabling effective training in sparse data regimes. To promote trust and transparency, explainable AI techniques were integrated to provide interpretable insights into anomaly detection and healing actions. Federated meta-learning further enabled privacy-preserving adaptability in distributed database environments. The framework demonstrated significant improvements in adaptability, efficiency, and reliability, contributing to advancements in database management and self-healing systems.
Authors:Yue Yang, Zihan Su, Ying Zhang, Chang Chuan Goh, Yuxiang Lin, Anthony Graham Bellotti, Boon Giin Lee
Title: Kolmogorov-Arnold Networks-based GRU and LSTM for Loan Default Early Prediction
Abstract:
This study addresses a critical challenge in time series anomaly detection: enhancing the predictive capability of loan default models more than three months in advance to enable early identification of default events, helping financial institutions implement preventive measures before risk events materialize. Existing methods have significant drawbacks, such as their lack of accuracy in early predictions and their dependence on training and testing within the same year and specific time frames. These issues limit their practical use, particularly with out-of-time data. To address these, the study introduces two innovative architectures, GRU-KAN and LSTM-KAN, which merge Kolmogorov-Arnold Networks (KAN) with Gated Recurrent Units (GRU) and Long Short-Term Memory (LSTM) networks. The proposed models were evaluated against the baseline models (LSTM, GRU, LSTM-Attention, and LSTM-Transformer) in terms of accuracy, precision, recall, F1 and AUC in different lengths of feature window, sample sizes, and early prediction intervals. The results demonstrate that the proposed model achieves a prediction accuracy of over 92% three months in advance and over 88% eight months in advance, significantly outperforming existing baselines.
Authors:Yeming Cai, Yang Wang, Zhenglin Li
Title: Transformer-Based Framework for Motion Capture Denoising and Anomaly Detection in Medical Rehabilitation
Abstract:
This paper proposes an end-to-end deep learning framework integrating optical motion capture with a Transformer-based model to enhance medical rehabilitation. It tackles data noise and missing data caused by occlusion and environmental factors, while detecting abnormal movements in real time to ensure patient safety. Utilizing temporal sequence modeling, our framework denoises and completes motion capture data, improving robustness. Evaluations on stroke and orthopedic rehabilitation datasets show superior performance in data reconstruction and anomaly detection, providing a scalable, cost-effective solution for remote rehabilitation with reduced on-site supervision.
Authors:Xiaofeng Xiao, Bo Shen, Xubo Yue
Title: Causality-informed Anomaly Detection in Partially Observable Sensor Networks: Moving beyond Correlations
Abstract:
Nowadays, as AI-driven manufacturing becomes increasingly popular, the volume of data streams requiring real-time monitoring continues to grow. However, due to limited resources, it is impractical to place sensors at every location to detect unexpected shifts. Therefore, it is necessary to develop an optimal sensor placement strategy that enables partial observability of the system while detecting anomalies as quickly as possible. Numerous approaches have been proposed to address this challenge; however, most existing methods consider only variable correlations and neglect a crucial factor: Causality. Moreover, although a few techniques incorporate causal analysis, they rely on interventions-artificially creating anomalies-to identify causal effects, which is impractical and might lead to catastrophic losses. In this paper, we introduce a causality-informed deep Q-network (Causal DQ) approach for partially observable sensor placement in anomaly detection. By integrating causal information at each stage of Q-network training, our method achieves faster convergence and tighter theoretical error bounds. Furthermore, the trained causal-informed Q-network significantly reduces the detection time for anomalies under various settings, demonstrating its effectiveness for sensor placement in large-scale, real-world data streams. Beyond the current implementation, our technique's fundamental insights can be applied to various reinforcement learning problems, opening up new possibilities for real-world causality-informed machine learning methods in engineering applications.
Authors:Changheon Han, Yun Seok Kang, Yuseop Sim, Hyung Wook Park, Martin Byung-Guk Jun
Title: LISTEN: Lightweight Industrial Sound-representable Transformer for Edge Notification
Abstract:
Deep learning-based machine listening is broadening the scope of industrial acoustic analysis for applications like anomaly detection and predictive maintenance, thereby improving manufacturing efficiency and reliability. Nevertheless, its reliance on large, task-specific annotated datasets for every new task limits widespread implementation on shop floors. While emerging sound foundation models aim to alleviate data dependency, they are too large and computationally expensive, requiring cloud infrastructure or high-end hardware that is impractical for on-site, real-time deployment. We address this gap with LISTEN (Lightweight Industrial Sound-representable Transformer for Edge Notification), a kilobyte-sized industrial sound foundation model. Using knowledge distillation, LISTEN runs in real-time on low-cost edge devices. On benchmark downstream tasks, it performs nearly identically to its much larger parent model, even when fine-tuned with minimal datasets and training resource. Beyond the model itself, we demonstrate its real-world utility by integrating LISTEN into a complete machine monitoring framework on an edge device with an Industrial Internet of Things (IIoT) sensor and system, validating its performance and generalization capabilities on a live manufacturing shop floor.
Authors:Julio Garrido, Javier Vales, Diego Silva-Muñiz, Enrique Riveiro, Pablo López-Matencio, Josué Rivera-Andrade
Title: Adaptive Gaussian Mixture Models-based Anomaly Detection for under-constrained Cable-Driven Parallel Robots
Abstract:
Cable-Driven Parallel Robots (CDPRs) are increasingly used for load manipulation tasks involving predefined toolpaths with intermediate stops. At each stop, where the platform maintains a fixed pose and the motors keep the cables under tension, the system must evaluate whether it is safe to proceed by detecting anomalies that could compromise performance (e.g., wind gusts or cable impacts). This paper investigates whether anomalies can be detected using only motor torque data, without additional sensors. It introduces an adaptive, unsupervised outlier detection algorithm based on Gaussian Mixture Models (GMMs) to identify anomalies from torque signals. The method starts with a brief calibration period, just a few seconds, during which a GMM is fit on known anomaly-free data. Real-time torque measurements are then evaluated using Mahalanobis distance from the GMM, with statistically derived thresholds triggering anomaly flags. Model parameters are periodically updated using the latest segments identified as anomaly-free to adapt to changing conditions. Validation includes 14 long-duration test sessions simulating varied wind intensities. The proposed method achieves a 100% true positive rate and 95.4% average true negative rate, with 1-second detection latency. Comparative evaluation against power threshold and non-adaptive GMM methods indicates higher robustness to drift and environmental variation.
Authors:Amirhossein Sadough, Mahyar Shahsavari, Mark Wijtvliet, Marcel van Gerven
Title: Real-Time Decorrelation-Based Anomaly Detection for Multivariate Time Series
Abstract:
Anomaly detection (AD) plays a vital role across a wide range of real-world domains by identifying data instances that deviate from expected patterns, potentially signaling critical events such as system failures, fraudulent activities, or rare medical conditions. The demand for real-time AD has surged with the rise of the (Industrial) Internet of Things, where massive volumes of multivariate sensor data must be processed instantaneously. Real-time AD requires methods that not only handle high-dimensional streaming data but also operate in a single-pass manner, without the burden of storing historical instances, thereby ensuring minimal memory usage and fast decision-making. We propose DAD, a novel real-time decorrelation-based anomaly detection method for multivariate time series, based on an online decorrelation learning approach. Unlike traditional proximity-based or reconstruction-based detectors that process entire data or windowed instances, DAD dynamically learns and monitors the correlation structure of data sample by sample in a single pass, enabling efficient and effective detection. To support more realistic benchmarking practices, we also introduce a practical hyperparameter tuning strategy tailored for real-time anomaly detection scenarios. Extensive experiments on widely used benchmark datasets demonstrate that DAD achieves the most consistent and superior performance across diverse anomaly types compared to state-of-the-art methods. Crucially, its robustness to increasing dimensionality makes it particularly well-suited for real-time, high-dimensional data streams. Ultimately, DAD not only strikes an optimal balance between detection efficacy and computational efficiency but also sets a new standard for real-time, memory-constrained anomaly detection.
Authors:Changheon Han, Yuseop Sim, Hoin Jung, Jiho Lee, Hojun Lee, Yun Seok Kang, Sucheol Woo, Garam Kim, Hyung Wook Park, Martin Byung-Guk Jun
Title: IMPACT: Industrial Machine Perception via Acoustic Cognitive Transformer
Abstract:
Acoustic signals from industrial machines offer valuable insights for anomaly detection, predictive maintenance, and operational efficiency enhancement. However, existing task-specific, supervised learning methods often scale poorly and fail to generalize across diverse industrial scenarios, whose acoustic characteristics are distinct from general audio. Furthermore, the scarcity of accessible, large-scale datasets and pretrained models tailored for industrial audio impedes community-driven research and benchmarking. To address these challenges, we introduce DINOS (Diverse INdustrial Operation Sounds), a large-scale open-access dataset. DINOS comprises over 74,149 audio samples (exceeding 1,093 hours) collected from various industrial acoustic scenarios. We also present IMPACT (Industrial Machine Perception via Acoustic Cognitive Transformer), a novel foundation model for industrial machine sound analysis. IMPACT is pretrained on DINOS in a self-supervised manner. By jointly optimizing utterance and frame-level losses, it captures both global semantics and fine-grained temporal structures. This makes its representations suitable for efficient fine-tuning on various industrial downstream tasks with minimal labeled data. Comprehensive benchmarking across 30 distinct downstream tasks (spanning four machine types) demonstrates that IMPACT outperforms existing models on 24 tasks, establishing its superior effectiveness and robustness, while providing a new performance benchmark for future research.
Authors:Bogdan Bogdan, Arina Cazacu, Laura Vasilie
Title: Good Enough to Learn: LLM-based Anomaly Detection in ECU Logs without Reliable Labels
Abstract:
Anomaly detection often relies on supervised or clustering approaches, with limited success in specialized domains like automotive communication systems where scalable solutions are essential. We propose a novel decoder-only Large Language Model (LLM) to detect anomalies in Electronic Control Unit (ECU) communication logs. Our approach addresses two key challenges: the lack of LLMs tailored for ECU communication and the complexity of inconsistent ground truth data. By learning from UDP communication logs, we formulate anomaly detection simply as identifying deviations in time from normal behavior. We introduce an entropy regularization technique that increases model's uncertainty in known anomalies while maintaining consistency in similar scenarios. Our solution offers three novelties: a decoder-only anomaly detection architecture, a way to handle inconsistent labeling, and an adaptable LLM for different ECU communication use cases. By leveraging the generative capabilities of decoder-only models, we present a new technique that addresses the high cost and error-prone nature of manual labeling through a more scalable system that is able to learn from a minimal set of examples, while improving detection accuracy in complex communication environments.
Authors:Renzi Meng, Heyi Wang, Yumeng Sun, Qiyuan Wu, Lian Lian, Renhan Zhang
Title: Behavioral Anomaly Detection in Distributed Systems via Federated Contrastive Learning
Abstract:
This paper addresses the increasingly prominent problem of anomaly detection in distributed systems. It proposes a detection method based on federated contrastive learning. The goal is to overcome the limitations of traditional centralized approaches in terms of data privacy, node heterogeneity, and anomaly pattern recognition. The proposed method combines the distributed collaborative modeling capabilities of federated learning with the feature discrimination enhancement of contrastive learning. It builds embedding representations on local nodes and constructs positive and negative sample pairs to guide the model in learning a more discriminative feature space. Without exposing raw data, the method optimizes a global model through a federated aggregation strategy. Specifically, the method uses an encoder to represent local behavior data in high-dimensional space. This includes system logs, operational metrics, and system calls. The model is trained using both contrastive loss and classification loss to improve its ability to detect fine-grained anomaly patterns. The method is evaluated under multiple typical attack types. It is also tested in a simulated real-time data stream scenario to examine its responsiveness. Experimental results show that the proposed method outperforms existing approaches across multiple performance metrics. It demonstrates strong detection accuracy and adaptability, effectively addressing complex anomalies in distributed environments. Through careful design of key modules and optimization of the training mechanism, the proposed method achieves a balance between privacy preservation and detection performance. It offers a feasible technical path for intelligent security management in distributed systems.
Authors:Akarsh K Nair, Shanik Hubert Satheesh Kumar., Deepti Gupta
Title: AndroIDS : Android-based Intrusion Detection System using Federated Learning
Abstract:
The exponential growth of android-based mobile IoT systems has significantly increased the susceptibility of devices to cyberattacks, particularly in smart homes, UAVs, and other connected mobile environments. This article presents a federated learning-based intrusion detection framework called AndroIDS that leverages system call traces as a personalized and privacy-preserving data source. Unlike conventional centralized approaches, the proposed method enables collaborative anomaly detection without sharing raw data, thus preserving user privacy across distributed nodes. A generalized system call dataset was generated to reflect realistic android system behavior and serves as the foundation for experimentation. Extensive evaluation demonstrates the effectiveness of the FL model under both IID and non-IID conditions, achieving an accuracy of 96.46 % and 92.87 %, and F1-scores of 89 % and 86 %, respectively. These results highlight the models robustness to data heterogeneity, with only a minor performance drop in the non-IID case. Further, a detailed comparison with centralized deep learning further illustrates trade-offs in detection performance and deployment feasibility. Overall, the results validate the practical applicability of the proposed approach for secure and scalable intrusion detection in real-world mobile IoT scenarios.
Authors:Jongjun Park, Fei Chiang, Mostafa Milani
Title: Adaptive Anomaly Detection in the Presence of Concept Drift: Extended Report
Abstract:
The presence of concept drift poses challenges for anomaly detection in time series. While anomalies are caused by undesirable changes in the data, differentiating abnormal changes from varying normal behaviours is difficult due to differing frequencies of occurrence, varying time intervals when normal patterns occur, and identifying similarity thresholds to separate the boundary between normal vs. abnormal sequences. Differentiating between concept drift and anomalies is critical for accurate analysis as studies have shown that the compounding effects of error propagation in downstream tasks lead to lower detection accuracy and increased overhead due to unnecessary model updates. Unfortunately, existing work has largely explored anomaly detection and concept drift detection in isolation. We introduce AnDri, a framework for Anomaly detection in the presence of Drift. AnDri introduces the notion of a dynamic normal model where normal patterns are activated, deactivated or newly added, providing flexibility to adapt to concept drift and anomalies over time. We introduce a new clustering method, Adjacent Hierarchical Clustering (AHC), for learning normal patterns that respect their temporal locality; critical for detecting short-lived, but recurring patterns that are overlooked by existing methods. Our evaluation shows AnDri outperforms existing baselines using real datasets with varying types, proportions, and distributions of concept drift and anomalies.
Authors:Daichi Tanaka, Takumi Karasawa, Shu Takenouchi, Rei Kawakami
Title: Anomaly Object Segmentation with Vision-Language Models for Steel Scrap Recycling
Abstract:
Recycling steel scrap can reduce carbon dioxide (CO2) emissions from the steel industry. However, a significant challenge in steel scrap recycling is the inclusion of impurities other than steel. To address this issue, we propose vision-language-model-based anomaly detection where a model is finetuned in a supervised manner, enabling it to handle niche objects effectively. This model enables automated detection of anomalies at a fine-grained level within steel scrap. Specifically, we finetune the image encoder, equipped with multi-scale mechanism and text prompts aligned with both normal and anomaly images. The finetuning process trains these modules using a multiclass classification as the supervision.
Authors:Simone Brivio, Nicola Rares Franco
Title: Deep Symmetric Autoencoders from the Eckart-Young-Schmidt Perspective
Abstract:
Deep autoencoders have become a fundamental tool in various machine learning applications, ranging from dimensionality reduction and reduced order modeling of partial differential equations to anomaly detection and neural machine translation. Despite their empirical success, a solid theoretical foundation for their expressiveness remains elusive, particularly when compared to classical projection-based techniques. In this work, we aim to take a step forward in this direction by presenting a comprehensive analysis of what we refer to as symmetric autoencoders, a broad class of deep learning architectures ubiquitous in the literature. Specifically, we introduce a formal distinction between different classes of symmetric architectures, analyzing their strengths and limitations from a mathematical perspective. For instance, we show that the reconstruction error of symmetric autoencoders with orthonormality constraints can be understood by leveraging the well-renowned Eckart-Young-Schmidt (EYS) theorem. As a byproduct of our analysis, we end up developing the EYS initialization strategy for symmetric autoencoders, which is based on an iterated application of the Singular Value Decomposition (SVD). To validate our findings, we conduct a series of numerical experiments where we benchmark our proposal against conventional deep autoencoders, discussing the importance of model design and initialization.
Authors:Ruiying Lu, Jinhan Liu, Chuan Du, Dandan Guo
Title: Investigating Mask-aware Prototype Learning for Tabular Anomaly Detection
Abstract:
Tabular anomaly detection, which aims at identifying deviant samples, has been crucial in a variety of real-world applications, such as medical disease identification, financial fraud detection, intrusion monitoring, etc. Although recent deep learning-based methods have achieved competitive performances, these methods suffer from representation entanglement and the lack of global correlation modeling, which hinders anomaly detection performance. To tackle the problem, we incorporate mask modeling and prototype learning into tabular anomaly detection. The core idea is to design learnable masks by disentangled representation learning within a projection space and extracting normal dependencies as explicit global prototypes. Specifically, the overall model involves two parts: (i) During encoding, we perform mask modeling in both the data space and projection space with orthogonal basis vectors for learning shared disentangled normal patterns; (ii) During decoding, we decode multiple masked representations in parallel for reconstruction and learn association prototypes to extract normal characteristic correlations. Our proposal derives from a distribution-matching perspective, where both projection space learning and association prototype learning are formulated as optimal transport problems, and the calibration distances are utilized to refine the anomaly scores. Quantitative and qualitative experiments on 20 tabular benchmarks demonstrate the effectiveness and interpretability of our model.
Authors:Md Mahmuddun Nabi Murad, Yasin Yilmaz
Title: Cluster-Aware Causal Mixer for Online Anomaly Detection in Multivariate Time Series
Abstract:
Early and accurate detection of anomalies in time series data is critical, given the significant risks associated with false or missed detections. While MLP-based mixer models have shown promise in time series analysis, they lack a causality mechanism to preserve temporal dependencies inherent in the system. Moreover, real-world multivariate time series often contain numerous channels with diverse inter-channel correlations. A single embedding mechanism for all channels does not effectively capture these complex relationships. To address these challenges, we propose a novel cluster-aware causal mixer to effectively detect anomalies in multivariate time series. Our model groups channels into clusters based on their correlations, with each cluster processed through a dedicated embedding layer. In addition, we introduce a causal mixer in our model, which mixes the information while maintaining causality. Furthermore, we present an anomaly detection framework that accumulates the anomaly evidence over time to prevent false positives due to nominal outliers. Our proposed model operates in an online fashion, making it suitable for real-time time-series anomaly detection tasks. Experimental evaluations across six public benchmark datasets demonstrate that our model consistently achieves superior F1 scores.
Authors:Shayan Dadman, Bernt Arild Bremdal, Børre Bang, Rune Dalmo
Title: Learning Normal Patterns in Musical Loops
Abstract:
This paper introduces an unsupervised framework for detecting audio patterns in musical samples (loops) through anomaly detection techniques, addressing challenges in music information retrieval (MIR). Existing methods are often constrained by reliance on handcrafted features, domain-specific limitations, or dependence on iterative user interaction. We address these limitations through an architecture combining deep feature extraction with unsupervised anomaly detection. Our approach leverages a pre-trained Hierarchical Token-semantic Audio Transformer (HTS-AT), paired with a Feature Fusion Mechanism (FFM), to generate representations from variable-length audio loops. These embeddings are processed using one-class Deep Support Vector Data Description (Deep SVDD), which learns normative audio patterns by mapping them to a compact latent hypersphere. Evaluations on curated bass and guitar datasets compare standard and residual autoencoder variants against baselines like Isolation Forest (IF) and and principle component analysis (PCA) methods. Results show our Deep SVDD models, especially the residual autoencoder variant, deliver improved anomaly separation, particularly for larger variations. This research contributes a flexible, fully unsupervised solution for processing diverse audio samples, overcoming previous structural and input limitations while enabling effective pattern identification through distance-based latent space scoring.
Authors:Hamideh Khaleghpour, Brett McKinney
Title: Unified AI for Accurate Audio Anomaly Detection
Abstract:
This paper presents a unified AI framework for high-accuracy audio anomaly detection by integrating advanced noise reduction, feature extraction, and machine learning modeling techniques. The approach combines spectral subtraction and adaptive filtering to enhance audio quality, followed by feature extraction using traditional methods like MFCCs and deep embeddings from pre-trained models such as OpenL3. The modeling pipeline incorporates classical models (SVM, Random Forest), deep learning architectures (CNNs), and ensemble methods to boost robustness and accuracy. Evaluated on benchmark datasets including TORGO and LibriSpeech, the proposed framework demonstrates superior performance in precision, recall, and classification of slurred vs. normal speech. This work addresses challenges in noisy environments and real-time applications and provides a scalable solution for audio-based anomaly detection.
Authors:Huaiyuan Zhang, Hang Chen, Yu Cheng, Shunyi Wu, Linghao Sun, Linao Han, Zeyu Shi, Lei Qi
Title: SuperAD: A Training-free Anomaly Classification and Segmentation Method for CVPR 2025 VAND 3.0 Workshop Challenge Track 1: Adapt & Detect
Abstract:
In this technical report, we present our solution to the CVPR 2025 Visual Anomaly and Novelty Detection (VAND) 3.0 Workshop Challenge Track 1: Adapt & Detect: Robust Anomaly Detection in Real-World Applications. In real-world industrial anomaly detection, it is crucial to accurately identify anomalies with physical complexity, such as transparent or reflective surfaces, occlusions, and low-contrast contaminations. The recently proposed MVTec AD 2 dataset significantly narrows the gap between publicly available benchmarks and anomalies found in real-world industrial environments. To address the challenges posed by this dataset--such as complex and varying lighting conditions and real anomalies with large scale differences--we propose a fully training-free anomaly detection and segmentation method based on feature extraction using the DINOv2 model named SuperAD. Our method carefully selects a small number of normal reference images and constructs a memory bank by leveraging the strong representational power of DINOv2. Anomalies are then segmented by performing nearest neighbor matching between test image features and the memory bank. Our method achieves competitive results on both test sets of the MVTec AD 2 dataset.
Authors:Fangzhen Zhao, Chenyi Zhang, Naipeng Dong, Ming Li, Jinxiao Shan
Title: Anomaly Detection Based on Critical Paths for Deep Neural Networks
Abstract:
Deep neural networks (DNNs) are notoriously hard to understand and difficult to defend. Extracting representative paths (including the neuron activation values and the connections between neurons) from DNNs using software engineering approaches has recently shown to be a promising approach in interpreting the decision making process of blackbox DNNs, as the extracted paths are often effective in capturing essential features. With this in mind, this work investigates a novel approach that extracts critical paths from DNNs and subsequently applies the extracted paths for the anomaly detection task, based on the observation that outliers and adversarial inputs do not usually induce the same activation pattern on those paths as normal (in-distribution) inputs. In our approach, we first identify critical detection paths via genetic evolution and mutation. Since different paths in a DNN often capture different features for the same target class, we ensemble detection results from multiple paths by integrating random subspace sampling and a voting mechanism. Compared with state-of-the-art methods, our experimental results suggest that our method not only outperforms them, but it is also suitable for the detection of a broad range of anomaly types with high accuracy.
Authors:Przemek Pospieszny, Wojciech Mormul, Karolina Szyndler, Sanjeev Kumar
Title: ADALog: Adaptive Unsupervised Anomaly detection in Logs with Self-attention Masked Language Model
Abstract:
Modern software systems generate extensive heterogeneous log data with dynamic formats, fragmented event sequences, and varying temporal patterns, making anomaly detection both crucial and challenging. To address these complexities, we propose ADALog, an adaptive, unsupervised anomaly detection framework designed for practical applicability across diverse real-world environments. Unlike traditional methods reliant on log parsing, strict sequence dependencies, or labeled data, ADALog operates on individual unstructured logs, extracts intra-log contextual relationships, and performs adaptive thresholding on normal data. The proposed approach utilizes a transformer-based, pretrained bidirectional encoder with a masked language modeling task, fine-tuned on normal logs to capture domain-specific syntactic and semantic patterns essential for accurate anomaly detection. Anomalies are identified via token-level reconstruction probabilities, aggregated into log-level scores, with adaptive percentile-based thresholding calibrated only on normal data. This allows the model to dynamically adapt to evolving system behaviors while avoiding rigid, heuristic-based thresholds common in traditional systems. We evaluate ADALog on benchmark datasets BGL, Thunderbird, and Spirit, showing strong generalization and competitive performance compared to state-of-the-art supervised and unsupervised methods. Additional ablation studies examine the effects of masking, fine-tuning, and token positioning on model behavior and interpretability.
Authors:Nikolai West, Jochen Deuse
Title: PyScrew: A Comprehensive Dataset Collection from Industrial Screw Driving Experiments
Abstract:
This paper presents a comprehensive collection of industrial screw driving datasets designed to advance research in manufacturing process monitoring and quality control. The collection comprises six distinct datasets with over 34,000 individual screw driving operations conducted under controlled experimental conditions, capturing the multifaceted nature of screw driving processes in plastic components. Each dataset systematically investigates specific aspects: natural thread degradation patterns through repeated use (s01), variations in surface friction conditions including contamination and surface treatments (s02), diverse assembly faults with up to 27 error types (s03-s04), and fabrication parameter variations in both upper and lower workpieces through modified injection molding settings (s05-s06). We detail the standardized experimental setup used across all datasets, including hardware specifications, process phases, and data acquisition methods. The hierarchical data model preserves the temporal and operational structure of screw driving processes, facilitating both exploratory analysis and the development of machine learning models. To maximize accessibility, we provide dual access pathways: raw data through Zenodo with a persistent DOI, and a purpose-built Python library (PyScrew) that offers consistent interfaces for data loading, preprocessing, and integration with common analysis workflows. These datasets serve diverse research applications including anomaly detection, predictive maintenance, quality control system development, feature extraction methodology evaluation, and classification of specific error conditions. By addressing the scarcity of standardized, comprehensive datasets in industrial manufacturing, this collection enables reproducible research and fair comparison of analytical approaches in an area of growing importance for industrial automation.
Authors:Jianing Wang, Zheng Hua, Wan Zhang, Shengjia Hao, Yuqiong Yao, Maoguo Gong
Title: CL-BioGAN: Biologically-Inspired Cross-Domain Continual Learning for Hyperspectral Anomaly Detection
Abstract:
Memory stability and learning flexibility in continual learning (CL) is a core challenge for cross-scene Hyperspectral Anomaly Detection (HAD) task. Biological neural networks can actively forget history knowledge that conflicts with the learning of new experiences by regulating learning-triggered synaptic expansion and synaptic convergence. Inspired by this phenomenon, we propose a novel Biologically-Inspired Continual Learning Generative Adversarial Network (CL-BioGAN) for augmenting continuous distribution fitting ability for cross-domain HAD task, where Continual Learning Bio-inspired Loss (CL-Bio Loss) and self-attention Generative Adversarial Network (BioGAN) are incorporated to realize forgetting history knowledge as well as involving replay strategy in the proposed BioGAN. Specifically, a novel Bio-Inspired Loss composed with an Active Forgetting Loss (AF Loss) and a CL loss is designed to realize parameters releasing and enhancing between new task and history tasks from a Bayesian perspective. Meanwhile, BioGAN loss with L2-Norm enhances self-attention (SA) to further balance the stability and flexibility for better fitting background distribution for open scenario HAD (OHAD) tasks. Experiment results underscore that the proposed CL-BioGAN can achieve more robust and satisfying accuracy for cross-domain HAD with fewer parameters and computation cost. This dual contribution not only elevates CL performance but also offers new insights into neural adaptation mechanisms in OHAD task.
Authors:Jianing Wang, Siying Guo, Zheng Hua, Runhu Huang, Jinyu Hu, Maoguo Gong
Title: CL-CaGAN: Capsule differential adversarial continuous learning for cross-domain hyperspectral anomaly detection
Abstract:
Anomaly detection (AD) has attracted remarkable attention in hyperspectral image (HSI) processing fields, and most existing deep learning (DL)-based algorithms indicate dramatic potential for detecting anomaly samples through specific training process under current scenario. However, the limited prior information and the catastrophic forgetting problem indicate crucial challenges for existing DL structure in open scenarios cross-domain detection. In order to improve the detection performance, a novel continual learning-based capsule differential generative adversarial network (CL-CaGAN) is proposed to elevate the cross-scenario learning performance for facilitating the real application of DL-based structure in hyperspectral AD (HAD) task. First, a modified capsule structure with adversarial learning network is constructed to estimate the background distribution for surmounting the deficiency of prior information. To mitigate the catastrophic forgetting phenomenon, clustering-based sample replay strategy and a designed extra self-distillation regularization are integrated for merging the history and future knowledge in continual AD task, while the discriminative learning ability from previous detection scenario to current scenario is retained by the elaborately designed structure with continual learning (CL) strategy. In addition, the differentiable enhancement is enforced to augment the generation performance of the training data. This further stabilizes the training process with better convergence and efficiently consolidates the reconstruction ability of background samples. To verify the effectiveness of our proposed CL-CaGAN, we conduct experiments on several real HSIs, and the results indicate that the proposed CL-CaGAN demonstrates higher detection performance and continuous learning capacity for mitigating the catastrophic forgetting under cross-domain scenarios.
Authors:Pu Yang, J. A. Barria
Title: Anomaly Detection for Non-stationary Time Series using Recurrent Wavelet Probabilistic Neural Network
Abstract:
In this paper, an unsupervised Recurrent Wavelet Probabilistic Neural Network (RWPNN) is proposed, which aims at detecting anomalies in non-stationary environments by modelling the temporal features using a nonparametric density estimation network. The novel framework consists of two components, a Stacked Recurrent Encoder-Decoder (SREnc-Dec) module that captures temporal features in a latent space, and a Multi-Receptive-field Wavelet Probabilistic Network (MRWPN) that creates an ensemble probabilistic model to characterise the latent space. This formulation extends the standard wavelet probabilistic networks to wavelet deep probabilistic networks, which can handle higher data dimensionality. The MRWPN module can adapt to different rates of data variation in different datasets without imposing strong distribution assumptions, resulting in a more robust and accurate detection for Time Series Anomaly Detection (TSAD) tasks in the non-stationary environment. We carry out the assessment on 45 real-world time series datasets from various domains, verify the performance of RWPNN in TSAD tasks with several constraints, and show its ability to provide early warnings for anomalous events.
Authors:Jing Ren, Mingliang Hou, Zhixuan Liu, Xiaomei Bai
Title: EAGLE: Contrastive Learning for Efficient Graph Anomaly Detection
Abstract:
Graph anomaly detection is a popular and vital task in various real-world scenarios, which has been studied for several decades. Recently, many studies extending deep learning-based methods have shown preferable performance on graph anomaly detection. However, existing methods are lack of efficiency that is definitely necessary for embedded devices. Towards this end, we propose an Efficient Anomaly detection model on heterogeneous Graphs via contrastive LEarning (EAGLE) by contrasting abnormal nodes with normal ones in terms of their distances to the local context. The proposed method first samples instance pairs on meta path-level for contrastive learning. Then, a graph autoencoder-based model is applied to learn informative node embeddings in an unsupervised way, which will be further combined with the discriminator to predict the anomaly scores of nodes. Experimental results show that EAGLE outperforms the state-of-the-art methods on three heterogeneous network datasets.
Authors:Mateo Lopez-Ledezma, Gissel Velarde
Title: Cyber Security Data Science: Machine Learning Methods and their Performance on Imbalanced Datasets
Abstract:
Cybersecurity has become essential worldwide and at all levels, concerning individuals, institutions, and governments. A basic principle in cybersecurity is to be always alert. Therefore, automation is imperative in processes where the volume of daily operations is large. Several cybersecurity applications can be addressed as binary classification problems, including anomaly detection, fraud detection, intrusion detection, spam detection, or malware detection. We present three experiments. In the first experiment, we evaluate single classifiers including Random Forests, Light Gradient Boosting Machine, eXtreme Gradient Boosting, Logistic Regression, Decision Tree, and Gradient Boosting Decision Tree. In the second experiment, we test different sampling techniques including over-sampling, under-sampling, Synthetic Minority Over-sampling Technique, and Self-Paced Ensembling. In the last experiment, we evaluate Self-Paced Ensembling and its number of base classifiers. We found that imbalance learning techniques had positive and negative effects, as reported in related studies. Thus, these techniques should be applied with caution. Besides, we found different best performers for each dataset. Therefore, we recommend testing single classifiers and imbalance learning techniques for each new dataset and application involving imbalanced datasets as is the case in several cyber security applications.
Authors:Lokesh Koli, Shubham Kalra, Rohan Thakur, Anas Saifi, Karanpreet Singh
Title: AI-Driven IRM: Transforming insider risk management with adaptive scoring and LLM-based threat detection
Abstract:
Insider threats pose a significant challenge to organizational security, often evading traditional rule-based detection systems due to their subtlety and contextual nature. This paper presents an AI-powered Insider Risk Management (IRM) system that integrates behavioral analytics, dynamic risk scoring, and real-time policy enforcement to detect and mitigate insider threats with high accuracy and adaptability. We introduce a hybrid scoring mechanism - transitioning from the static PRISM model to an adaptive AI-based model utilizing an autoencoder neural network trained on expert-annotated user activity data. Through iterative feedback loops and continuous learning, the system reduces false positives by 59% and improves true positive detection rates by 30%, demonstrating substantial gains in detection precision. Additionally, the platform scales efficiently, processing up to 10 million log events daily with sub-300ms query latency, and supports automated enforcement actions for policy violations, reducing manual intervention. The IRM system's deployment resulted in a 47% reduction in incident response times, highlighting its operational impact. Future enhancements include integrating explainable AI, federated learning, graph-based anomaly detection, and alignment with Zero Trust principles to further elevate its adaptability, transparency, and compliance-readiness. This work establishes a scalable and proactive framework for mitigating emerging insider risks in both on-premises and hybrid environments.
Authors:Abdul Mustafa, Muhammad Talha Khan, Muhammad Azmi Umer, Zaki Masood, Chuadhry Mujeeb Ahmed
Title: Adversarial Sample Generation for Anomaly Detection in Industrial Control Systems
Abstract:
Machine learning (ML)-based intrusion detection systems (IDS) are vulnerable to adversarial attacks. It is crucial for an IDS to learn to recognize adversarial examples before malicious entities exploit them. In this paper, we generated adversarial samples using the Jacobian Saliency Map Attack (JSMA). We validate the generalization and scalability of the adversarial samples to tackle a broad range of real attacks on Industrial Control Systems (ICS). We evaluated the impact by assessing multiple attacks generated using the proposed method. The model trained with adversarial samples detected attacks with 95% accuracy on real-world attack data not used during training. The study was conducted using an operational secure water treatment (SWaT) testbed.
Authors:Sarad Venugopalan, Sridhar Adepu
Title: GiBy: A Giant-Step Baby-Step Classifier For Anomaly Detection In Industrial Control Systems
Abstract:
The continuous monitoring of the interactions between cyber-physical components of any industrial control system (ICS) is required to secure automation of the system controls, and to guarantee plant processes are fail-safe and remain in an acceptably safe state. Safety is achieved by managing actuation (where electric signals are used to trigger physical movement), dependent on corresponding sensor readings; used as ground truth in decision making. Timely detection of anomalies (attacks, faults and unascertained states) in ICSs is crucial for the safe running of a plant, the safety of its personnel, and for the safe provision of any services provided. We propose an anomaly detection method that involves accurate linearization of the non-linear forms arising from sensor-actuator(s) relationships, primarily because solving linear models is easier and well understood. Further, the time complexity of the anomaly detection scenario/problem at hand is lowered using dimensionality reduction of the actuator(s) in relationship with a sensor. We accomplish this by using a well-known water treatment testbed as a use case. Our experiments show millisecond time response to detect anomalies and provide explainability; that are not simultaneously achieved by other state of the art AI/ML models with eXplainable AI (XAI) used for the same purpose. Further, we pin-point the sensor(s) and its actuation state for which anomaly was detected.
Authors:Tengda Tang, Jianhua Yao, Yixian Wang, Qiuwu Sha, Hanrui Feng, Zhen Xu
Title: Application of Deep Generative Models for Anomaly Detection in Complex Financial Transactions
Abstract:
This study proposes an algorithm for detecting suspicious behaviors in large payment flows based on deep generative models. By combining Generative Adversarial Networks (GAN) and Variational Autoencoders (VAE), the algorithm is designed to detect abnormal behaviors in financial transactions. First, the GAN is used to generate simulated data that approximates normal payment flows. The discriminator identifies anomalous patterns in transactions, enabling the detection of potential fraud and money laundering behaviors. Second, a VAE is introduced to model the latent distribution of payment flows, ensuring that the generated data more closely resembles real transaction features, thus improving the model's detection accuracy. The method optimizes the generative capabilities of both GAN and VAE, ensuring that the model can effectively capture suspicious behaviors even in sparse data conditions. Experimental results show that the proposed method significantly outperforms traditional machine learning algorithms and other deep learning models across various evaluation metrics, especially in detecting rare fraudulent behaviors. Furthermore, this study provides a detailed comparison of performance in recognizing different transaction patterns (such as normal, money laundering, and fraud) in large payment flows, validating the advantages of generative models in handling complex financial data.
Authors:Jason Zev Ludmir, Sophia Rebello, Jacob Ruiz, Tirthak Patel
Title: Quorum: Zero-Training Unsupervised Anomaly Detection using Quantum Autoencoders
Abstract:
Detecting mission-critical anomalous events and data is a crucial challenge across various industries, including finance, healthcare, and energy. Quantum computing has recently emerged as a powerful tool for tackling several machine learning tasks, but training quantum machine learning models remains challenging, particularly due to the difficulty of gradient calculation. The challenge is even greater for anomaly detection, where unsupervised learning methods are essential to ensure practical applicability. To address these issues, we propose Quorum, the first quantum anomaly detection framework designed for unsupervised learning that operates without requiring any training.
Authors:Yifeng Cheng, Juan Du
Title: 3D-PNAS: 3D Industrial Surface Anomaly Synthesis with Perlin Noise
Abstract:
Large pretrained vision foundation models have shown significant potential in various vision tasks. However, for industrial anomaly detection, the scarcity of real defect samples poses a critical challenge in leveraging these models. While 2D anomaly generation has significantly advanced with established generative models, the adoption of 3D sensors in industrial manufacturing has made leveraging 3D data for surface quality inspection an emerging trend. In contrast to 2D techniques, 3D anomaly generation remains largely unexplored, limiting the potential of 3D data in industrial quality inspection. To address this gap, we propose a novel yet simple 3D anomaly generation method, 3D-PNAS, based on Perlin noise and surface parameterization. Our method generates realistic 3D surface anomalies by projecting the point cloud onto a 2D plane, sampling multi-scale noise values from a Perlin noise field, and perturbing the point cloud along its normal direction. Through comprehensive visualization experiments, we demonstrate how key parameters - including noise scale, perturbation strength, and octaves, provide fine-grained control over the generated anomalies, enabling the creation of diverse defect patterns from pronounced deformations to subtle surface variations. Additionally, our cross-category experiments show that the method produces consistent yet geometrically plausible anomalies across different object types, adapting to their specific surface characteristics. We also provide a comprehensive codebase and visualization toolkit to facilitate future research.
Authors:Adam Banda, Charanjit K. Khosa, Veronica Sanz
Title: Strengthening Anomaly Awareness
Abstract:
We present a refined version of the Anomaly Awareness framework for enhancing unsupervised anomaly detection. Our approach introduces minimal supervision into Variational Autoencoders (VAEs) through a two-stage training strategy: the model is first trained in an unsupervised manner on background data, and then fine-tuned using a small sample of labeled anomalies to encourage larger reconstruction errors for anomalous samples. We validate the method across diverse domains, including the MNIST dataset with synthetic anomalies, network intrusion data from the CICIDS benchmark, collider physics data from the LHCO2020 dataset, and simulated events from the Standard Model Effective Field Theory (SMEFT). The latter provides a realistic example of subtle kinematic deviations in Higgs boson production. In all cases, the model demonstrates improved sensitivity to unseen anomalies, achieving better separation between normal and anomalous samples. These results indicate that even limited anomaly information, when incorporated through targeted fine-tuning, can substantially improve the generalization and performance of unsupervised models for anomaly detection.
Authors:Tiange Huang, Yongjun Li
Title: AMAD: AutoMasked Attention for Unsupervised Multivariate Time Series Anomaly Detection
Abstract:
Unsupervised multivariate time series anomaly detection (UMTSAD) plays a critical role in various domains, including finance, networks, and sensor systems. In recent years, due to the outstanding performance of deep learning in general sequential tasks, many models have been specialized for deep UMTSAD tasks and have achieved impressive results, particularly those based on the Transformer and self-attention mechanisms. However, the sequence anomaly association assumptions underlying these models are often limited to specific predefined patterns and scenarios, such as concentrated or peak anomaly patterns. These limitations hinder their ability to generalize to diverse anomaly situations, especially where the lack of labels poses significant challenges. To address these issues, we propose AMAD, which integrates \textbf{A}uto\textbf{M}asked Attention for UMTS\textbf{AD} scenarios. AMAD introduces a novel structure based on the AutoMask mechanism and an attention mixup module, forming a simple yet generalized anomaly association representation framework. This framework is further enhanced by a Max-Min training strategy and a Local-Global contrastive learning approach. By combining multi-scale feature extraction with automatic relative association modeling, AMAD provides a robust and adaptable solution to UMTSAD challenges. Extensive experimental results demonstrate that the proposed model achieving competitive performance results compared to SOTA benchmarks across a variety of datasets.
Authors:Jargalmaa Batmunkh, Yusuke Iida, Takayoshi Oba
Title: Autoencoder-Based Detection of Anomalous Stokes V Spectra in the Flare-Producing Active Region 13663 Using Hinode/SP Observations
Abstract:
Detecting unusual signals in observational solar spectra is crucial for understanding the features associated with impactful solar events, such as solar flares. However, existing spectral analysis techniques face challenges, particularly when relying on pre-defined, physics-based calculations to process large volumes of noisy and complex observational data. To address these limitations, we applied deep learning to detect anomalies in the Stokes V spectra from the Hinode/SP instrument. Specifically, we developed an autoencoder model for spectral compression, which serves as an anomaly detection method. Our model effectively identifies anomalous spectra within spectro-polarimetric maps captured prior to the onset of the X1.3 flare on May 5, 2024, in NOAA AR 13663. These atypical spectral points exhibit highly complex profiles and spatially align with polarity inversion lines in magnetogram images, indicating their potential as sites of magnetic energy storage and possible triggers for flares. Notably, the detected anomalies are highly localized, making them particularly challenging to identify in magnetogram images using current manual methods.
Authors:Jiyu Tian, Mingchu Li, Liming Chen, Zumin Wang
Title: iADCPS: Time Series Anomaly Detection for Evolving Cyber-physical Systems via Incremental Meta-learning
Abstract:
Anomaly detection for cyber-physical systems (ADCPS) is crucial in identifying faults and potential attacks by analyzing the time series of sensor measurements and actuator states. However, current methods lack adaptation to data distribution shifts in both temporal and spatial dimensions as cyber-physical systems evolve. To tackle this issue, we propose an incremental meta-learning-based approach, namely iADCPS, which can continuously update the model through limited evolving normal samples to reconcile the distribution gap between evolving and historical time series. Specifically, We first introduce a temporal mixup strategy to align data for data-level generalization which is then combined with the one-class meta-learning approach for model-level generalization. Furthermore, we develop a non-parametric dynamic threshold to adaptively adjust the threshold based on the probability density of the abnormal scores without any anomaly supervision. We empirically evaluate the effectiveness of the iADCPS using three publicly available datasets PUMP, SWaT, and WADI. The experimental results demonstrate that our method achieves 99.0%, 93.1%, and 78.7% F1-Score, respectively, which outperforms the state-of-the-art (SOTA) ADCPS method, especially in the context of the evolving CPSs.
Authors:Yafei Shen, Huan-Fei Ma, Ling Yang
Title: Analytical Discovery of Manifold with Machine Learning
Abstract:
Understanding low-dimensional structures within high-dimensional data is crucial for visualization, interpretation, and denoising in complex datasets. Despite the advancements in manifold learning techniques, key challenges-such as limited global insight and the lack of interpretable analytical descriptions-remain unresolved. In this work, we introduce a novel framework, GAMLA (Global Analytical Manifold Learning using Auto-encoding). GAMLA employs a two-round training process within an auto-encoding framework to derive both character and complementary representations for the underlying manifold. With the character representation, the manifold is represented by a parametric function which unfold the manifold to provide a global coordinate. While with the complementary representation, an approximate explicit manifold description is developed, offering a global and analytical representation of smooth manifolds underlying high-dimensional datasets. This enables the analytical derivation of geometric properties such as curvature and normal vectors. Moreover, we find the two representations together decompose the whole latent space and can thus characterize the local spatial structure surrounding the manifold, proving particularly effective in anomaly detection and categorization. Through extensive experiments on benchmark datasets and real-world applications, GAMLA demonstrates its ability to achieve computational efficiency and interpretability while providing precise geometric and structural insights. This framework bridges the gap between data-driven manifold learning and analytical geometry, presenting a versatile tool for exploring the intrinsic properties of complex data sets.
Authors:Amit Kumar Mondal, Nafisha Aslam, Prasenjit Maji, Hemanta Kumar Mondal
Title: A multi-model approach using XAI and anomaly detection to predict asteroid hazards
Abstract:
The potential for catastrophic collision makes near-Earth asteroids (NEAs) a serious concern. Planetary defense depends on accurately classifying potentially hazardous asteroids (PHAs), however the complexity of the data hampers conventional techniques. This work offers a sophisticated method for accurately predicting hazards by combining machine learning, deep learning, explainable AI (XAI), and anomaly detection. Our approach extracts essential parameters like size, velocity, and trajectory from historical and real-time asteroid data. A hybrid algorithm improves prediction accuracy by combining several cutting-edge models. A forecasting module predicts future asteroid behavior, and Monte Carlo simulations evaluate the likelihood of collisions. Timely mitigation is made possible by a real-time alarm system that notifies worldwide monitoring stations. This technique enhances planetary defense efforts by combining real-time alarms with sophisticated predictive modeling.
Authors:Hanna Bogucka, Marcin Hoffmann, Paweł Kryszkiewicz, Łukasz Kułacz
Title: An Open-RAN Testbed for Detecting and Mitigating Radio-Access Anomalies
Abstract:
This paper presents the Open Radio Access Net-work (O-RAN) testbed for secure radio access. We discuss radio-originating attack detection and mitigation methods based on anomaly detection and how they can be implemented as specialized applications (xApps) in this testbed. We also pre-sent illustrating results of the methods applied in real-world scenarios and implementations.
Authors:Gargi V. Pillai, Debashis Sen
Title: Anomaly detection in non-stationary videos using time-recursive differencing network based prediction
Abstract:
Most videos, including those captured through aerial remote sensing, are usually non-stationary in nature having time-varying feature statistics. Although, sophisticated reconstruction and prediction models exist for video anomaly detection, effective handling of non-stationarity has seldom been considered explicitly. In this paper, we propose to perform prediction using a time-recursive differencing network followed by autoregressive moving average estimation for video anomaly detection. The differencing network is employed to effectively handle non-stationarity in video data during the anomaly detection. Focusing on the prediction process, the effectiveness of the proposed approach is demonstrated considering a simple optical flow based video feature, and by generating qualitative and quantitative results on three aerial video datasets and two standard anomaly detection video datasets. EER, AUC and ROC curve based comparison with several existing methods including the state-of-the-art reveal the superiority of the proposed approach.
Authors:Gargi V. Pillai, Ashish Verma, Debashis Sen
Title: Transformer Based Self-Context Aware Prediction for Few-Shot Anomaly Detection in Videos
Abstract:
Anomaly detection in videos is a challenging task as anomalies in different videos are of different kinds. Therefore, a promising way to approach video anomaly detection is by learning the non-anomalous nature of the video at hand. To this end, we propose a one-class few-shot learning driven transformer based approach for anomaly detection in videos that is self-context aware. Features from the first few consecutive non-anomalous frames in a video are used to train the transformer in predicting the non-anomalous feature of the subsequent frame. This takes place under the attention of a self-context learned from the input features themselves. After the learning, given a few previous frames, the video-specific transformer is used to infer if a frame is anomalous or not by comparing the feature predicted by it with the actual. The effectiveness of the proposed method with respect to the state-of-the-art is demonstrated through qualitative and quantitative results on different standard datasets. We also study the positive effect of the self-context used in our approach.
Authors:Juan Niño, Luis Guayacán, Santiago Gómez, Fabio Martínez
Title: A digital eye-fixation biomarker using a deep anomaly scheme to classify Parkisonian patterns
Abstract:
Oculomotor alterations constitute a promising biomarker to detect and characterize Parkinson's disease (PD), even in prodromal stages. Currently, only global and simplified eye movement trajectories are employed to approximate the complex and hidden kinematic relationships of the oculomotor function. Recent advances on machine learning and video analysis have encouraged novel characterizations of eye movement patterns to quantify PD. These schemes enable the identification of spatiotemporal segments primarily associated with PD. However, they rely on discriminative models that require large training datasets and depend on balanced class distributions. This work introduces a novel video analysis scheme to quantify Parkinsonian eye fixation patterns with an anomaly detection framework. Contrary to classical deep discriminative schemes that learn differences among labeled classes, the proposed approach is focused on one-class learning, avoiding the necessity of a significant amount of data. The proposed approach focuses only on Parkinson's representation, considering any other class sample as an anomaly of the distribution. This approach was evaluated for an ocular fixation task, in a total of 13 control subjects and 13 patients on different stages of the disease. The proposed digital biomarker achieved an average sensitivity and specificity of 0.97 and 0.63, respectively, yielding an AUC-ROC of 0.95. A statistical test shows significant differences (p < 0.05) among predicted classes, evidencing a discrimination between patients and control subjects.
Authors:Jeehong Kim, Minchan Kim, Jaeseong Ju, Youngseok Hwang, Wonhee Lee, Hyunwoo Park
Title: Adaptive Sparsified Graph Learning Framework for Vessel Behavior Anomalies
Abstract:
Graph neural networks have emerged as a powerful tool for learning spatiotemporal interactions. However, conventional approaches often rely on predefined graphs, which may obscure the precise relationships being modeled. Additionally, existing methods typically define nodes based on fixed spatial locations, a strategy that is ill-suited for dynamic environments like maritime environments. Our method introduces an innovative graph representation where timestamps are modeled as distinct nodes, allowing temporal dependencies to be explicitly captured through graph edges. This setup is extended to construct a multi-ship graph that effectively captures spatial interactions while preserving graph sparsity. The graph is processed using Graph Convolutional Network layers to capture spatiotemporal patterns, with a forecasting layer for feature prediction and a Variational Graph Autoencoder for reconstruction, enabling robust anomaly detection.
Authors:Danial Abshari, Meera Sridhar
Title: A Survey of Anomaly Detection in Cyber-Physical Systems
Abstract:
In our increasingly interconnected world, Cyber-Physical Systems (CPS) play a crucial role in industries like healthcare, transportation, and manufacturing by combining physical processes with computing power. These systems, however, face many challenges, especially regarding security and system faults. Anomalies in CPS may indicate unexpected problems, from sensor malfunctions to cyber-attacks, and must be detected to prevent failures that can cause harm or disrupt services. This paper provides an overview of the different ways researchers have approached anomaly detection in CPS. We categorize and compare methods like machine learning, deep learning, mathematical models, invariant, and hybrid techniques. Our goal is to help readers understand the strengths and weaknesses of these methods and how they can be used to create safer, more reliable CPS. By identifying the gaps in current solutions, we aim to encourage future research that will make CPS more secure and adaptive in our increasingly automated world.
Authors:Rijad Alisic, Junsoo Kim, Henrik Sandberg
Title: Anomaly Detection with LWE Encrypted Control
Abstract:
Detecting attacks using encrypted signals is challenging since encryption hides its information content. We present a novel mechanism for anomaly detection over Learning with Errors (LWE) encrypted signals without using decryption, secure channels, nor complex communication schemes. Instead, the detector exploits the homomorphic property of LWE encryption to perform hypothesis tests on transformations of the encrypted samples. The specific transformations are determined by solutions to a hard lattice-based minimization problem. While the test's sensitivity deteriorates with suboptimal solutions, similar to the exponential deterioration of the (related) test that breaks the cryptosystem, we show that the deterioration is polynomial for our test. This rate gap can be exploited to pick parameters that lead to somewhat weaker encryption but large gains in detection capability. Finally, we conclude the paper by presenting a numerical example that simulates anomaly detection, demonstrating the effectiveness of our method in identifying attacks.
Authors:Osman Tugay Basaran, Falko Dressler
Title: XAInomaly: Explainable and Interpretable Deep Contractive Autoencoder for O-RAN Traffic Anomaly Detection
Abstract:
Generative Artificial Intelligence (AI) techniques have become integral part in advancing next generation wireless communication systems by enabling sophisticated data modeling and feature extraction for enhanced network performance. In the realm of open radio access networks (O-RAN), characterized by their disaggregated architecture and heterogeneous components from multiple vendors, the deployment of generative models offers significant advantages for network management such as traffic analysis, traffic forecasting and anomaly detection. However, the complex and dynamic nature of O-RAN introduces challenges that necessitate not only accurate detection mechanisms but also reduced complexity, scalability, and most importantly interpretability to facilitate effective network management. In this study, we introduce the XAInomaly framework, an explainable and interpretable Semi-supervised (SS) Deep Contractive Autoencoder (DeepCAE) design for anomaly detection in O-RAN. Our approach leverages the generative modeling capabilities of our SS-DeepCAE model to learn compressed, robust representations of normal network behavior, which captures essential features, enabling the identification of deviations indicative of anomalies. To address the black-box nature of deep learning models, we propose reactive Explainable AI (XAI) technique called fastshap-C.
Authors:Yohannis Kifle Telila, Damitha Senevirathne, Dumindu Tissera, Apurva Narayan, Miriam A. M. Capretz, Katarina Grolinger
Title: Federated Learning for Anomaly Detection in Energy Consumption Data: Assessing the Vulnerability to Adversarial Attacks
Abstract:
Anomaly detection is crucial in the energy sector to identify irregular patterns indicating equipment failures, energy theft, or other issues. Machine learning techniques for anomaly detection have achieved great success, but are typically centralized, involving sharing local data with a central server which raises privacy and security concerns. Federated Learning (FL) has been gaining popularity as it enables distributed learning without sharing local data. However, FL depends on neural networks, which are vulnerable to adversarial attacks that manipulate data, leading models to make erroneous predictions. While adversarial attacks have been explored in the image domain, they remain largely unexplored in time series problems, especially in the energy domain. Moreover, the effect of adversarial attacks in the FL setting is also mostly unknown. This paper assesses the vulnerability of FL-based anomaly detection in energy data to adversarial attacks. Specifically, two state-of-the-art models, Long Short Term Memory (LSTM) and Transformers, are used to detect anomalies in an FL setting, and two white-box attack methods, Fast Gradient Sign Method (FGSM) and Projected Gradient Descent (PGD), are employed to perturb the data. The results show that FL is more sensitive to PGD attacks than to FGSM attacks, attributed to PGD's iterative nature, resulting in an accuracy drop of over 10% even with naive, weaker attacks. Moreover, FL is more affected by these attacks than centralized learning, highlighting the need for defense mechanisms in FL.
Authors:Ozkan Canay, Umit Kocabicak
Title: Predictive modeling and anomaly detection in large-scale web portals through the CAWAL framework
Abstract:
This study presents an approach that uses session and page view data collected through the CAWAL framework, enriched through specialized processes, for advanced predictive modeling and anomaly detection in web usage mining (WUM) applications. Traditional WUM methods often rely on web server logs, which limit data diversity and quality. Integrating application logs with web analytics, the CAWAL framework creates comprehensive session and page view datasets, providing a more detailed view of user interactions and effectively addressing these limitations. This integration enhances data diversity and quality while eliminating the preprocessing stage required in conventional WUM, leading to greater process efficiency. The enriched datasets, created by cross-integrating session and page view data, were applied to advanced machine learning models, such as Gradient Boosting and Random Forest, which are known for their effectiveness in capturing complex patterns and modeling non-linear relationships. These models achieved over 92% accuracy in predicting user behavior and significantly improved anomaly detection capabilities. The results show that this approach offers detailed insights into user behavior and system performance metrics, making it a reliable solution for improving large-scale web portals' efficiency, reliability, and scalability.
Authors:Mohammad Fatahi, Danial Sadrian Zadeh, Benyamin Ghojogh, Behzad Moshiri, Otman Basir
Title: An Optimal Cascade Feature-Level Spatiotemporal Fusion Strategy for Anomaly Detection in CAN Bus
Abstract:
Intelligent transportation systems (ITS) play a pivotal role in modern infrastructure but face security risks due to the broadcast-based nature of the in-vehicle Controller Area Network (CAN) buses. While numerous machine learning models and strategies have been proposed to detect CAN anomalies, existing approaches lack robustness evaluations and fail to comprehensively detect attacks due to shifting their focus on a subset of dominant structures of anomalies. To overcome these limitations, the current study proposes a cascade feature-level spatiotemporal fusion framework that integrates the spatial features and temporal features through a two-parameter genetic algorithm (2P-GA)-optimized cascade architecture to cover all dominant structures of anomalies. Extensive paired t-test analysis confirms that the model achieves an AUC-ROC of 0.9987, demonstrating robust anomaly detection capabilities. The Spatial Module improves the precision by approximately 4%, while the Temporal Module compensates for recall losses, ensuring high true positive rates. The proposed framework detects all attack types with 100% accuracy on the CAR-HACKING dataset, outperforming state-of-the-art methods. This study provides a validated, robust solution for real-world CAN security challenges.
Authors:Emanuele Luzio, Moacir Antonelli Ponti
Title: Real-Time Anomaly Detection with Synthetic Anomaly Monitoring (SAM)
Abstract:
Anomaly detection is essential for identifying rare and significant events across diverse domains such as finance, cybersecurity, and network monitoring. This paper presents Synthetic Anomaly Monitoring (SAM), an innovative approach that applies synthetic control methods from causal inference to improve both the accuracy and interpretability of anomaly detection processes. By modeling normal behavior through the treatment of each feature as a control unit, SAM identifies anomalies as deviations within this causal framework. We conducted extensive experiments comparing SAM with established benchmark models, including Isolation Forest, Local Outlier Factor (LOF), k-Nearest Neighbors (kNN), and One-Class Support Vector Machine (SVM), across five diverse datasets, including Credit Card Fraud, HTTP Dataset CSIC 2010, and KDD Cup 1999, among others. Our results demonstrate that SAM consistently delivers robust performance, highlighting its potential as a powerful tool for real-time anomaly detection in dynamic and complex environments.
Authors:Issam Ait Yahia, Ismail Berrada
Title: KoopAGRU: A Koopman-based Anomaly Detection in Time-Series using Gated Recurrent Units
Abstract:
Anomaly detection in real-world time-series data is a challenging task due to the complex and nonlinear temporal dynamics involved. This paper introduces KoopAGRU, a new deep learning model designed to tackle this problem by combining Fast Fourier Transform (FFT), Deep Dynamic Mode Decomposition (DeepDMD), and Koopman theory. FFT allows KoopAGRU to decompose temporal data into time-variant and time-invariant components providing precise modeling of complex patterns. To better control these two components, KoopAGRU utilizes Gate Recurrent Unit (GRU) encoders to learn Koopman observables, enhancing the detection capability across multiple temporal scales. KoopAGRU is trained in a single process and offers fast inference times. Extensive tests on various benchmark datasets show that KoopAGRU outperforms other leading methods, achieving a new average F1-score of 90.88\% on the well-known anomalies detection task of times series datasets, and proves to be efficient and reliable in detecting anomalies in real-world scenarios.
Authors:Yongzheng Xie, Hongyu Zhang, Muhammad Ali Babar
Title: Multivariate Time Series Anomaly Detection by Capturing Coarse-Grained Intra- and Inter-Variate Dependencies
Abstract:
Multivariate time series anomaly detection is essential for failure management in web application operations, as it directly influences the effectiveness and timeliness of implementing remedial or preventive measures. This task is often framed as a semi-supervised learning problem, where only normal data are available for model training, primarily due to the labor-intensive nature of data labeling and the scarcity of anomalous data. Existing semi-supervised methods often detect anomalies by capturing intra-variate temporal dependencies and/or inter-variate relationships to learn normal patterns, flagging timestamps that deviate from these patterns as anomalies. However, these approaches often fail to capture salient intra-variate temporal and inter-variate dependencies in time series due to their focus on excessively fine granularity, leading to suboptimal performance. In this study, we introduce MtsCID, a novel semi-supervised multivariate time series anomaly detection method. MtsCID employs a dual network architecture: one network operates on the attention maps of multi-scale intra-variate patches for coarse-grained temporal dependency learning, while the other works on variates to capture coarse-grained inter-variate relationships through convolution and interaction with sinusoidal prototypes. This design enhances the ability to capture the patterns from both intra-variate temporal dependencies and inter-variate relationships, resulting in improved performance. Extensive experiments across seven widely used datasets demonstrate that MtsCID achieves performance comparable or superior to state-of-the-art benchmark methods.
Authors:Peng Luo, Chengyu Song, Hao Li, Di Zhu, Fabio Duarte
Title: Modeling shared micromobility as a label propagation process for detecting the overlapping communities
Abstract:
Shared micro-mobility such as e-scooters has gained significant popularity in many cities. However, existing methods for detecting community structures in mobility networks often overlook potential overlaps between communities. In this study, we conceptualize shared micro-mobility in urban spaces as a process of information exchange, where locations are connected through e-scooters, facilitating the interaction and propagation of community affiliations. As a result, similar locations are assigned the same label. Based on this concept, we developed a Geospatial Interaction Propagation model (GIP) by designing a Speaker-Listener Label Propagation Algorithm (SLPA) that accounts for geographic distance decay, incorporating anomaly detection to ensure the derived community structures reflect meaningful spatial patterns. We applied this model to detect overlapping communities within the e-scooter system in Washington, D.C. The results demonstrate that our algorithm outperforms existing model of overlapping community detection in both efficiency and modularity. However, existing methods for detecting community structures in mobility networks often overlook potential overlaps between communities. In this study, we conceptualize shared micro-mobility in urban spaces as a process of information exchange, where locations are connected through e-scooters, facilitating the interaction and propagation of community affiliations. As a result, similar locations are assigned the same label. Based on this concept, we developed a Geospatial Interaction Propagation model (GIP) by designing a Speaker-Listener Label Propagation Algorithm (SLPA) that accounts for geographic distance decay, incorporating anomaly detection to ensure the derived community structures reflect meaningful spatial patterns.
Authors:Mai Zhang, Lin Cui, Xiaoquan Zhang, Fung Po Tso, Zhen Zhang, Yuhui Deng, Zhetao Li
Title: Quark: Implementing Convolutional Neural Networks Entirely on Programmable Data Plane
Abstract:
The rapid development of programmable network devices and the widespread use of machine learning (ML) in networking have facilitated efficient research into intelligent data plane (IDP). Offloading ML to programmable data plane (PDP) enables quick analysis and responses to network traffic dynamics, and efficient management of network links. However, PDP hardware pipeline has significant resource limitations. For instance, Intel Tofino ASIC has only 10Mb SRAM in each stage, and lacks support for multiplication, division and floating-point operations. These constraints significantly hinder the development of IDP. This paper presents \quark, a framework that fully offloads convolutional neural network (CNN) inference onto PDP. \quark employs model pruning to simplify the CNN model, and uses quantization to support floating-point operations. Additionally, \quark divides the CNN into smaller units to improve resource utilization on the PDP. We have implemented a testbed prototype of \quark on both P4 hardware switch (Intel Tofino ASIC) and software switch (i.e., BMv2). Extensive evaluation results demonstrate that \quark achieves 97.3\% accuracy in anomaly detection task while using only 22.7\% of the SRAM resources on the Intel Tofino ASIC switch, completing inference tasks at line rate with an average latency of 42.66$μs$.
Authors:Yitong Hao, Enbo He, Yue Zhang, Guisheng Yin
Title: Bi-directional Curriculum Learning for Graph Anomaly Detection: Dual Focus on Homogeneity and Heterogeneity
Abstract:
Graph anomaly detection (GAD) aims to identify nodes from a graph that are significantly different from normal patterns. Most previous studies are model-driven, focusing on enhancing the detection effect by improving the model structure. However, these approaches often treat all nodes equally, neglecting the different contributions of various nodes to the training. Therefore, we introduce graph curriculum learning as a simple and effective plug-and-play module to optimize GAD methods. The existing graph curriculum learning mainly focuses on the homogeneity of graphs and treats nodes with high homogeneity as easy nodes. In fact, GAD models can handle not only graph homogeneity but also heterogeneity, which leads to the unsuitability of these existing methods. To address this problem, we propose an innovative Bi-directional Curriculum Learning strategy (BCL), which considers nodes with higher and lower similarity to neighbor nodes as simple nodes in the direction of focusing on homogeneity and focusing on heterogeneity, respectively, and prioritizes their training. Extensive experiments show that BCL can be quickly integrated into existing detection processes and significantly improves the performance of ten GAD anomaly detection models on seven commonly used datasets.
Authors:Zehao Liu, Mengzhou Gao, Pengfei Jiao
Title: GCAD: Anomaly Detection in Multivariate Time Series from the Perspective of Granger Causality
Abstract:
Multivariate time series anomaly detection has numerous real-world applications and is being extensively studied. Modeling pairwise correlations between variables is crucial. Existing methods employ learnable graph structures and graph neural networks to explicitly model the spatial dependencies between variables. However, these methods are primarily based on prediction or reconstruction tasks, which can only learn similarity relationships between sequence embeddings and lack interpretability in how graph structures affect time series evolution. In this paper, we designed a framework that models spatial dependencies using interpretable causal relationships and detects anomalies through changes in causal patterns. Specifically, we propose a method to dynamically discover Granger causality using gradients in nonlinear deep predictors and employ a simple sparsification strategy to obtain a Granger causality graph, detecting anomalies from a causal perspective. Experiments on real-world datasets demonstrate that the proposed model achieves more accurate anomaly detection compared to baseline methods.
Authors:Zhengye Yang, Richard J. Radke
Title: Detecting Contextual Anomalies by Discovering Consistent Spatial Regions
Abstract:
We describe a method for modeling spatial context to enable video anomaly detection. The main idea is to discover regions that share similar object-level activities by clustering joint object attributes using Gaussian mixture models. We demonstrate that this straightforward approach, using orders of magnitude fewer parameters than competing models, achieves state-of-the-art performance in the challenging spatial-context-dependent Street Scene dataset. As a side benefit, the high-resolution discovered regions learned by the model also provide explainable normalcy maps for human operators without the need for any pre-trained segmentation model.
Authors:Anthony Deschênes, Rémi Georges, Cem Subakan, Bruna Ugulino, Antoine Henry, Michael Morin
Title: Planing It by Ear: Convolutional Neural Networks for Acoustic Anomaly Detection in Industrial Wood Planers
Abstract:
In recent years, the wood product industry has been facing a skilled labor shortage. The result is more frequent sudden failures, resulting in additional costs for these companies already operating in a very competitive market. Moreover, sawmills are challenging environments for machinery and sensors. Given that experienced machine operators may be able to diagnose defects or malfunctions, one possible way of assisting novice operators is through acoustic monitoring. As a step towards the automation of wood-processing equipment and decision support systems for machine operators, in this paper, we explore using a deep convolutional autoencoder for acoustic anomaly detection of wood planers on a new real-life dataset. Specifically, our convolutional autoencoder with skip connections (Skip-CAE) and our Skip-CAE transformer outperform the DCASE autoencoder baseline, one-class SVM, isolation forest and a published convolutional autoencoder architecture, respectively obtaining an area under the ROC curve of 0.846 and 0.875 on a dataset of real-factory planer sounds. Moreover, we show that adding skip connections and attention mechanism under the form of a transformer encoder-decoder helps to further improve the anomaly detection capabilities.
Authors:Chengyuan Li, Suyang Zhou, Jieping Kong, Lei Qi, Hui Xue
Title: KAnoCLIP: Zero-Shot Anomaly Detection through Knowledge-Driven Prompt Learning and Enhanced Cross-Modal Integration
Abstract:
Zero-shot anomaly detection (ZSAD) identifies anomalies without needing training samples from the target dataset, essential for scenarios with privacy concerns or limited data. Vision-language models like CLIP show potential in ZSAD but have limitations: relying on manually crafted fixed textual descriptions or anomaly prompts is time-consuming and prone to semantic ambiguity, and CLIP struggles with pixel-level anomaly segmentation, focusing more on global semantics than local details. To address these limitations, We introduce KAnoCLIP, a novel ZSAD framework that leverages vision-language models. KAnoCLIP combines general knowledge from a Large Language Model (GPT-3.5) and fine-grained, image-specific knowledge from a Visual Question Answering system (Llama3) via Knowledge-Driven Prompt Learning (KnPL). KnPL uses a knowledge-driven (KD) loss function to create learnable anomaly prompts, removing the need for fixed text prompts and enhancing generalization. KAnoCLIP includes the CLIP visual encoder with V-V attention (CLIP-VV), Bi-Directional Cross-Attention for Multi-Level Cross-Modal Interaction (Bi-CMCI), and Conv-Adapter. These components preserve local visual semantics, improve local cross-modal fusion, and align global visual features with textual information, enhancing pixel-level anomaly detection. KAnoCLIP achieves state-of-the-art performance in ZSAD across 12 industrial and medical datasets, demonstrating superior generalization compared to existing methods.
Authors:Mahmoud Abdulsalam, Usman Zahidi, Bradley Hurst, Simon Pearson, Grzegorz Cielniak, James Brown
Title: Unsupervised Tomato Split Anomaly Detection using Hyperspectral Imaging and Variational Autoencoders
Abstract:
Tomato anomalies/damages pose a significant challenge in greenhouse farming. While this method of cultivation benefits from efficient resource utilization, anomalies can significantly degrade the quality of farm produce. A common anomaly associated with tomatoes is splitting, characterized by the development of cracks on the tomato skin, which degrades its quality. Detecting this type of anomaly is challenging due to dynamic variations in appearance and sizes, compounded by dataset scarcity. We address this problem in an unsupervised manner by utilizing a tailored variational autoencoder (VAE) with hyperspectral input. Preliminary analysis of the dataset enabled us to select the optimal range of wavelengths for detecting this anomaly. Our findings indicate that the 530nm - 550nm range is suitable for identifying tomato dry splits. The proposed VAE model achieved a 97% detection accuracy for tomato split anomalies in the test data. The analysis on reconstruction loss allow us to not only detect the anomalies but also to some degree estimate the anomalous regions.
Authors:Abhishek Srinivasan, Varun Singapuri Ravi, Juan Carlos Andresen, Anders Holst
Title: Counterfactual Explanation for Auto-Encoder Based Time-Series Anomaly Detection
Abstract:
The complexity of modern electro-mechanical systems require the development of sophisticated diagnostic methods like anomaly detection capable of detecting deviations. Conventional anomaly detection approaches like signal processing and statistical modelling often struggle to effectively handle the intricacies of complex systems, particularly when dealing with multi-variate signals. In contrast, neural network-based anomaly detection methods, especially Auto-Encoders, have emerged as a compelling alternative, demonstrating remarkable performance. However, Auto-Encoders exhibit inherent opaqueness in their decision-making processes, hindering their practical implementation at scale. Addressing this opacity is essential for enhancing the interpretability and trustworthiness of anomaly detection models. In this work, we address this challenge by employing a feature selector to select features and counterfactual explanations to give a context to the model output. We tested this approach on the SKAB benchmark dataset and an industrial time-series dataset. The gradient based counterfactual explanation approach was evaluated via validity, sparsity and distance measures. Our experimental findings illustrate that our proposed counterfactual approach can offer meaningful and valuable insights into the model decision-making process, by explaining fewer signals compared to conventional approaches. These insights enhance the trustworthiness and interpretability of anomaly detection models.
Authors:Rui Hu, Luc, Chen, Yiwei Wang
Title: An Efficient Outlier Detection Algorithm for Data Streaming
Abstract:
The nature of modern data is increasingly real-time, making outlier detection crucial in any data-related field, such as finance for fraud detection and healthcare for monitoring patient vitals. Traditional outlier detection methods, such as the Local Outlier Factor (LOF) algorithm, struggle with real-time data due to the need for extensive recalculations with each new data point, limiting their application in real-time environments. While the Incremental LOF (ILOF) algorithm has been developed to tackle the challenges of online anomaly detection, it remains computationally expensive when processing large streams of data points, and its detection performance may degrade after a certain threshold of points have streamed in. In this paper, we propose a novel approach to enhance the efficiency of LOF algorithms for online anomaly detection, named the Efficient Incremental LOF (EILOF) algorithm. The EILOF algorithm only computes the LOF scores of new points without altering the LOF scores of existing data points. Although exact LOF scores have not yet been computed for the existing points in the new algorithm, datasets often contain noise, and minor deviations in LOF score calculations do not necessarily degrade detection performance. In fact, such deviations can sometimes enhance outlier detection. We systematically tested this approach on both simulated and real-world datasets, demonstrating that EILOF outperforms ILOF as the volume of streaming data increases across various scenarios. The EILOF algorithm not only significantly reduces computational costs, but also systematically improves detection accuracy when the number of additional points increases compared to the ILOF algorithm.
Authors:Jihan Ghanim, Mariette Awad
Title: An Unsupervised Anomaly Detection in Electricity Consumption Using Reinforcement Learning and Time Series Forest Based Framework
Abstract:
Anomaly detection (AD) plays a crucial role in time series applications, primarily because time series data is employed across real-world scenarios. Detecting anomalies poses significant challenges since anomalies take diverse forms making them hard to pinpoint accurately. Previous research has explored different AD models, making specific assumptions with varying sensitivity toward particular anomaly types. To address this issue, we propose a novel model selection for unsupervised AD using a combination of time series forest (TSF) and reinforcement learning (RL) approaches that dynamically chooses an AD technique. Our approach allows for effective AD without explicitly depending on ground truth labels that are often scarce and expensive to obtain. Results from the real-time series dataset demonstrate that the proposed model selection approach outperforms all other AD models in terms of the F1 score metric. For the synthetic dataset, our proposed model surpasses all other AD models except for KNN, with an impressive F1 score of 0.989. The proposed model selection framework also exceeded the performance of GPT-4 when prompted to act as an anomaly detector on the synthetic dataset. Exploring different reward functions revealed that the original reward function in our proposed AD model selection approach yielded the best overall scores. We evaluated the performance of the six AD models on an additional three datasets, having global, local, and clustered anomalies respectively, showing that each AD model exhibited distinct performance depending on the type of anomalies. This emphasizes the significance of our proposed AD model selection framework, maintaining high performance across all datasets, and showcasing superior performance across different anomaly types.
Authors:Haocheng Duan, Hao Wu, Sean Qian
Title: Know Unreported Roadway Incidents in Real-time: Early Traffic Anomaly Detection
Abstract:
This research aims to know traffic anomalies as early as possible. A traffic anomaly refers to a generic incident on the road that influences traffic flow and calls for urgent traffic management measures. `Knowing'' the occurrence of a traffic anomaly is twofold: the ability to detect this anomaly before it is reported anywhere, or it may be such that an anomaly can be predicted before it actually occurs on the road (e.g., non-recurrent traffic breakdown). In either way, the objective is to inform traffic operators of unreported incidents in real time and as early as possible. The key is to stay ahead of the curve. Time is of the essence. Conventional automatic incident detection (AID) methods often struggle with early detection due to their limited consideration of spatial effects and early-stage characteristics. Therefore, we propose a deep learning framework utilizing prior domain knowledge and model-designing strategies. This allows the model to detect a broader range of anomalies, not only incidents that significantly influence traffic flow but also early characteristics of incidents along with historically unreported anomalies. We specially design the model to target the early-stage detection/prediction of an incident. Additionally, unlike most conventional AID studies, our method is highly scalable and generalizable, as it is fully automated with no manual selection of historical reports required, relies solely on widely available low-cost data, and requires no additional detectors. The experimental results across numerous road segments on different maps demonstrate that our model leads to more effective and early anomaly detection.
Authors:Ardiansyah Koeshidayatullah, Abdulrahman Al-Fakih, SanLinn Ismael Kaka
Title: Leveraging Time-Series Foundation Model for Subsurface Well Logs Prediction and Anomaly Detection
Abstract:
The rise in energy demand highlights the importance of suitable subsurface storage, requiring detailed and accurate subsurface characterization often reliant on high-quality borehole well log data. However, obtaining complete well-log data is costly and time-consuming, with missing data being common due to borehole conditions or tool errors. While machine learning and deep learning algorithms have been implemented to address these issues, they often fail to capture the intricate, nonlinear relationships and long-term dependencies in complex well log sequences. Additionally, prior AI-driven models typically require retraining when introduced to new datasets and are constrained to deployment in the same basin. In this study, we explored and evaluated the potential of a time-series foundation model leveraging transformer architecture and a generative pre-trained approach for predicting and detecting anomalies in borehole well log data. Specifically, we fine-tuned and adopted the TimeGPT architecture to forecast key log responses and detect anomalies with high accuracy. Our proposed model demonstrated excellent performance, achieving R2 of up to 87% and a mean absolute percentage error (MAPE) as low as 1.95%. Additionally, the model's zero-shot capability successfully identified subtle yet critical anomalies, such as drilling hazards or unexpected geological formations, with an overall accuracy of 93%. The model represents a significant advancement in predictive accuracy and computational efficiency, enabling zero-shot inference through fine-tuning. Its application in well-log prediction enhances operational decision-making while reducing risks associated with subsurface exploration. These findings demonstrate the model's potential to transform well-log data analysis, particularly in complex geological settings.
Authors:Md. Tanvir Alam, Chowdhury Farhan Ahmed, Carson K. Leung
Title: Hyperedge Anomaly Detection with Hypergraph Neural Network
Abstract:
Hypergraph is a data structure that enables us to model higher-order associations among data entities. Conventional graph-structured data can represent pairwise relationships only, whereas hypergraph enables us to associate any number of entities, which is essential in many real-life applications. Hypergraph learning algorithms have been well-studied for numerous problem settings, such as node classification, link prediction, etc. However, much less research has been conducted on anomaly detection from hypergraphs. Anomaly detection identifies events that deviate from the usual pattern and can be applied to hypergraphs to detect unusual higher-order associations. In this work, we propose an end-to-end hypergraph neural network-based model for identifying anomalous associations in a hypergraph. Our proposed algorithm operates in an unsupervised manner without requiring any labeled data. Extensive experimentation on several real-life datasets demonstrates the effectiveness of our model in detecting anomalous hyperedges.
Authors:Hao-Chun Yang, Sicheng Dai, Saige Rutherford, Christian Gaser, Andre F Marquand, Christian F Beckmann, Thomas Wolfers
Title: Self-Supervised Masked Mesh Learning for Unsupervised Anomaly Detection on 3D Cortical Surfaces
Abstract:
Unsupervised anomaly detection in brain imaging is challenging. In this paper, we propose self-supervised masked mesh learning for unsupervised anomaly detection on 3D cortical surfaces. Our framework leverages the intrinsic geometry of the cortical surface to learn a self-supervised representation that captures the underlying structure of the brain. We introduce a masked mesh convolutional neural network (MMN) that learns to predict masked regions of the cortical surface. By training the MMN on a large dataset of healthy subjects, we learn a representation that captures the normal variation in the cortical surface. We then use this representation to detect anomalies in unseen individuals by calculating anomaly scores based on the reconstruction error of the MMN. We evaluated our framework by training on population-scale dataset UKB and HCP-Aging and testing on two datasets of Alzheimer's disease patients ADNI and OASIS3. Our results show that our framework can detect anomalies in cortical thickness, cortical volume, and cortical sulcus characteristics, which are known to be biomarkers of Alzheimer's disease. Our proposed framework provides a promising approach for unsupervised anomaly detection based on normative variation of cortical features.
Authors:Yaxin Liang, Xinshi Li, Xin Huang, Ziqi Zhang, Yue Yao
Title: An Automated Data Mining Framework Using Autoencoders for Feature Extraction and Dimensionality Reduction
Abstract:
This study proposes an automated data mining framework based on autoencoders and experimentally verifies its effectiveness in feature extraction and data dimensionality reduction. Through the encoding-decoding structure, the autoencoder can capture the data's potential characteristics and achieve noise reduction and anomaly detection, providing an efficient and stable solution for the data mining process. The experiment compared the performance of the autoencoder with traditional dimensionality reduction methods (such as PCA, FA, T-SNE, and UMAP). The results showed that the autoencoder performed best in terms of reconstruction error and root mean square error and could better retain data structure and enhance the generalization ability of the model. The autoencoder-based framework not only reduces manual intervention but also significantly improves the automation of data processing. In the future, with the advancement of deep learning and big data technology, the autoencoder method combined with a generative adversarial network (GAN) or graph neural network (GNN) is expected to be more widely used in the fields of complex data processing, real-time data analysis and intelligent decision-making.
Authors:Steven Dillmann, Juan Rafael Martínez-Galarza, Roberto Soria, Rosanne Di Stefano, Vinay L. Kashyap
Title: Representation Learning for Time-Domain High-Energy Astrophysics: Discovery of Extragalactic Fast X-ray Transient XRT 200515
Abstract:
We present a novel representation learning method for downstream tasks like anomaly detection, unsupervised classification, and similarity searches in high-energy data sets. This enabled the discovery of a new extragalactic fast X-ray transient (FXT) in Chandra archival data, XRT 200515, a needle-in-the-haystack event and the first Chandra FXT of its kind. Recent serendipitous discoveries in X-ray astronomy, including FXTs from binary neutron star mergers and an extragalactic planetary transit candidate, highlight the need for systematic transient searches in X-ray archives. We introduce new event file representations, E-t maps and E-t-dt cubes, that effectively encode both temporal and spectral information, enabling the seamless application of machine learning to variable-length event file time series. Our unsupervised learning approach employs PCA or sparse autoencoders to extract low-dimensional, informative features from these data representations, followed by clustering in the embedding space with DBSCAN. New transients are identified within transient-dominant clusters or through nearest-neighbour searches around known transients, producing a catalogue of 3559 candidates (3447 flares and 112 dips). XRT 200515 exhibits unique temporal and spectral variability, including an intense, hard <10s initial burst, followed by spectral softening in an ~800s oscillating tail. We interpret XRT 200515 as either the first giant magnetar flare observed at low X-ray energies or the first extragalactic Type I X-ray burst from a faint, previously unknown low-mass X-ray binary in the LMC. Our method extends to data sets from other observatories such as XMM-Newton, Swift-XRT, eROSITA, Einstein Probe, and upcoming missions like AXIS.
Authors:Wei Zhou, Li Yang, Lei Zhao, Runyu Zhang, Yifan Cui, Hongpu Huang, Kun Qie, Chen Wang
Title: Vision Technologies with Applications in Traffic Surveillance Systems: A Holistic Survey
Abstract:
Traffic Surveillance Systems (TSS) have become increasingly crucial in modern intelligent transportation systems, with vision technologies playing a central role for scene perception and understanding. While existing surveys typically focus on isolated aspects of TSS, a comprehensive analytical framework bridging low-level and high-level perception tasks, particularly considering emerging technologies, remains lacking. This paper presents a systematic review of vision technologies in TSS, examining both low-level perception tasks (object detection, classification, and tracking) and high-level perception tasks (parameter estimation, anomaly detection, and behavior understanding). Specifically, we first provide a detailed methodological categorization and comprehensive performance evaluation for each task. Our investigation reveals five fundamental limitations in current TSS: perceptual data degradation in complex scenarios, data-driven learning constraints, semantic understanding gaps, sensing coverage limitations and computational resource demands. To address these challenges, we systematically analyze five categories of current approaches and potential trends: advanced perception enhancement, efficient learning paradigms, knowledge-enhanced understanding, cooperative sensing frameworks and efficient computing frameworks, critically assessing their real-world applicability. Furthermore, we evaluate the transformative potential of foundation models in TSS, which exhibit remarkable zero-shot learning abilities, strong generalization, and sophisticated reasoning capabilities across diverse tasks. This review provides a unified analytical framework bridging low-level and high-level perception tasks, systematically analyzes current limitations and solutions, and presents a structured roadmap for integrating emerging technologies, particularly foundation models, to enhance TSS capabilities.
Authors:Martin Atzmueller, Tim Bohne, Patricia Windler
Title: Knowledge-Augmented Explainable and Interpretable Learning for Anomaly Detection and Diagnosis
Abstract:
Knowledge-augmented learning enables the combination of knowledge-based and data-driven approaches. For anomaly detection and diagnosis, understandability is typically an important factor, especially in high-risk areas. Therefore, explainability and interpretability are also major criteria in such contexts. This chapter focuses on knowledge-augmented explainable and interpretable learning to enhance understandability, transparency and ultimately computational sensemaking. We exemplify different approaches and methods in the domains of anomaly detection and diagnosis - from comparatively simple interpretable methods towards more advanced neuro-symbolic approaches.
Authors:Jinlong Hu, Tingfeng Qiu
Title: Streaming SQL Multi-Way Join Method for Long State Streams
Abstract:
Streaming computing effectively manages large-scale streaming data in real-time, making it ideal for applications such as real-time recommendations, anomaly detection, and monitoring, all of which require immediate processing. In this context, the multi-way stream join operator is crucial, as it combines multiple data streams into a single operator, providing deeper insights through the integration of information from various sources. However, challenges related to memory limitations can arise when processing long state-based data streams, particularly in the area of streaming SQL. In this paper, we propose a streaming SQL multi-way stream join method that utilizes the LSM-Tree to address this issue. We first introduce a multi-way stream join operator called UMJoin, which employs an LSM-Tree state backend to leverage disk storage, thereby increasing the capacity for storing multi-way stream states beyond what memory can accommodate. Subsequently, we develop a method for converting execution plans, referred to as TSC, specifically for the UMJoin operator. This method identifies binary join tree patterns and generates corresponding multi-way stream join nodes, enabling us to transform execution plans based on binary joins into those that incorporate UMJoin nodes. This transformation facilitates the application of the UMJoin operator in streaming SQL. Experiments with the TPC-DS dataset demonstrate that the UMJoin operator can effectively process long state-based data streams, even with limited memory. Furthermore, tests on execution plan conversion for multi-way stream join queries using the TPC-H benchmark confirm the effectiveness of the TSC method in executing these conversions.
Authors:Jinlong Hu, Tingfeng Qiu
Title: Runtime-optimized Multi-way Stream Join Operator for Large-scale Streaming data
Abstract:
Streaming computing enables the real-time processing of large volumes of data and offers significant advantages for various applications, including real-time recommendations, anomaly detection, and monitoring. The multi-way stream join operator facilitates the integration of multiple data streams into a single operator, allowing for a more comprehensive understanding by consolidating information from diverse sources. Although this operator is valuable in stream processing systems, its current probe order is determined prior to execution, making it challenging to adapt to real-time and unpredictable data streams, which can potentially diminish its operational efficiency. In this paper, we introduce a runtime-optimized multi-way stream join operator that incorporates various adaptive strategies to enhance the probe order during the joining of multi-way data streams. The operator's runtime operation is divided into cycles, during which relevant statistical information from the data streams is collected and updated. Historical statistical data is then utilized to predict the characteristics of the data streams in the current cycle using a quadratic exponential smoothing prediction method. An adaptive optimization algorithm based on a cost model, namely dpPick, is subsequently designed to refine the probe order, enabling better adaptation to real-time, unknown data streams and improving the operator's processing efficiency. Experiments conducted on the TPC-DS dataset demonstrate that the proposed multi-way stream join method significantly outperforms the comparative method in terms of processing efficiency.
Authors:Aniket Bhattacharyya, Anurag Tripathi
Title: Information Extraction from Heterogeneous Documents without Ground Truth Labels using Synthetic Label Generation and Knowledge Distillation
Abstract:
Invoices and receipts submitted by employees are visually rich documents (VRDs) with textual, visual and layout information. To protect against the risk of fraud and abuse, it is crucial for organizations to efficiently extract desired information from submitted receipts. This helps in the assessment of key factors such as appropriateness of the expense claim, adherence to spending and transaction policies, the validity of the receipt, as well as downstream anomaly detection at various levels. These documents are heterogeneous, with multiple formats and languages, uploaded with different image qualities, and often do not contain ground truth labels for the efficient training of models. In this paper we propose Task Aware Instruction-based Labelling (TAIL), a method for synthetic label generation in VRD corpuses without labels, and fine-tune a multimodal Visually Rich Document Understanding Model (VRDU) on TAIL labels using response-based knowledge distillation without using the teacher model's weights or training dataset to conditionally generate annotations in the appropriate format. Using a benchmark external dataset where ground truth labels are available, we demonstrate conditions under which our approach performs at par with Claude 3 Sonnet through empirical studies. We then show that the resulting model performs at par or better on the internal expense documents of a large multinational organization than state-of-the-art LMM (large multimodal model) Claude 3 Sonnet while being 85% less costly and ~5X faster, and outperforms layout-aware baselines by more than 10% in Average Normalized Levenshtein Similarity (ANLS) scores due to its ability to reason and extract information from rare formats. Finally, we illustrate the usage of our approach in overpayment prevention.
Authors:Aaron Joy, Ben Soh, Zhi Zhang, Sri Parameswaran, Darshana Jayasinghe
Title: Physical and Software Based Fault Injection Attacks Against TEEs in Mobile Devices: A Systemisation of Knowledge
Abstract:
Trusted Execution Environments (TEEs) are critical components of modern secure computing, providing isolated zones in processors to safeguard sensitive data and execute secure operations. Despite their importance, TEEs are increasingly vulnerable to fault injection (FI) attacks, including both physical methods, such as Electromagnetic Fault Injection (EMFI), and software-based techniques. This survey examines these FI methodologies, exploring their ability to disrupt TEE operations and expose vulnerabilities in devices ranging from smartphones and IoT systems to cloud platforms. The study highlights the evolution and effectiveness of non-invasive techniques, such as EMFI, which induce faults through electromagnetic disturbances without physical modifications to hardware, making them harder to detect and mitigate. Real-world case studies illustrate the significant risks posed by these attacks, including unauthorised access, privilege escalation, and data corruption. In addition, the survey identifies gaps in existing TEE security architectures and emphasises the need for enhanced countermeasures, such as dynamic anomaly detection and updated threat models. The findings underline the importance of interdisciplinary collaboration to address these vulnerabilities, involving researchers, manufacturers, and policymakers. This survey provides actionable insights and recommendations to guide the development of more robust TEE architectures in mobile devices, fortify FI resilience, and shape global security standards. By advancing TEE security, this research aims to protect critical digital infrastructure and maintain trust in secure computing systems worldwide.
Authors:Lopamudra Praharaj, Deepti Gupta, Maanak Gupta
Title: A Lightweight Edge-CNN-Transformer Model for Detecting Coordinated Cyber and Digital Twin Attacks in Cooperative Smart Farming
Abstract:
The agriculture sector is increasingly adopting innovative technologies to meet the growing food demands of the global population. To optimize resource utilization and minimize crop losses, farmers are joining cooperatives to share their data and resources among member farms. However, while farmers benefit from this data sharing and interconnection, it exposes them to cybersecurity threats and privacy concerns. A cyberattack on one farm can have widespread consequences, affecting the targeted farm as well as all member farms within a cooperative. In this research, we address existing gaps by proposing a novel and secure architecture for Cooperative Smart Farming (CSF). First, we highlight the role of edge-based DTs in enhancing the efficiency and resilience of agricultural operations. To validate this, we develop a test environment for CSF, implementing various cyberattacks on both the DTs and their physical counterparts using different attack vectors. We collect two smart farming network datasets to identify potential threats. After identifying these threats, we focus on preventing the transmission of malicious data from compromised farms to the central cloud server. To achieve this, we propose a CNN-Transformer-based network anomaly detection model, specifically designed for deployment at the edge. As a proof of concept, we implement this model and evaluate its performance by varying the number of encoder layers. Additionally, we apply Post-Quantization to compress the model and demonstrate the impact of compression on its performance in edge environments. Finally, we compare the model's performance with traditional machine learning approaches to assess its overall effectiveness.
Authors:Danial Abshari, Peiran Shi, Chenglong Fu, Meera Sridhar, Xiaojiang Du
Title: INVARLLM: LLM-assisted Physical Invariant Extraction for Cyber-Physical Systems Anomaly Detection
Abstract:
Cyber-Physical Systems (CPS) are vulnerable to cyber-physical attacks that violate physical laws. While invariant-based anomaly detection is effective, existing methods are limited: data-driven approaches lack semantic context, and physics-based models require extensive manual work. We propose INVARLLM, a hybrid framework that uses large language models (LLMs) to extract semantic information from CPS documentation and generate physical invariants, then validates these against real system data using a PCMCI+-inspired K-means method. This approach combines LLM semantic understanding with empirical validation to ensure both interpretability and reliability. We evaluate INVARLLM on SWaT and WADI datasets, achieving 100% precision in anomaly detection with no false alarms, outperforming all existing methods. Our results demonstrate that integrating LLM-derived semantics with statistical validation provides a scalable and dependable solution for CPS security.
Authors:David Chapman, Parniyan Farvardin
Title: Interpretable Estimation of CNN Deep Feature Density using Copula and the Generalized Characteristic Function
Abstract:
We present a novel empirical approach toward estimating the Probability Density Function (PDF) of the deep features of Convolutional Neural Networks (CNNs). Estimating the PDF of deep CNN features is an important task, because it will yield new insight into deep representations. Moreover, characterizing the statistical behavior has implications for the feasibility of promising downstream tasks such as density based anomaly detection. Expressive, yet interpretable estimation of the deep feature PDF is challenging due to the Curse of Dimensionality (CoD) as well as our limited ability to comprehend high-dimensional inter-dependencies. Our novel estimation technique combines copula analysis with the Method of Orthogonal Moments (MOM), in order to directly estimate the Generalized Characteristic Function (GCF) of the multivariate deep feature PDF. We find that the one-dimensional marginals of non-negative deep CNN features after major blocks are not well approximated by a Gaussian distribution, and that the features of deep layers are much better approximated by the Exponential, Gamma, and/or Weibull distributions. Furthermore, we observe that deep features become increasingly long-tailed with network depth, although surprisingly the rate of this increase is much slower than theoretical estimates. Finally, we observe that many deep features exhibit strong dependence (either correlation or anti-correlation) with other extremely strong detections, even if these features are independent within typical ranges. We elaborate on these findings in our discussion, where we hypothesize that the long-tail of large valued features corresponds to the strongest computer vision detections of semantic targets, which would imply that these large-valued features are not outliers but rather an important detection signal.
Authors:Nur Imtiazul Haque, Prabin Mali, Mohammad Zakaria Haider, Mohammad Ashiqur Rahman, Sumit Paudyal
Title: MISGUIDE: Security-Aware Attack Analytics for Smart Grid Load Frequency Control
Abstract:
Incorporating advanced information and communication technologies into smart grids (SGs) offers substantial operational benefits while increasing vulnerability to cyber threats like false data injection (FDI) attacks. Current SG attack analysis tools predominantly employ formal methods or adversarial machine learning (ML) techniques with rule-based bad data detectors to analyze the attack space. However, these attack analytics either generate simplistic attack vectors detectable by the ML-based anomaly detection models (ADMs) or fail to identify critical attack vectors from complex controller dynamics in a feasible time. This paper introduces MISGUIDE, a novel defense-aware attack analytics designed to extract verifiable multi-time slot-based FDI attack vectors from complex SG load frequency control dynamics and ADMs, utilizing the Gurobi optimizer. MISGUIDE can identify optimal (maliciously triggering under/over frequency relays in minimal time) and stealthy attack vectors. Using real-world load data, we validate the MISGUIDE-identified attack vectors through real-time hardware-in-the-loop (OPALRT) simulations of the IEEE 39-bus system.
Authors:Matthew McKinney, Anthony Garland, Dale Cillessen, Jesse Adamczyk, Dan Bolintineanu, Michael Heiden, Elliott Fowler, Brad L. Boyce
Title: Unsupervised Multimodal Fusion of In-process Sensor Data for Advanced Manufacturing Process Monitoring
Abstract:
Effective monitoring of manufacturing processes is crucial for maintaining product quality and operational efficiency. Modern manufacturing environments generate vast amounts of multimodal data, including visual imagery from various perspectives and resolutions, hyperspectral data, and machine health monitoring information such as actuator positions, accelerometer readings, and temperature measurements. However, interpreting this complex, high-dimensional data presents significant challenges, particularly when labeled datasets are unavailable. This paper presents a novel approach to multimodal sensor data fusion in manufacturing processes, inspired by the Contrastive Language-Image Pre-training (CLIP) model. We leverage contrastive learning techniques to correlate different data modalities without the need for labeled data, developing encoders for five distinct modalities: visual imagery, audio signals, laser position (x and y coordinates), and laser power measurements. By compressing these high-dimensional datasets into low-dimensional representational spaces, our approach facilitates downstream tasks such as process control, anomaly detection, and quality assurance. We evaluate the effectiveness of our approach through experiments, demonstrating its potential to enhance process monitoring capabilities in advanced manufacturing systems. This research contributes to smart manufacturing by providing a flexible, scalable framework for multimodal data fusion that can adapt to diverse manufacturing environments and sensor configurations.
Authors:Robert Dilworth, Charan Gudla
Title: Harnessing PU Learning for Enhanced Cloud-based DDoS Detection: A Comparative Analysis
Abstract:
This paper explores the application of Positive-Unlabeled (PU) learning for enhanced Distributed Denial-of-Service (DDoS) detection in cloud environments. Utilizing the $\texttt{BCCC-cPacket-Cloud-DDoS-2024}$ dataset, we implement PU learning with four machine learning algorithms: XGBoost, Random Forest, Support Vector Machine, and Naïve Bayes. Our results demonstrate the superior performance of ensemble methods, with XGBoost and Random Forest achieving $F_{1}$ scores exceeding 98%. We quantify the efficacy of each approach using metrics including $F_{1}$ score, ROC AUC, Recall, and Precision. This study bridges the gap between PU learning and cloud-based anomaly detection, providing a foundation for addressing Context-Aware DDoS Detection in multi-cloud environments. Our findings highlight the potential of PU learning in scenarios with limited labeled data, offering valuable insights for developing more robust and adaptive cloud security mechanisms.
Authors:Jiyu Tian, Mingchu Li, Zumin Wang, Liming Chen, Jing Qin, Runfa Zhang
Title: OMLog: Online Log Anomaly Detection for Evolving System with Meta-learning
Abstract:
Log anomaly detection (LAD) is essential to ensure safe and stable operation of software systems. Although current LAD methods exhibit significant potential in addressing challenges posed by unstable log events and temporal sequence patterns, their limitations in detection efficiency and generalization ability present a formidable challenge when dealing with evolving systems. To construct a real-time and reliable online log anomaly detection model, we propose OMLog, a semi-supervised online meta-learning method, to effectively tackle the distribution shift issue caused by changes in log event types and frequencies. Specifically, we introduce a maximum mean discrepancy-based distribution shift detection method to identify distribution changes in unseen log sequences. Depending on the identified distribution gap, the method can automatically trigger online fine-grained detection or offline fast inference. Furthermore, we design an online learning mechanism based on meta-learning, which can effectively learn the highly repetitive patterns of log sequences in the feature space, thereby enhancing the generalization ability of the model to evolving data. Extensive experiments conducted on two publicly available log datasets, HDFS and BGL, validate the effectiveness of the OMLog approach. When trained using only normal log sequences, the proposed approach achieves the F1-Score of 93.7\% and 64.9\%, respectively, surpassing the performance of the state-of-the-art (SOTA) LAD methods and demonstrating superior detection efficiency.
Authors:Maxx Richard Rahman, Ruoxuan Liu, Wolfgang Maass
Title: Incorporating Metabolic Information into LLMs for Anomaly Detection in Clinical Time-Series
Abstract:
Anomaly detection in clinical time-series holds significant potential in identifying suspicious patterns in different biological parameters. In this paper, we propose a targeted method that incorporates the clinical domain knowledge into LLMs to improve their ability to detect anomalies. We introduce the Metabolism Pathway-driven Prompting (MPP) method, which integrates the information about metabolic pathways to better capture the structural and temporal changes in biological samples. We applied our method for doping detection in sports, focusing on steroid metabolism, and evaluated using real-world data from athletes. The results show that our method improves anomaly detection performance by leveraging metabolic context, providing a more nuanced and accurate prediction of suspicious samples in athletes' profiles.
Authors:Oskar Åström, Alexandros Sopasakis
Title: Improved Anomaly Detection through Conditional Latent Space VAE Ensembles
Abstract:
We propose a novel Conditional Latent space Variational Autoencoder (CL-VAE) to perform improved pre-processing for anomaly detection on data with known inlier classes and unknown outlier classes. This proposed variational autoencoder (VAE) improves latent space separation by conditioning on information within the data. The method fits a unique prior distribution to each class in the dataset, effectively expanding the classic prior distribution for VAEs to include a Gaussian mixture model. An ensemble of these VAEs are merged in the latent spaces to form a group consensus that greatly improves the accuracy of anomaly detection across data sets. Our approach is compared against the capabilities of a typical VAE, a CNN, and a PCA, with regards AUC for anomaly detection. The proposed model shows increased accuracy in anomaly detection, achieving an AUC of 97.4% on the MNIST dataset compared to 95.7% for the second best model. In addition, the CL-VAE shows increased benefits from ensembling, a more interpretable latent space, and an increased ability to learn patterns in complex data with limited model sizes.
Authors:Sin Chee Chin, Xuan Zhang, Lee Yeong Khang, Wenming Yang
Title: CONSULT: Contrastive Self-Supervised Learning for Few-shot Tumor Detection
Abstract:
Artificial intelligence aids in brain tumor detection via MRI scans, enhancing the accuracy and reducing the workload of medical professionals. However, in scenarios with extremely limited medical images, traditional deep learning approaches tend to fail due to the absence of anomalous images. Anomaly detection also suffers from ineffective feature extraction due to vague training process. Our work introduces a novel two-stage anomaly detection algorithm called CONSULT (CONtrastive Self-sUpervised Learning for few-shot Tumor detection). The first stage of CONSULT fine-tunes a pre-trained feature extractor specifically for MRI brain images, using a synthetic data generation pipeline to create tumor-like data. This process overcomes the lack of anomaly samples and enables the integration of attention mechanisms to focus on anomalous image segments. The first stage is to overcome the shortcomings of current anomaly detection in extracting features in high-variation data by incorporating Context-Aware Contrastive Learning and Self-supervised Feature Adversarial Learning. The second stage of CONSULT uses PatchCore for conventional feature extraction via the fine-tuned weights from the first stage. To summarize, we propose a self-supervised training scheme for anomaly detection, enhancing model performance and data reliability. Furthermore, our proposed contrastive loss, Tritanh Loss, stabilizes learning by offering a unique solution all while enhancing gradient flow. Finally, CONSULT achieves superior performance in few-shot brain tumor detection, demonstrating significant improvements over PatchCore by 9.4%, 12.9%, 10.2%, and 6.0% for 2, 4, 6, and 8 shots, respectively, while training exclusively on healthy images.
Authors:Riccardo Gallon, Fabian Schiemenz, Alessandra Menicucci, Eberhard Gill
Title: Convolutional Neural Network Design and Evaluation for Real-Time Multivariate Time Series Fault Detection in Spacecraft Attitude Sensors
Abstract:
Traditional anomaly detection techniques onboard satellites are based on reliable, yet limited, thresholding mechanisms which are designed to monitor univariate signals and trigger recovery actions according to specific European Cooperation for Space Standardization (ECSS) standards. However, Artificial Intelligence-based Fault Detection, Isolation and Recovery (FDIR) solutions have recently raised with the prospect to overcome the limitations of these standard methods, expanding the range of detectable failures and improving response times. This paper presents a novel approach to detecting stuck values within the Accelerometer and Inertial Measurement Unit of a drone-like spacecraft for the exploration of Small Solar System Bodies (SSSB), leveraging a multi-channel Convolutional Neural Network (CNN) to perform multi-target classification and independently detect faults in the sensors. Significant attention has been dedicated to ensuring the compatibility of the algorithm within the onboard FDIR system, representing a step forward to the in-orbit validation of a technology that remains experimental until its robustness is thoroughly proven. An integration methodology is proposed to enable the network to effectively detect anomalies and trigger recovery actions at the system level. The detection performances and the capability of the algorithm in reaction triggering are evaluated employing a set of custom-defined detection and system metrics, showing the outstanding performances of the algorithm in performing its FDIR task.
Authors:Pravin Patil, Geetanjali Kale, Tanmay Karmarkar, Ruturaj Ghatage
Title: Multi Armed Bandit Algorithms Based Virtual Machine Allocation Policy for Security in Multi-Tenant Distributed Systems
Abstract:
This work proposes a secure and dynamic VM allocation strategy for multi-tenant distributed systems using the Thompson sampling approach. The method proves more effective and secure compared to epsilon-greedy and upper confidence bound methods, showing lower regret levels.,Initially, VM allocation was static, but the unpredictable nature of attacks necessitated a dynamic approach. Historical VM data was analyzed to understand attack responses, with rewards granted for unsuccessful attacks and reduced for successful ones, influencing regret levels.,The paper introduces a Multi Arm Bandit-based VM allocation policy, utilizing a Weighted Average Ensemble Learning algorithm trained on known attacks and non-attacks. This ensemble approach outperforms traditional algorithms like Logistic Regression, SVM, K Nearest Neighbors, and XGBoost.,For suspicious activity detection, a Stacked Anomaly Detector algorithm is proposed, trained on known non-attacks. This method surpasses existing techniques such as Isolation Forest and PCA-based approaches.,Overall, this paper presents an advanced solution for VM allocation policies, enhancing cloud-based system security through a combination of dynamic allocation, ensemble learning, and anomaly detection techniques.
Authors:Daniel Otero, Rafael Mateus, Randall Balestriero
Title: Self-Supervised Anomaly Detection in the Wild: Favor Joint Embeddings Methods
Abstract:
Accurate anomaly detection is critical in vision-based infrastructure inspection, where it helps prevent costly failures and enhances safety. Self-Supervised Learning (SSL) offers a promising approach by learning robust representations from unlabeled data. However, its application in anomaly detection remains underexplored. This paper addresses this gap by providing a comprehensive evaluation of SSL methods for real-world anomaly detection, focusing on sewer infrastructure. Using the Sewer-ML dataset, we evaluate lightweight models such as ViT-Tiny and ResNet-18 across SSL frameworks, including BYOL, Barlow Twins, SimCLR, DINO, and MAE, under varying class imbalance levels. Through 250 experiments, we rigorously assess the performance of these SSL methods to ensure a robust and comprehensive evaluation. Our findings highlight the superiority of joint-embedding methods like SimCLR and Barlow Twins over reconstruction-based approaches such as MAE, which struggle to maintain performance under class imbalance. Furthermore, we find that the SSL model choice is more critical than the backbone architecture. Additionally, we emphasize the need for better label-free assessments of SSL representations, as current methods like RankMe fail to adequately evaluate representation quality, making cross-validation without labels infeasible. Despite the remaining performance gap between SSL and supervised models, these findings highlight the potential of SSL to enhance anomaly detection, paving the way for further research in this underexplored area of SSL applications.
Authors:Sadaf Sadeghian, Xiaoxiao Li, Margo Seltzer
Title: HyperBrain: Anomaly Detection for Temporal Hypergraph Brain Networks
Abstract:
Identifying unusual brain activity is a crucial task in neuroscience research, as it aids in the early detection of brain disorders. It is common to represent brain networks as graphs, and researchers have developed various graph-based machine learning methods for analyzing them. However, the majority of existing graph learning tools for the brain face a combination of the following three key limitations. First, they focus only on pairwise correlations between regions of the brain, limiting their ability to capture synchronized activity among larger groups of regions. Second, they model the brain network as a static network, overlooking the temporal changes in the brain. Third, most are designed only for classifying brain networks as healthy or disordered, lacking the ability to identify abnormal brain activity patterns linked to biomarkers associated with disorders. To address these issues, we present HyperBrain, an unsupervised anomaly detection framework for temporal hypergraph brain networks. HyperBrain models fMRI time series data as temporal hypergraphs capturing dynamic higher-order interactions. It then uses a novel customized temporal walk (BrainWalk) and neural encodings to detect abnormal co-activations among brain regions. We evaluate the performance of HyperBrain in both synthetic and real-world settings for Autism Spectrum Disorder and Attention Deficit Hyperactivity Disorder(ADHD). HyperBrain outperforms all other baselines on detecting abnormal co-activations in brain networks. Furthermore, results obtained from HyperBrain are consistent with clinical research on these brain disorders. Our findings suggest that learning temporal and higher-order connections in the brain provides a promising approach to uncover intricate connectivity patterns in brain networks, offering improved diagnosis.
Authors:Harish Neelam, Koushik Sai Veerella, Souradip Biswas
Title: Sparse Modelling for Feature Learning in High Dimensional Data
Abstract:
This paper presents an innovative approach to dimensionality reduction and feature extraction in high-dimensional datasets, with a specific application focus on wood surface defect detection. The proposed framework integrates sparse modeling techniques, particularly Lasso and proximal gradient methods, into a comprehensive pipeline for efficient and interpretable feature selection. Leveraging pre-trained models such as VGG19 and incorporating anomaly detection methods like Isolation Forest and Local Outlier Factor, our methodology addresses the challenge of extracting meaningful features from complex datasets. Evaluation metrics such as accuracy and F1 score, alongside visualizations, are employed to assess the performance of the sparse modeling techniques. Through this work, we aim to advance the understanding and application of sparse modeling in machine learning, particularly in the context of wood surface defect detection.
Authors:Yalong Jiang, Liquan Mao
Title: Vision-Language Models Assisted Unsupervised Video Anomaly Detection
Abstract:
Video anomaly detection is a subject of great interest across industrial and academic domains due to its crucial role in computer vision applications. However, the inherent unpredictability of anomalies and the scarcity of anomaly samples present significant challenges for unsupervised learning methods. To overcome the limitations of unsupervised learning, which stem from a lack of comprehensive prior knowledge about anomalies, we propose VLAVAD (Video-Language Models Assisted Anomaly Detection). Our method employs a cross-modal pre-trained model that leverages the inferential capabilities of large language models (LLMs) in conjunction with a Selective-Prompt Adapter (SPA) for selecting semantic space. Additionally, we introduce a Sequence State Space Module (S3M) that detects temporal inconsistencies in semantic features. By mapping high-dimensional visual features to low-dimensional semantic ones, our method significantly enhance the interpretability of unsupervised anomaly detection. Our proposed approach effectively tackles the challenge of detecting elusive anomalies that are hard to discern over periods, achieving SOTA on the challenging ShanghaiTech dataset.
Authors:Caihong Wang, Du Xu, Zonghang Li
Title: Log2graphs: An Unsupervised Framework for Log Anomaly Detection with Efficient Feature Extraction
Abstract:
In the era of rapid Internet development, log data has become indispensable for recording the operations of computer devices and software. These data provide valuable insights into system behavior and necessitate thorough analysis. Recent advances in text analysis have enabled deep learning to achieve significant breakthroughs in log anomaly detection. However, the high cost of manual annotation and the dynamic nature of usage scenarios present major challenges to effective log analysis. This study proposes a novel log feature extraction model called DualGCN-LogAE, designed to adapt to various scenarios. It leverages the expressive power of large models for log content analysis and the capability of graph structures to encapsulate correlations between logs. It retains key log information while integrating the causal relationships between logs to achieve effective feature extraction. Additionally, we introduce Log2graphs, an unsupervised log anomaly detection method based on the feature extractor. By employing graph clustering algorithms for log anomaly detection, Log2graphs enables the identification of abnormal logs without the need for labeled data. We comprehensively evaluate the feature extraction capability of DualGCN-LogAE and the anomaly detection performance of Log2graphs using public log datasets across five different scenarios. Our evaluation metrics include detection accuracy and graph clustering quality scores. Experimental results demonstrate that the log features extracted by DualGCN-LogAE outperform those obtained by other methods on classic classifiers. Moreover, Log2graphs surpasses existing unsupervised log detection methods, providing a robust tool for advancing log anomaly detection research.
Authors:Zhemin Zhang, Bhavika Patel, Bhavik Patel, Imon Banerjee
Title: Unsupervised Hybrid framework for ANomaly Detection (HAND) -- applied to Screening Mammogram
Abstract:
Out-of-distribution (OOD) detection is crucial for enhancing the generalization of AI models used in mammogram screening. Given the challenge of limited prior knowledge about OOD samples in external datasets, unsupervised generative learning is a preferable solution which trains the model to discern the normal characteristics of in-distribution (ID) data. The hypothesis is that during inference, the model aims to reconstruct ID samples accurately, while OOD samples exhibit poorer reconstruction due to their divergence from normality. Inspired by state-of-the-art (SOTA) hybrid architectures combining CNNs and transformers, we developed a novel backbone - HAND, for detecting OOD from large-scale digital screening mammogram studies. To boost the learning efficiency, we incorporated synthetic OOD samples and a parallel discriminator in the latent space to distinguish between ID and OOD samples. Gradient reversal to the OOD reconstruction loss penalizes the model for learning OOD reconstructions. An anomaly score is computed by weighting the reconstruction and discriminator loss. On internal RSNA mammogram held-out test and external Mayo clinic hand-curated dataset, the proposed HAND model outperformed encoder-based and GAN-based baselines, and interestingly, it also outperformed the hybrid CNN+transformer baselines. Therefore, the proposed HAND pipeline offers an automated efficient computational solution for domain-specific quality checks in external screening mammograms, yielding actionable insights without direct exposure to the private medical imaging data.
Authors:Haoting Zhang, Shekhar Jain
Title: LLM-Assisted Logic Rule Learning: Scaling Human Expertise for Time Series Anomaly Detection
Abstract:
Time series anomaly detection is critical for supply chain management to take proactive operations, but faces challenges: classical unsupervised anomaly detection based on exploiting data patterns often yields results misaligned with business requirements and domain knowledge, while manual expert analysis cannot scale to millions of products in the supply chain. We propose a framework that leverages large language models (LLMs) to systematically encode human expertise into interpretable, logic-based rules for detecting anomaly patterns in supply chain time series data. Our approach operates in three stages: 1) LLM-based labeling of training data instructed by domain knowledge, 2) automated generation and iterative improvements of symbolic rules through LLM-driven optimization, and 3) rule augmentation with business-relevant anomaly categories supported by LLMs to enhance interpretability. The experiment results showcase that our approach outperforms the unsupervised learning methods in both detection accuracy and interpretability. Furthermore, compared to direct LLM deployment for time series anomaly detection, our approach provides consistent, deterministic results with low computational latency and cost, making it ideal for production deployment. The proposed framework thus demonstrates how LLMs can bridge the gap between scalable automation and expert-driven decision-making in operational settings.
Authors:Larry Bowden, Qi Chu, Bernard Cena, Kentaro Ohno, Bob Parney, Deepak Sharma, Mitsuharu Takeori
Title: Machine Failure Detection Based on Projected Quantum Models
Abstract:
Detecting machine failures promptly is of utmost importance in industry for maintaining efficiency and minimizing downtime. This paper introduces a failure detection algorithm based on quantum computing and a statistical change-point detection approach. Our method leverages the potential of projected quantum feature maps to enhance the precision of anomaly detection in machine monitoring systems. We empirically validate our approach on benchmark multi-dimensional time series datasets as well as on a real-world dataset comprising IoT sensor readings from operational machines, ensuring the practical relevance of our study. The algorithm was executed on IBM's 133-qubit Heron quantum processor, demonstrating the feasibility of integrating quantum computing into industrial maintenance procedures. The presented results underscore the effectiveness of our quantum-based failure detection system, showcasing its capability to accurately identify anomalies in noisy time series data. This work not only highlights the potential of quantum computing in industrial diagnostics but also paves the way for more sophisticated quantum algorithms in the realm of predictive maintenance.
Authors:Morteza Poudineh, Marc Lalonde
Title: DevPrompt: Deviation-Based Prompt Learning for One-Normal ShotImage Anomaly Detection
Abstract:
Few-normal shot anomaly detection (FNSAD) aims to detect abnormal regions in images using only a few normal training samples, making the task highly challenging due to limited supervision and the diversity of potential defects. Recent approaches leverage vision-language models such as CLIP with prompt-based learning to align image and text features. However, existing methods often exhibit weak discriminability between normal and abnormal prompts and lack principled scoring mechanisms for patch-level anomalies. We propose a deviation-guided prompt learning framework that integrates the semantic power of vision-language models with the statistical reliability of deviation-based scoring. Specifically, we replace fixed prompt prefixes with learnable context vectors shared across normal and abnormal prompts, while anomaly-specific suffix tokens enable class-aware alignment. To enhance separability, we introduce a deviation loss with Top-K Multiple Instance Learning (MIL), modeling patch-level features as Gaussian deviations from the normal distribution. This allows the network to assign higher anomaly scores to patches with statistically significant deviations, improving localization and interpretability. Experiments on the MVTecAD and VISA benchmarks demonstrate superior pixel-level detection performance compared to PromptAD and other baselines. Ablation studies further validate the effectiveness of learnable prompts, deviation-based scoring, and the Top-K MIL strategy.
Authors:Lorenzo Fernández Maimó, Alberto Huertas Celdrán, Manuel Gil Pérez, Félix J. García Clemente, Gregorio Martínez Pérez
Title: Dynamic Management of a Deep Learning-Based Anomaly Detection System for 5G Networks
Abstract:
Fog and mobile edge computing (MEC) will play a key role in the upcoming fifth generation (5G) mobile networks to support decentralized applications, data analytics and management into the network itself by using a highly distributed compute model. Furthermore, increasing attention is paid to providing user-centric cybersecurity solutions, which particularly require collecting, processing and analyzing significantly large amount of data traffic and huge number of network connections in 5G networks. In this regard, this paper proposes a MEC-oriented solution in 5G mobile networks to detect network anomalies in real-time and in autonomic way. Our proposal uses deep learning techniques to analyze network flows and to detect network anomalies. Moreover, it uses policies in order to provide an efficient and dynamic management system of the computing resources used in the anomaly detection process. The paper presents relevant aspects of the deployment of the proposal and experimental results to show its performance.
Authors:Krishna Sharma, Vivek Yelleti
Title: Log anomaly detection via Meta Learning and Prototypical Networks for Cross domain generalization
Abstract:
Log anomaly detection is essential for system reliability, but it is extremely challenging to do considering it involves class imbalance. Additionally, the models trained in one domain are not applicable to other domains, necessitating the need for cross-domain adaptation (such as HDFS and Linux). Traditional detection models often fail to generalize due to significant data drift and the inherent absence of labeled anomalies in new target domains. To handle the above challenges, we proposed a new end-to-end framework based on a meta-learning approach. Our methodology first gets the data ready by combining a Drain3 log parsing mechanism with a dynamic drift-based labeling technique that uses semantic and fuzzy matching to move existing anomaly knowledge from one source to another. BERT-based semantic embeddings are obtained, and the feature selection is invoked to reduce the dimensionality. Later, Model Agnostic Meta-Learning (MAML) and Prototypical Networks models are trained to adapt quickly and effectively. The SMOTE oversampling method is employed to handle imbalances in the data. All the results are obtained by employing the leave-one-out source method, and the corresponding mean F1 scores are reported. Our empirical findings validate that the proposed meta-learning-driven approach yielded the highest mean F1 score and proved to be effective for cross-domain settings.
Authors:Ashikuzzaman, Md. Shawkat Hossain, Jubayer Abdullah Joy, Md Zahid Akon, Md Manjur Ahmed, Md. Naimul Islam
Title: An Optimized Decision Tree-Based Framework for Explainable IoT Anomaly Detection
Abstract:
The increase in the number of Internet of Things (IoT) devices has tremendously increased the attack surface of cyber threats thus making a strong intrusion detection system (IDS) with a clear explanation of the process essential towards resource-constrained environments. Nevertheless, current IoT IDS systems are usually traded off with detection quality, model elucidability, and computational effectiveness, thus the deployment on IoT devices. The present paper counteracts these difficulties by suggesting an explainable AI (XAI) framework based on an optimized Decision Tree classifier with both local and global importance methods: SHAP values that estimate feature attribution using local explanations, and Morris sensitivity analysis that identifies the feature importance in a global view. The proposed system attains the state of art on the test performance with 99.91% accuracy, F1-score of 99.51% and Cohen Kappa of 0.9960 and high stability is confirmed by a cross validation mean accuracy of 98.93%. Efficiency is also enhanced in terms of computations to provide faster inferences compared to those that are generalized in ensemble models. SrcMac has shown as the most significant predictor in feature analyses according to SHAP and Morris methods. Compared to the previous work, our solution eliminates its major drawback lack because it allows us to apply it to edge devices and, therefore, achieve real-time processing, adhere to the new regulation of transparency in AI, and achieve high detection rates on attacks of dissimilar classes. This combination performance of high accuracy, explainability, and low computation make the framework useful and reliable as a resource-constrained IoT security problem in real environments.
Authors:Dafne Lozano-Paredes, Luis Bote-Curiel, Juan Ramón Feijóo-Martínez, Ismael Gómez-Talal, José Luis Rojo-Álvarez
Title: Explainable Autoencoder-Based Anomaly Detection in IEC 61850 GOOSE Networks
Abstract:
The IEC 61850 Generic Object-Oriented Substation Event (GOOSE) protocol plays a critical role in real-time protection and automation of digital substations, yet its lack of native security mechanisms can expose power systems to sophisticated cyberattacks. Traditional rule-based and supervised intrusion detection techniques struggle to detect protocol-compliant and zero-day attacks under significant class imbalance and limited availability of labeled data. This paper proposes an explainable, unsupervised multi-view anomaly detection framework for IEC 61850 GOOSE networks that explicitly separates semantic integrity and temporal availability. The approach employs asymmetric autoencoders trained only on real operational GOOSE traffic to learn distinct latent representations of sequence-based protocol semantics and timing-related transmission dynamics in normal traffic. Anomaly detection is implemented using reconstruction errors mixed with statistically grounded thresholds, enabling robust detection without specified attack types. Feature-level reconstruction analysis provides intrinsic explainability by directly linking detection outcomes to IEC 61850 protocol characteristics. The proposed framework is evaluated using real substation traffic for training and a public dataset containing normal traffic and message suppression, data manipulation, and denial-of-service attacks for testing. Experimental results show attack detection rates above 99% with false positives remaining below 5% of total traffic, demonstrating strong generalization across environments and effective operation under extreme class imbalance and interpretable anomaly attribution.
Authors:Shahnawaz Alam, Mohammed Abdul Rahman, Bareera Sadeqa
Title: DriftGuard: A Hierarchical Framework for Concept Drift Detection and Remediation in Supply Chain Forecasting
Abstract:
Supply chain forecasting models degrade over time as real-world conditions change. Promotions shift, consumer preferences evolve, and supply disruptions alter demand patterns, causing what is known as concept drift. This silent degradation leads to stockouts or excess inventory without triggering any system warnings. Current industry practice relies on manual monitoring and scheduled retraining every 3-6 months, which wastes computational resources during stable periods while missing rapid drift events. Existing academic methods focus narrowly on drift detection without addressing diagnosis or remediation, and they ignore the hierarchical structure inherent in supply chain data. What retailers need is an end-to-end system that detects drift early, explains its root causes, and automatically corrects affected models. We propose DriftGuard, a five-module framework that addresses the complete drift lifecycle. The system combines an ensemble of four complementary detection methods, namely error-based monitoring, statistical tests, autoencoder anomaly detection, and Cumulative Sum (CUSUM) change-point analysis, with hierarchical propagation analysis to identify exactly where drift occurs across product lines. Once detected, Shapley Additive Explanations (SHAP) analysis diagnoses the root causes, and a cost-aware retraining strategy selectively updates only the most affected models. Evaluated on over 30,000 time series from the M5 retail dataset, DriftGuard achieves 97.8% detection recall within 4.2 days and delivers up to 417 return on investment through targeted remediation.
Authors:Chunxu Lin, Yumao Xie, Yixiang Fang, Yongmin Hu, Yingqian Hu, Chen Cheng
Title: Efficient Maintenance of Leiden Communities in Large Dynamic Graphs
Abstract:
As a well-known community detection algorithm, Leiden has been widely used in various scenarios such as large language model generation (e.g., Graph-RAG), anomaly detection, and biological analysis. In these scenarios, the graphs are often large and dynamic, where vertices and edges are inserted and deleted frequently, so it is costly to obtain the updated communities by Leiden from scratch when the graph has changed. Recently, one work has attempted to study how to maintain Leiden communities in the dynamic graph, but it lacks a detailed theoretical analysis, and its algorithms are inefficient for large graphs. To address these issues, in this paper, we first theoretically show that the existing algorithms are relatively unbounded via the boundedness analysis (a powerful tool for analyzing incremental algorithms on dynamic graphs), and also analyze the memberships of vertices in communities when the graph changes. Based on theoretical analysis, we develop a novel efficient maintenance algorithm, called Hierarchical Incremental Tree Leiden (HIT-Leiden), which effectively reduces the range of affected vertices by maintaining the connected components and hierarchical community structures. Comprehensive experiments in various datasets demonstrate the superior performance of HIT-Leiden. In particular, it achieves speedups of up to five orders of magnitude over existing methods.
Authors:Tayyab Rehman, Giovanni De Gasperis, Aly Shmahell
Title: Cascading multi-agent anomaly detection in surveillance systems via vision-language models and embedding-based classification
Abstract:
Intelligent anomaly detection in dynamic visual environments requires reconciling real-time performance with semantic interpretability. Conventional approaches address only fragments of this challenge. Reconstruction-based models capture low-level deviations without contextual reasoning, object detectors provide speed but limited semantics, and large vision-language systems deliver interpretability at prohibitive computational cost. This work introduces a cascading multi-agent framework that unifies these complementary paradigms into a coherent and interpretable architecture. Early modules perform reconstruction-gated filtering and object-level assessment, while higher-level reasoning agents are selectively invoked to interpret semantically ambiguous events. The system employs adaptive escalation thresholds and a publish-subscribe communication backbone, enabling asynchronous coordination and scalable deployment across heterogeneous hardware. Extensive evaluation on large-scale monitoring data demonstrates that the proposed cascade achieves a threefold reduction in latency compared to direct vision-language inference, while maintaining high perceptual fidelity (PSNR = 38.3 dB, SSIM = 0.965) and consistent semantic labeling. The framework advances beyond conventional detection pipelines by combining early-exit efficiency, adaptive multi-agent reasoning, and explainable anomaly attribution, establishing a reproducible and energy-efficient foundation for scalable intelligent visual monitoring.
Authors:Sahibzada Saadoon Hammad, Joaquín Huerta Guijarro, Francisco Ramos, Michael Gould Carlson, Sergio Trilles Oliver
Title: Community-Based Model Sharing and Generalisation: Anomaly Detection in IoT Temperature Sensor Networks
Abstract:
The rapid deployment of Internet of Things (IoT) devices has led to large-scale sensor networks that monitor environmental and urban phenomena in real time. Communities of Interest (CoIs) provide a promising paradigm for organising heterogeneous IoT sensor networks by grouping devices with similar operational and environmental characteristics. This work presents an anomaly detection framework based on the CoI paradigm by grouping sensors into communities using a fused similarity matrix that incorporates temporal correlations via Spearman coefficients, spatial proximity using Gaussian distance decay, and elevation similarities. For each community, representative stations based on the best silhouette are selected and three autoencoder architectures (BiLSTM, LSTM, and MLP) are trained using Bayesian hyperparameter optimization with expanding window cross-validation and tested on stations from the same cluster and the best representative stations of other clusters. The models are trained on normal temperature patterns of the data and anomalies are detected through reconstruction error analysis. Experimental results show a robust within-community performance across the evaluated configurations, while variations across communities are observed. Overall, the results support the applicability of community-based model sharing in reducing computational overhead and to analyse model generalisability across IoT sensor networks.
Authors:Turkan Simge Ispak, Salih Tileylioglu, Erdem Akagunduz
Title: Variational Autoencoders for P-wave Detection on Strong Motion Earthquake Spectrograms
Abstract:
Accurate P-wave detection is critical for earthquake early warning, yet strong-motion records pose challenges due to high noise levels, limited labeled data, and complex waveform characteristics. This study reframes P-wave arrival detection as a self-supervised anomaly detection task to evaluate how architectural variations regulate the trade-off between reconstruction fidelity and anomaly discrimination. Through a comprehensive grid search of 492 Variational Autoencoder configurations, we show that while skip connections minimize reconstruction error (Mean Absolute Error approximately 0.0012), they induce "overgeneralization", allowing the model to reconstruct noise and masking the detection signal. In contrast, attention mechanisms prioritize global context over local detail and yield the highest detection performance with an area-under-the-curve of 0.875. The attention-based Variational Autoencoder achieves an area-under-the-curve of 0.91 in the 0 to 40-kilometer near-source range, demonstrating high suitability for immediate early warning applications. These findings establish that architectural constraints favoring global context over pixel-perfect reconstruction are essential for robust, self-supervised P-wave detection.
Authors:Mahsa Raeiszadeh, Amin Ebrahimzadeh, Roch H. Glitho, Johan Eker, Raquel A. F. Mini
Title: Real-Time Adaptive Anomaly Detection in Industrial IoT Environments
Abstract:
To ensure reliability and service availability, next-generation networks are expected to rely on automated anomaly detection systems powered by advanced machine learning methods with the capability of handling multi-dimensional data. Such multi-dimensional, heterogeneous data occurs mostly in today's industrial Internet of Things (IIoT), where real-time detection of anomalies is critical to prevent impending failures and resolve them in a timely manner. However, existing anomaly detection methods often fall short of effectively coping with the complexity and dynamism of multi-dimensional data streams in IIoT. In this paper, we propose an adaptive method for detecting anomalies in IIoT streaming data utilizing a multi-source prediction model and concept drift adaptation. The proposed anomaly detection algorithm merges a prediction model into a novel drift adaptation method resulting in accurate and efficient anomaly detection that exhibits improved scalability. Our trace-driven evaluations indicate that the proposed method outperforms the state-of-the-art anomaly detection methods by achieving up to an 89.71% accuracy (in terms of Area under the Curve (AUC)) while meeting the given efficiency and scalability requirements.
Authors:Mohammed Ayalew Belay, Adil Rasheed, Pierluigi Salvo Rossi
Title: Digital Twin-Driven Communication-Efficient Federated Anomaly Detection for Industrial IoT
Abstract:
Anomaly detection is increasingly becoming crucial for maintaining the safety, reliability, and efficiency of industrial systems. Recently, with the advent of digital twins and data-driven decision-making, several statistical and machine-learning methods have been proposed. However, these methods face several challenges, such as dependence on only real sensor datasets, limited labeled data, high false alarm rates, and privacy concerns. To address these problems, we propose a suite of digital twin-integrated federated learning (DTFL) methods that enhance global model performance while preserving data privacy and communication efficiency. Specifically, we present five novel approaches: Digital Twin-Based Meta-Learning (DTML), Federated Parameter Fusion (FPF), Layer-wise Parameter Exchange (LPE), Cyclic Weight Adaptation (CWA), and Digital Twin Knowledge Distillation (DTKD). Each method introduces a unique mechanism to combine synthetic and real-world knowledge, balancing generalization with communication overhead. We conduct an extensive experiment using a publicly available cyber-physical anomaly detection dataset. For a target accuracy of 80%, CWA reaches the target in 33 rounds, FPF in 41 rounds, LPE in 48 rounds, and DTML in 87 rounds, whereas the standard FedAvg baseline and DTKD do not reach the target within 100 rounds. These results highlight substantial communication-efficiency gains (up to 62% fewer rounds than DTML and 31% fewer than LPE) and demonstrate that integrating DT knowledge into FL accelerates convergence to operationally meaningful accuracy thresholds for IIoT anomaly detection.
Authors:KC Aashish, Md Zakir Hossain Zamil, Md Shafiqul Islam Mridul, Lamia Akter, Farmina Sharmin, Eftekhar Hossain Ayon, Md Maruf Bin Reza, Ali Hassan, Abdur Rahim, Sirapa Malla
Title: Towards eco friendly cybersecurity: machine learning based anomaly detection with carbon and energy metrics
Abstract:
The rising energy footprint of artificial intelligence has become a measurable component of US data center emissions, yet cybersecurity research seldom considers its environmental cost. This study introduces an eco aware anomaly detection framework that unifies machine learning based network monitoring with real time carbon and energy tracking. Using the publicly available Carbon Aware Cybersecurity Traffic Dataset comprising 2300 flow level observations, we benchmark Logistic Regression, Random Forest, Support Vector Machine, Isolation Forest, and XGBoost models across energy, carbon, and performance dimensions. Each experiment is executed in a controlled Colab environment instrumented with the CodeCarbon toolkit to quantify power draw and equivalent CO2 output during both training and inference. We construct an Eco Efficiency Index that expresses F1 score per kilowatt hour to capture the trade off between detection quality and environmental impact. Results reveal that optimized Random Forest and lightweight Logistic Regression models achieve the highest eco efficiency, reducing energy consumption by more than forty percent compared to XGBoost while sustaining competitive detection accuracy. Principal Component Analysis further decreases computational load with negligible loss in recall. Collectively, these findings establish that integrating carbon and energy metrics into cybersecurity workflows enables environmentally responsible machine learning without compromising operational protection. The proposed framework offers a reproducible path toward sustainable carbon accountable cybersecurity aligned with emerging US green computing and federal energy efficiency initiatives.
Authors:Trung Dao, Minh Nguyen, Son Do, Hoang Tran
Title: Cyberscurity Threats and Defense Mechanisms in IoT network
Abstract:
The rapid proliferation of Internet of Things (IoT) technologies, projected to exceed 30 billion interconnected devices by 2030, has significantly escalated the complexity of cybersecurity challenges. This survey aims to provide a comprehensive analysis of vulnerabilities, threats, and defense mechanisms, specifically focusing on the integration of network and application layers within real-time monitoring and decision-making systems. Employing an integrative review methodology, 59 scholarly articles published between 2009 and 2024 were selected from databases such as IEEE Xplore, ScienceDirect, and PubMed, utilizing keywords related to IoT vulnerabilities and security attacks. Key findings identify critical threat categories, including sensor vulnerabilities, Denial-of-Service (DoS) attacks, and public cloud insecurity. Conversely, the study highlights advanced defense approaches leveraging Artificial Intelligence (AI) for anomaly detection, Blockchain for decentralized trust, and Zero Trust Architecture (ZTA) for continuous verification. This paper contributes a novel five-layer IoT model and outlines future research directions involving quantum computing and 6G networks to bolster IoT ecosystem resilience.
Authors:Trishna Niraula, Jonathan Stubblefield
Title: Using Large Language Models To Translate Machine Results To Human Results
Abstract:
Artificial intelligence (AI) has transformed medical imaging, with computer vision (CV) systems achieving state-of-the-art performance in classification and detection tasks. However, these systems typically output structured predictions, leaving radiologists responsible for translating results into full narrative reports. Recent advances in large language models (LLMs), such as GPT-4, offer new opportunities to bridge this gap by generating diagnostic narratives from structured findings. This study introduces a pipeline that integrates YOLOv5 and YOLOv8 for anomaly detection in chest X-ray images with a large language model (LLM) to generate natural-language radiology reports. The YOLO models produce bounding-box predictions and class labels, which are then passed to the LLM to generate descriptive findings and clinical summaries. YOLOv5 and YOLOv8 are compared in terms of detection accuracy, inference latency, and the quality of generated text, as measured by cosine similarity to ground-truth reports. Results show strong semantic similarity between AI and human reports, while human evaluation reveals GPT-4 excels in clarity (4.88/5) but exhibits lower scores for natural writing flow (2.81/5), indicating that current systems achieve clinical accuracy but remain stylistically distinguishable from radiologist-authored text.
Authors:Kanishka Hewageegana, Janani Harischandra, Nipuna Senanayake, Gihan Danansuriya, Kavindu Hapuarachchi, Pooja Illangarathne
Title: A Survey on Graph Neural Networks for Fraud Detection in Ride Hailing Platforms
Abstract:
This study investigates fraud detection in ride hailing platforms through Graph Neural Networks (GNNs),focusing on the effectiveness of various models. By analyzing prevalent fraudulent activities, the research highlights and compares the existing work related to fraud detection which can be useful when addressing fraudulent incidents within the online ride hailing platforms. Also, the paper highlights addressing class imbalance and fraudulent camouflage. It also outlines a structured overview of GNN architectures and methodologies applied to anomaly detection, identifying significant methodological progress and gaps. The paper calls for further exploration into real-world applicability and technical improvements to enhance fraud detection strategies in the rapidly evolving ride-hailing industry.
Authors:Dat Le, Thomas Manhardt, Moritz Venator, Johannes Betz
Title: Unsupervised Learning for Detection of Rare Driving Scenarios
Abstract:
The detection of rare and hazardous driving scenarios is a critical challenge for ensuring the safety and reliability of autonomous systems. This research explores an unsupervised learning framework for detecting rare and extreme driving scenarios using naturalistic driving data (NDD). We leverage the recently proposed Deep Isolation Forest (DIF), an anomaly detection algorithm that combines neural network-based feature representations with Isolation Forests (IFs), to identify non-linear and complex anomalies. Data from perception modules, capturing vehicle dynamics and environmental conditions, is preprocessed into structured statistical features extracted from sliding windows. The framework incorporates t-distributed stochastic neighbor embedding (t-SNE) for dimensionality reduction and visualization, enabling better interpretability of detected anomalies. Evaluation is conducted using a proxy ground truth, combining quantitative metrics with qualitative video frame inspection. Our results demonstrate that the proposed approach effectively identifies rare and hazardous driving scenarios, providing a scalable solution for anomaly detection in autonomous driving systems. Given the study's methodology, it was unavoidable to depend on proxy ground truth and manually defined feature combinations, which do not encompass the full range of real-world driving anomalies or their nuanced contextual dependencies.
Authors:Xiao Liu, Junchen Jin, Yanjie Zhao, Zhixuan Xing
Title: Causal-HM: Restoring Physical Generative Logic in Multimodal Anomaly Detection via Hierarchical Modulation
Abstract:
Multimodal Unsupervised Anomaly Detection (UAD) is critical for quality assurance in smart manufacturing, particularly in complex processes like robotic welding. However, existing methods often suffer from causal blindness, treating process modalities (e.g., real-time video, audio, and sensors) and result modalities (e.g., post-weld images) as equal feature sources, thereby ignoring the inherent physical generative logic. Furthermore, the heterogeneity gap between high-dimensional visual data and low-dimensional sensor signals frequently leads to critical process context being drowned out. In this paper, we propose Causal-HM, a unified multimodal UAD framework that explicitly models the physical Process to Result dependency. Specifically, our framework incorporates two key innovations: a Sensor-Guided CHM Modulation mechanism that utilizes low-dimensional sensor signals as context to guide high-dimensional audio-visual feature extraction , and a Causal-Hierarchical Architecture that enforces a unidirectional generative mapping to identify anomalies that violate physical consistency. Extensive experiments on our newly constructed Weld-4M benchmark across four modalities demonstrate that Causal-HM achieves a state-of-the-art (SOTA) I-AUROC of 90.7%. Code will be released after the paper is accepted.
Authors:John D. Foley, Justin T. Lee
Title: Online Partitioned Local Depth for semi-supervised applications
Abstract:
We introduce an extension of the partitioned local depth (PaLD) algorithm that is adapted to online applications such as semi-supervised prediction. The new algorithm we present, online PaLD, is well-suited to situations where it is a possible to pre-compute a cohesion network from a reference dataset. After $O(n^3)$ steps to construct a queryable data structure, online PaLD can extend the cohesion network to a new data point in $O(n^2)$ time. Our approach complements previous speed up approaches based on approximation and parallelism. For illustrations, we present applications to online anomaly detection and semi-supervised classification for health-care datasets.
Authors:Malihe Dahmardeh, Francesco Setti
Title: MECAD: A multi-expert architecture for continual anomaly detection
Abstract:
In this paper we propose MECAD, a novel approach for continual anomaly detection using a multi-expert architecture. Our system dynamically assigns experts to object classes based on feature similarity and employs efficient memory management to preserve the knowledge of previously seen classes. By leveraging an optimized coreset selection and a specialized replay buffer mechanism, we enable incremental learning without requiring full model retraining. Our experimental evaluation on the MVTec AD dataset demonstrates that the optimal 5-expert configuration achieves an average AUROC of 0.8259 across 15 diverse object categories while significantly reducing knowledge degradation compared to single-expert approaches. This framework balances computational efficiency, specialized knowledge retention, and adaptability, making it well-suited for industrial environments with evolving product types.
Authors:Emmanuel K. Katalay, David O. Dimandja, Jordan F. Masakuna
Title: A Multi-Criteria Automated MLOps Pipeline for Cost-Effective Cloud-Based Classifier Retraining in Response to Data Distribution Shifts
Abstract:
The performance of machine learning (ML) models often deteriorates when the underlying data distribution changes over time, a phenomenon known as data distribution drift. When this happens, ML models need to be retrained and redeployed. ML Operations (MLOps) is often manual, i.e., humans trigger the process of model retraining and redeployment. In this work, we present an automated MLOps pipeline designed to address neural network classifier retraining in response to significant data distribution changes. Our MLOps pipeline employs multi-criteria statistical techniques to detect distribution shifts and triggers model updates only when necessary, ensuring computational efficiency and resource optimization. We demonstrate the effectiveness of our framework through experiments on several benchmark anomaly detection data sets, showing significant improvements in model accuracy and robustness compared to traditional retraining strategies. Our work provides a foundation for deploying more reliable and adaptive ML systems in dynamic real-world settings, where data distribution changes are common.
Authors:Agniva Maiti, Prajwal Panth, Suresh Chandra Satapathy
Title: Semantic Reconstruction of Adversarial Plagiarism: A Context-Aware Framework for Detecting and Restoring "Tortured Phrases" in Scientific Literature
Abstract:
The integrity and reliability of scientific literature is facing a serious threat by adversarial text generation techniques, specifically from the use of automated paraphrasing tools to mask plagiarism. These tools generate "tortured phrases", statistically improbable synonyms (e.g. "counterfeit consciousness" for "artificial intelligence"), that preserve the local grammar while obscuring the original source. Most existing detection methods depend heavily on static blocklists or general-domain language models, which suffer from high false-negative rates for novel obfuscations and cannot determine the source of the plagiarized content. In this paper, we propose Semantic Reconstruction of Adversarial Plagiarism (SRAP), a framework designed not only to detect these anomalies but to mathematically recover the original terminology. We use a two-stage architecture: (1) statistical anomaly detection with a domain-specific masked language model (SciBERT) using token-level pseudo-perplexity, and (2) source-based semantic reconstruction using dense vector retrieval (FAISS) and sentence-level alignment (SBERT). Experiments on a parallel corpus of adversarial scientific text show that while zero-shot baselines fail completely (0.00 percent restoration accuracy), our retrieval-augmented approach achieves 23.67 percent restoration accuracy, significantly outperforming baseline methods. We also show that static decision boundaries are necessary for robust detection in jargon-heavy scientific text, since dynamic thresholding fails under high variance. SRAP enables forensic analysis by linking obfuscated expressions back to their most probable source documents.
Authors:Jingwei Ye, Zhi Wang, Chenbin Su, Jieshuai Yang, Jiayi Ding, Chunbo Liu, Ge Chu
Title: LogICL: Distilling LLM Reasoning to Bridge the Semantic Gap in Cross-Domain Log Anomaly Detection
Abstract:
Effective log anomaly detection is critical to sustaining reliability in large-scale IT infrastructures. Transformer-based models require substantial resources and labeled data, exacerbating the cold-start problem in target domains where logs are scarce. Existing cross-domain methods leverage source logs but struggle with generalization due to reliance on surface lexical similarity, failing to capture latent semantic equivalence amid structural divergences. To address this, we propose LogICL, a framework distilling Large Language Model (LLM) reasoning into a lightweight encoder for cross-domain anomaly detection. During training, LogICL constructs a delta matrix measuring the utility of demonstrations selected via Maximal Marginal Relevance relative to zero-shot inference. The encoder is optimized via a multi-objective loss comprising an ICL-Guided term that aligns representations based on reasoning assistance utility, maximum mean discrepancy for domain alignment, and supervised contrastive loss. At inference, the optimized encoder retrieves reasoning-aware demonstrations using semantic similarity and delta scores, enabling frozen-LLM in-context learning with Chain-of-Thought for accurate and interpretable detection. Experiments on few-shot and zero-shot cross-domain benchmarks confirm LogICL achieves state-of-the-art performance across heterogeneous systems. Further analysis via visualizations and case studies confirms LogICL bridges the semantic gap beyond surface lexical similarity, effectively capturing latent semantic equivalence for rapid deployment.
Authors:Minju Jeon, Jiyun Kim, Sewon Kim, Seongmin Park, Bo Zhang, Anthony H. Smith
Title: WaggleNet: A LoRa and MQTT-Based Monitoring System for Internal and External Beehive Conditions
Abstract:
Bee populations are declining globally due to habitat loss, pesticide exposure, and climate change, threatening agricultural productivity and food security. While existing smart beehive systems monitor internal conditions, they typically overlook external environmental factors that significantly influence colony health, and are constrained by high cost, limited scalability, and inadequate contextual analysis. We present WaggleNet, a novel dual-scope monitoring system that simultaneously captures both internal hive conditions and external environmental parameters using a cost-effective LoRa-MQTT architecture. Our system deploys modular worker nodes ($\sim$\$15 each) equipped with temperature, humidity, light, and GPS sensors both inside and around beehives. A master node functions as a LoRa-MQTT gateway, forwarding data to a cloud server with a mobile application interface. Field experiments confirmed reliable operation with 100\% packet delivery over 110 meters in line-of-sight conditions and 95 meters in obstructed environments, including successful deployment inside wooden hive structures. Our system demonstrated stable end-to-end latency under 5 seconds and continuous operation over a two-month period across diverse environmental conditions. By bridging the gap between internal and external monitoring, WaggleNet enables contextual anomaly detection and supports data-driven precision beekeeping in resource-constrained settings.
Authors:Berkani Khaled, Zeraoulia Rafik
Title: A Hybrid Deep Learning and Anomaly Detection Framework for Real-Time Malicious URL Classification
Abstract:
Malicious URLs remain a primary vector for phishing, malware, and cyberthreats. This study proposes a hybrid deep learning framework combining \texttt{HashingVectorizer} n-gram analysis, SMOTE balancing, Isolation Forest anomaly filtering, and a lightweight neural network classifier for real-time URL classification. The multi-stage pipeline processes URLs from open-source repositories with statistical features (length, dot count, entropy), achieving $O(NL + EBdh)$ training complexity and a 20\,ms prediction latency. Empirical evaluation yields 96.4\% accuracy, 95.4\% F1-score, and 97.3\% ROC-AUC, outperforming CNN (94.8\%) and SVM baselines with a $50\!\times$--$100\!\times$ speedup (Table~\ref{tab:comp-complexity}). A multilingual Tkinter GUI (Arabic/English/French) enables real-time threat assessment with clipboard integration. The framework demonstrates superior scalability and resilience against obfuscated URL patterns.
Authors:Srijani Mukherjee, Laurent Vuillon, Liliane Bou Nassif, Stéphanie Giroux-Julien, Hervé Pabiou, Denys Dutykh, Ionnasis Tsanakas
Title: Temporal Graph Neural Networks for Early Anomaly Detection and Performance Prediction via PV System Monitoring Data
Abstract:
The rapid growth of solar photovoltaic (PV) systems necessitates advanced methods for performance monitoring and anomaly detection to ensure optimal operation. In this study, we propose a novel approach leveraging Temporal Graph Neural Network (Temporal GNN) to predict solar PV output power and detect anomalies using environmental and operational parameters. The proposed model utilizes graph-based temporal relationships among key PV system parameters, including irradiance, module and ambient temperature to predict electrical power output. This study is based on data collected from an outdoor facility located on a rooftop in Lyon (France) including power measurements from a PV module and meteorological parameters.
Authors:Junpeng Wu, Pinheng Zong
Title: FGC-Comp: Adaptive Neighbor-Grouped Attribute Completion for Graph-based Anomaly Detection
Abstract:
Graph-based Anomaly Detection models have gained widespread adoption in recent years, identifying suspicious nodes by aggregating neighborhood information. However, most existing studies overlook the pervasive issues of missing and adversarially obscured node attributes, which can undermine aggregation stability and prediction reliability. To mitigate this, we propose FGC-Comp, a lightweight, classifier-agnostic, and deployment-friendly attribute completion module-designed to enhance neighborhood aggregation under incomplete attributes. We partition each node's neighbors into three label-based groups, apply group-specific transforms to the labeled groups while a node-conditioned gate handles unknowns, fuse messages via residual connections, and train end-to-end with a binary classification objective to improve aggregation stability and prediction reliability under missing attributes. Experiments on two real-world fraud datasets validate the effectiveness of the approach with negligible computational overhead.
Authors:Yuxing Liu, Yong Liu
Title: ClimaOoD: Improving Anomaly Segmentation via Physically Realistic Synthetic Data
Abstract:
Anomaly segmentation seeks to detect and localize unknown or out-of-distribution (OoD) objects that fall outside predefined semantic classes a capability essential for safe autonomous driving. However, the scarcity and limited diversity of anomaly data severely constrain model generalization in open-world environments. Existing approaches mitigate this issue through synthetic data generation, either by copy-pasting external objects into driving scenes or by leveraging text-to-image diffusion models to inpaint anomalous regions. While these methods improve anomaly diversity, they often lack contextual coherence and physical realism, resulting in domain gaps between synthetic and real data. In this paper, we present ClimaDrive, a semantics-guided image-to-image framework for synthesizing semantically coherent, weather-diverse, and physically plausible OoD driving data. ClimaDrive unifies structure-guided multi-weather generation with prompt-driven anomaly inpainting, enabling the creation of visually realistic training data. Based on this framework, we construct ClimaOoD, a large-scale benchmark spanning six representative driving scenarios under both clear and adverse weather conditions. Extensive experiments on four state-of-the-art methods show that training with ClimaOoD leads to robust improvements in anomaly segmentation. Across all methods, AUROC, AP, and FPR95 show notable gains, with FPR95 dropping from 3.97 to 3.52 for RbA on Fishyscapes LAF. These results demonstrate that ClimaOoD enhances model robustness, offering valuable training data for better generalization in open-world anomaly detection.
Authors:Benjamin Blakely, Yeni Li, Akshay Dave, Derek Kultgen, Rick Vilim
Title: AI-Driven Cybersecurity Testbed for Nuclear Infrastructure: Comprehensive Evaluation Using METL Operational Data
Abstract:
Advanced nuclear reactor systems face increasing cybersecurity threats as sophisticated attackers exploit cyber-physical interfaces to manipulate control systems while evading traditional IT security measures. This research presents a comprehensive evaluation of artificial intelligence approaches for cybersecurity protection in nuclear infrastructure, using Argonne National Laboratory's Mechanisms Engineering Test Loop (METL) as an experimental platform. We developed a systematic evaluation framework encompassing four machine learning detection paradigms: Change Point Detection, LSTM-based Anomaly Detection, Dependency Violation analysis, and Autoencoder reconstruction methods. Our comprehensive attack taxonomy includes 15 distinct scenarios targeting reactor control systems, each implemented across five severity tiers to evaluate detection performance under varying attack intensities. The experimental evaluation encompassed 300 rigorous experiments using realistic METL operational data. Change Point Detection emerged as the leading approach with mean AUC performance of 0.785, followed by LSTM Anomaly Detection (0.636), Dependency Violation (0.621), and Autoencoder methods (0.580). Attack detectability varied significantly, with multi-site coordinated attacks proving most detectable (AUC = 0.739) while precision trust decay attacks presented the greatest detection challenge (AUC = 0.592). This work delivers practical performance benchmarks and reference architecture that advance AI-based cybersecurity capabilities for critical nuclear infrastructure, providing essential foundations for operational deployment and enhanced threat response in cyber-physical systems.
Authors:Aamiruddin Syed, Mohammed Ilyas Ahmad
Title: Advanced Data Collection Techniques in Cloud Security: A Multi-Modal Deep Learning Autoencoder Approach
Abstract:
Cloud security is an important concern. To identify and stop cyber threats, efficient data collection methods are necessary. This research presents an innovative method to cloud security by integrating numerous data sources and modalities with multi-modal deep learning autoencoders. The Multi-Modal Deep Learning Ensemble Architecture (MMDLEA), a unique approach for anomaly detection and classification in multi-modal data, is proposed in this study. The proposed design integrates the best features of six deep learning models: Multi-Modal Deep Learning Autoencoder (MMDLA), Anomaly Detection using Adaptive Metric Learning (ADAM), ADADELTA, ADAGRAD, RMSPROP, and Stacked Graph Transformer (SGT). A final prediction is produced by combining the outputs of all the models, each of which is trained using a distinct modality of the data. Based on the test dataset, the recommended MMDLA architecture achieves an accuracy of 98.5% and an F1-score of 0.985, demonstrating its superior performance over each individual model. Of the different models, the ADAM model performs the best, with an accuracy of 96.2% and an F1-score of 0.962. With an F1-score of 0.955 and an accuracy of 95.5%, the ADADELTA model trails closely behind. MMDLA obtains an F1-score of 0.948 and an accuracy of 94.8%. Additionally, the suggested MMDLEA design exhibits enhanced resilience to fluctuating modalities and noisy data, proving its usefulness in practical settings. Future study in this area is made possible by the results, which show the potential of the proposed framework for abnormal identification and categorization in multi-modal data.
Authors:Munish Rathee, Boris Bačić, Maryam Doborjeh
Title: Hybrid SIFT-SNN for Efficient Anomaly Detection of Traffic Flow-Control Infrastructure
Abstract:
This paper presents the SIFT-SNN framework, a low-latency neuromorphic signal-processing pipeline for real-time detection of structural anomalies in transport infrastructure. The proposed approach integrates Scale-Invariant Feature Transform (SIFT) for spatial feature encoding with a latency-driven spike conversion layer and a Leaky Integrate-and-Fire (LIF) Spiking Neural Network (SNN) for classification. The Auckland Harbour Bridge dataset is recorded under various weather and lighting conditions, comprising 6,000 labelled frames that include both real and synthetically augmented unsafe cases. The presented system achieves a classification accuracy of 92.3% (+- 0.8%) with a per-frame inference time of 9.5 ms. Achieved sub-10 millisecond latency, combined with sparse spike activity (8.1%), enables real-time, low-power edge deployment. Unlike conventional CNN-based approaches, the hybrid SIFT-SNN pipeline explicitly preserves spatial feature grounding, enhances interpretability, supports transparent decision-making, and operates efficiently on embedded hardware. Although synthetic augmentation improved robustness, generalisation to unseen field conditions remains to be validated. The SIFT-SNN framework is validated through a working prototype deployed on a consumer-grade system and framed as a generalisable case study in structural safety monitoring for movable concrete barriers, which, as a traffic flow-control infrastructure, is deployed in over 20 cities worldwide.
Authors:Herman Errico, Jiquan Ngiam, Shanita Sojan
Title: Securing the Model Context Protocol (MCP): Risks, Controls, and Governance
Abstract:
The Model Context Protocol (MCP) replaces static, developer-controlled API integrations with more dynamic, user-driven agent systems, which also introduces new security risks. As MCP adoption grows across community servers and major platforms, organizations encounter threats that existing AI governance frameworks (such as NIST AI RMF and ISO/IEC 42001) do not yet cover in detail. We focus on three types of adversaries that take advantage of MCP s flexibility: content-injection attackers that embed malicious instructions into otherwise legitimate data; supply-chain attackers who distribute compromised servers; and agents who become unintentional adversaries by over-stepping their role. Based on early incidents and proof-of-concept attacks, we describe how MCP can increase the attack surface through data-driven exfiltration, tool poisoning, and cross-system privilege escalation. In response, we propose a set of practical controls, including per-user authentication with scoped authorization, provenance tracking across agent workflows, containerized sandboxing with input/output checks, inline policy enforcement with DLP and anomaly detection, and centralized governance using private registries or gateway layers. The aim is to help organizations ensure that unvetted code does not run outside a sandbox, tools are not used beyond their intended scope, data exfiltration attempts are detectable, and actions can be audited end-to-end. We close by outlining open research questions around verifiable registries, formal methods for these dynamic systems, and privacy-preserving agent operations.
Authors:Amirhossein Khadivi Noghredeh, Abdollah Safari, Fatemeh Ziaeetabar, Firoozeh Haghighi
Title: DRL-Guided Neural Batch Sampling for Semi-Supervised Pixel-Level Anomaly Detection
Abstract:
Anomaly detection in industrial visual inspection is challenging due to the scarcity of defective samples. Most existing methods rely on unsupervised reconstruction using only normal data, often resulting in overfitting and poor detection of subtle defects. We propose a semi-supervised deep reinforcement learning framework that integrates a neural batch sampler, an autoencoder, and a predictor. The RL-based sampler adaptively selects informative patches by balancing exploration and exploitation through a composite reward. The autoencoder generates loss profiles highlighting abnormal regions, while the predictor performs segmentation in the loss-profile space. This interaction enables the system to effectively learn both normal and defective patterns with limited labeled data. Experiments on the MVTec AD dataset demonstrate that our method achieves higher accuracy and better localization of subtle anomalies than recent state-of-the-art approaches while maintaining low complexity, yielding an average improvement of 0.15 in F1_max and 0.06 in AUC, with a maximum gain of 0.37 in F1_max in the best case.
Authors:Aman Verma, Keshav Samdani, Mohd. Samiuddin Shafi
Title: Multimodal Real-Time Anomaly Detection and Industrial Applications
Abstract:
This paper presents the design, implementation, and evolution of a comprehensive multimodal room-monitoring system that integrates synchronized video and audio processing for real-time activity recognition and anomaly detection. We describe two iterations of the system: an initial lightweight implementation using YOLOv8, ByteTrack, and the Audio Spectrogram Transformer (AST), and an advanced version that incorporates multi-model audio ensembles, hybrid object detection, bidirectional cross-modal attention, and multi-method anomaly detection. The evolution demonstrates significant improvements in accuracy, robustness, and industrial applicability. The advanced system combines three audio models (AST, Wav2Vec2, and HuBERT) for comprehensive audio understanding, dual object detectors (YOLO and DETR) for improved accuracy, and sophisticated fusion mechanisms for enhanced cross-modal learning. Experimental evaluation shows the system's effectiveness in general monitoring scenarios as well as specialized industrial safety applications, achieving real-time performance on standard hardware while maintaining high accuracy.
Authors:Yuheng Shao, Lizhang Wang, Changhao Li, Peixian Chen, Qinyuan Liu
Title: PromptMoE: Generalizable Zero-Shot Anomaly Detection via Visually-Guided Prompt Mixtures
Abstract:
Zero-Shot Anomaly Detection (ZSAD) aims to identify and localize anomalous regions in images of unseen object classes. While recent methods based on vision-language models like CLIP show promise, their performance is constrained by existing prompt engineering strategies. Current approaches, whether relying on single fixed, learnable, or dense dynamic prompts, suffer from a representational bottleneck and are prone to overfitting on auxiliary data, failing to generalize to the complexity and diversity of unseen anomalies. To overcome these limitations, we propose $\mathtt{PromptMoE}$. Our core insight is that robust ZSAD requires a compositional approach to prompt learning. Instead of learning monolithic prompts, $\mathtt{PromptMoE}$ learns a pool of expert prompts, which serve as a basis set of composable semantic primitives, and a visually-guided Mixture-of-Experts (MoE) mechanism to dynamically combine them for each instance. Our framework materializes this concept through a Visually-Guided Mixture of Prompt (VGMoP) that employs an image-gated sparse MoE to aggregate diverse normal and abnormal expert state prompts, generating semantically rich textual representations with strong generalization. Extensive experiments across 15 datasets in industrial and medical domains demonstrate the effectiveness and state-of-the-art performance of $\mathtt{PromptMoE}$.
Authors:Gabriel Job Antunes Grabher, Fumio Machida, Thomas Ropars
Title: Modeling Anomaly Detection in Cloud Services: Analysis of the Properties that Impact Latency and Resource Consumption
Abstract:
Detecting and resolving performance anomalies in Cloud services is crucial for maintaining desired performance objectives. Scaling actions triggered by an anomaly detector help achieve target latency at the cost of extra resource consumption. However, performance anomaly detectors make mistakes. This paper studies which characteristics of performance anomaly detection are important to optimize the trade-off between performance and cost. Using Stochastic Reward Nets, we model a Cloud service monitored by a performance anomaly detector. Using our model, we study the impact of detector characteristics, namely precision, recall and inspection frequency, on the average latency and resource consumption of the monitored service. Our results show that achieving a high precision and a high recall is not always necessary. If detection can be run frequently, a high precision is enough to obtain a good performance-to-cost trade-off, but if the detector is run infrequently, recall becomes the most important.
Authors:Georgios Anyfantis, Pere Barlet-Ros
Title: AutoGraphAD: A novel approach using Variational Graph Autoencoders for anomalous network flow detection
Abstract:
Network Intrusion Detection Systems (NIDS) are essential tools for detecting network attacks and intrusions. While extensive research has explored the use of supervised Machine Learning for attack detection and characterisation, these methods require accurately labelled datasets, which are very costly to obtain. Moreover, existing public datasets have limited and/or outdated attacks, and many of them suffer from mislabelled data. To reduce the reliance on labelled data, we propose AutoGraphAD, a novel unsupervised anomaly detection approach based on a Heterogeneous Variational Graph Autoencoder. AutoGraphAD operates on heterogeneous graphs, made from connection and IP nodes that capture network activity within a time window. The model is trained using unsupervised and contrastive learning, without relying on any labelled data. The reconstruction, structural loss, and KL divergence are then weighted and combined in an anomaly score that is then used for anomaly detection. Overall, AutoGraphAD yields the same, and in some cases better, results than previous unsupervised approaches, such as Anomal-E, but without requiring costly downstream anomaly detectors. As a result, AutoGraphAD achieves around 1.18 orders of magnitude faster training and 1.03 orders of magnitude faster inference, which represents a significant advantage for operational deployment.
Authors:Rui Xue, Dan He, Fengmei Jin, Chen Zhang, Xiaofang Zhou
Title: CroTad: A Contrastive Reinforcement Learning Framework for Online Trajectory Anomaly Detection
Abstract:
Detecting trajectory anomalies is a vital task in modern Intelligent Transportation Systems (ITS), enabling the identification of unsafe, inefficient, or irregular travel behaviours. While deep learning has emerged as the dominant approach, several key challenges remain unresolved. First, sub-trajectory anomaly detection, capable of pinpointing the precise segments where anomalies occur, remains underexplored compared to whole-trajectory analysis. Second, many existing methods depend on carefully tuned thresholds, limiting their adaptability in real-world applications. Moreover, the irregular sampling of trajectory data and the presence of noise in training sets further degrade model performance, making it difficult to learn reliable representations of normal routes. To address these challenges, we propose a contrastive reinforcement learning framework for online trajectory anomaly detection, CroTad. Our method is threshold-free and robust to noisy, irregularly sampled data. By incorporating contrastive learning, CroTad learns to extract diverse normal travel patterns for different itineraries and effectively distinguish anomalous behaviours at both sub-trajectory and point levels. The detection module leverages deep reinforcement learning to perform online, real-time anomaly scoring, enabling timely and fine-grained identification of abnormal segments. Extensive experiments on two real-world datasets demonstrate the effectiveness and robustness of our framework across various evaluation scenarios.
Authors:Carolina Gallardo-Pavesi, Yaime Fernández, Javier E. Soto, Cecilia Hernández, Miguel Figueroa
Title: A streaming algorithm and hardware accelerator for top-K flow detection in network traffic
Abstract:
Identifying the largest K flows in network traffic is an important task for applications such as flow scheduling and anomaly detection, which aim to improve network efficiency and security. However, accurately estimating flow frequencies is challenging due to the large number of flows and increasing network speeds. Hardware accelerators are often used in this endeavor due to their high computational power, but their limited amount of on-chip memory constrains their performance. Various sketch-based algorithms have been proposed to estimate properties of traffic such as frequency, with lower memory usage and theoretical bounds, but they often under perform with the skewed distribution of network traffic. In this work, we propose an algorithm for top-K identification using a modified TowerSketch and a priority queue array. Tested on real traffic traces, we identify the top-K flows, with K up to 32,768, with a precision of more than 0.94, and estimate their frequency with an average relative error under 1.96%. We designed and implemented an accelerator for this algorithm on an AMD VirtexU280 UltraScale+ FPGA, which processes one packet per cycle at392 MHz, reaching a minimum line rate of more than 200 Gbps.
Authors:Kadir-Kaan Özer, René Ebeling, Markus Enzweiler
Title: STREAM-VAE: Dual-Path Routing for Slow and Fast Dynamics in Vehicle Telemetry Anomaly Detection
Abstract:
Automotive telemetry data exhibits slow drifts and fast spikes, often within the same sequence, making reliable anomaly detection challenging. Standard reconstruction-based methods, including sequence variational autoencoders (VAEs), use a single latent process and therefore mix heterogeneous time scales, which can smooth out spikes or inflate variances and weaken anomaly separation. In this paper, we present STREAM-VAE, a variational autoencoder for anomaly detection in automotive telemetry time-series data. Our model uses a dual-path encoder to separate slow drift and fast spike signal dynamics, and a decoder that represents transient deviations separately from the normal operating pattern. STREAM-VAE is designed for deployment, producing stable anomaly scores across operating modes for both in-vehicle monitors and backend fleet analytics. Experiments on an automotive telemetry dataset and the public SMD benchmark show that explicitly separating drift and spike dynamics improves robustness compared to strong forecasting, attention, graph, and VAE baselines.
Authors:Heng Zhao, Ruoyu Wang, Tianhang Zheng, Qi Li, Bo Lv, Yuyi Wang, Wenliang Du
Title: From Topology to Behavioral Semantics: Enhancing BGP Security by Understanding BGP's Language with LLMs
Abstract:
The trust-based nature of Border Gateway Protocol (BGP) makes it vulnerable to disruptions like prefix hijacking and misconfigurations, threatening routing stability. Traditional detection relies on manual inspection with limited scalability. Machine/Deep Learning (M/DL) approaches automate detection but suffer from suboptimal precision, limited generalizability, and high retraining costs. This is because existing methods focus on topological structures rather than comprehensive semantic characteristics of Autonomous Systems (ASes), often misinterpreting functionally similar but topologically distant ASes. To address this, we propose BGPShield, an anomaly detection framework built on LLM embeddings that captures the Behavior Portrait and Routing Policy Rationale of each AS beyond topology, such as operational scale and global role. We propose a segment-wise aggregation scheme to transform AS descriptions into LLM representations without information loss, and a lightweight contrastive reduction network to compress them into a semantic-consistent version. Using these representations, our AR-DTW algorithm aligns and accumulates semantic distances to reveal behavioral inconsistencies. Evaluated on 16 real-world datasets, BGPShield detects 100% of verified anomalies with a false discovery rate below 5%. Notably, the employed LLMs were released prior to evaluation events, verifying generalizability. Furthermore, BGPShield constructs representations for unseen ASes within one second, significantly outperforming BEAM which demands costly retraining (averaging 65 hours).
Authors:Maan Al Balkhi, Kordian Gontarska, Marko Harasic, Adrian Paschke
Title: Neural Network-Powered Finger-Drawn Biometric Authentication
Abstract:
This paper investigates neural network-based biometric authentication using finger-drawn digits on touchscreen devices. We evaluated CNN and autoencoder architectures for user authentication through simple digit patterns (0-9) traced with finger input. Twenty participants contributed 2,000 finger-drawn digits each on personal touchscreen devices. We compared two CNN architectures: a modified Inception-V1 network and a lightweight shallow CNN for mobile environments. Additionally, we examined Convolutional and Fully Connected autoencoders for anomaly detection. Both CNN architectures achieved ~89% authentication accuracy, with the shallow CNN requiring fewer parameters. Autoencoder approaches achieved ~75% accuracy. The results demonstrate that finger-drawn symbol authentication provides a viable, secure, and user-friendly biometric solution for touchscreen devices. This approach can be integrated with existing pattern-based authentication methods to create multi-layered security systems for mobile applications.
Authors:Everton de Matos, Hazaa Alameri, Willian Tessaro Lunardi, Martin Andreoni, Eduardo Viegas
Title: Toward an Intrusion Detection System for a Virtualization Framework in Edge Computing
Abstract:
Edge computing pushes computation closer to data sources, but it also expands the attack surface on resource-constrained devices. This work explores the deployment of the Lightweight Deep Anomaly Detection for Network Traffic (LDPI) integrated as an isolated service within a virtualization framework that provides security by separation. LDPI, adopting a Deep Learning approach, achieved strong training performance, reaching AUC 0.999 (5-fold mean) across the evaluated packet-window settings (n, l), with high F1 at conservative operating points. We deploy LDPI on a laptop-class edge node and evaluate its overhead and performance in two scenarios: (i) comparing it with representative signature-based IDSes (Suricata and Snort) deployed on the same framework under identical workloads, and (ii) while detecting network flooding attacks.
Authors:Gen Yang, Zhipeng Deng, Junfeng Man
Title: CADIC: Continual Anomaly Detection Based on Incremental Coreset
Abstract:
The primary objective of Continual Anomaly Detection (CAD) is to learn the normal patterns of new tasks under dynamic data distribution assumptions while mitigating catastrophic forgetting. Existing embedding-based CAD approaches continuously update a memory bank with new embeddings to adapt to sequential tasks. However, these methods require constructing class-specific sub-memory banks for each task, which restricts their flexibility and scalability. To address this limitation, we propose a novel CAD framework where all tasks share a unified memory bank. During training, the method incrementally updates embeddings within a fixed-size coreset, enabling continuous knowledge acquisition from sequential tasks without task-specific memory fragmentation. In the inference phase, anomaly scores are computed via a nearest-neighbor matching mechanism, achieving state-of-the-art detection accuracy. We validate the method through comprehensive experiments on MVTec AD and Visa datasets. Results show that our approach outperforms existing baselines, achieving average image-level AUROC scores of 0.972 (MVTec AD) and 0.891 (Visa). Notably, on a real-world electronic paper dataset, it demonstrates 100% accuracy in anomaly sample detection, confirming its robustness in practical scenarios. The implementation will be open-sourced on GitHub.
Authors:Binayak Kara, Ujjwal Sahua, Ciza Thomas, Jyoti Prakash Sahoo
Title: HybridGuard: Enhancing Minority-Class Intrusion Detection in Dew-Enabled Edge-of-Things Networks
Abstract:
Securing Dew-Enabled Edge-of-Things (EoT) networks against sophisticated intrusions is a critical challenge. This paper presents HybridGuard, a framework that integrates machine learning and deep learning to improve intrusion detection. HybridGuard addresses data imbalance through mutual information based feature selection, ensuring that the most relevant features are used to improve detection performance, especially for minority attack classes. The framework leverages Wasserstein Conditional Generative Adversarial Networks with Gradient Penalty (WCGAN-GP) to further reduce class imbalance and enhance detection precision. It adopts a two-phase architecture called DualNetShield to support advanced traffic analysis and anomaly detection, improving the granular identification of threats in complex EoT environments. HybridGuard is evaluated on the UNSW-NB15, CIC-IDS-2017, and IOTID20 datasets, where it demonstrates strong performance across diverse attack scenarios and outperforms existing solutions in adapting to evolving cybersecurity threats. This approach establishes HybridGuard as an effective tool for protecting EoT networks against modern intrusions.
Authors:Alexander Bauer, Klaus-Robert Müller
Title: Noise & pattern: identity-anchored Tikhonov regularization for robust structural anomaly detection
Abstract:
Anomaly detection plays a pivotal role in automated industrial inspection, aiming to identify subtle or rare defects in otherwise uniform visual patterns. As collecting representative examples of all possible anomalies is infeasible, we tackle structural anomaly detection using a self-supervised autoencoder that learns to repair corrupted inputs. To this end, we introduce a corruption model that injects artificial disruptions into training images to mimic structural defects. While reminiscent of denoising autoencoders, our approach differs in two key aspects. First, instead of unstructured i.i.d.\ noise, we apply structured, spatially coherent perturbations that make the task a hybrid of segmentation and inpainting. Second, and counterintuitively, we add and preserve Gaussian noise on top of the occlusions, which acts as a Tikhonov regularizer anchoring the Jacobian of the reconstruction function toward identity. This identity-anchored regularization stabilizes reconstruction and further improves both detection and segmentation accuracy. On the MVTec AD benchmark, our method achieves state-of-the-art results (I/P-AUROC: 99.9/99.4), supporting our theoretical framework and demonstrating its practical relevance for automatic inspection.
Authors:Yulim So, Seokho Kang
Title: AnoStyler: Text-Driven Localized Anomaly Generation via Lightweight Style Transfer
Abstract:
Anomaly generation has been widely explored to address the scarcity of anomaly images in real-world data. However, existing methods typically suffer from at least one of the following limitations, hindering their practical deployment: (1) lack of visual realism in generated anomalies; (2) dependence on large amounts of real images; and (3) use of memory-intensive, heavyweight model architectures. To overcome these limitations, we propose AnoStyler, a lightweight yet effective method that frames zero-shot anomaly generation as text-guided style transfer. Given a single normal image along with its category label and expected defect type, an anomaly mask indicating the localized anomaly regions and two-class text prompts representing the normal and anomaly states are generated using generalizable category-agnostic procedures. A lightweight U-Net model trained with CLIP-based loss functions is used to stylize the normal image into a visually realistic anomaly image, where anomalies are localized by the anomaly mask and semantically aligned with the text prompts. Extensive experiments on the MVTec-AD and VisA datasets show that AnoStyler outperforms existing anomaly generation methods in generating high-quality and diverse anomaly images. Furthermore, using these generated anomalies helps enhance anomaly detection performance.
Authors:Yuyang Liu, Jingjing Cai, Jiayi Ren, Peng Zhou, Danyang Zhang, Yin Du, Shijian Li
Title: Kunlun Anomaly Troubleshooter: Enabling Kernel-Level Anomaly Detection and Causal Reasoning for Large Model Distributed Inference
Abstract:
Anomaly troubleshooting for large model distributed inference (LMDI) remains a critical challenge. Resolving anomalies such as inference performance degradation or latency jitter in distributed system demands significant manual efforts from domain experts, resulting in extremely time-consuming diagnosis processes with relatively low accuracy. In this paper, we introduce Kunlun Anomaly Troubleshooter (KAT), the first anomaly troubleshooting framework tailored for LMDI. KAT addresses this problem through two core innovations. First, KAT exploits the synchronicity and consistency of GPU workers, innovatively leverages function trace data to precisely detect kernel-level anomalies and associated hardware components at nanosecond resolution. Second, KAT integrates these detection results into a domain-adapted LLM, delivering systematic causal reasoning and natural language interpretation of complex anomaly symptoms. Evaluations conducted in Alibaba Cloud Service production environment indicate that KAT achieves over 0.884 precision and 0.936 recall in anomaly detection, providing detail anomaly insights that significantly narrow down the diagnostic scope and improve both the efficiency and success rate of troubleshooting.
Authors:Berk Iskar, Michael Taynnan Barros
Title: Multiscale Astrocyte Network Calcium Dynamics for Biologically Plausible Intelligence in Anomaly Detection
Abstract:
Network anomaly detection systems encounter several challenges with traditional detectors trained offline. They become susceptible to concept drift and new threats such as zero-day or polymorphic attacks. To address this limitation, we propose a Ca$^{2+}$-modulated learning framework that draws inspiration from astrocytic Ca$^{2+}$ signaling in the brain, where rapid, context-sensitive adaptation enables robust information processing. Our approach couples a multicellular astrocyte dynamics simulator with a deep neural network (DNN). The simulator models astrocytic Ca$^{2+}$ dynamics through three key mechanisms: IP$_3$-mediated Ca$^{2+}$ release, SERCA pump uptake, and conductance-aware diffusion through gap junctions between cells. Evaluation of our proposed network on CTU-13 (Neris) network traffic data demonstrates the effectiveness of our biologically plausible approach. The Ca$^{2+}$-gated model outperforms a matched baseline DNN, achieving up to $\sim$98\% accuracy with reduced false positives and negatives across multiple train/test splits. Importantly, this improved performance comes with negligible runtime overhead once Ca$^{2+}$ trajectories are precomputed. While demonstrated here for cybersecurity applications, this Ca$^{2+}$-modulated learning framework offers a generic solution for streaming detection tasks that require rapid, biologically grounded adaptation to evolving data patterns.
Authors:Victor Mattos, João Henrique Schmidt, Amit Bhaya, Alan Oliveira de Sá, Daniel Sadoc Menasché, Gaurav Srivastava
Title: Design and Detection of Covert Man-in-the-Middle Cyberattacks on Water Treatment Plants
Abstract:
Cyberattacks targeting critical infrastructures, such as water treatment facilities, represent significant threats to public health, safety, and the environment. This paper introduces a systematic approach for modeling and assessing covert man-in-the-middle (MitM) attacks that leverage system identification techniques to inform the attack design. We focus on the attacker's ability to deploy a covert controller, and we evaluate countermeasures based on the Process-Aware Stealthy Attack Detection (PASAD) anomaly detection method. Using a second-order linear time-invariant with time delay model, representative of water treatment dynamics, we design and simulate stealthy attacks. Our results highlight how factors such as system noise and inaccuracies in the attacker's plant model influence the attack's stealthiness, underscoring the need for more robust detection strategies in industrial control environments.
Authors:Mei-Chin Pang, Suraj Adhikari, Takuma Kasahara, Nagihiro Haba, Saneyuki Ohno
Title: An Open-Access Benchmark of Statistical and Machine-Learning Anomaly Detection Methods for Battery Applications
Abstract:
Battery safety is critical in applications ranging from consumer electronics to electric vehicles and aircraft, where undetected anomalies could trigger safety hazards or costly downtime. In this study, we present OSBAD as an open-source benchmark for anomaly detection frameworks in battery applications. By benchmarking 15 diverse algorithms encompassing statistical, distance-based, and unsupervised machine-learning methods, OSBAD enables a systematic comparison of anomaly detection methods across heterogeneous datasets. In addition, we demonstrate how a physics- and statistics-informed feature transformation workflow enhances anomaly separability by decomposing collective anomalies into point anomalies. To address a major bottleneck in unsupervised anomaly detection due to incomplete labels, we propose a Bayesian optimization pipeline that facilitates automated hyperparameter tuning based on transfer-learning and regression proxies. Through validation on datasets covering both liquid and solid-state chemistries, we further demonstrate the cross-chemistry generalization capability of OSBAD to identify irregularities across different electrochemical systems. By making benchmarking database with open-source reproducible anomaly detection workflows available to the community, OSBAD establishes a unified foundation for developing safe, scalable, and transferable anomaly detection tools in battery analytics. This research underscores the significance of physics- and statistics-informed feature engineering as well as model selection with probabilistic hyperparameter tuning, in advancing trustworthy, data-driven diagnostics for safety-critical energy systems.
Authors:Md. Abid Hasan Rafi, Mst. Fatematuj Johora, Pankaj Bhowmik
Title: SliceVision-F2I: A Synthetic Feature-to-Image Dataset for Visual Pattern Representation on Network Slices
Abstract:
The emergence of 5G and 6G networks has established network slicing as a significant part of future service-oriented architectures, demanding refined identification methods supported by robust datasets. The article presents SliceVision-F2I, a dataset of synthetic samples for studying feature visualization in network slicing for next-generation networking systems. The dataset transforms multivariate Key Performance Indicator (KPI) vectors into visual representations through four distinct encoding methods: physically inspired mappings, Perlin noise, neural wallpapering, and fractal branching. For each encoding method, 30,000 samples are generated, each comprising a raw KPI vector and a corresponding RGB image at low-resolution pixels. The dataset simulates realistic and noisy network conditions to reflect operational uncertainties and measurement imperfections. SliceVision-F2I is suitable for tasks involving visual learning, network state classification, anomaly detection, and benchmarking of image-based machine learning techniques applied to network data. The dataset is publicly available and can be reused in various research contexts, including multivariate time series analysis, synthetic data generation, and feature-to-image transformations.
Authors:Yousuf Ahmed Siddiqui, Sufiyaan Usmani, Umer Tariq, Jawwad Ahmed Shamsi, Muhammad Burhan Khan
Title: TRACES: Temporal Recall with Contextual Embeddings for Real-Time Video Anomaly Detection
Abstract:
Video anomalies often depend on contextual information available and temporal evolution. Non-anomalous action in one context can be anomalous in some other context. Most anomaly detectors, however, do not notice this type of context, which seriously limits their capability to generalize to new, real-life situations. Our work addresses the context-aware zero-shot anomaly detection challenge, in which systems need to learn adaptively to detect new events by correlating temporal and appearance features with textual traces of memory in real time. Our approach defines a memory-augmented pipeline, correlating temporal signals with visual embeddings using cross-attention, and real-time zero-shot anomaly classification by contextual similarity scoring. We achieve 90.4\% AUC on UCF-Crime and 83.67\% AP on XD-Violence, a new state-of-the-art among zero-shot models. Our model achieves real-time inference with high precision and explainability for deployment. We show that, by fusing cross-attention temporal fusion and contextual memory, we achieve high fidelity anomaly detection, a step towards the applicability of zero-shot models in real-world surveillance and infrastructure monitoring.
Authors:Marios Impraimakis, Evangelia Nektaria Palkanoglou
Title: A generative adversarial network optimization method for damage detection and digital twinning by deep AI fault learning: Z24 Bridge structural health monitoring benchmark validation
Abstract:
The optimization-based damage detection and damage state digital twinning capabilities are examined here of a novel conditional-labeled generative adversarial network methodology. The framework outperforms current approaches for fault anomaly detection as no prior information is required for the health state of the system: a topic of high significance for real-world applications. Specifically, current artificial intelligence-based digital twinning approaches suffer from the uncertainty related to obtaining poor predictions when a low number of measurements is available, physics knowledge is missing, or when the damage state is unknown. To this end, an unsupervised framework is examined and validated rigorously on the benchmark structural health monitoring measurements of Z24 Bridge: a post-tensioned concrete highway bridge in Switzerland. In implementing the approach, firstly, different same damage-level measurements are used as inputs, while the model is forced to converge conditionally to two different damage states. Secondly, the process is repeated for a different group of measurements. Finally, the convergence scores are compared to identify which one belongs to a different damage state. The process for both healthy-to-healthy and damage-to-healthy input data creates, simultaneously, measurements for digital twinning purposes at different damage states, capable of pattern recognition and machine learning data generation. Further to this process, a support vector machine classifier and a principal component analysis procedure is developed to assess the generated and real measurements of each damage category, serving as a secondary new dynamics learning indicator in damage scenarios. Importantly, the approach is shown to capture accurately damage over healthy measurements, providing a powerful tool for vibration-based system-level monitoring and scalable infrastructure resilience.
Authors:Rodrigo Matos Carnier, Laura Lahesoo, Kensuke Fukuda
Title: Binary Anomaly Detection in Streaming IoT Traffic under Concept Drift
Abstract:
With the growing volume of Internet of Things (IoT) network traffic, machine learning (ML)-based anomaly detection is more relevant than ever. Traditional batch learning models face challenges such as high maintenance and poor adaptability to rapid anomaly changes, known as concept drift. In contrast, streaming learning integrates online and incremental learning, enabling seamless updates and concept drift detection to improve robustness. This study investigates anomaly detection in streaming IoT traffic as binary classification, comparing batch and streaming learning approaches while assessing the limitations of current IoT traffic datasets. We simulated heterogeneous network data streams by carefully mixing existing datasets and streaming the samples one by one. Our results highlight the failure of batch models to handle concept drift, but also reveal persisting limitations of current datasets to expose model limitations due to low traffic heterogeneity. We also investigated the competitiveness of tree-based ML algorithms, well-known in batch anomaly detection, and compared it to non-tree-based ones, confirming the advantages of the former. Adaptive Random Forest achieved F1-score of 0.990 $\pm$ 0.006 at one-third the computational cost of its batch counterpart. Hoeffding Adaptive Tree reached F1-score of 0.910 $\pm$ 0.007, reducing computational cost by four times, making it a viable choice for online applications despite a slight trade-off in stability.
Authors:Reham Faqehi, Haya Alhuraib, Hamad Saiari, Zyad Bamigdad
Title: The Impact of Data Compression in Real-Time and Historical Data Acquisition Systems on the Accuracy of Analytical Solutions
Abstract:
In industrial and IoT environments, massive amounts of real-time and historical process data are continuously generated and archived. With sensors and devices capturing every operational detail, the volume of time-series data has become a critical challenge for storage and processing systems. Efficient data management is essential to ensure scalability, cost-effectiveness, and timely analytics. To minimize storage expenses and optimize performance, data compression algorithms are frequently utilized in data historians and acquisition systems. However, compression comes with trade-offs that may compromise the accuracy and reliability of engineering analytics that depend on this compressed data. Understanding these trade-offs is essential for developing data strategies that support both operational efficiency and accurate, reliable analytics. This paper assesses the relation of common compression mechanisms used in real-time and historical data systems and the accuracy of analytical solutions, including statistical analysis, anomaly detection, and machine learning models. Through theoretical analysis, simulated signal compression, and empirical assessment, we illustrate that excessive compression can lose critical patterns, skew statistical measures, and diminish predictive accuracy. The study suggests optimum methods and best practices for striking a compromise between analytical integrity and compression efficiency.
Authors:Brooke Elizabeth Kidmose, Andreas Brasen Kidmose, Cliff C. Zou
Title: A Critical Roadmap to Driver Authentication via CAN Bus: Dataset Review, Introduction of the Kidmose CANid Dataset (KCID), and Proof of Concept
Abstract:
Modern vehicles remain vulnerable to unauthorized use and theft despite traditional security measures including immobilizers and keyless entry systems. Criminals exploit vulnerabilities in Controller Area Network (CAN) bus systems to bypass authentication mechanisms, while social media trends have expanded auto theft to include recreational joyriding by underage drivers. Driver authentication via CAN bus data offers a promising additional layer of defense-in-depth protection, but existing open-access driver fingerprinting datasets suffer from critical limitations including reliance on decoded diagnostic data rather than raw CAN traffic, artificial fixed-route experimental designs, insufficient sampling rates, and lack of demographic information. This paper provides a comprehensive review of existing open-access driver fingerprinting datasets, analyzing their strengths and limitations to guide practitioners in dataset selection. We introduce the Kidmose CANid Dataset (KCID), which addresses these fundamental shortcomings by providing raw CAN bus data from 16 drivers across four vehicles, including essential demographic information and both daily driving and controlled fixed-route data. Beyond dataset contributions, we present a driver authentication anti-theft framework and implement a proof-of-concept prototype on a single-board computer. Through live road trials with an unaltered passenger vehicle, we demonstrate the practical feasibility of CAN bus-based driver authentication anti-theft systems. Finally, we explore diverse applications of KCID beyond driver authentication, including driver profiling for insurance and safety assessments, mechanical anomaly detection, young driver monitoring, and impaired driving detection. This work provides researchers with both the data and methodological foundation necessary to develop robust, deployable driver authentication systems...
Authors:Amir Jmal, Chaima Chtourou, Mahdi Louati, Abdelaziz Kallel, Houda Khmila
Title: Olive Tree Satellite Image Segmentation Based On SAM and Multi-Phase Refinement
Abstract:
In the context of proven climate change, maintaining olive biodiversity through early anomaly detection and treatment using remote sensing technology is crucial, offering effective management solutions. This paper presents an innovative approach to olive tree segmentation from satellite images. By leveraging foundational models and advanced segmentation techniques, the study integrates the Segment Anything Model (SAM) to accurately identify and segment olive trees in agricultural plots. The methodology includes SAM segmentation and corrections based on trees alignement in the field and a learanble constraint about the shape and the size. Our approach achieved a 98\% accuracy rate, significantly surpassing the initial SAM performance of 82\%.
Authors:Zeyue Zhang, Lin Song, Erkang Bao, Xiaoling Lv, Xinyue Wang
Title: ATM-GAD: Adaptive Temporal Motif Graph Anomaly Detection for Financial Transaction Networks
Abstract:
Financial fraud detection is essential to safeguard billions of dollars, yet the intertwined entities and fast-changing transaction behaviors in modern financial systems routinely defeat conventional machine learning models. Recent graph-based detectors make headway by representing transactions as networks, but they still overlook two fraud hallmarks rooted in time: (1) temporal motifs--recurring, telltale subgraphs that reveal suspicious money flows as they unfold--and (2) account-specific intervals of anomalous activity, when fraud surfaces only in short bursts unique to each entity. To exploit both signals, we introduce ATM-GAD, an adaptive graph neural network that leverages temporal motifs for financial anomaly detection. A Temporal Motif Extractor condenses each account's transaction history into the most informative motifs, preserving both topology and temporal patterns. These motifs are then analyzed by dual-attention blocks: IntraA reasons over interactions within a single motif, while InterA aggregates evidence across motifs to expose multi-step fraud schemes. In parallel, a differentiable Adaptive Time-Window Learner tailors the observation window for every node, allowing the model to focus precisely on the most revealing time slices. Experiments on four real-world datasets show that ATM-GAD consistently outperforms seven strong anomaly-detection baselines, uncovering fraud patterns missed by earlier methods.
Authors:Kenji Fukushima, Syo Kamata
Title: Topological Uncertainty for Anomaly Detection in the Neural-network EoS Inference with Neutron Star Data
Abstract:
We study the performance of the Topological Uncertainty (TU) constructed with a trained feedforward neural network (FNN) for Anomaly Detection. Generally, meaningful information can be stored in the hidden layers of the trained FNN, and the TU implementation is one tractable recipe to extract buried information by means of the Topological Data Analysis. We explicate the concept of the TU and the numerical procedures. Then, for a concrete demonstration of the performance test, we employ the Neutron Star data used for inference of the equation of state (EoS). For the training dataset consisting of the input (Neutron Star data) and the output (EoS parameters), we can compare the inferred EoSs and the exact answers to classify the data with the label $k$. The subdataset with $k=0$ leads to the normal inference for which the inferred EoS approximates the answer well, while the subdataset with $k=1$ ends up with the unsuccessful inference. Once the TU is prepared based on the $k$-labled subdatasets, we introduce the cross-TU to quantify the uncertainty of characterizing the $k$-labeled data with the label $j$. The anomaly or unsuccessful inference is correctly detected if the cross-TU for $j=k=1$ is smaller than that for $j=0$ and $k=1$. In our numerical experiment, for various input data, we calculate the cross-TU and estimate the performance of Anomaly Detection. We find that performance depends on FNN hyperparameters, and the success rate of Anomaly Detection exceeds $90\%$ in the best case. We finally discuss further potential of the TU application to retrieve the information hidden in the trained FNN.
Authors:Luhu Li, Bowen Lin, Mukhtiar Khan, Shujun Fu
Title: DNP-Guided Contrastive Reconstruction with a Reverse Distillation Transformer for Medical Anomaly Detection
Abstract:
Anomaly detection in medical images is challenging due to limited annotations and a domain gap compared to natural images. Existing reconstruction methods often rely on frozen pre-trained encoders, which limits adaptation to domain-specific features and reduces localization accuracy. Prototype-based learning offers interpretability and clustering benefits but suffers from prototype collapse, where few prototypes dominate training, harming diversity and generalization. To address this, we propose a unified framework combining a trainable encoder with prototype-guided reconstruction and a novel Diversity-Aware Alignment Loss. The trainable encoder, enhanced by a momentum branch, enables stable domain-adaptive feature learning. A lightweight Prototype Extractor mines informative normal prototypes to guide the decoder via attention for precise reconstruction. Our loss enforces balanced prototype use through diversity constraints and per-prototype normalization, effectively preventing collapse. Experiments on multiple medical imaging benchmarks show significant improvements in representation quality and anomaly localization, outperforming prior methods. Visualizations and prototype assignment analyses further validate the effectiveness of our anti-collapse mechanism and enhanced interpretability.
Authors:Mark Dorsett, Scott Mann, Jabed Chowdhury, Abdun Mahmood
Title: A Comprehensive Review of Denial of Wallet Attacks in Serverless Architectures
Abstract:
The Denial of Wallet (DoW) attack poses a unique and growing threat to serverless architectures that rely on Function-as-a-Service (FaaS) models, exploiting the cost structure of pay-as-you-go billing to financially burden application owners. Unlike traditional Denial of Service (DoS) attacks, which aim to exhaust resources and disrupt service availability, DoW attacks focus on escalating costs without impacting service operation. This review traces the evolution of DoW research, from initial awareness and attack classification to advancements in detection and mitigation strategies. Key developments include the categorisation of attack types-such as Blast DDoW, Continual Inconspicuous DDoW, and Background Chained DDoW-and the creation of simulation tools like DoWTS, which enable safe experimentation and data generation. Recent advancements highlight machine learning approaches, including systems like Gringotts and DoWNet, which leverage deep learning and anomaly detection to identify malicious traffic patterns. Although substantial progress has been made, challenges persist, notably the lack of real-world data and the need for adaptive billing models. This is the first comprehensive literature review dedicated strictly to Denial of Wallet attacks, providing an in-depth analysis of their financial impacts, attack techniques, mitigation strategies, and detection mechanisms within serverless computing. The paper also presents the first detailed examination of simulation and data generation tools used for DoW research, addressing a critical gap in existing cybersecurity literature. By synthesising these key areas, this study serves as a foundational resource for future research and industry efforts in securing pay-as-you-go cloud environments.
Authors:Dhruv D. Modi, Rong Pan
Title: Enhancing Transformer-Based Foundation Models for Time Series Forecasting via Bagging, Boosting and Statistical Ensembles
Abstract:
Time series foundation models (TSFMs) such as Lag-Llama, TimeGPT, Chronos, MOMENT, UniTS, and TimesFM have shown strong generalization and zero-shot capabilities for time series forecasting, anomaly detection, classification, and imputation. Despite these advantages, their predictions still suffer from variance, domain-specific bias, and limited uncertainty quantification when deployed on real operational data. This paper investigates a suite of statistical and ensemble-based enhancement techniques, including bootstrap-based bagging, regression-based stacking, prediction interval construction, statistical residual modeling, and iterative error feedback, to improve robustness and accuracy. Using the Belgium Electricity Short-Term Load Forecasting dataset as a case study, we demonstrate that the proposed hybrids consistently outperform standalone foundation models across multiple horizons. Regression-based ensembles achieve the lowest mean squared error; bootstrap aggregation markedly reduces long-context errors; residual modeling corrects systematic bias; and the resulting prediction intervals achieve near nominal coverage with widths shrinking as context length increases. The results indicate that integrating statistical reasoning with modern foundation models yields measurable gains in accuracy, reliability, and interpretability for real-world time series applications.
Authors:Cory Gardner, Byungseok Min, Tae-Hyuk Ahn
Title: Wavelet-Enhanced PaDiM for Industrial Anomaly Detection
Abstract:
Anomaly detection and localization in industrial images are essential for automated quality inspection. PaDiM, a prominent method, models the distribution of normal image features extracted by pre-trained Convolutional Neural Networks (CNNs) but reduces dimensionality through random channel selection, potentially discarding structured information. We propose Wavelet-Enhanced PaDiM (WE-PaDiM), which integrates Discrete Wavelet Transform (DWT) analysis with multi-layer CNN features in a structured manner. WE-PaDiM applies 2D DWT to feature maps from multiple backbone layers, selects specific frequency subbands (e.g., LL, LH, HL), spatially aligns them, and concatenates them channel-wise before modeling with PaDiM's multivariate Gaussian framework. This DWT-before-concatenation strategy provides a principled method for feature selection based on frequency content relevant to anomalies, leveraging multi-scale wavelet information as an alternative to random selection. We evaluate WE-PaDiM on the challenging MVTec AD dataset with multiple backbones (ResNet-18 and EfficientNet B0-B6). The method achieves strong performance in anomaly detection and localization, yielding average results of 99.32% Image-AUC and 92.10% Pixel-AUC across 15 categories with per-class optimized configurations. Our analysis shows that wavelet choices affect performance trade-offs: simpler wavelets (e.g., Haar) with detail subbands (HL or LH/HL/HH) often enhance localization, while approximation bands (LL) improve image-level detection. WE-PaDiM thus offers a competitive and interpretable alternative to random feature selection in PaDiM, achieving robust results suitable for industrial inspection with comparable efficiency.
Authors:Ehssan Mousavipour, Andrey Dimanchev, Majid Ghaderi
Title: Adaptive Anomaly Detection in Evolving Network Environments
Abstract:
Distribution shift, a change in the statistical properties of data over time, poses a critical challenge for deep learning anomaly detection systems. Existing anomaly detection systems often struggle to adapt to these shifts. Specifically, systems based on supervised learning require costly manual labeling, while those based on unsupervised learning rely on clean data, which is difficult to obtain, for shift adaptation. Both of these requirements are challenging to meet in practice. In this paper, we introduce NetSight, a framework for supervised anomaly detection in network data that continually detects and adapts to distribution shifts in an online manner. NetSight eliminates manual intervention through a novel pseudo-labeling technique and uses a knowledge distillation-based adaptation strategy to prevent catastrophic forgetting. Evaluated on three long-term network datasets, NetSight demonstrates superior adaptation performance compared to state-of-the-art methods that rely on manual labeling, achieving F1-score improvements of up to 11.72%. This proves its robustness and effectiveness in dynamic networks that experience distribution shifts over time.
Authors:Leonardo Aldo Alejandro Barberi, Linda Maria De Cave
Title: Topological Data Analysis for Unsupervised Anomaly Detection and Customer Segmentation on Banking Data
Abstract:
This paper introduces advanced techniques of Topological Data Analysis (TDA) for unsupervised anomaly detection and customer segmentation in banking data. Using the Mapper algorithm and persistent homology, we develop unsupervised procedures that uncover meaningful patterns in customers' banking data by exploiting topological information. The framework we present in this paper yields actionable insights that combine the abstract mathematical subject of topology with real-life use cases that are useful in industry.
Authors:Rong Pan, Hongyue Sun, Xiaoyu Chen, Giulia Pedrielli, Jiapeng Huang
Title: Human Digital Twin: Data, Models, Applications, and Challenges
Abstract:
Human digital twins (HDTs) are dynamic, data-driven virtual representations of individuals, continuously updated with multimodal data to simulate, monitor, and predict health trajectories. By integrating clinical, physiological, behavioral, and environmental inputs, HDTs enable personalized diagnostics, treatment planning, and anomaly detection. This paper reviews current approaches to HDT modeling, with a focus on statistical and machine learning techniques, including recent advances in anomaly detection and failure prediction. It also discusses data integration, computational methods, and ethical, technological, and regulatory challenges in deploying HDTs for precision healthcare.
Authors:Juhi Soni, Markus Lange-Hegermann, Stefan Windmann
Title: Physics-Informed Diffusion Models for Unsupervised Anomaly Detection in Multivariate Time Series
Abstract:
We propose an unsupervised anomaly detection approach based on a physics-informed diffusion model for multivariate time series data. Over the past years, diffusion model has demonstrated its effectiveness in forecasting, imputation, generation, and anomaly detection in the time series domain. In this paper, we present a new approach for learning the physics-dependent temporal distribution of multivariate time series data using a weighted physics-informed loss during diffusion model training. A weighted physics-informed loss is constructed using a static weight schedule. This approach enables a diffusion model to accurately approximate underlying data distribution, which can influence the unsupervised anomaly detection performance. Our experiments on synthetic and real-world datasets show that physics-informed training improves the F1 score in anomaly detection; it generates better data diversity and log-likelihood. Our model outperforms baseline approaches, additionally, it surpasses prior physics-informed work and purely data-driven diffusion models on a synthetic dataset and one real-world dataset while remaining competitive on others.
Authors:Muyan Anna Li, Aditi Gautam
Title: Segmented Confidence Sequences and Multi-Scale Adaptive Confidence Segments for Anomaly Detection in Nonstationary Time Series
Abstract:
As time series data become increasingly prevalent in domains such as manufacturing, IT, and infrastructure monitoring, anomaly detection must adapt to nonstationary environments where statistical properties shift over time. Traditional static thresholds are easily rendered obsolete by regime shifts, concept drift, or multi-scale changes. To address these challenges, we introduce and empirically evaluate two novel adaptive thresholding frameworks: Segmented Confidence Sequences (SCS) and Multi-Scale Adaptive Confidence Segments (MACS). Both leverage statistical online learning and segmentation principles for local, contextually sensitive adaptation, maintaining guarantees on false alarm rates even under evolving distributions. Our experiments across Wafer Manufacturing benchmark datasets show significant F1-score improvement compared to traditional percentile and rolling quantile approaches. This work demonstrates that robust, statistically principled adaptive thresholds enable reliable, interpretable, and timely detection of diverse real-world anomalies.
Authors:Meital Shlezinger, Shay Akirav, Lei Zhou, Liang Guo, Avi Kessel, Guoliang Li
Title: Leveraging large language models for SQL behavior-based database intrusion detection
Abstract:
Database systems are extensively used to store critical data across various domains. However, the frequency of abnormal database access behaviors, such as database intrusion by internal and external attacks, continues to rise. Internal masqueraders often have greater organizational knowledge, making it easier to mimic employee behavior effectively. In contrast, external masqueraders may behave differently due to their lack of familiarity with the organization. Current approaches lack the granularity needed to detect anomalies at the operational level, frequently misclassifying entire sequences of operations as anomalies, even though most operations are likely to represent normal behavior. On the other hand, some anomalous behaviors often resemble normal activities, making them difficult for existing detection methods to identify. This paper introduces a two-tiered anomaly detection approach for Structured Query Language (SQL) using the Bidirectional Encoder Representations from Transformers (BERT) model, specifically DistilBERT, a more efficient, pre-trained version. Our method combines both unsupervised and supervised machine learning techniques to accurately identify anomalous activities while minimizing the need for data labeling. First, the unsupervised method uses ensemble anomaly detectors that flag embedding vectors distant from learned normal patterns of typical user behavior across the database (out-of-scope queries). Second, the supervised method uses fine-tuned transformer-based models to detect internal attacks with high precision (in-scope queries), using role-labeled classification, even on limited labeled SQL data. Our findings make a significant contribution by providing an effective solution for safeguarding critical database systems from sophisticated threats.
Authors:Dongwei Ji, Bingzhang Hu, Yi Zhou
Title: AutoIAD: Manager-Driven Multi-Agent Collaboration for Automated Industrial Anomaly Detection
Abstract:
Industrial anomaly detection (IAD) is critical for manufacturing quality control, but conventionally requires significant manual effort for various application scenarios. This paper introduces AutoIAD, a multi-agent collaboration framework, specifically designed for end-to-end automated development of industrial visual anomaly detection. AutoIAD leverages a Manager-Driven central agent to orchestrate specialized sub-agents (including Data Preparation, Data Loader, Model Designer, Trainer) and integrates a domain-specific knowledge base, which intelligently handles the entire pipeline using raw industrial image data to develop a trained anomaly detection model. We construct a comprehensive benchmark using MVTec AD datasets to evaluate AutoIAD across various LLM backends. Extensive experiments demonstrate that AutoIAD significantly outperforms existing general-purpose agentic collaboration frameworks and traditional AutoML frameworks in task completion rate and model performance (AUROC), while effectively mitigating issues like hallucination through iterative refinement. Ablation studies further confirm the crucial roles of the Manager central agent and the domain knowledge base module in producing robust and high-quality IAD solutions.
Authors:John D. Kelleher, Matthew Nicholson, Rahul Agrahari, Clare Conran
Title: Active Learning and Transfer Learning for Anomaly Detection in Time-Series Data
Abstract:
This paper examines the effectiveness of combining active learning and transfer learning for anomaly detection in cross-domain time-series data. Our results indicate that there is an interaction between clustering and active learning and in general the best performance is achieved using a single cluster (in other words when clustering is not applied). Also, we find that adding new samples to the training set using active learning does improve model performance but that in general, the rate of improvement is slower than the results reported in the literature suggest. We attribute this difference to an improved experimental design where distinct data samples are used for the sampling and testing pools. Finally, we assess the ceiling performance of transfer learning in combination with active learning across several datasets and find that performance does initially improve but eventually begins to tail off as more target points are selected for inclusion in training. This tail-off in performance may indicate that the active learning process is doing a good job of sequencing data points for selection, pushing the less useful points towards the end of the selection process and that this tail-off occurs when these less useful points are eventually added. Taken together our results indicate that active learning is effective but that the improvement in model performance follows a linear flat function concerning the number of points selected and labelled.
Authors:Moutaz Bellah Bentrad, Adel Ghoggal, Tahar Bahi, Abderaouf Bahi
Title: GNN-ASE: Graph-Based Anomaly Detection and Severity Estimation in Three-Phase Induction Machines
Abstract:
The diagnosis of induction machines has traditionally relied on model-based methods that require the development of complex dynamic models, making them difficult to implement and computationally expensive. To overcome these limitations, this paper proposes a model-free approach using Graph Neural Networks (GNNs) for fault diagnosis in induction machines. The focus is on detecting multiple fault types -- including eccentricity, bearing defects, and broken rotor bars -- under varying severity levels and load conditions. Unlike traditional approaches, raw current and vibration signals are used as direct inputs, eliminating the need for signal preprocessing or manual feature extraction. The proposed GNN-ASE model automatically learns and extracts relevant features from raw inputs, leveraging the graph structure to capture complex relationships between signal types and fault patterns. It is evaluated for both individual fault detection and multi-class classification of combined fault conditions. Experimental results demonstrate the effectiveness of the proposed model, achieving 92.5\% accuracy for eccentricity defects, 91.2\% for bearing faults, and 93.1\% for broken rotor bar detection. These findings highlight the model's robustness and generalization capability across different operational scenarios. The proposed GNN-based framework offers a lightweight yet powerful solution that simplifies implementation while maintaining high diagnostic performance. It stands as a promising alternative to conventional model-based diagnostic techniques for real-world induction machine monitoring and predictive maintenance.
Authors:Jiaping Cao, Kangkang Zhou, Juan Du
Title: HyPCV-Former: Hyperbolic Spatio-Temporal Transformer for 3D Point Cloud Video Anomaly Detection
Abstract:
Video anomaly detection is a fundamental task in video surveillance, with broad applications in public safety and intelligent monitoring systems. Although previous methods leverage Euclidean representations in RGB or depth domains, such embeddings are inherently limited in capturing hierarchical event structures and spatio-temporal continuity. To address these limitations, we propose HyPCV-Former, a novel hyperbolic spatio-temporal transformer for anomaly detection in 3D point cloud videos. Our approach first extracts per-frame spatial features from point cloud sequences via point cloud extractor, and then embeds them into Lorentzian hyperbolic space, which better captures the latent hierarchical structure of events. To model temporal dynamics, we introduce a hyperbolic multi-head self-attention (HMHA) mechanism that leverages Lorentzian inner products and curvature-aware softmax to learn temporal dependencies under non-Euclidean geometry. Our method performs all feature transformations and anomaly scoring directly within full Lorentzian space rather than via tangent space approximation. Extensive experiments demonstrate that HyPCV-Former achieves state-of-the-art performance across multiple anomaly categories, with a 7\% improvement on the TIMo dataset and a 5.6\% gain on the DAD dataset compared to benchmarks. The code will be released upon paper acceptance.
Authors:Barry M. Dillon, Jim Harkin, Aqib Javed
Title: Anomaly detection with spiking neural networks for LHC physics
Abstract:
Anomaly detection offers a promising strategy for discovering new physics at the Large Hadron Collider (LHC). This paper investigates AutoEncoders built using neuromorphic Spiking Neural Networks (SNNs) for this purpose. One key application is at the trigger level, where anomaly detection tools could capture signals that would otherwise be discarded by conventional selection cuts. These systems must operate under strict latency and computational constraints. SNNs are inherently well-suited for low-latency, low-memory, real-time inference, particularly on Field-Programmable Gate Arrays (FPGAs). Further gains are expected with the rapid progress in dedicated neuromorphic hardware development. Using the CMS ADC2021 dataset, we design and evaluate a simple SNN AutoEncoder architecture. Our results show that the SNN AutoEncoders are competitive with conventional AutoEncoders for LHC anomaly detection across all signal models.
Authors:Hong-Jun Yoon, Mariam Kiran, Danial Ebling, Joe Breen
Title: OFCnetLLM: Large Language Model for Network Monitoring and Alertness
Abstract:
The rapid evolution of network infrastructure is bringing new challenges and opportunities for efficient network management, optimization, and security. With very large monitoring databases becoming expensive to explore, the use of AI and Generative AI can help reduce costs of managing these datasets. This paper explores the use of Large Language Models (LLMs) to revolutionize network monitoring management by addressing the limitations of query finding and pattern analysis. We leverage LLMs to enhance anomaly detection, automate root-cause analysis, and automate incident analysis to build a well-monitored network management team using AI. Through a real-world example of developing our own OFCNetLLM, based on the open-source LLM model, we demonstrate practical applications of OFCnetLLM in the OFC conference network. Our model is developed as a multi-agent approach and is still evolving, and we present early results here.
Authors:Hyeong Seon Kim, Huy Kang Kim
Title: GUARD-CAN: Graph-Understanding and Recurrent Architecture for CAN Anomaly Detection
Abstract:
Modern in-vehicle networks face various cyber threats due to the lack of encryption and authentication in the Controller Area Network (CAN). To address this security issue, this paper presents GUARD-CAN, an anomaly detection framework that combines graph-based representation learning with time-series modeling. GUARD-CAN splits CAN messages into fixed-length windows and converts each window into a graph that preserves message order. To detect anomalies in the timeaware and structure-aware context at the same window, GUARD-CAN takes advantage of the overcomplete Autoencoder (AE) and Graph Convolutional Network (GCN) to generate graph embedding vectors. The model groups these vectors into sequences and feeds them into the Gated Recurrent Unit (GRU) to detect temporal anomaly patterns across the graphs. GUARD-CAN performs anomaly detection at both the sequence level and the window level, and this allows multi-perspective performance evaluation. The model also verifies the importance of window size selection through an analysis based on Shannon entropy. As a result, GUARD-CAN shows that the proposed model detects four types of CAN attacks (flooding, fuzzing, replay and spoofing attacks) effectively without relying on complex feature engineering.
Authors:Vyoma Harshitha Podapati, Divyansh Nigam, Sanchari Das
Title: SoK: A Systematic Review of Context- and Behavior-Aware Adaptive Authentication in Mobile Environments
Abstract:
As mobile computing becomes central to digital interaction, researchers have turned their attention to adaptive authentication for its real-time, context- and behavior-aware verification capabilities. However, many implementations remain fragmented, inconsistently apply intelligent techniques, and fall short of user expectations. In this Systematization of Knowledge (SoK), we analyze 41 peer-reviewed studies since 2011 that focus on adaptive authentication in mobile environments. Our analysis spans seven dimensions: privacy and security models, interaction modalities, user behavior, risk perception, implementation challenges, usability needs, and machine learning frameworks. Our findings reveal a strong reliance on machine learning (64.3%), especially for continuous authentication (61.9%) and unauthorized access prevention (54.8%). AI-driven approaches such as anomaly detection (57.1%) and spatio-temporal analysis (52.4%) increasingly shape the interaction landscape, alongside growing use of sensor-based and location-aware models.
Authors:Rick S. Blum, Franziska Freytag
Title: On Using the Shapley Value for Anomaly Localization: A Statistical Investigation
Abstract:
Recent publications have suggested using the Shapley value for anomaly localization for sensor data systems. Using a reasonable mathematical anomaly model for full control, experiments indicate that using a single fixed term in the Shapley value calculation achieves a lower complexity anomaly localization test, with the same probability of error, as a test using the Shapley value for all cases tested. A proof demonstrates these conclusions must be true for all independent observation cases. For dependent observation cases, no proof is available.
Authors:Dezhi An, Wenqiang Liu, Kefan Wang, Zening Chen, Jun Lu, Shengcai Zhang
Title: DAMS:Dual-Branch Adaptive Multiscale Spatiotemporal Framework for Video Anomaly Detection
Abstract:
The goal of video anomaly detection is tantamount to performing spatio-temporal localization of abnormal events in the video. The multiscale temporal dependencies, visual-semantic heterogeneity, and the scarcity of labeled data exhibited by video anomalies collectively present a challenging research problem in computer vision. This study offers a dual-path architecture called the Dual-Branch Adaptive Multiscale Spatiotemporal Framework (DAMS), which is based on multilevel feature decoupling and fusion, enabling efficient anomaly detection modeling by integrating hierarchical feature learning and complementary information. The main processing path of this framework integrates the Adaptive Multiscale Time Pyramid Network (AMTPN) with the Convolutional Block Attention Mechanism (CBAM). AMTPN enables multigrained representation and dynamically weighted reconstruction of temporal features through a three-level cascade structure (time pyramid pooling, adaptive feature fusion, and temporal context enhancement). CBAM maximizes the entropy distribution of feature channels and spatial dimensions through dual attention mapping. Simultaneously, the parallel path driven by CLIP introduces a contrastive language-visual pre-training paradigm. Cross-modal semantic alignment and a multiscale instance selection mechanism provide high-order semantic guidance for spatio-temporal features. This creates a complete inference chain from the underlying spatio-temporal features to high-level semantic concepts. The orthogonal complementarity of the two paths and the information fusion mechanism jointly construct a comprehensive representation and identification capability for anomalous events. Extensive experimental results on the UCF-Crime and XD-Violence benchmarks establish the effectiveness of the DAMS framework.
Authors:Saurav Singla, Aarav Singla, Advik Gupta, Parnika Gupta
Title: Anomaly Detection in Human Language via Meta-Learning: A Few-Shot Approach
Abstract:
We propose a meta learning framework for detecting anomalies in human language across diverse domains with limited labeled data. Anomalies in language ranging from spam and fake news to hate speech pose a major challenge due to their sparsity and variability. We treat anomaly detection as a few shot binary classification problem and leverage meta-learning to train models that generalize across tasks. Using datasets from domains such as SMS spam, COVID-19 fake news, and hate speech, we evaluate model generalization on unseen tasks with minimal labeled anomalies. Our method combines episodic training with prototypical networks and domain resampling to adapt quickly to new anomaly detection tasks. Empirical results show that our method outperforms strong baselines in F1 and AUC scores. We also release the code and benchmarks to facilitate further research in few-shot text anomaly detection.
Authors:ASM Rizvi, John Heidemann, David Plonka
Title: Third-Party Assessment of Mobile Performance in the 5G Era
Abstract:
The web experience using mobile devices is important since a significant portion of the Internet traffic is initiated from mobile devices. In the era of 5G, users expect a high-performance data network to stream media content and for other latency-sensitive applications. In this paper, we characterize mobile experience in terms of latency, throughput, and stability measured from a commercial, globally-distributed CDN. Unlike prior work, CDN data provides a relatively neutral, carrier-agnostic perspective, providing a clear view of multiple and international providers. Our analysis of mobile client traffic shows mobile users sometimes experience markedly low latency, even as low as 6 ms. However, only the top 5% users regularly experience less than 20 ms of minimum latency. While 100 Mb/s throughput is not rare, we show around 60% users observe less than 50 Mb/s throughput. We find the minimum mobile latency is generally stable at a specific location which can be an important characteristic for anomaly detection.
Authors:Andrii Balashov, Olena Ponomarova, Xiaohua Zhai
Title: Multi-Stage Prompt Inference Attacks on Enterprise LLM Systems
Abstract:
Large Language Models (LLMs) deployed in enterprise settings (e.g., as Microsoft 365 Copilot) face novel security challenges. One critical threat is prompt inference attacks: adversaries chain together seemingly benign prompts to gradually extract confidential data. In this paper, we present a comprehensive study of multi-stage prompt inference attacks in an enterprise LLM context. We simulate realistic attack scenarios where an attacker uses mild-mannered queries and indirect prompt injections to exploit an LLM integrated with private corporate data. We develop a formal threat model for these multi-turn inference attacks and analyze them using probability theory, optimization frameworks, and information-theoretic leakage bounds. The attacks are shown to reliably exfiltrate sensitive information from the LLM's context (e.g., internal SharePoint documents or emails), even when standard safety measures are in place. We propose and evaluate defenses to counter such attacks, including statistical anomaly detection, fine-grained access control, prompt sanitization techniques, and architectural modifications to LLM deployment. Each defense is supported by mathematical analysis or experimental simulation. For example, we derive bounds on information leakage under differential privacy-based training and demonstrate an anomaly detection method that flags multi-turn attacks with high AUC. We also introduce an approach called "spotlighting" that uses input transformations to isolate untrusted prompt content, reducing attack success by an order of magnitude. Finally, we provide a formal proof of concept and empirical validation for a combined defense-in-depth strategy. Our work highlights that securing LLMs in enterprise settings requires moving beyond single-turn prompt filtering toward a holistic, multi-stage perspective on both attacks and defenses.
Authors:Luis Basora, Louison Bocquet-Nouaille, Elinirina Robinson, Serge Le Gonidec
Title: Fault detection and diagnosis for the engine electrical system of a space launcher based on a temporal convolutional autoencoder and calibrated classifiers
Abstract:
In the context of the health monitoring for the next generation of reusable space launchers, we outline a first step toward developing an onboard fault detection and diagnostic capability for the electrical system that controls the engine valves. Unlike existing approaches in the literature, our solution is designed to meet a broader range of key requirements. This includes estimating confidence levels for predictions, detecting out-of-distribution (OOD) cases, and controlling false alarms. The proposed solution is based on a temporal convolutional autoencoder to automatically extract low-dimensional features from raw sensor data. Fault detection and diagnosis are respectively carried out using a binary and a multiclass classifier trained on the autoencoder latent and residual spaces. The classifiers are histogram-based gradient boosting models calibrated to output probabilities that can be interpreted as confidence levels. A relatively simple technique, based on inductive conformal anomaly detection, is used to identify OOD data. We leverage other simple yet effective techniques, such as cumulative sum control chart (CUSUM) to limit the false alarms, and threshold moving to address class imbalance in fault detection. The proposed framework is highly configurable and has been evaluated on simulated data, covering both nominal and anomalous operational scenarios. The results indicate that our solution is a promising first step, though testing with real data will be necessary to ensure that it achieves the required maturity level for operational use.
Authors:Yufeng Luo, Adam D. Myers, Alex Drlica-Wagner, Dario Dematties, Salma Borchani, Frank Valdes, Arjun Dey, David Schlegel, Rongpu Zhou, DESI Legacy Imaging Surveys Team
Title: A Semi-Supervised Learning Method for the Identification of Bad Exposures in Large Imaging Surveys
Abstract:
As the data volume of astronomical imaging surveys rapidly increases, traditional methods for image anomaly detection, such as visual inspection by human experts, are becoming impractical. We introduce a machine-learning-based approach to detect poor-quality exposures in large imaging surveys, with a focus on the DECam Legacy Survey (DECaLS) in regions of low extinction (i.e., $E(B-V)<0.04$). Our semi-supervised pipeline integrates a vision transformer (ViT), trained via self-supervised learning (SSL), with a k-Nearest Neighbor (kNN) classifier. We train and validate our pipeline using a small set of labeled exposures observed by surveys with the Dark Energy Camera (DECam). A clustering-space analysis of where our pipeline places images labeled in ``good'' and ``bad'' categories suggests that our approach can efficiently and accurately determine the quality of exposures. Applied to new imaging being reduced for DECaLS Data Release 11, our pipeline identifies 780 problematic exposures, which we subsequently verify through visual inspection. Being highly efficient and adaptable, our method offers a scalable solution for quality control in other large imaging surveys.
Authors:Isaiah Thompson Ocansey, Ritwik Bhattacharya, Tanmay Sen
Title: LogTinyLLM: Tiny Large Language Models Based Contextual Log Anomaly Detection
Abstract:
Log anomaly detection using traditional rule based or deep learning based methods is often challenging due to the large volume and highly complex nature of log sequence. So effective way of detection of anomalous sequence of logs is crucial for system maintenance and development. This paper proposes parameter efficient finetuning specifically low rank adaptation (LoRA) and adapter based approaches for finding contextual anomalies in sequence of logs in large log data set. It compares different tiny large language models (LLMs) on the Thunderbird dataset. The results show that LoRA based finetuning provides substantial performance improvements of 18 to 19 percentage over LogBert based full finetuning approach, achieving accuracy scores between 97.76% and 98.83% compared to 79.37%.
Authors:Tianwei Mu, Feiyu Duan, Bo Zhou, Dan Xue, Manhong Huang
Title: NexViTAD: Few-shot Unsupervised Cross-Domain Defect Detection via Vision Foundation Models and Multi-Task Learning
Abstract:
This paper presents a novel few-shot cross-domain anomaly detection framework, Nexus Vision Transformer for Anomaly Detection (NexViTAD), based on vision foundation models, which effectively addresses domain-shift challenges in industrial anomaly detection through innovative shared subspace projection mechanisms and multi-task learning (MTL) module. The main innovations include: (1) a hierarchical adapter module that adaptively fuses complementary features from Hiera and DINO-v2 pre-trained models, constructing more robust feature representations; (2) a shared subspace projection strategy that enables effective cross-domain knowledge transfer through bottleneck dimension constraints and skip connection mechanisms; (3) a MTL Decoder architecture supports simultaneous processing of multiple source domains, significantly enhancing model generalization capabilities; (4) an anomaly score inference method based on Sinkhorn-K-means clustering, combined with Gaussian filtering and adaptive threshold processing for precise pixel level. Valuated on the MVTec AD dataset, NexViTAD delivers state-of-the-art performance with an AUC of 97.5%, AP of 70.4%, and PRO of 95.2% in the target domains, surpassing other recent models, marking a transformative advance in cross-domain defect detection.
Authors:Jorge J. Tejero-Fernández, Alfonso Sánchez-Macián
Title: Evaluating Language Models For Threat Detection in IoT Security Logs
Abstract:
Log analysis is a relevant research field in cybersecurity as they can provide a source of information for the detection of threats to networks and systems. This paper presents a pipeline to use fine-tuned Large Language Models (LLMs) for anomaly detection and mitigation recommendation using IoT security logs. Utilizing classical machine learning classifiers as a baseline, three open-source LLMs are compared for binary and multiclass anomaly detection, with three strategies: zero-shot, few-shot prompting and fine-tuning using an IoT dataset. LLMs give better results on multi-class attack classification than the corresponding baseline models. By mapping detected threats to MITRE CAPEC, defining a set of IoT-specific mitigation actions, and fine-tuning the models with those actions, the models are able to provide a combined detection and recommendation guidance.
Authors:Gastón García González, Pedro Casas, Emilio Martínez, Alicia Fernández
Title: Towards Foundation Auto-Encoders for Time-Series Anomaly Detection
Abstract:
We investigate a novel approach to time-series modeling, inspired by the successes of large pretrained foundation models. We introduce FAE (Foundation Auto-Encoders), a foundation generative-AI model for anomaly detection in time-series data, based on Variational Auto-Encoders (VAEs). By foundation, we mean a model pretrained on massive amounts of time-series data which can learn complex temporal patterns useful for accurate modeling, forecasting, and detection of anomalies on previously unseen datasets. FAE leverages VAEs and Dilated Convolutional Neural Networks (DCNNs) to build a generic model for univariate time-series modeling, which could eventually perform properly in out-of-the-box, zero-shot anomaly detection applications. We introduce the main concepts of FAE, and present preliminary results in different multi-dimensional time-series datasets from various domains, including a real dataset from an operational mobile ISP, and the well known KDD 2021 Anomaly Detection dataset.
Authors:Yibo Qiu, Zan Huang, Zhiyu Wang, Handi Liu, Yiling Qiao, Yifeng Hu, Shu'ang Sun, Hangke Peng, Ronald X Xu, Mingzhai Sun
Title: BioMARS: A Multi-Agent Robotic System for Autonomous Biological Experiments
Abstract:
Large language models (LLMs) and vision-language models (VLMs) have the potential to transform biological research by enabling autonomous experimentation. Yet, their application remains constrained by rigid protocol design, limited adaptability to dynamic lab conditions, inadequate error handling, and high operational complexity. Here we introduce BioMARS (Biological Multi-Agent Robotic System), an intelligent platform that integrates LLMs, VLMs, and modular robotics to autonomously design, plan, and execute biological experiments. BioMARS uses a hierarchical architecture: the Biologist Agent synthesizes protocols via retrieval-augmented generation; the Technician Agent translates them into executable robotic pseudo-code; and the Inspector Agent ensures procedural integrity through multimodal perception and anomaly detection. The system autonomously conducts cell passaging and culture tasks, matching or exceeding manual performance in viability, consistency, and morphological integrity. It also supports context-aware optimization, outperforming conventional strategies in differentiating retinal pigment epithelial cells. A web interface enables real-time human-AI collaboration, while a modular backend allows scalable integration with laboratory hardware. These results highlight the feasibility of generalizable, AI-driven laboratory automation and the transformative role of language-based reasoning in biological research.
Authors:Yuxing Liu, Ji Zhang, Zhou Xuchuan, Jingzhong Xiao, Huimin Yang, Jiaxin Zhong
Title: OoDDINO:A Multi-level Framework for Anomaly Segmentation on Complex Road Scenes
Abstract:
Anomaly segmentation aims to identify Out-of-Distribution (OoD) anomalous objects within images. Existing pixel-wise methods typically assign anomaly scores individually and employ a global thresholding strategy to segment anomalies. Despite their effectiveness, these approaches encounter significant challenges in real-world applications: (1) neglecting spatial correlations among pixels within the same object, resulting in fragmented segmentation; (2) variabil ity in anomaly score distributions across image regions, causing global thresholds to either generate false positives in background areas or miss segments of anomalous objects. In this work, we introduce OoDDINO, a novel multi-level anomaly segmentation framework designed to address these limitations through a coarse-to-fine anomaly detection strategy. OoDDINO combines an uncertainty-guided anomaly detection model with a pixel-level segmentation model within a two-stage cascade architecture. Initially, we propose an Orthogonal Uncertainty-Aware Fusion Strategy (OUAFS) that sequentially integrates multiple uncertainty metrics with visual representations, employing orthogonal constraints to strengthen the detection model's capacity for localizing anomalous regions accurately. Subsequently, we develop an Adaptive Dual-Threshold Network (ADT-Net), which dynamically generates region-specific thresholds based on object-level detection outputs and pixel-wise anomaly scores. This approach allows for distinct thresholding strategies within foreground and background areas, achieving fine-grained anomaly segmentation. The proposed framework is compatible with other pixel-wise anomaly detection models, which acts as a plug-in to boost the performance. Extensive experiments on two benchmark datasets validate our framework's superiority and compatibility over state-of-the-art methods.
Authors:Mohamed Elbasheer, Adewale Akinfaderin
Title: User-Based Sequential Modeling with Transformer Encoders for Insider Threat Detection
Abstract:
Insider threat detection presents unique challenges due to the authorized status of malicious actors and the subtlety of anomalous behaviors. Existing machine learning methods often treat user activity as isolated events, thereby failing to leverage sequential dependencies in user behavior. In this study, we propose a User-Based Sequencing (UBS) methodology, transforming the CERT insider threat dataset into structured temporal sequences suitable for deep sequential modeling. We deploy a Transformer Encoder architecture to model benign user activity and employ its reconstruction errors as anomaly scores. These scores are subsequently evaluated using three unsupervised outlier detection algorithms: One-Class SVM (OCSVM), Local Outlier Factor (LOF), and Isolation Forest (iForest). Across four rigorously designed test sets, including combinations of multiple CERT dataset releases, our UBS-Transformer pipeline consistently achieves state-of-the-art performance - notably 96.61% accuracy, 99.43% recall, 96.38% F1-score, 95.00% AUROC, and exceptionally low false negative (0.0057) and false positive (0.0571) rates. Comparative analyses demonstrate that our approach substantially outperforms tabular and conventional autoencoder baselines, underscoring the efficacy of sequential user modeling and advanced anomaly detection in the insider threat domain.
Authors:Nicolas Thewes, Philipp Steinhauer, Patrick Trampert, Markus Pauly, Georg Schneider
Title: Explainable anomaly detection for sound spectrograms using pooling statistics with quantile differences
Abstract:
Anomaly detection is the task of identifying rarely occurring (i.e. anormal or anomalous) samples that differ from almost all other samples in a dataset. As the patterns of anormal samples are usually not known a priori, this task is highly challenging. Consequently, anomaly detection lies between semi- and unsupervised learning. The detection of anomalies in sound data, often called 'ASD' (Anomalous Sound Detection), is a sub-field that deals with the identification of new and yet unknown effects in acoustic recordings. It is of great importance for various applications in Industry 4.0. Here, vibrational or acoustic data are typically obtained from standard sensor signals used for predictive maintenance. Examples cover machine condition monitoring or quality assurance to track the state of components or products. However, the use of intelligent algorithms remains a controversial topic. Management generally aims for cost-reduction and automation, while quality and maintenance experts emphasize the need for human expertise and comprehensible solutions. In this work, we present an anomaly detection approach specifically designed for spectrograms. The approach is based on statistical evaluations and is theoretically motivated. In addition, it features intrinsic explainability, making it particularly suitable for applications in industrial settings. Thus, this algorithm is of relevance for applications in which black-box algorithms are unwanted or unsuitable.
Authors:Zhi Zheng, Bochuan Zhou, Yuping Song
Title: Temporal-Aware Graph Attention Network for Cryptocurrency Transaction Fraud Detection
Abstract:
Cryptocurrency transaction fraud detection faces the dual challenges of increasingly complex transaction patterns and severe class imbalance. Traditional methods rely on manual feature engineering and struggle to capture temporal and structural dependencies in transaction networks. This paper proposes an Augmented Temporal-aware Graph Attention Network (ATGAT) that enhances detection performance through three modules: (1) designing an advanced temporal embedding module that fuses multi-scale time difference features with periodic position encoding; (2) constructing a temporal-aware triple attention mechanism that jointly optimizes structural, temporal, and global context attention; (3) employing weighted BCE loss to address class imbalance. Experiments on the Elliptic++ cryptocurrency dataset demonstrate that ATGAT achieves an AUC of 0.9130, representing a 9.2% improvement over the best traditional method XGBoost, 12.0% over GCN, and 10.0% over standard GAT. This method not only validates the enhancement effect of temporal awareness and triple attention mechanisms on graph neural networks, but also provides financial institutions with more reliable fraud detection tools, with its design principles generalizable to other temporal graph anomaly detection tasks.
Authors:Qifei Cui, Xinyu Lu
Title: GANet-Seg: Adversarial Learning for Brain Tumor Segmentation with Hybrid Generative Models
Abstract:
This work introduces a novel framework for brain tumor segmentation leveraging pre-trained GANs and Unet architectures. By combining a global anomaly detection module with a refined mask generation network, the proposed model accurately identifies tumor-sensitive regions and iteratively enhances segmentation precision using adversarial loss constraints. Multi-modal MRI data and synthetic image augmentation are employed to improve robustness and address the challenge of limited annotated datasets. Experimental results on the BraTS dataset demonstrate the effectiveness of the approach, achieving high sensitivity and accuracy in both lesion-wise Dice and HD95 metrics than the baseline. This scalable method minimizes the dependency on fully annotated data, paving the way for practical real-world applications in clinical settings.
Authors:Clément Forray, Pauline Delporte, Nicolas Delaygue, Florence Genin, Dawa Derksen
Title: Joint attitude estimation and 3D neural reconstruction of non-cooperative space objects
Abstract:
Obtaining a better knowledge of the current state and behavior of objects orbiting Earth has proven to be essential for a range of applications such as active debris removal, in-orbit maintenance, or anomaly detection. 3D models represent a valuable source of information in the field of Space Situational Awareness (SSA). In this work, we leveraged Neural Radiance Fields (NeRF) to perform 3D reconstruction of non-cooperative space objects from simulated images. This scenario is challenging for NeRF models due to unusual camera characteristics and environmental conditions : mono-chromatic images, unknown object orientation, limited viewing angles, absence of diffuse lighting etc. In this work we focus primarly on the joint optimization of camera poses alongside the NeRF. Our experimental results show that the most accurate 3D reconstruction is achieved when training with successive images one-by-one. We estimate camera poses by optimizing an uniform rotation and use regularization to prevent successive poses from being too far apart.
Authors:Zhaoyang Xu, Yunbo Liu
Title: Robust Anomaly Detection in Network Traffic: Evaluating Machine Learning Models on CICIDS2017
Abstract:
Identifying suitable machine learning paradigms for intrusion detection remains critical for building effective and generalizable security solutions. In this study, we present a controlled comparison of four representative models - Multi-Layer Perceptron (MLP), 1D Convolutional Neural Network (CNN), One-Class Support Vector Machine (OCSVM) and Local Outlier Factor (LOF) - on the CICIDS2017 dataset under two scenarios: detecting known attack types and generalizing to previously unseen threats. Our results show that supervised MLP and CNN achieve near-perfect accuracy on familiar attacks but suffer drastic recall drops on novel attacks. Unsupervised LOF attains moderate overall accuracy and high recall on unknown threats at the cost of elevated false alarms, while boundary-based OCSVM balances precision and recall best, demonstrating robust detection across both scenarios. These findings offer practical guidance for selecting IDS models in dynamic network environments.
Authors:Berk Yilmaz, Aniruddh Aiyengar
Title: Cross-Architecture Knowledge Distillation (KD) for Retinal Fundus Image Anomaly Detection on NVIDIA Jetson Nano
Abstract:
Early and accurate identification of retinal ailments is crucial for averting ocular decline; however, access to dependable diagnostic devices is not often available in low-resourced settings. This project proposes to solve that by developing a lightweight, edge-device deployable disease classifier using cross-architecture knowledge distilling. We first train a high-capacity vision transformer (ViT) teacher model, pre-trained using I-JEPA self-supervised learning, to classify fundus images into four classes: Normal, Diabetic Retinopathy, Glaucoma, and Cataract. We kept an Internet of Things (IoT) focus when compressing to a CNN-based student model for deployment in resource-limited conditions, such as the NVIDIA Jetson Nano. This was accomplished using a novel framework which included a Partitioned Cross-Attention (PCA) projector, a Group-Wise Linear (GL) projector, and a multi-view robust training method. The teacher model has 97.4 percent more parameters than the student model, with it achieving 89 percent classification with a roughly 93 percent retention of the teacher model's diagnostic performance. The retention of clinical classification behavior supports our method's initial aim: compression of the ViT while retaining accuracy. Our work serves as an example of a scalable, AI-driven triage solution for retinal disorders in under-resourced areas.
Authors:Druva Dhakshinamoorthy, Avikshit Jha, Sabyasachi Majumdar, Devdulal Ghosh, Ranjita Chakraborty, Hena Ray
Title: Classification of Cattle Behavior and Detection of Heat (Estrus) using Sensor Data
Abstract:
This paper presents a novel system for monitoring cattle behavior and detecting estrus (heat) periods using sensor data and machine learning. We designed and deployed a low-cost Bluetooth-based neck collar equipped with accelerometer and gyroscope sensors to capture real-time behavioral data from real cows, which was synced to the cloud. A labeled dataset was created using synchronized CCTV footage to annotate behaviors such as feeding, rumination, lying, and others. We evaluated multiple machine learning models -- Support Vector Machines (SVM), Random Forests (RF), and Convolutional Neural Networks (CNN) -- for behavior classification. Additionally, we implemented a Long Short-Term Memory (LSTM) model for estrus detection using behavioral patterns and anomaly detection. Our system achieved over 93% behavior classification accuracy and 96% estrus detection accuracy on a limited test set. The approach offers a scalable and accessible solution for precision livestock monitoring, especially in resource-constrained environments.
Authors:Florian Rokohl, Alexander Lehnert, Marc Reichenbach
Title: Evaluation Pipeline for systematically searching for Anomaly Detection Systems
Abstract:
Digitalization in the medical world provides major benefits while making it a target for attackers and thus hard to secure. To deal with network intruders we propose an anomaly detection system on hardware to detect malicious clients in real-time. We meet real-time and power restrictions using FPGAs. Overall system performance is achieved via the presented holistic system evaluation.
Authors:Yu Wang, Shiwei Chen
Title: Learning Event Completeness for Weakly Supervised Video Anomaly Detection
Abstract:
Weakly supervised video anomaly detection (WS-VAD) is tasked with pinpointing temporal intervals containing anomalous events within untrimmed videos, utilizing only video-level annotations. However, a significant challenge arises due to the absence of dense frame-level annotations, often leading to incomplete localization in existing WS-VAD methods. To address this issue, we present a novel LEC-VAD, Learning Event Completeness for Weakly Supervised Video Anomaly Detection, which features a dual structure designed to encode both category-aware and category-agnostic semantics between vision and language. Within LEC-VAD, we devise semantic regularities that leverage an anomaly-aware Gaussian mixture to learn precise event boundaries, thereby yielding more complete event instances. Besides, we develop a novel memory bank-based prototype learning mechanism to enrich concise text descriptions associated with anomaly-event categories. This innovation bolsters the text's expressiveness, which is crucial for advancing WS-VAD. Our LEC-VAD demonstrates remarkable advancements over the current state-of-the-art methods on two benchmark datasets XD-Violence and UCF-Crime.
Authors:Emil Marcus Buchberg, Kent Vugs Nielsen
Title: Condition Monitoring with Machine Learning: A Data-Driven Framework for Quantifying Wind Turbine Energy Loss
Abstract:
Wind energy significantly contributes to the global shift towards renewable energy, yet operational challenges, such as Leading-Edge Erosion on wind turbine blades, notably reduce energy output. This study introduces an advanced, scalable machine learning framework for condition monitoring of wind turbines, specifically targeting improved detection of anomalies using Supervisory Control and Data Acquisition data. The framework effectively isolates normal turbine behavior through rigorous preprocessing, incorporating domain-specific rules and anomaly detection filters, including Gaussian Mixture Models and a predictive power score. The data cleaning and feature selection process enables identification of deviations indicative of performance degradation, facilitating estimates of annual energy production losses. The data preprocessing methods resulted in significant data reduction, retaining on average 31% of the original SCADA data per wind farm. Notably, 24 out of 35 turbines exhibited clear performance declines. At the same time, seven improved, and four showed no significant changes when employing the power curve feature set, which consisted of wind speed and ambient temperature. Models such as Random Forest, XGBoost, and KNN consistently captured subtle but persistent declines in turbine performance. The developed framework provides a novel approach to existing condition monitoring methodologies by isolating normal operational data and estimating annual energy loss, which can be a key part in reducing maintenance expenditures and mitigating economic impacts from turbine downtime.
Authors:Thomas Hoger, Philippe Owezarski
Title: Multi-domain anomaly detection in a 5G network
Abstract:
With the advent of 5G, mobile networks are becoming more dynamic and will therefore present a wider attack surface. To secure these new systems, we propose a multi-domain anomaly detection method that is distinguished by the study of traffic correlation on three dimensions: temporal by analyzing message sequences, semantic by abstracting the parameters these messages contain, and topological by linking them in the form of a graph. Unlike traditional approaches, which are limited to considering these domains independently, our method studies their correlations to obtain a global, coherent and explainable view of anomalies.
Authors:Roberto Vergallo, Luís Cruz, Alessio Errico, Luca Mainetti
Title: On the Effectiveness of the 'Follow-the-Sun' Strategy in Mitigating the Carbon Footprint of AI in Cloud Instances
Abstract:
'Follow-the-Sun' (FtS) is a theoretical computational model aimed at minimizing the carbon footprint of computer workloads. It involves dynamically moving workloads to regions with cleaner energy sources as demand increases and energy production relies more on fossil fuels. With the significant power consumption of Artificial Intelligence (AI) being a subject of extensive debate, FtS is proposed as a strategy to mitigate the carbon footprint of training AI models. However, the literature lacks scientific evidence on the advantages of FtS to mitigate the carbon footprint of AI workloads. In this paper, we present the results of an experiment conducted in a partial synthetic scenario to address this research gap. We benchmarked four AI algorithms in the anomaly detection domain and measured the differences in carbon emissions in four cases: no strategy, FtS, and two strategies previously introduced in the state of the art, namely Flexible Start and Pause and Resume. To conduct our experiment, we utilized historical carbon intensity data from the year 2021 for seven European cities. Our results demonstrate that the FtS strategy not only achieves average reductions of up to 14.6% in carbon emissions (with peaks of 16.3%) but also helps in preserving the time needed for training.
Authors:Arthur Oghlukyan, Nuria Gomez Blas
Title: Integrating Asynchronous AdaBoost into Federated Learning: Five Real World Applications
Abstract:
This paper presents a comprehensive analysis of an enhanced asynchronous AdaBoost framework for federated learning (FL), focusing on its application across five distinct domains: computer vision on edge devices, blockchain-based model transparency, on-device mobile personalization, IoT anomaly detection, and federated healthcare diagnostics. The proposed algorithm incorporates adaptive communication scheduling and delayed weight compensation to reduce synchronization frequency and communication overhead while preserving or improving model accuracy. We examine how these innovations improve communication efficiency, scalability, convergence, and robustness in each domain. Comparative metrics including training time, communication overhead, convergence iterations, and classification accuracy are evaluated using data and estimates derived from Oghlukyan's enhanced AdaBoost framework. Empirical results show, for example, training time reductions on the order of 20-35% and communication overhead reductions of 30-40% compared to baseline AdaBoost, with convergence achieved in significantly fewer boosting rounds. Tables and charts summarize these improvements by domain. Mathematical formulations of the adaptive scheduling rule and error-driven synchronization thresholds are provided. Overall, the enhanced AdaBoost exhibits markedly improved efficiency and robustness across diverse FL scenarios, suggesting broad applicability of the approach.
Authors:Jongyub Seok, Chanjin Kang
Title: HomographyAD: Deep Anomaly Detection Using Self Homography Learning
Abstract:
Anomaly detection (AD) is a task that distinguishes normal and abnormal data, which is important for applying automation technologies of the manufacturing facilities. For MVTec dataset that is a representative AD dataset for industrial environment, many recent works have shown remarkable performances. However, the existing anomaly detection works have a limitation of showing good performance for fully-aligned datasets only, unlike real-world industrial environments. To solve this limitation, we propose HomographyAD, a novel deep anomaly detection methodology based on the ImageNet-pretrained network, which is specially designed for actual industrial dataset. Specifically, we first suggest input foreground alignment using the deep homography estimation method. In addition, we fine-tune the model by self homography learning to learn additional shape information from normal samples. Finally, we conduct anomaly detection based on the measure of how far the feature of test sample is from the distribution of the extracted normal features. By applying our proposed method to various existing AD approaches, we show performance enhancement through extensive experiments.
Authors:Stavros Dimou, Guevara Noubir
Title: ARGOS: Anomaly Recognition and Guarding through O-RAN Sensing
Abstract:
Rogue Base Station (RBS) attacks, particularly those exploiting downgrade vulnerabilities, remain a persistent threat as 5G Standalone (SA) deployments are still limited and User Equipment (UE) manufacturers continue to support legacy network connectivity. This work introduces ARGOS, a comprehensive O-RAN compliant Intrusion Detection System (IDS) deployed within the Near Real-Time RIC, designed to detect RBS downgrade attacks in real time, an area previously unexplored within the O-RAN context. The system enhances the 3GPP KPM Service Model to enable richer, UE-level telemetry and features a custom xApp that applies unsupervised Machine Learning models for anomaly detection. Distinctively, the updated KPM Service Model operates on cross-layer features extracted from Modem Layer 1 (ML1) logs and Measurement Reports collected directly from Commercial Off-The-Shelf (COTS) UEs. To evaluate system performance under realistic conditions, a dedicated testbed is implemented using Open5GS, srsRAN, and FlexRIC, and validated against an extensive real-world measurement dataset. Among the evaluated models, the Variational Autoencoder (VAE) achieves the best balance of detection performance and efficiency, reaching 99.5% Accuracy with only 0.6% False Positives and minimal system overhead.
Authors:Clément Hongler, Andrew Emil
Title: Cross-Entropy Games for Language Models: From Implicit Knowledge to General Capability Measures
Abstract:
Large Language Models (LLMs) define probability measures on text. By considering the implicit knowledge question of what it means for an LLM to know such a measure and what it entails algorithmically, we are naturally led to formulate a series of tasks that go beyond generative sampling, involving forms of summarization, counterfactual thinking, anomaly detection, originality search, reverse prompting, debating, creative solving, etc. These tasks can be formulated as games based on LLM measures, which we call Cross-Entropy (Xent) Games. Xent Games can be single-player or multi-player. They involve cross-entropy scores and cross-entropy constraints, and can be expressed as simple computational graphs and programs. We show the Xent Game space is large enough to contain a wealth of interesting examples, while being constructible from basic game-theoretic consistency axioms. We then discuss how the Xent Game space can be used to measure the abilities of LLMs. This leads to the construction of Xent Game measures: finite families of Xent Games that can be used as capability benchmarks, built from a given scope, by extracting a covering measure. To address the unbounded scope problem associated with the challenge of measuring general abilities, we propose to explore the space of Xent Games in a coherent fashion, using ideas inspired by evolutionary dynamics.
Authors:Shiyi Yang, Can Chen, Didong Li
Title: Lower Ricci Curvature for Hypergraphs
Abstract:
Networks with higher-order interactions, prevalent in biological, social, and information systems, are naturally represented as hypergraphs, yet their structural complexity poses fundamental challenges for geometric characterization. While curvature-based methods offer powerful insights in graph analysis, existing extensions to hypergraphs suffer from critical trade-offs: combinatorial approaches such as Forman-Ricci curvature capture only coarse features, whereas geometric methods like Ollivier-Ricci curvature offer richer expressivity but demand costly optimal transport computations. To address these challenges, we introduce hypergraph lower Ricci curvature (HLRC), a novel curvature metric defined in closed form that achieves a principled balance between interpretability and efficiency. Evaluated across diverse synthetic and real-world hypergraph datasets, HLRC consistently reveals meaningful higher-order organization, distinguishing intra- from inter-community hyperedges, uncovering latent semantic labels, tracking temporal dynamics, and supporting robust clustering of hypergraphs based on global structure. By unifying geometric sensitivity with algorithmic simplicity, HLRC provides a versatile foundation for hypergraph analytics, with broad implications for tasks including node classification, anomaly detection, and generative modeling in complex systems.
Authors:Chihiro Maru, Shoetsu Sato
Title: RATFM: Retrieval-augmented Time Series Foundation Model for Anomaly Detection
Abstract:
Inspired by the success of large language models (LLMs) in natural language processing, recent research has explored the building of time series foundation models and applied them to tasks such as forecasting, classification, and anomaly detection. However, their performances vary between different domains and tasks. In LLM-based approaches, test-time adaptation using example-based prompting has become common, owing to the high cost of retraining. In the context of anomaly detection, which is the focus of this study, providing normal examples from the target domain can also be effective. However, time series foundation models do not naturally acquire the ability to interpret or utilize examples or instructions, because the nature of time series data used during training does not encourage such capabilities. To address this limitation, we propose a retrieval augmented time series foundation model (RATFM), which enables pretrained time series foundation models to incorporate examples of test-time adaptation. We show that RATFM achieves a performance comparable to that of in-domain fine-tuning while avoiding domain-dependent fine-tuning. Experiments on the UCR Anomaly Archive, a multi-domain dataset including nine domains, confirms the effectiveness of the proposed approach.
Authors:Ruilin Xu, Zongxuan Xie, Pengfei Chen
Title: eACGM: Non-instrumented Performance Tracing and Anomaly Detection towards Machine Learning Systems
Abstract:
We present eACGM, a full-stack AI/ML system monitoring framework based on eBPF. eACGM collects real-time performance data from key hardware components, including the GPU and network communication layer, as well as from key software stacks such as CUDA, Python, and PyTorch, all without requiring any code instrumentation or modifications. Additionally, it leverages libnvml to gather process-level GPU resource usage information. By applying a Gaussian Mixture Model (GMM) to the collected multidimensional performance metrics for statistical modeling and clustering analysis, eACGM effectively identifies complex failure modes, such as latency anomalies, hardware failures, and communication inefficiencies, enabling rapid diagnosis of system bottlenecks and abnormal behaviors. To evaluate eACGM's effectiveness and practicality, we conducted extensive empirical studies and case analyses in multi-node distributed training scenarios. The results demonstrate that eACGM, while maintaining a non-intrusive and low-overhead profile, successfully captures critical performance anomalies during model training and inference. Its stable anomaly detection performance and comprehensive monitoring capabilities validate its applicability and scalability in real-world production environments, providing strong support for performance optimization and fault diagnosis in large-scale AI/ML systems.
Authors:Sophia Zhang Pettersson, Kuo-Yun Liang, Juan Carlos Andresen
Title: Federated Gaussian Mixture Models
Abstract:
This paper introduces FedGenGMM, a novel one-shot federated learning approach for Gaussian Mixture Models (GMM) tailored for unsupervised learning scenarios. In federated learning (FL), where multiple decentralized clients collaboratively train models without sharing raw data, significant challenges include statistical heterogeneity, high communication costs, and privacy concerns. FedGenGMM addresses these issues by allowing local GMM models, trained independently on client devices, to be aggregated through a single communication round. This approach leverages the generative property of GMMs, enabling the creation of a synthetic dataset on the server side to train a global model efficiently. Evaluation across diverse datasets covering image, tabular, and time series data demonstrates that FedGenGMM consistently achieves performance comparable to non-federated and iterative federated methods, even under significant data heterogeneity. Additionally, FedGenGMM significantly reduces communication overhead, maintains robust performance in anomaly detection tasks, and offers flexibility in local model complexities, making it particularly suitable for edge computing environments.
Authors:Manuel Franco de la Peña, Ángel Luis Perales Gómez, Lorenzo Fernández Maimó
Title: ShaTS: A Shapley-based Explainability Method for Time Series Artificial Intelligence Models applied to Anomaly Detection in Industrial Internet of Things
Abstract:
Industrial Internet of Things environments increasingly rely on advanced Anomaly Detection and explanation techniques to rapidly detect and mitigate cyberincidents, thereby ensuring operational safety. The sequential nature of data collected from these environments has enabled improvements in Anomaly Detection using Machine Learning and Deep Learning models by processing time windows rather than treating the data as tabular. However, conventional explanation methods often neglect this temporal structure, leading to imprecise or less actionable explanations. This work presents ShaTS (Shapley values for Time Series models), which is a model-agnostic explainable Artificial Intelligence method designed to enhance the precision of Shapley value explanations for time series models. ShaTS addresses the shortcomings of traditional approaches by incorporating an a priori feature grouping strategy that preserves temporal dependencies and produces both coherent and actionable insights. Experiments conducted on the SWaT dataset demonstrate that ShaTS accurately identifies critical time instants, precisely pinpoints the sensors, actuators, and processes affected by anomalies, and outperforms SHAP in terms of both explainability and resource efficiency, fulfilling the real-time requirements of industrial environments.
Authors:Vardhan Shorewala, Shivam Shorewala
Title: Anomaly Detection and Improvement of Clusters using Enhanced K-Means Algorithm
Abstract:
This paper introduces a unified approach to cluster refinement and anomaly detection in datasets. We propose a novel algorithm that iteratively reduces the intra-cluster variance of N clusters until a global minimum is reached, yielding tighter clusters than the standard k-means algorithm. We evaluate the method using intrinsic measures for unsupervised learning, including the silhouette coefficient, Calinski-Harabasz index, and Davies-Bouldin index, and extend it to anomaly detection by identifying points whose assignment causes a significant variance increase. External validation on synthetic data and the UCI Breast Cancer and UCI Wine Quality datasets employs the Jaccard similarity score, V-measure, and F1 score. Results show variance reductions of 18.7% and 88.1% on the synthetic and Wine Quality datasets, respectively, along with accuracy and F1 score improvements of 22.5% and 20.8% on the Wine Quality dataset.
Authors:Kushal Khatiwada, Jayden Hopper, Joseph Cheatham, Ayan Joshi, Sabur Baidya
Title: Large Language Models in the IoT Ecosystem -- A Survey on Security Challenges and Applications
Abstract:
The Internet of Things (IoT) and Large Language Models (LLMs) have been two major emerging players in the information technology era. Although there has been significant coverage of their individual capabilities, our literature survey sheds some light on the integration and interaction of LLMs and IoT devices - a mutualistic relationship in which both parties leverage the capabilities of the other. LLMs like OpenAI's ChatGPT, Anthropic's Claude, Google's Gemini/BERT, any many more, all demonstrate powerful capabilities in natural language understanding and generation, enabling more intuitive and context-aware interactions across diverse IoT applications such as smart cities, healthcare systems, industrial automation, and smart home environments. Despite these opportunities, integrating these resource-intensive LLMs into IoT devices that lack the state-of-the-art computational power is a challenging task. The security of these edge devices is another major concern as they can easily act as a backdoor to private networks if the LLM integration is sloppy and unsecured. This literature survey systematically explores the current state-of-the-art in applying LLMs within IoT, emphasizing their applications in various domains/sectors of society, the significant role they play in enhancing IoT security through anomaly detection and threat mitigation, and strategies for effective deployment using edge computing frameworks. Finally, this survey highlights existing challenges, identifies future research directions, and underscores the need for cross-disciplinary collaboration to fully realize the transformative potential of integrating LLMs and IoT.
Authors:Mohammed Al-Qudah, Fadi AlMahamid
Title: A Multi-Step Comparative Framework for Anomaly Detection in IoT Data Streams
Abstract:
The rapid expansion of Internet of Things (IoT) devices has introduced critical security challenges, underscoring the need for accurate anomaly detection. Although numerous studies have proposed machine learning (ML) methods for this purpose, limited research systematically examines how different preprocessing steps--normalization, transformation, and feature selection--interact with distinct model architectures. To address this gap, this paper presents a multi-step evaluation framework assessing the combined impact of preprocessing choices on three ML algorithms: RNN-LSTM, autoencoder neural networks (ANN), and Gradient Boosting (GBoosting). Experiments on the IoTID20 dataset shows that GBoosting consistently delivers superior accuracy across preprocessing configurations, while RNN-LSTM shows notable gains with z-score normalization and autoencoders excel in recall, making them well-suited for unsupervised scenarios. By offering a structured analysis of preprocessing decisions and their interplay with various ML techniques, the proposed framework provides actionable guidance to enhance anomaly detection performance in IoT environments.
Authors:Kalindi Singh, Aayush Kashyap, Aswani Kumar Cherukuri
Title: Interpretable Anomaly Detection in Encrypted Traffic Using SHAP with Machine Learning Models
Abstract:
The widespread adoption of encrypted communication protocols such as HTTPS and TLS has enhanced data privacy but also rendered traditional anomaly detection techniques less effective, as they often rely on inspecting unencrypted payloads. This study aims to develop an interpretable machine learning-based framework for anomaly detection in encrypted network traffic. This study proposes a model-agnostic framework that integrates multiple machine learning classifiers, with SHapley Additive exPlanations SHAP to ensure post-hoc model interpretability. The models are trained and evaluated on three benchmark encrypted traffic datasets. Performance is assessed using standard classification metrics, and SHAP is used to explain model predictions by attributing importance to individual input features. SHAP visualizations successfully revealed the most influential traffic features contributing to anomaly predictions, enhancing the transparency and trustworthiness of the models. Unlike conventional approaches that treat machine learning as a black box, this work combines robust classification techniques with explainability through SHAP, offering a novel interpretable anomaly detection system tailored for encrypted traffic environments. While the framework is generalizable, real-time deployment and performance under adversarial conditions require further investigation. Future work may explore adaptive models and real-time interpretability in operational network environments. This interpretable anomaly detection framework can be integrated into modern security operations for encrypted environments, allowing analysts not only to detect anomalies with high precision but also to understand why a model made a particular decision a crucial capability in compliance-driven and mission-critical settings.
Authors:Sangyong Lee, Subo Hwang, Dohoon Kim
Title: MADCluster: Model-agnostic Anomaly Detection with Self-supervised Clustering Network
Abstract:
In this paper, we propose MADCluster, a novel model-agnostic anomaly detection framework utilizing self-supervised clustering. MADCluster is applicable to various deep learning architectures and addresses the 'hypersphere collapse' problem inherent in existing deep learning-based anomaly detection methods. The core idea is to cluster normal pattern data into a 'single cluster' while simultaneously learning the cluster center and mapping data close to this center. Also, to improve expressiveness and enable effective single clustering, we propose a new 'One-directed Adaptive loss'. The optimization of this loss is mathematically proven. MADCluster consists of three main components: Base Embedder capturing high-dimensional temporal dynamics, Cluster Distance Mapping, and Sequence-wise Clustering for continuous center updates. Its model-agnostic characteristics are achieved by applying various architectures to the Base Embedder. Experiments on four time series benchmark datasets demonstrate that applying MADCluster improves the overall performance of comparative models. In conclusion, the compatibility of MADCluster shows potential for enhancing model performance across various architectures.
Authors:Mariana A. Fazio, Salvador Sosa Güitron, Marcus Babzien, Mikhail Fedurin, Junjie Li, Mark Palmer, Sandra S. Biedron, Manel Martinez-Ramon
Title: Unsupervised anomaly detection in MeV ultrafast electron diffraction
Abstract:
This study focus in the construction of an unsupervised anomaly detection methodology to detect faulty images in MUED. We believe that unsupervised techniques are the best choice for our purposes because the data used to train the detector does not need to be manually labeled, and instead, the machine is intended to detect by itself the anomalies in the dataset, which liberates the user of tedious, time-consuming initial image examination. The structure must, additionally, provide the user with some measure of uncertainty in the detection, so the user can take decisions based on this measure.
Authors:Xi Wang, Eric Nalisnick
Title: Are vision language models robust to uncertain inputs?
Abstract:
Robustness against uncertain and ambiguous inputs is a critical challenge for deep learning models. While recent advancements in large scale vision language models (VLMs, e.g. GPT4o) might suggest that increasing model and training dataset size would mitigate this issue, our empirical evaluation shows a more complicated picture. Testing models using two classic uncertainty quantification tasks, anomaly detection and classification under inherently ambiguous conditions, we find that newer and larger VLMs indeed exhibit improved robustness compared to earlier models, but still suffer from a tendency to strictly follow instructions, often causing them to hallucinate confident responses even when faced with unclear or anomalous inputs. Remarkably, for natural images such as ImageNet, this limitation can be overcome without pipeline modifications: simply prompting models to abstain from uncertain predictions enables significant reliability gains, achieving near-perfect robustness in several settings. However, for domain-specific tasks such as galaxy morphology classification, a lack of specialized knowledge prevents reliable uncertainty estimation. Finally, we propose a novel mechanism based on caption diversity to reveal a model's internal uncertainty, enabling practitioners to predict when models will successfully abstain without relying on labeled data.
Authors:Ali Almakhluk, Uthman Baroudi, Yasser El-Alfy
Title: Intelligent Road Anomaly Detection with Real-time Notification System for Enhanced Road Safety
Abstract:
This study aims to improve transportation safety, especially traffic safety. Road damage anomalies such as potholes and cracks have emerged as a significant and recurring cause for accidents. To tackle this problem and improve road safety, a comprehensive system has been developed to detect potholes, cracks (e.g. alligator, transverse, longitudinal), classify their sizes, and transmit this data to the cloud for appropriate action by authorities. The system also broadcasts warning signals to nearby vehicles warning them if a severe anomaly is detected on the road. Moreover, the system can count road anomalies in real-time. It is emulated through the utilization of Raspberry Pi, a camera module, deep learning model, laptop, and cloud service. Deploying this innovative solution aims to proactively enhance road safety by notifying relevant authorities and drivers about the presence of potholes and cracks to take actions, thereby mitigating potential accidents arising from this prevalent road hazard leading to safer road conditions for the whole community.
Authors:Adam Ulrich, Jan Krňávek, Roman Šenkeřík, Zuzana Komínková Oplatková, Radek Vala
Title: Isolation Forest in Novelty Detection Scenario
Abstract:
Data mining offers a diverse toolbox for extracting meaningful structures from complex datasets, with anomaly detection emerging as a critical subfield particularly in the context of streaming or real-time data. Within anomaly detection, novelty detection focuses on identifying previously unseen patterns after training solely on regular data. While classic algorithms such as One-Class SVM or Local Outlier Factor (LOF) have been widely applied, they often lack interpretability and scalability. In this work, we explore the Half-Space Tree (HST) algorithm, originally proposed for streaming anomaly detection, and propose a novel theoretical modification to adapt it specifically for novelty detection tasks. Our approach is grounded in the idea that anomalies i.e., novelties tend to appear in the higher leaves of the tree, which are less frequently visited by regular instances. We analytically demonstrate the effectiveness of this approach using probabilistic analysis, expected depth (EXD) calculations, and combinatorial reasoning. A comparative analysis of expected depths between our modified HST and the original Isolation Forest highlights that novelty points are significantly more isolated in our approach. This supports the hypothesis that HSTs, with appropriate structural adaptation, can serve as interpretable and efficient novelty detectors. The paper contributes a theoretical foundation and supporting analysis for this adaptation, setting the stage for further application and experimentation.
Authors:Noboru Katayama, Rintaro Ishida
Title: Fault Detection Method for Power Conversion Circuits Using Thermal Image and Convolutional Autoencoder
Abstract:
A fault detection method for power conversion circuits using thermal images and a convolutional autoencoder is presented. The autoencoder is trained on thermal images captured from a commercial power module at randomly varied load currents and augmented image2 generated through image processing techniques such as resizing, rotation, perspective transformation, and bright and contrast adjustment. Since the autoencoder is trained to output images identical to input only for normal samples, it reconstructs images similar to normal ones even when the input images containing faults. A small heater is attached to the circuit board to simulate a fault on a power module, and then thermal images were captured from different angles and positions, as well as various load currents to test the trained autoencoder model. The areas under the curve (AUC) were obtained to evaluate the proposed method. The results show the autoencoder model can detect anomalies with 100% accuracy under given conditions. The influence of hyperparameters such as the number of convolutional layers and image augmentation conditions on anomaly detection accuracy was also investigated.
Authors:Pablo Gómez, David O'Ryan
Title: AnomalyMatch: Discovering Rare Objects of Interest with Semi-supervised and Active Learning
Abstract:
Anomaly detection in large datasets is essential in fields such as astronomy and computer vision; however, supervised methods typically require extensive anomaly labelling, which is often impractical. We present AnomalyMatch, an anomaly detection framework combining the semi-supervised FixMatch algorithm using EfficientNet classifiers with active learning. By treating anomaly detection as a semi-supervised binary classification problem, we efficiently utilise limited labelled and abundant unlabelled images. We allow iterative model refinement in a user interface for expert verification of high-confidence anomalies and correction of false positives. Built for astronomical data, AnomalyMatch generalises readily to other domains facing similar data challenges. Evaluations on the GalaxyMNIST astronomical dataset and the miniImageNet natural-image benchmark under severe class imbalance (1% anomalies for miniImageNet) display strong performance: starting from five to ten labelled anomalies and after three active learning cycles, we achieve an average AUROC of 0.95 (miniImageNet) and 0.86 (GalaxyMNIST), with respective AUPRC of 0.77 and 0.71. After active learning cycles, anomalies are ranked with 71% (miniImageNet) to 93% precision in the 1% of the highest-ranked images. AnomalyMatch is tailored for large-scale applications, efficiently processing predictions for 100 million images within three days on a single GPU. Integrated into ESAs Datalabs platform, AnomalyMatch facilitates targeted discovery of scientifically valuable anomalies in vast astronomical datasets. Our results underscore the exceptional utility and scalability of this approach for anomaly discovery, highlighting the value of specialised approaches for domains characterised by severe label scarcity.
Authors:Dishanand Jayeprokash, Julia Gonski
Title: Convolutional Autoencoders for Data Compression and Anomaly Detection in Small Satellite Technologies
Abstract:
Small satellite technologies have enhanced the potential and feasibility of geodesic missions, through simplification of design and decreased costs allowing for more frequent launches. On-satellite data acquisition systems can benefit from the implementation of machine learning (ML), for better performance and greater efficiency on tasks such as image processing or feature extraction. This work presents convolutional autoencoders for implementation on the payload of small satellites, designed to achieve dual functionality of data compression for more efficient off-satellite transmission, and at-source anomaly detection to inform satellite data-taking. This capability is demonstrated for a use case of disaster monitoring using aerial image datasets of the African continent, offering avenues for both novel ML-based approaches in small satellite applications along with the expansion of space technology and artificial intelligence in Africa.
Authors:Alessia Hu, Regina Beets-Tan, Lishan Cai, Eduardo Pooch
Title: Anomaly-Driven Approach for Enhanced Prostate Cancer Segmentation
Abstract:
Magnetic Resonance Imaging (MRI) plays an important role in identifying clinically significant prostate cancer (csPCa), yet automated methods face challenges such as data imbalance, variable tumor sizes, and a lack of annotated data. This study introduces Anomaly-Driven U-Net (adU-Net), which incorporates anomaly maps derived from biparametric MRI sequences into a deep learning-based segmentation framework to improve csPCa identification. We conduct a comparative analysis of anomaly detection methods and evaluate the integration of anomaly maps into the segmentation pipeline. Anomaly maps, generated using Fixed-Point GAN reconstruction, highlight deviations from normal prostate tissue, guiding the segmentation model to potential cancerous regions. We compare the performance by using the average score, computed as the mean of the AUROC and Average Precision (AP). On the external test set, adU-Net achieves the best average score of 0.618, outperforming the baseline nnU-Net model (0.605). The results demonstrate that incorporating anomaly detection into segmentation improves generalization and performance, particularly with ADC-based anomaly maps, offering a promising direction for automated csPCa identification.
Authors:Yashat Tavakoli, Amilcar Soares, Lourdes Pena
Title: A Novel Multilevel Taxonomical Approach for Describing High-Dimensional Unlabeled Movement Data
Abstract:
Movement data is prevalent across various applications and scientific fields, often characterized by its massive scale and complexity. Exploratory Data Analysis (EDA) plays a crucial role in summarizing and describing such data, enabling researchers to generate insights and support scientific hypotheses. Despite its importance, traditional EDA practices face limitations when applied to high-dimensional, unlabeled movement data. The complexity and multi-faceted nature of this type of data require more advanced methods that go beyond the capabilities of current EDA techniques. This study addresses the gap in current EDA practices by proposing a novel approach that leverages movement variable taxonomies and outlier detection. We hypothesize that organizing movement features into a taxonomy, and applying anomaly detection to combinations of taxonomic nodes, can reveal meaningful patterns and lead to more interpretable descriptions of the data. To test this hypothesis, we introduce TUMD, a new method that integrates movement taxonomies with outlier detection to enhance data analysis and interpretation. TUMD was evaluated across four diverse datasets of moving objects using fixed parameter values. Its effectiveness was assessed through two passes: the first pass categorized the majority of movement patterns as Kinematic, Geometric, or Hybrid for all datasets, while the second pass refined these behaviors into more specific categories such as Speed, Acceleration, or Indentation. TUMD met the effectiveness criteria in three datasets, demonstrating its ability to describe and refine movement behaviors. The results confirmed our hypothesis, showing that the combination of movement taxonomies and anomaly detection successfully uncovers meaningful and interpretable patterns within high-dimensional, unlabeled movement data.
Authors:Markus Haug, Gissel Velarde
Title: Performance of Machine Learning Classifiers for Anomaly Detection in Cyber Security Applications
Abstract:
This work empirically evaluates machine learning models on two imbalanced public datasets (KDDCUP99 and Credit Card Fraud 2013). The method includes data preparation, model training, and evaluation, using an 80/20 (train/test) split. Models tested include eXtreme Gradient Boosting (XGB), Multi Layer Perceptron (MLP), Generative Adversarial Network (GAN), Variational Autoencoder (VAE), and Multiple-Objective Generative Adversarial Active Learning (MO-GAAL), with XGB and MLP further combined with Random-Over-Sampling (ROS) and Self-Paced-Ensemble (SPE). Evaluation involves 5-fold cross-validation and imputation techniques (mean, median, and IterativeImputer) with 10, 20, 30, and 50 % missing data. Findings show XGB and MLP outperform generative models. IterativeImputer results are comparable to mean and median, but not recommended for large datasets due to increased complexity and execution time. The code used is publicly available on GitHub (github.com/markushaug/acr-25).
Authors:Subhadip Bandyopadhyay, Joy Bose, Sujoy Roy Chowdhury
Title: A Hybrid Framework for Real-Time Data Drift and Anomaly Identification Using Hierarchical Temporal Memory and Statistical Tests
Abstract:
Data Drift is the phenomenon where the generating model behind the data changes over time. Due to data drift, any model built on the past training data becomes less relevant and inaccurate over time. Thus, detecting and controlling for data drift is critical in machine learning models. Hierarchical Temporal Memory (HTM) is a machine learning model developed by Jeff Hawkins, inspired by how the human brain processes information. It is a biologically inspired model of memory that is similar in structure to the neocortex, and whose performance is claimed to be comparable to state of the art models in detecting anomalies in time series data. Another unique benefit of HTMs is its independence from training and testing cycle; all the learning takes place online with streaming data and no separate training and testing cycle is required. In sequential learning paradigm, Sequential Probability Ratio Test (SPRT) offers some unique benefit for online learning and inference. This paper proposes a novel hybrid framework combining HTM and SPRT for real-time data drift detection and anomaly identification. Unlike existing data drift methods, our approach eliminates frequent retraining and ensures low false positive rates. HTMs currently work with one dimensional or univariate data. In a second study, we also propose an application of HTM in multidimensional supervised scenario for anomaly detection by combining the outputs of multiple HTM columns, one for each dimension of the data, through a neural network. Experimental evaluations demonstrate that the proposed method outperforms conventional drift detection techniques like the Kolmogorov-Smirnov (KS) test, Wasserstein distance, and Population Stability Index (PSI) in terms of accuracy, adaptability, and computational efficiency. Our experiments also provide insights into optimizing hyperparameters for real-time deployment in domains such as Telecom.
Authors:Nazia Aslam, Kamal Nasrollahi
Title: Balancing Privacy and Action Performance: A Penalty-Driven Approach to Image Anonymization
Abstract:
The rapid development of video surveillance systems for object detection, tracking, activity recognition, and anomaly detection has revolutionized our day-to-day lives while setting alarms for privacy concerns. It isn't easy to strike a balance between visual privacy and action recognition performance in most computer vision models. Is it possible to safeguard privacy without sacrificing performance? It poses a formidable challenge, as even minor privacy enhancements can lead to substantial performance degradation. To address this challenge, we propose a privacy-preserving image anonymization technique that optimizes the anonymizer using penalties from the utility branch, ensuring improved action recognition performance while minimally affecting privacy leakage. This approach addresses the trade-off between minimizing privacy leakage and maintaining high action performance. The proposed approach is primarily designed to align with the regulatory standards of the EU AI Act and GDPR, ensuring the protection of personally identifiable information while maintaining action performance. To the best of our knowledge, we are the first to introduce a feature-based penalty scheme that exclusively controls the action features, allowing freedom to anonymize private attributes. Extensive experiments were conducted to validate the effectiveness of the proposed method. The results demonstrate that applying a penalty to anonymizer from utility branch enhances action performance while maintaining nearly consistent privacy leakage across different penalty settings.
Authors:F. Herrera, U. A. Rozikov, M. V. Velasco
Title: Ising Models with Hidden Markov Structure: Applications to Probabilistic Inference in Machine Learning
Abstract:
In this paper, we investigate tree-indexed Markov chains (Gibbs measures) defined by a Hamiltonian that couples two Ising layers: hidden spins \(s(x) \in \{\pm 1\}\) and observed spins \(σ(x) \in \{\pm 1\}\) on a Cayley tree. The Hamiltonian incorporates Ising interactions within each layer and site-wise emission couplings between layers, extending hidden Markov models to a bilayer Markov random field. Specifically, we explore translation-invariant Gibbs measures (TIGM) of this Hamiltonian on Cayley trees. Under certain explicit conditions on the model's parameters, we demonstrate that there can be up to three distinct TIGMs. Each of these measures represents an equilibrium state of the spin system. These measures provide a structured approach to inference on hierarchical data in machine learning. They have practical applications in tasks such as denoising, weakly supervised learning, and anomaly detection. The Cayley tree structure is particularly advantageous for exact inference due to its tractability.
Authors:Uthman Baroudi, Alala BaHamid, Yasser Elalfy, Ziad Al Alami
Title: Enhancing Pothole Detection and Characterization: Integrated Segmentation and Depth Estimation in Road Anomaly Systems
Abstract:
Road anomaly detection plays a crucial role in road maintenance and in enhancing the safety of both drivers and vehicles. Recent machine learning approaches for road anomaly detection have overcome the tedious and time-consuming process of manual analysis and anomaly counting; however, they often fall short in providing a complete characterization of road potholes. In this paper, we leverage transfer learning by adopting a pre-trained YOLOv8-seg model for the automatic characterization of potholes using digital images captured from a dashboard-mounted camera. Our work includes the creation of a novel dataset, comprising both images and their corresponding depth maps, collected from diverse road environments in Al-Khobar city and the KFUPM campus in Saudi Arabia. Our approach performs pothole detection and segmentation to precisely localize potholes and calculate their area. Subsequently, the segmented image is merged with its depth map to extract detailed depth information about the potholes. This integration of segmentation and depth data offers a more comprehensive characterization compared to previous deep learning-based road anomaly detection systems. Overall, this method not only has the potential to significantly enhance autonomous vehicle navigation by improving the detection and characterization of road hazards but also assists road maintenance authorities in responding more effectively to road damage.
Authors:Nikolay Manchev, Luis C. Garcia-Peraza-Herrera
Title: Can Local Representation Alignment RNNs Solve Temporal Tasks?
Abstract:
Recurrent Neural Networks (RNNs) are commonly used for real-time processing, streaming data, and cases where the amount of training samples is limited. Backpropagation Through Time (BPTT) is the predominant algorithm for training RNNs; however, it is frequently criticized for being prone to exploding and vanishing gradients and being biologically implausible. In this paper, we present and evaluate a target propagation-based method for RNNs, which uses local updates and seeks to reduce the said instabilities. Having stable RNN models increases their practical use in a wide range of fields such as natural language processing, time-series forecasting, anomaly detection, control systems, and robotics. The proposed solution uses local representation alignment (LRA). We thoroughly analyze the performance of this method, experiment with normalization and different local error functions, and invalidate certain assumptions about the behavior of this type of learning. Namely, we demonstrate that despite the decomposition of the network into sub-graphs, the model still suffers from vanishing gradients. We also show that gradient clipping as proposed in LRA has little to no effect on network performance. This results in an LRA RNN model that is very difficult to train due to vanishing gradients. We address this by introducing gradient regularization in the direction of the update and demonstrate that this modification promotes gradient flow and meaningfully impacts convergence. We compare and discuss the performance of the algorithm, and we show that the regularized LRA RNN considerably outperforms the unregularized version on three landmark tasks: temporal order, 3-bit temporal order, and random permutation.
Authors:Niamh Mimnagh, Andrew Parnell, Conor McAloon, Jaden Carlson, Maria Guelbenzu, Jonas Brock, Damien Barrett, Guy McGrath, Jamie Tratalos, Rafael Moral
Title: Predicting BVD Re-emergence in Irish Cattle From Highly Imbalanced Herd-Level Data Using Machine Learning Algorithms
Abstract:
Bovine Viral Diarrhoea (BVD) has been the focus of a successful eradication programme in Ireland, with the herd-level prevalence declining from 11.3% in 2013 to just 0.2% in 2023. As the country moves toward BVD freedom, the development of predictive models for targeted surveillance becomes increasingly important to mitigate the risk of disease re-emergence. In this study, we evaluate the performance of a range of machine learning algorithms, including binary classification and anomaly detection techniques, for predicting BVD-positive herds using highly imbalanced herd-level data. We conduct an extensive simulation study to assess model performance across varying sample sizes and class imbalance ratios, incorporating resampling, class weighting, and appropriate evaluation metrics (sensitivity, positive predictive value, F1-score and AUC values). Random forests and XGBoost models consistently outperformed other methods, with the random forest model achieving the highest sensitivity and AUC across scenarios, including real-world prediction of 2023 herd status, correctly identifying 219 of 250 positive herds while halving the number of herds that require compared to a blanket-testing strategy.
Authors:Mahdi Hasanzadeh, Kasem Khalil, Cynthia Sturton, Ahmad Patooghy
Title: HeatSense: Intelligent Thermal Anomaly Detection for Securing NoC-Enabled MPSoCs
Abstract:
Multi-Processor System-on-Chips (MPSoCs) are highly vulnerable to thermal attacks that manipulate dynamic thermal management systems. To counter this, we propose an adaptive real-time monitoring mechanism that detects abnormal thermal patterns in chip tiles. Our design space exploration helped identify key thermal features for an efficient anomaly detection module to be implemented at routers of network-enabled MPSoCs. To minimize hardware overhead, we employ weighted moving average (WMA) calculations and bit-shift operations, ensuring a lightweight yet effective implementation. By defining a spectrum of abnormal behaviors, our system successfully detects and mitigates malicious temperature fluctuations, reducing severe cases from 3.00°C to 1.9°C. The anomaly detection module achieves up to 82% of accuracy in detecting thermal attacks, which is only 10-15% less than top-performing machine learning (ML) models like Random Forest. However, our approach reduces hardware usage by up to 75% for logic resources and 100% for specialized resources, making it significantly more efficient than ML-based solutions. This method provides a practical, low-cost solution for resource-constrained environments, ensuring resilience against thermal attacks while maintaining system performance.
Authors:Samy-Melwan Vilhes, Gilles Gasso, Mokhtar Z Alaya
Title: PatchTrAD: A Patch-Based Transformer focusing on Patch-Wise Reconstruction Error for Time Series Anomaly Detection
Abstract:
Time series anomaly detection (TSAD) focuses on identifying whether observations in streaming data deviate significantly from normal patterns. With the prevalence of connected devices, anomaly detection on time series has become paramount, as it enables real-time monitoring and early detection of irregular behaviors across various application domains. In this work, we introduce PatchTrAD, a Patch-based Transformer model for time series anomaly detection. Our approach leverages a Transformer encoder along with the use of patches under a reconstructionbased framework for anomaly detection. Empirical evaluations on multiple benchmark datasets show that PatchTrAD is on par, in terms of detection performance, with state-of-the-art deep learning models for anomaly detection while being time efficient during inference.
Authors:David O. Johnston, Arkajyoti Chakraborty, Nora Belrose
Title: Mechanistic Anomaly Detection for "Quirky" Language Models
Abstract:
As LLMs grow in capability, the task of supervising LLMs becomes more challenging. Supervision failures can occur if LLMs are sensitive to factors that supervisors are unaware of. We investigate Mechanistic Anomaly Detection (MAD) as a technique to augment supervision of capable models; we use internal model features to identify anomalous training signals so they can be investigated or discarded. We train detectors to flag points from the test environment that differ substantially from the training environment, and experiment with a large variety of detector features and scoring rules to detect anomalies in a set of ``quirky'' language models. We find that detectors can achieve high discrimination on some tasks, but no detector is effective across all models and tasks. MAD techniques may be effective in low-stakes applications, but advances in both detection and evaluation are likely needed if they are to be used in high stakes settings.
Authors:Siva Rama Krishna Kottapalli, Karthik Hubli, Sandeep Chandrashekhara, Garima Jain, Sunayana Hubli, Gayathri Botla, Ramesh Doddaiah
Title: Foundation Models for Time Series: A Survey
Abstract:
Transformer-based foundation models have emerged as a dominant paradigm in time series analysis, offering unprecedented capabilities in tasks such as forecasting, anomaly detection, classification, trend analysis and many more time series analytical tasks. This survey provides a comprehensive overview of the current state of the art pre-trained foundation models, introducing a novel taxonomy to categorize them across several dimensions. Specifically, we classify models by their architecture design, distinguishing between those leveraging patch-based representations and those operating directly on raw sequences. The taxonomy further includes whether the models provide probabilistic or deterministic predictions, and whether they are designed to work with univariate time series or can handle multivariate time series out of the box. Additionally, the taxonomy encompasses model scale and complexity, highlighting differences between lightweight architectures and large-scale foundation models. A unique aspect of this survey is its categorization by the type of objective function employed during training phase. By synthesizing these perspectives, this survey serves as a resource for researchers and practitioners, providing insights into current trends and identifying promising directions for future research in transformer-based time series modeling.
Authors:Yiyuan Xiong, Shaofeng Cai
Title: Improving log-based anomaly detection through learned adaptive filter
Abstract:
Log messages record important system runtime information and are useful for detecting anomalous behaviors and managing modern software systems. Many supervised and unsupervised learning methods have been proposed recently for log-based anomaly detection. State-of-the-art unsupervised methods predict the next log event given a log sequence and apply fixed configurations that use the same filter condition (i.e. k, the top k predicted log events will be regarded as normal next events) which leads to inferior performance in the detection stage because it sets one fixed k for all log sequences, which ignores the dynamic nature and variance in different log sequences. Recently, deep reinforcement learning (DRL) are widely applied to make intelligent decisions in a dynamic environment. In this work, we contend that it is necessary to apply adaptive filters for different log sequences. To achieve this, we propose a novel approach based on DRL to construct a learned adaptive filter and apply different normal/abnormal filter thresholds for different log sequences. We define the Markov Decision Process (MDP) and formulate the learned adaptive filter as a problem that can be solved by DRL. We evaluate the learned adaptive filter on two state-of-the-art log-based anomaly detection unsupervised approaches DeepLog and LogAnomaly in two datasets HDFS and BGL. Extensive experiments show that our approach outperforms the fixed configurations and achieves significantly better performance in log-based anomaly detection.
Authors:Huichuan Huang, Zhiqing Zhong, Guangyu Wei, Yonghao Wan, Wenlong Sun, Aimin Feng
Title: Bi-Grid Reconstruction for Image Anomaly Detection
Abstract:
In image anomaly detection, significant advancements have been made using un- and self-supervised methods with datasets containing only normal samples. However, these approaches often struggle with fine-grained anomalies. This paper introduces \textbf{GRAD}: Bi-\textbf{G}rid \textbf{R}econstruction for Image \textbf{A}nomaly \textbf{D}etection, which employs two continuous grids to enhance anomaly detection from both normal and abnormal perspectives. In this work: 1) Grids as feature repositories that improve generalization and mitigate the Identical Shortcut (IS) issue; 2) An abnormal feature grid that refines normal feature boundaries, boosting detection of fine-grained defects; 3) The Feature Block Paste (FBP) module, which synthesizes various anomalies at the feature level for quick abnormal grid deployment. GRAD's robust representation capabilities also allow it to handle multiple classes with a single model. Evaluations on datasets like MVTecAD, VisA, and GoodsAD show significant performance improvements in fine-grained anomaly detection. GRAD excels in overall accuracy and in discerning subtle differences, demonstrating its superiority over existing methods.
Authors:Lahiru Akmeemana, Chamodya Attanayake, Husni Faiz, Sandareka Wickramanayake
Title: GAL-MAD: Towards Explainable Anomaly Detection in Microservice Applications Using Graph Attention Networks
Abstract:
The transition to microservices has revolutionized software architectures, offering enhanced scalability and modularity. However, the distributed and dynamic nature of microservices introduces complexities in ensuring system reliability, making anomaly detection crucial for maintaining performance and functionality. Anomalies stemming from network and performance issues must be swiftly identified and addressed. Existing anomaly detection techniques often rely on statistical models or machine learning methods that struggle with the high-dimensional, interdependent data inherent in microservice applications. Current techniques and available datasets predominantly focus on system traces and logs, limiting their ability to support advanced detection models. This paper addresses these gaps by introducing the RS-Anomic dataset generated using the open-source RobotShop microservice application. The dataset captures multivariate performance metrics and response times under normal and anomalous conditions, encompassing ten types of anomalies. We propose a novel anomaly detection model called Graph Attention and LSTM-based Microservice Anomaly Detection (GAL-MAD), leveraging Graph Attention and Long Short-Term Memory architectures to capture spatial and temporal dependencies in microservices. We utilize SHAP values to localize anomalous services and identify root causes to enhance explainability. Experimental results demonstrate that GAL-MAD outperforms state-of-the-art models on the RS-Anomic dataset, achieving higher accuracy and recall across varying anomaly rates. The explanations provide actionable insights into service anomalies, which benefits system administrators.
Authors:Vincent Jacob, Yanlei Diao
Title: Unsupervised Anomaly Detection in Multivariate Time Series across Heterogeneous Domains
Abstract:
The widespread adoption of digital services, along with the scale and complexity at which they operate, has made incidents in IT operations increasingly more likely, diverse, and impactful. This has led to the rapid development of a central aspect of "Artificial Intelligence for IT Operations" (AIOps), focusing on detecting anomalies in vast amounts of multivariate time series data generated by service entities. In this paper, we begin by introducing a unifying framework for benchmarking unsupervised anomaly detection (AD) methods, and highlight the problem of shifts in normal behaviors that can occur in practical AIOps scenarios. To tackle anomaly detection under domain shift, we then cast the problem in the framework of domain generalization and propose a novel approach, Domain-Invariant VAE for Anomaly Detection (DIVAD), to learn domain-invariant representations for unsupervised anomaly detection. Our evaluation results using the Exathlon benchmark show that the two main DIVAD variants significantly outperform the best unsupervised AD method in maximum performance, with 20% and 15% improvements in maximum peak F1-scores, respectively. Evaluation using the Application Server Dataset further demonstrates the broader applicability of our domain generalization methods.
Authors:Alice Zhang, Chao Li
Title: Adaptive State-Space Mamba for Real-Time Sensor Data Anomaly Detection
Abstract:
State-space modeling has emerged as a powerful paradigm for sequence analysis in various tasks such as natural language processing, time-series forecasting, and signal processing. In this work, we propose an \emph{Adaptive State-Space Mamba} (\textbf{ASSM}) framework for real-time sensor data anomaly detection. While state-space models have been previously employed for image processing applications (e.g., style transfer \cite{wang2024stylemamba}), our approach leverages the core idea of sequential hidden states to tackle a significantly different domain: detecting anomalies on streaming sensor data. In particular, we introduce an adaptive gating mechanism that dynamically modulates the hidden state update based on contextual and learned statistical cues. This design ensures that our model remains computationally efficient and scalable, even under rapid data arrival rates. Extensive experiments on real-world and synthetic sensor datasets demonstrate that our method achieves superior detection performance compared to existing baselines. Our approach is easily extensible to other time-series tasks that demand rapid and reliable detection capabilities.
Authors:Alan Yang, Yulin Chen, Sean Lee, Venus Montes
Title: Refining Time Series Anomaly Detectors using Large Language Models
Abstract:
Time series anomaly detection (TSAD) is of widespread interest across many industries, including finance, healthcare, and manufacturing. Despite the development of numerous automatic methods for detecting anomalies, human oversight remains necessary to review and act upon detected anomalies, as well as verify their accuracy. We study the use of multimodal large language models (LLMs) to partially automate this process. We find that LLMs can effectively identify false alarms by integrating visual inspection of time series plots with text descriptions of the data-generating process. By leveraging the capabilities of LLMs, we aim to reduce the reliance on human effort required to maintain a TSAD system
Authors:Md. Barkat Ullah Tusher, Shartaz Khan Akash, Amirul Islam Showmik
Title: Anomaly Detection Using Computer Vision: A Comparative Analysis of Class Distinction and Performance Metrics
Abstract:
This paper showcases an experimental study on anomaly detection using computer vision. The study focuses on class distinction and performance evaluation, combining OpenCV with deep learning techniques while employing a TensorFlow-based convolutional neural network for real-time face recognition and classification. The system effectively distinguishes among three classes: authorized personnel (admin), intruders, and non-human entities. A MobileNetV2-based deep learning model is utilized to optimize real-time performance, ensuring high computational efficiency without compromising accuracy. Extensive dataset preprocessing, including image augmentation and normalization, enhances the models generalization capabilities. Our analysis demonstrates classification accuracies of 90.20% for admin, 98.60% for intruders, and 75.80% for non-human detection, while maintaining an average processing rate of 30 frames per second. The study leverages transfer learning, batch normalization, and Adam optimization to achieve stable and robust learning, and a comparative analysis of class differentiation strategies highlights the impact of feature extraction techniques and training methodologies. The results indicate that advanced feature selection and data augmentation significantly enhance detection performance, particularly in distinguishing human from non-human scenes. As an experimental study, this research provides critical insights into optimizing deep learning-based surveillance systems for high-security environments and improving the accuracy and efficiency of real-time anomaly detection.
Authors:Lorenzo Colombi, Michela Vespa, Nicolas Belletti, Matteo Brina, Simon Dahdal, Filippo Tabanelli, Elena Bellodi, Mauro Tortonesi, Cesare Stefanelli, Massimiliano Vignoli
Title: Multivariate Time Series Anomaly Detection in Industry 5.0
Abstract:
Industry5.0 environments present a critical need for effective anomaly detection methods that can indicate equipment malfunctions, process inefficiencies, or potential safety hazards. The ever-increasing sensorization of manufacturing lines makes processes more observable, but also poses the challenge of continuously analyzing vast amounts of multivariate time series data. These challenges include data quality since data may contain noise, be unlabeled or even mislabeled. A promising approach consists of combining an embedding model with other Machine Learning algorithms to enhance the overall performance in detecting anomalies. Moreover, representing time series as vectors brings many advantages like higher flexibility and improved ability to capture complex temporal dependencies. We tested our solution in a real industrial use case, using data collected from a Bonfiglioli plant. The results demonstrate that, unlike traditional reconstruction-based autoencoders, which often struggle in the presence of sporadic noise, our embedding-based framework maintains high performance across various noise conditions.
Authors:Shraddha Pradipbhai Shah, Aditya Vilas Deshpande
Title: Enforcing Cybersecurity Constraints for LLM-driven Robot Agents for Online Transactions
Abstract:
The integration of Large Language Models (LLMs) into autonomous robotic agents for conducting online transactions poses significant cybersecurity challenges. This study aims to enforce robust cybersecurity constraints to mitigate the risks associated with data breaches, transaction fraud, and system manipulation. The background focuses on the rise of LLM-driven robotic systems in e-commerce, finance, and service industries, alongside the vulnerabilities they introduce. A novel security architecture combining blockchain technology with multi-factor authentication (MFA) and real-time anomaly detection was implemented to safeguard transactions. Key performance metrics such as transaction integrity, response time, and breach detection accuracy were evaluated, showing improved security and system performance. The results highlight that the proposed architecture reduced fraudulent transactions by 90%, improved breach detection accuracy to 98%, and ensured secure transaction validation within a latency of 0.05 seconds. These findings emphasize the importance of cybersecurity in the deployment of LLM-driven robotic systems and suggest a framework adaptable to various online platforms.
Authors:William Marfo, Deepak Tosh, Shirley Moore, Joshua Suetterlein, Joseph Manzano
Title: Reducing Communication Overhead in Federated Learning for Network Anomaly Detection with Adaptive Client Selection
Abstract:
Communication overhead in federated learning (FL) poses a significant challenge for network anomaly detection systems, where diverse client configurations and network conditions impact efficiency and detection accuracy. Existing approaches attempt optimization individually but struggle to balance reduced overhead with performance. This paper presents an adaptive FL framework combining batch size optimization, client selection, and asynchronous updates for efficient anomaly detection. Using UNSW-NB15 for general network traffic and ROAD for automotive networks, our framework reduces communication overhead by 97.6% (700.0s to 16.8s) while maintaining comparable accuracy (95.10% vs. 95.12%). The Mann-Whitney U test confirms significant improvements (p < 0.05). Profiling analysis reveals efficiency gains via reduced GPU operations and memory transfers, ensuring robust detection across varying client conditions.
Authors:Giovanni Floreale, Piero Baraldi, Enrico Zio, Olga Fink
Title: Automated Processing of eXplainable Artificial Intelligence Outputs in Deep Learning Models for Fault Diagnostics of Large Infrastructures
Abstract:
Deep Learning (DL) models processing images to recognize the health state of large infrastructure components can exhibit biases and rely on non-causal shortcuts. eXplainable Artificial Intelligence (XAI) can address these issues but manually analyzing explanations generated by XAI techniques is time-consuming and prone to errors. This work proposes a novel framework that combines post-hoc explanations with semi-supervised learning to automatically identify anomalous explanations that deviate from those of correctly classified images and may therefore indicate model abnormal behaviors. This significantly reduces the workload for maintenance decision-makers, who only need to manually reclassify images flagged as having anomalous explanations. The proposed framework is applied to drone-collected images of insulator shells for power grid infrastructure monitoring, considering two different Convolutional Neural Networks (CNNs), GradCAM explanations and Deep Semi-Supervised Anomaly Detection. The average classification accuracy on two faulty classes is improved by 8% and maintenance operators are required to manually reclassify only 15% of the images. We compare the proposed framework with a state-of-the-art approach based on the faithfulness metric: the experimental results obtained demonstrate that the proposed framework consistently achieves F_1 scores larger than those of the faithfulness-based approach. Additionally, the proposed framework successfully identifies correct classifications that result from non-causal shortcuts, such as the presence of ID tags printed on insulator shells.
Authors:V. Anemogiannis, B. Andreou, K. Myrtollari, K. Panagidi, S. Hadjiefthymiades
Title: Enhancing Kubernetes Resilience through Anomaly Detection and Prediction
Abstract:
Kubernetes, in recent years, has become widely used for the deployment and management of software projects on cloud infrastructure. Due to the execution of these applications across numerous Nodes, each one with its unique specifications, it has become a challenge to identify problems and ensure the smooth operation of the application. Effective supervision of the cluster remains a challenging and resource intensive task. This research work focuses on providing a novel framework system maintainer in order to overview all the possible resources in Kubernetes and pay the attention to specific parts of the cluster that may be showcasing problematic behavior. The novelty of this component rises from the use of cluster graphical representation where features, e.g. graph edges and neighboring nodes, are used for anomaly detection. The proposed framework defines the normality in the dynamic enviroment of Kubernetes and the output feeds the supervised models for abnormaliry detection presented in user-friendly graph interface. A variety of model combinations are evaluated and tested in real-life environment.
Authors:Hun Kang, Kyoungok Kim
Title: Robust Isolation Forest using Soft Sparse Random Projection and Valley Emphasis Method
Abstract:
Isolation Forest (iForest) is an unsupervised anomaly detection algorithm designed to effectively detect anomalies under the assumption that anomalies are ``few and different." Various studies have aimed to enhance iForest, but the resulting algorithms often exhibited significant performance disparities across datasets. Additionally, the challenge of isolating rare and widely distributed anomalies persisted in research focused on improving splits. To address these challenges, we introduce Robust iForest (RiForest). RiForest leverages both existing features and random hyperplanes obtained through soft sparse random projection to identify superior split features for anomaly detection, independent of datasets. It utilizes the underutilized valley emphasis method for optimal split point determination and incorporates sparsity randomization in soft sparse random projection for enhanced anomaly detection robustness. Across 24 benchmark datasets, experiments demonstrate RiForest's consistent outperformance of existing algorithms in anomaly detection, emphasizing stability and robustness to noise variables.
Authors:Quan Yu, Yu-Hong Dai, Minru Bai
Title: Spectral-Spatial Extraction through Layered Tensor Decomposition for Hyperspectral Anomaly Detection
Abstract:
Low rank tensor representation (LRTR) methods are very useful for hyperspectral anomaly detection (HAD). To overcome the limitations that they often overlook spectral anomaly and rely on large-scale matrix singular value decomposition, we first apply non-negative matrix factorization (NMF) to alleviate spectral dimensionality redundancy and extract spectral anomaly and then employ LRTR to extract spatial anomaly while mitigating spatial redundancy, yielding a highly efffcient layered tensor decomposition (LTD) framework for HAD. An iterative algorithm based on proximal alternating minimization is developed to solve the proposed LTD model, with convergence guarantees provided. Moreover, we introduce a rank reduction strategy with validation mechanism that adaptively reduces data size while preventing excessive reduction. Theoretically, we rigorously establish the equivalence between the tensor tubal rank and tensor group sparsity regularization (TGSR) and, under mild conditions, demonstrate that the relaxed formulation of TGSR shares the same global minimizers and optimal values as its original counterpart. Experimental results on the Airport-Beach-Urban and MVTec datasets demonstrate that our approach outperforms state-of-the-art methods in the HAD task.
Authors:Ivan Oleksiyuk, Svyatoslav Voloshynovskiy, Tobias Golling
Title: TRANSIT your events into a new mass: Fast background interpolation for weakly-supervised anomaly searches
Abstract:
We introduce a new model for conditional and continuous data morphing called TRansport Adversarial Network for Smooth InTerpolation (TRANSIT). We apply it to create a background data template for weakly-supervised searches at the LHC. The method smoothly transforms sideband events to match signal region mass distributions. We demonstrate the performance of TRANSIT using the LHC Olympics R\&D dataset. The model captures non-linear mass correlations of features and produces a template that offers a competitive anomaly sensitivity compared to state-of-the-art transport-based template generators. Moreover, the computational training time required for TRANSIT is an order of magnitude lower than that of competing deep learning methods. This makes it ideal for analyses that iterate over many signal regions and signal models. Unlike generative models, which must learn a full probability density distribution, i.e., the correlations between all the variables, the proposed transport model only has to learn a smooth conditional shift of the distribution. This allows for a simpler, more efficient residual architecture, enabling mass uncorrelated features to pass the network unchanged while the mass correlated features are adjusted accordingly. Furthermore, we show that the latent space of the model provides a set of mass decorrelated features useful for anomaly detection without background sculpting.
Authors:Adhish Anitha Vilasan, Stephan Jäger, Noah Klarmann
Title: AI-Driven Multi-Stage Computer Vision System for Defect Detection in Laser-Engraved Industrial Nameplates
Abstract:
Automated defect detection in industrial manufacturing is essential for maintaining product quality and minimizing production errors. In air disc brake manufacturing, ensuring the precision of laser-engraved nameplates is crucial for accurate product identification and quality control. Engraving errors, such as misprints or missing characters, can compromise both aesthetics and functionality, leading to material waste and production delays. This paper presents a proof of concept for an AI-driven computer vision system that inspects and verifies laser-engraved nameplates, detecting defects in logos and alphanumeric strings. The system integrates object detection using YOLOv7, optical character recognition (OCR) with Tesseract, and anomaly detection through a residual variational autoencoder (ResVAE) along with other computer vision methods to enable comprehensive inspections at multiple stages. Experimental results demonstrate the system's effectiveness, achieving 91.33% accuracy and 100% recall, ensuring that defective nameplates are consistently detected and addressed. This solution highlights the potential of AI-driven visual inspection to enhance quality control, reduce manual inspection efforts, and improve overall manufacturing efficiency.
Authors:Fabian Domberg, Georg Schildbach
Title: World Models for Anomaly Detection during Model-Based Reinforcement Learning Inference
Abstract:
Learning-based controllers are often purposefully kept out of real-world applications due to concerns about their safety and reliability. We explore how state-of-the-art world models in Model-Based Reinforcement Learning can be utilized beyond the training phase to ensure a deployed policy only operates within regions of the state-space it is sufficiently familiar with. This is achieved by continuously monitoring discrepancies between a world model's predictions and observed system behavior during inference. It allows for triggering appropriate measures, such as an emergency stop, once an error threshold is surpassed. This does not require any task-specific knowledge and is thus universally applicable. Simulated experiments on established robot control tasks show the effectiveness of this method, recognizing changes in local robot geometry and global gravitational magnitude. Real-world experiments using an agile quadcopter further demonstrate the benefits of this approach by detecting unexpected forces acting on the vehicle. These results indicate how even in new and adverse conditions, safe and reliable operation of otherwise unpredictable learning-based controllers can be achieved.
Authors:EungGu Yun, Heonjin Ha, Yeongwoo Nam, Bryan Dongik Lee
Title: Language-Assisted Feature Transformation for Anomaly Detection
Abstract:
This paper introduces LAFT, a novel feature transformation method designed to incorporate user knowledge and preferences into anomaly detection using natural language. Accurately modeling the boundary of normality is crucial for distinguishing abnormal data, but this is often challenging due to limited data or the presence of nuisance attributes. While unsupervised methods that rely solely on data without user guidance are common, they may fail to detect anomalies of specific interest. To address this limitation, we propose Language-Assisted Feature Transformation (LAFT), which leverages the shared image-text embedding space of vision-language models to transform visual features according to user-defined requirements. Combined with anomaly detection methods, LAFT effectively aligns visual features with user preferences, allowing anomalies of interest to be detected. Extensive experiments on both toy and real-world datasets validate the effectiveness of our method.
Authors:Juho Lee, Donghyun Yoon, Gumoon Jeong, Hyeoncheol Kim
Title: Acoustic Anomaly Detection on UAM Propeller Defect with Acoustic dataset for Crack of drone Propeller (ADCP)
Abstract:
The imminent commercialization of UAM requires stable, AI-based maintenance systems to ensure safety for both passengers and pedestrians. This paper presents a methodology for non-destructively detecting cracks in UAM propellers using drone propeller sound datasets. Normal operating sounds were recorded, and abnormal sounds (categorized as ripped and broken) were differentiated by varying the microphone-propeller angle and throttle power. Our novel approach integrates FFT and STFT preprocessing techniques to capture both global frequency patterns and local time-frequency variations, thereby enhancing anomaly detection performance. The constructed Acoustic Dataset for Crack of Drone Propeller (ADCP) demonstrates the potential for detecting propeller cracks and lays the groundwork for future UAM maintenance applications.
Authors:Valentin Guien, Violaine Antoine, Romain Lardy, Isabelle Veissier, Luis E C Rocha
Title: Detection of anomalies in cow activity using wavelet transform based features
Abstract:
In Precision Livestock Farming, detecting deviations from optimal or baseline values - i.e. anomalies in time series - is essential to allow undertaking corrective actions rapidly. Here we aim at detecting anomalies in 24h time series of cow activity, with a view to detect cases of disease or oestrus. Deviations must be distinguished from noise which can be very high in case of biological data. It is also important to detect the anomaly early, e.g. before a farmer would notice it visually. Here, we investigate the benefit of using wavelet transforms to denoise data and we assess the performance of an anomaly detection algorithm considering the timing of the detection. We developed features based on the comparisons between the wavelet transforms of the mean of the time series and the wavelet transforms of individual time series instances. We hypothesized that these features contribute to the detection of anomalies in periodic time series using a feature-based algorithm. We tested this hypothesis with two datasets representing cow activity, which typically follows a daily pattern but can deviate due to specific physiological or pathological conditions. We applied features derived from wavelet transform as well as statistical features in an Isolation Forest algorithm. We measured the distance of detection between the days annotated abnormal by animal caretakers days and the days predicted abnormal by the algorithm. The results show that wavelet-based features are among the features most contributing to anomaly detection. They also show that detections are close to the annotated days, and often precede it. In conclusion, using wavelet transforms on time series of cow activity data helps to detect anomalies related to specific cow states. The detection is often obtained on days that precede the day annotated by caretakers, which offer possibility to take corrective actions at an early stage.
Authors:Jing Xu, Mark Hansen, Megan Ryerson
Title: Identification and Characterization for Disruptions in the U.S. National Airspace System (NAS)
Abstract:
Disruptions in the National Airspace System (NAS) lead to significant losses to air traffic system participants and raise public concerns. We apply two methods, cluster analysis and anomaly detection models, to identify operational disruptions with geographical patterns in the NAS since 2010. We identify four types and twelve categories of days of operations, distinguished according to air traffic system operational performance and geographical patterns of disruptions. Two clusters--NAS Disruption and East Super Disruption, accounting for 0.8% and 1.2% of the days respectively, represent the most disrupted days of operations in U.S. air traffic system. Another 16.5% of days feature less severe but still significant disruptions focused on certain regions of the NAS, while on the remaining 81.5% of days the NAS operates relatively smoothly. Anomaly detection results show good agreement with cluster results and further distinguish days in the same cluster by severity of disruptions. Results show an increasing trend in frequency of disruptions especially post-COVID. Additionally, disruptions happen most frequently in the summer and winter.
Authors:Jin Hou, Hao Tang
Title: Improved YOLOv7x-Based Defect Detection Algorithm for Power Equipment
Abstract:
The normal operation of power equipment plays a critical role in the power system, making anomaly detection for power equipment highly significant. This paper proposes an improved YOLOv7x-based anomaly detection algorithm for power equipment. First, the ACmix convolutional mixed attention mechanism module is introduced to effectively suppress background noise and irrelevant features, thereby enhancing the network's feature extraction capability. Second, the Biformer attention mechanism is added to the network to strengthen the focus on key features, improving the network's ability to flexibly recognize feature images. Finally, to more comprehensively evaluate the relationship between predicted and ground truth bounding boxes, the original loss function is replaced with the MPDIoU function, addressing the issue of mismatched predicted bounding boxes. The improved algorithm enhances detection accuracy, achieving a mAP@0.5/% of 93.5% for all target categories, a precision of 97.1%, and a recall of 97%.
Authors:Sotirios Stamnas, Victor Sanchez
Title: DiffFake: Exposing Deepfakes using Differential Anomaly Detection
Abstract:
Traditional deepfake detectors have dealt with the detection problem as a binary classification task. This approach can achieve satisfactory results in cases where samples of a given deepfake generation technique have been seen during training, but can easily fail with deepfakes generated by other techniques. In this paper, we propose DiffFake, a novel deepfake detector that approaches the detection problem as an anomaly detection task. Specifically, DiffFake learns natural changes that occur between two facial images of the same person by leveraging a differential anomaly detection framework. This is done by combining pairs of deep face embeddings and using them to train an anomaly detection model. We further propose to train a feature extractor on pseudo-deepfakes with global and local artifacts, to extract meaningful and generalizable features that can then be used to train the anomaly detection model. We perform extensive experiments on five different deepfake datasets and show that our method can match and sometimes even exceed the performance of state-of-the-art competitors.
Authors:Steve Taylor, Panos Melas, Martin Gile Jaatun, Aida Omerovic, Robert Seidl, Norbert Goetze, Jens Kuhr, Dmytro Prosvirin, Manuel Leone, Paolo De Lutiis, Andrey Kuznetsov, Anatoliy Gritskevich, George N. Triantafyllou, Antonis Mpantis, Oscar Garcia Perales, Bernd-Ludwig Wenning, Sayon Duttagupta
Title: Toward Cybersecurity Testing and Monitoring of IoT Ecosystems
Abstract:
We describe a framework and tool specification that represents a step towards cybersecurity testing and monitoring of IoT ecosystems. We begin with challenges from a previous paper and discuss an integrated approach and tools to enable testing and monitoring to address these challenges. We also describe exemplary use cases of IoT ecosystems and propose approaches to address the challenges using the framework and tools. The current status of this work is that the specification and conceptualisation is complete, use cases are understood with clear challenges and implementation / extension of the tools and framework is underway with tools at different stages of development. Several key observations have been made throughout this work, as follows. 1) Tools may be used in multiple different combinations, and ad-hoc use is also encouraged, where one tool may provide clues and other tools executed to undertake further investigations based on initial results. 2) Automated execution of tool chains is supported by workflows. 3) support for immutable storage of audit records of tests and results is an important requirement. 4) Indicators (observations or measurements representing information of relevance for assessment of cyber security) are a key mechanism for intercommunication between one tool and another, or with the operator. 5) Mapping this work to established security development lifecycles is a useful means of determining applicability and utility of the tools and framework. 6) There is a key interplay between devices and systems. 7) Anomaly detection in multiple forms is a key means of runtime monitoring. 8) Considerable investigation is needed related to the specifics of each device / system as an item of further work.
Authors:Eduardo Fernandes Montesuma, Adel El Habazi, Fred Ngole Mboula
Title: Unsupervised Anomaly Detection through Mass Repulsing Optimal Transport
Abstract:
Detecting anomalies in datasets is a longstanding problem in machine learning. In this context, anomalies are defined as a sample that significantly deviates from the remaining data. Meanwhile, optimal transport (OT) is a field of mathematics concerned with the transportation, between two probability measures, at least effort. In classical OT, the optimal transportation strategy of a measure to itself is the identity. In this paper, we tackle anomaly detection by forcing samples to displace its mass, while keeping the least effort objective. We call this new transportation problem Mass Repulsing Optimal Transport (MROT). Naturally, samples lying in low density regions of space will be forced to displace mass very far, incurring a higher transportation cost. We use these concepts to design a new anomaly score. Through a series of experiments in existing benchmarks, and fault detection problems, we show that our algorithm improves over existing methods.
Authors:Prathamesh Chandekar, Mansi Mehta, Swet Chandan
Title: Enhanced Anomaly Detection in IoMT Networks using Ensemble AI Models on the CICIoMT2024 Dataset
Abstract:
The rapid proliferation of Internet of Medical Things (IoMT) devices in healthcare has introduced unique cybersecurity challenges, primarily due to the diverse communication protocols and critical nature of these devices This research aims to develop an advanced, real-time anomaly detection framework tailored for IoMT network traffic, leveraging AI/ML models and the CICIoMT2024 dataset By integrating multi-protocol (MQTT, WiFi), attack-specific (DoS, DDoS), time-series (active/idle states), and device-specific (Bluetooth) data, our study captures a comprehensive range of IoMT interactions As part of our data analysis, various machine learning techniques are employed which include an ensemble model using XGBoost for improved performance against specific attack types, sequential models comprised of LSTM and CNN-LSTM that leverage time dependencies, and unsupervised models such as Autoencoders and Isolation Forest that are good in general anomaly detection The results of the experiment prove with an ensemble model lowers false positive rates and reduced detections.
Authors:Yunyi Zhou, Kun Shi, Gang Hao
Title: WRT-SAM: Foundation Model-Driven Segmentation for Generalized Weld Radiographic Testing
Abstract:
Radiographic testing is a fundamental non-destructive evaluation technique for identifying weld defects and assessing quality in industrial applications due to its high-resolution imaging capabilities. Over the past decade, deep learning techniques have significantly advanced weld defect identification in radiographic images. However, conventional approaches, which rely on training small-scale, task-specific models on single-scenario datasets, exhibit poor cross-scenario generalization. Recently, the Segment Anything Model (SAM), a pre-trained visual foundation model trained on large-scale datasets, has demonstrated exceptional zero-shot generalization capabilities. Fine-tuning SAM with limited domain-specific data has yielded promising results in fields such as medical image segmentation and anomaly detection. To the best of our knowledge, this work is the first to introduce SAM-based segmentation for general weld radiographic testing images. We propose WRT-SAM, a novel weld radiographic defect segmentation model that leverages SAM through an adapter-based integration with a specialized prompt generator architecture. To improve adaptability to grayscale weld radiographic images, we introduce a frequency prompt generator module, which enhances the model's sensitivity to frequency-domain information. Furthermore, to address the multi-scale nature of weld defects, we incorporate a multi-scale prompt generator module, enabling the model to effectively extract and encode defect information across varying scales. Extensive experimental evaluations demonstrate that WRT-SAM achieves a recall of 78.87%, a precision of 84.04%, and an AUC of 0.9746, setting a new state-of-the-art (SOTA) benchmark. Moreover, the model exhibits superior zero-shot generalization performance, highlighting its potential for practical deployment in diverse radiographic testing scenarios.
Authors:Michael Mannon, Evan Statham, Quentin Featherstone, Sebastian Arkwright, Clive Fenwick, Gareth Willoughby
Title: A Computational Model for Ransomware Detection Using Cross-Domain Entropy Signatures
Abstract:
Detecting encryption-driven cyber threats remains a large challenge due to the evolving techniques employed to evade traditional detection mechanisms. An entropy-based computational framework was introduced to analyze multi-domain system variations, enabling the identification of malicious encryption behaviors through entropy deviations. By integrating entropy patterns across file operations, memory allocations, and network transmissions, a detection methodology was developed to differentiate between benign and ransomware-induced entropy shifts. A mathematical model was formulated to quantify entropy dynamics, incorporating time-dependent variations and weighted domain contributions to enhance anomaly detection. Experimental evaluations demonstrated that the proposed approach achieved high accuracy across diverse ransomware families while maintaining low false positive rates. Computational efficiency analysis indicated minimal processing overhead, suggesting feasibility for real-time implementation in security-sensitive environments. The study highlighted entropy fluctuations as a useful indicator for identifying malicious encryption processes, reinforcing entropy-driven methodologies as a viable component of cybersecurity strategies.
Authors:Shaobo Liu, Zihao Zhao, Weijie He, Jiren Wang, Jing Peng, Haoyuan Ma
Title: Privacy-Preserving Hybrid Ensemble Model for Network Anomaly Detection: Balancing Security and Data Protection
Abstract:
Privacy-preserving network anomaly detection has become an essential area of research due to growing concerns over the protection of sensitive data. Traditional anomaly detection models often prioritize accuracy while neglecting the critical aspect of privacy. In this work, we propose a hybrid ensemble model that incorporates privacy-preserving techniques to address both detection accuracy and data protection. Our model combines the strengths of several machine learning algorithms, including K-Nearest Neighbors (KNN), Support Vector Machines (SVM), XGBoost, and Artificial Neural Networks (ANN), to create a robust system capable of identifying network anomalies while ensuring privacy. The proposed approach integrates advanced preprocessing techniques that enhance data quality and address the challenges of small sample sizes and imbalanced datasets. By embedding privacy measures into the model design, our solution offers a significant advancement over existing methods, ensuring both enhanced detection performance and strong privacy safeguards.
Authors:Hayden Srynn, Gilbert Pomeroy, Florence Lytton, Godfrey Ashcombe, Valentine Harcourt, Duncan Pettigrew
Title: Hierarchical Entropy Disruption for Ransomware Detection: A Computationally-Driven Framework
Abstract:
The rapid evolution of encryption-based threats has rendered conventional detection mechanisms increasingly ineffective against sophisticated attack strategies. Monitoring entropy variations across hierarchical system levels offers an alternative approach to identifying unauthorized data modifications without relying on static signatures. A framework leveraging hierarchical entropy disruption was introduced to analyze deviations in entropy distributions, capturing behavioral anomalies indicative of malicious encryption operations. Evaluating the framework across multiple ransomware variants demonstrated its capability to achieve high detection accuracy while maintaining minimal computational overhead. Entropy distributions across different system directories revealed that encryption activities predominantly targeted user-accessible files, aligning with observed attacker strategies. Detection latency analysis indicated that early-stage identification was feasible, mitigating potential data loss before critical system impact occurred. The framework's ability to operate efficiently in real-time environments was validated through an assessment of resource utilization, confirming a balanced trade-off between detection precision and computational efficiency. Comparative benchmarking against established detection methods highlighted the limitations of conventional approaches in identifying novel ransomware variants, whereas entropy-based anomaly detection provided resilience against obfuscation techniques.
Authors:Keigo Nogami, Hiroto Tamura, Gouhei Tanaka
Title: Federated Learning with Reservoir State Analysis for Time Series Anomaly Detection
Abstract:
With a growing data privacy concern, federated learning has emerged as a promising framework to train machine learning models without sharing locally distributed data. In federated learning, local model training by multiple clients and model integration by a server are repeated only through model parameter sharing. Most existing federated learning methods assume training deep learning models, which are often computationally demanding. To deal with this issue, we propose federated learning methods with reservoir state analysis to seek computational efficiency and data privacy protection simultaneously. Specifically, our method relies on Mahalanobis Distance of Reservoir States (MD-RS) method targeting time series anomaly detection, which learns a distribution of reservoir states for normal inputs and detects anomalies based on a deviation from the learned distribution. Iterative updating of statistical parameters in the MD-RS enables incremental federated learning (IncFed MD-RS). We evaluate the performance of IncFed MD-RS using benchmark datasets for time series anomaly detection. The results show that IncFed MD-RS outperforms other federated learning methods with deep learning and reservoir computing models particularly when clients' data are relatively short and heterogeneous. We demonstrate that IncFed MD-RS is robust against reduced sample data compared to other methods. We also show that the computational cost of IncFed MD-RS can be reduced by subsampling from the reservoir states without performance degradation. The proposed method is beneficial especially in anomaly detection applications where computational efficiency, algorithm simplicity, and low communication cost are required.
Authors:Balakrishnan Dharmalingam, Rajdeep Mukherjee, Brett Piggott, Guohuan Feng, Anyi Liu
Title: Aero-LLM: A Distributed Framework for Secure UAV Communication and Intelligent Decision-Making
Abstract:
Increased utilization of unmanned aerial vehicles (UAVs) in critical operations necessitates secure and reliable communication with Ground Control Stations (GCS). This paper introduces Aero-LLM, a framework integrating multiple Large Language Models (LLMs) to enhance UAV mission security and operational efficiency. Unlike conventional singular LLMs, Aero-LLM leverages multiple specialized LLMs for various tasks, such as inferencing, anomaly detection, and forecasting, deployed across onboard systems, edge, and cloud servers. This dynamic, distributed architecture reduces performance bottleneck and increases security capabilities. Aero-LLM's evaluation demonstrates outstanding task-specific metrics and robust defense against cyber threats, significantly enhancing UAV decision-making and operational capabilities and security resilience against cyber attacks, setting a new standard for secure, intelligent UAV operations.
Authors:R. P. Nathan, Nikolaos Nikolaou, Ofer Lahav
Title: Finding Pegasus: Enhancing Unsupervised Anomaly Detection in High-Dimensional Data using a Manifold-Based Approach
Abstract:
Unsupervised machine learning methods are well suited to searching for anomalies at scale but can struggle with the high-dimensional representation of many modern datasets, hence dimensionality reduction (DR) is often performed first. In this paper we analyse unsupervised anomaly detection (AD) from the perspective of the manifold created in DR. We present an idealised illustration, "Finding Pegasus", and a novel formal framework with which we categorise AD methods and their results into "on manifold" and "off manifold". We define these terms and show how they differ. We then use this insight to develop an approach of combining AD methods which significantly boosts AD recall without sacrificing precision in situations employing high DR. When tested on MNIST data, our approach of combining AD methods improves recall by as much as 16 percent compared with simply combining with the best standalone AD method (Isolation Forest), a result which shows great promise for its application to real-world data.
Authors:Maxim Stavtsev, Sergey Shershakov
Title: NLP-Based .NET CLR Event Logs Analyzer
Abstract:
In this paper, we present a tool for analyzing .NET CLR event logs based on a novel method inspired by Natural Language Processing (NLP) approach. Our research addresses the growing need for effective monitoring and optimization of software systems through detailed event log analysis. We utilize a BERT-based architecture with an enhanced tokenization process customized to event logs. The tool, developed using Python, its libraries, and an SQLite database, allows both conducting experiments for academic purposes and efficiently solving industry-emerging tasks. Our experiments demonstrate the efficacy of our approach in compressing event sequences, detecting recurring patterns, and identifying anomalies. The trained model shows promising results, with a high accuracy rate in anomaly detection, which demonstrates the potential of NLP methods to improve the reliability and stability of software systems.
Authors:Vasili Iskorohodov, Maximilian Ravensdale, Matthias von Holstein, Hugo Petrovic, Adrian Yardley
Title: Hierarchical Entropic Diffusion for Ransomware Detection: A Probabilistic Approach to Behavioral Anomaly Isolation
Abstract:
The increasing complexity of cryptographic extortion techniques has necessitated the development of adaptive detection frameworks capable of identifying adversarial encryption behaviors without reliance on predefined signatures. Hierarchical Entropic Diffusion (HED) introduces a structured entropy-based anomaly classification mechanism that systematically tracks fluctuations in entropy evolution to differentiate between benign cryptographic processes and unauthorized encryption attempts. The integration of hierarchical clustering, entropy profiling, and probabilistic diffusion modeling refines detection granularity, ensuring that encryption anomalies are identified despite obfuscation strategies or incremental execution methodologies. Experimental evaluations demonstrated that HED maintained high classification accuracy across diverse ransomware families, outperforming traditional heuristic-based and signature-driven approaches while reducing false positive occurrences. Comparative analysis highlighted that entropy-driven anomaly segmentation improved detection efficiency under variable system workload conditions, ensuring real-time classification feasibility. The computational overhead associated with entropy anomaly detection remained within operational constraints, reinforcing the suitability of entropy-driven classification for large-scale deployment. The ability to identify adversarial entropy manipulations before encryption completion contributes to broader cybersecurity defenses, offering a structured methodology for isolating unauthorized cryptographic activities within heterogeneous computing environments. The results further emphasized that entropy evolution modeling facilitates predictive anomaly detection, enhancing resilience against encryption evasion techniques designed to circumvent traditional detection mechanisms.
Authors:Juan Du, Dongheng Chen
Title: Position: Untrained Machine Learning for Anomaly Detection by using 3D Point Cloud Data
Abstract:
Anomaly detection based on 3D point cloud data is an important research problem and receives more and more attention recently. Untrained anomaly detection based on only one sample is an emerging research problem motivated by real manufacturing industries such as personalized manufacturing where only one sample can be collected without any additional labels and historical datasets. Identifying anomalies accurately based on one 3D point cloud sample is a critical challenge in both industrial applications and the field of machine learning. This paper aims to provide a formal definition of the untrained anomaly detection problem based on 3D point cloud data, discuss the differences between untrained anomaly detection and current unsupervised anomaly detection problems. Unlike trained unsupervised learning, untrained unsupervised learning does not rely on any data, including unlabeled data. Instead, they leverage prior knowledge about the surfaces and anomalies. We propose three complementary methodological frameworks: the Latent Variable Inference Framework that employs probabilistic modeling to distinguish anomalies; the Decomposition Framework that separates point clouds into reference, anomaly, and noise components through sparse learning; and the Local Geometry Framework that leverages neighborhood information for anomaly identification. Experimental results demonstrate that untrained methods achieve competitive detection performance while offering significant computational advantages, demonstrating up to a 15-fold increase in execution speed. The proposed methods provide viable solutions for scenarios with extreme data scarcity, addressing critical challenges in personalized manufacturing and healthcare applications where collecting multiple samples or historical data is infeasible.
Authors:Shubham Gupta, Thibaut Durand, Graham Taylor, Lilian W. Białokozowicz
Title: LAST SToP For Modeling Asynchronous Time Series
Abstract:
We present a novel prompt design for Large Language Models (LLMs) tailored to Asynchronous Time Series. Unlike regular time series, which assume values at evenly spaced time points, asynchronous time series consist of timestamped events occurring at irregular intervals, each described in natural language. Our approach effectively utilizes the rich natural language of event descriptions, allowing LLMs to benefit from their broad world knowledge for reasoning across different domains and tasks. This allows us to extend the scope of asynchronous time series analysis beyond forecasting to include tasks like anomaly detection and data imputation. We further introduce Stochastic Soft Prompting, a novel prompt-tuning mechanism that significantly improves model performance, outperforming existing fine-tuning methods such as QLoRA. Through extensive experiments on real world datasets, we demonstrate that our approach achieves state-of-the-art performance across different tasks and datasets.
Authors:Yalin Liao, Austin J. Brockmeier
Title: Anomaly Detection via Autoencoder Composite Features and NCE
Abstract:
Unsupervised anomaly detection is a challenging task. Autoencoders (AEs) or generative models are often employed to model the data distribution of normal inputs and subsequently identify anomalous, out-of-distribution inputs by high reconstruction error or low likelihood, respectively. However, AEs may generalize and achieve small reconstruction errors on abnormal inputs. We propose a decoupled training approach for anomaly detection that both an AE and a likelihood model trained with noise contrastive estimation (NCE). After training the AE, NCE estimates a probability density function, to serve as the anomaly score, on the joint space of the AE's latent representation combined with features of the reconstruction quality. To further reduce the false negative rate in NCE we systematically varying the reconstruction features to augment the training and optimize the contrastive Gaussian noise distribution. Experimental assessments on multiple benchmark datasets demonstrate that the proposed approach matches the performance of prevalent state-of-the-art anomaly detection algorithms.
Authors:Yanke Song, Victoria Ashley Villar, Juan Rafael Martinez-Galarza, Steven Dillmann
Title: A Poisson Process AutoDecoder for X-ray Sources
Abstract:
X-ray observing facilities, such as the Chandra X-ray Observatory and the eROSITA, have detected millions of astronomical sources associated with high-energy phenomena. The arrival of photons as a function of time follows a Poisson process and can vary by orders-of-magnitude, presenting obstacles for common tasks such as source classification, physical property derivation, and anomaly detection. Previous work has either failed to directly capture the Poisson nature of the data or only focuses on Poisson rate function reconstruction. In this work, we present Poisson Process AutoDecoder (PPAD). PPAD is a neural field decoder that maps fixed-length latent features to continuous Poisson rate functions across energy band and time via unsupervised learning. PPAD reconstructs the rate function and yields a representation at the same time. We demonstrate the efficacy of PPAD via reconstruction, regression, classification and anomaly detection experiments using the Chandra Source Catalog.
Authors:Siphendulwe Zaza, Marcellin Atemkeng, Taryn S. Murray, John David Filmalter, Paul D. Cowley
Title: Unsupervised anomaly detection in large-scale estuarine acoustic telemetry data
Abstract:
Acoustic telemetry data plays a vital role in understanding the behaviour and movement of aquatic animals. However, these datasets, which often consist of millions of individual data points, frequently contain anomalous movements that pose significant challenges. Traditionally, anomalous movements are identified either manually or through basic statistical methods, approaches that are time-consuming and prone to high rates of unidentified anomalies in large datasets. This study focuses on the development of automated classifiers for a large telemetry dataset comprising detections from fifty acoustically tagged dusky kob monitored in the Breede Estuary, South Africa. Using an array of 16 acoustic receivers deployed throughout the estuary between 2016 and 2021, we collected over three million individual data points. We present detailed guidelines for data pre-processing, resampling strategies, labelling process, feature engineering, data splitting methodologies, and the selection and interpretation of machine learning and deep learning models for anomaly detection. Among the evaluated models, neural networks autoencoder (NN-AE) demonstrated superior performance, aided by our proposed threshold-finding algorithm. NN-AE achieved a high recall with no false normal (i.e., no misclassifications of anomalous movements as normal patterns), a critical factor in ensuring that no true anomalies are overlooked. In contrast, other models exhibited false normal fractions exceeding 0.9, indicating they failed to detect the majority of true anomalies; a significant limitation for telemetry studies where undetected anomalies can distort interpretations of movement patterns. While the NN-AE's performance highlights its reliability and robustness in detecting anomalies, it faced challenges in accurately learning normal movement patterns when these patterns gradually deviated from anomalous ones.
Authors:Murugaraj Odiathevar, Kim Chung Yup
Title: Simulating Application Behavior for Network Monitoring and Security
Abstract:
Existing network simulations often rely on simplistic models that send packets at random intervals, failing to capture the critical role of application-level behaviour. This paper presents a statistical approach that extracts and models application behaviour using probability density functions to generate realistic network simulations. By convolving learned application patterns, the framework produces dynamic, scalable traffic representations that closely mimic real-world networks. The method enables rigorous testing of network monitoring tools and anomaly detection systems by dynamically adjusting application behaviour. It is lightweight, capable of running multiple emulated applications on a single machine, and scalable for analysing large networks where real data collection is impractical. To encourage adoption and further testing, the full code is provided as open-source, allowing researchers and practitioners to replicate and extend the framework for diverse network environments.
Authors:Vahideh Monemizadeh, Kourosh Kiani
Title: Detecting Anomalies Using Rotated Isolation Forest
Abstract:
The Isolation Forest (iForest), proposed by Liu, Ting, and Zhou at TKDE 2012, has become a prominent tool for unsupervised anomaly detection. However, recent research by Hariri, Kind, and Brunner, published in TKDE 2021, has revealed issues with iForest. They identified the presence of axis-aligned ghost clusters that can be misidentified as normal clusters, leading to biased anomaly scores and inaccurate predictions. In response, they developed the Extended Isolation Forest (EIF), which effectively solves these issues by eliminating the ghost clusters introduced by iForest. This enhancement results in improved consistency of anomaly scores and superior performance. We reveal a previously overlooked problem in the Extended Isolation Forest (EIF), showing that it is vulnerable to ghost inter-clusters between normal clusters of data points. In this paper, we introduce the Rotated Isolation Forest (RIF) algorithm which effectively addresses both the axis-aligned ghost clusters observed in iForest and the ghost inter-clusters seen in EIF. RIF accomplishes this by randomly rotating the dataset (using random rotation matrices and QR decomposition) before feeding it into the iForest construction, thereby increasing dataset variation and eliminating ghost clusters. Our experiments conclusively demonstrate that the RIF algorithm outperforms iForest and EIF, as evidenced by the results obtained from both synthetic datasets and real-world datasets.
Authors:Shreyam Gupta, P. Agrawal, Priyam Gupta
Title: MAUCell: An Adaptive Multi-Attention Framework for Video Frame Prediction
Abstract:
Temporal sequence modeling stands as the fundamental foundation for video prediction systems and real-time forecasting operations as well as anomaly detection applications. The achievement of accurate predictions through efficient resource consumption remains an ongoing issue in contemporary temporal sequence modeling. We introduce the Multi-Attention Unit (MAUCell) which combines Generative Adversarial Networks (GANs) and spatio-temporal attention mechanisms to improve video frame prediction capabilities. Our approach implements three types of attention models to capture intricate motion sequences. A dynamic combination of these attention outputs allows the model to reach both advanced decision accuracy along with superior quality while remaining computationally efficient. The integration of GAN elements makes generated frames appear more true to life therefore the framework creates output sequences which mimic real-world footage. The new design system maintains equilibrium between temporal continuity and spatial accuracy to deliver reliable video prediction. Through a comprehensive evaluation methodology which merged the perceptual LPIPS measurement together with classic tests MSE, MAE, SSIM and PSNR exhibited enhancing capabilities than contemporary approaches based on direct benchmark tests of Moving MNIST, KTH Action, and CASIA-B (Preprocessed) datasets. Our examination indicates that MAUCell shows promise for operational time requirements. The research findings demonstrate how GANs work best with attention mechanisms to create better applications for predicting video sequences.
Authors:Wenjie Xu, Scott Dick
Title: The Lock Generative Adversarial Network for Medical Waveform Anomaly Detection
Abstract:
Waveform signal analysis is a complex and important task in medical care. For example, mechanical ventilators are critical life-support machines, but they can cause serious injury to patients if they are out of synchronization with the patients' own breathing reflex. This asynchrony is revealed by the waveforms showing flow and pressure histories. Likewise, electrocardiograms record the electrical activity of a patients' heart as a set of waveforms, and anomalous waveforms can reveal important disease states. In both cases, subtle variations in a complex waveform are important information for patient care; signals which may be missed or mis-interpreted by human caregivers. We report on the design of a novel Lock Generative Adversarial Network architecture for anomaly detection in raw or summarized medical waveform data. The proposed architecture uses alternating optimization of the generator and discriminator networks to solve the convergence dilemma. Furthermore, the fidelity of the generator networks' outputs to the actual distribution of anomalous data is improved via synthetic minority oversampling. We evaluate this new architecture on one ventilator asynchrony dataset, and two electrocardiogram datasets, finding that the performance was either equal or superior to the state-of-the art on all three.
Authors:Edward T. Reehorst, Philip Schniter
Title: Score Combining for Contrastive OOD Detection
Abstract:
In out-of-distribution (OOD) detection, one is asked to classify whether a test sample comes from a known inlier distribution or not. We focus on the case where the inlier distribution is defined by a training dataset and there exists no additional knowledge about the novelties that one is likely to encounter. This problem is also referred to as novelty detection, one-class classification, and unsupervised anomaly detection. The current literature suggests that contrastive learning techniques are state-of-the-art for OOD detection. We aim to improve on those techniques by combining/ensembling their scores using the framework of null hypothesis testing and, in particular, a novel generalized likelihood ratio test (GLRT). We demonstrate that our proposed GLRT-based technique outperforms the state-of-the-art CSI and SupCSI techniques from Tack et al. 2020 in dataset-vs-dataset experiments with CIFAR-10, SVHN, LSUN, ImageNet, and CIFAR-100, as well as leave-one-class-out experiments with CIFAR-10. We also demonstrate that our GLRT outperforms the score-combining methods of Fisher, Bonferroni, Simes, Benjamini-Hochwald, and Stouffer in our application.
Authors:F. S. Pezzicoli, V. Ros, F. P. Landes, M. Baity-Jesi
Title: Class Imbalance in Anomaly Detection: Learning from an Exactly Solvable Model
Abstract:
Class imbalance (CI) is a longstanding problem in machine learning, slowing down training and reducing performances. Although empirical remedies exist, it is often unclear which ones work best and when, due to the lack of an overarching theory. We address a common case of imbalance, that of anomaly (or outlier) detection. We provide a theoretical framework to analyze, interpret and address CI. It is based on an exact solution of the teacher-student perceptron model, through replica theory. Within this framework, one can distinguish several sources of CI: either intrinsic, train or test imbalance. Our analysis reveals that the optimal train imbalance is generally different from 50%, with a non trivial dependence on the intrinsic imbalance, the abundance of data and on the noise in the learning. Moreover, there is a crossover between a small noise training regime where results are independent of the noise level to a high noise regime where performances quickly degrade with noise. Our results challenge some of the conventional wisdom on CI and offer practical guidelines to address it.
Authors:Abdelrahman Alzarooni, Ehtesham Iqbal, Samee Ullah Khan, Sajid Javed, Brain Moyo, Yusra Abdulrahman
Title: Anomaly Detection for Industrial Applications, Its Challenges, Solutions, and Future Directions: A Review
Abstract:
Anomaly detection from images captured using camera sensors is one of the mainstream applications at the industrial level. Particularly, it maintains the quality and optimizes the efficiency in production processes across diverse industrial tasks, including advanced manufacturing and aerospace engineering. Traditional anomaly detection workflow is based on a manual inspection by human operators, which is a tedious task. Advances in intelligent automated inspection systems have revolutionized the Industrial Anomaly Detection (IAD) process. Recent vision-based approaches can automatically extract, process, and interpret features using computer vision and align with the goals of automation in industrial operations. In light of the shift in inspection methodologies, this survey reviews studies published since 2019, with a specific focus on vision-based anomaly detection. The components of an IAD pipeline that are overlooked in existing surveys are presented, including areas related to data acquisition, preprocessing, learning mechanisms, and evaluation. In addition to the collected publications, several scientific and industry-related challenges and their perspective solutions are highlighted. Popular and relevant industrial datasets are also summarized, providing further insight into inspection applications. Finally, future directions of vision-based IAD are discussed, offering researchers insight into the state-of-the-art of industrial inspection.
Authors:Marine Hamon, Vincent Lemaire, Nour Eddine Yassine Nair-Benrekia, Samuel Berlemont, Julien Cumin
Title: Unsupervised Feature Construction for Anomaly Detection in Time Series -- An Evaluation
Abstract:
To detect anomalies with precision and without prior knowledge in time series, is it better to build a detector from the initial temporal representation, or to compute a new (tabular) representation using an existing automatic variable construction library? In this article, we address this question by conducting an in-depth experimental study for two popular detectors (Isolation Forest and Local Outlier Factor). The obtained results, for 5 different datasets, show that the new representation, computed using the tsfresh library, allows Isolation Forest to significantly improve its performance.
Authors:Ebenezer R. H. P. Isaac, Joseph H. R. Isaac
Title: Active Rule Mining for Multivariate Anomaly Detection in Radio Access Networks
Abstract:
Multivariate anomaly detection finds its importance in diverse applications. Despite the existence of many detectors to solve this problem, one cannot simply define why an obtained anomaly inferred by the detector is anomalous. This reasoning is required for network operators to understand the root cause of the anomaly and the remedial action that should be taken to counteract its occurrence. Existing solutions in explainable AI may give cues to features that influence an anomaly, but they do not formulate generalizable rules that can be assessed by a domain expert. Furthermore, not all outliers are anomalous in a business sense. There is an unfulfilled need for a system that can interpret anomalies predicted by a multivariate anomaly detector and map these patterns to actionable rules. This paper aims to fulfill this need by proposing a semi-autonomous anomaly rule miner. The proposed method is applicable to both discrete and time series data and is tailored for radio access network (RAN) anomaly detection use cases. The proposed method is demonstrated in this paper with time series RAN data.
Authors:Mohammad Noorchenarboo, Katarina Grolinger
Title: Explaining Deep Learning-based Anomaly Detection in Energy Consumption Data by Focusing on Contextually Relevant Data
Abstract:
Detecting anomalies in energy consumption data is crucial for identifying energy waste, equipment malfunction, and overall, for ensuring efficient energy management. Machine learning, and specifically deep learning approaches, have been greatly successful in anomaly detection; however, they are black-box approaches that do not provide transparency or explanations. SHAP and its variants have been proposed to explain these models, but they suffer from high computational complexity (SHAP) or instability and inconsistency (e.g., Kernel SHAP). To address these challenges, this paper proposes an explainability approach for anomalies in energy consumption data that focuses on context-relevant information. The proposed approach leverages existing explainability techniques, focusing on SHAP variants, together with global feature importance and weighted cosine similarity to select background dataset based on the context of each anomaly point. By focusing on the context and most relevant features, this approach mitigates the instability of explainability algorithms. Experimental results across 10 different machine learning models, five datasets, and five XAI techniques, demonstrate that our method reduces the variability of explanations providing consistent explanations. Statistical analyses confirm the robustness of our approach, showing an average reduction in variability of approximately 38% across multiple datasets.
Authors:Arslan Tariq Syed, Mohamed Chahine Ghanem, Elhadj Benkhelifa, Fauzia Idrees Abro
Title: SPECTRE: A Hybrid System for an Adaptative and Optimised Cyber Threats Detection, Response and Investigation in Volatile Memory
Abstract:
The increasing sophistication of modern cyber threats, particularly file-less malware relying on living-off-the-land techniques, poses significant challenges to traditional detection mechanisms. Memory forensics has emerged as a crucial method for uncovering such threats by analysing dynamic changes in memory. This research introduces SPECTRE (Snapshot Processing, Emulation, Comparison, and Threat Reporting Engine), a modular Cyber Incident Response System designed to enhance threat detection, investigation, and visualization. By adopting Volatility JSON format as an intermediate output, SPECTRE ensures compatibility with widely used DFIR tools, minimizing manual data transformations and enabling seamless integration into established workflows. Its emulation capabilities safely replicate realistic attack scenarios, such as credential dumping and malicious process injections, for controlled experimentation and validation. The anomaly detection module addresses critical attack vectors, including RunDLL32 abuse and malicious IP detection, while the IP forensics module enhances threat intelligence by integrating tools like Virus Total and geolocation APIs. SPECTRE advanced visualization techniques transform raw memory data into actionable insights, aiding Red, Blue and Purple teams in refining strategies and responding effectively to threats. Bridging gaps between memory and network forensics, SPECTRE offers a scalable, robust platform for advancing threat detection, team training, and forensic research in combating sophisticated cyber threats.
Authors:Louis L Chen, Roberto Szechtman, Matan Seri
Title: On the Adversarial Robustness of Benjamini Hochberg
Abstract:
The Benjamini-Hochberg (BH) procedure is widely used to control the false detection rate (FDR) in multiple testing. Applications of this control abound in drug discovery, forensics, anomaly detection, and, in particular, machine learning, ranging from nonparametric outlier detection to out-of-distribution detection and one-class classification methods. Considering this control could be relied upon in critical safety/security contexts, we investigate its adversarial robustness. More precisely, we study under what conditions BH does and does not exhibit adversarial robustness, we present a class of simple and easily implementable adversarial test-perturbation algorithms, and we perform computational experiments. With our algorithms, we demonstrate that there are conditions under which BH's control can be significantly broken with relatively few (even just one) test score perturbation(s), and provide non-asymptotic guarantees on the expected adversarial-adjustment to FDR. Our technical analysis involves a combinatorial reframing of the BH procedure as a ``balls into bins'' process, and drawing a connection to generalized ballot problems to facilitate an information-theoretic approach for deriving non-asymptotic lower bounds.
Authors:Guangqiang Wu, Fu Zhang
Title: Multivariate Time Series Anomaly Detection using DiffGAN Model
Abstract:
In recent years, some researchers have applied diffusion models to multivariate time series anomaly detection. The partial diffusion strategy, which depends on the diffusion steps, is commonly used for anomaly detection in these models. However, different diffusion steps have an impact on the reconstruction of the original data, thereby impacting the effectiveness of anomaly detection. To address this issue, we propose a novel method named DiffGAN, which adds a generative adversarial network component to the denoiser of diffusion model. This addition allows for the simultaneous generation of noisy data and prediction of diffusion steps. Compared to multiple state-of-the-art reconstruction models, experimental results demonstrate that DiffGAN achieves superior performance in anomaly detection.
Authors:Krish Jain, Joann Sum, Pranav Kapoor, Amir Eaman
Title: Machine Learning-Based Security Policy Analysis
Abstract:
Security-Enhanced Linux (SELinux) is a robust security mechanism that enforces mandatory access controls (MAC), but its policy language's complexity creates challenges for policy analysis and management. This research investigates the automation of SELinux policy analysis using graph-based techniques combined with machine learning approaches to detect policy anomalies. The study addresses two key questions: Can SELinux policy analysis be automated through graph analysis, and how do different anomaly detection models compare in analyzing SELinux policies? We will be comparing different machine learning models by evaluating their effectiveness in detecting policy violations and anomalies. Our approach utilizes Neo4j for graph representation of policies, with Node2vec transforming these graph structures into meaningful vector embeddings that can be processed by our machine learning models. In our results, the MLP Neural Network consistently demonstrated superior performance across different dataset sizes, achieving 95% accuracy with balanced precision and recall metrics, while both Random Forest and SVM models showed competitive but slightly lower performance in detecting policy violations. This combination of graph-based modeling and machine learning provides a more sophisticated and automated approach to understanding and analyzing complex SELinux policies compared to traditional manual analysis methods.
Authors:Zuzheng Wang, Fouzi Harrou, Ying Sun, Marc G Genton
Title: Exploring the Magnitude-Shape Plot Framework for Anomaly Detection in Crowded Video Scenes
Abstract:
Detecting anomalies in crowded video scenes is critical for public safety, enabling timely identification of potential threats. This study explores video anomaly detection within a Functional Data Analysis framework, focusing on the application of the Magnitude-Shape (MS) Plot. Autoencoders are used to learn and reconstruct normal behavioral patterns from anomaly-free training data, resulting in low reconstruction errors for normal frames and higher errors for frames with potential anomalies. The reconstruction error matrix for each frame is treated as multivariate functional data, with the MS-Plot applied to analyze both magnitude and shape deviations, enhancing the accuracy of anomaly detection. Using its capacity to evaluate the magnitude and shape of deviations, the MS-Plot offers a statistically principled and interpretable framework for anomaly detection. The proposed methodology is evaluated on two widely used benchmark datasets, UCSD Ped2 and CUHK Avenue, demonstrating promising performance. It performs better than traditional univariate functional detectors (e.g., FBPlot, TVDMSS, Extremal Depth, and Outliergram) and several state-of-the-art methods. These results highlight the potential of the MS-Plot-based framework for effective anomaly detection in crowded video scenes.
Authors:Hossein Rafieizadeh, Hadi Zare, Mohsen Ghassemi Parsa, Hadi Davardoust, Meshkat Shariat Bagheri
Title: DCOR: Anomaly Detection in Attributed Networks via Dual Contrastive Learning Reconstruction
Abstract:
Anomaly detection using a network-based approach is one of the most efficient ways to identify abnormal events such as fraud, security breaches, and system faults in a variety of applied domains. While most of the earlier works address the complex nature of graph-structured data and predefined anomalies, the impact of data attributes and emerging anomalies are often neglected. This paper introduces DCOR, a novel approach on attributed networks that integrates reconstruction-based anomaly detection with Contrastive Learning. Utilizing a Graph Neural Network (GNN) framework, DCOR contrasts the reconstructed adjacency and feature matrices from both the original and augmented graphs to detect subtle anomalies. We employed comprehensive experimental studies on benchmark datasets through standard evaluation measures. The results show that DCOR significantly outperforms state-of-the-art methods. Obtained results demonstrate the efficacy of proposed approach in attributed networks with the potential of uncovering new patterns of anomalies.
Authors:Seyfal Sultanov, James P Buban, Robert F Klie
Title: Robust Spectral Anomaly Detection in EELS Spectral Images via Three Dimensional Convolutional Variational Autoencoders
Abstract:
We introduce a Three-Dimensional Convolutional Variational Autoencoder (3D-CVAE) for automated anomaly detection in Electron Energy Loss Spectroscopy Spectrum Imaging (EELS-SI) data. Our approach leverages the full three-dimensional structure of EELS-SI data to detect subtle spectral anomalies while preserving both spatial and spectral correlations across the datacube. By employing negative log-likelihood loss and training on bulk spectra, the model learns to reconstruct bulk features characteristic of the defect-free material. In exploring methods for anomaly detection, we evaluated both our 3D-CVAE approach and Principal Component Analysis (PCA), testing their performance using Fe L-edge peak shifts designed to simulate material defects. Our results show that 3D-CVAE achieves superior anomaly detection and maintains consistent performance across various shift magnitudes. The method demonstrates clear bimodal separation between normal and anomalous spectra, enabling reliable classification. Further analysis verifies that lower dimensional representations are robust to anomalies in the data. While performance advantages over PCA diminish with decreasing anomaly concentration, our method maintains high reconstruction quality even in challenging, noise-dominated spectral regions. This approach provides a robust framework for unsupervised automated detection of spectral anomalies in EELS-SI data, particularly valuable for analyzing complex material systems.
Authors:Kexin Li, You-wei Wen, Xu Xiao, Mingchao Zhao
Title: Robust PCA Based on Adaptive Weighted Least Squares and Low-Rank Matrix Factorization
Abstract:
Robust Principal Component Analysis (RPCA) is a fundamental technique for decomposing data into low-rank and sparse components, which plays a critical role for applications such as image processing and anomaly detection. Traditional RPCA methods commonly use $\ell_1$ norm regularization to enforce sparsity, but this approach can introduce bias and result in suboptimal estimates, particularly in the presence of significant noise or outliers. Non-convex regularization methods have been proposed to mitigate these challenges, but they tend to be complex to optimize and sensitive to initial conditions, leading to potential instability in solutions. To overcome these challenges, in this paper, we propose a novel RPCA model that integrates adaptive weighted least squares (AWLS) and low-rank matrix factorization (LRMF). The model employs a {self-attention-inspired} mechanism in its weight update process, allowing the weight matrix to dynamically adjust and emphasize significant components during each iteration. By employing a weighted F-norm for the sparse component, our method effectively reduces bias while simplifying the computational process compared to traditional $\ell_1$-norm-based methods. We use an alternating minimization algorithm, where each subproblem has an explicit solution, thereby improving computational efficiency. Despite its simplicity, numerical experiments demonstrate that our method outperforms existing non-convex regularization approaches, offering superior performance and stability, as well as enhanced accuracy and robustness in practical applications.
Authors:Francis Tang, Ying Ding
Title: Are Large Language Models Useful for Time Series Data Analysis?
Abstract:
Time series data plays a critical role across diverse domains such as healthcare, energy, and finance, where tasks like classification, anomaly detection, and forecasting are essential for informed decision-making. Recently, large language models (LLMs) have gained prominence for their ability to handle complex data and extract meaningful insights. This study investigates whether LLMs are effective for time series data analysis by comparing their performance with non-LLM-based approaches across three tasks: classification, anomaly detection, and forecasting. Through a series of experiments using GPT4TS and autoregressive models, we evaluate their performance on benchmark datasets and assess their accuracy, precision, and ability to generalize. Our findings indicate that while LLM-based methods excel in specific tasks like anomaly detection, their benefits are less pronounced in others, such as forecasting, where simpler models sometimes perform comparably or better. This research highlights the role of LLMs in time series analysis and lays the groundwork for future studies to systematically explore their applications and limitations in handling temporal data.
Authors:Wei Dai, Kai Hwang, Jicong Fan
Title: Unsupervised Anomaly Detection for Tabular Data Using Noise Evaluation
Abstract:
Unsupervised anomaly detection (UAD) plays an important role in modern data analytics and it is crucial to provide simple yet effective and guaranteed UAD algorithms for real applications. In this paper, we present a novel UAD method for tabular data by evaluating how much noise is in the data. Specifically, we propose to learn a deep neural network from the clean (normal) training dataset and a noisy dataset, where the latter is generated by adding highly diverse noises to the clean data. The neural network can learn a reliable decision boundary between normal data and anomalous data when the diversity of the generated noisy data is sufficiently high so that the hard abnormal samples lie in the noisy region. Importantly, we provide theoretical guarantees, proving that the proposed method can detect anomalous data successfully, although the method does not utilize any real anomalous data in the training stage. Extensive experiments through more than 60 benchmark datasets demonstrate the effectiveness of the proposed method in comparison to 12 baselines of UAD. Our method obtains a 92.27\% AUC score and a 1.68 ranking score on average. Moreover, compared to the state-of-the-art UAD methods, our method is easier to implement.
Authors:Joseph Nyangon, Ruth Akintunde
Title: Anomaly Detection in California Electricity Price Forecasting: Enhancing Accuracy and Reliability Using Principal Component Analysis
Abstract:
Accurate and reliable electricity price forecasting has significant practical implications for grid management, renewable energy integration, power system planning, and price volatility management. This study focuses on enhancing electricity price forecasting in California's grid, addressing challenges from complex generation data and heteroskedasticity. Utilizing principal component analysis (PCA), we analyze CAISO's hourly electricity prices and demand from 2016-2021 to improve day-ahead forecasting accuracy. Initially, we apply traditional outlier analysis with the interquartile range method, followed by robust PCA (RPCA) for more effective outlier elimination. This approach improves data symmetry and reduces skewness. We then construct multiple linear regression models using both raw and PCA-transformed features. The model with transformed features, refined through traditional and SAS Sparse Matrix outlier removal methods, shows superior forecasting performance. The SAS Sparse Matrix method, in particular, significantly enhances model accuracy. Our findings demonstrate that PCA-based methods are key in advancing electricity price forecasting, supporting renewable integration and grid management in day-ahead markets. Keywords: Electricity price forecasting, principal component analysis (PCA), power system planning, heteroskedasticity, renewable energy integration.
Authors:Qian Yu, Zhen Xu, Zong Ke
Title: Deep Learning for Cross-Border Transaction Anomaly Detection in Anti-Money Laundering Systems
Abstract:
In the context of globalization and the rapid expansion of the digital economy, anti-money laundering (AML) has become a crucial aspect of financial oversight, particularly in cross-border transactions. The rising complexity and scale of international financial flows necessitate more intelligent and adaptive AML systems to combat increasingly sophisticated money laundering techniques. This paper explores the application of unsupervised learning models in cross-border AML systems, focusing on rule optimization through contrastive learning techniques. Five deep learning models, ranging from basic convolutional neural networks (CNNs) to hybrid CNNGRU architectures, were designed and tested to assess their performance in detecting abnormal transactions. The results demonstrate that as model complexity increases, so does the system's detection accuracy and responsiveness. In particular, the self-developed hybrid Convolutional-Recurrent Neural Integration Model (CRNIM) model showed superior performance in terms of accuracy and area under the receiver operating characteristic curve (AUROC). These findings highlight the potential of unsupervised learning models to significantly improve the intelligence, flexibility, and real-time capabilities of AML systems. By optimizing detection rules and enhancing adaptability to emerging money laundering schemes, this research provides both theoretical and practical contributions to the advancement of AML technologies, which are essential for safeguarding the global financial system against illicit activities.
Authors:Mohd Faiz Ansari, Rakshit Sandilya, Mohammed Javed, David Doermann
Title: ETLNet: An Efficient TCN-BiLSTM Network for Road Anomaly Detection Using Smartphone Sensors
Abstract:
Road anomalies can be defined as irregularities on the road surface or in the surface itself. Some may be intentional (such as speedbumps), accidental (such as materials falling off a truck), or the result of roads' excessive use or low or no maintenance, such as potholes. Despite their varying origins, these irregularities often harm vehicles substantially. Speed bumps are intentionally placed for safety but are dangerous due to their non-standard shape, size, and lack of proper markings. Potholes are unintentional and can also cause severe damage. To address the detection of these anomalies, we need an automated road monitoring system. Today, various systems exist that use visual information to track these anomalies. Still, due to poor lighting conditions and improper or missing markings, they may go undetected and have severe consequences for public transport, automated vehicles, etc. In this paper, the Enhanced Temporal-BiLSTM Network (ETLNet) is introduced as a novel approach that integrates two Temporal Convolutional Network (TCN) layers with a Bidirectional Long Short-Term Memory (BiLSTM) layer. This combination is tailored to detect anomalies effectively irrespective of lighting conditions, as it depends not on visuals but smartphone inertial sensor data. Our methodology employs accelerometer and gyroscope sensors, typically in smartphones, to gather data on road conditions. Empirical evaluations demonstrate that the ETLNet model maintains an F1-score for detecting speed bumps of 99.3%. The ETLNet model's robustness and efficiency significantly advance automated road surface monitoring technologies.
Authors:Asara Senaratne, Peter Christen, Pouya Omran, Graham Williams
Title: Anomaly Detection and Classification in Knowledge Graphs
Abstract:
Anomalies such as redundant, inconsistent, contradictory, and deficient values in a Knowledge Graph (KG) are unavoidable, as these graphs are often curated manually, or extracted using machine learning and natural language processing techniques. Therefore, anomaly detection is a task that can enhance the quality of KGs. In this paper, we propose SEKA (SEeking Knowledge graph Anomalies), an unsupervised approach for the detection of abnormal triples and entities in KGs. SEKA can help improve the correctness of a KG whilst retaining its coverage. We propose an adaption of the Path Rank Algorithm (PRA), named the Corroborative Path Rank Algorithm (CPRA), which is an efficient adaptation of PRA that is customized to detect anomalies in KGs. Furthermore, we also present TAXO (TAXOnomy of anomaly types in KGs), a taxonomy of possible anomaly types that can occur in a KG. This taxonomy provides a classification of the anomalies discovered by SEKA with an extensive discussion of possible data quality issues in a KG. We evaluate both approaches using the four real-world KGs YAGO-1, KBpedia, Wikidata, and DSKG to demonstrate the ability of SEKA and TAXO to outperform the baselines.
Authors:Vaishali Vinay, Anjali Mangal
Title: SCADE: Scalable Framework for Anomaly Detection in High-Performance System
Abstract:
As command-line interfaces remain integral to high-performance computing environments, the risk of exploitation through stealthy and complex command-line abuse grows. Conventional security solutions struggle to detect these anomalies due to their context-specific nature, lack of labeled data, and the prevalence of sophisticated attacks like Living-off-the-Land (LOL). To address this gap, we introduce the Scalable Command-Line Anomaly Detection Engine (SCADE), a framework that combines global statistical models with local context-specific analysis for unsupervised anomaly detection. SCADE leverages novel statistical methods, including BM25 and Log Entropy, alongside dynamic thresholding to adaptively detect rare, malicious command-line patterns in low signal-to-noise ratio (SNR) environments. Experimental results show that SCADE achieves above 98% SNR in identifying anomalous behavior while minimizing false positives. Designed for scalability and precision, SCADE provides an innovative, metadata-enriched approach to anomaly detection, offering a robust solution for cybersecurity in high-computation environments. This work presents SCADE's architecture, detection methodology, and its potential for enhancing anomaly detection in enterprise systems. We argue that SCADE represents a significant advancement in unsupervised anomaly detection, offering a robust, adaptive framework for security analysts and researchers seeking to enhance detection accuracy in high-computation environments.
Authors:Yi-Xiang Lu, Xiao-Bo Jin, Jian Chen, Dong-Jie Liu, Guang-Gang Geng
Title: F-SE-LSTM: A Time Series Anomaly Detection Method with Frequency Domain Information
Abstract:
With the development of society, time series anomaly detection plays an important role in network and IoT services. However, most existing anomaly detection methods directly analyze time series in the time domain and cannot distinguish some relatively hidden anomaly sequences. We attempt to analyze the impact of frequency on time series from a frequency domain perspective, thus proposing a new time series anomaly detection method called F-SE-LSTM. This method utilizes two sliding windows and fast Fourier transform (FFT) to construct a frequency matrix. Simultaneously, Squeeze-and-Excitation Networks (SENet) and Long Short-Term Memory (LSTM) are employed to extract frequency-related features within and between periods. Through comparative experiments on multiple datasets such as Yahoo Webscope S5 and Numenta Anomaly Benchmark, the results demonstrate that the frequency matrix constructed by F-SE-LSTM exhibits better discriminative ability than ordinary time domain and frequency domain data. Furthermore, F-SE-LSTM outperforms existing state-of-the-art deep learning anomaly detection methods in terms of anomaly detection capability and execution efficiency.
Authors:Muchao Ye, Weiyang Liu, Pan He
Title: VERA: Explainable Video Anomaly Detection via Verbalized Learning of Vision-Language Models
Abstract:
The rapid advancement of vision-language models (VLMs) has established a new paradigm in video anomaly detection (VAD): leveraging VLMs to simultaneously detect anomalies and provide comprehendible explanations for the decisions. Existing work in this direction often assumes the complex reasoning required for VAD exceeds the capabilities of pretrained VLMs. Consequently, these approaches either incorporate specialized reasoning modules during inference or rely on instruction tuning datasets through additional training to adapt VLMs for VAD. However, such strategies often incur substantial computational costs or data annotation overhead. To address these challenges in explainable VAD, we introduce a verbalized learning framework named VERA that enables VLMs to perform VAD without model parameter modifications. Specifically, VERA automatically decomposes the complex reasoning required for VAD into reflections on simpler, more focused guiding questions capturing distinct abnormal patterns. It treats these reflective questions as learnable parameters and optimizes them through data-driven verbal interactions between learner and optimizer VLMs, using coarsely labeled training data. During inference, VERA embeds the learned questions into model prompts to guide VLMs in generating segment-level anomaly scores, which are then refined into frame-level scores via the fusion of scene and temporal contexts. Experimental results on challenging benchmarks demonstrate that the learned questions of VERA are highly adaptable, significantly improving both detection performance and explainability of VLMs for VAD.
Authors:Andreas Groll, Akshat Khanna, Leonid Zeldin
Title: A Machine Learning-based Anomaly Detection Framework in Life Insurance Contracts
Abstract:
Life insurance, like other forms of insurance, relies heavily on large volumes of data. The business model is based on an exchange where companies receive payments in return for the promise to provide coverage in case of an accident. Thus, trust in the integrity of the data stored in databases is crucial. One method to ensure data reliability is the automatic detection of anomalies. While this approach is highly useful, it is also challenging due to the scarcity of labeled data that distinguish between normal and anomalous contracts or inter\-actions. This manuscript discusses several classical and modern unsupervised anomaly detection methods and compares their performance across two different datasets. In order to facilitate the adoption of these methods by companies, this work also explores ways to automate the process, making it accessible even to non-data scientists.
Authors:Youngjae Cho, Gwangyeol Kim, Sirojbek Safarov, Seongdeok Bang, Jaewoo Park
Title: Background-Aware Defect Generation for Robust Industrial Anomaly Detection
Abstract:
Detecting anomalies in industrial settings is challenging due to the scarcity of labeled anomalous data. Generative models can mitigate this issue by synthesizing realistic defect samples, but existing approaches often fail to model the crucial interplay between defects and their background. This oversight leads to unrealistic anomalies, especially in scenarios where contextual consistency is essential (i.e., logical anomaly). To address this, we propose a novel background-aware defect generation framework, where the background influences defect denoising without affecting the background itself by ensuring realistic synthesis while preserving structural integrity. Our method leverages a disentanglement loss to separate the background' s denoising process from the defect, enabling controlled defect synthesis through DDIM Inversion. We theoretically demonstrate that our approach maintains background fidelity while generating contextually accurate defects. Extensive experiments on MVTec AD and MVTec Loco benchmarks validate our mehtod's superiority over existing techniques in both defect generation quality and anomaly detection performance.
Authors:Somjit Nath, Yik Chau Lui, Siqi Liu
Title: Unsupervised Event Outlier Detection in Continuous Time
Abstract:
Event sequence data record the occurrences of events in continuous time. Event sequence forecasting based on temporal point processes (TPPs) has been extensively studied, but outlier or anomaly detection, especially without any supervision from humans, is still underexplored. In this work, we develop, to the best our knowledge, the first unsupervised outlier detection approach to detecting abnormal events. Our novel unsupervised outlier detection framework is based on ideas from generative adversarial networks (GANs) and reinforcement learning (RL). We train a 'generator' that corrects outliers in the data with a 'discriminator' that learns to discriminate the corrected data from the real data, which may contain outliers. A key insight is that if the generator made a mistake in the correction, it would generate anomalies that are different from the anomalies in the real data, so it serves as data augmentation for the discriminator learning. Different from typical GAN-based outlier detection approaches, our method employs the generator to detect outliers in an online manner. The experimental results show that our method can detect event outliers more accurately than the state-of-the-art approaches.
Authors:Jiawei Lu, Chengrong Wu
Title: TPLogAD: Unsupervised Log Anomaly Detection Based on Event Templates and Key Parameters
Abstract:
Log-system is an important mechanism for recording the runtime status and events of Web service systems, and anomaly detection in logs is an effective method of detecting problems. However, manual anomaly detection in logs is inefficient, error-prone, and unrealistic. Existing log anomaly detection methods either use the indexes of event templates, or form vectors by embedding the fixed string part of the template as a sentence, or use time parameters for sequence analysis. However, log entries often contain features and semantic information that cannot be fully represented by these methods, resulting in missed and false alarms. In this paper, we propose TPLogAD, a universal unsupervised method for analyzing unstructured logs, which performs anomaly detection based on event templates and key parameters. The itemplate2vec and para2vec included in TPLogAD are two efficient and easy-to-implement semantic representation methods for logs, detecting anomalies in event templates and parameters respectively, which has not been achieved in previous work. Additionally, TPLogAD can avoid the interference of log diversity and dynamics on anomaly detection. Our experiments on four public log datasets show that TPLogAD outperforms existing log anomaly detection methods.
Authors:Miriam Alber, Christoph Hönes, Patrick Baier
Title: Evaluating Vision Transformer Models for Visual Quality Control in Industrial Manufacturing
Abstract:
One of the most promising use-cases for machine learning in industrial manufacturing is the early detection of defective products using a quality control system. Such a system can save costs and reduces human errors due to the monotonous nature of visual inspections. Today, a rich body of research exists which employs machine learning methods to identify rare defective products in unbalanced visual quality control datasets. These methods typically rely on two components: A visual backbone to capture the features of the input image and an anomaly detection algorithm that decides if these features are within an expected distribution. With the rise of transformer architecture as visual backbones of choice, there exists now a great variety of different combinations of these two components, ranging all along the trade-off between detection quality and inference time. Facing this variety, practitioners in the field often have to spend a considerable amount of time on researching the right combination for their use-case at hand. Our contribution is to help practitioners with this choice by reviewing and evaluating current vision transformer models together with anomaly detection methods. For this, we chose SotA models of both disciplines, combined them and evaluated them towards the goal of having small, fast and efficient anomaly detection models suitable for industrial manufacturing. We evaluated the results of our experiments on the well-known MVTecAD and BTAD datasets. Moreover, we give guidelines for choosing a suitable model architecture for a quality control system in practice, considering given use-case and hardware constraints.
Authors:Aleksander Kozłowski, Daniel Ponikowski, Piotr Żukiewicz, Paweł Twardowski
Title: End-to-End Convolutional Activation Anomaly Analysis for Anomaly Detection
Abstract:
We propose an End-to-end Convolutional Activation Anomaly Analysis (E2E-CA$^3$), which is a significant extension of A$^3$ anomaly detection approach proposed by Sperl, Schulze and Böttinger, both in terms of architecture and scope of application. In contrast to the original idea, we utilize a convolutional autoencoder as a target network, which allows for natural application of the method both to image and tabular data. The alarm network is also designed as a CNN, where the activations of convolutional layers from CAE are stacked together into $k+1-$dimensional tensor. Moreover, we combine the classification loss of the alarm network with the reconstruction error of the target CAE, as a "best of both worlds" approach, which greatly increases the versatility of the network. The evaluation shows that despite generally straightforward and lightweight architecture, it has a very promising anomaly detection performance on common datasets such as MNIST, CIFAR-10 and KDDcup99.
Authors:David Mascareñas, Andre Green, Ashlee Liao, Michael Torrez, Alessandro Cattaneo, Amber Black, John Bernardin, Garrett Kenyon
Title: Demonstrating the Suitability of Neuromorphic, Event-Based, Dynamic Vision Sensors for In Process Monitoring of Metallic Additive Manufacturing and Welding
Abstract:
We demonstrate the suitability of high dynamic range, high-speed, neuromorphic event-based, dynamic vision sensors for metallic additive manufacturing and welding for in-process monitoring applications. In-process monitoring to enable quality control of mission critical components produced using metallic additive manufacturing is of high interest. However, the extreme light environment and high speed dynamics of metallic melt pools have made this a difficult environment in which to make measurements. Event-based sensing is an alternative measurement paradigm where data is only transmitted/recorded when a measured quantity exceeds a threshold resolution. The result is that event-based sensors consume less power and less memory/bandwidth, and they operate across a wide range of timescales and dynamic ranges. Event-driven driven imagers stand out from conventional imager technology in that they have a very high dynamic range of approximately 120 dB. Conventional 8 bit imagers only have a dynamic range of about 48 dB. This high dynamic range makes them a good candidate for monitoring manufacturing processes that feature high intensity light sources/generation such as metallic additive manufacturing and welding. In addition event based imagers are able to capture data at timescales on the order of 100 μs, which makes them attractive to capturing fast dynamics in a metallic melt pool. In this work we demonstrate that event-driven imagers have been shown to be able to observe tungsten inert gas (TIG) and laser welding melt pools. The results of this effort suggest that with additional engineering effort, neuromorphic event imagers should be capable of 3D geometry measurements of the melt pool, and anomaly detection/classification/prediction.
Authors:Dharanidharan S, Suhitha Renuka S, Ajishi Singh, Sheena Christabel Pravin
Title: AI Guided Early Screening of Cervical Cancer
Abstract:
In order to support the creation of reliable machine learning models for anomaly detection, this project focuses on preprocessing, enhancing, and organizing a medical imaging dataset. There are two classifications in the dataset: normal and abnormal, along with extra noise fluctuations. In order to improve the photographs' quality, undesirable artifacts, including visible medical equipment at the edges, were eliminated using central cropping. Adjusting the brightness and contrast was one of the additional preprocessing processes. Normalization was then performed to normalize the data. To make classification jobs easier, the dataset was methodically handled by combining several image subsets into two primary categories: normal and pathological. To provide a strong training set that adapts well to real-world situations, sophisticated picture preprocessing techniques were used, such as contrast enhancement and real-time augmentation (including rotations, zooms, and brightness modifications). To guarantee efficient model evaluation, the data was subsequently divided into training and testing subsets. In order to create precise and effective machine learning models for medical anomaly detection, high-quality input data is ensured via this thorough approach. Because of the project pipeline's flexible and scalable design, it can be easily integrated with bigger clinical decision-support systems.
Authors:Juan Carlos Estrada-Jimenez, Valdemar Ramon Farre-Guijarro, Diana Carolina Alvarez-Paredes, Marie-Laure Watrinet
Title: Digital Twin for Advanced Network Planning: Tackling Interference
Abstract:
Operational data in next-generation networks offers a valuable resource for Mobile Network Operators to autonomously manage their systems and predict potential network issues. Machine Learning and Digital Twin can be applied to gain important insights for intelligent decision-making. This paper proposes a framework for Radio Frequency planning and failure detection using Digital Twin reducing the level of manual intervention. In this study, we propose a methodology for analyzing Radio Frequency issues as external interference employing clustering techniques in operational networks, and later incorporating this in the planning process. Simulation results demonstrate that the architecture proposed can improve planning operations through a data-aided anomaly detection strategy.
Authors:İrem Üstek, Miguel Arana-Catania, Alexander Farr, Ivan Petrunin
Title: Deep Autoencoders for Unsupervised Anomaly Detection in Wildfire Prediction
Abstract:
Wildfires pose a significantly increasing hazard to global ecosystems due to the climate crisis. Due to its complex nature, there is an urgent need for innovative approaches to wildfire prediction, such as machine learning. This research took a unique approach, differentiating from classical supervised learning, and addressed the gap in unsupervised wildfire prediction using autoencoders and clustering techniques for anomaly detection. Historical weather and normalised difference vegetation index datasets of Australia for 2005 - 2021 were utilised. Two main unsupervised approaches were analysed. The first used a deep autoencoder to obtain latent features, which were then fed into clustering models, isolation forest, local outlier factor and one-class SVM for anomaly detection. The second approach used a deep autoencoder to reconstruct the input data and use reconstruction errors to identify anomalies. Long Short-Term Memory (LSTM) autoencoders and fully connected (FC) autoencoders were employed in this part, both in an unsupervised way learning only from nominal data. The FC autoencoder outperformed its counterparts, achieving an accuracy of 0.71, an F1-score of 0.74, and an MCC of 0.42. These findings highlight the practicality of this method, as it effectively predicts wildfires in the absence of ground truth, utilising an unsupervised learning technique.
Authors:Aldo Marzullo, Marta Bianca Maria Ranzini
Title: Exploring Zero-Shot Anomaly Detection with CLIP in Medical Imaging: Are We There Yet?
Abstract:
Zero-shot anomaly detection (ZSAD) offers potential for identifying anomalies in medical imaging without task-specific training. In this paper, we evaluate CLIP-based models, originally developed for industrial tasks, on brain tumor detection using the BraTS-MET dataset. Our analysis examines their ability to detect medical-specific anomalies with no or minimal supervision, addressing the challenges posed by limited data annotation. While these models show promise in transferring general knowledge to medical tasks, their performance falls short of the precision required for clinical use. Our findings highlight the need for further adaptation before CLIP-based models can be reliably applied to medical anomaly detection.
Authors:Mariia Rizhko, Joshua S. Bloom
Title: AstroM$^3$: A self-supervised multimodal model for astronomy
Abstract:
While machine-learned models are now routinely employed to facilitate astronomical inquiry, model inputs tend to be limited to a primary data source (namely images or time series) and, in the more advanced approaches, some metadata. Yet with the growing use of wide-field, multiplexed observational resources, individual sources of interest often have a broad range of observational modes available. Here we construct an astronomical multimodal dataset and propose AstroM$^3$, a self-supervised pre-training approach that enables a model to learn from multiple modalities simultaneously. Specifically, we extend the CLIP (Contrastive Language-Image Pretraining) model to a trimodal setting, allowing the integration of time-series photometry data, spectra, and astrophysical metadata. In a fine-tuning supervised setting, our results demonstrate that CLIP pre-training improves classification performance for time-series photometry, where accuracy increases from 84.6% to 91.5%. Furthermore, CLIP boosts classification accuracy by up to 12.6% when the availability of labeled data is limited, showing the effectiveness of leveraging larger corpora of unlabeled data. In addition to fine-tuned classification, we can use the trained model in other downstream tasks that are not explicitly contemplated during the construction of the self-supervised model. In particular we show the efficacy of using the learned embeddings for misclassifications identification, similarity search, and anomaly detection. One surprising highlight is the "rediscovery" of Mira subtypes and two Rotational variable subclasses using manifold learning and dimension reduction algorithm. To our knowledge this is the first construction of an $n>2$ mode model in astronomy. Extensions to $n>3$ modes is naturally anticipated with this approach.
Authors:Sareh Soltani Nejad, Anwar Haque
Title: Weakly-Supervised Anomaly Detection in Surveillance Videos Based on Two-Stream I3D Convolution Network
Abstract:
The widespread implementation of urban surveillance systems has necessitated more sophisticated techniques for anomaly detection to ensure enhanced public safety. This paper presents a significant advancement in the field of anomaly detection through the application of Two-Stream Inflated 3D (I3D) Convolutional Networks. These networks substantially outperform traditional 3D Convolutional Networks (C3D) by more effectively extracting spatial and temporal features from surveillance videos, thus improving the precision of anomaly detection. Our research advances the field by implementing a weakly supervised learning framework based on Multiple Instance Learning (MIL), which uniquely conceptualizes surveillance videos as collections of 'bags' that contain instances (video clips). Each instance is innovatively processed through a ranking mechanism that prioritizes clips based on their potential to display anomalies. This novel strategy not only enhances the accuracy and precision of anomaly detection but also significantly diminishes the dependency on extensive manual annotations. Moreover, through meticulous optimization of model settings, including the choice of optimizer, our approach not only establishes new benchmarks in the performance of anomaly detection systems but also offers a scalable and efficient solution for real-world surveillance applications. This paper contributes significantly to the field of computer vision by delivering a more adaptable, efficient, and context-aware anomaly detection system, which is poised to redefine practices in urban surveillance.
Authors:Mihir Agarwal, Progyan Das, Udit Bhatia
Title: Spatially Regularized Graph Attention Autoencoder Framework for Detecting Rainfall Extremes
Abstract:
We introduce a novel Graph Attention Autoencoder (GAE) with spatial regularization to address the challenge of scalable anomaly detection in spatiotemporal rainfall data across India from 1990 to 2015. Our model leverages a Graph Attention Network (GAT) to capture spatial dependencies and temporal dynamics in the data, further enhanced by a spatial regularization term ensuring geographic coherence. We construct two graph datasets employing rainfall, pressure, and temperature attributes from the Indian Meteorological Department and ERA5 Reanalysis on Single Levels, respectively. Our network operates on graph representations of the data, where nodes represent geographic locations, and edges, inferred through event synchronization, denote significant co-occurrences of rainfall events. Through extensive experiments, we demonstrate that our GAE effectively identifies anomalous rainfall patterns across the Indian landscape. Our work paves the way for sophisticated spatiotemporal anomaly detection methodologies in climate science, contributing to better climate change preparedness and response strategies.
Authors:Jericho Cain, Hayden Beadles, Karthik Venkatesan
Title: Anomaly Detection in OKTA Logs using Autoencoders
Abstract:
Okta logs are used today to detect cybersecurity events using various rule-based models with restricted look back periods. These functions have limitations, such as a limited retrospective analysis, a predefined rule set, and susceptibility to generating false positives. To address this, we adopt unsupervised techniques, specifically employing autoencoders. To properly use an autoencoder, we need to transform and simplify the complexity of the log data we receive from our users. This transformed and filtered data is then fed into the autoencoder, and the output is evaluated.
Authors:Raúl de la Fuente, Luciano Radrigan, Anibal S Morales
Title: Enhancing Predictive Maintenance in Mining Mobile Machinery through a TinyML-enabled Hierarchical Inference Network
Abstract:
Mining machinery operating in variable environments faces high wear and unpredictable stress, challenging Predictive Maintenance (PdM). This paper introduces the Edge Sensor Network for Predictive Maintenance (ESN-PdM), a hierarchical inference framework across edge devices, gateways, and cloud services for real-time condition monitoring. The system dynamically adjusts inference locations--on-device, on-gateway, or on-cloud--based on trade-offs among accuracy, latency, and battery life, leveraging Tiny Machine Learning (TinyML) techniques for model optimization on resource-constrained devices. Performance evaluations showed that on-sensor and on-gateway inference modes achieved over 90\% classification accuracy, while cloud-based inference reached 99\%. On-sensor inference reduced power consumption by approximately 44\%, enabling up to 104 hours of operation. Latency was lowest for on-device inference (3.33 ms), increasing when offloading to the gateway (146.67 ms) or cloud (641.71 ms). The ESN-PdM framework provides a scalable, adaptive solution for reliable anomaly detection and PdM, crucial for maintaining machinery uptime in remote environments. By balancing accuracy, latency, and energy consumption, this approach advances PdM frameworks for industrial applications.
Authors:Xuguang Li, Zhonglin Zuo, Zheng Dong, Yang Yang
Title: Early Prediction of Natural Gas Pipeline Leaks Using the MKTCN Model
Abstract:
Natural gas pipeline leaks pose severe risks, leading to substantial economic losses and potential hazards to human safety. In this study, we develop an accurate model for the early prediction of pipeline leaks. To the best of our knowledge, unlike previous anomaly detection, this is the first application to use internal pipeline data for early prediction of leaks. The modeling process addresses two main challenges: long-term dependencies and sample imbalance. First, we introduce a dilated convolution-based prediction model to capture long-term dependencies, as dilated convolution expands the model's receptive field without added computational cost. Second, to mitigate sample imbalance, we propose the MKTCN model, which incorporates the Kolmogorov-Arnold Network as the fully connected layer in a dilated convolution model, enhancing network generalization. Finally, we validate the MKTCN model through extensive experiments on two real-world datasets. Results demonstrate that MKTCN outperforms in generalization and classification, particularly under severe data imbalance, and effectively predicts leaks up to 5000 seconds in advance. Overall, the MKTCN model represents a significant advancement in early pipeline leak prediction, providing robust generalization and improved modeling of the long-term dependencies inherent in multi-dimensional time-series data.
Authors:Alexandros Gkillas, Aris Lalos
Title: Towards Resource-Efficient Federated Learning in Industrial IoT for Multivariate Time Series Analysis
Abstract:
Anomaly and missing data constitute a thorny problem in industrial applications. In recent years, deep learning enabled anomaly detection has emerged as a critical direction, however the improved detection accuracy is achieved with the utilization of large neural networks, increasing their storage and computational cost. Moreover, the data collected in edge devices contain user privacy, introducing challenges that can be successfully addressed by the privacy-preserving distributed paradigm, known as federated learning (FL). This framework allows edge devices to train and exchange models increasing also the communication cost. Thus, to deal with the increased communication, processing and storage challenges of the FL based deep anomaly detection NN pruning is expected to have significant benefits towards reducing the processing, storage and communication complexity. With this focus, a novel compression-based optimization problem is proposed at the server-side of a FL paradigm that fusses the received local models broadcast and performs pruning generating a more compressed model. Experiments in the context of anomaly detection and missing value imputation demonstrate that the proposed FL scenario along with the proposed compressed-based method are able to achieve high compression rates (more than $99.7\%$) with negligible performance losses (less than $1.18\%$ ) as compared to the centralized solutions.
Authors:Oliver Urs Lenz, Matthijs van Leeuwen
Title: Monotonic anomaly detection
Abstract:
Semi-supervised anomaly detection is based on the principle that potential anomalies are those records that look different from normal training data. However, in some cases we are specifically interested in anomalies that correspond to high attribute values (or low, but not both). We present two asymmetrical distance measures that take this monotonicity into account: ramp distance and signed distance. Through experiments on synthetic and real-life datasets, we show that ramp distance increases anomaly detection performance over the traditional absolute distance. While signed distance also performs well on synthetic data, it performs substantially poorer on real-life datasets. We argue that this is a consequence of the fact that when using signed distance, low values of certain attributes automatically compensate for high values of other attributes, such that anomaly detection is reduced to counting the total attribute value sum, which is too simplistic in practice.
Authors:Krishna Chandra Roy, Qian Chen
Title: LogSHIELD: A Graph-based Real-time Anomaly Detection Framework using Frequency Analysis
Abstract:
Anomaly-based cyber threat detection using deep learning is on a constant growth in popularity for novel cyber-attack detection and forensics. A robust, efficient, and real-time threat detector in a large-scale operational enterprise network requires high accuracy, high fidelity, and a high throughput model to detect malicious activities. Traditional anomaly-based detection models, however, suffer from high computational overhead and low detection accuracy, making them unsuitable for real-time threat detection. In this work, we propose LogSHIELD, a highly effective graph-based anomaly detection model in host data. We present a real-time threat detection approach using frequency-domain analysis of provenance graphs. To demonstrate the significance of graph-based frequency analysis we proposed two approaches. Approach-I uses a Graph Neural Network (GNN) LogGNN and approach-II performs frequency domain analysis on graph node samples for graph embedding. Both approaches use a statistical clustering algorithm for anomaly detection. The proposed models are evaluated using a large host log dataset consisting of 774M benign logs and 375K malware logs. LogSHIELD explores the provenance graph to extract contextual and causal relationships among logs, exposing abnormal activities. It can detect stealthy and sophisticated attacks with over 98% average AUC and F1 scores. It significantly improves throughput, achieves an average detection latency of 0.13 seconds, and outperforms state-of-the-art models in detection time.
Authors:Sahan Dissanayaka, Manjusri Wickramasinghe, Pasindu Marasinghe
Title: Temporal Convolution-based Hybrid Model Approach with Representation Learning for Real-Time Acoustic Anomaly Detection
Abstract:
The early detection of potential failures in industrial machinery components is paramount for ensuring the reliability and safety of operations, thereby preserving Machine Condition Monitoring (MCM). This research addresses this imperative by introducing an innovative approach to Real-Time Acoustic Anomaly Detection. Our method combines semi-supervised temporal convolution with representation learning and a hybrid model strategy with Temporal Convolutional Networks (TCN) to handle various intricate anomaly patterns found in acoustic data effectively. The proposed model demonstrates superior performance compared to established research in the field, underscoring the effectiveness of this approach. Not only do we present quantitative evidence of its superiority, but we also employ visual representations, such as t-SNE plots, to further substantiate the model's efficacy.
Authors:Vegard Berge, Chunlei Li
Title: Enhanced Anomaly Detection in Industrial Control Systems aided by Machine Learning
Abstract:
Traditional intrusion detection systems (IDSs) often rely on either network traffic or process data, but this single-source approach may miss complex attack patterns that span multiple layers within industrial control systems (ICSs) or persistent threats that target different layers of operational technology systems. This study investigates whether combining both network and process data can improve attack detection in ICSs environments. Leveraging the SWaT dataset, we evaluate various machine learning models on individual and combined data sources. Our findings suggest that integrating network traffic with operational process data can enhance detection capabilities, evidenced by improved recall rates for cyber attack classification. Serving as a proof-of-concept within a limited testing environment, this research explores the feasibility of advancing intrusion detection through a multi-source data approach in ICSs. Although the results are promising, they are preliminary and highlight the need for further studies across diverse datasets and refined methodologies.
Authors:Mugdim Bublin, Heimo Hirner, Antoine-Martin Lanners, Radu Grosu
Title: Neuromorphic IoT Architecture for Efficient Water Management: A Smart Village Case Study
Abstract:
The exponential growth of IoT networks necessitates a paradigm shift towards architectures that offer high flexibility and learning capabilities while maintaining low energy consumption, minimal communication overhead, and low latency. Traditional IoT systems, particularly when integrated with machine learning approaches, often suffer from high communication overhead and significant energy consumption. This work addresses these challenges by proposing a neuromorphic architecture inspired by biological systems. To illustrate the practical application of our proposed architecture, we present a case study focusing on water management in the Carinthian community of Neuhaus. Preliminary results regarding water consumption prediction and anomaly detection in this community are presented. We also introduce a novel neuromorphic IoT architecture that integrates biological principles into the design of IoT systems. This architecture is specifically tailored for edge computing scenarios, where low power and high efficiency are crucial. Our approach leverages the inherent advantages of neuromorphic computing, such as asynchronous processing and event-driven communication, to create an IoT framework that is both energy-efficient and responsive. This case study demonstrates how the neuromorphic IoT architecture can be deployed in a real-world scenario, highlighting its benefits in terms of energy savings, reduced communication overhead, and improved system responsiveness.
Authors:M. V. Kornilov, V. S. Korolev, K. L. Malanchev, A. D. Lavrukhina, E. Russeil, T. A. Semenikhin, E. Gangler, E. E. O. Ishida, M. V. Pruzhinskaya, A. A. Volnova, S. Sreejith
Title: Coniferest: a complete active anomaly detection framework
Abstract:
We present coniferest, an open source generic purpose active anomaly detection framework written in Python. The package design and implemented algorithms are described. Currently, static outlier detection analysis is supported via the Isolation forest algorithm. Moreover, Active Anomaly Discovery (AAD) and Pineforest algorithms are available to tackle active anomaly detection problems. The algorithms and package performance are evaluated on a series of synthetic datasets. We also describe a few success cases which resulted from applying the package to real astronomical data in active anomaly detection tasks within the SNAD project.
Authors:Can Chen, Gabriel Oliveira, Hossein Sharifi Noghabi, Tristan Sylvain
Title: LLM-TS Integrator: Integrating LLM for Enhanced Time Series Modeling
Abstract:
Time series~(TS) modeling is essential in dynamic systems like weather prediction and anomaly detection. Recent studies utilize Large Language Models (LLMs) for TS modeling, leveraging their powerful pattern recognition capabilities. These methods primarily position LLMs as the predictive backbone, often omitting the mathematical modeling within traditional TS models, such as periodicity. However, disregarding the potential of LLMs also overlooks their pattern recognition capabilities. To address this gap, we introduce \textit{LLM-TS Integrator}, a novel framework that effectively integrates the capabilities of LLMs into traditional TS modeling. Central to this integration is our \textit{mutual information} module. The core of this \textit{mutual information} module is a traditional TS model enhanced with LLM-derived insights for improved predictive abilities. This enhancement is achieved by maximizing the mutual information between traditional model's TS representations and LLM's textual representation counterparts, bridging the two modalities. Moreover, we recognize that samples vary in importance for two losses: traditional prediction and mutual information maximization. To address this variability, we introduce the \textit{sample reweighting} module to improve information utilization. This module assigns dual weights to each sample: one for prediction loss and another for mutual information loss, dynamically optimizing these weights via bi-level optimization. Our method achieves state-of-the-art or comparable performance across five mainstream TS tasks, including short-term and long-term forecasting, imputation, classification, and anomaly detection.
Authors:Sazid Nazat, Mustafa Abdallah
Title: XAI-based Feature Ensemble for Enhanced Anomaly Detection in Autonomous Driving Systems
Abstract:
The rapid advancement of autonomous vehicle (AV) technology has introduced significant challenges in ensuring transportation security and reliability. Traditional AI models for anomaly detection in AVs are often opaque, posing difficulties in understanding and trusting their decision making processes. This paper proposes a novel feature ensemble framework that integrates multiple Explainable AI (XAI) methods: SHAP, LIME, and DALEX with various AI models to enhance both anomaly detection and interpretability. By fusing top features identified by these XAI methods across six diverse AI models (Decision Trees, Random Forests, Deep Neural Networks, K Nearest Neighbors, Support Vector Machines, and AdaBoost), the framework creates a robust and comprehensive set of features critical for detecting anomalies. These feature sets, produced by our feature ensemble framework, are evaluated using independent classifiers (CatBoost, Logistic Regression, and LightGBM) to ensure unbiased performance. We evaluated our feature ensemble approach on two popular autonomous driving datasets (VeReMi and Sensor) datasets. Our feature ensemble technique demonstrates improved accuracy, robustness, and transparency of AI models, contributing to safer and more trustworthy autonomous driving systems.
Authors:Le Hong Phong, Ho Ngoc Luat, Vo Nguyen Le Duy
Title: Controllable RANSAC-based Anomaly Detection via Hypothesis Testing
Abstract:
Detecting the presence of anomalies in regression models is a crucial task in machine learning, as anomalies can significantly impact the accuracy and reliability of predictions. Random Sample Consensus (RANSAC) is one of the most popular robust regression methods for addressing this challenge. However, this method lacks the capability to guarantee the reliability of the anomaly detection (AD) results. In this paper, we propose a novel statistical method for testing the AD results obtained by RANSAC, named CTRL-RANSAC (controllable RANSAC). The key strength of the proposed method lies in its ability to control the probability of misidentifying anomalies below a pre-specified level $α$ (e.g., $α= 0.05$). By examining the selection strategy of RANSAC and leveraging the Selective Inference (SI) framework, we prove that achieving controllable RANSAC is indeed feasible. Furthermore, we introduce a more strategic and computationally efficient approach to enhance the true detection rate and overall performance of the CTRL-RANSAC. Experiments conducted on synthetic and real-world datasets robustly support our theoretical results, showcasing the superior performance of the proposed method.
Authors:Aviral Srivastava, Sourav Panda
Title: A Formal Framework for Assessing and Mitigating Emergent Security Risks in Generative AI Models: Bridging Theory and Dynamic Risk Mitigation
Abstract:
As generative AI systems, including large language models (LLMs) and diffusion models, advance rapidly, their growing adoption has led to new and complex security risks often overlooked in traditional AI risk assessment frameworks. This paper introduces a novel formal framework for categorizing and mitigating these emergent security risks by integrating adaptive, real-time monitoring, and dynamic risk mitigation strategies tailored to generative models' unique vulnerabilities. We identify previously under-explored risks, including latent space exploitation, multi-modal cross-attack vectors, and feedback-loop-induced model degradation. Our framework employs a layered approach, incorporating anomaly detection, continuous red-teaming, and real-time adversarial simulation to mitigate these risks. We focus on formal verification methods to ensure model robustness and scalability in the face of evolving threats. Though theoretical, this work sets the stage for future empirical validation by establishing a detailed methodology and metrics for evaluating the performance of risk mitigation strategies in generative AI systems. This framework addresses existing gaps in AI safety, offering a comprehensive road map for future research and implementation.
Authors:Rosemary He, Ichiro Takeuchi
Title: Statistical testing on generative AI anomaly detection tools in Alzheimer's Disease diagnosis
Abstract:
Alzheimer's Disease is challenging to diagnose due to our limited understanding of its mechanism and large heterogeneity among patients. Neurodegeneration is studied widely as a biomarker for clinical diagnosis, which can be measured from time series MRI progression. On the other hand, generative AI has shown promise in anomaly detection in medical imaging and used for tasks including tumor detection. However, testing the reliability of such data-driven methods is non-trivial due to the issue of double-dipping in hypothesis testing. In this work, we propose to solve this issue with selective inference and develop a reliable generative AI method for Alzheimer's prediction. We show that compared to traditional statistical methods with highly inflated p-values, selective inference successfully controls the false discovery rate under the desired alpha level while retaining statistical power. In practice, our pipeline could assist clinicians in Alzheimer's diagnosis and early intervention.
Authors:Daniel Gramelt, Timon Höfer, Ute Schmid
Title: Interactive Explainable Anomaly Detection for Industrial Settings
Abstract:
Being able to recognise defects in industrial objects is a key element of quality assurance in production lines. Our research focuses on visual anomaly detection in RGB images. Although Convolutional Neural Networks (CNNs) achieve high accuracies in this task, end users in industrial environments receive the model's decisions without additional explanations. Therefore, it is of interest to enrich the model's outputs with further explanations to increase confidence in the model and speed up anomaly detection. In our work, we focus on (1) CNN-based classification models and (2) the further development of a model-agnostic explanation algorithm for black-box classifiers. Additionally, (3) we demonstrate how we can establish an interactive interface that allows users to further correct the model's output. We present our NearCAIPI Interaction Framework, which improves AI through user interaction, and show how this approach increases the system's trustworthiness. We also illustrate how NearCAIPI can integrate human feedback into an interactive process chain.
Authors:Oscar Torres Sanchez, Guilherme Borges, Duarte Raposo, André Rodrigues, Fernando Boavida, Jorge Sá Silva
Title: Federated Learning framework for LoRaWAN-enabled IIoT communication: A case study
Abstract:
The development of intelligent Industrial Internet of Things (IIoT) systems promises to revolutionize operational and maintenance practices, driving improvements in operational efficiency. Anomaly detection within IIoT architectures plays a crucial role in preventive maintenance and spotting irregularities in industrial components. However, due to limited message and processing capacity, traditional Machine Learning (ML) faces challenges in deploying anomaly detection models in resource-constrained environments like LoRaWAN. On the other hand, Federated Learning (FL) solves this problem by enabling distributed model training, addressing privacy concerns, and minimizing data transmission. This study explores using FL for anomaly detection in industrial and civil construction machinery architectures that use IIoT prototypes with LoRaWAN communication. The process leverages an optimized autoencoder neural network structure and compares federated models with centralized ones. Despite uneven data distribution among machine clients, FL demonstrates effectiveness, with a mean F1 score (of 94.77), accuracy (of 92.30), TNR (of 90.65), and TPR (92.93), comparable to centralized models, considering airtime of trainning messages of 52.8 min. Local model evaluations on each machine highlight adaptability. At the same time, the performed analysis identifies message requirements, minimum training hours, and optimal round/epoch configurations for FL in LoRaWAN, guiding future implementations in constrained industrial environments.
Authors:Yundi He, Runhua Shi, Boyan Wang
Title: WT-CFormer: High-Performance Web Traffic Anomaly Detection Based on Spatiotemporal Analysis
Abstract:
Web traffic (WT) refers to time-series data that captures the volume of data transmitted to and from a web server during a user's visit to a website. However, web traffic has different distributions coming from various sources as well as the imbalance between normal and abnormal categories, it is difficult to accurately and efficiently identify abnormal web traffic. Deep neural network approaches for web traffic anomaly detection have achieved cutting-edge classification performance. In order to achieve high-performance spatiotemporal detection of network attacks, we innovatively design WT-CFormer, which integrates Transformer and CNN, effectively capturing the temporal and spatial characteristics. We conduct a large numbr of experiments to evaluate the method we proposed. The results show that WT-CFormer has the highest performance, obtaining a recall as high as 96.79%, a precision of 97.35%, an F1 score of 97.07%, and an accuracy of 99.43%, which is 7.09%,1.15%, 4.77%, and 0.83% better than the state-of-the-art method, followed by C-LSTM, CTGA, random forest, and KNN algorithms. In addition, we find that the classification performance of WT-CFormer with only 50 training epochs outperforms C-LSTM with 500 training epochs, which greatly improves the convergence performance. Finally, we perform ablation experiments to demonstrate the necessity of each component within WT-CFormer.
Authors:Shunsuke Sakai, Tatushito Hasegawa, Makoto Koshino
Title: LADMIM: Logical Anomaly Detection with Masked Image Modeling in Discrete Latent Space
Abstract:
Detecting anomalies such as incorrect combinations of objects or deviations in their positions is a challenging problem in industrial anomaly detection. Traditional methods mainly focus on local features of normal images, such as scratches and dirt, making detecting anomalies in the relationships between features difficult. Masked image modeling(MIM) is a self-supervised learning technique that predicts the feature representation of masked regions in an image. To reconstruct the masked regions, it is necessary to understand how the image is composed, allowing the learning of relationships between features within the image. We propose a novel approach that leverages the characteristics of MIM to detect logical anomalies effectively. To address blurriness in the reconstructed image, we replace pixel prediction with predicting the probability distribution of discrete latent variables of the masked regions using a tokenizer. We evaluated the proposed method on the MVTecLOCO dataset, achieving an average AUC of 0.867, surpassing traditional reconstruction-based and distillation-based methods.
Authors:Stefano Alberto Russo, Giuliano Taffoni, Luca Bortolussi
Title: Timeseria: an object-oriented time series processing library
Abstract:
Timeseria is an object-oriented time series processing library implemented in Python, which aims at making it easier to manipulate time series data and to build statistical and machine learning models on top of it. Unlike common data analysis frameworks, it builds up from well defined and reusable logical units (objects), which can be easily combined together in order to ensure a high level of consistency. Thanks to this approach, Timeseria can address by design several non-trivial issues which are often underestimated, such as handling data losses, non-uniform sampling rates, differences between aggregated data and punctual observations, time zones, daylight saving times, and more. Timeseria comes with a comprehensive set of base data structures, data transformations for resampling and aggregation, common data manipulation operations, and extensible models for data reconstruction, forecasting and anomaly detection. It also integrates a fully featured, interactive plotting engine capable of handling even millions of data points.
Authors:Sofiane Laridi, Gregory Palmer, Kam-Ming Mark Tam
Title: Enhanced Federated Anomaly Detection Through Autoencoders Using Summary Statistics-Based Thresholding
Abstract:
In Federated Learning (FL), anomaly detection (AD) is a challenging task due to the decentralized nature of data and the presence of non-IID data distributions. This study introduces a novel federated threshold calculation method that leverages summary statistics from both normal and anomalous data to improve the accuracy and robustness of anomaly detection using autoencoders (AE) in a federated setting. Our approach aggregates local summary statistics across clients to compute a global threshold that optimally separates anomalies from normal data while ensuring privacy preservation. We conducted extensive experiments using publicly available datasets, including Credit Card Fraud Detection, Shuttle, and Covertype, under various data distribution scenarios. The results demonstrate that our method consistently outperforms existing federated and local threshold calculation techniques, particularly in handling non-IID data distributions. This study also explores the impact of different data distribution scenarios and the number of clients on the performance of federated anomaly detection. Our findings highlight the potential of using summary statistics for threshold calculation in improving the scalability and accuracy of federated anomaly detection systems.
Authors:Riya Sadrani, Hrishikesh Sharma, Ayush Bachan
Title: On The Relationship between Visual Anomaly-free and Anomalous Representations
Abstract:
Anomaly Detection is an important problem within computer vision, having variety of real-life applications. Yet, the current set of solutions to this problem entail known, systematic shortcomings. Specifically, contemporary surface Anomaly Detection task assumes the presence of multiple specific anomaly classes e.g. cracks, rusting etc., unlike one-class classification model of past. However, building a deep learning model in such setup remains a challenge because anomalies arise rarely, and hence anomaly samples are quite scarce. Transfer learning has been a preferred paradigm in such situations. But the typical source domains with large dataset sizes e.g. ImageNet, JFT-300M, LAION-2B do not correlate well with the domain of surfaces and materials, an important premise of transfer learning. In this paper, we make an important hypothesis and show, by exhaustive experimentation, that the space of anomaly-free visual patterns of the normal samples correlates well with each of the various spaces of anomalous patterns of the class-specific anomaly samples. The first results of using this hypothesis in transfer learning have indeed been quite encouraging. We expect that finding such a simple closeby domain that readily entails large number of samples, and which also oftentimes shows interclass separability though with narrow margins, will be a useful discovery. Especially, it is expected to improve domain adaptation for anomaly detection, and few-shot learning for anomaly detection, making in-the-wild anomaly detection realistically possible in future.
Authors:Minjung Kim, Yusuke Hioka, Michael Witbrock
Title: Neural Fourier Modelling: A Highly Compact Approach to Time-Series Analysis
Abstract:
Neural time-series analysis has traditionally focused on modeling data in the time domain, often with some approaches incorporating equivalent Fourier domain representations as auxiliary spectral features. In this work, we shift the main focus to frequency representations, modeling time-series data fully and directly in the Fourier domain. We introduce Neural Fourier Modelling (NFM), a compact yet powerful solution for time-series analysis. NFM is grounded in two key properties of the Fourier transform (FT): (i) the ability to model finite-length time series as functions in the Fourier domain, treating them as continuous-time elements in function space, and (ii) the capacity for data manipulation (such as resampling and timespan extension) within the Fourier domain. We reinterpret Fourier-domain data manipulation as frequency extrapolation and interpolation, incorporating this as a core learning mechanism in NFM, applicable across various tasks. To support flexible frequency extension with spectral priors and effective modulation of frequency representations, we propose two learning modules: Learnable Frequency Tokens (LFT) and Implicit Neural Fourier Filters (INFF). These modules enable compact and expressive modeling in the Fourier domain. Extensive experiments demonstrate that NFM achieves state-of-the-art performance on a wide range of tasks (forecasting, anomaly detection, and classification), including challenging time-series scenarios with previously unseen sampling rates at test time. Moreover, NFM is highly compact, requiring fewer than 40K parameters in each task, with time-series lengths ranging from 100 to 16K.
Authors:Robin Frehner, Kurt Stockinger
Title: Applying Quantum Autoencoders for Time Series Anomaly Detection
Abstract:
Anomaly detection is an important problem with applications in various domains such as fraud detection, pattern recognition or medical diagnosis. Several algorithms have been introduced using classical computing approaches. However, using quantum computing for solving anomaly detection problems in time series data is a widely unexplored research field. This paper explores the application of quantum autoencoders to time series anomaly detection. We investigate two primary techniques for classifying anomalies: (1) Analyzing the reconstruction error generated by the quantum autoencoder and (2) latent representation analysis. Our simulated experimental results, conducted across various ansaetze, demonstrate that quantum autoencoders consistently outperform classical deep learning-based autoencoders across multiple datasets. Specifically, quantum autoencoders achieve superior anomaly detection performance while utilizing 60-230 times fewer parameters and requiring five times fewer training iterations. In addition, we implement our quantum encoder on real quantum hardware. Our experimental results demonstrate that quantum autoencoders achieve anomaly detection performance on par with their simulated counterparts.
Authors:Kyle Evans-Lee, Kevin Lamb
Title: Identification of Anomalous Geospatial Trajectories via Persistent Homology
Abstract:
We present a novel method for analyzing geospatial trajectory data using topological data analysis (TDA) to identify a specific class of anomalies, commonly referred to as crop circles, in AIS data. This approach is the first of its kind to be applied to spatiotemporal data. By embedding $2+1$-dimensional spatiotemporal data into $\mathbb{R}^3$, we utilize persistent homology to detect loops within the trajectories in $\mathbb{R}^2$. Our research reveals that, under normal conditions, trajectory data embedded in $\mathbb{R}^3$ over time do not form loops. Consequently, we can effectively identify anomalies characterized by the presence of loops within the trajectories. This method is robust and capable of detecting loops that are invariant to small perturbations, variations in geometric shape, and local coordinate projections. Additionally, our approach provides a novel perspective on anomaly detection, offering enhanced sensitivity and specificity in identifying atypical patterns in geospatial data. This approach has significant implications for various applications, including maritime navigation, environmental monitoring, and surveillance.
Authors:Nooruddin Noonari, Daniel Corujo, Rui L. Aguiar, Francisco J. Ferrao
Title: Multi-Scale Convolutional LSTM with Transfer Learning for Anomaly Detection in Cellular Networks
Abstract:
The rapid growth in mobile broadband usage and increasing subscribers have made it crucial to ensure reliable network performance. As mobile networks grow more complex, especially during peak hours, manual collection of Key Performance Indicators (KPIs) is time-consuming due to the vast data involved. Detecting network failures and identifying unusual behavior during busy periods is vital to assess network health. Researchers have applied Deep Learning (DL) and Machine Learning (ML) techniques to understand network behavior by predicting throughput, analyzing call records, and detecting outages. However, these methods often require significant computational power, large labeled datasets, and are typically specialized, making retraining for new scenarios costly and time-intensive. This study introduces a novel approach Multi-Scale Convolutional LSTM with Transfer Learning (TL) to detect anomalies in cellular networks. The model is initially trained from scratch using a publicly available dataset to learn typical network behavior. Transfer Learning is then employed to fine-tune the model by applying learned weights to different datasets. We compare the performance of the model trained from scratch with that of the fine-tuned model using TL. To address class imbalance and gain deeper insights, Exploratory Data Analysis (EDA) and the Synthetic Minority Over-sampling Technique (SMOTE) are applied. Results demonstrate that the model trained from scratch achieves 99% accuracy after 100 epochs, while the fine-tuned model reaches 95% accuracy on a different dataset after just 20 epochs.
Authors:R. Gallon, F. Schiemenz, A. Krstova, A. Menicucci, E. Gill
Title: Machine Learning-based vs Deep Learning-based Anomaly Detection in Multivariate Time Series for Spacecraft Attitude Sensors
Abstract:
In the framework of Failure Detection, Isolation and Recovery (FDIR) on spacecraft, new AI-based approaches are emerging in the state of the art to overcome the limitations commonly imposed by traditional threshold checking. The present research aims at characterizing two different approaches to the problem of stuck values detection in multivariate time series coming from spacecraft attitude sensors. The analysis reveals the performance differences in the two approaches, while commenting on their interpretability and generalization to different scenarios.
Authors:Maximilian Andreas Hoefler, Karsten Mueller, Wojciech Samek
Title: XAI-guided Insulator Anomaly Detection for Imbalanced Datasets
Abstract:
Power grids serve as a vital component in numerous industries, seamlessly delivering electrical energy to industrial processes and technologies, making their safe and reliable operation indispensable. However, powerlines can be hard to inspect due to difficult terrain or harsh climatic conditions. Therefore, unmanned aerial vehicles are increasingly deployed to inspect powerlines, resulting in a substantial stream of visual data which requires swift and accurate processing. Deep learning methods have become widely popular for this task, proving to be a valuable asset in fault detection. In particular, the detection of insulator defects is crucial for predicting powerline failures, since their malfunction can lead to transmission disruptions. It is therefore of great interest to continuously maintain and rigorously inspect insulator components. In this work we propose a novel pipeline to tackle this task. We utilize state-of-the-art object detection to detect and subsequently classify individual insulator anomalies. Our approach addresses dataset challenges such as imbalance and motion-blurred images through a fine-tuning methodology which allows us to alter the classification focus of the model by increasing the classification accuracy of anomalous insulators. In addition, we employ explainable-AI tools for precise localization and explanation of anomalies. This proposed method contributes to the field of anomaly detection, particularly vision-based industrial inspection and predictive maintenance. We significantly improve defect detection accuracy by up to 13%, while also offering a detailed analysis of model mis-classifications and localization quality, showcasing the potential of our method on real-world data.
Authors:Syed Mohd Faisal Malik, Md Tabrez Nafis, Mohd Abdul Ahad, Safdar Tanweer
Title: Grading and Anomaly Detection for Automated Retinal Image Analysis using Deep Learning
Abstract:
The significant portion of diabetic patients was affected due to major blindness caused by Diabetic retinopathy (DR). For diabetic retinopathy, lesion segmentation, and detection the comprehensive examination is delved into the deep learning techniques application. The study conducted a systematic literature review using the PRISMA analysis and 62 articles has been investigated in the research. By including CNN-based models for DR grading, and feature fusion several deep-learning methodologies are explored during the study. For enhancing effectiveness in classification accuracy and robustness the data augmentation and ensemble learning strategies are scrutinized. By demonstrating the superior performance compared to individual models the efficacy of ensemble learning methods is investigated. The potential ensemble approaches in DR diagnosis are shown by the integration of multiple pre-trained networks with custom classifiers that yield high specificity. The diverse deep-learning techniques that are employed for detecting DR lesions are discussed within the diabetic retinopathy lesions segmentation and detection section. By emphasizing the requirement for continued research and integration into clinical practice deep learning shows promise for personalized healthcare and early detection of diabetics.
Authors:Daniel Zilberg, Ron Levie
Title: PieClam: A Universal Graph Autoencoder Based on Overlapping Inclusive and Exclusive Communities
Abstract:
We propose PieClam (Prior Inclusive Exclusive Cluster Affiliation Model): a probabilistic graph model for representing any graph as overlapping generalized communities. Our method can be interpreted as a graph autoencoder: nodes are embedded into a code space by an algorithm that maximizes the log-likelihood of the decoded graph, given the input graph. PieClam is a community affiliation model that extends well-known methods like BigClam in two main manners. First, instead of the decoder being defined via pairwise interactions between the nodes in the code space, we also incorporate a learned prior on the distribution of nodes in the code space, turning our method into a graph generative model. Secondly, we generalize the notion of communities by allowing not only sets of nodes with strong connectivity, which we call inclusive communities, but also sets of nodes with strong disconnection, which we call exclusive communities. To model both types of communities, we propose a new type of decoder based the Lorentz inner product, which we prove to be much more expressive than standard decoders based on standard inner products or norm distances. By introducing a new graph similarity measure, that we call the log cut distance, we show that PieClam is a universal autoencoder, able to uniformly approximately reconstruct any graph. Our method is shown to obtain competitive performance in graph anomaly detection benchmarks.
Authors:Hyuntae Kim, Changhee Lee
Title: Enhancing Anomaly Detection via Generating Diversified and Hard-to-distinguish Synthetic Anomalies
Abstract:
Unsupervised anomaly detection is a daunting task, as it relies solely on normality patterns from the training data to identify unseen anomalies during testing. Recent approaches have focused on leveraging domain-specific transformations or perturbations to generate synthetic anomalies from normal samples. The objective here is to acquire insights into normality patterns by learning to differentiate between normal samples and these crafted anomalies. However, these approaches often encounter limitations when domain-specific transformations are not well-specified such as in tabular data, or when it becomes trivial to distinguish between them. To address these issues, we introduce a novel domain-agnostic method that employs a set of conditional perturbators and a discriminator. The perturbators are trained to generate input-dependent perturbations, which are subsequently utilized to construct synthetic anomalies, and the discriminator is trained to distinguish normal samples from them. We ensure that the generated anomalies are both diverse and hard to distinguish through two key strategies: i) directing perturbations to be orthogonal to each other and ii) constraining perturbations to remain in proximity to normal samples. Throughout experiments on real-world datasets, we demonstrate the superiority of our method over state-of-the-art benchmarks, which is evident not only in image data but also in tabular data, where domain-specific transformation is not readily accessible. Additionally, we empirically confirm the adaptability of our method to semi-supervised settings, demonstrating its capacity to incorporate supervised signals to enhance anomaly detection performance even further.
Authors:Sebastian Wette, Florian Heinrichs
Title: OML-AD: Online Machine Learning for Anomaly Detection in Time Series Data
Abstract:
Time series are ubiquitous and occur naturally in a variety of applications -- from data recorded by sensors in manufacturing processes, over financial data streams to climate data. Different tasks arise, such as regression, classification or segmentation of the time series. However, to reliably solve these challenges, it is important to filter out abnormal observations that deviate from the usual behavior of the time series. While many anomaly detection methods exist for independent data and stationary time series, these methods are not applicable to non-stationary time series. To allow for non-stationarity in the data, while simultaneously detecting anomalies, we propose OML-AD, a novel approach for anomaly detection (AD) based on online machine learning (OML). We provide an implementation of OML-AD within the Python library River and show that it outperforms state-of-the-art baseline methods in terms of accuracy and computational efficiency.
Authors:Övgü Özdemir, M. Tuğberk İşyapar, Pınar Karagöz, Klaus Werner Schmidt, Demet Demir, N. Alpay Karagöz
Title: A Survey of Anomaly Detection in In-Vehicle Networks
Abstract:
Modern vehicles are equipped with Electronic Control Units (ECU) that are used for controlling important vehicle functions including safety-critical operations. ECUs exchange information via in-vehicle communication buses, of which the Controller Area Network (CAN bus) is by far the most widespread representative. Problems that may occur in the vehicle's physical parts or malicious attacks may cause anomalies in the CAN traffic, impairing the correct vehicle operation. Therefore, the detection of such anomalies is vital for vehicle safety. This paper reviews the research on anomaly detection for in-vehicle networks, more specifically for the CAN bus. Our main focus is the evaluation of methods used for CAN bus anomaly detection together with the datasets used in such analysis. To provide the reader with a more comprehensive understanding of the subject, we first give a brief review of related studies on time series-based anomaly detection. Then, we conduct an extensive survey of recent deep learning-based techniques as well as conventional techniques for CAN bus anomaly detection. Our comprehensive analysis delves into anomaly detection algorithms employed in in-vehicle networks, specifically focusing on their learning paradigms, inherent strengths, and weaknesses, as well as their efficacy when applied to CAN bus datasets. Lastly, we highlight challenges and open research problems in CAN bus anomaly detection.
Authors:Cesare Caratozzolo, Valeria Rossi, Kamil Witek, Alberto Trombetta, Massimo Caccia
Title: On-line Anomaly Detection and Qualification of Random Bit Streams
Abstract:
Generating random bit streams is required in various applications, most notably cyber-security. Ensuring high-quality and robust randomness is crucial to mitigate risks associated with predictability and system compromise. True random numbers provide the highest unpredictability levels. However, potential biases in the processes exploited for the random number generation must be carefully monitored. This paper reports the implementation and characterization of an on-line procedure for the detection of anomalies in a true random bit stream. It is based on the NIST Adaptive Proportion and Repetition Count tests, complemented by statistical analysis relying on the Monobit and RUNS. The procedure is firmware implemented and performed simultaneously with the bit stream generation, and providing as well an estimate of the entropy of the source. The experimental validation of the approach is performed upon the bit streams generated by a quantum, silicon-based entropy source.
Authors:Zhongbin Sun, Xiaolong Li, Yiran Li, Yue Ma
Title: Memoryless Multimodal Anomaly Detection via Student-Teacher Network and Signed Distance Learning
Abstract:
Unsupervised anomaly detection is a challenging computer vision task, in which 2D-based anomaly detection methods have been extensively studied. However, multimodal anomaly detection based on RGB images and 3D point clouds requires further investigation. The existing methods are mainly inspired by memory bank based methods commonly used in 2D-based anomaly detection, which may cost extra memory for storing mutimodal features. In present study, a novel memoryless method MDSS is proposed for multimodal anomaly detection, which employs a light-weighted student-teacher network and a signed distance function to learn from RGB images and 3D point clouds respectively, and complements the anomaly information from the two modalities. Specifically, a student-teacher network is trained with normal RGB images and masks generated from point clouds by a dynamic loss, and the anomaly score map could be obtained from the discrepancy between the output of student and teacher. Furthermore, the signed distance function learns from normal point clouds to predict the signed distances between points and surface, and the obtained signed distances are used to generate anomaly score map. Subsequently, the anomaly score maps are aligned to generate the final anomaly score map for detection. The experimental results indicate that MDSS is comparable but more stable than the SOTA memory bank based method Shape-guided, and furthermore performs better than other baseline methods.
Authors:Hooman Ramezani, Dionne Aleman, Daniel Létourneau
Title: Lung-DETR: Deformable Detection Transformer for Sparse Lung Nodule Anomaly Detection
Abstract:
Accurate lung nodule detection for computed tomography (CT) scan imagery is challenging in real-world settings due to the sparse occurrence of nodules and similarity to other anatomical structures. In a typical positive case, nodules may appear in as few as 3% of CT slices, complicating detection. To address this, we reframe the problem as an anomaly detection task, targeting rare nodule occurrences in a predominantly normal dataset. We introduce a novel solution leveraging custom data preprocessing and Deformable Detection Transformer (Deformable- DETR). A 7.5mm Maximum Intensity Projection (MIP) is utilized to combine adjacent lung slices into single images, reducing the slice count and decreasing nodule sparsity. This enhances spatial context, allowing for better differentiation between nodules and other structures such as complex vascular structures and bronchioles. Deformable-DETR is employed to detect nodules, with a custom focal loss function to better handle the imbalanced dataset. Our model achieves state-of-the-art performance on the LUNA16 dataset with an F1 score of 94.2% (95.2% recall, 93.3% precision) on a dataset sparsely populated with lung nodules that is reflective of real-world clinical data.
Authors:Alexander Hartl, Félix Iglesias Vázquez, Tanja Zseby
Title: SDOoop: Capturing Periodical Patterns and Out-of-phase Anomalies in Streaming Data Analysis
Abstract:
Streaming data analysis is increasingly required in applications, e.g., IoT, cybersecurity, robotics, mechatronics or cyber-physical systems. Despite its relevance, it is still an emerging field with open challenges. SDO is a recent anomaly detection method designed to meet requirements of speed, interpretability and intuitive parameterization. In this work, we present SDOoop, which extends the capabilities of SDO's streaming version to retain temporal information of data structures. SDOoop spots contextual anomalies undetectable by traditional algorithms, while enabling the inspection of data geometries, clusters and temporal patterns. We used SDOoop to model real network communications in critical infrastructures and extract patterns that disclose their dynamics. Moreover, we evaluated SDOoop with data from intrusion detection and natural science domains and obtained performances equivalent or superior to state-of-the-art approaches. Our results show the high potential of new model-based methods to analyze and explain streaming data. Since SDOoop operates with constant per-sample space and time complexity, it is ideal for big data, being able to instantly process large volumes of information. SDOoop conforms to next-generation machine learning, which, in addition to accuracy and speed, is expected to provide highly interpretable and informative models.
Authors:Joel Brogan, Olivera Kotevska, Anibely Torres, Sumit Jha, Mark Adams
Title: Improving Robustness of Spectrogram Classifiers with Neural Stochastic Differential Equations
Abstract:
Signal analysis and classification is fraught with high levels of noise and perturbation. Computer-vision-based deep learning models applied to spectrograms have proven useful in the field of signal classification and detection; however, these methods aren't designed to handle the low signal-to-noise ratios inherent within non-vision signal processing tasks. While they are powerful, they are currently not the method of choice in the inherently noisy and dynamic critical infrastructure domain, such as smart-grid sensing, anomaly detection, and non-intrusive load monitoring.
Authors:Haokun Zhou
Title: SMKC: Sketch Based Kernel Correlation Images for Variable Cardinality Time Series Anomaly Detection
Abstract:
Conventional anomaly detection in multivariate time series relies on the assumption that the set of observed variables remains static. In operational environments, however, monitoring systems frequently experience sensor churn. Signals may appear, disappear, or be renamed, creating data windows where the cardinality varies and may include values unseen during training. To address this challenge, we propose SMKC, a framework that decouples the dynamic input structure from the anomaly detector. We first employ permutation-invariant feature hashing to sketch raw inputs into a fixed size state sequence. We then construct a hybrid kernel image to capture global temporal structure through pairwise comparisons of the sequence and its derivatives. The model learns normal patterns using masked reconstruction and a teacher-student prediction objective. Our evaluation reveals that robust log-distance channels provide the primary discriminative signal, whereas cosine representations often fail to capture sufficient contrast. Notably, we find that a detector using random projections and nearest neighbors on the SMKC representation performs competitively with fully trained baselines without requiring gradient updates. This highlights the effectiveness of the representation itself and offers a practical cold-start solution for resource-constrained deployments.
Authors:Waldyn G. Martinez
Title: VSCOUT: A Hybrid Variational Autoencoder Approach to Outlier Detection in High-Dimensional Retrospective Monitoring
Abstract:
Modern industrial and service processes generate high-dimensional, non-Gaussian, and contamination-prone data that challenge the foundational assumptions of classical Statistical Process Control (SPC). Heavy tails, multimodality, nonlinear dependencies, and sparse special-cause observations can distort baseline estimation, mask true anomalies, and prevent reliable identification of an in-control (IC) reference set. To address these challenges, we introduce VSCOUT, a distribution-free framework designed specifically for retrospective (Phase I) monitoring in high-dimensional settings. VSCOUT combines an Automatic Relevance Determination Variational Autoencoder (ARD-VAE) architecture with ensemble-based latent outlier filtering and changepoint detection. The ARD prior isolates the most informative latent dimensions, while the ensemble and changepoint filters identify pointwise and structural contamination within the determined latent space. A second-stage retraining step removes flagged observations and re-estimates the latent structure using only the retained inliers, mitigating masking and stabilizing the IC latent manifold. This two-stage refinement produces a clean and reliable IC baseline suitable for subsequent Phase II deployment. Extensive experiments across benchmark datasets demonstrate that VSCOUT achieves superior sensitivity to special-cause structure while maintaining controlled false alarms, outperforming classical SPC procedures, robust estimators, and modern machine-learning baselines. Its scalability, distributional flexibility, and resilience to complex contamination patterns position VSCOUT as a practical and effective method for retrospective modeling and anomaly detection in AI-enabled environments.
Authors:Sharmila S P
Title: PDFInspect: A Unified Feature Extraction Framework for Malicious Document Detection
Abstract:
The increasing prevalence of malicious Portable Document Format (PDF) files necessitates robust and comprehensive feature extraction techniques for effective detection and analysis. This work presents a unified framework that integrates graph-based, structural, and metadata-driven analysis to generate a rich feature representation for each PDF document. The system extracts text from PDF pages and constructs undirected graphs based on pairwise word relationships, enabling the computation of graph-theoretic features such as node count, edge density, and clustering coefficient. Simultaneously, the framework parses embedded metadata to quantify character distributions, entropy patterns, and inconsistencies across fields such as author, title, and producer. Temporal features are derived from creation and modification timestamps to capture behavioral signatures, while structural elements including, object streams, fonts, and embedded images, are quantified to reflect document complexity. Boolean flags for potentially malicious PDF constructs (e.g., JavaScript, launch actions) are also extracted. Together, these features form a high-dimensional vector representation (170 dimensions) that is well-suited for downstream tasks such as malware classification, anomaly detection, and forensic analysis. The proposed approach is scalable, extensible, and designed to support real-world PDF threat intelligence workflows.6
Authors:Jonathan Pan
Title: Conversational Context Classification: A Representation Engineering Approach
Abstract:
The increasing prevalence of Large Language Models (LLMs) demands effective safeguards for their operation, particularly concerning their tendency to generate out-of-context responses. A key challenge is accurately detecting when LLMs stray from expected conversational norms, manifesting as topic shifts, factual inaccuracies, or outright hallucinations. Traditional anomaly detection struggles to directly apply within contextual semantics. This paper outlines our experiment in exploring the use of Representation Engineering (RepE) and One-Class Support Vector Machine (OCSVM) to identify subspaces within the internal states of LLMs that represent a specific context. By training OCSVM on in-context examples, we establish a robust boundary within the LLM's hidden state latent space. We evaluate out study with two open source LLMs - Llama and Qwen models in specific contextual domain. Our approach entailed identifying the optimal layers within the LLM's internal state subspaces that strongly associates with the context of interest. Our evaluation results showed promising results in identifying the subspace for a specific context. Aside from being useful in detecting in or out of context conversation threads, this research work contributes to the study of better interpreting LLMs.
Authors:Laksh Advani
Title: Trajectory Guard -- A Lightweight, Sequence-Aware Model for Real-Time Anomaly Detection in Agentic AI
Abstract:
Autonomous LLM agents generate multi-step action plans that can fail due to contextual misalignment or structural incoherence. Existing anomaly detection methods are ill-suited for this challenge: mean-pooling embeddings dilutes anomalous steps, while contrastive-only approaches ignore sequential structure. Standard unsupervised methods on pre-trained embeddings achieve F1-scores no higher than 0.69. We introduce Trajectory Guard, a Siamese Recurrent Autoencoder with a hybrid loss function that jointly learns task-trajectory alignment via contrastive learning and sequential validity via reconstruction. This dual objective enables unified detection of both "wrong plan for this task" and "malformed plan structure." On benchmarks spanning synthetic perturbations and real-world failures from security audits (RAS-Eval) and multi-agent systems (Who\&When), we achieve F1-scores of 0.88-0.94 on balanced sets and recall of 0.86-0.92 on imbalanced external benchmarks. At 32 ms inference latency, our approach runs 17-27$\times$ faster than LLM Judge baselines, enabling real-time safety verification in production deployments.
Authors:Sungwoo Kang
Title: Trustworthy Equipment Monitoring via Cascaded Anomaly Detection and Thermal Localization
Abstract:
Predictive maintenance demands accurate anomaly detection and trustable explanations. Although multimodal fusion of sensor time-series and thermal imagery shows promise, we demonstrate that naive fusion strategies can paradoxically degrade performance. This paper introduces a Cascaded Anomaly Detection framework that decouples detection and localization. Stage 1 employs an LSTM-based sensor encoder with temporal attention for high-accuracy detection, while Stage 2 activates a CNN-based thermal encoder for post-detection fault localization. Our results reveal that sensor-only detection outperforms full fusion by 8.3 percentage points (93.08% vs. 84.79% F1-score), challenging the assumption that additional modalities invariably improve performance. We further contribute an explainability pipeline integrating SHAP, temporal/spatial attention, and gate weight analysis. This analysis uncovers a "modality bias" where fusion models assign 65-87% weight to the weaker thermal modality. Validated on a real-world bearing dataset (78,397 samples), our cascaded approach achieves state-of-the-art accuracy while providing actionable diagnostics for maintenance decision-making.
Authors:Christopher Burger
Title: Distribution-Free Process Monitoring with Conformal Prediction
Abstract:
Traditional Statistical Process Control (SPC) is essential for quality management but is limited by its reliance on often violated statistical assumptions, leading to unreliable monitoring in modern, complex manufacturing environments. This paper introduces a hybrid framework that enhances SPC by integrating the distribution free, model agnostic guarantees of Conformal Prediction. We propose two novel applications: Conformal-Enhanced Control Charts, which visualize process uncertainty and enable proactive signals like 'uncertainty spikes', and Conformal-Enhanced Process Monitoring, which reframes multivariate control as a formal anomaly detection problem using an intuitive p-value chart. Our framework provides a more robust and statistically rigorous approach to quality control while maintaining the interpretability and ease of use of classic methods.
Authors:Bowen Liu
Title: New Theoretical Insights and Algorithmic Solutions for Reconstructing Score Sequences from Tournament Score Sets
Abstract:
The score set of a tournament is defined as the set of its distinct out-degrees. In 1978, Reid proposed the conjecture that for any set of nonnegative integers $D$, there exists a tournament $T$ with a degree set $D$. In 1989, Yao presented an arithmetical proof of the conjecture, but a general polynomial-time construction algorithm is not known. This paper proposes a necessary and sufficient condition and a separate necessary condition, based on the existing Landau's theorem for the problem of reconstructing score sequences from score sets of tournament graphs. The necessary condition introduces a structured set that enables the use of group-theoretic techniques, offering not only a framework for solving the reconstruction problem but also a new perspective for approaching similar problems. In particular, the same theoretical approach can be extended to reconstruct valid score sets given constraints on the frequency of distinct scores in tournaments. Based on these conditions, we have developed three algorithms that demonstrate the practical utility of our framework: a polynomial-time algorithm and a scalable algorithm for reconstructing score sequences, and a polynomial-time network-building method that finds all possible score sequences for a given score set. Moreover, the polynomial-time algorithm for reconstructing the score sequence of a tournament for a given score set can be used to verify Reid's conjecture. These algorithms have practical applications in sports analysis, ranking prediction, and machine learning tasks such as learning-to-rank models and data imputation, where the reconstruction of partial rankings or sequences is essential for recommendation systems and anomaly detection.
Authors:Mustapha Hamdi
Title: SGEMAS: A Self-Growing Ephemeral Multi-Agent System for Unsupervised Online Anomaly Detection via Entropic Homeostasis
Abstract:
Current deep learning approaches for physiological signal monitoring suffer from static topologies and constant energy consumption. We introduce SGEMAS (Self-Growing Ephemeral Multi-Agent System), a bio-inspired architecture that treats intelligence as a dynamic thermodynamic process. By coupling a structural plasticity mechanism (agent birth death) to a variational free energy objective, the system naturally evolves to minimize prediction error with extreme sparsity. An ablation study on the MIT-BIH Arrhythmia Database reveals that adding a multi-scale instability index to the agent dynamics significantly improves performance. In a challenging inter-patient, zero-shot setting, the final SGEMAS v3.3 model achieves a mean AUC of 0.570 +- 0.070, outperforming both its simpler variants and a standard autoencoder baseline. This result validates that a physics-based, energy-constrained model can achieve robust unsupervised anomaly detection, offering a promising direction for efficient biomedical AI.
Authors:Omid Khormali
Title: Hierarchical Persistence Velocity for Network Anomaly Detection: Theory and Applications to Cryptocurrency Markets
Abstract:
We introduce the Overlap-Weighted Hierarchical Normalized Persistence Velocity (OW-HNPV), a novel topological data analysis method for detecting anomalies in time-varying networks. Unlike existing methods that measure cumulative topological presence, we introduce the first velocity-based perspective on persistence diagrams, measuring the rate at which features appear and disappear, automatically downweighting noise through overlap-based weighting. We also prove that OW-HNPV is mathematically stable. It behaves in a controlled, predictable way, even when comparing persistence diagrams from networks with different feature types. Applied to Ethereum transaction networks (May 2017-May 2018), OW-HNPV demonstrates superior performance for cryptocurrency anomaly detection, achieving up to 10.4% AUC gain over baseline models for 7-day price movement predictions. Compared with established methods, including Vector of Averaged Bettis (VAB), persistence landscapes, and persistence images, velocity-based summaries excel at medium- to long-range forecasting (4-7 days), with OW-HNPV providing the most consistent and stable performance across prediction horizons. Our results show that modeling topological velocity is crucial for detecting structural anomalies in dynamic networks.
Authors:Maida Wang
Title: Q-BAR: Blogger Anomaly Recognition via Quantum-enhanced Manifold Learning
Abstract:
In recommendation-driven online media, creators increasingly suffer from semantic mutation, where malicious secondary edits preserve visual fidelity while altering the intended meaning. Detecting these mutations requires modeling a creator's unique semantic manifold. However, training robust detector models for individual creators is challenged by data scarcity, as a distinct blogger may typically have fewer than 50 representative samples available for training. We propose quantum-enhanced blogger anomaly recognition (Q-BAR), a hybrid quantum-classical framework that leverages the high expressivity and parameter efficiency of variational quantum circuits to detect semantic anomalies in low-data regimes. Unlike classical deep anomaly detectors that often struggle to generalize from sparse data, our method employs a parameter-efficient quantum anomaly detection strategy to map multimodal features into a Hilbert space hypersphere. On a curated dataset of 100 creators, our quantum-enhanced approach achieves robust detection performance with significantly fewer trainable parameters compared to classical baselines. By utilizing only hundreds of quantum parameters, the model effectively mitigates overfitting, demonstrating the potential of quantum machine learning for personalized media forensics.
Authors:Muhammad Sukri Bin Ramli
Title: Pattern Recognition of Ozone-Depleting Substance Exports in Global Trade Data
Abstract:
New methods are needed to monitor environmental treaties, like the Montreal Protocol, by reviewing large, complex customs datasets. This paper introduces a framework using unsupervised machine learning to systematically detect suspicious trade patterns and highlight activities for review. Our methodology, applied to 100,000 trade records, combines several ML techniques. Unsupervised Clustering (K-Means) discovers natural trade archetypes based on shipment value and weight. Anomaly Detection (Isolation Forest and IQR) identifies rare "mega-trades" and shipments with commercially unusual price-per-kilogram values. This is supplemented by Heuristic Flagging to find tactics like vague shipment descriptions. These layers are combined into a priority score, which successfully identified 1,351 price outliers and 1,288 high-priority shipments for customs review. A key finding is that high-priority commodities show a different and more valuable value-to-weight ratio than general goods. This was validated using Explainable AI (SHAP), which confirmed vague descriptions and high value as the most significant risk predictors. The model's sensitivity was validated by its detection of a massive spike in "mega-trades" in early 2021, correlating directly with the real-world regulatory impact of the US AIM Act. This work presents a repeatable unsupervised learning pipeline to turn raw trade data into prioritized, usable intelligence for regulatory groups.
Authors:Lukas Johannes Möller
Title: An Adaptive Multi-Layered Honeynet Architecture for Threat Behavior Analysis via Deep Learning
Abstract:
The escalating sophistication and variety of cyber threats have rendered static honeypots inadequate, necessitating adaptive, intelligence-driven deception. In this work, ADLAH is introduced: an Adaptive Deep Learning Anomaly Detection Honeynet designed to maximize high-fidelity threat intelligence while minimizing cost through autonomous orchestration of infrastructure. The principal contribution is offered as an end-to-end architectural blueprint and vision for an AI-driven deception platform. Feasibility is evidenced by a functional prototype of the central decision mechanism, in which a reinforcement learning (RL) agent determines, in real time, when sessions should be escalated from low-interaction sensor nodes to dynamically provisioned, high-interaction honeypots. Because sufficient live data were unavailable, field-scale validation is not claimed; instead, design trade-offs and limitations are detailed, and a rigorous roadmap toward empirical evaluation at scale is provided. Beyond selective escalation and anomaly detection, the architecture pursues automated extraction, clustering, and versioning of bot attack chains, a core capability motivated by the empirical observation that exposed services are dominated by automated traffic. Together, these elements delineate a practical path toward cost-efficient capture of high-value adversary behavior, systematic bot versioning, and the production of actionable threat intelligence.
Authors:Aashi Jindal
Title: Neighborhood density estimation using space-partitioning based hashing schemes
Abstract:
This work introduces FiRE/FiRE.1, a novel sketching-based algorithm for anomaly detection to quickly identify rare cell sub-populations in large-scale single-cell RNA sequencing data. This method demonstrated superior performance against state-of-the-art techniques. Furthermore, the thesis proposes Enhash, a fast and resource-efficient ensemble learner that uses projection hashing to detect concept drift in streaming data, proving highly competitive in time and accuracy across various drift types.
Authors:Tai Le-Gia
Title: On the Problem of Consistent Anomalies in Zero-Shot Anomaly Detection
Abstract:
Zero-shot anomaly classification and segmentation (AC/AS) aim to detect anomalous samples and regions without any training data, a capability increasingly crucial in industrial inspection and medical imaging. This dissertation aims to investigate the core challenges of zero-shot AC/AS and presents principled solutions rooted in theory and algorithmic design. We first formalize the problem of consistent anomalies, a failure mode in which recurring similar anomalies systematically bias distance-based methods. By analyzing the statistical and geometric behavior of patch representations from pre-trained Vision Transformers, we identify two key phenomena - similarity scaling and neighbor-burnout - that describe how relationships among normal patches change with and without consistent anomalies in settings characterized by highly similar objects. We then introduce CoDeGraph, a graph-based framework for filtering consistent anomalies built on the similarity scaling and neighbor-burnout phenomena. Through multi-stage graph construction, community detection, and structured refinement, CoDeGraph effectively suppresses the influence of consistent anomalies. Next, we extend this framework to 3D medical imaging by proposing a training-free, computationally efficient volumetric tokenization strategy for MRI data. This enables a genuinely zero-shot 3D anomaly detection pipeline and shows that volumetric anomaly segmentation is achievable without any 3D training samples. Finally, we bridge batch-based and text-based zero-shot methods by demonstrating that CoDeGraph-derived pseudo-masks can supervise prompt-driven vision-language models. Together, this dissertation provides theoretical understanding and practical solutions for the zero-shot AC/AS problem.
Authors:Monu Sharma
Title: AI-Enabled Orchestration of Event-Driven Business Processes in Workday ERP for Healthcare Enterprises
Abstract:
The adoption of cloud-based Enterprise Resource Planning (ERP) platforms such as Workday has transformed healthcare operations by integrating financial, supply-chain, and workforce processes into a unified ecosystem. However, traditional workflow logic in ERP systems often lacks the adaptability required to manage event-driven and data-intensive healthcare environments. This study proposes an AI-enabled event-driven orchestration framework within Workday ERP that intelligently synchronizes financial and supply-chain workflows across distributed healthcare entities. The framework employs machine-learning triggers, anomaly detection, and process mining analytics to anticipate and automate responses to operational events such as inventory depletion, payment delays, or patient demand fluctuations. A multi-organization case analysis demonstrates measurable gains in process efficiency, cost visibility, and decision accuracy. Results confirm that embedding AI capabilities into Workday's event-based architecture enhances operational resilience, governance, and scalability. The proposed model contributes to the broader understanding of intelligent ERP integration and establishes a reference for next-generation automation strategies in healthcare enterprises.
Authors:Hari Lee
Title: Knowledge-Guided Textual Reasoning for Explainable Video Anomaly Detection via LLMs
Abstract:
We introduce Text-based Explainable Video Anomaly Detection (TbVAD), a language-driven framework for weakly supervised video anomaly detection that performs anomaly detection and explanation entirely within the textual domain. Unlike conventional WSVAD models that rely on explicit visual features, TbVAD represents video semantics through language, enabling interpretable and knowledge-grounded reasoning. The framework operates in three stages: (1) transforming video content into fine-grained captions using a vision-language model, (2) constructing structured knowledge by organizing the captions into four semantic slots (action, object, context, environment), and (3) generating slot-wise explanations that reveal which semantic factors contribute most to the anomaly decision. We evaluate TbVAD on two public benchmarks, UCF-Crime and XD-Violence, demonstrating that textual knowledge reasoning provides interpretable and reliable anomaly detection for real-world surveillance scenarios.
Authors:Jicong Fan
Title: An Interdisciplinary and Cross-Task Review on Missing Data Imputation
Abstract:
Missing data is a fundamental challenge in data science, significantly hindering analysis and decision-making across a wide range of disciplines, including healthcare, bioinformatics, social science, e-commerce, and industrial monitoring. Despite decades of research and numerous imputation methods, the literature remains fragmented across fields, creating a critical need for a comprehensive synthesis that connects statistical foundations with modern machine learning advances. This work systematically reviews core concepts-including missingness mechanisms, single versus multiple imputation, and different imputation goals-and examines problem characteristics across various domains. It provides a thorough categorization of imputation methods, spanning classical techniques (e.g., regression, the EM algorithm) to modern approaches like low-rank and high-rank matrix completion, deep learning models (autoencoders, GANs, diffusion models, graph neural networks), and large language models. Special attention is given to methods for complex data types, such as tensors, time series, streaming data, graph-structured data, categorical data, and multimodal data. Beyond methodology, we investigate the crucial integration of imputation with downstream tasks like classification, clustering, and anomaly detection, examining both sequential pipelines and joint optimization frameworks. The review also assesses theoretical guarantees, benchmarking resources, and evaluation metrics. Finally, we identify critical challenges and future directions, emphasizing model selection and hyperparameter optimization, the growing importance of privacy-preserving imputation via federated learning, and the pursuit of generalizable models that can adapt across domains and data types, thereby outlining a roadmap for future research.
Authors:Lorenzo Porcelli
Title: A Feature Engineering Approach for Business Impact-Oriented Failure Detection in Distributed Instant Payment Systems
Abstract:
Instant payment infrastructures have stringent performance requirements, processing millions of transactions daily with zero-downtime expectations. Traditional monitoring approaches fail to bridge the gap between technical infrastructure metrics and business process visibility. We introduce a novel feature engineering approach based on processing times computed between consecutive ISO 20022 message exchanges, creating a compact representation of system state. By applying anomaly detection to these features, we enable early failure detection and localization, allowing incident classification. Experimental evaluation on the TARGET Instant Payment Settlement (TIPS) system, using both real-world incidents and controlled simulations, demonstrates the approach's effectiveness in detecting diverse anomaly patterns and provides inherently interpretable explanations that enable operators to understand the business impact. By mapping features to distinct processing phases, the resulting framework differentiates between internal and external payment system issues, significantly reduces investigation time, and bridges observability gaps in distributed systems where transaction state is fragmented across multiple entities.
Authors:Yuan-Sen Ting
Title: Deep Learning in Astrophysics
Abstract:
Deep learning has generated diverse perspectives in astronomy, with ongoing discussions between proponents and skeptics motivating this review. We examine how neural networks complement classical statistics, extending our data analytical toolkit for modern surveys. Astronomy offers unique opportunities through encoding physical symmetries, conservation laws, and differential equations directly into architectures, creating models that generalize beyond training data. Yet challenges persist as unlabeled observations number in billions while confirmed examples with known properties remain scarce and expensive. This review demonstrates how deep learning incorporates domain knowledge through architectural design, with built-in assumptions guiding models toward physically meaningful solutions. We evaluate where these methods offer genuine advances versus claims requiring careful scrutiny. - Neural architectures overcome trade-offs between scalability, expressivity, and data efficiency by encoding physical symmetries and conservation laws into network structure, enabling learning from limited labeled data. - Simulation-based inference and anomaly detection extract information from complex, non-Gaussian distributions where analytical likelihoods fail, enabling field-level cosmological analysis and systematic discovery of rare phenomena. - Multi-scale neural modeling bridges resolution gaps in astronomical simulations, learning effective subgrid physics from expensive high-fidelity runs to enhance large-volume calculations where direct computation remains prohibitive. - Emerging paradigms-reinforcement learning for telescope operations, foundation models learning from minimal examples, and large language model agents for research automation-show promise though are still developing in astronomical applications.
Authors:Hitesh Mohapatra
Title: A LoRa IoT Framework with Machine Learning for Remote Livestock Monitoring in Smart Agriculture
Abstract:
This work presents AgroTrack, a LoRa-based IoT framework for remote livestock monitoring in smart agriculture. The system is designed for low-power, long-range communication and supports real-time tracking and basic health assessment of free-range livestock through GPS, motion, and temperature sensors integrated into wearable collars. Data is collected and transmitted via LoRa to gateways and forwarded to a cloud platform for visualization, alerts, and analytics. To enhance its practical deployment, AgroTrack incorporates advanced analytics, including machine learning models for predictive health alerts and behavioral anomaly detection. This integration transforms the framework from a basic monitoring tool into an intelligent decision-support system, enabling farmers to improve livestock management, operational efficiency, and sustainability in rural environments.
Authors:Allen Daniel Sunny
Title: StructuralDecompose: A Modular Framework for Robust Time Series Decomposition in R
Abstract:
We present StructuralDecompose, an R package for modular and interpretable time series decomposition. Unlike existing approaches that treat decomposition as a monolithic process, StructuralDecompose separates the analysis into distinct components: changepoint detection, anomaly detection, smoothing, and decomposition. This design provides flexibility and robust- ness, allowing users to tailor methods to specific time series characteristics. We demonstrate the package on simulated and real-world datasets, benchmark its performance against state-of-the- art tools such as Rbeast and autostsm, and discuss its role in interpretable machine learning workflows.
Authors:Muhammad Bilal
Title: Network-Optimised Spiking Neural Network for Event-Driven Networking
Abstract:
Spiking neural networks offer event-driven computation suited to time-critical networking tasks such as anomaly detection, local routing control, and congestion management at the edge. Classical units, including Hodgkin-Huxley, Izhikevich, and the Random Neural Network, map poorly to these needs. We introduce Network-Optimised Spiking (NOS), a compact two-variable unit whose state encodes normalised queue occupancy and a recovery resource. The model uses a saturating nonlinearity to enforce finite buffers, a service-rate leak, and graph-local inputs with delays and optional per link gates. It supports two differentiable reset schemes for training and deployment. We give conditions for equilibrium existence and uniqueness, local stability tests from the Jacobian trace and determinant, and a network threshold that scales with the Perron eigenvalue of the coupling matrix. The analysis yields an operational rule g* ~ k* rho(W) linking damping and offered load, shows how saturation enlarges the stable region, and explains finite-size smoothing of synchrony onsets. Stochastic arrivals follow a Poisson shot-noise model aligned with telemetry smoothing. Against queueing baselines, NOS matches M/M/1 mean by calibration while truncating deep tails under bursty input. In closed loop it gives, low-jitte with short settling. In zero-shot, label-free forecasting NOS is calibrated per node from arrival statistics. Its NOS dynamics yield high AUROC/AUPRC, enabling timely detection of congestion onsets with few false positives. Under a train-calibrated residual protocol across chain, star, and scale-free topologies, NOS improves early-warning F1 and detection latency over MLP, RNN, GRU, and tGNN. We provide guidance for data-driven initialisation, surrogate-gradient training with a homotopy on reset sharpness, and explicit stability checks with topology-aware bounds for resource constrained deployments.
Authors:Petar Radanliev
Title: Red Teaming Quantum-Resistant Cryptographic Standards: A Penetration Testing Framework Integrating AI and Quantum Security
Abstract:
This study presents a structured approach to evaluating vulnerabilities within quantum cryptographic protocols, focusing on the BB84 quantum key distribution method and National Institute of Standards and Technology (NIST) approved quantum-resistant algorithms. By integrating AI-driven red teaming, automated penetration testing, and real-time anomaly detection, the research develops a framework for assessing and mitigating security risks in quantum networks. The findings demonstrate that AI can be effectively used to simulate adversarial attacks, probe weaknesses in cryptographic implementations, and refine security mechanisms through iterative feedback. The use of automated exploit simulations and protocol fuzzing provides a scalable means of identifying latent vulnerabilities, while adversarial machine learning techniques highlight novel attack surfaces within AI-enhanced cryptographic processes. This study offers a comprehensive methodology for strengthening quantum security and provides a foundation for integrating AI-driven cybersecurity practices into the evolving quantum landscape.
Authors:Hrishikesh Sharma
Title: Introducing Resizable Region Packing Problem in Image Generation, with a Heuristic Solution
Abstract:
The problem of image data generation in computer vision has traditionally been a harder problem to solve, than discriminative problems. Such data generation entails placing relevant objects of appropriate sizes each, at meaningful location in a scene canvas. There have been two classes of popular approaches to such generation: graphics based, and generative models-based. Optimization problems are known to lurk in the background for both these classes of approaches. In this paper, we introduce a novel, practically useful manifestation of the classical Bin Packing problem in the context of generation of synthetic image data. We conjecture that the newly introduced problem, Resizable Anchored Region Packing(RARP) Problem, is NP-hard, and provide detailed arguments about our conjecture. As a first solution, we present a novel heuristic algorithm that is generic enough and therefore scales and packs arbitrary number of arbitrary-shaped regions at arbitrary locations, into an image canvas. The algorithm follows greedy approach to iteratively pack region pairs in a careful way, while obeying the optimization constraints. The algorithm is validated by an implementation that was used to generate a large-scale synthetic anomaly detection dataset, with highly varying degree of bin packing parameters per image sample i.e. RARP instance. Visual inspection of such data and checking of the correctness of each solution proves the effectiveness of our algorithm. With generative modeling being on rise in deep learning, and synthetic data generation poised to become mainstream, we expect that the newly introduced problem will be valued in the imaging scientific community.
Authors:Samer Al-Hamadani
Title: Intelligent Healthcare Imaging Platform: A VLM-Based Framework for Automated Medical Image Analysis and Clinical Report Generation
Abstract:
The rapid advancement of artificial intelligence (AI) in healthcare imaging has revolutionized diagnostic medicine and clinical decision-making processes. This work presents an intelligent multimodal framework for medical image analysis that leverages Vision-Language Models (VLMs) in healthcare diagnostics. The framework integrates Google Gemini 2.5 Flash for automated tumor detection and clinical report generation across multiple imaging modalities including CT, MRI, X-ray, and Ultrasound. The system combines visual feature extraction with natural language processing to enable contextual image interpretation, incorporating coordinate verification mechanisms and probabilistic Gaussian modeling for anomaly distribution. Multi-layered visualization techniques generate detailed medical illustrations, overlay comparisons, and statistical representations to enhance clinical confidence, with location measurement achieving 80 pixels average deviation. Result processing utilizes precise prompt engineering and textual analysis to extract structured clinical information while maintaining interpretability. Experimental evaluations demonstrated high performance in anomaly detection across multiple modalities. The system features a user-friendly Gradio interface for clinical workflow integration and demonstrates zero-shot learning capabilities to reduce dependence on large datasets. This framework represents a significant advancement in automated diagnostic support and radiological workflow efficiency, though clinical validation and multi-center evaluation are necessary prior to widespread adoption.
Authors:Umberto Gonçalves de Sousa
Title: LogGuardQ: A Cognitive-Enhanced Reinforcement Learning Framework for Cybersecurity Anomaly Detection in Security Logs
Abstract:
Reinforcement learning (RL) has transformed sequential decision-making, but traditional algorithms like Deep Q-Networks (DQNs) and Proximal Policy Optimization (PPO) often struggle with efficient exploration, stability, and adaptability in dynamic environments. This study presents LogGuardQ (Adaptive Log Guard with Cognitive enhancement), a novel framework that integrates a dual-memory system inspired by human cognition and adaptive exploration strategies driven by temperature decay and curiosity. Evaluated on a dataset of 1,000,000 simulated access logs with 47.9% anomalies over 20,000 episodes, LogGuardQ achieves a 96.0% detection rate (versus 93.0% for DQN and 47.1% for PPO), with precision of 0.4776, recall of 0.9996, and an F1-score of 0.6450. The mean reward is 20.34 \pm 44.63 across all episodes (versus 18.80 \pm 43.98 for DQN and -0.17 \pm 23.79 for PPO), with an average of 5.0 steps per episode (constant across models). Graphical analyses, including learning curves smoothed with a Savgol filter (window=501, polynomial=2), variance trends, action distributions, and cumulative detections, demonstrate LogGuardQ's superior stability and efficiency. Statistical tests (Mann-Whitney U) confirm significant performance advantages (e.g., p = 0.0002 vs. DQN with negligible effect size, p < 0.0001 vs. PPO with medium effect size, and p < 0.0001 for DQN vs. PPO with small effect size). By bridging cognitive science and RL, LogGuardQ offers a scalable approach to adaptive learning in uncertain environments, with potential applications in cybersecurity, intrusion detection, and decision-making under uncertainty.
Authors:Thorsten Wittkopp
Title: A layered architecture for log analysis in complex IT systems
Abstract:
In the evolving IT landscape, stability and reliability of systems are essential, yet their growing complexity challenges DevOps teams in implementation and maintenance. Log analysis, a core element of AIOps, provides critical insights into complex behaviors and failures. This dissertation introduces a three-layered architecture to support DevOps in failure resolution. The first layer, Log Investigation, performs autonomous log labeling and anomaly classification. We propose a method that labels log data without manual effort, enabling supervised training and precise evaluation of anomaly detection. Additionally, we define a taxonomy that groups anomalies into three categories, ensuring appropriate method selection. The second layer, Anomaly Detection, detects behaviors deviating from the norm. We propose a flexible Anomaly Detection method adaptable to unsupervised, weakly supervised, and supervised training. Evaluations on public and industry datasets show F1-scores between 0.98 and 1.0, ensuring reliable anomaly detection. The third layer, Root Cause Analysis, identifies minimal log sets describing failures, their origin, and event sequences. By balancing training data and identifying key services, our Root Cause Analysis method consistently detects 90-98% of root cause log lines within the top 10 candidates, providing actionable insights for mitigation. Our research addresses how log analysis methods can be designed and optimized to help DevOps resolve failures efficiently. By integrating these three layers, the architecture equips teams with robust methods to enhance IT system reliability.
Authors:Federico Cerutti
Title: Methodological Insights into Structural Causal Modelling and Uncertainty-Aware Forecasting for Economic Indicators
Abstract:
This paper presents a methodological approach to financial time series analysis by combining causal discovery and uncertainty-aware forecasting. As a case study, we focus on four key U.S. macroeconomic indicators -- GDP, economic growth, inflation, and unemployment -- and we apply the LPCMCI framework with Gaussian Process Distance Correlation (GPDC) to uncover dynamic causal relationships in quarterly data from 1970 to 2021. Our results reveal a robust unidirectional causal link from economic growth to GDP and highlight the limited connectivity of inflation, suggesting the influence of latent factors. Unemployment exhibits strong autoregressive dependence, motivating its use as a case study for probabilistic forecasting. Leveraging the Chronos framework, a large language model trained for time series, we perform zero-shot predictions on unemployment. This approach delivers accurate forecasts one and two quarters ahead, without requiring task-specific training. Crucially, the model's uncertainty-aware predictions yield 90\% confidence intervals, enabling effective anomaly detection through statistically principled deviation analysis. This study demonstrates the value of combining causal structure learning with probabilistic language models to inform economic policy and enhance forecasting robustness.
Authors:Abdollah Baghaei Daemei
Title: Prototyping an AI-powered Tool for Energy Efficiency in New Zealand Homes
Abstract:
Residential buildings contribute significantly to energy use, health outcomes, and carbon emissions. In New Zealand, housing quality has historically been poor, with inadequate insulation and inefficient heating contributing to widespread energy hardship. Recent reforms, including the Warmer Kiwi Homes program, Healthy Homes Standards, and H1 Building Code upgrades, have delivered health and comfort improvements, yet challenges persist. Many retrofits remain partial, data on household performance are limited, and decision-making support for homeowners is fragmented. This study presents the design and evaluation of an AI-powered decision-support tool for residential energy efficiency in New Zealand. The prototype, developed using Python and Streamlit, integrates data ingestion, anomaly detection, baseline modeling, and scenario simulation (e.g., LED retrofits, insulation upgrades) into a modular dashboard. Fifteen domain experts, including building scientists, consultants, and policy practitioners, tested the tool through semi-structured interviews. Results show strong usability (M = 4.3), high value of scenario outputs (M = 4.5), and positive perceptions of its potential to complement subsidy programs and regulatory frameworks. The tool demonstrates how AI can translate national policies into personalized, household-level guidance, bridging the gap between funding, standards, and practical decision-making. Its significance lies in offering a replicable framework for reducing energy hardship, improving health outcomes, and supporting climate goals. Future development should focus on carbon metrics, tariff modeling, integration with national datasets, and longitudinal trials to assess real-world adoption.
Authors:Poyraz Baydemir
Title: ARTPS: Depth-Enhanced Hybrid Anomaly Detection and Learnable Curiosity Score for Autonomous Rover Target Prioritization
Abstract:
We present ARTPS (Autonomous Rover Target Prioritization System), a novel hybrid AI system that combines depth estimation, anomaly detection, and learnable curiosity scoring for autonomous exploration of planetary surfaces. Our approach integrates monocular depth estimation using Vision Transformers with multi-component anomaly detection and a weighted curiosity score that balances known value, anomaly signals, depth variance, and surface roughness. The system achieves state-of-the-art performance with AUROC of 0.94, AUPRC of 0.89, and F1-Score of 0.87 on Mars rover datasets. We demonstrate significant improvements in target prioritization accuracy through ablation studies and provide comprehensive analysis of component contributions. The hybrid fusion approach reduces false positives by 23% while maintaining high detection sensitivity across diverse terrain types.
Authors:Robert A. Vandermeulen
Title: PMODE: Theoretically Grounded and Modular Mixture Modeling
Abstract:
We introduce PMODE (Partitioned Mixture Of Density Estimators), a general and modular framework for mixture modeling with both parametric and nonparametric components. PMODE builds mixtures by partitioning the data and fitting separate estimators to each subset. It attains near-optimal rates for this estimator class and remains valid even when the mixture components come from different distribution families. As an application, we develop MV-PMODE, which scales a previously theoretical approach to high-dimensional density estimation to settings with thousands of dimensions. Despite its simplicity, it performs competitively against deep baselines on CIFAR-10 anomaly detection.
Authors:Onyinye Okoye
Title: Addressing Weak Authentication like RFID, NFC in EVs and EVCs using AI-powered Adaptive Authentication
Abstract:
The rapid expansion of the Electric Vehicles (EVs) and Electric Vehicle Charging Systems (EVCs) has introduced new cybersecurity challenges, specifically in authentication protocols that protect vehicles, users, and energy infrastructure. Although widely adopted for convenience, traditional authentication mechanisms like Radio Frequency Identification (RFID) and Near Field Communication (NFC) rely on static identifiers and weak encryption, making them highly vulnerable to attack vectors such as cloning, relay attacks, and signal interception. This study explores an AI-powered adaptive authentication framework designed to overcome these shortcomings by integrating machine learning, anomaly detection, behavioral analytics, and contextual risk assessment. Grounded in the principles of Zero Trust Architecture, the proposed framework emphasizes continuous verification, least privilege access, and secure communication. Through a comprehensive literature review, this research evaluates current vulnerabilities and highlights AI-driven solutions to provide a scalable, resilient, and proactive defense. Ultimately, the research findings conclude that adopting AI-powered adaptive authentication is a strategic imperative for securing the future of electric mobility and strengthening digital trust across the ecosystem. Keywords: weak authentication, RFID, NFC, ML, AI-powered adaptive authentication, relay attacks, cloning, eavesdropping, MITM attacks, Zero Trust Architecture
Authors:Mahmoud Dhimish
Title: HOTSPOT-YOLO: A Lightweight Deep Learning Attention-Driven Model for Detecting Thermal Anomalies in Drone-Based Solar Photovoltaic Inspections
Abstract:
Thermal anomaly detection in solar photovoltaic (PV) systems is essential for ensuring operational efficiency and reducing maintenance costs. In this study, we developed and named HOTSPOT-YOLO, a lightweight artificial intelligence (AI) model that integrates an efficient convolutional neural network backbone and attention mechanisms to improve object detection. This model is specifically designed for drone-based thermal inspections of PV systems, addressing the unique challenges of detecting small and subtle thermal anomalies, such as hotspots and defective modules, while maintaining real-time performance. Experimental results demonstrate a mean average precision of 90.8%, reflecting a significant improvement over baseline object detection models. With a reduced computational load and robustness under diverse environmental conditions, HOTSPOT-YOLO offers a scalable and reliable solution for large-scale PV inspections. This work highlights the integration of advanced AI techniques with practical engineering applications, revolutionizing automated fault detection in renewable energy systems.
Authors:Wanjun Hu
Title: Typed Topological Structures Of Datasets
Abstract:
A datatset $X$ on $R^2$ is a finite topological space. Current research of a dataset focuses on statistical methods and the algebraic topological method \cite{carlsson}. In \cite{hu}, the concept of typed topological space was introduced and showed to have the potential for studying finite topological spaces, such as a dataset. It is a new method from the general topology perspective. A typed topological space is a topological space whose open sets are assigned types. Topological concepts and methods can be redefined using open sets of certain types. In this article, we develop a special set of types and its related typed topology on a dataset $X$. Using it, we can investigate the inner structure of $X$. In particular, $R^2$ has a natural quotient space, in which $X$ is organized into tracks, and each track is split into components. Those components are in a order. Further, they can be represented by an integer sequence. Components crossing tracks form branches, and the relationship can be well represented by a type of pseudotree (called typed-II pseudotree). Such structures provide a platform for new algorithms for problems such as calculating convex hull, holes, clustering and anomaly detection.
Authors:Mark Zilberman
Title: Extending the Entropic Potential of Events for Uncertainty Quantification and Decision-Making in Artificial Intelligence
Abstract:
This work demonstrates how the concept of the entropic potential of events -- a parameter quantifying the influence of discrete events on the expected future entropy of a system -- can enhance uncertainty quantification, decision-making, and interpretability in artificial intelligence (AI). Building on its original formulation in physics, the framework is adapted for AI by introducing an event-centric measure that captures how actions, observations, or other discrete occurrences impact uncertainty at future time horizons. Both the original and AI-adjusted definitions of entropic potential are formalized, with the latter emphasizing conditional expectations to account for counterfactual scenarios. Applications are explored in policy evaluation, intrinsic reward design, explainable AI, and anomaly detection, highlighting the metric's potential to unify and strengthen uncertainty modeling in intelligent systems. Conceptual examples illustrate its use in reinforcement learning, Bayesian inference, and anomaly detection, while practical considerations for computation in complex AI models are discussed. The entropic potential framework offers a theoretically grounded, interpretable, and versatile approach to managing uncertainty in AI, bridging principles from thermodynamics, information theory, and machine learning.
Authors:Andrew Kiruluta
Title: Quantum Spectral Reasoning: A Non-Neural Architecture for Interpretable Machine Learning
Abstract:
We propose a novel machine learning architecture that departs from conventional neural network paradigms by leveraging quantum spectral methods, specifically Pade approximants and the Lanczos algorithm, for interpretable signal analysis and symbolic reasoning. The core innovation of our approach lies in its ability to transform raw time-domain signals into sparse, physically meaningful spectral representations without the use of backpropagation, high-dimensional embeddings, or data-intensive black-box models. Through rational spectral approximation, the system extracts resonant structures that are then mapped into symbolic predicates via a kernel projection function, enabling logical inference through a rule-based reasoning engine. This architecture bridges mathematical physics, sparse approximation theory, and symbolic artificial intelligence, offering a transparent and physically grounded alternative to deep learning models. We develop the full mathematical formalism underlying each stage of the pipeline, provide a modular algorithmic implementation, and demonstrate the system's effectiveness through comparative evaluations on time-series anomaly detection, symbolic classification, and hybrid reasoning tasks. Our results show that this spectral-symbolic architecture achieves competitive accuracy while maintaining interpretability and data efficiency, suggesting a promising new direction for physically-informed, reasoning-capable machine learning.
Authors:Shervin Rahimzadeh Arashloo
Title: Manifold-regularised Large-Margin $\ell_p$-SVDD for Multidimensional Time Series Anomaly Detection
Abstract:
We generalise the recently introduced large-margin $\ell_p$-SVDD approach to exploit the geometry of data distribution via manifold regularising for time series anomaly detection. Specifically, we formulate a manifold-regularised variant of the $\ell_p$-SVDD method to encourage label smoothness on the underlying manifold to capture structural information for improved detection performance. Drawing on an existing Representer theorem, we then provide an effective optimisation technique for the proposed method. We theoretically study the proposed approach using Rademacher complexities to analyse its generalisation performance and also provide an experimental assessment of the proposed method across various data sets to compare its performance against other methods.
Authors:Ivan Letteri
Title: A Comparative Analysis of Statistical and Machine Learning Models for Outlier Detection in Bitcoin Limit Order Books
Abstract:
The detection of outliers within cryptocurrency limit order books (LOBs) is of paramount importance for comprehending market dynamics, particularly in highly volatile and nascent regulatory environments. This study conducts a comprehensive comparative analysis of robust statistical methods and advanced machine learning techniques for real-time anomaly identification in cryptocurrency LOBs. Within a unified testing environment, named AITA Order Book Signal (AITA-OBS), we evaluate the efficacy of thirteen diverse models to identify which approaches are most suitable for detecting potentially manipulative trading behaviours. An empirical evaluation, conducted via backtesting on a dataset of 26,204 records from a major exchange, demonstrates that the top-performing model, Empirical Covariance (EC), achieves a 6.70% gain, significantly outperforming a standard Buy-and-Hold benchmark. These findings underscore the effectiveness of outlier-driven strategies and provide insights into the trade-offs between model complexity, trade frequency, and performance. This study contributes to the growing corpus of research on cryptocurrency market microstructure by furnishing a rigorous benchmark of anomaly detection models and highlighting their potential for augmenting algorithmic trading and risk management.
Authors:Santhosh Kumar Ravindran
Title: Adversarial Activation Patching: A Framework for Detecting and Mitigating Emergent Deception in Safety-Aligned Transformers
Abstract:
Large language models (LLMs) aligned for safety through techniques like reinforcement learning from human feedback (RLHF) often exhibit emergent deceptive behaviors, where outputs appear compliant but subtly mislead or omit critical information. This paper introduces adversarial activation patching, a novel mechanistic interpretability framework that leverages activation patching as an adversarial tool to induce, detect, and mitigate such deception in transformer-based models. By sourcing activations from "deceptive" prompts and patching them into safe forward passes at specific layers, we simulate vulnerabilities and quantify deception rates. Through toy neural network simulations across multiple scenarios (e.g., 1000 trials per setup), we demonstrate that adversarial patching increases deceptive outputs to 23.9% from a 0% baseline, with layer-specific variations supporting our hypotheses. We propose six hypotheses, including transferability across models, exacerbation in multimodal settings, and scaling effects. An expanded literature review synthesizes over 20 key works in interpretability, deception, and adversarial attacks. Mitigation strategies, such as activation anomaly detection and robust fine-tuning, are detailed, alongside ethical considerations and future research directions. This work advances AI safety by highlighting patching's dual-use potential and provides a roadmap for empirical studies on large-scale models.
Authors:Seongyun Choi
Title: Fast Re-Trainable Attention Autoencoder for Liquid Sensor Anomaly Detection at the Edge
Abstract:
A lightweight, edge-deployable pipeline is proposed for detecting sensor anomalies in chemistry and biology laboratories. A custom PCB captures seven sensor channels and streams them over the local network. An Attention-based One-Class Autoencoder reaches a usable state after training on only thirty minutes of normal data. Despite the small data set, the model already attains an F1 score of 0.72, a precision of 0.89, and a recall of 0.61 when tested on synthetic micro-anomalies. The trained network is converted into a TensorFlow-Lite binary of about 31 kB and runs on an Advantech ARK-1221L, a fan-less x86 edge device without AVX instructions; end-to-end inference latency stays below two seconds. The entire collect-train-deploy workflow finishes within one hour, which demonstrates that the pipeline adapts quickly whenever a new liquid or sensor is introduced.
Authors:Giulio Caldarelli
Title: Can Artificial Intelligence solve the blockchain oracle problem? Unpacking the Challenges and Possibilities
Abstract:
The blockchain oracle problem, which refers to the challenge of injecting reliable external data into decentralized systems, remains a fundamental limitation to the development of trustless applications. While recent years have seen a proliferation of architectural, cryptographic, and economic strategies to mitigate this issue, no one has yet fully resolved the fundamental question of how a blockchain can gain knowledge about the off-chain world. In this position paper, we critically assess the role artificial intelligence (AI) can play in tackling the oracle problem. Drawing from both academic literature and practitioner implementations, we examine how AI techniques such as anomaly detection, language-based fact extraction, dynamic reputation modeling, and adversarial resistance can enhance oracle systems. We observe that while AI introduces powerful tools for improving data quality, source selection, and system resilience, it cannot eliminate the reliance on unverifiable off-chain inputs. Therefore, this study supports the idea that AI should be understood as a complementary layer of inference and filtering within a broader oracle design, not a substitute for trust assumptions.
Authors:Mohammed K. Alzaylaee
Title: A Systematic Review of Security Vulnerabilities in Smart Home Devices and Mitigation Techniques
Abstract:
Smart homes that integrate Internet of Things (IoT) devices face increasing cybersecurity risks, posing significant challenges to these environments. The study explores security threats in smart homes ecosystems, categorizing them into vulnerabilities at the network layer, device level, and those from cloud-based and AI-driven systems. Research findings indicate that post-quantum encryption, coupled with AI-driven anomaly detection, is highly effective in enhancing security; however, computational resource demands present significant challenges. Blockchain authentication together with zero-trust structures builds security resilience, although they need changes to existing infrastructure. The specific security strategies show their effectiveness through ANOVA, Chi-square tests, and Monte Carlo simulations yet lack sufficient scalability according to the results. The research demonstrates the requirement for improvement in cryptographic techniques, alongside AI-enhanced threat detection and adaptive security models which must achieve a balance between performance and efficiency and real-time applicability within smart home ecosystems.
Authors:Samuel Oluwafemi Adebayo
Title: The Blind Spot of BGP Anomaly Detection: Why LSTM Autoencoders Fail on Real-World Outages
Abstract:
Deep learning has significant potential to make the Internet's Border Gateway Protocol (BGP) secure by detecting anomalous routing activity. However, all but a few of these approaches rely on the implicit assumption that anomalies manifest as noisy, high-complexity outliers from some normal baseline. This work challenges this assumption by investigating if a best-in-class detection model built on this assumption can effectively deal with real-world security events' diverse signatures. We employ an LSTM-based autoencoder, a classical example of a reconstruction-based anomaly detector, as our test vehicle. We then contrast this model with a representative sampling of historical BGP anomalies, including the Slammer worm and the Moscow blackout, and with a simulated 'BGP storm' designed as a positive control. Our experience unveils a blind spot of our model: the model easily identifies the synthetic anomaly of high complexity but invariably fails to identify real-world events that manifest in the form of a "signal loss" (e.g., Slammer, Moscow Blackout) or "low-deviation" (e.g., WannaCry) signature. We demonstrate that the model mistakenly recognizes the abrupt cut-off of BGP updates during catastrophic failures as a signal of extreme stability, leading to reconstruction errors of virtually zero and total failure to detect. We conclude that the characterization of BGP anomalies as high-reconstruction-error events alone is a weak and dangerous oversimplification. Our research provides the data-driven case for why hybrid, multi-modal detection systems capable of identifying both high-complexity and signal-loss signatures are required to enable end-to-end BGP security.
Authors:Pengwei Wang
Title: Latent Anomaly Detection: Masked VQ-GAN for Unsupervised Segmentation in Medical CBCT
Abstract:
Advances in treatment technology now allow for the use of customizable 3D-printed hydrogel wound dressings for patients with osteoradionecrosis (ORN) of the jaw (ONJ). Meanwhile, deep learning has enabled precise segmentation of 3D medical images using tools like nnUNet. However, the scarcity of labeled data in ONJ imaging makes supervised training impractical. This study aims to develop an unsupervised training approach for automatically identifying anomalies in imaging scans. We propose a novel two-stage training pipeline. In the first stage, a VQ-GAN is trained to accurately reconstruct normal subjects. In the second stage, random cube masking and ONJ-specific masking are applied to train a new encoder capable of recovering the data. The proposed method achieves successful segmentation on both simulated and real patient data. This approach provides a fast initial segmentation solution, reducing the burden of manual labeling. Additionally, it has the potential to be directly used for 3D printing when combined with hand-tuned post-processing.
Authors:Abdullah Burkan Bereketoglu
Title: Hybrid Meta-Learning Framework for Anomaly Forecasting in Nonlinear Dynamical Systems via Physics-Inspired Simulation and Deep Ensembles
Abstract:
We propose a hybrid meta-learning framework for forecasting and anomaly detection in nonlinear dynamical systems characterized by nonstationary and stochastic behavior. The approach integrates a physics-inspired simulator that captures nonlinear growth-relaxation dynamics with random perturbations, representative of many complex physical, industrial, and cyber-physical systems. We use CNN-LSTM architectures for spatio-temporal feature extraction, Variational Autoencoders (VAE) for unsupervised anomaly scoring, and Isolation Forests for residual-based outlier detection in addition to a Dual-Stage Attention Recurrent Neural Network (DA-RNN) for one-step forecasting on top of the generated simulation data. To create composite anomaly forecasts, these models are combined using a meta-learner that combines forecasting outputs, reconstruction errors, and residual scores. The hybrid ensemble performs better than standalone models in anomaly localization, generalization, and robustness to nonlinear deviations, according to simulation-based experiments. The framework provides a broad, data-driven approach to early defect identification and predictive monitoring in nonlinear systems, which may be applied to a variety of scenarios where complete physical models might not be accessible.
Authors:Taimoor Ahmad
Title: AI-Driven Dynamic Firewall Optimization Using Reinforcement Learning for Anomaly Detection and Prevention
Abstract:
The growing complexity of cyber threats has rendered static firewalls increasingly ineffective for dynamic, real-time intrusion prevention. This paper proposes a novel AI-driven dynamic firewall optimization framework that leverages deep reinforcement learning (DRL) to autonomously adapt and update firewall rules in response to evolving network threats. Our system employs a Markov Decision Process (MDP) formulation, where the RL agent observes network states, detects anomalies using a hybrid LSTM-CNN model, and dynamically modifies firewall configurations to mitigate risks. We train and evaluate our framework on the NSL-KDD and CIC-IDS2017 datasets using a simulated software-defined network environment. Results demonstrate significant improvements in detection accuracy, false positive reduction, and rule update latency when compared to traditional signature- and behavior-based firewalls. The proposed method provides a scalable, autonomous solution for enhancing network resilience against complex attack vectors in both enterprise and critical infrastructure settings.
Authors:Hanzhe Liang
Title: Mentor3AD: Feature Reconstruction-based 3D Anomaly Detection via Multi-modality Mentor Learning
Abstract:
Multimodal feature reconstruction is a promising approach for 3D anomaly detection, leveraging the complementary information from dual modalities. We further advance this paradigm by utilizing multi-modal mentor learning, which fuses intermediate features to further distinguish normal from feature differences. To address these challenges, we propose a novel method called Mentor3AD, which utilizes multi-modal mentor learning. By leveraging the shared features of different modalities, Mentor3AD can extract more effective features and guide feature reconstruction, ultimately improving detection performance. Specifically, Mentor3AD includes a Mentor of Fusion Module (MFM) that merges features extracted from RGB and 3D modalities to create a mentor feature. Additionally, we have designed a Mentor of Guidance Module (MGM) to facilitate cross-modal reconstruction, supported by the mentor feature. Lastly, we introduce a Voting Module (VM) to more accurately generate the final anomaly score. Extensive comparative and ablation studies on MVTec 3D-AD and Eyecandies have verified the effectiveness of the proposed method.
Authors:Hemanth Ravipati
Title: Neuromorphic Mimicry Attacks Exploiting Brain-Inspired Computing for Covert Cyber Intrusions
Abstract:
Neuromorphic computing, inspired by the human brain's neural architecture, is revolutionizing artificial intelligence and edge computing with its low-power, adaptive, and event-driven designs. However, these unique characteristics introduce novel cybersecurity risks. This paper proposes Neuromorphic Mimicry Attacks (NMAs), a groundbreaking class of threats that exploit the probabilistic and non-deterministic nature of neuromorphic chips to execute covert intrusions. By mimicking legitimate neural activity through techniques such as synaptic weight tampering and sensory input poisoning, NMAs evade traditional intrusion detection systems, posing risks to applications such as autonomous vehicles, smart medical implants, and IoT networks. This research develops a theoretical framework for NMAs, evaluates their impact using a simulated neuromorphic chip dataset, and proposes countermeasures, including neural-specific anomaly detection and secure synaptic learning protocols. The findings underscore the critical need for tailored cybersecurity measures to protect brain-inspired computing, offering a pioneering exploration of this emerging threat landscape.
Authors:Filippo Leveni
Title: Structure-based Anomaly Detection and Clustering
Abstract:
Anomaly detection is a fundamental problem in domains such as healthcare, manufacturing, and cybersecurity. This thesis proposes new unsupervised methods for anomaly detection in both structured and streaming data settings. In the first part, we focus on structure-based anomaly detection, where normal data follows low-dimensional manifolds while anomalies deviate from them. We introduce Preference Isolation Forest (PIF), which embeds data into a high-dimensional preference space via manifold fitting, and isolates outliers using two variants: Voronoi-iForest, based on geometric distances, and RuzHash-iForest, leveraging Locality Sensitive Hashing for scalability. We also propose Sliding-PIF, which captures local manifold information for streaming scenarios. Our methods outperform existing techniques on synthetic and real datasets. We extend this to structure-based clustering with MultiLink, a novel method for recovering multiple geometric model families in noisy data. MultiLink merges clusters via a model-aware linkage strategy, enabling robust multi-class structure recovery. It offers key advantages over existing approaches, such as speed, reduced sensitivity to thresholds, and improved robustness to poor initial sampling. The second part of the thesis addresses online anomaly detection in evolving data streams. We propose Online Isolation Forest (Online-iForest), which uses adaptive, multi-resolution histograms and dynamically updates tree structures to track changes over time. It avoids retraining while achieving accuracy comparable to offline models, with superior efficiency for real-time applications. Finally, we tackle anomaly detection in cybersecurity via open-set recognition for malware classification. We enhance a Gradient Boosting classifier with MaxLogit to detect unseen malware families, a method now integrated into Cleafy's production system.
Authors:Wei Meng
Title: WSCIF: A Weakly-Supervised Color Intelligence Framework for Tactical Anomaly Detection in Surveillance Keyframes
Abstract:
The deployment of traditional deep learning models in high-risk security tasks in an unlabeled, data-non-exploitable video intelligence environment faces significant challenges. In this paper, we propose a lightweight anomaly detection framework based on color features for surveillance video clips in a high sensitivity tactical mission, aiming to quickly identify and interpret potential threat events under resource-constrained and data-sensitive conditions. The method fuses unsupervised KMeans clustering with RGB channel histogram modeling to achieve composite detection of structural anomalies and color mutation signals in key frames. The experiment takes an operation surveillance video occurring in an African country as a research sample, and successfully identifies multiple highly anomalous frames related to high-energy light sources, target presence, and reflective interference under the condition of no access to the original data. The results show that this method can be effectively used for tactical assassination warning, suspicious object screening and environmental drastic change monitoring with strong deployability and tactical interpretation value. The study emphasizes the importance of color features as low semantic battlefield signal carriers, and its battlefield intelligent perception capability will be further extended by combining graph neural networks and temporal modeling in the future.
Authors:Muhammad Junaid Asif
Title: Crowd Scene Analysis using Deep Learning Techniques
Abstract:
Our research is focused on two main applications of crowd scene analysis crowd counting and anomaly detection In recent years a large number of researches have been presented in the domain of crowd counting We addressed two main challenges in this domain 1 Deep learning models are datahungry paradigms and always need a large amount of annotated data for the training of algorithm It is timeconsuming and costly task to annotate such large amount of data Selfsupervised training is proposed to deal with this challenge 2 MCNN consists of multicolumns of CNN with different sizes of filters by presenting a novel approach based on a combination of selfsupervised training and MultiColumn CNN This enables the model to learn features at different levels and makes it effective in dealing with challenges of occluded scenes nonuniform density complex backgrounds and scale invariation The proposed model was evaluated on publicly available data sets such as ShanghaiTech and UCFQNRF by means of MAE and MSE A spatiotemporal model based on VGG19 is proposed for crowd anomaly detection addressing challenges like lighting environmental conditions unexpected objects and scalability The model extracts spatial and temporal features allowing it to be generalized to realworld scenes Spatial features are learned using CNN while temporal features are learned using LSTM blocks The model works on binary classification and can detect normal or abnormal behavior The models performance is improved by replacing fully connected layers with dense residual blocks Experiments on the Hockey Fight dataset and SCVD dataset show our models outperform other stateoftheart approaches
Authors:Krti Tallam
Title: Engineering Risk-Aware, Security-by-Design Frameworks for Assurance of Large-Scale Autonomous AI Models
Abstract:
As AI models scale to billions of parameters and operate with increasing autonomy, ensuring their safe, reliable operation demands engineering-grade security and assurance frameworks. This paper presents an enterprise-level, risk-aware, security-by-design approach for large-scale autonomous AI systems, integrating standardized threat metrics, adversarial hardening techniques, and real-time anomaly detection into every phase of the development lifecycle. We detail a unified pipeline - from design-time risk assessments and secure training protocols to continuous monitoring and automated audit logging - that delivers provable guarantees of model behavior under adversarial and operational stress. Case studies in national security, open-source model governance, and industrial automation demonstrate measurable reductions in vulnerability and compliance overhead. Finally, we advocate cross-sector collaboration - uniting engineering teams, standards bodies, and regulatory agencies - to institutionalize these technical safeguards within a resilient, end-to-end assurance ecosystem for the next generation of AI.
Authors:Yi Chen
Title: Research on Anomaly Detection Methods Based on Diffusion Models
Abstract:
Anomaly detection is a fundamental task in machine learning and data mining, with significant applications in cybersecurity, industrial fault diagnosis, and clinical disease monitoring. Traditional methods, such as statistical modeling and machine learning-based approaches, often face challenges in handling complex, high-dimensional data distributions. In this study, we explore the potential of diffusion models for anomaly detection, proposing a novel framework that leverages the strengths of diffusion probabilistic models (DPMs) to effectively identify anomalies in both image and audio data. The proposed method models the distribution of normal data through a diffusion process and reconstructs input data via reverse diffusion, using a combination of reconstruction errors and semantic discrepancies as anomaly indicators. To enhance the framework's performance, we introduce multi-scale feature extraction, attention mechanisms, and wavelet-domain representations, enabling the model to capture fine-grained structures and global dependencies in the data. Extensive experiments on benchmark datasets, including MVTec AD and UrbanSound8K, demonstrate that our method outperforms state-of-the-art anomaly detection techniques, achieving superior accuracy and robustness across diverse data modalities. This research highlights the effectiveness of diffusion models in anomaly detection and provides a robust and efficient solution for real-world applications.
Authors:Ilya Koziev
Title: Detecting Spelling and Grammatical Anomalies in Russian Poetry Texts
Abstract:
The quality of natural language texts in fine-tuning datasets plays a critical role in the performance of generative models, particularly in computational creativity tasks such as poem or song lyric generation. Fluency defects in generated poems significantly reduce their value. However, training texts are often sourced from internet-based platforms without stringent quality control, posing a challenge for data engineers to manage defect levels effectively. To address this issue, we propose the use of automated linguistic anomaly detection to identify and filter out low-quality texts from training datasets for creative models. In this paper, we present a comprehensive comparison of unsupervised and supervised text anomaly detection approaches, utilizing both synthetic and human-labeled datasets. We also introduce the RUPOR dataset, a collection of Russian-language human-labeled poems designed for cross-sentence grammatical error detection, and provide the full evaluation code. Our work aims to empower the community with tools and insights to improve the quality of training datasets for generative models in creative domains.
Authors:Jianyu Zhang
Title: Enhanced semi-supervised stamping process monitoring with physically-informed feature extraction
Abstract:
In tackling frequent batch anomalies in high-speed stamping processes, this study introduces a novel semi-supervised in-process anomaly monitoring framework, utilizing accelerometer signals and physics information, to capture the process anomaly effectively. The proposed framework facilitates the construction of a monitoring model with imbalanced sample distribution, which enables in-process condition monitoring in real-time to prevent batch anomalies, which helps to reduce batch defects risk and enhance production yield. Firstly, to effectively capture key features from raw data containing redundant information, a hybrid feature extraction algorithm is proposed to utilize data-driven methods and physical mechanisms simultaneously. Secondly, to address the challenge brought by imbalanced sample distribution, a semi-supervised anomaly detection model is established, which merely employs normal samples to build a golden baseline model, and a novel deviation score is proposed to quantify the anomaly level of each online stamping stroke. The effectiveness of the proposed feature extraction method is validated with various classification algorithms. A real-world in-process dataset from stamping manufacturing workshop is employed to illustrate the superiority of proposed semi-supervised framework with enhance performance for process anomaly monitoring.
Authors:Polycarp Nalela
Title: Leveraging Generative AI Through Prompt Engineering and Rigorous Validation to Create Comprehensive Synthetic Datasets for AI Training in Healthcare
Abstract:
Access to high-quality medical data is often restricted due to privacy concerns, posing significant challenges for training artificial intelligence (AI) algorithms within Electronic Health Record (EHR) applications. In this study, prompt engineering with the GPT-4 API was employed to generate high-quality synthetic datasets aimed at overcoming this limitation. The generated data encompassed a comprehensive array of patient admission information, including healthcare provider details, hospital departments, wards, bed assignments, patient demographics, emergency contacts, vital signs, immunizations, allergies, medical histories, appointments, hospital visits, laboratory tests, diagnoses, treatment plans, medications, clinical notes, visit logs, discharge summaries, and referrals. To ensure data quality and integrity, advanced validation techniques were implemented utilizing models such as BERT's Next Sentence Prediction for sentence coherence, GPT-2 for overall plausibility, RoBERTa for logical consistency, autoencoders for anomaly detection, and conducted diversity analysis. Synthetic data that met all validation criteria were integrated into a comprehensive PostgreSQL database, serving as the data management system for the EHR application. This approach demonstrates that leveraging generative AI models with rigorous validation can effectively produce high-quality synthetic medical data, facilitating the training of AI algorithms while addressing privacy concerns associated with real patient data.
Authors:Sai varun reddy Bhemavarapu
Title: Cybersecurity for Autonomous Vehicles
Abstract:
The increasing adoption of autonomous vehicles is bringing a major shift in the automotive industry. However, as these vehicles become more connected, cybersecurity threats have emerged as a serious concern. Protecting the security and integrity of autonomous systems is essential to prevent malicious activities that can harm passengers, other road users, and the overall transportation network. This paper focuses on addressing the cybersecurity issues in autonomous vehicles by examining the challenges and risks involved, which are important for building a secure future. Since autonomous vehicles depend on the communication between sensors, artificial intelligence, external infrastructure, and other systems, they are exposed to different types of cyber threats. A cybersecurity breach in an autonomous vehicle can cause serious problems, including a loss of public trust and safety. Therefore, it is very important to develop and apply strong cybersecurity measures to support the growth and acceptance of self-driving cars. This paper discusses major cybersecurity challenges like vulnerabilities in software and hardware, risks from wireless communication, and threats through external interfaces. It also reviews existing solutions such as secure software development, intrusion detection systems, cryptographic protocols, and anomaly detection methods. Additionally, the paper highlights the role of regulatory bodies, industry collaborations, and cybersecurity standards in creating a secure environment for autonomous vehicles. Setting clear rules and best practices is necessary for consistent protection across manufacturers and regions. By analyzing the current cybersecurity landscape and suggesting practical countermeasures, this paper aims to contribute to the safe development and public trust of autonomous vehicle technology.
Authors:Dip Roy
Title: Bayesian Autoencoder for Medical Anomaly Detection: Uncertainty-Aware Approach for Brain 2 MRI Analysis
Abstract:
In medical imaging, anomaly detection is a vital element of healthcare diagnostics, especially for neurological conditions which can be life-threatening. Conventional deterministic methods often fall short when it comes to capturing the inherent uncertainty of anomaly detection tasks. This paper introduces a Bayesian Variational Autoencoder (VAE) equipped with multi-head attention mechanisms for detecting anomalies in brain magnetic resonance imaging (MRI). For the purpose of improving anomaly detection performance, we incorporate both epistemic and aleatoric uncertainty estimation through Bayesian inference. The model was tested on the BraTS2020 dataset, and the findings were a 0.83 ROC AUC and a 0.83 PR AUC. The data in our paper suggests that modeling uncertainty is an essential component of anomaly detection, enhancing both performance and interpretability and providing confidence estimates, as well as anomaly predictions, for clinicians to leverage in making medical decisions.
Authors:Preetam Kumar Ojha
Title: Hierarchical Robust PCA for Scalable Data Quality Monitoring in Multi-level Aggregation Pipelines
Abstract:
Data quality (DQ) remains a fundamental concern in big data pipelines, especially when aggregations occur at multiple hierarchical levels. Traditional DQ validation rules often fail to scale or generalize across dimensions such as user interactions, sessions, profiles, accounts, and regions. In this paper, we present a novel application of Hierarchical Robust Principal Component Analysis (HrPCA) as a scalable, unsupervised anomaly detection technique tailored to DQ monitoring in multi-level aggregation pipelines. We propose a modular framework that decomposes the data at each hierarchical level into low-rank representations and sparse residuals, allowing the detection of subtle inconsistencies, outliers, and misalignments in the aggregated data. We evaluated our approach using synthetic hierarchical datasets with controlled anomalies and demonstrated how HrPCA outperforms traditional rule-based methods in detecting data corruption and rollup inconsistencies.
Authors:Sheikh Muhammad Farjad
Title: DaemonSec: Examining the Role of Machine Learning for Daemon Security in Linux Environments
Abstract:
DaemonSec is an early-stage startup exploring machine learning (ML)-based security for Linux daemons, a critical yet often overlooked attack surface. While daemon security remains underexplored, conventional defenses struggle against adaptive threats and zero-day exploits. To assess the perspectives of IT professionals on ML-driven daemon protection, a systematic interview study based on semi-structured interviews was conducted with 22 professionals from industry and academia. The study evaluates adoption, feasibility, and trust in ML-based security solutions. While participants recognized the potential of ML for real-time anomaly detection, findings reveal skepticism toward full automation, limited security awareness among non-security roles, and concerns about patching delays creating attack windows. This paper presents the methods, key findings, and implications for advancing ML-driven daemon security in industry.
Authors:Michael Somma
Title: Hybrid Temporal Differential Consistency Autoencoder for Efficient and Sustainable Anomaly Detection in Cyber-Physical Systems
Abstract:
Cyberattacks on critical infrastructure, particularly water distribution systems, have increased due to rapid digitalization and the integration of IoT devices and industrial control systems (ICS). These cyber-physical systems (CPS) introduce new vulnerabilities, requiring robust and automated intrusion detection systems (IDS) to mitigate potential threats. This study addresses key challenges in anomaly detection by leveraging time correlations in sensor data, integrating physical principles into machine learning models, and optimizing computational efficiency for edge applications. We build upon the concept of temporal differential consistency (TDC) loss to capture the dynamics of the system, ensuring meaningful relationships between dynamic states. Expanding on this foundation, we propose a hybrid autoencoder-based approach, referred to as hybrid TDC-AE, which extends TDC by incorporating both deterministic nodes and conventional statistical nodes. This hybrid structure enables the model to account for non-deterministic processes. Our approach achieves state-of-the-art classification performance while improving time to detect anomalies by 3%, outperforming the BATADAL challenge leader without requiring domain-specific knowledge, making it broadly applicable. Additionally, it maintains the computational efficiency of conventional autoencoders while reducing the number of fully connected layers, resulting in a more sustainable and efficient solution. The method demonstrates how leveraging physics-inspired consistency principles enhances anomaly detection and strengthens the resilience of cyber-physical systems.
Authors:Ying Zhao
Title: AnomalyHybrid: A Domain-agnostic Generative Framework for General Anomaly Detection
Abstract:
Anomaly generation is an effective way to mitigate data scarcity for anomaly detection task. Most existing works shine at industrial anomaly generation with multiple specialists or large generative models, rarely generalizing to anomalies in other applications. In this paper, we present AnomalyHybrid, a domain-agnostic framework designed to generate authentic and diverse anomalies simply by combining the reference and target images. AnomalyHybrid is a Generative Adversarial Network(GAN)-based framework having two decoders that integrate the appearance of reference image into the depth and edge structures of target image respectively. With the help of depth decoders, AnomalyHybrid achieves authentic generation especially for the anomalies with depth values changing, such a s protrusion and dent. More, it relaxes the fine granularity structural control of the edge decoder and brings more diversity. Without using annotations, AnomalyHybrid is easily trained with sets of color, depth and edge of same images having different augmentations. Extensive experiments carried on HeliconiusButterfly, MVTecAD and MVTec3D datasets demonstrate that AnomalyHybrid surpasses the GAN-based state-of-the-art on anomaly generation and its downstream anomaly classification, detection and segmentation tasks. On MVTecAD dataset, AnomalyHybrid achieves 2.06/0.32 IS/LPIPS for anomaly generation, 52.6 Acc for anomaly classification with ResNet34, 97.3/72.9 AP for image/pixel-level anomaly detection with a simple UNet.
Authors:Chuadhry Mujeeb Ahmed
Title: AttackLLM: LLM-based Attack Pattern Generation for an Industrial Control System
Abstract:
Malicious examples are crucial for evaluating the robustness of machine learning algorithms under attack, particularly in Industrial Control Systems (ICS). However, collecting normal and attack data in ICS environments is challenging due to the scarcity of testbeds and the high cost of human expertise. Existing datasets are often limited by the domain expertise of practitioners, making the process costly and inefficient. The lack of comprehensive attack pattern data poses a significant problem for developing robust anomaly detection methods. In this paper, we propose a novel approach that combines data-centric and design-centric methodologies to generate attack patterns using large language models (LLMs). Our results demonstrate that the attack patterns generated by LLMs not only surpass the quality and quantity of those created by human experts but also offer a scalable solution that does not rely on expensive testbeds or pre-existing attack examples. This multi-agent based approach presents a promising avenue for enhancing the security and resilience of ICS environments.
Authors:Luca Marini
Title: Semi-supervised learning for marine anomaly detection on board satellites
Abstract:
Aquatic bodies face numerous environmental threats caused by several marine anomalies. Marine debris can devastate habitats and endanger marine life through entanglement, while harmful algal blooms can produce toxins that negatively affect marine ecosystems. Additionally, ships may discharge oil or engage in illegal and overfishing activities, causing further harm. These marine anomalies can be identified by applying trained deep learning (DL) models on multispectral satellite imagery. Furthermore, the detection of other anomalies, such as clouds, could be beneficial in filtering out irrelevant images. However, DL models often require a large volume of labeled data for training, which can be both costly and time-consuming, particularly for marine anomaly detection where expert annotation is needed. A potential solution is the use of semi-supervised learning methods, which can also utilize unlabeled data. In this project, we implement and study the performance of FixMatch for Semantic Segmentation, a semi-supervised algorithm for semantic segmentation. Firstly, we found that semi-supervised models perform best with a high confidence threshold of 0.9 when there is a limited amount of labeled data. Secondly, we compare the performance of semi-supervised models with fully-supervised models under varying amounts of labeled data. Our findings suggest that semi-supervised models outperform fully-supervised models with limited labeled data, while fully-supervised models have a slightly better performance with larger volumes of labeled data. We propose two hypotheses to explain why fully-supervised models surpass semi-supervised ones when a high volume of labeled data is used. All of our experiments were conducted using a U-Net model architecture with a limited number of parameters to ensure compatibility with space-rated hardware.
Authors:Claire David
Title: What is AI, what is it not, how we use it in physics and how it impacts... you
Abstract:
Artificial Intelligence (AI) and Machine Learning (ML) have been prevalent in particle physics for over three decades, shaping many aspects of High Energy Physics (HEP) analyses. As AI's influence grows, it is essential for physicists $\unicode{x2013}$ as both researchers and informed citizens $\unicode{x2013}$ to critically examine its foundations, misconceptions, and impact. This paper explores AI definitions, examines how ML differs from traditional programming, and provides a brief review of AI/ML applications in HEP, highlighting promising trends such as Simulation-Based Inference, uncertainty-aware machine learning, and Fast ML for anomaly detection. Beyond physics, it also addresses the broader societal harms of AI systems, underscoring the need for responsible engagement. Finally, it stresses the importance of adapting research practices to an evolving AI landscape, ensuring that physicists not only benefit from the latest tools but also remain at the forefront of innovation.
Authors:Sean Gloumeau
Title: Post-Hoc Calibrated Anomaly Detection
Abstract:
Deep unsupervised anomaly detection has seen improvements in a supervised binary classification paradigm in which auxiliary external data is included in the training set as anomalous data in a process referred to as outlier exposure, which opens the possibility of exploring the efficacy of post-hoc calibration for anomaly detection and localization. Post-hoc Platt scaling and Beta calibration are found to improve results with gradient-based input perturbation, as well as post-hoc training with a strictly proper loss of a base model initially trained on an unsupervised loss. Post-hoc calibration is also found at times to be more effective using random synthesized spectral data as labeled anomalous data in the calibration set, suggesting that outlier exposure is superior only for initial training.
Authors:Yiwei Zhang
Title: Social Network User Profiling for Anomaly Detection Based on Graph Neural Networks
Abstract:
This study proposes a risk pricing anomaly detection method for social network user portraits based on graph neural networks (GNNs), aiming to improve the ability to identify abnormal users in social network environments. In view of the limitations of traditional methods in social network data modeling, this paper combines graph autoencoders (GAEs) and graph attention networks (GATs) to achieve accurate detection of abnormal users through dynamic aggregation of neighbor features and reconstruction error evaluation. The Facebook Page-Page Network dataset is used in the experiment and compared with VAE, GNN, Transformer and GAE. The results show that the proposed method achieves the best performance in AUC, F1-score, Precision and Recall, verifying its effectiveness. In addition, this paper explores the computational efficiency of the model in large-scale data and looks forward to combining self-supervised learning, federated learning, and other technologies in the future to improve the robustness and privacy protection of risk assessment. The research results can provide efficient anomaly detection solutions for financial risk control, social security management, and other fields.
Authors:Thomas Foltz
Title: Video Anomaly Detection with Structured Keywords
Abstract:
This paper focuses on detecting anomalies in surveillance video using keywords by leveraging foundational models' feature representation generalization capabilities. We present a novel, lightweight pipeline for anomaly classification using keyword weights. Our pipeline employs a two-stage process: induction followed by deduction. In induction, descriptions are generated from normal and anomalous frames to identify and assign weights to relevant keywords. In deduction, inference frame descriptions are converted into keyword encodings using induction-derived weights for input into our neural network for anomaly classification. We achieved comparable performance on the three benchmarks UCSD Ped2, Shanghai Tech, and CUHK Avenue, with ROC AUC scores of 0.865, 0.745, and 0.742, respectively. These results are achieved without temporal context, making such a system viable for real-time applications. Our model improves implementation setup, interpretability, and inference speed for surveillance devices on the edge, introducing a performance trade-off against other video anomaly detection systems. As the generalization capabilities of open-source foundational models improve, our model demonstrates that the exclusive use of text for feature representations is a promising direction for efficient real-time interpretable video anomaly detection.
Authors:Evgeniy Eremin
Title: Unsupervised anomaly detection on cybersecurity data streams: a case with BETH dataset
Abstract:
In modern world the importance of cybersecurity of various systems is increasing from year to year. The number of information security events generated by information security tools grows up with the development of the IT infrastructure. At the same time, the cyber threat landscape does not remain constant, and monitoring should take into account both already known attack indicators and those for which there are no signature rules in information security products of various classes yet. Detecting anomalies in large cybersecurity data streams is a complex task that, if properly addressed, can allow for timely response to atypical and previously unknown cyber threats. The possibilities of using of offline algorithms may be limited for a number of reasons related to the time of training and the frequency of retraining. Using stream learning algorithms for solving this task is capable of providing near-real-time data processing. This article examines the results of ten algorithms from three Python stream machine-learning libraries on BETH dataset with cybersecurity events, which contains information about the creation, cloning, and destruction of operating system processes collected using extended eBPF. ROC-AUC metric and total processing time of processing with these algorithms are presented. Several combinations of features and the order of events are considered. In conclusion, some mentions are given about the most promising algorithms and possible directions for further research are outlined.
Authors:Krti Tallam
Title: CyberSentinel: An Emergent Threat Detection System for AI Security
Abstract:
The rapid advancement of artificial intelligence (AI) has significantly expanded the attack surface for AI-driven cybersecurity threats, necessitating adaptive defense strategies. This paper introduces CyberSentinel, a unified, single-agent system for emergent threat detection, designed to identify and mitigate novel security risks in real time. CyberSentinel integrates: (1) Brute-force attack detection through SSH log analysis, (2) Phishing threat assessment using domain blacklists and heuristic URL scoring, and (3) Emergent threat detection via machine learning-based anomaly detection. By continuously adapting to evolving adversarial tactics, CyberSentinel strengthens proactive cybersecurity defense, addressing critical vulnerabilities in AI security.
Authors:Milad Rahmati
Title: Federated Learning-Driven Cybersecurity Framework for IoT Networks with Privacy-Preserving and Real-Time Threat Detection Capabilities
Abstract:
The rapid expansion of the Internet of Things (IoT) ecosystem has transformed various sectors but has also introduced significant cybersecurity challenges. Traditional centralized security methods often struggle to balance privacy preservation and real-time threat detection in IoT networks. To address these issues, this study proposes a Federated Learning-Driven Cybersecurity Framework designed specifically for IoT environments. The framework enables decentralized data processing by training models locally on edge devices, ensuring data privacy. Secure aggregation of these locally trained models is achieved using homomorphic encryption, allowing collaborative learning without exposing sensitive information. The proposed framework utilizes recurrent neural networks (RNNs) for anomaly detection, optimized for resource-constrained IoT networks. Experimental results demonstrate that the system effectively detects complex cyber threats, including distributed denial-of-service (DDoS) attacks, with over 98% accuracy. Additionally, it improves energy efficiency by reducing resource consumption by 20% compared to centralized approaches. This research addresses critical gaps in IoT cybersecurity by integrating federated learning with advanced threat detection techniques. The framework offers a scalable and privacy-preserving solution adaptable to various IoT applications. Future work will explore the integration of blockchain for transparent model aggregation and quantum-resistant cryptographic methods to further enhance security in evolving technological landscapes.
Authors:Bowen Su
Title: Robust Anomaly Detection via Tensor Pseudoskeleton Decomposition
Abstract:
Anomaly detection plays a critical role in modern data-driven applications, from identifying fraudulent transactions and safeguarding network infrastructure to monitoring sensor systems for irregular patterns. Traditional approaches, such as distance, density, or cluster-based methods, face significant challenges when applied to high dimensional tensor data, where complex interdependencies across dimensions amplify noise and computational complexity. To address these limitations, this paper leverages Tensor Chidori pseudoskeleton decomposition within a tensor-robust principal component analysis framework to extract low Tucker rank structure while isolating sparse anomalies, ensuring robustness to anomaly detection. We establish theoretical results regarding convergence, and estimation error, demonstrating the stability and accuracy of the proposed approach. Numerical experiments on real-world spatiotemporal data from New York City taxi trip records validate the effectiveness of the proposed method in detecting anomalous urban events compared to existing benchmark methods. Our results suggest that tensor pseudoskeleton decomposition may offer potential for enhancing anomaly detection in large-scale, high-dimensional data.
Authors:Tanvir Islam
Title: Extended Histogram-based Outlier Score (EHBOS)
Abstract:
Histogram-Based Outlier Score (HBOS) is a widely used outlier or anomaly detection method known for its computational efficiency and simplicity. However, its assumption of feature independence limits its ability to detect anomalies in datasets where interactions between features are critical. In this paper, we propose the Extended Histogram-Based Outlier Score (EHBOS), which enhances HBOS by incorporating two-dimensional histograms to capture dependencies between feature pairs. This extension allows EHBOS to identify contextual and dependency-driven anomalies that HBOS fails to detect. We evaluate EHBOS on 17 benchmark datasets, demonstrating its effectiveness and robustness across diverse anomaly detection scenarios. EHBOS outperforms HBOS on several datasets, particularly those where feature interactions are critical in defining the anomaly structure, achieving notable improvements in ROC AUC. These results highlight that EHBOS can be a valuable extension to HBOS, with the ability to model complex feature dependencies. EHBOS offers a powerful new tool for anomaly detection, particularly in datasets where contextual or relational anomalies play a significant role.
Authors:Andreas Mueller
Title: Open Challenges in Time Series Anomaly Detection: An Industry Perspective
Abstract:
Current research in time-series anomaly detection is using definitions that miss critical aspects of how anomaly detection is commonly used in practice. We list several areas that are of practical relevance and that we believe are either under-investigated or missing entirely from the current discourse. Based on an investigation of systems deployed in a cloud environment, we motivate the areas of streaming algorithms, human-in-the-loop scenarios, point processes, conditional anomalies and populations analysis of time series. This paper serves as a motivation and call for action, including opportunities for theoretical and applied research, as well as for building new dataset and benchmarks.
Authors:Sankalp Mittal
Title: CyberSentinel: Efficient Anomaly Detection in Programmable Switch using Knowledge Distillation
Abstract:
The increasing volume of traffic (especially from IoT devices) is posing a challenge to the current anomaly detection systems. Existing systems are forced to take the support of the control plane for a more thorough and accurate detection of malicious traffic (anomalies). This introduces latency in making decisions regarding fast incoming traffic and therefore, existing systems are unable to scale to such growing rates of traffic. In this paper, we propose CyberSentinel, a high throughput and accurate anomaly detection system deployed entirely in the programmable switch data plane; making it the first work to accurately detect anomalies at line speed. To detect unseen network attacks, CyberSentinel uses a novel knowledge distillation scheme that incorporates "learned" knowledge of deep unsupervised ML models (\textit{e.g.}, autoencoders) to develop an iForest model that is then installed in the data plane in the form of whitelist rules. We implement a prototype of CyberSentinel on a testbed with an Intel Tofino switch and evaluate it on various real-world use cases. CyberSentinel yields similar detection performance compared to the state-of-the-art control plane solutions but with an increase in packet-processing throughput by $66.47\%$ on a $40$ Gbps link, and a reduction in average per-packet latency by $50\%$.
Authors:Kevin Lee
Title: Iterative Encoding-Decoding VAEs Anomaly Detection in NOAA's DART Time Series: A Machine Learning Approach for Enhancing Data Integrity for NASA's GRACE-FO Verification and Validation
Abstract:
NOAA's Deep-ocean Assessment and Reporting of Tsunamis (DART) data are critical for NASA-JPL's tsunami detection, real-time operations, and oceanographic research. However, these time-series data often contain spikes, steps, and drifts that degrade data quality and obscure essential oceanographic features. To address these anomalies, the work introduces an Iterative Encoding-Decoding Variational Autoencoders (Iterative Encoding-Decoding VAEs) model to improve the quality of DART time series. Unlike traditional filtering and thresholding methods that risk distorting inherent signal characteristics, Iterative Encoding-Decoding VAEs progressively remove anomalies while preserving the data's latent structure. A hybrid thresholding approach further retains genuine oceanographic features near boundaries. Applied to complex DART datasets, this approach yields reconstructions that better maintain key oceanic properties compared to classical statistical techniques, offering improved robustness against spike removal and subtle step changes. The resulting high-quality data supports critical verification and validation efforts for the GRACE-FO mission at NASA-JPL, where accurate surface measurements are essential to modeling Earth's gravitational field and global water dynamics. Ultimately, this data processing method enhances tsunami detection and underpins future climate modeling with improved interpretability and reliability.
Authors:Christie Djidjev
Title: siForest: Detecting Network Anomalies with Set-Structured Isolation Forest
Abstract:
As cyber threats continue to evolve in sophistication and scale, the ability to detect anomalous network behavior has become critical for maintaining robust cybersecurity defenses. Modern cybersecurity systems face the overwhelming challenge of analyzing billions of daily network interactions to identify potential threats, making efficient and accurate anomaly detection algorithms crucial for network defense. This paper investigates the use of variations of the Isolation Forest (iForest) machine learning algorithm for detecting anomalies in internet scan data. In particular, it presents the Set-Partitioned Isolation Forest (siForest), a novel extension of the iForest method designed to detect anomalies in set-structured data. By treating instances such as sets of multiple network scans with the same IP address as cohesive units, siForest effectively addresses some challenges of analyzing complex, multidimensional datasets. Extensive experiments on synthetic datasets simulating diverse anomaly scenarios in network traffic demonstrate that siForest has the potential to outperform traditional approaches on some types of internet scan data.
Authors:Fabien Poirier
Title: Real-Time Anomaly Detection in Video Streams
Abstract:
This thesis is part of a CIFRE agreement between the company Othello and the LIASD laboratory. The objective is to develop an artificial intelligence system that can detect real-time dangers in a video stream. To achieve this, a novel approach combining temporal and spatial analysis has been proposed. Several avenues have been explored to improve anomaly detection by integrating object detection, human pose detection, and motion analysis. For result interpretability, techniques commonly used for image analysis, such as activation and saliency maps, have been extended to videos, and an original method has been proposed. The proposed architecture performs binary or multiclass classification depending on whether an alert or the cause needs to be identified. Numerous neural networkmodels have been tested, and three of them have been selected. You Only Looks Once (YOLO) has been used for spatial analysis, a Convolutional Recurrent Neuronal Network (CRNN) composed of VGG19 and a Gated Recurrent Unit (GRU) for temporal analysis, and a multi-layer perceptron for classification. These models handle different types of data and can be combined in parallel or in series. Although the parallel mode is faster, the serial mode is generally more reliable. For training these models, supervised learning was chosen, and two proprietary datasets were created. The first dataset focuses on objects that may play a potential role in anomalies, while the second consists of videos containing anomalies or non-anomalies. This approach allows for the processing of both continuous video streams and finite videos, providing greater flexibility in detection.
Authors:Abhijith Gandrakota
Title: Real-time Anomaly Detection at the L1 Trigger of CMS Experiment
Abstract:
We present the preparation, deployment, and testing of an autoencoder trained for unbiased detection of new physics signatures in the CMS experiment Global Trigger (GT) test crate FPGAs during LHC Run 3. The GT makes the final decision whether to readout or discard the data from each LHC collision, which occur at a rate of 40 MHz, within a 50 ns latency. The Neural Network makes a prediction for each event within these constraints, which can be used to select anomalous events for further analysis. The GT test crate is a copy of the main GT system, receiving the same input data, but whose output is not used to trigger the readout of CMS, providing a platform for thorough testing of new trigger algorithms on live data, but without interrupting data taking. We describe the methodology to achieve ultra low latency anomaly detection, and present the integration of the DNN into the GT test crate, as well as the monitoring, testing, and validation of the algorithm during proton collisions.
Authors:Ammar Fayad
Title: Unsupervised Learning Approach to Anomaly Detection in Gravitational Wave Data
Abstract:
Gravitational waves (GW), predicted by Einstein's General Theory of Relativity, provide a powerful probe of astrophysical phenomena and fundamental physics. In this work, we propose an unsupervised anomaly detection method using variational autoencoders (VAEs) to analyze GW time-series data. By training on noise-only data, the VAE accurately reconstructs noise inputs while failing to reconstruct anomalies, such as GW signals, which results in measurable spikes in the reconstruction error. The method was applied to data from the LIGO H1 and L1 detectors. Evaluation on testing datasets containing both noise and GW events demonstrated reliable detection, achieving an area under the ROC curve (AUC) of 0.89. This study introduces VAEs as a robust, unsupervised approach for identifying anomalies in GW data, which offers a scalable framework for detecting known and potentially new phenomena in physics.
Authors:Steven A. Frank
Title: Circuit design in biology and machine learning. II. Anomaly detection
Abstract:
Anomaly detection is a well-established field in machine learning, identifying observations that deviate from typical patterns. The principles of anomaly detection could enhance our understanding of how biological systems recognize and respond to atypical environmental inputs. However, this approach has received limited attention in analyses of cellular and physiological circuits. This study builds on machine learning techniques -- such as dimensionality reduction, boosted decision trees, and anomaly classification -- to develop a conceptual framework for biological circuits. One problem is that machine learning circuits tend to be unrealistically large for use by cellular and physiological systems. I therefore focus on minimal circuits inspired by machine learning concepts, reduced to cellular scale. Through illustrative models, I demonstrate that small circuits can provide useful classification of anomalies. The analysis also shows how principles from machine learning -- such as temporal and atemporal anomaly detection, multivariate signal integration, and hierarchical decision-making cascades -- can inform hypotheses about the design and evolution of cellular circuits. This interdisciplinary approach enhances our understanding of cellular circuits and highlights the universal nature of computational strategies across biological and artificial systems.
Authors:Marco Franceschini
Title: A neural-network based anomaly detection system and a safety protocol to protect vehicular network
Abstract:
This thesis addresses the use of Cooperative Intelligent Transport Systems (CITS) to improve road safety and efficiency by enabling vehicle-to-vehicle communication, highlighting the importance of secure and accurate data exchange. To ensure safety, the thesis proposes a Machine Learning-based Misbehavior Detection System (MDS) using Long Short-Term Memory (LSTM) networks to detect and mitigate incorrect or misleading messages within vehicular networks. Trained offline on the VeReMi dataset, the detection model is tested in real-time within a platooning scenario, demonstrating that it can prevent nearly all accidents caused by misbehavior by triggering a defense protocol that dissolves the platoon if anomalies are detected. The results show that while the system can accurately detect general misbehavior, it struggles to label specific types due to varying traffic conditions, implying the difficulty of creating a universally adaptive protocol. However, the thesis suggests that with more data and further refinement, this MDS could be implemented in real-world CITS, enhancing driving safety by mitigating risks from misbehavior in cooperative driving networks.
Authors:Fabien Poirier
Title: From CNN to CNN + RNN: Adapting Visualization Techniques for Time-Series Anomaly Detection
Abstract:
Deep neural networks are highly effective in solving complex problems but are often viewed as "black boxes," limiting their adoption in contexts where transparency and explainability are essential. This lack of visibility raises ethical and legal concerns, particularly in critical areas like security, where automated decisions can have significant consequences. The General Data Protection Regulation (GDPR) underscores the importance of justifying these decisions. In this work, we explore visualization techniques to improve the understanding of anomaly detection models based on convolutional recurrent neural networks (CNN + RNN) with a TimeDistributed layer. Our model combines VGG19 for convolutional feature extraction and a GRU layer for sequential analysis of real-time video data. While suitable for temporal data, this structure complicates gradient propagation, as sequence elements are processed independently, dissociating temporal information. We adapt visualization techniques such as saliency maps and Grad-CAM to address these challenges. This article highlights the difficulties in visually interpreting video-based models and demonstrates how techniques for static images can be adapted to recurrent architectures, offering a transitional solution in the absence of dedicated methods.
Authors:Hongyi Xu
Title: Hypergraph-based multi-scale spatio-temporal graph convolution network for Time-Series anomaly detection
Abstract:
Multivariate time series anomaly detection technology plays an important role in many fields including aerospace, water treatment, cloud service providers, etc. Excellent anomaly detection models can greatly improve work efficiency and avoid major economic losses. However, with the development of technology, the increasing size and complexity of data, and the lack of labels for relevant abnormal data, it is becoming increasingly challenging to perform effective and accurate anomaly detection in high-dimensional and complex data sets. In this paper, we propose a hypergraph based spatiotemporal graph convolutional neural network model STGCN_Hyper, which explicitly captures high-order, multi-hop correlations between multiple variables through a hypergraph based dynamic graph structure learning module. On this basis, we further use the hypergraph based spatiotemporal graph convolutional network to utilize the learned hypergraph structure to effectively propagate and aggregate one-hop and multi-hop related node information in the convolutional network, thereby obtaining rich spatial information. Furthermore, through the multi-scale TCN dilated convolution module, the STGCN_hyper model can also capture the dependencies of features at different scales in the temporal dimension. An unsupervised anomaly detector based on PCA and GMM is also integrated into the STGCN_hyper model. Through the anomaly score of the detector, the model can detect the anomalies in an unsupervised way. Experimental results on multiple time series datasets show that our model can flexibly learn the multi-scale time series features in the data and the dependencies between features, and outperforms most existing baseline models in terms of precision, recall, F1-score on anomaly detection tasks. Our code is available on: https://git.ecdf.ed.ac.uk/msc-23-24/s2044819
Authors:Fabien Poirier
Title: Hybrid Architecture for Real-Time Video Anomaly Detection: Integrating Spatial and Temporal Analysis
Abstract:
In this paper, we propose a new architecture for real-time anomaly detection in video data, inspired by human behavior combining spatial and temporal analyses. This approach uses two distinct models: (i) for temporal analysis, a recurrent convolutional network (CNN + RNN) is employed, associating VGG19 and a GRU to process video sequences; (ii) regarding spatial analysis, it is performed using YOLOv7 to analyze individual images. These two analyses can be carried out either in parallel, with a final prediction that combines the results of both analysis, or in series, where the spatial analysis enriches the data before the temporal analysis. Some experimentations are been made to compare these two architectural configurations with each other, and evaluate the effectiveness of our hybrid approach in video anomaly detection.
Authors:Lihi Idan
Title: Towards Unsupervised Validation of Anomaly-Detection Models
Abstract:
Unsupervised validation of anomaly-detection models is a highly challenging task. While the common practices for model validation involve a labeled validation set, such validation sets cannot be constructed when the underlying datasets are unlabeled. The lack of robust and efficient unsupervised model-validation techniques presents an acute challenge in the implementation of automated anomaly-detection pipelines, especially when there exists no prior knowledge of the model's performance on similar datasets. This work presents a new paradigm to automated validation of anomaly-detection models, inspired by real-world, collaborative decision-making mechanisms. We focus on two commonly-used, unsupervised model-validation tasks -- model selection and model evaluation -- and provide extensive experimental results that demonstrate the accuracy and robustness of our approach on both tasks.
Authors:Tran Dang Khoa
Title: Anomaly Detection and Inlet Pressure Prediction in Water Distribution Systems Using Machine Learning
Abstract:
This study presents two models to optimize pressure management in water distribution networks. The first model forecasts pressure at distribution points and compares predictions with actual data to detect anomalies such as leaks and blockages. Early detection allows for timely interventions, minimizing economic losses and ensuring system sustainability. The second model estimates the necessary inlet pressure based on the influence of various distribution points, ensuring consistent water supply while reducing waste and optimizing resource management. Both models utilize modern machine learning algorithms to enhance the prediction process. The methodology includes the CNN-EMD model, which analyzes historical data collected every 15 minutes over two months to predict future pressures. The Empirical Mode Decomposition (EMD) method identifies fluctuations and anomalies, improving prediction accuracy. The second model combines CNN, EMD, and LSTM techniques to forecast required inlet pressure, emphasizing the impact of distribution points. Results show that the CNN-EMD and CNN-EMD-LSTM models enhance pressure management capabilities, with the first model achieving an anomaly detection accuracy of 85% to 95% and the second model predicting inlet pressure with an average accuracy of 93%. This enables flexible system adjustments and identifies critical factors affecting inlet pressure. In conclusion, advanced machine learning models like CNN-EMD and LSTM significantly improve pressure management in water distribution networks, facilitating early issue identification, ensuring efficient water supply, and optimizing resource management for future generations.
Authors:Javier M. Duarte
Title: Novel machine learning applications at the LHC
Abstract:
Machine learning (ML) is a rapidly growing area of research in the field of particle physics, with a vast array of applications at the CERN LHC. ML has changed the way particle physicists conduct searches and measurements as a versatile tool used to improve existing approaches and enable fundamentally new ones. In these proceedings, we describe novel ML techniques and recent results for improved classification, fast simulation, unfolding, and anomaly detection in LHC experiments.
Authors:Ahmad Hafez
Title: Global Context Enhanced Anomaly Detection of Cyber Attacks via Decoupled Graph Neural Networks
Abstract:
Recently, there has been a substantial amount of interest in GNN-based anomaly detection. Existing efforts have focused on simultaneously mastering the node representations and the classifier necessary for identifying abnormalities with relatively shallow models to create an embedding. Therefore, the existing state-of-the-art models are incapable of capturing nonlinear network information and producing suboptimal outcomes. In this thesis, we deploy decoupled GNNs to overcome this issue. Specifically, we decouple the essential node representations and classifier for detecting anomalies. In addition, for node representation learning, we develop a GNN architecture with two modules for aggregating node feature information to produce the final node embedding. Finally, we conduct empirical experiments to verify the effectiveness of our proposed approach. The findings demonstrate that decoupled training along with the global context enhanced representation of the nodes is superior to the state-of-the-art models in terms of AUC and introduces a novel way of capturing the node information.
Authors:Darshan Venkatrayappa
Title: Abnormal Event Detection In Videos Using Deep Embedding
Abstract:
Abnormal event detection or anomaly detection in surveillance videos is currently a challenge because of the diversity of possible events. Due to the lack of anomalous events at training time, anomaly detection requires the design of learning methods without supervision. In this work we propose an unsupervised approach for video anomaly detection with the aim to jointly optimize the objectives of the deep neural network and the anomaly detection task using a hybrid architecture. Initially, a convolutional autoencoder is pre-trained in an unsupervised manner with a fusion of depth, motion and appearance features. In the second step, we utilize the encoder part of the pre-trained autoencoder and extract the embeddings of the fused input. Now, we jointly train/ fine tune the encoder to map the embeddings to a hypercenter. Thus, embeddings of normal data fall near the hypercenter, whereas embeddings of anomalous data fall far away from the hypercenter.